10 GHz dual loop opto-electronic oscillator without RF-amplifiers
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary
2008-02-01
We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.
Up gradation of LHCD system for rf power level up to 2MW for SST1
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Ambulkar, K. K.; Parmar, P. R.; Virani, C. G.; Thakur, A. L.; Kulkarni, S. V.; Lhcd Group
2010-02-01
To operate superconducting steadystate tokamak (SST1) for 1000 seconds, lower hybrid current drive (LHCD) system has been designed at a frequency of 3.7 GHz., which would couple 1.0 MW CW of microwave power to the shaped plasma. The system consists of various rf passive components and transmission line, employing which the rf power from the source is transported to the antenna. During calibration of transmission line, it was observed that the losses in the transmission line is substantial and eventually would lead to less coupled power to the plasma. Further it is anticipated that more LH power would be required for advanced operation of SST1 machine. Thus it is decided to upgrade the existing LHCD system to 2 MW CW power level. The proposed up gradation would demand several infra structural changes and needs to be addressed. Due to lack of space, we have proposed a scheme in which additional two klystrons, along with existing two klystrons would be accommodated in the existing space. The low rf power requirements have also been increased to cater the new needs. Accordingly additional cooling requirements have been proposed to accommodate the two new klystrons. The DAC and auxiliary power supplies have been also designed. The new up graded LHCD system would address several key technological issues. Firstly it would establish the operation of four klystrons at rated power in parallel employing single RHVPS (80kV, 70A). Secondly it would establish the operation of two high power klystrons operation at rated power when their collectors are cooled in series. In this paper we would present the various requirements for up-gradation of LHCD system to 2MW. The main requirements like high power rf source, along with modified support structure, low power rf systems to drive the high power rf source, auxiliary power supplies required for high power rf source, DAC system improvement, cooling improvements, etc. would be discussed.
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957
Ibrahim, Tamer S; Tang, Lin
2007-06-01
To study the dependence of radiofrequency (RF) power deposition on B(0) field strength for different loads and excitation mechanisms. Studies were performed utilizing a finite difference time domain (FDTD) model that treats the transmit array and the load as a single system. Since it was possible to achieve homogenous excitations across the human head model by varying the amplitudes/phases of the voltages driving the transmit array, studies of the RF power/B(0) field strength (frequency) dependence were achievable under well-defined/fixed/homogenous RF excitation. Analysis illustrating the regime in which the RF power is dependent on the square of the operating frequency is presented. Detailed studies focusing on the RF power requirements as a function of number of excitation ports, driving mechanism, and orientations/positioning within the load are presented. With variable phase/amplitude excitation, as a function of frequency, the peak-then-decrease relation observed in the upper axial slices of brain with quadrature excitation becomes more evident in the lower slices as well. Additionally, homogeneity optimization targeted at minimizing the ratio of maximum/minimum B(1) (+) field intensity within the region of interest, typically results in increased RF power requirements (standard deviation was not considered in this study). Increasing the number of excitation ports, however, can result in significant RF power reduction. (c) 2007 Wiley-Liss, Inc.
Power of data mining methods to detect genetic associations and interactions.
Molinaro, Annette M; Carriero, Nicholas; Bjornson, Robert; Hartge, Patricia; Rothman, Nathaniel; Chatterjee, Nilanjan
2011-01-01
Genetic association studies, thus far, have focused on the analysis of individual main effects of SNP markers. Nonetheless, there is a clear need for modeling epistasis or gene-gene interactions to better understand the biologic basis of existing associations. Tree-based methods have been widely studied as tools for building prediction models based on complex variable interactions. An understanding of the power of such methods for the discovery of genetic associations in the presence of complex interactions is of great importance. Here, we systematically evaluate the power of three leading algorithms: random forests (RF), Monte Carlo logic regression (MCLR), and multifactor dimensionality reduction (MDR). We use the algorithm-specific variable importance measures (VIMs) as statistics and employ permutation-based resampling to generate the null distribution and associated p values. The power of the three is assessed via simulation studies. Additionally, in a data analysis, we evaluate the associations between individual SNPs in pro-inflammatory and immunoregulatory genes and the risk of non-Hodgkin lymphoma. The power of RF is highest in all simulation models, that of MCLR is similar to RF in half, and that of MDR is consistently the lowest. Our study indicates that the power of RF VIMs is most reliable. However, in addition to tuning parameters, the power of RF is notably influenced by the type of variable (continuous vs. categorical) and the chosen VIM. Copyright © 2011 S. Karger AG, Basel.
Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus
NASA Astrophysics Data System (ADS)
Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.
2017-08-01
A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.
Low reflectance high power RF load
Ives, R. Lawrence; Mizuhara, Yosuke M.
2016-02-02
A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.
A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P
2013-12-01
We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.
Karli, Umid; Guvenc, Alpay; Aslan, Alper; Hazir, Tahir; Acikada, Caner
2007-01-01
The aim of this study was to investigate the effects of Ramadan fasting on anaerobic power and capacity and the removal rate of lactate after short time high intensity exercise in power athletes. Ten male elite power athletes (2 wrestlers, 7 sprinters and 1 thrower, aged 20-24 yr, mean age 22.30 ± 1.25 yr) participated in this study. The subjects were tested three times [3 days before the beginning of Ramadan (Pre-RF), the last 3 days of Ramadan (End-RF) and the last 3 days of the 4(th) week after the end of Ramadan (After-RF)]. Anaerobic power and capacity were measured by using the Wingate Anaerobic Test (WAnT) at Pre-RF, End-RF and After- RF. Capillary blood samples for lactate analyses and heart rate recordings were taken at rest, immediately after WAnT and throughout the recovery period. Repeated measures of ANOVA indicated that there were no significant changes in body weight, body mass index, fat free mass, percentage of body fat, daily sleeping time and daily caloric intake associated with Ramadan fasting. No significant changes were found in total body water either, but urinary density measured at End-RF was significantly higher than After-RF. Similarity among peak HR and peak LA values at Pre-RF, End- RF and After-RF demonstrated that cardiovascular and metabolic stress caused by WAnT was not affected by Ramadan fasting. In addition, no influence of Ramadan fasting on anaerobic power and capacity and removal rate of LA from blood following high intensity exercise was observed. The results of this study revealed that if strength-power training is performed regularly and daily food intake, body fluid balance and daily sleeping time are maintained as before Ramadan, Ramadan fasting will not have adverse effects on body composition, anaerobic power and capacity, and LA metabolism during and after high intensity exercise in power athletes. Key pointsNo significant changes were assessed on body composition, daily sleeping time and caloric intake, and body fluid balance in regularly trained power athletes during Ramadan fasting.Ramadan fasting has no adverse effect on power outputs of short time high intensity exercise.No influence of Ramadan fasting on LA metabolism during high intensity exercise and passive recovery in regularly trained power athletes.
Test results of 3.7 GHz 500kW CW klystron for SST1 LHCD system
NASA Astrophysics Data System (ADS)
Sharma, Promod Kumar; Ambulkar, Kiran K.; Dalakoti, Shefali; Rajan Babu, N.; Parmar, Pramod R.; Virani, Chetan G.; Thakur, Arvind L.
2012-10-01
A 3.7 GHz, LHCD system aims to driving non inductive plasma current for SST1 machine. Its capability has been enhanced up to 2 MW by adding two additional klystrons, each rated for 500kW, CW power. The additional klystrons are installed and commissioned at site, for rated power, for more than 1000 seconds, before connecting them to main LHCD system. The auxiliary systems, like supporting power supply system (magnet, filament, ion pump, etc.), active heat management system, slow and fast interlock system, transmission line pressurization system, low power rf drive system, etc. are inter-connected with klystron system through VME based data acquisition and control system for remote CW operation of klystron at rated power. The calorimetric measurements, employing Pt-100 sensors, suggests that the maximum rf power (˜500kW CW) extracted from klystron is dissipated on water cooled dummy loads. The unspent DC power (˜800 kW CW) is dissipated in collector which is heavily cooled with water flowing at ˜1300 litres/min (lpm). The power loss in the klystron body remained within 20 kW. The cavity temperature, measured using J-type thermocouple, remained below 150 ^oC. The output rf power, sampled through directional couplers and measured by rf detectors shows good agreement with calorimetric measurements. A detailed description of the klystron test set up and the test results obtained during its commissioning is presented in this paper.
Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, W. C.; Siu, D. P.; Cook, H. F.
1991-01-01
Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.
RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna
NASA Astrophysics Data System (ADS)
Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D'Amico, S.
2016-07-01
In this paper, an RF-DC converter operating at 13.56 MHz (HF radio frequency identification (RFID) frequency band) is presented. Its architecture provides RF to load isolation, reducing the losses due to the reverse saturation current and improving the sensitivity. Fed by a loop antenna, the RF-DC converter is made by a Dickson's RF-DC rectifier and an additional Pelliconi's charge pump driven by a fully integrated 50 kHz ring oscillator realized using an application-specific integrated circuit (ASIC). The input RF signal from the reader is converted to DC supply voltage and stored on a 1 μF capacitor. Mathematical model of the converter is developed and verified through measurements. Silicon prototypes of the ASIC have been realized in 350 nm complementary metal-oxide semiconductor technology. Measurements have been done on 10 different samples showing an output voltage in the range of 0.5 V-3.11 V in correspondence of an RF input signal power in the range of -19 dBm-0 dBm. These output voltage levels are suitable to power HF RFID sensing platforms and sensor nodes of body sensor networks.
NASA Astrophysics Data System (ADS)
Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya
2012-09-01
The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.
El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M Jamal
2013-08-02
Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of -122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of -120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.
2015-04-08
In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The maintenance and operation procedure to minimize the plasma chamber (PCH) replacement time on the beam line, which is very important to maximize the J-PARC beam time especially for an antenna failure,more » is presented in this paper. The PCH preserved by filling argon (Ar) gas inside after pre-conditioning including pre-cesiation to produce the required beam at a test-stand successfully produced the required beam on the beam line with slight addition of cesium (Cs). The methods of the feedback controls of a 2MHz-RF-matching, an H{sup −} ion beam intensity and the addition of Cs are also presented. The RF-matching feedback by using two vacuum variable capacitors (VVCs) and RF-frequency shift produced the almost perfect matching with negligibly small reflected RF-power. The H{sup −} ion beam intensity was controlled within errors of ±0.1mA by the RF-power feedback. The amount of Cs was also controlled by remotely opening a Cs-valve to keep the RF-power lower than a settled value.« less
Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R
2014-02-01
Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.
Basic Study on the Generation of RF Plasmas in Premixed Oxy-combustion with Methane
NASA Astrophysics Data System (ADS)
Osaka, Yugo; Kobayashi, Noriyuki; Razzak, M. A.; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko
Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility.
NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes
NASA Technical Reports Server (NTRS)
Burnham, Karen; Scully, Robert; Norgard, John
2013-01-01
The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability
NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes
NASA Technical Reports Server (NTRS)
Burnham, Karen; Scully, Robert C.; Norgard, John D.
2013-01-01
The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability.
Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters
Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M.
2012-01-01
This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance. PMID:23202014
Optimization of passive low power wireless electromagnetic energy harvesters.
Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M
2012-10-11
This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at -30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance.
Pulsed beam tests at the SANAEM RFQ beamline
NASA Astrophysics Data System (ADS)
Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.
2017-07-01
A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.
Flexible low-power RF nanoelectronics in the GHz regime using CVD MoS2
NASA Astrophysics Data System (ADS)
Yogeesh, Maruthi
Two-dimensional (2D) materials have attracted substantial interest for flexible nanoelectronics due to the overall device mechanical flexibility and thickness scalability for high mechanical performance and low operating power. In this work, we demonstrate the first MoS2 RF transistors on flexible substrates based on CVD-grown monolayers, featuring record GHz cutoff frequency (5.6 GHz) and saturation velocity (~1.8×106 cm/s), which is significantly superior to contemporary organic and metal oxide thin-film transistors. Furthermore, multicycle three-point bending results demonstrated the electrical robustness of our flexible MoS2 transistors after 10,000 cycles of mechanical bending. Additionally, basic RF communication circuit blocks such as amplifier, mixer and wireless AM receiver have been demonstrated. These collective results indicate that MoS2 is an ideal advanced semiconducting material for low-power, RF devices for large-area flexible nanoelectronics and smart nanosystems owing to its unique combination of large bandgap, high saturation velocity and high mechanical strength.
RF Telemetry System for an Implantable Bio-MEMS Sensor
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Hall, David G.; Miranda, Felix A.
2004-01-01
In this paper, a novel miniature inductor and a pick-up antenna for contact less powering and RF telemetry from implantable bio-MEMS sensors are presented. The design of the inductor and the pick-up antenna are discussed. In addition, the measured characteristics at the design frequency of 330 MHz have been shown.
FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Troy; Diamond, J. S.; McDowell, D.
2016-10-12
An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less
Credit Risk Evaluation of Power Market Players with Random Forest
NASA Astrophysics Data System (ADS)
Umezawa, Yasushi; Mori, Hiroyuki
A new method is proposed for credit risk evaluation in a power market. The credit risk evaluation is to measure the bankruptcy risk of the company. The power system liberalization results in new environment that puts emphasis on the profit maximization and the risk minimization. There is a high probability that the electricity transaction causes a risk between companies. So, power market players are concerned with the risk minimization. As a management strategy, a risk index is requested to evaluate the worth of the business partner. This paper proposes a new method for evaluating the credit risk with Random Forest (RF) that makes ensemble learning for the decision tree. RF is one of efficient data mining technique in clustering data and extracting relationship between input and output data. In addition, the method of generating pseudo-measurements is proposed to improve the performance of RF. The proposed method is successfully applied to real financial data of energy utilities in the power market. A comparison is made between the proposed and the conventional methods.
Low reflectance radio frequency load
Ives, R. Lawrence; Mizuhara, Yosuke M
2014-04-01
A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
NASA Astrophysics Data System (ADS)
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-01
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Multi-frequency klystron designed for high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Aaron
A multi-frequency klystron has an electron gun which generates a beam, a circuit of bunch-align-collect (BAC) tuned cavities that bunch the beam and amplify an RF signal, a collector where the beam is collected and dumped, and a standard output cavity and waveguide coupled to a window to output RF power at a fundamental mode to an external load. In addition, the klystron has additional bunch-align-collect (BAC) cavities tuned to a higher harmonic frequency, and a harmonic output cavity and waveguide coupled via a window to an additional external load.
rf power system for thrust measurements of a helicon plasma source.
Kieckhafer, Alexander W; Walker, Mitchell L R
2010-07-01
A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
Upgrades to the MARIA Helicon Experiment at UW-Madison
NASA Astrophysics Data System (ADS)
Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg; Winters, Victoria
2016-10-01
The MARIA helicon plasma device at UW Madison is setup to investigate the neutral particle fueling of helicon discharges. Following initial results from the 668.614nm diode laser LIF system, the active spectroscopy diagnostic suite was expanded by establishing a 1.4J pulsed Nd:YAG pumped dye laser. To verify the new laser system, a comparison of measured ion velocities near a target plate was made between the diode based and dye based LIF systems. Additionally, theory and further verification of a new technique for measuring ion velocities leveraging Zeeman splitting is presented. During a campaign with <= 750W RF power, densities in the range of 1x1018 m-3 and 2 eV electron temperature were achieved with 4.1 mTorr of argon and a magnetic field of 750G. To achieve higher densities and explore the physics of neutral depletion, the available RF power was increased from 750W to 2kW, with further expansion to 4kW on a single antenna planned. For both power levels a clear helicon mode can be reliably established and its extension increases with increasing RF power. Basic plasma characterization at the higher RF power, such as electron density vs magnetic field scans, will be presented. This work was funded by the NSF CAREER Award PHY-1455210.
Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikhzada, Ahmad
As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less
Park, Sung Il; Shin, Gunchul; Banks, Anthony; McCall, Jordan G; Siuda, Edward R; Schmidt, Martin J; Chung, Ha Uk; Noh, Kyung Nim; Mun, Jonathan Guo-Han; Rhodes, Justin; Bruchas, Michael R; Rogers, John A
2015-10-01
Wireless control and power harvesting systems that operate injectable, cellular-scale optoelectronic components provide important demonstrated capabilities in neuromodulatory techniques such as optogenetics. Here, we report a radio frequency (RF) control/harvesting device that offers dramatically reduced size, decreased weight and improved efficiency compared to previously reported technologies. Combined use of this platform with ultrathin, multijunction, high efficiency solar cells allows for hundred-fold reduction of transmitted RF power, which greatly enhances the wireless coverage. Fabrication involves separate construction of the harvester and the injectable µ-ILEDs. To test whether the presence of the implantable device alters behavior, we implanted one group of wild type mice and compared sociability behavior to unaltered controls. Social interaction experiments followed protocols defined by Silverman et al. with minor modifications. The results presented here demonstrate that miniaturized RF harvesters, and RF control strategies with photovoltaic harvesters can, when combined with injectable µ-ILEDs, offer versatile capabilities in optogenetics. Experimental and modeling studies establish a range of effective operating conditions for these two approaches. Optogenetics studies with social groups of mice demonstrate the utility of these systems. The addition of miniaturized, high performance photovoltaic cells significantly expands the operating range and reduces the required RF power. The platform can offer capabilities to modulate signaling path in the brain region of freely-behaving animals. These suggest its potential for widespread use in neuroscience.
Operations Studies of the Gyrotrons on DIII-D
NASA Astrophysics Data System (ADS)
Storment, Stephen; Lohr, John; Cengher, Mirela; Gorelov, Yuri; Ponce, Dan; Torrezan, Antonio
2017-10-01
The gyrotrons are high power vacuum tubes used in fusion research to provide high power density heating and current drive in precisely localized areas of the plasma. Despite the increasing experience with both the manufacture and operation of these devices, individual gyrotrons with similar design and manufacturing processes can exhibit important operational differences in terms of generated rf power, efficiency and lifetime. This report discusses differences in the performance of several gyrotrons in operation at DIII-D and presents the results of a series of measurements that could lead to improved the performance of single units based on a better understanding of the causes of these differences. The rf power generation efficiency can be different from gyrotron to gyrotron. In addition, the power loading of the collector can feature localized hot spots, where the collector can locally be close to the power deposition limits. Measurements of collector power loading provide maps of the power deposition and can provide understanding of the effect of modulation of the output rf beam on the total loading, leading to improved operational rules increasing the safety margins for the gyrotrons under different operational scenarios. Work supported by US DOE under DE-FC02-04ER54698.
Shareef, Hussain; Mutlag, Ammar Hussein; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.
Shareef, Hussain; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland–Altman test, with more than 95 percent acceptability. PMID:28702051
rf power system for thrust measurements of a helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieckhafer, Alexander W.; Walker, Mitchell L. R.
2010-07-15
A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows goodmore » transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.« less
Rietsch, Stefan H G; Pfaffenrot, Viktor; Bitz, Andreas K; Orzada, Stephan; Brunheim, Sascha; Lazik-Palm, Andrea; Theysohn, Jens M; Ladd, Mark E; Quick, Harald H; Kraff, Oliver
2017-12-01
In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B 1 + of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming. © 2017 American Association of Physicists in Medicine.
Overview of High Power Vacuum Dry RF Load Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnykh, Anatoly
2015-08-27
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less
Development of fundamental power coupler for C-ADS superconducting elliptical cavities
NASA Astrophysics Data System (ADS)
Gu, Kui-Xiang; Bing, Feng; Pan, Wei-Min; Huang, Tong-Ming; Ma, Qiang; Meng, Fan-Bo
2017-06-01
5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven sub-critical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper. Supported by China ADS Project (XDA03020000) and National Natural Science Foundation of China (11475203)
Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator
NASA Astrophysics Data System (ADS)
Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki
2005-12-01
We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonehara, K.; Chung, M.; Jansson, A.
2010-05-01
A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on themore » resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010.« less
2007-12-11
Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional
Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad
2016-04-01
The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.
High power tests of an electroforming cavity operating at 11.424 GHz
NASA Astrophysics Data System (ADS)
Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.
2016-03-01
The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.
Active high-power RF switch and pulse compression system
Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max
1998-01-01
A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.
2016-05-01
A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.
Waveguide Power Combiner Demonstration for Multiple High Power Millimeter Wave TWTAs
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee N.; Lesny, Gary G.; Glass, Jeffrey L.
2004-01-01
NASA is presently developing nuclear reactor technologies, under Project Prometheus, which will provide spacecraft with greatly increased levels of sustained onboard power and thereby dramatically enhance the capability for future deep space exploration. The first mission planned for use of this high power technology is the Jupiter Icy Moons Orbiter (JIMO). In addition to electric propulsion and science, there will also be unprecedented onboard power available for deep space communications. A 32 GHz transmitter with 1 kW of RF output power is being considered to enable the required very high data transmission rates. One approach to achieving the 1 kW RF power, now being investigated at NASA GRC, is the possible power combining of a number of 100-1 50 W TWTs now under development. The work presented here is the results of a proof-of-concept demonstration of the power combining Ka-band waveguide circuit design and test procedure using two Ka- band TWTAs (Varian model VZA6902V3 and Logimetrics model A440/KA-1066), both of which were previously employed in data uplink evaluation terminals at 29.36 GHz for the NASA Advanced Communications Technology Satellite (ACTS) program. The characterization of the individual TWTAs and power combining demonstration were done over a 500 MHz bandwidth from 29.1 to 29.6 GHz to simulate the Deep Space Network (DSN) bandwidth of 3 1.8 to 32.3 GHz. Figures 1-3 show some of the power transfer and gain measurements of the TWTAs using a swept signal generator (Agilent 83640b) for the RF input. The input and output powers were corrected for circuit insertion losses due to the waveguide components. The RF saturated powers of both ACTS TWTAs were on the order of 120 W, which is comparable to the expected output powers of the 32 GHz TWTs. Additional results for the individual TWTAs will be presented (AM/AM, AM/PM conversion and gain compression), some of which were obtained from swept frequency and power measurements using a vector network analyzer. The results for the power combining demonstration as well as a more detailed description of the power combining test circuit and test procedure will also be presented.
Inductive tuners for microwave driven discharge lamps
Simpson, James E.
1999-01-01
An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.
Electron Heating Mode Transitions in Nitrogen (13.56 and 40.68) MHz RF-CCPs
NASA Astrophysics Data System (ADS)
Erozbek Gungor, Ummugul; Bilikmen, Sinan Kadri; Akbar, Demiral
2015-09-01
Capacitively coupled radio frequency plasmas (RF-CCPs) are commonly used in plasma material processing. Parametrical structure of the plasma determines the demands of processing applications. For example; high density plasmas in gamma mode are mostly preferred for etching applications while stabile plasmas in gamma mode are usually used in sputtering applications. For this reason, characterization of the plasma is very essential before surface modification of the materials. In this work, analysis of electron heating mode transition in high frequency (40.68 MHz) RF-CCP was deeply investigated. The plasma was generated in a home-made (500 × 400 mm2) stainless steel cylindrical reactor in which two identical (200 mm in diameter) electrodes were placed with 40 mm interval. In addition, L-type automatic matching network system was connected to the 40.68 MHz RF generator to get high accuracy. Moreover, the pure (99.995 %) nitrogen was used as an activation gas on account of having an appreciable impression in plasma processing applications. Furthermore, diagnostic measurements of the plasma were done by using the Impedans Langmuir single and double probe systems. It was found that two transition points; α- γ (pressure dependent) and γ- α (RF power dependent) were observed in both medium and high RF-CCPs. As a result, the α- γ pressure transition increased, whereas the γ- α power transition remained constant by changing the RF frequency sources.
Rf-assisted current startup in FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.; Peng, Y.K.M.; Kammash, T.
1981-01-01
Auxiliary rf heating of electrons before and during the current rise phase in FED is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating (ECRH) power at approximately 90 GHz is used to create a small volume of high conductivity plasma near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sub o/ approximately 0.2-0.4 m) current channel to be established with a relatively low initial loop voltage (<25 V). During the subsequent plasma expansionmore » and current ramp phase, additional rf power is introduced to reduce volt-second consumption due to plasma resistance. The physics models used for analyzing the UHR heating and current rise phases are also discussed.« less
Compact Power Conditioning and RF Systems for a High Power RF Source
2008-12-01
RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system
Study of RF breakdown and multipacting in accelerator components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in
2014-07-01
Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less
Relativistic theory of radiofrequency current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.; Metens, T.
1991-05-01
A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less
Installation, high-power conditioning and beam commissioning of the upgraded SARAF 4-rods RFQ
NASA Astrophysics Data System (ADS)
Weissman, L.; Perry, A.; Bechtold, A.; Berkovits, D.; Kaizer, B.; Luner, Y.; Niewieczerzal, P.; Rodnizki, J.; Silverman, I.; Shor, A.; Nusbaum, D.
2018-05-01
The original SARAF 3.8 m long 4-rod Radio Frequency Quadrupole (RFQ) has been successful in acceleration of 4 mA Continuous Wave (CW) proton beam and pulsed deuteron beam to 1.5 MeV/u. However, conditions for running CW deuteron beam have not been achieved in the original design. A new 4-rod structure has been designed and implemented, with the goal of reducing the RF power required for CW deuteron operation while slightly compromising the RFQ exit energy to 1.27 MeV/u. The new 4-rod structure was manufactured, and installed in place of the old rod electrodes. Superior field homogeneity was achieved. The RFQ was successfully conditioned to the RF power 200 kW required for CW deuteron operation, with sufficient power margin. The commissioning with proton and deuteron beams showed that most of beam parameters are close to the designed specifications. The first operation with CW RF power of 5 mA deuteron beam was demonstrated. In addition, a 1.1 mA CW deuteron beam was transported through the superconducting module. The future scope of RFQ improvements is discussed.
Measured radiofrequency exposure during various mobile-phone use scenarios.
Kelsh, Michael A; Shum, Mona; Sheppard, Asher R; McNeely, Mark; Kuster, Niels; Lau, Edmund; Weidling, Ryan; Fordyce, Tiffani; Kühn, Sven; Sulser, Christof
2011-01-01
Epidemiologic studies of mobile phone users have relied on self reporting or billing records to assess exposure. Herein, we report quantitative measurements of mobile-phone power output as a function of phone technology, environmental terrain, and handset design. Radiofrequency (RF) output data were collected using software-modified phones that recorded power control settings, coupled with a mobile system that recorded and analyzed RF fields measured in a phantom head placed in a vehicle. Data collected from three distinct routes (urban, suburban, and rural) were summarized as averages of peak levels and overall averages of RF power output, and were analyzed using analysis of variance methods. Technology was the strongest predictor of RF power output. The older analog technology produced the highest RF levels, whereas CDMA had the lowest, with GSM and TDMA showing similar intermediate levels. We observed generally higher RF power output in rural areas. There was good correlation between average power control settings in the software-modified phones and power measurements in the phantoms. Our findings suggest that phone technology, and to a lesser extent, degree of urbanization, are the two stronger influences on RF power output. Software-modified phones should be useful for improving epidemiologic exposure assessment.
Spatial Power Combining Amplifier for Ground and Flight Applications
NASA Astrophysics Data System (ADS)
Velazco, J. E.; Taylor, M.
2016-11-01
Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross-sections than comparable klystrons and traveling-wave tube counterparts and thus avoid RF breakdown and thermal issues common to vacuum tubes. We present a basic description of the SPCA mechanism and initial results of an S-band (2.4 GHz) 100-W, 45-dB gain SPCA prototype. We also discuss future X-band (8.4 GHz), Ka-band (32 GHz), and W-band (94 GHz) SPCA designs for both radar and communications applications.
NASA Astrophysics Data System (ADS)
Ichihara, D.; Nakagawa, Y.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.
2017-10-01
The effects of a radio-frequency (RF) power on the ion generation and electrostatic acceleration in a helicon electrostatic thruster were investigated with a constant discharge voltage of 300 V using argon as the working gas at a flow rate either of 0.5 Aeq (Ampere equivalent) or 1.0 Aeq. A RF power that was even smaller than a direct-current (DC) discharge power enhanced the ionization of the working gas, thereby both the ion beam current and energy were increased. However, an excessively high RF power input resulted in their saturation, leading to an unfavorable increase in an ionization cost with doubly charged ion production being accompanied. From the tradeoff between the ion production by the RF power and the electrostatic acceleration made by the direct current discharge power, the thrust efficiency has a maximum value at an optimal RF to DC discharge power ratio of 0.6 - 1.0.
Plasma current start-up experiments without the central solenoid in the TST-2 spherical tokamak
NASA Astrophysics Data System (ADS)
Takase, Y.; Ejiri, A.; Shiraiwa, S.; Adachi, Y.; Ishii, N.; Kasahara, H.; Nuga, H.; Ono, Y.; Oosako, T.; Sasaki, M.; Shimada, Y.; Sumitomo, N.; Taguchi, I.; Tojo, H.; Tsujimura, J.; Ushigome, M.; Yamada, T.; Hanada, K.; Hasegawa, M.; Idei, H.; Nakamura, K.; Sakamoto, M.; Sasaki, K.; Sato, K. N.; Zushi, H.; Nishino, N.; Mitarai, O.
2006-08-01
Several techniques for initiating the plasma current without the use of the central solenoid are being developed in TST-2. While TST-2 was temporarily located at Kyushu University, two types of start-up scenarios were demonstrated. (1) A plasma current of 4 kA was generated and sustained for 0.28 s by either electron cyclotron wave or electron Bernstein wave, without induction. (2) A plasma current of 10 kA was obtained transiently by induction using only outboard poloidal field coils. In the second scenario, it is important to supply sufficient power for ionization (100 kW of EC power was sufficient in this case), since the vertical field during start-up is not adequate to maintain plasma equilibrium. In addition, electron heating experiments using the X-B mode conversion scenario were performed, and a heating efficiency of 60% was observed at a 100 kW RF power level. TST-2 is now located at the Kashiwa Campus of the University of Tokyo. Significant upgrades were made in both magnetic coil power supplies and RF systems, and plasma experiments have restarted. RF power of up to 400 kW is available in the high-harmonic fast wave frequency range around 20 MHz. Four 200 MHz transmitters are now being prepared for plasma current start-up experiments using RF power in the lower-hybrid frequency range. Preparations are in progress for a new plasma merging experiment (UTST) aimed at the formation and sustainment of ultra-high β ST plasmas.
Investigation of rf power absorption in the plasma of helicon ion source.
Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V
2008-02-01
The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
Plasma Switch for High-Power Active Pulse Compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, Jay L.
2013-11-04
Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ?more » 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.« less
KAHVE Laboratory RF circulator and transmission line project
NASA Astrophysics Data System (ADS)
Cetinkaya, Hakan; ćaǧlar, Aslıhan; ćiçek, Cihan; Özbey, Aydın; Sunar, Ezgi; Türemen, Görkem; Yıldız, Hüseyin; Yüncü, Alperen; Özcan, Erkcan; Ünel, Gökhan; Yaman, Fatih
2018-02-01
An 800 MHz RF circulator and transmission line project has recently started at the newly commissioned Kandilli Detector, Accelerator and Instrumentation (KAHVE) Laboratory at the Boğaziçi University. The aims are to design, build and construct an RF circulator and transmission line in Turkey for high power and high frequency applications. The project consists of 8 transmission line elements: 800 MHz RF generator with 60 kW power (klystron), klystron to waveguide converter, waveguides, E and H bends, 3-port circulator and waveguide to coaxial converter to transmit RF power to a pillbox RF cavity. Design studies and details of the ongoing project will be presented.
Research and Development for an Alternative RF Source Using Magnetrons in CEBAF
NASA Astrophysics Data System (ADS)
Jacobs, Andrew
2016-09-01
At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelletti, A.; /CERN; Dolgashev, V.
A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorogushin, M.F.
Principle and experimental analysis of RF power feed system, based on 3 db directional couplers, for undesirable modes eliminating, divided power coupling with the RFQ accelerating structure, endotron type RF power source matching, are presented. The structure fine tuning and the system adjustment results and high-speed RF autocontrol system design are considered also.
Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S
2012-07-01
Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.
Sun, Guilin; Muneer, Badar; Li, Ying; Zhu, Qi
2018-04-01
This paper presents an ultracompact design of biomedical implantable devices with integrated wireless power transfer (WPT) and RF transmission capabilities for implantable medical applications. By reusing the spiral coil in an implantable device, both RF transmission and WPT are realized without the performance degradation of both functions in ultracompact size. The complete theory of WPT based on magnetic resonant coupling is discussed and the design methodology of an integrated structure is presented in detail, which can guide the design effectively. A system with an external power transmitter and implantable structure is fabricated to validate the proposed approach. The experimental results show that the implantable structure can receive power wirelessly at 39.86 MHz with power transfer efficiency of 47.2% and can also simultaneously radiate at 2.45 GHz with an impedance bandwidth of 10.8% and a gain of -15.71 dBi in the desired direction. Furthermore, sensitivity analyses are carried out with the help of experiment and simulation. The results reveal that the system has strong tolerance to the nonideal conditions. Additionally, the specific absorption rate distribution is evaluated in the light of strict IEEE standards. The results reveal that the implantable structure can receive up to 115 mW power from an external transmitter and radiate 6.4 dB·m of power safely.
Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang
2014-08-13
A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm². The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips.
Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang
2014-01-01
A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm2. The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips. PMID:25123466
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Characterization of Inductive loop coupling in a Cyclotron Dee Structure
NASA Astrophysics Data System (ADS)
Carroll, Lewis
Many of today's low to medium-energy cyclotrons apply RF power to the resonator structure (the dees) by inductive loop coupling through a feed-line driven by an RF transmitter employing a triode or tetrode power tube. The transmitter's output network transforms the tube's optimum load line (typically a few thousand ohms) down to Z0, typically 50 ohms. But the load-line is not a physical resistance, so one would not expect to see 50 ohms when looking back toward the transmitter. Moreover, if both the resonator's input and the transmitter's output are matched to Z0, then the coupled or working Q of the resonator is reduced to half that of the uncoupled Q, implying that half the power is being dissipated in the transmitter's output resistance- an inefficient and expensive solution for a high power RF application. More power is available if the transmitter's reverse-impedance is not matched to Z0, but this may result in misalignment between the frequency for correct forward match at the loop, versus the frequency for maximum power in the resonator. The misalignment can be eliminated, and the working Q maximized, by choosing the appropriate length of feed-line between the non-matched transmitter output and the matched resonator's input. In addition, the transmitter's output impedance may be complex, comprising resistance plus reactance, requiring a further process and means of measuring the output impedance so that an additional compensating length of feed-line can be incorporated. But a wrong choice of overall feed-line length- even though correctly load-matched at the resonator's operating frequency- can result in a curious degenerate condition, where the resonator's working Q appears to collapse, and the potential for transmitter overload increases substantially: a condition to be avoided!
NASA Astrophysics Data System (ADS)
Martin, E. H.; Goniche, M.; Klepper, C. C.; Hillairet, J.; Isler, R. C.; Bottereau, C.; Colas, L.; Ekedahl, A.; Panayotis, S.; Pegourie, B.; Lotte, Ph; Colledani, G.; Caughman, J. B.; Harris, J. H.; Hillis, D. L.; Shannon, S. C.; Clairet, F.; Litaudon, X.
2015-06-01
Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be an important topic, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter, a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (ELH) was announced (2013 Phys. Rev. Lett. 110 215005). This measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the analysis of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique are investigated. It was found through an analysis of numerous Tore Supra discharges that good quantitative agreement exists between the measured and full-wave modeled ELH when the launched power exceeds 0.5 MW. For low power the measurement becomes inaccurate utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.
NASA Astrophysics Data System (ADS)
Thakur, S. K.; Kumar, Y.
2018-05-01
This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.
RF extraction issues in the relativistic klystron amplifiers
NASA Astrophysics Data System (ADS)
Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.
1994-05-01
Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.
RF digital-to-analog converter
Conway, Patrick H.; Yu, David U. L.
1995-01-01
A digital-to analogue converter for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration.
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2016-08-01
Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.
Design and simulation of a gyroklystron amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, M. S., E-mail: mschauhan.rs.ece@iitbhu.ac.in; Swati, M. V.; Jain, P. K.
2015-03-15
In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practicalmore » problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.« less
Lubner, Meghan G; Hinshaw, J Louis; Andreano, Anita; Sampson, Lisa; Lee, Fred T; Brace, Christopher L
2012-03-01
To evaluate the performance of a gas-cooled, high-powered microwave system. Investigators performed 54 ablations in ex vivo bovine livers using three devices-a single 17-gauge cooled radiofrequency(RF) electrode; a cluster RF electrode; and a single 17-gauge, gas-cooled microwave (MW) antenna-at three time points (n = 6 at 4 minutes, 12 minutes, and 16 minutes). RF power was applied using impedance-based pulsing with maximum 200 W generator output. MW power of 135 W at 2.45 GHz was delivered continuously. An approved in vivo study was performed using 13 domestic pigs. Hepatic ablations were performed using single applicators and the above-mentioned MW and RF generator systems at treatment times of 2 minutes (n = 7 MW, n = 6 RF), 5 minutes (n = 23 MW, n = 8 RF), 7 minutes (n = 11 MW, n = 6 RF), and 10 minutes (n = 7 MW, n = 9 RF). Mean transverse diameter and length of the ablation zones were compared using analysis of variance (ANOVA) with post-hoc t tests and Wilcoxon rank-sum tests. Single ex vivo MW ablations were larger than single RF ablations at all time points (MW mean diameter range 3.5-4.8 cm 4-16 minutes; RF mean diameter range 2.6-3.1 cm 4-16 minutes) (P < .05). There was no difference in mean diameter between cluster RF and MW ablations (RF 3.3-4.4 cm 4-16 minutes; P = .4-.9). In vivo lesion diameters for MW (and RF) were as follows: 2.6 cm ± 0.72 (RF 1.5 cm ± 0.14), 3.6 cm ± 0.89 (RF 2.0 cm ± 0.4), 3.4 cm ± 0.87 (RF 1.8 cm ± 0.23), and 3.8 cm ± 0.74 (RF 2.1 cm ± 0.3) at 2 minutes, 5 minutes, 7 minutes, and 10 minutes (P < .05 all time points). Gas-cooled, high-powered MW ablation allows the generation of large ablation zones in short times. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Caneses, Juan Francisco; Blackwell, Boyd; Plasma Research Laboratory Team
2013-10-01
In this work we provide an analytical model that allows one to quantitatively assess the RF compensation performance and suitability of the double probe technique for use in RF generated plasma. The model is based in the theory of the self-bias effect as described in Braithwaite's work, which we extend to include the time resolved behavior of floating probes. We provide experimental verification for this model and show that the theory of transient RF self-bias probes and harmonic current detection probes are limiting cases of this extended model. Furthermore, the model shows that the RF compensation is solely dependent on the sheath impedance, the probe's stray capacitance to ground and RF frequency. In addition, we use these results to implement a double probe system for use in high density helicon plasma where heat loads could potentially damage the intricate components in an RF compensating circuit. Finally we use this model to (1) recommend ways to extend the operational regime of double probes where the plasma conditions would render them unsuitable and to (2) comment on the use of this model to aid design of RF compensated Langmuir probes.
RF power harvesting: a review on designing methodologies and applications
NASA Astrophysics Data System (ADS)
Tran, Le-Giang; Cha, Hyouk-Kyu; Park, Woo-Tae
2017-12-01
Wireless power transmission was conceptualized nearly a century ago. Certain achievements made to date have made power harvesting a reality, capable of providing alternative sources of energy. This review provides a summ ary of radio frequency (RF) power harvesting technologies in order to serve as a guide for the design of RF energy harvesting units. Since energy harvesting circuits are designed to operate with relatively small voltages and currents, they rely on state-of-the-art electrical technology for obtaining high efficiency. Thus, comprehensive analysis and discussions of various designs and their tradeoffs are included. Finally, recent applications of RF power harvesting are outlined.
Development of new S-band RF window for stable high-power operation in linear accelerator RF system
NASA Astrophysics Data System (ADS)
Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan
2017-09-01
For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.
Nanoionics-Based Switches for Radio-Frequency Applications
NASA Technical Reports Server (NTRS)
Nessel, James; Lee, Richard
2010-01-01
Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.
Single frequency RF powered ECG telemetry system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.; Homa, J.
1979-01-01
It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.
RF Conditioning and Testing of Fundamental Power Couplers for SNS Superconducting Cavity Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Stirbet; G.K. Davis; M. A. Drury
The Spallation Neutron Source (SNS) makes use of 33 medium beta (0.61) and 48 high beta (0.81) superconducting cavities. Each cavity is equipped with a fundamental power coupler, which should withstand the full klystron power of 550 kW in full reflection for the duration of an RF pulse of 1.3 msec at 60 Hz repetition rate. Before assembly to a superconducting cavity, the vacuum components of the coupler are submitted to acceptance procedures consisting of preliminary quality assessments, cleaning and clean room assembly, vacuum leak checks and baking under vacuum, followed by conditioning and RF high power testing. Similar acceptancemore » procedures (except clean room assembly and baking) were applied for the airside components of the coupler. All 81 fundamental power couplers for SNS superconducting cavity production have been RF power tested at JLAB Newport News and, beginning in April 2004 at SNS Oak Ridge. This paper gives details of coupler processing and RF high power-assessed performances.« less
Printed Multi-Turn Loop Antenna for RF Bio-Telemetry
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Hall, David G.; Miranda, Felix A.
2004-01-01
In this paper, a novel printed multi-turn loop antenna for contact-less powering and RF telemetry from implantable bio- MEMS sensors at a design frequency of 300 MHz is demonstrated. In addition, computed values of input reactance, radiation resistance, skin effect resistance, and radiation efficiency for the printed multi-turn loop antenna are presented. The computed input reactance is compared with the measured values and shown to be in fair agreement. The computed radiation efficiency at the design frequency is about 24 percent.
Wireless passive radiation sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G
2013-12-03
A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.
NASA Astrophysics Data System (ADS)
Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo
2007-01-01
Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Uğurbil, Kâmil; van de Moortele, Pierre-François
2014-05-01
Ultrahigh magnetic fields of 7 T or higher have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast-enhanced magnetic resonance angiography techniques. Compared with lower field strength, however, the required radiofrequency (RF) power is increased at 7 T and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous.In this work, we addressed the contrast heterogeneity in multislab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3-dimensional tailored RF pulses ("spokes") with a 16-channel parallel transmission system and a 16-channel transceiver head coil. We investigated in simulations and in vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2-, and 3-spoke parallel transmit RF pulses and compared the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices, and the RF pulse for each slab was designed on the basis of 3 calibration slices located at the bottom/middle/top of each slab, respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects, we quantified the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigated the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared with the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Although the total RF power is maintained at the same level than that in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitations, with the highest energy for 1 channel being a factor of 2.4 (1 spoke) and 2.2 (2 spokes) higher than that in CP mode. In vivo experiments demonstrated the necessity for including ΔB0 spatial variations during 2-spoke RF pulse design, particularly in areas with strong local susceptibility variations such as the lower frontal lobe. Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as that in CP mode. These results suggest that expanding parallel transmit methods, including the use of multidimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging.
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J.; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Ugurbil, Kamil; Van de Moortele, Pierre-Francois
2015-01-01
Objectives Ultra high magnetic fields of ≥7 Tesla have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast enhanced MR angiography techniques. Compared to lower field strength, however, the required RF power is increased at 7 Tesla and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous. In this work we address the contrast heterogeneity in multi-slab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3D tailored RF pulses (“spokes”) with a 16 channel parallel transmission system and a 16 channel transceiver head coil. Material and Methods We investigate in simulations and in-vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2- and 3-spoke parallel transmit RF pulses and compare the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices and the RF pulse for each slab was designed based on 3 calibration slices located at the bottom/middle/top of each slab respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects we quantify the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigate the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. Results The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for a 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared to the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Even though the total RF power is maintained at the same level than in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitation, with the highest energy for one channel being a factor of 2.4 (1-spoke) and 2.2 (2-spoke) higher than in CP mode. In vivo experiments demonstrate the necessity of including ΔB0 spatial variations during 2-spoke RF pulse design, in particular in areas with strong local susceptibility variations such as the lower frontal lobe. Conclusion Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as in CP mode. These results suggest that expanding parallel transmit methods, including the use of multi-dimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging. PMID:24598439
Solid state RF power: The route to 1W per euro cent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heid, Oliver
2013-04-19
In most particle accelerators RF power is a decisive design constraint due to high costs and relative inflexibility of current electron beam based RF sources, i.e. Klystrons, Magnetrons, Tetrodes etc. At VHF/UHF frequencies the transition to solid state devices promises to fundamentally change the situation. Recent progress brings 1 Watt per Euro cent installed cost within reach. We present a Silicon Carbide semiconductor solution utilising the Solid State Direct Drive technology at unprecedented efficiency, power levels and power densities. The proposed solution allows retrofitting of existing RF accelerators and opens the route to novel particle accelerator concepts.
RF digital-to-analog converter
Conway, P.H.; Yu, D.U.L.
1995-02-28
A digital-to-analog converter is disclosed for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration. 18 figs.
Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems
NASA Astrophysics Data System (ADS)
Kiayani, Adnan; Waheed, Muhammad Zeeshan; Anttila, Lauri; Abdelaziz, Mahmoud; Korpi, Dani; Syrjala, Ville; Kosunen, Marko; Stadius, Kari; Ryynanen, Jussi; Valkama, Mikko
2018-05-01
This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.
An RF dosimeter for independent SAR measurement in MRI scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.
2013-12-15
Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.« less
Wireless powering and data telemetry for biomedical implants.
Young, Darrin J
2009-01-01
Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources
NASA Astrophysics Data System (ADS)
Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.
2016-12-01
A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.
The Multiple Gyrotron System on the DIII-D Tokamak
Lohr, J.; Anderson, J.; Brambila, R.; ...
2015-08-28
A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less
CEBAF Superconducting Cavity RF Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Moore, Thomas
1987-03-01
The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
RF Antenna Design for a Helicon Plasma Source
NASA Astrophysics Data System (ADS)
Godden, Katarina; Stassel, Brendan; Warta, Daniel; Yep, Isaac; Hicks, Nathaniel; Munk, Jens
2017-10-01
A helicon plasma source is under development for the new Plasma Science and Engineering Laboratory at the University of Alaska Anchorage. The helicon source is of a type comprising Pyrex and stainless steel cylindrical sections, joined to an ultrahigh vacuum chamber. A radio frequency (RF) helical antenna surrounds the Pyrex chamber, as well as DC solenoidal magnetic field coils. This presentation focuses on the design of the RF helical antenna and RF matching network, such that helicon wave power is coupled to argon plasma with minimal reflected power to the RF amplifier. The amplifier output is selectable between 2-30 MHz, with forward c.w. power up to 1.5 kW. Details and computer simulation of the antenna geometry, materials, and power matching will be presented, as well as the matching network of RF transmission line, tuning capacitors, and cooling system. An initial computational study of power coupling to the plasma will also be described. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615, by the Alaska Space Grant Program, and by UAA Innovate 2017.
Microelectronic bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.
1976-01-01
Progress was made in the development of an RF cage, a single channel RF powered ECG telemetry system, and a three channel RF powered ECG, aortic blood pressure, and body temperature telemetry system. Encapsulation materials for chronic implantation of electronic circuits in the body were also evaluated.
RF-assisted current startup in FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S. K.; Peng, Yueng Kay Martin; Kammash, T.
1981-01-01
Auxiliary rf heating of electrons before and during the current rise phase in FED is examined as a means of reducing both the initiation loop voltage and resistive flux expendicture during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating (ECRH) power at {approx} 90 GHz is used to create a small volume of high conductivity plasma (T{sub e} {approx_equal} 100-200 eV, n{sub e} {approx_equal} 10{sup 13} cm{sup -3}) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a{sub o} {approx_equal} 0.2-0.4 m) current channel to be established with amore » relatively low initial loop voltage (<25 V). During the subsequent plasma expansion and current ramp phase, additional rf power is introduced to reduce volt-second consumption due to plasma resistance. The physics models used for analyzing the UHR heating and current rise phases are also discussed.« less
Measured thermal images of a gallium arsenide power MMIC with and without RF applied to the input
NASA Astrophysics Data System (ADS)
Oxley, C. H.; Coaker, B. M.; Priestley, N. E.
2003-04-01
A gallium arsenide microwave monolithic integrated circuit (MMIC) power amplifier (M/ACom type MAAM71100) has been measured using infra-red microscope technology, with and without the application of a RF input signal. A reduction of approximately 10 °C in chip temperature was observed with the application of a RF input signal, which will influence the MTTF of the chip. Further, the measurement technique may be used to monitor the thermal impedance and dynamic cooling of RF power devices under operational conditions in complex circuits.
Effects of rf power on chemical composition and surface roughness of glow discharge polymer films
NASA Astrophysics Data System (ADS)
Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing
2016-03-01
The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.
Radio-frequency powered glow discharge device and method with high voltage interface
Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.
1994-06-28
A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.
Radio-frequency powered glow discharge device and method with high voltage interface
Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.
1994-01-01
A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
Operating features of an ion-cyclotron-wave plasma apparatus running in the RF-sustained mode
NASA Technical Reports Server (NTRS)
Swett, C. C.
1972-01-01
An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode. This is a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave-propagation and wave-damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of 5 times 10 to the 12th power per cubic centimeter and RF power of 90 kW. Coupling efficiency is 70 percent.
PEEL-AND-STICK SENSORS POWERED BY DIRECTED RF ENERGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalau-Keraly, Chrisopher; Daniel, George; Lee, Joseph
PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost bymore » eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm.« less
Peel-and-Stick Sensors Powered by Directed RF Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph
PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost bymore » eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm« less
High-Capacity Communications from Martian Distances
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali
2007-01-01
High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.
Inductively-Coupled RF Powered O2 Plasma as a Sterilization Source
NASA Technical Reports Server (NTRS)
Sharma, S. P.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Mogul, R.; Khare, B.; Chan, S. L.; Arnold, James O. (Technical Monitor)
2001-01-01
Low-temperature or cold plasmas have been shown to be effective for the sterilization of sensitive medical devices and electronic equipment. Low-temperature plasma sterilization procedures possess certain advantages over other protocols such as ethylene oxide, gamma radiation, and heat due to the use of inexpensive reagents, the insignificant environmental impacts and the low energy requirements. In addition, plasmas may also be more efficacious in the removal of robust microorganisms due to their higher chemical reactivity. Together, these attributes render cold plasma sterilization as ideal for the surface decontamination requirements for NASA Planetary Protection. Hence, the work described in this study involves the construction, characterization, and application of an inductively-coupled, RF powered oxygen (O2) plasma.
Martin, Elijah H.; Goniche, M.; Klepper, C. Christopher; ...
2015-04-22
Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (more » $$E_{LH}$$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. We find through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $$E_{LH}$$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.« less
Feed-through connector couples RF power into vacuum chamber
NASA Technical Reports Server (NTRS)
Grandy, G. L.
1967-01-01
Feed-through device connects RF power to an RF coil in a vacuum chamber. The coil and leads are water cooled and vacuum tight seals are provided at the junctions. The device incorporates silver soldered copper tubes, polytetrafluoroethylene electrical insulators, and O-ring vacuum seals.
An assessment of the effectiveness of a random forest classifier for land-cover classification
NASA Astrophysics Data System (ADS)
Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P.
2012-01-01
Land cover monitoring using remotely sensed data requires robust classification methods which allow for the accurate mapping of complex land cover and land use categories. Random forest (RF) is a powerful machine learning classifier that is relatively unknown in land remote sensing and has not been evaluated thoroughly by the remote sensing community compared to more conventional pattern recognition techniques. Key advantages of RF include: their non-parametric nature; high classification accuracy; and capability to determine variable importance. However, the split rules for classification are unknown, therefore RF can be considered to be black box type classifier. RF provides an algorithm for estimating missing values; and flexibility to perform several types of data analysis, including regression, classification, survival analysis, and unsupervised learning. In this paper, the performance of the RF classifier for land cover classification of a complex area is explored. Evaluation was based on several criteria: mapping accuracy, sensitivity to data set size and noise. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land categories in the south of Spain. Results show that the RF algorithm yields accurate land cover classifications, with 92% overall accuracy and a Kappa index of 0.92. RF is robust to training data reduction and noise because significant differences in kappa values were only observed for data reduction and noise addition values greater than 50 and 20%, respectively. Additionally, variables that RF identified as most important for classifying land cover coincided with expectations. A McNemar test indicates an overall better performance of the random forest model over a single decision tree at the 0.00001 significance level.
Passenger Transmitters as A Possible Cause of Aircraft Fuel Ignition
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Dudley, Kenneth L.; Scearce, Stephen A.; Hatfield, Michael O.; Richardson, Robert E.
2006-01-01
An investigation was performed to study the potential for radio frequency (RF) power radiated from transmitting Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. A survey of RF emissions from typical intentional transmitting PEDs was first performed. Aircraft measurements of RF coupling to the fuel tank and its wiring were also performed to determine the PEDs induced power on the wiring, and the re-radiated power within the fuel tank. Laboratory simulations were conducted to determine the required RF power level for an arcing/sparking event. Data analysis shows large positive safety margins, even with simulated faults on the wiring.
BICMOS power detector for pulsed Rf power amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridge, Clayton D.
2016-10-01
A BiCMOS power detector for pulsed radio-frequency power amplifiers is proposed. Given the pulse waveform and a fraction of the power amplifier's input or output signal, the detector utilizes a low-frequency feedback loop to perform a successive approximation of the amplitude of the input signal. Upon completion of the successive approximation, the detector returns 9-bits representing the amplitude of the RF input signal. Using the pulse waveform from the power amplifier, the detector can dynamically adjust the rate of the binary search operation in order to return the updated amplitude information of the RF input signal at least every 1ms.more » The detector can handle pulse waveform frequencies from 50kHz to 10MHz with duty cycles in the range of 5- 50% and peak power levels of -10 to 10dBm. The signal amplitude measurement can be converted to a peak power measurement accurate to within ±0.6dB of the input RF power.« less
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
An alternative way to increase the power gain of resonant rings
NASA Astrophysics Data System (ADS)
Zhuang, Dehao; Liu, Yunqi; Wang, Fang; Lin, Lin; Feng, Liwen; Quan, Shengwen; Liu, Kexin
2018-03-01
Resonant rings which can amplify RF power through the coupling of waves are used for high power breakdown tests, unidirectional filters, or pulse-shaping techniques. Usually, the RF output terminal of a resonant ring is connected to a matched load. For the resonant ring at Peking University, the matched load has been replaced by a waveguide shorting plate to obtain higher conditioning power for the 1.3 GHz capacitive type power couplers. The power gain is increased significantly with this short termination with the same input RF power. Working mechanism analysis, experiments, and results of this modified resonant ring will be presented.
Interaction force in a vertical dust chain inside a glass box.
Kong, Jie; Qiao, Ke; Matthews, Lorin S; Hyde, Truell W
2014-07-01
Small number dust particle clusters can be used as probes for plasma diagnostics. The number of dust particles as well as cluster size and shape can be easily controlled employing a glass box placed within a Gaseous Electronics Conference (GEC) rf reference chamber to provide confinement of the dust. The plasma parameters inside this box and within the larger plasma chamber have not yet been adequately defined. Adjusting the rf power alters the plasma conditions causing structural changes of the cluster. This effect can be used to probe the relationship between the rf power and other plasma parameters. This experiment employs the sloshing and breathing modes of small cluster oscillations to examine the relationship between system rf power and the particle charge and plasma screening length inside the glass box. The experimental results provided indicate that both the screening length and dust charge decrease as rf power inside the box increases. The decrease in dust charge as power increases may indicate that ion trapping plays a significant role in the sheath.
An RF energy harvesting power management circuit for appropriate duty-cycled operation
NASA Astrophysics Data System (ADS)
Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya
2015-04-01
In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.
Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi
2016-08-01
An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.
A new RF window designed for high-power operation in an S-band LINAC RF system
NASA Astrophysics Data System (ADS)
Joo, Youngdo; Kim, Seung-Hwan; Hwang, Woonha; Ryu, Jiwan; Roh, Sungjoo
2016-09-01
A new RF window is designed for high-power operation at the Pohang Light Source-II (PLSII) S-band linear accelerator (LINAC) RF system. In order to reduce the strength of the electric field component perpendicular to the ceramic disk, which is commonly known as the main cause of most discharge breakdowns in ceramic disk, we replace the pill-box type cavity in the conventional RF window with an overmoded cavity. The overmoded cavity is coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the iris and the number of possible mode competitions. The finite-difference time-domain (FDTD) simulation, CST MWS, was used in the design process. The simulated maximum electric field component perpendicular to the ceramic for the new RF window is reduced by an order of magnitude compared with taht for the conventional RF window, which holds promise for stable high-power operation.
SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 2, 1976
1976-02-01
34""" ■■■I"" ^"■’ " """"^ R-F Heating of Sporadic E-Layer (abstract) Effects of ionospheric heating by powerful r-f emission on the sporadic E-layers are...situation is just the reverse. Here heating by powerful r-f fields decreases its electron density and increases its thickness. At mean latitudes...T - 2, it decreases by 18% [Ignat’yev, Yu. A. Effect on the sporadic E-layer of ionospheric heating by powerful r-f emission. IVUZ
Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.
RF Sputtering for preparing substantially pure amorphous silicon monohydride
Jeffrey, Frank R.; Shanks, Howard R.
1982-10-12
A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.
The Role Of Contact Force In Atrial Fibrillation Ablation.
Nakagawa, Hiroshi; Jackman, Warren M
2014-01-01
During radiofrequency (RF) ablation, low electrode-tissue contact force (CF) is associated with ineffective RF lesion formation, whereas excessive CF may increase the risk of steam pop and perforation. Recently, ablation catheters using two technologies have been developed to measure real-time catheter-tissue CF. One catheter uses three optical fibers to measure microdeformation of a deformable body in the catheter tip. The other catheter uses a small spring connecting the ablation tip electrode to the catheter shaft with a magnetic transmitter and sensors to measure microdeflection of the spring. Pre-clinical experimental studies have shown that 1) at constant RF power and application time, RF lesion size significantly increases with increasing CF; 2) the incidence of steam pop and thrombus also increase with increasing CF; 3) modulating RF power based on CF (i.e, high RF power at low CF and lower RF power at high CF) results in a similar and predictable RF lesion size. In clinical studies in patients undergoing pulmonary vein (PV) isolation, CF during mapping in the left atrium and PVs showed a wide range of CF and transient high CF. The most common high CF site was located at the anterior/rightward left atrial roof, directly beneath the ascending aorta. There was a poor relationship between CF and previously used surrogate parameters for CF (unipolar or bipolar atrial potential amplitude and impedance). Patients who underwent PV isolation with an average CF of <10 g experienced higher AF recurrence, whereas patients with ablation using an average CF of > 20g had lower AF recurrence. AF recurred within 12 months in 6 of 8 patients (75%) who had a mean Force-Time Integral (FTI, area under the curve for contact force vs. time) < 500 gs. In contrast, AF recurred in only 4 of 13 patients (21%) with ablation using a mean FTI >1000 gs. In another study, controlling RF power based on CF prevented steam pop and impedance rise without loss of lesion effectiveness. These studies confirm that CF is a major determinant of RF lesion size and future systems combining CF, RF power and application time may provide real-time assessment of lesion formation.
NASA Astrophysics Data System (ADS)
Das, K. C.; Tripathy, N.; Ghosh, S. P.; Mohanta, S. K.; Nakamura, A.; Kar, J. P.
2017-11-01
Tantalum doped HfO2 gate dielectric thin films were deposited on silicon substrates using RF reactive co-sputtering by varying RF power of Ta target from 15 W to 90 W. The morphological, compositional and electrical properties of Hf1-x Ta x O2 films were systematically investigated. The Ta content was found to be increased up to 21% for a Ta target power of 90 W. The evolution of monoclinic phase of Hf1-x Ta x O2 was seen from XRD study upto RF power of 60 W and afterwards, the amorphous like behaviour is appeared. The featureless smooth surface with the decrease in granular morphology has been observed from FESEM micrographs of the doped films at higher RF powers of Ta. The flatband voltage is found to be shifted towards negative voltage in the capacitance-voltage plot, which was attributed to the enhancement in positive oxide charge density with rise in RF power. The interface charge density has a minimum value of 7.85 × 1011 eV-1 cm-2 for the film deposited at Ta RF power of 75 W. The Hf1-x Ta x O2 films deposited at Ta target RF power of 90 W has shown lower leakage current. The high on/off ratio of the current during the set process in Hf1-x Ta x O2 based memristors is found suitable for bipolar resistive switching memory device applications.
NASA Astrophysics Data System (ADS)
Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel
2016-10-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.
NASA Astrophysics Data System (ADS)
Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.
2018-04-01
Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).
Development and performance test of a new high power RF window in S-band PLS-II LINAC
NASA Astrophysics Data System (ADS)
Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki
2017-12-01
A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.
High Peak Power Test and Evaluation of S-band Waveguide Switches
NASA Astrophysics Data System (ADS)
Nassiri, A.; Grelick, A.; Kustom, R. L.; White, M.
1997-05-01
The injector and source of particles for the Advanced Photon Source is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five exsisting S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized S-band waveguide switches at a peak operating power of 35 MW. Such rf switches have been successfully operated at other accelerator facilities but at lower peak powers. A test stand has been set up at the Stanford Linear Accelerator Center (SLAC) Klystron Factory to conduct tests comparing the power handling characteristics of two WR-284 and one WR-340 switches. Test results are presented and their implications for the design of the switching system are discussed.
NASA Astrophysics Data System (ADS)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less
Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
Ferroelectric Based High Power Components for L-Band Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanareykin, Alex; Jing, Chunguang; Kostin, Roman
2018-01-16
We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less
RF Energy Harvesting Peel-and-Stick Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalau-Keraly, Christopher; Schwartz, David; Daniel, George
PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and costmore » by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.« less
NASA Astrophysics Data System (ADS)
Hoekstra, Robert J.; Kushner, Mark J.
1996-03-01
Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.
Qiu, Bensheng; El-Sharkawy, Abdel-Monem; Paliwal, Vaishali; Karmarkar, Parag; Gao, Fabao; Atalar, Ergin; Yang, Xiaoming
2005-07-01
Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.
An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horan, D.
1999-04-13
An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less
Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power
NASA Astrophysics Data System (ADS)
Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.
2013-11-01
An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.
NASA Technical Reports Server (NTRS)
Caro, E. R. (Inventor)
1980-01-01
A coaxial switch capable of operating in a vacuum with high RF power in the 1.2 GHz range without multipactor breakdown, and without relying on pressurization with an inert gas is described. The RF carrying conductors of the switch are surrounded with a high grade solid dielectric, thus eliminating any gaps in which electrons can accelerate.
Evaluation of a microwave high-power reception-conversion array for wireless power transmission
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1975-01-01
Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.
A low-frequency versatile wireless power transfer technology for biomedical implants.
Jiang, Hao; Zhang, Junmin; Lan, Di; Chao; Liou, Shyshenq; Shahnasser, Hamid; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo
2013-08-01
Implantable biomedical sensors and actuators are highly desired in modern medicine. In many cases, the implant's electrical power source profoundly determines its overall size and performance . The inductively coupled coil pair operating at the radio-frequency (RF) has been the primary method for wirelessly delivering electrical power to implants for the last three decades . Recent designs significantly improve the power delivery efficiency by optimizing the operating frequency, coil size and coil distance . However, RF radiation hazard and tissue absorption are the concerns in the RF wireless power transfer technology (RF-WPTT) , . Also, it requires an accurate impedance matching network that is sensitive to operating environments between the receiving coil and the load for efficient power delivery . In this paper, a novel low-frequency wireless power transfer technology (LF-WPTT) using rotating rare-earth permanent magnets is demonstrated. The LF-WPTT is able to deliver 2.967 W power at ∼ 180 Hz to an 117.1 Ω resistor over 1 cm distance with 50% overall efficiency. Because of the low operating frequency, RF radiation hazard and tissue absorption are largely avoided, and the power delivery efficiency from the receiving coil to the load is independent of the operating environment. Also, there is little power loss observed in the LF-WPTT when the receiving coil is enclosed by non-magnetic implant-grade stainless steel.
NASA Astrophysics Data System (ADS)
How, Soo Ren; Nayan, Nafarizal; Khairul Ahmad, Mohd; Fhong Soon, Chin; Zainizan Sahdan, Mohd; Lias, Jais; Shuhaimi Abu Bakar, Ahmad; Arshad, Mohd Khairuddin Md; Hashim, Uda; Yazid Ahmad, Mohd
2018-04-01
The ion, electron density and electron temperature during formation of TiN films in reactive magnetron sputtering system have been investigated for various settings of radio frequency (RF) power and working pressure by using Langmuir probe measurements. The RF power and working pressure able to affect the densities and plasma properties during the deposition process. In this work, a working pressure (100 and 20 mTorr) and RF power (100, 150 and 200 W) have been used for data acquisition of probe measurement. Fundamental of studied on sputter deposition is very important for improvement of film quality and deposition rate. Higher working pressure and RF power able to produce a higher ion density and reduction of electron temperature.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
NASA Astrophysics Data System (ADS)
Bilbro, Griff L.; Hou, Danqiong; Yin, Hong; Trew, Robert J.
2009-02-01
We have quantitatively modeled the conduction current and charge storage of an HFET in terms its physical dimensions and material properties. For DC or small-signal RF operation, no adjustable parameters are necessary to predict the terminal characteristics of the device. Linear performance measures such as small-signal gain and input admittance can be predicted directly from the geometric structure and material properties assumed for the device design. We have validated our model at low-frequency against experimental I-V measurements and against two-dimensional device simulations. We discuss our recent extension of our model to include a larger class of electron velocity-field curves. We also discuss the recent reformulation of our model to facilitate its implementation in commercial large-signal high-frequency circuit simulators. Large signal RF operation is more complex. First, the highest CW microwave power is fundamentally bounded by a brief, reversible channel breakdown in each RF cycle. Second, the highest experimental measurements of efficiency, power, or linearity always require harmonic load pull and possibly also harmonic source pull. Presently, our model accounts for these facts with an adjustable breakdown voltage and with adjustable load impedances and source impedances for the fundamental frequency and its harmonics. This has allowed us to validate our model for large signal RF conditions by simultaneously fitting experimental measurements of output power, gain, and power added efficiency of real devices. We show that the resulting model can be used to compare alternative device designs in terms of their large signal performance, such as their output power at 1dB gain compression or their third order intercept points. In addition, the model provides insight into new device physics features enabled by the unprecedented current and voltage levels of AlGaN/GaN HFETs, including non-ohmic resistance in the source access regions and partial depletion of the 2DEG in the drain access region.
Some Notes on Sparks and Ignition of Fuels
NASA Technical Reports Server (NTRS)
Fisher, Franklin A.
2000-01-01
This report compliments a concurrent analysis of the electromagnetic field threat to the fuel system of a transport aircraft. The accompanying effort assessed currents, voltages and power levels that may be induced upon fuel tank wiring from radio transmitters (inside and outside the aircraft). In addition to this, it was also essential to determine how much voltage, current, or power is required to create a fuel-vapor ignition hazard. The widely accepted minimum guideline for aircraft fuel-vapor ignition is the application of a 0.2 millijoule energy level. However, when considering radio frequency (RF) sources, this guideline is seriously inadequate. This report endeavors to bridge the gap between a traditional understanding of electrical breakdown, heating and combustion; and supplement the knowledge with available information regarding aircraft fuel-vapor ignition by RF sources
Inductive current startup in large tokamaks with expanding minor radius and RF assist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.
1983-01-01
Auxiliary RF heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device, is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx.90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10/sup 19/m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sup 0/ approx.< 0.4 m)more » current channel to be established with a relatively low initial loop voltage (approx.< 25 V as opposed to approx.100 V without RF assist). During the subsequent plasma expansion and current ramp phase, additional RF power is introduced to reduce volt-second consumption due to plasma resistance. To study the preheating phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter.« less
Indium gallium arsenide microwave power transistors
NASA Technical Reports Server (NTRS)
Johnson, Gregory A.; Kapoor, Vik J.; Shokrani, Mohsen; Messick, Louis J.; Nguyen, Richard
1991-01-01
Depletion-mode InGaAs microwave power MISFETs with 1-micron gate lengths and up to 1-mm gate widths have been fabricated using an ion-implantation process. The devices employed a plasma-deposited silicon/silicon dioxide gate insulator. The dc I-V characteristics and RF power performance at 9.7 GHz are presented. The output power, power-added efficiency, and power gain as a function of input power are reported. An output power of 1.07 W with a corresponding power gain and power-added efficiency of 4.3 dB and 38 percent, respectively, was obtained. The large-gate-width devices provided over twice the previously reported output power for InGaAs MISFETs at X-band. In addition, output power stability within 1.2 percent over 24 h of continuous operation was achieved. In addition, a drain current drift of 4 percent over 10,000 sec was obtained.
NASA Astrophysics Data System (ADS)
Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo
2017-03-01
We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.
Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator
NASA Astrophysics Data System (ADS)
Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita
2017-04-01
ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.
NASA Astrophysics Data System (ADS)
Atkinson, J. E.; Barker, G. G.; Feltham, S. J.; Gabrielson, S.; Lane, P. C.; Matthews, V. J.; Perring, D.; Randall, J. P.; Saunders, J. W.; Tuck, R. A.
1982-05-01
An electrical model klystron amplifier was designed. Its features include a gridded gun, a single stage depressed collector, a rare earth permanent magnet focusing system, an input loop, six rugged tuners and a coaxial line output section incorporating a coaxial-to-waveguide transducer and a pillbox window. At each stage of the design, the thermal and mechanical aspects were investigated and optimized within the framework of the RF specification. Extensive use was made of data from the preliminary design study and from RF measurements on the breadboard model. In an additional study, a comprehensive draft tube specification has been produced. Great emphasis has been laid on a second additional study on space-qualified materials and processes.
Auxiliary coil controls temperature of RF induction heater
NASA Technical Reports Server (NTRS)
1966-01-01
Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.
Investigation of Helicon discharges as RF coupling concept of negative hydrogen ion sources
NASA Astrophysics Data System (ADS)
Briefi, S.; Fantz, U.
2013-02-01
The ITER reference source for H- and D- requires a high RF input power (up to 90 kW per driver). To reduce the demands on the RF circuit, it is highly desirable to reduce the power consumption while retaining the values of the relevant plasma parameters namely the positive ion density and the atomic hydrogen density. Helicon plasmas are a promising alternative RF coupling concept but they are typically generated in long thin discharge tubes using rare gases and an RF frequency of 13.56 MHz. Hence the applicability to the ITER reference source geometry, frequency and the utilization of hydrogen/deuterium has to be proved. In this paper the strategy of the approach for using Helicon discharges for ITER reference source parameters is introduced and the first promising measurements which were carried out at a small laboratory experiment are presented. With increasing RF power a mode transition to the Helicon regime was observed for argon and argon/hydrogen mixtures. In pure hydrogen/deuterium the mode transition could not yet be achieved as the available RF power is too low. In deuterium a special feature of Helicon discharges, the socalled low field peak, could be observed at a moderate B-field of 3 mT.
A low power, on demand electrothermal valve for wireless drug delivery applications
Li, Po-Ying; Givrad, Tina K.; Sheybani, Roya; Holschneider, Daniel P.; Maarek, Jean-Michel I.
2014-01-01
We present a low power, on demand Parylene MEMS electrothermal valve. A novel Ω-shaped thermal resistive element requires low power (~mW) and enables rapid valve opening (~ms). Using both finite element analysis and valve opening experiments, a robust resistive element design for improved valve opening performance in water was obtained. In addition, a thermistor, as an inrush current limiter, was added into the valve circuit to provide variable current ramping. Wireless activation of the valve using RF inductive power transfer was demonstrated. PMID:20024057
Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J
2014-02-01
Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.
Jose, Akhila; Surendran, Mrudula; Fazal, Sajid; Prasanth, Bindhu-Paul; Menon, Deepthy
2018-05-01
This work reports the potential of iron quantum clusters (FeQCs) as a hyperthermia agent for cancer, by testing its in-vitro response to shortwave (MHz range), radiofrequency (RF) waves non-invasively. Stable, fluorescent FeQCs of size ∼1 nm prepared by facile aqueous chemistry from endogenous protein haemoglobin were found to give a high thermal response, with a ΔT ∼50 °C at concentrationsas low as165 μg/mL. The as-prepared nanoclusters purified by lyophilization as well as dialysis showed a concentration, power and time-dependent RF response, with the lyophilized FeQCs exhibiting pronounced heating effects. FeQCs were found to be cytocompatible to NIH-3T3 fibroblast and 4T1 cancer cells treated at concentrations upto 1000 μg/mL for 24 h. Upon incubation with FeQCs and exposure to RF waves, significant cancer cell death was observed which proves its therapeutic ability. The fluorescent ability of the clusters could additionally be utilized for imaging cancer cells upon excitation at ∼450 nm. Further, to demonstrate the feasibility of imparting additional functionality such as drug/biomolecule/dye loading to FeQCs, they were self assembled with cationic polymers to form nanoparticles. Self assembly did not alter the RF heating potential of FeQCs and additionally enhanced its fluorescence. The multifunctional fluorescent FeQCs therefore show good promise as a novel therapeutic agent for RF hyperthermia and drug loading. Copyright © 2018 Elsevier B.V. All rights reserved.
Ion extraction from a saddle antenna RF surface plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less
Ion extraction from a saddle antenna RF surface plasma source
NASA Astrophysics Data System (ADS)
Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.
2015-04-01
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).
Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications
NASA Astrophysics Data System (ADS)
Keyrouz, Shady; Visser, Huib
2013-12-01
This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.
RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride
Jeffery, F.R.; Shanks, H.R.
1980-08-26
A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.
High power RF window deposition apparatus, method, and device
Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel
2017-07-04
A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.
Traveling wave linear accelerator with RF power flow outside of accelerating cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgashev, Valery A.
A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities hasmore » a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.« less
Pre-conditioning procedure suitable for internal-RF-antenna of J-PARC RF-driven H{sup −} ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.
The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H{sup −} ion source has been successfully operated for about 1 yr. By the world brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. Although no internal-RF-antenna failure, except for the once caused by an excess cesium due to a misoperation, occurred in the operation, many antennas failed in pre-conditionings for the first hundred days. The antenna failure rate was drastically decreased by using an antenna with coating thicker than a standard value and the pre-conditioning procedure repeating 15 min 25 kW RF-power operation and impurity-gasmore » evacuation a few times, before the full power (50 kW) operation.« less
Compact resonator on leather for nonradiative inductive power transfer and far-field data links
NASA Astrophysics Data System (ADS)
Monti, G.; Corchia, L.; De Benedetto, E.; Tarricone, L.
2016-06-01
In this paper, a wearable resonator suitable to be used for both power and data transmission is presented. The basic element is a complementary split ring resonator that has been optimized to operate both as a dipole-like antenna at 2.45 GHz and as the receiver of a resonant energy link operating at 915 MHz when coupled with an identical external resonator connected to a power source. Experimental data referring to a prototype fabricated by using a conductive adhesive fabric on a leather substrate are reported and discussed. With regard to the wireless resonant energy link (WREL), it is demonstrated that at 915 MHz, the RF-to-RF power transfer efficiency of the link is approximately 78.1%. As for the performance obtained when the resonator is used as an antenna, a gain of approximately -0.43 dB was obtained. Additionally, the performance of the proposed link when connected to a Power Management Unit (PMU) that converts the radio frequency (RF) energy received by the wearable resonator into DC energy that can be directly used for recharging a thin-film battery was also investigated. Experimental tests were performed in order to evaluate both the total efficiency of the wireless charger (i.e., the WREL link connected to the PMU) and the time necessary to recharge a THINERGY MEC201 battery. The obtained results demonstrate the feasibility of using the proposed WREL for implementing a battery charger; in particular, by providing an input power higher than 8 dBm, the time necessary to recharge the considered thin-film battery is shorter than 38 min.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2015-01-01
This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.
Fast shut-down protection system for radio frequency breakdown and multipactor testing.
Graves, T P; Hanson, P; Michaelson, J M; Farkas, A D; Hubble, A A
2014-02-01
Radio frequency (RF) breakdown such as multipactor or ionization breakdown is a device-limiting phenomenon for on-orbit spacecraft used for communication, navigation, or other RF payloads. Ground testing is therefore part of the qualification process for all high power components used in these space systems. This paper illustrates a shut-down protection system to be incorporated into multipactor/ionization breakdown ground testing for susceptible RF devices. This 8 channel system allows simultaneous use of different diagnostic classes and different noise floors. With initiation of a breakdown event, diagnostic signals increase above a user-specified level, which then opens an RF switch to eliminate RF power from the high power amplifier. Examples of this system in use are shown for a typical setup, illustrating the reproducibility of breakdown threshold voltages and the lack of multipactor conditioning. This system can also be utilized to prevent excessive damage to RF components in tests with sensitive or flight hardware.
NASA Astrophysics Data System (ADS)
Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.
2016-06-01
Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.
Continuously-Tunable High-Repetition Rate RF-Excited CO2 Waveguide Laser,
1982-07-01
may be transformed to the appropriate level at the laser head, which elimi- nates the ueed for the very high voltage power supply . Several gas lasers...Figure 5.5 is shown a picture of the rack containing the 50 W amplifier (at the bottom) the 40 V power - supply (in the middle) and the eight final-stage...experimentally. Experimentally 40.68 MHz rf-excitation of discharges between parallel plate electrodes with up to 7-8 kW peak rf- power hus been investigated
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Fisch, Nathaniel J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Bers, Abraham
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.
Neutral particle dynamics in a high-power RF source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia.bg; Paunska, Ts.; Shivarova, A.
2015-04-08
Previous studies on the spatial discharge structure in the SPIDER source of negative hydrogen/deuterium ions carried out at low applied power are extended towards description of the discharge maintenance under the conditions of the actual rf power deposition of 100 kW planned for a single driver of the source. In addition to the expected higher electron density, the results show strong increase of the electron temperature and of the temperatures of the neutral species (hydrogen atoms and molecules). In the discussions, not only the spatial distribution of the plasma parameters but also that of the fluxes in the discharge (particlemore » and energy fluxes) is involved. The obtained results come in confirmation of basic concepts for low-pressure discharge maintenance: (i) mutually related electron density and temperature as a display of the generalized Schottky condition, (ii) discharge behavior governed by the fluxes, i.e. strong nonlocality in the discharge, and (iii) a non-ambipolarity in the discharge regime, which originates from shifted maxima of the electron density and temperature and shows evidence in a vortex electron flux and in a dc current in a rf discharge, the latter resulting from a shift in the positions of the maxima of the electron density and plasma potential.« less
Performance of an ion-cyclotron-wave plasma apparatus operated in the radiofrequency sustained mode
NASA Technical Reports Server (NTRS)
Swett, C. C.; Woollett, R. R.
1973-01-01
An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode, that is, a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave propagation and wave damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of five times 10 to the 12th power cu cm and RF power of 90 kW. Coupling efficiency is 70 percent.
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.
2016-08-15
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2016-08-01
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.
Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L
2009-09-01
To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.
Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue.
Andreano, A; Huang, Yu; Meloni, M Franca; Lee, Fred T; Brace, Christopher
2010-06-01
To compare ablation zones created with equal amounts of 2.45 GHz microwave and 480 kHz radiofrequency (RF) energy in ex vivo liver and lung. A total of 38 ablations were performed in ex vivo liver and lung for 10 min each. Nineteen RF ablations (nine liver, ten lung) were performed with a 480 kHz system (200 W max, impedance-based pulsing) and cooled electrode while measuring the average RF power applied. Nineteen microwave ablations (nine liver, ten lung) were then created using a cooled triaxial antenna to deliver 2.45 GHz at the same power level as in RF experiments. Ablation zones were then sectioned and measured for minimum, maximum and mean diameters, and circularity. Measurements were compared using t-tests, with P < 0.05 indicating statistical significance. Mean diameters of microwave ablations were greater than RF ablations in both liver and lung (4.4 +/- 0.3 vs 3.3 +/- 0.2 cm in liver; 2.45 +/- 0.3 vs 1.6 +/- 0.5 cm in lungs; P < 0.0005 all comparisons). There was no significant difference in the mean power applied during microwave or RF ablations in either organ (54.44 +/- 1.71 W vs 56.4 +/- 6.7 W in liver, P > 0.05; 40 +/- 0.95 W vs 44.9 +/- 7.1 W in lung, P > 0.05). Using a single cooled applicator, microwave energy at 2.45 GHz produces larger ablations than an equivalent amount of 480 kHz RF energy in normal liver and lung. This was more apparent in lung, likely due to the high baseline impedance which limits RF, but not microwave power delivery.
NASA Astrophysics Data System (ADS)
Piao, Daqing; Sun, Tengfei; Ranjan, Ashish
2017-02-01
Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.
2012-03-01
We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.
Microfluidic stretchable RF electronics.
Cheng, Shi; Wu, Zhigang
2010-12-07
Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.
Schneider, Rainer; Haueisen, Jens; Pfeuffer, Josef
2014-10-01
A target-pattern-driven (TD) trajectory design is introduced in combination with parallel transmit (pTX) radiofrequency (RF) pulses to provide localized suppression of unwanted signals. The design incorporates target-pattern and B1+ information to adjust denser sampling and coverage in k-space regions where the main pattern information lies. Based on this approach, two-dimensional RF spiral saturation pulses sensitive to RF power limits were applied in vivo for the first time. The TD method was compared with two state-of-the-art spiral design methods. Simulations at different spatial fidelities, acceleration factors and anatomical regions were carried out for an eight-channel pTX 3 Tesla (T) coil. Human in vivo experiments were performed on a two-channel pTX 3T scanner saturating shaped patterns in the brain, heart, and thoracic spine. Using the TD trajectory, RF pulse power can be substantially reduced by up to 34% compared with other trajectory designs with the same spatial accuracy. Local and global specific absorption rates are decreased in most cases. The TD trajectory design uses available a priori information to enhance RF power efficiency and spatial response of the RF pulses. Shaped saturation pulses show improved spatial accuracy and saturation performance. Thus, RF pulses can be designed more efficiently and can be further accelerated. Copyright © 2013 Wiley Periodicals, Inc.
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
Telemetry Standards, RCC Standard 106-17, Chapter 27, RF Network Access Layer
2017-07-01
27-13 27.5.5 Frame Check Sequence Field........................................................................... 27-13 27.6 Power Transients...to the physical media (i.e., the wireless RF network). On the transmission side, it is responsible for framing IP packets for physical transmission...parameters of a radio shall be stored to maintain communications with RF link management after a power interruption or software-initiated reset
NASA Astrophysics Data System (ADS)
Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.
2016-09-01
Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.
Tantawi, Sami G.; Vlieks, Arnold E.
1998-09-01
A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.
A Study of Direct Digital Manufactured RF/Microwave Packaging
NASA Astrophysics Data System (ADS)
Stratton, John W. I.
Various facets of direct digital manufactured (DDM) microwave packages are studied. The rippled surface inherent in fused deposition modeling (FDM) fabricated geometries is modeled in Ansoft HFSS, and its effect on the performance of microstrip transmission lines is assessed via simulation and measurement. The thermal response of DDM microstrip transmission lines is analyzed over a range of RF input powers, and linearity is confirmed over that range. Two IC packages are embedded into DDM printed circuit boards, and their performance is analyzed. The first is a low power RF switch, and the second is an RF front end device that includes a low noise amplifier (LNA) and a power amplifier (PA). The RF switch is shown to perform well, as compared to a layout designed for a Rogers 4003C microwave laminate substrate. The LNA performs within datasheet specifications. The power amplifier generates substantial heat, so a thermal management attempt is described. Finally, a capacitively loaded 6dB Wilkinson power divider is designed and fabricated using DDM techniques and materials. Its performance is analyzed and compared to simulation. The device is shown to compare favorably to a similar device fabricated on a Rogers 4003C microwave laminate using traditional printed circuit board techniques.
A Novel Oscillating Rectenna for Wireless Microwave Power Transmission
NASA Technical Reports Server (NTRS)
McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.
1998-01-01
A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.
Technique for etching monolayer and multilayer materials
Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert
2015-10-06
A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.
Machining and brazing of accelerating RF cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodke, S.R.; Barnwal, Rajesh; Mondal, Jayant, E-mail: ghodke_barc@yahoo.co.in
2014-07-01
BARC has developed 2856 MHz accelerating cavities for 6 MeV, 9 MeV and 10 MeV RF Linac. New vendors are developed for mass production of accelerating cavity for future projects. New vendors are developing for diamond turning machining, cleaning and brazing processes. Fabrication involved material testing, CNC diamond turning of cavity, cavity cleaning and brazing. Before and after brazing resonance frequency (RF) of cavity was checked with vector network analyser (VNA). A power feed test setup is also fabricated to test power feed cavity before brazing. This test setup will be used to find out assembly performance of power feedmore » cavity and its coupler. This paper discusses about nano machining, cleaning and brazing processes of RF cavities. (author)« less
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.
500-Watt Solid-State RF Power Amplifier AM-7209( )/VRC.
1983-03-18
AD-A127 462 580-WRATT SOLID-STATE RF POWER AMPLIFIER AM-7289( )/VRC 1/2 (U) E- SYSTEMS INC ST PETERSBURG FL ECI DIV N HARRIS 18 MAR 83 60-6±289 CECOM...AND DEVELOPMENT TECHNICAL REPORT CECOM-82-C-J23 1 500-WATT SOLID-STATE RF POWER AMPLIFIER AM-7209( )/VRC M. Harris E- SYSTEMS , INC., ECI DIVISION 1502...CONTRACT OR GRANT NUMSER(t) M. Harris DAABO7-82-C-J231 9m PERFORMING ORGANIZATION NAME AND ADDRESS II. PROGRAM ELEMENT. PROJECT TASK E- SYSTEMS , INC
Motley, R.W.; Glanz, J.
1982-10-25
A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
NASA Astrophysics Data System (ADS)
Petrov, Yuri V.; Harvey, R. W.
2017-10-01
The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.
RF conditioning and beam experiments on 400 keV RFQ accelerator at BARC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Shrikrishna; Rao, S.V.L.S.; Kumar, Rajesh, E-mail: sgupta@barc.gov.in
2014-07-01
A 400 keV Radio-frequency quadrupole accelerator (RFQ) has been designed, developed and tested at BARC. This will be used as a neutron generator (via D-T reaction). The RFQ operates at a resonant frequency of 350 MHz and needs an RF power of ∼ 60 kW to accelerate the deuteron beam to 400 keV within a length of 1.03 m. Though the RFQ is designed for deuteron beam, it was tested by accelerating both the proton and deuteron beams to their designed values of 200 and 400 keV respectively. The proton and deuteron beam experiments required peak RF power of approx.more » 15 kW and 60 kW respectively at 350 MHz. The RF power from the tetrode amplifier and coaxial transmission lines is coupled to the cavity by a coaxial loop coupler. As the coupler and cavity operated at vacuum of better than 2e-6 torr, extensive RF conditioning of the cavity and coupler was performed to reach at the desired power levels. (author)« less
RF Couplers for Normal-Conducting Photoinjector of High-Power CW FEL
NASA Astrophysics Data System (ADS)
Kurennoy, Sergey; Schrage, Dale; Wood, Richard; Schultheiss, Tom; Rathke, John; Young, Lloyd
2004-05-01
A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be build for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by "dog-bone" irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.
RF Simulation of the 187 MHz CW Photo-RF Gun Cavity at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tong-Ming
2008-12-01
A 187 MHz normal conducting Photo-RF gun cavity is designed for the next generation light sources. The cavity is capable of operating in CW mode. As high as 750 kV gap voltage can be achieved with a 20 MV/m acceleration gradient. The original cavity optimization is conducted using Superfish code (2D) by Staples. 104 vacuum pumping slots are added and evenly spaced over the cavity equator in order to achieve better than 10 -10-Tor of vacuum. Two loop couplers will be used to feed RF power into the cavity. 3D simulations are necessary to study effects from the vacuum pumpingmore » slots, couplers and possible multipactoring. The cavity geometry is optimized to minimize the power density and avoid multipactoring at operating field level. The vacuum slot dimensions are carefully chosen in consideration of both the vacuum conduction, local power density enhancement and the power attenuation at the getter pumps. This technical note gives a summary of 3D RF simulation results, multipactoring simulations (2D) and preliminary electromagnetic-thermal analysis using ANSYS code.« less
Initial experiments with a versatile multi-aperture negative-ion source and related improvements
NASA Astrophysics Data System (ADS)
Cavenago, M.
2016-03-01
A relatively compact ion source, named NIO1 (Negative-Ion Optimization 1), with 9 beam apertures for H- extraction is under commissioning, in collaboration between Consorzio RFX and INFN, to provide a test bench for source optimizations, for innovations, and for simulation code validations in support of Neutral Beam Injectors (NBI) optimization. NIO1 installation includes a 60kV high-voltage deck, power supplies for a 130mA ion nominal current, an X-ray shield, and beam diagnostics. Plasma is heated with a tunable 2MHz radiofrequency (rf) generator. Physical aspects of source operation and rf-plasma coupling are discussed. NIO1 tuning procedures and plasma experiments both with air and with hydrogen as filling gas are described, up to a 1.7kW rf power. Transitions to inductively coupled plasma are reported in the case of air (for a rf power of about 0.5kW and a gas pressure below 2Pa), discussing their robust signature in optical emission, and briefly summarized for hydrogen, where more than 1kW rf power is needed.
What variables are important in predicting bovine viral diarrhea virus? A random forest approach.
Machado, Gustavo; Mendoza, Mariana Recamonde; Corbellini, Luis Gustavo
2015-07-24
Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors and found some new and hard to control practices that may lead to the spread of this disease within and among farms, mainly regarding poor or neglected reproduction management, which should be considered for disease control and eradication.
NASA Technical Reports Server (NTRS)
Danell, Ryan M.; VanAmerom, Friso H. W.; Pinnick, Veronica; Cotter, Robert J.; Brickerhoff, William; Mahaffy, Paul
2011-01-01
Mass spectrometers are increasingly finding applications in new and unique areas, often in situations where key operational resources (i.e. power, weight and size) are limited. One such example is the Mars Organic Molecule Analyzer (MOMA). This instrument is a joint venture between NASA and the European Space Agency (ESA) to develop an ion trap mass spectrometer for chemical analysis on Mars. The constraints on such an instrument are significant as are the performance requirements. While the ideal operating parameters for an ion trap are generally well characterized, methods to maintain analytical performance with limited power and system weight need to be investigated and tested. Methods Experiments have been performed on two custom ion trap mass spectrometers developed as prototypes for the MOMA instrument. This hardware consists of quadrupole ion trap electrodes that are 70% the size of common commercial instrumentation. The trapping RF voltage is created with a custom tank circuit that can be tuned over a range of RF frequencies and is driven using laboratory supplies and amplifiers. The entire instrument is controlled with custom Lab VIEW software that allows a high degree of flexibility in the definition of the scan function defining the ion trap experiment. Ions are typically generated via an internal electron ionization source, however, a laser desorption source is also in development for analysis of larger intact molecules. Preliminary Data The main goals in this work have been to reduce the power required to generate the radio frequency trapping field used in an ion trap mass spectrometer. Generally minimizing the power will also reduce the volume and mass of the electronics to support the instrument. In order to achieve optimum performance, commercial instruments typically utilize RF frequencies in the 1 MHz range. Without much concern for power usage, they simply generate the voltage required to access the mass range of interest. In order to reduce the required RF voltage (and power), operation of the ion trap at lower RF frequencies has been investigated. Surprisingly, the performance of the instrument has only been slightly degraded at RF frequencies all the way down to 500 kHz. Mass resolution is relatively stable to this point and depending on the resonant ejection point used, the peak intensity is also quite stable. To date only masses up to m/z 200 have been fully investigated, however, additional studies are planned to verify the performance with higher mass ions. The lower frequency and voltage should reduce the pseudo potential well depth, eventually affecting the trapping efficiency of the instrument -- effect that could manifest itself in significantly limiting the mass range of trapped ions. Other methods to reduce the RF power while maintaining analytical performance are also under investigation. This includes ion ejection at lower q(sub z) values to access a given mass with a lower RF voltage. The loss of mass resolution at lower q(sub eject) points has been measured and current work is underway to leverage scan speed and the use of non-linear resonances in order to counter this trend. The overall trap performance under this range of operating conditions will be presented with a goal of identifying what trade-offs are acceptable.
Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system
NASA Astrophysics Data System (ADS)
Hillairet, J.; Achard, J.; Bae, Y. S.; Bernard, J. M.; Dechambre, N.; Delpech, L.; Ekedahl, A.; Faure, N.; Goniche, M.; Kim, J.; Larroque, S.; Magne, R.; Marfisi, L.; Namkung, W.; Park, H.; Park, S.; Poli, S.; Vulliez, K.
2014-02-01
CEA/IRFM is conducting R&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported.
Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K
2008-04-01
A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.
rf improvements for Spallation Neutron Source H- ion sourcea)
NASA Astrophysics Data System (ADS)
Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
rf improvements for Spallation Neutron Source H- ion source.
Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
Optimization of a RF-generated CF4/O2 gas plasma sterilization process.
Lassen, Klaus S; Nordby, Bolette; Grün, Reinar
2003-05-15
A sterilization process with the use of RF-generated (13.56 MHz) CF(4)/O(2) gas plasma was optimized in regards to power, flow rate, exposure time, and RF-system type. The dependency of the sporicidal effect on the spore inoculum positioning in the chamber of the RF systems was also investigated. Dried Bacillus stearothermophilus ATCC 7953 endospores were used as test organisms. The treatments were evaluated on the basis of survival curves and corresponding D values. The only parameter found to affect the sterilization process was the power of the RF system. Higher power resulted in higher kill. Finally, when the samples were placed more than 3-8 cm away from a centrally placed electrode in System 2, the sporicidal effect was reduced. The results are discussed and compared to results from the present literature. The RF excitation source is evaluated to be more appropriate for sterilization processes than the MW source. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 239-244, 2003
A terahertz performance of hybrid single walled CNT based amplifier with analytical approach
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Song, Hanjung
2018-01-01
This work is focuses on terahertz performance of hybrid single walled carbon nanotube (CNT) based amplifier and proposed for measurement of soil parameters application. The proposed circuit topology provides hybrid structure which achieves wide impedance bandwidth of 0.33 THz within range of 1.07-THz to 1.42-THz with fractional amount of 28%. The single walled RF CNT network executes proposed ambition and proves its ability to resonant at 1.25-THz with analytical approach. Moreover, a RF based microstrip transmission line radiator used as compensator in the circuit topology which achieves more than 30 dB of gain. A proper methodology is chosen for achieves stability at circuit level in order to obtain desired optimal conditions. The fundamental approach optimizes matched impedance condition at (50+j0) Ω and noise variation with impact of series resistances for the proposed hybrid circuit topology and demonstrates the accuracy of performance parameters at the circuit level. The chip fabrication of the proposed circuit by using RF based commercial CMOS process of 45 nm which reveals promising results with simulation one. Additionally, power measurement analysis achieves highest output power of 26 dBm with power added efficiency of 78%. The succeed minimum noise figure from 0.6 dB to 0.4 dB is outstanding achievement for circuit topology at terahertz range. The chip area of hybrid circuit is 0.65 mm2 and power consumption of 9.6 mW.
NASA Astrophysics Data System (ADS)
Chen, Hao; De Feyter, Henk M.; Brown, Peter B.; Rothman, Douglas L.; Cai, Shuhui; de Graaf, Robin A.
2017-10-01
A wide range of direct 13C and indirect 1H-[13C] MR detection methods exist to probe dynamic metabolic pathways in the human brain. Choosing an optimal detection method is difficult as sequence-specific features regarding spatial localization, broadband decoupling, spectral resolution, power requirements and sensitivity complicate a straightforward comparison. Here we combine density matrix simulations with experimentally determined values for intrinsic 1H and 13C sensitivity, T1 and T2 relaxation and transmit efficiency to allow selection of an optimal 13C MR detection method for a given application and magnetic field. The indirect proton-observed, carbon-edited (POCE) detection method provides the highest accuracy at reasonable RF power deposition both at 4 T and 7 T. The various polarization transfer methods all have comparable performances, but may become infeasible at 7 T due to the high RF power deposition. 2D MR methods have limited value for the metabolites considered (primarily glutamate, glutamine and γ-amino butyric acid (GABA)), but may prove valuable when additional information can be extracted, such as isotopomers or lipid composition. While providing the lowest accuracy, the detection of non-protonated carbons is the simplest to implement with the lowest RF power deposition. The magnetic field homogeneity is one of the most important parameters affecting the detection accuracy for all metabolites and all acquisition methods.
Theory and Practice in ICRF Antennas for Long Pulse Operation
NASA Astrophysics Data System (ADS)
Colas, L.; Faudot, E.; Brémond, S.; Heuraux, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Tore Supra Team
2005-09-01
Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20s×8MW and 60s×4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC E×B0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.
Theory and Practice in ICRF Antennas for Long Pulse Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colas, L.; Bremond, S.; Mitteau, R.
2005-09-26
Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot patternmore » was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.« less
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng; ...
2017-01-01
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
Schmid, Gernot; Uberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R
2007-09-07
In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 microW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely.
NASA Astrophysics Data System (ADS)
Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian
2016-12-01
In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.
Protecting Against Damage from Refraction of High Power Microwaves in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Lohr, John; Brambila, Rigo; Cengher, Mirela; Chen, Xi; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Prater, Ron; Torrezan, Antonio; Austin, Max; Doyle, Edward; Hu, Xing; Dormier, Calvin
2017-07-01
Several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps have been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.
Protecting against damage from refraction of high power microwaves in the DIII-D tokamak
Lohr, John; Brambila, Rigo; Cengher, Mirela; ...
2017-07-24
Here, several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps havemore » been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.« less
Protecting against damage from refraction of high power microwaves in the DIII-D tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, John; Brambila, Rigo; Cengher, Mirela
Here, several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps havemore » been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.« less
Constant envelope OFDM scheme for 6PolSK-QPSK
NASA Astrophysics Data System (ADS)
Li, Yupeng; Ding, Ding
2018-03-01
A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.
Method of plasma etching GA-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2013-01-01
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.
High efficiency RF amplifier development over wide dynamic range for accelerator application
NASA Astrophysics Data System (ADS)
Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber
2017-10-01
Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.
Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources
NASA Technical Reports Server (NTRS)
McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher
2012-01-01
Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.
A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.
Pizzotti, Matteo; Perilli, Luca; Del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Masotti, Diego; Costanzo, Alessandra; Franchi Scarselli, Eleonora; Romani, Aldo
2017-07-28
We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.
A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications
del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Costanzo, Alessandra
2017-01-01
We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to −17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received. PMID:28788084
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Efficient 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation
NASA Technical Reports Server (NTRS)
Hochuli, U. E.; Haldemann, P. R.
1988-01-01
Details of a 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation are presented. The amplifier delivers 30 W into a 50-Ohm load while requiring only 40 W of dc power from a 28-V supply and 100 mW of rf drive power for an overall efficiency of 75 percent. A coupling-starting network design theory is given that provides the initiation over voltage for the discharge plasma from an rf power source of limited output voltage capability. The network then matches the drive circuit to the new input impedance of the operating discharge without any adjustments. This design theory applies to the whole class of networks whose losses can be approximated by a loss conductance in parallel with the gas discharge.
Spatial distribution of the RF power absorbed in a helicon plasma source
NASA Astrophysics Data System (ADS)
Aleksenko, O. V.; Miroshnichenko, V. I.; Mordik, S. N.
2014-08-01
The spatial distributions of the RF power absorbed by plasma electrons in an ion source operating in the helicon mode (ω ci < ω < ω ce < ω pe ) are studied numerically by using a simplified model of an RF plasma source in an external uniform magnetic field. The parameters of the source used in numerical simulations are determined by the necessity of the simultaneous excitation of two types of waves, helicons and Trivelpiece-Gould modes, for which the corresponding transparency diagrams are used. The numerical simulations are carried out for two values of the working gas (helium) pressure and two values of the discharge chamber length under the assumption that symmetric modes are excited. The parameters of the source correspond to those of the injector of the nuclear scanning microprobe operating at the Institute of Applied Physics, National Academy of Sciences of Ukraine. It is assumed that the mechanism of RF power absorption is based on the acceleration of plasma electrons in the field of a Trivelpiece-Gould mode, which is interrupted by pair collisions of plasma electrons with neutral atoms and ions of the working gas. The simulation results show that the total absorbed RF power at a fixed plasma density depends in a resonant manner on the magnetic field. The resonance is found to become smoother with increasing working gas pressure. The distributions of the absorbed RF power in the discharge chamber are presented. The achievable density of the extracted current is estimated using the Bohm criterion.
High Current Density Cathodes for Future Vacuum Electronics Applications
2008-05-30
Tube - device for generating high levels of RF power DARPA Defense Advanced Research Agency PBG Photonic band gap W- Band 75-111 GHz dB Decibels GHz...Extended interaction klystron 1. Introduction All RF vacuum electron sources require a high quality electron beam for efficient operation. Research on...with long life. Pres- ently, only thermionic dispenser cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a
Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization
Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.
2014-01-01
Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326
DC-pass filter design with notch filters superposition for CPW rectenna at low power level
NASA Astrophysics Data System (ADS)
Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun
2016-03-01
In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.
NASA Astrophysics Data System (ADS)
Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad
2018-03-01
Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.
On-board processing concepts for future satellite communications systems
NASA Technical Reports Server (NTRS)
Brandon, W. T. (Editor); White, B. E. (Editor)
1980-01-01
The initial definition of on-board processing for an advanced satellite communications system to service domestic markets in the 1990's is discussed. An exemplar system with both RF on-board switching and demodulation/remodulation baseband processing is used to identify important issues related to system implementation, cost, and technology development. Analyses of spectrum-efficient modulation, coding, and system control techniques are summarized. Implementations for an RF switch and baseband processor are described. Among the major conclusions listed is the need for high gain satellites capable of handling tens of simultaneous beams for the efficient reuse of the 2.5 GHz 30/20 frequency band. Several scanning beams are recommended in addition to the fixed beams. Low power solid state 20 GHz GaAs FET power amplifiers in the 5W range and a general purpose digital baseband processor with gigahertz logic speeds and megabits of memory are also recommended.
Zhang, Zhiqiang; Liao, Xiaoping
2017-01-01
To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively. PMID:28629144
Zhang, Zhiqiang; Liao, Xiaoping
2017-06-17
To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.
Cleaning of first mirrors in ITER by means of radio frequency discharges.
Leipold, F; Reichle, R; Vorpahl, C; Mukhin, E E; Dmitriev, A M; Razdobarin, A G; Samsonov, D S; Marot, L; Moser, L; Steiner, R; Meyer, E
2016-11-01
First mirrors of optical diagnostics in ITER are subject to charge exchange fluxes of Be, W, and potentially other elements. This may degrade the optical performance significantly via erosion or deposition. In order to restore reflectivity, cleaning by applying radio frequency (RF) power to the mirror itself and thus creating a discharge in front of the mirror will be used. The plasma generated in front of the mirror surface sputters off deposition, restoring its reflectivity. Although the functionality of such a mirror cleaning technique is proven in laboratory experiments, the technical implementation in ITER revealed obstacles which needs to be overcome: Since the discharge as an RF load in general is not very well matched to the power generator and transmission line, power reflections will occur leading to a thermal load of the cable. Its implementation for ITER requires additional R&D. This includes the design of mirrors as RF electrodes, as well as feeders and matching networks inside the vacuum vessel. Mitigation solutions will be evaluated and discussed. Furthermore, technical obstacles (i.e., cooling water pipes for the mirrors) need to be solved. Since cooling water lines are usually on ground potential at the feed through of the vacuum vessel, a solution to decouple the ground potential from the mirror would be a major simplification. Such a solution will be presented.
Development for a supercompact X -band pulse compression system and its application at SLAC
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen; ...
2017-11-09
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
Development for a supercompact X -band pulse compression system and its application at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters
NASA Astrophysics Data System (ADS)
Irshad, Wasim
Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design methodology for relevant applications. To further demonstrate MCD versatility, we implement a bandstop MCD filter that cascades nine separate resonators to achieve a 6-24 GHz continuous tuning. The disseration concludes with a Galinstan Magnetohydrodynamic (MHD) micropump and summary of my doctoral work. Although presented at the very end of this dissertation, the MHD micropump was indeed the very starting point for all my doctoral research efforts. The invaluable lessons learned here paved the way for development of both LMD and MCD RF-MEMS.
Lin, Shi-Ming; Lin, Chen-Chun; Chen, Wei-Ting; Chen, Yi-Chen; Hsu, Chao-Wei
2007-09-01
To compare the effectiveness of ablation techniques for hepatocellular carcinoma (HCC) with the use of four radiofrequency (RF) devices. One hundred patients with 133 HCC lesions no larger than 4 cm were treated with one of four RF devices: RF 2000 (maximum power, 100 W) and RF 3000 generators (maximum power, 200 W) with LeVeen expandable electrodes with a maximum dimension of 3.5 cm or 4 cm, internally cooled single electrode with a thermal dimension of 3 cm, and a RITA RF generator with expandable electrodes with a maximum dimension of 5 cm. Numbers of RF sessions needed per HCC to achieve complete necrosis were 1.4 +/- 0.5 with the RF 2000 device and greater than 1.1 +/- 0.3 with the other three devices (P < .05). The RF 2000 device required a more interactive algorithm than the RF 3000 device. Session times per patient were 31.7 minutes +/- 13.2 in the RF 2000 group and longer than 16.6 minutes +/- 7.5 in the RF 3000 group, 28.3 minutes +/- 12 in the RITA device group, and 27.1 minutes +/- 12 with the internally cooled electrode device (P < .005 for RF 2000 vs other devices and for RF 3000 vs RITA or internally cooled electrode device). Complete necrosis and local tumor progression rates at 2 years in the RF 2000, RF 3000, RITA, and internally cooled electrode device groups were 91.1%, 97.1%, 96.7%, and 96.8% and 12%, 8%, 8.2%, and 8.3%, respectively (P = .37). Ablation with the RF 3000 device required a shorter time than the other three devices and required a less interactive algorithm than the RF 2000 device. However, complete necrosis and local tumor progression rates were similar among devices.
Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
H- Ion Sources for High Intensity Proton Drivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland Paul; Dudnikov, Vadim
2015-02-20
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H + and H - ion generation around 3 to 5 mA/cm 2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm 2 per kW of RF power at 13.56more » MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.
High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, N. F. H; Hussain, N. S. Mohamed; Awang, R.
2013-11-27
Amorphous carbon nitride (a-CN{sub x}) thin films were deposited using radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique. A set of a-CN{sub x} thin films were prepared using pure methane (CH{sub 4}) gas diluted with nitrogen (N{sub 2}) gas. The rf power was varied at 50, 60, 70, 80, 90 and 100 W. These films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The effects of rf power and thermal annealing on the chemical bonding and morphology of these samples were studied. Surface profilometer was used to measure film thickness. Fourier transformmore » infra-red spectroscopy (FTIR) and Field emission scanning electron microscopy (FESEM) measurements were used to determine their chemical bonding and morphology respectively. The deposition rate of the films increased constantly with increasing rf power up to 80W, before decreasing with further increase in rf power. Fourier transform infra-red spectroscopy (FTIR) studies showed a systematic change in the spectra and revealed three main peaks included C-N, C=N, C=C and C≡N triple bond. C=N and C≡N bonds decreased with increased C-N bonds after thermal annealing process. The FESEM images showed that the structure is porous for as-deposited and covered by granule-like grain structure after thermal annealing process was done. The resistance of the a-CN{sub x} thin film changed from 23.765 kΩ to 5.845 kΩ in the relative humidity range of 5 to 92 % and the film shows a good response and repeatability as a humidity sensing materials. This work showed that rf power and thermal annealing has significant effects on the chemical bonding and surface morphology of the a-CN{sub x} films and but yield films which are potential candidate as humidity sensor device.« less
Semiconductor Laser Low Frequency Noise Characterization
NASA Technical Reports Server (NTRS)
Maleki, Lute; Logan, Ronald T.
1996-01-01
This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.
Cieśla, Elżbieta; Mleczko, Edward; Bergier, Józef; Markowska, Małgorzata; Nowak-Starz, Grażyna
2014-01-01
The objective of the study was determination of the effect of various forms of physical activity, BMI, and time devoted to computer games on the level of Health-Related Physical Fitness (H-RF) in 6-7-year-old children from Polish rural areas. The study covered 25,816 children aged 6-7: 12,693 girls and 13,123 boys. The evaluations included body height and weight, and 4 H-RF fitness components (trunk strength, explosive leg power, arm strength and flexibility). The BMI was calculated for each child. The Questionnaire directed to parents was designed to collect information concerning the time devoted by children to computer games, spontaneous and additional physical activity. The strength of the relationships between dependent and independent variables was determined using the Spearman's rank correlation (RSp), and the relationship by using the regression analysis. The BMI negatively affected the level of all the H-RF components analysed (p=0.000). The negative effect of computer games revealed itself only with respect to flexibility (p=0.000), explosive leg power (p=0.000) and trunk muscle strength (p=0.000). A positive effect of spontaneous activity was observed for flexibility (p=0.047), explosive leg power (p=0.000), and arm strength (p=0.000). Additional activity showed a positive relationship with trunk muscles strength (p=0.000), and explosive leg power (p=0.000). The results of studies suggest that it is necessary to pay attention to the prevention of diseases related with the risk of obesity and overweight among Polish rural children as early as at pre-school age. There is also a need during education for shaping in these children the awareness of concern about own body, and the need for active participation in various forms of physical activity.
Design of RF energy harvesting platforms for power management unit with start-up circuits
NASA Astrophysics Data System (ADS)
Costanzo, Alessandra; Masotti, Diego
2013-12-01
In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I–V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems. PMID:22164066
NASA Astrophysics Data System (ADS)
Chaoumead, Accarat; Joo, Bong-Hyun; Kwak, Dong-Joo; Sung, Youl-Moon
2013-06-01
Transparent conductive titanium-doped indium oxide (ITiO) films were deposited on Corning glass substrates by RF magnetron sputtering method. The effects of RF sputtering power and Ar gas pressure on the structural and electrical properties of the films were investigated experimentally, using a 2.5 wt% TiO2-doped In2O3 target. The deposition rate was in the range of around 20-60 nm/min under the experimental conditions of 5-20 mTorr of gas pressure and 220-350 W of RF power. The lowest resistivity of 1.2 × 10-4 Ω cm, the average optical transmittance of 75%, the high hall mobility of 47.03 cm2/V s and the relatively low carrier concentration of 1.15E+21 cm-3 were obtained for the ITiO film, prepared at RF power of 300 W and Ar gas pressure of 15 mTorr. This resistivity of 1.2 × 10-4 Ω cm is low enough as a transparent conducting layer in various electro-optical devices and it is comparable with that of ITO or ZnO:Al conducting layer.
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
Compact rf polarizer and its application to pulse compression systems
Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; ...
2016-06-01
We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE 114 modes. The overcoupled spherical cavity has a Q 0 of 9.4×10 4 and coupling factor (β) ofmore » 7.69 thus providing a loaded quality factor Q L of 1.06×10 4 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.« less
NASA Astrophysics Data System (ADS)
Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru
2018-03-01
L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.
[Radiofrequency ablation in the multimodal treatment of liver metastases--preliminary report].
Burcoveanu, C; Dogaru, C; Diaconu, C; Grecu, F; Dragomir, Cr; Pricop, Adriana; Balan, G; Drug, V L
2007-01-01
Although the "gold standard" in the multimodal treatment of liver primary and secondary tumors is the surgical ablation, the rate of resection, despite the last decades advances, remains still low (10 - 20%). In addition, the interest for non-surgical ablation therapies is increasing. Among them, regional or systemic chemotherapy, intra-arterial radiotherapy as well as locally targeted therapies--cryotherapy, alcohol instillation and radiofrequency (RF) are the most valuable options as alternative to the surgical approach. Between February 2005 - January 2007, 9 patients with liver metastases underwent open RF ablation of their secondaries in the III-rd Surgical Unit, "St. Spiridon" Hospital. An Elektrotom 106 HiTT Berchtold device with a 60W power generator and a 15 mm monopolar active electrode was used. Destruction of the tumors was certified with intraoperative ultrasound examination. Pre- and postoperative CarcinoEmbryonic Antigen (CEA) together with imaging follow-up was carried out, in order to determine local or systemic recurrencies. Six patients died between 6 month - 4 years after the RF ablation. Median survival is 29.2 months. RF ablation is a challenge alternative in non-resectable liver tumors.
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.; SWIM Project Team
2011-10-01
We present developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. A third code (QLCALC) then interfaces with computational geometry packages to construct the RF-induced quasilinear diffusion tensor from NIMROD/GENRAY data, and the moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution. Initial results are shown to correctly capture the physics of magnetic island stabilization [Jenkins et al., PoP 17, 012502 (2010)]; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes. Funded by USDoE SciDAC.
Integral electrical characteristics and local plasma parameters of a RF ion thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.
2016-02-15
Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
A METHOD FOR IN-SITU CHARACTERIZATION OF RF HEATING IN PARALLEL TRANSMIT MRI
Alon, Leeor; Deniz, Cem Murat; Brown, Ryan; Sodickson, Daniel K.; Zhu, Yudong
2012-01-01
In ultra high field magnetic resonance imaging, parallel radio-frequency (RF) transmission presents both opportunities and challenges for specific absorption rate (SAR) management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local SAR by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, the present work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix was conducted in less than 200 minutes with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. PMID:22714806
NASA Astrophysics Data System (ADS)
Goudarzi, Nasser
2016-04-01
In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.
Rf system for the NSLS coherent infrared radiation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, W.; Biscardi, R.; Keane, J.
1995-05-01
The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less
Investigation of RF excited CW CO2 waveguide lasers local oscillator - RF excitation
NASA Technical Reports Server (NTRS)
Hochuli, U.
1988-01-01
A new local oscillator housing was built which seems to have improved laser life. Laser cooling was changed from internal water cooling to the more convenient thermal contact cooling. At the present time, a conclusion can not be made if the 20 percent reduction in power output is the result of poorer cooling or poorer grating alignment. The coupling-starting network was improved from 55 to about 90 percent. It can be adjusted by varying trimmers C sub 1 and C sub 2 to match RF power levels between 10 and 30 W. If the laser admittance changes greatly with laser life rematching will have to be achieved by remote control for space applications. The same holds true if the RF power level has to be changed with a maximum efficiency constraint.
Four cavity efficiency enhanced magnetically insulated line oscillator
Lemke, Raymond W.; Clark, Miles C.; Calico, Steve E.
1998-04-21
A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.
Four cavity efficiency enhanced magnetically insulated line oscillator
Lemke, R.W.; Clark, M.C.; Calico, S.E.
1998-04-21
A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.
Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks
NASA Technical Reports Server (NTRS)
Dogan, Numan S.
2003-01-01
The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.
Efficient RF energy harvesting by using a fractal structured rectenna system
NASA Astrophysics Data System (ADS)
Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.
2014-04-01
A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124
1999-06-10
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less
[Study of New Micropore RF system on Lesion Formation and Complications].
Song, Yuwen; Xu, Xiulin; Cai, Yameng
2017-07-30
To study the safety and effectiveness of a new type of micropore ablation catheter in vitro ablation system, and to provide reference for clinical practice. To evaluate two kinds of catheter in cardiac tissue ablation depth, tissue temperature and thrombosis situation by the same RF system. The power set 25 W, There was no significant difference in ablation depth between the two groups, and no Pop and thrombosis occurred. When the power is more than 40 W, two groups occurred more Pop and thrombosis. When using high power for Cardiac RF ablation, doctors should pay more attention to complications and thrombosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, P.E.
1975-03-01
An analytical study has been performed to assess the feasibility of using aerodynamically heated thermoelectric convertors to power RF proximity fuzes. The collective results of this study indicate that such a thermoelectric power supply is feasible for use with 20 mm projectiles and is compatible with the existing RF fuze circuit and safe arming distance requirements. A disc module concept has evolved from this study involving thin-film bismuth telluride as the basic thermoelectric element. Preliminary experimental studies were completed in order to identify principal parameters for the bismuth telluride.
Plasma sweeper to control the coupling of RF power to a magnetically confined plasma
Motley, Robert W.; Glanz, James
1985-01-01
A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923
Millimeter Wave Communications Program: Link Tests of High Speed Digital Radio Set AN/GRC-173 (XW-1)
1975-01-01
Terrence Kelly, John Mutty, Edward Rich, James Roche, William J. Smxth, Carson Tsao, and David Trask. Hugh N. Siegel (DCCW) was the RADC...shelter, except for the parabolic dish and front-feed antenna system, which is mast-mounted adjacent to the shelter and connected to an rf input...Equipment: All rf and digital units 8. POWER SUPPLIES Quantity: 1 for rf , 1 for digital Primary Power: 120/240V +10% single phase, 47 - 420 Hz
47 CFR 95.607 - CB transmitter modification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitting frequencies, increased modulation level, a different form of modulation, or increased TP (RF... modulating frequency, typically 0.1 seconds at maximum power) or peak envelope power (TP averaged during 1 RF cycle at the highest crest of the modulation envelope), as measured at the transmitter output antenna...
Optically addressed ultra-wideband phased antenna array
NASA Astrophysics Data System (ADS)
Bai, Jian
Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization techniques for both single and array antennas. In addition, a prototype transmitting phased array system is developed and shown to demonstrate large bandwidth as well as a beam steering capability. The architecture of this system can be further developed to a large-scale array at higher frequencies such as mm-wave. This solution serves as a candidate for UWB multifunctional frontends.
Saddle antenna radio frequency ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R.; Murray, S.
Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA withmore » RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.« less
Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...
2015-04-13
The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less
Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST
NASA Astrophysics Data System (ADS)
Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.
2017-08-01
An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.
Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.
Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf
2012-01-01
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.
Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study
Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf
2012-01-01
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498
Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia.
Fazal, Sajid; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy
2017-08-30
This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl 2 , which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.
High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.
2015-12-01
Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod's field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.
High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Thomas G., E-mail: tgjenkins@txcorp.com; Smithe, David N., E-mail: smithe@txcorp.com
Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod’s field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scansmore » over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.« less
Dependence of NMR noise line shapes on tuning, matching, and transmission line properties
Bendet-Taicher, Eli; Müller, Norbert; Jerschow, Alexej
2014-01-01
The tuning and matching conditions of rf circuits, as well as the properties of the transmission lines connecting these to the preamplifier, have direct consequences for NMR probe sensitivity and as for the optimum delivery of rf power to the sample. In addition, tuning/matching conditions influence radiation damping effects, which manifest themselves as fast signal flip-back and line broadening effects, and can lead to concentration-dependent frequency shifts. Previous studies have also shown that the appearance of spin-noise and absorbed circuit noise signals heavily depended on tuning settings. Consequently, all these phenomena are linked together. The mutual connections and interdependences of these effects are highlighted and reviewed here. PMID:25505374
Comparative study of plasma-deposited fluorocarbon coatings on different substrates
NASA Astrophysics Data System (ADS)
Farsari, E.; Kostopoulou, M.; Amanatides, E.; Mataras, D.; Rapakoulias, D. E.
2011-05-01
The deposition of hydrophobic fluorocarbon coatings from C2F6 and C2F6-H2 rf discharges on different substrates was examined. Polyester textile, glass and two different ceramic compounds were used as substrates. The effect of the total gas pressure, the rf power dissipation and the deposition time on the hydrophobic character of the samples was investigated. Films deposited on polyester textiles at low pressure (0.03 mbar) and power consumption (16 mW cm-2) using pure C2F6 presented the highest water contact angles (~150°). On the other hand, the addition of hydrogen was necessary in order to deposit stable hydrophobic coatings on glass and ceramic substrates. Coatings deposited on glass at intermediate deposition rates (~100 Å min-1) and pressures presented the highest angles (~105°). Concerning the heavy clay ceramics, samples treated in low-pressure (0.05 mbar) and low-power (16 mW cm-2) discharges showed the highest contact angles. The deposition time was found to play an important role in the hydrophobicity and long-term behaviour of porous and rough substrates.
A High Power Helicon Antenna Design for DIII-D
Nagy, A.; deGrassie, J.; Moeller, C.; ...
2017-08-02
A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less
A High Power Helicon Antenna Design for DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, A.; deGrassie, J.; Moeller, C.
A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less
Investigation and Prediction of RF Window Performance in APT Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, S. Jr.
1997-05-01
The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate {beta} superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electronmore » multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak{_}RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak{_}RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak{_}RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics.« less
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...
2015-03-01
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
Mobile Atmospheric Pollutant Mapping System (MAPMS)
1989-12-01
SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO: DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 UNCLASSIFIED...22 7. Flip-Flop Array ..... ............ .. 22 8. RF Switches and RF Power Splitter . 22 9. RFI Shielding ......... ............. 2? 10. Transient...Boxcar Averager ...... ............ .. 24 5. Spectrum Analyzer .... ........... .. 26 6. Laser Power Meters .... ........... ... 26 M. COMPUTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.
2014-01-15
Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less
A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madrak, Robyn
2014-05-15
Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vmore » peak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.« less
Westhoff, John L; Roberts, Brad J; Erickson, Kristin
2013-01-01
Vehicle-mounted high-power microwave systems have been developed to counter the improvised explosive device threat in southwest Asia. Many service members only vaguely comprehend the nature of these devices and the nonionizing radio frequency (RF) radiation they emit. Misconceptions about the health effects of RF radiation have the potential to produce unnecessary anxiety. We report an incident in which concern for exposure to radiation from a high-power microwave device thought to be malfunctioning led to an extensive field investigation, multiple evaluations by clinicians in theater, and subsequent referrals to an Occupational Health clinic upon return from deployment. When acute exposure to RF does occur, the effects are thermally mediated and immediately perceptible--limiting the possibility of injury. Unlike ionizing radiation, RF radiation is not known to cause cancer and the adverse health effects are not cumulative. Medical officers counseling service members concerned about potential RF radiation exposure should apply established principles of risk communication, attend to real and perceived risks, and enlist the assistance of technical experts to properly characterize an exposure when appropriate.
Operation of large RF sources for H-: Lessons learned at ELISE
NASA Astrophysics Data System (ADS)
Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.
2017-08-01
The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.
An ultra-low-power RF transceiver for WBANs in medical applications
NASA Astrophysics Data System (ADS)
Qi, Zhang; Xiaofei, Kuang; Nanjian, Wu
2011-06-01
A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm2. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%.
Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J
2008-09-01
Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.
Near field magnetic communications for helmet-mounted display applications
NASA Astrophysics Data System (ADS)
Field, Mark; Sailer, Alan
2005-05-01
Helmet-mounted displays need a data feed that is typically provided by a cable or RF wireless data link to an external computer. In defense applications these solutions are problematic: a cable gets in the way and restricts use and emergency egress, while an RF wireless link can be detected at some distance giving away position and is susceptible to jamming. What is required is an alternative wireless technology that is low power, extremely localized and difficult to detect or jam. Near field magnetic communications is one possible alternative to RF communications that may fulfill these needs. This technology uses a time varying magnetic field to carry information, and is only useable over small distances of order six feet. This is expected to have significant advantages for particular applications: notably power requirements and security compared with RF wireless links. The power stored in a magnetic field falls off as 1/r6, compared with 1/r2 for RF, which means that all the power is localized around the transmitter. By having a physically small communications region around each platform or user, a large bandwidth can be guaranteed by allowing the reuse of the frequency spectrum outside the immediate vicinity. It also confers security on the data-link, as the signal is undetectable beyond the short range of the system.
Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A
2015-03-01
This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.
Ji, Yiyi; Hoffmann, Werner; Pham, Michal; Dunn, Alexander E; Han, Haopeng; Özerdem, Celal; Waiczies, Helmar; Rohloff, Michael; Endemann, Beate; Boyer, Cyrille; Lim, May; Niendorf, Thoralf; Winter, Lukas
2018-04-01
To study the role of temperature in biological systems, diagnostic contrasts and thermal therapies, RF pulses for MR spin excitation can be deliberately used to apply a thermal stimulus. This application requires dedicated transmit/receive (Tx/Rx) switches that support high peak powers for MRI and high average powers for RF heating. To meet this goal, we propose a high-performance Tx/Rx switch based on positive-intrinsic-negative diodes and quarter-wavelength (λ/4) stubs. The λ/4 stubs in the proposed Tx/Rx switch design route the transmitted RF signal directly to the RF coil/antenna without passing through any electronic components (e.g., positive-intrinsic-negative diodes). Bench measurements, MRI, MR thermometry, and RF heating experiments were performed at f = 297 MHz (B 0 = 7 T) to examine the characteristics and applicability of the switch. The proposed design provided an isolation of -35.7dB/-41.5dB during transmission/reception. The insertion loss was -0.41dB/-0.27dB during transmission/reception. The switch supports high peak (3.9 kW) and high average (120 W) RF powers for MRI and RF heating at f = 297 MHz. High-resolution MRI of the wrist yielded image quality competitive with that obtained with a conventional Tx/Rx switch. Radiofrequency heating in phantom monitored by MR thermometry demonstrated the switch applicability for thermal modulation. Upon these findings, thermally activated release of a model drug attached to thermoresponsive polymers was demonstrated. The high-power Tx/Rx switch enables thermal MR applications at 7 T, contributing to the study of the role of temperature in biological systems and diseases. All design files of the switch will be made available open source at www.opensourceimaging.org. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian
2018-02-01
The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.
1999-06-01
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Kaszeta, W. J.
1982-12-01
One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.
NASA Technical Reports Server (NTRS)
Kaszeta, W. J.
1982-01-01
One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.
Automatic-Control System for Safer Brazing
NASA Technical Reports Server (NTRS)
Stein, J. A.; Vanasse, M. A.
1986-01-01
Automatic-control system for radio-frequency (RF) induction brazing of metal tubing reduces probability of operator errors, increases safety, and ensures high-quality brazed joints. Unit combines functions of gas control and electric-power control. Minimizes unnecessary flow of argon gas into work area and prevents electrical shocks from RF terminals. Controller will not allow power to flow from RF generator to brazing head unless work has been firmly attached to head and has actuated micro-switch. Potential shock hazard eliminated. Flow of argon for purging and cooling must be turned on and adjusted before brazing power applied. Provision ensures power not applied prematurely, causing damaged work or poor-quality joints. Controller automatically turns off argon flow at conclusion of brazing so potentially suffocating gas does not accumulate in confined areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishofberger, Kip A.
Within Building 19 of TA-53, a screen room has been evaluated for use as a reverb chamber (with deep gratitude to Dale Dalmas and Greg Dale for their assistance). With minimal additional sealing of the chamber, we expect the Q to increase even more, and thus field levels for the same RF source power. Future studies need to determine leakage field levels, which will define maximum achievable field levels.
Performance evaluation of hybrid VLC using device cost and power over data throughput criteria
NASA Astrophysics Data System (ADS)
Lee, C. C.; Tan, C. S.; Wong, H. Y.; Yahya, M. B.
2013-09-01
Visible light communication (VLC) technology has attained its attention in both academic and industry lately. It is determined by the development of light emitting diode (LED) technology for solid-state lighting (SSL).It has great potential to gradually replace radio frequency (RF) wireless technology because it offers unregulated and unlicensed bandwidth to withstand future demand of indoor wireless access to real-time bandwidth-demanding applications. However, it was found to provide intrusive uplink channel that give rise to unpleasant irradiance from the user device which could interfere with the downlink channel of VLC and hence limit mobility to users as a result of small coverage (field of view of VLC).To address this potential problem, a Hybrid VLC system which integrates VLC (for downlink) and RF (for uplink) technology is proposed. It offers a non-intrusive RF back channel that provides high throughput VLC and maintains durability with conventional RF devices. To deploy Hybrid VLC system in the market, it must be energy and cost saving to attain its equivalent economical advantage by comparing to existing architecture that employs fluorescent or LED lights with RF technology. In this paper, performance evaluation on the proposed hybrid system was carried out in terms of device cost and power consumption against data throughput. Based on our simulation, Hybrid VLC system was found to reduce device cost by 3% and power consumption by 68% when compares to fluorescent lights with RF technology. Nevertheless, when it is compared to LED lights with RF technology, our proposed hybrid system is found to achieve device cost saving as high as 47% and reduced power consumption by 49%. Such promising results have demonstrated that Hybrid VLC system is a feasible solution and has paved the way for greater cost saving and energy efficient compares with the current RF architecture even with the increasing requirement of indoor area coverage.
Beamed microwave power transmitting and receiving subsystems radiation characteristics
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
Measured characteristics of the spectrum of typical converters and the distribution of radiated Radio Frequency (RF) energy from the terminals (transmitting antenna and rectenna) of a beamed microwave power subsystem are presented for small transmitting and receiving S-band (2.45 GHz) subarrays. Noise and harmonic levels of tube and solid-state RF power amplifiers are shown. The RF patterns and envelope of a 64 element slotted waveguide antenna are given for the fundamental frequency and harmonics through the fifth. Reflected fundamental and harmonic patterns through the fourth for a 42 element rectenna subarray are presented for various dc load and illumination conditions. Bandwidth measurements for the waveguide antenna and rectenna are shown.
NASA Astrophysics Data System (ADS)
Ramakrishna, M.; Kumari, Juhi; Venkanna, K.; Agarwal, Pratima
2018-05-01
In this paper, we report a-Si:H solar cells fabricated on flexible Polyethylene terephthalate (PET) and corning glass. The a-Si:H thin films were prepared at low substrate temperature (110oC) on corning 1737 glass with different rf powers. The influence of rf power on structural and optoelectronic properties of i-a-Si:H were studied. The films deposited at rf power 50W show less broadening of <ɛ2> peak. This indicates these films are more ordered. With this optimized parameter for i-layer, solar cells fabricated on flexible PET substrate show best efficiency of 3.3% whereas on corning glass 3.82%.
Changes in Quadriceps Muscle Activity During Sustained Recreational Alpine Skiing
Kröll, Josef; Müller, Erich; Seifert, John G.; Wakeling, James M.
2011-01-01
During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs. Key points The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF. General muscular fatigue, where additional specific fibers have to be recruited due to the reduced power output of other fibers, did not occur. A modified skiing style towards a less functional and hence more uncontrolled skiing technique seems to be a key issue with respect to the influence on muscle recruitment for applied prolonged skiing session. PMID:24149299
Design and Analysis of Megawatt Class Free Electron Laser Weapons
2015-12-01
accelerating structure. The SRF linear accelerator stores RF fields within its niobium cavities. Superconductors require less average RF power than...is needed to cool the superconductor for the SRF linear accelerator. A current outstanding research topic is the RF frequency to use for the SRF
47 CFR 97.13 - Restrictions on station location.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...
47 CFR 97.13 - Restrictions on station location.
Code of Federal Regulations, 2011 CFR
2011-10-01
... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...
47 CFR 97.13 - Restrictions on station location.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...
47 CFR 97.13 - Restrictions on station location.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...
47 CFR 97.13 - Restrictions on station location.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...
Post, Richard F.
2016-02-23
A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modulation Maximum rated carrier power Class of amplifier 0.70 Plate 1 kW or less .80 Plate 2.5 kW and over .35 Low level 0.25 kW and over B .65 Low level 0.25 kW and over BC1 .35 Grid 0.25 kW and over 1 All...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the...
An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.
Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A
2016-06-01
The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works.
Maximum powers of low-loss series-shunt FET RF switches
NASA Astrophysics Data System (ADS)
Yang, Z.; Hu, X.; Yang, J.; Simin, G.; Shur, M.; Gaska, R.
2009-02-01
Low-loss high-power single pole single throw (SPST) monolithic RF switch based on AlGaN/GaN heterojunction field effect transistors (HFETs) demonstrate the insertion loss and isolation of 0.15 dB and 45.9 dB at 0.5 GHz and 0.23 dB and 34.3 dB at 2 GHz. Maximum switching powers are estimated +47 dBm or higher. Factors determining the maximum switching powers are analyzed. Design principles to obtain equally high switching powers in the ON and OFF-states are developed.
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2014 CFR
2014-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2012 CFR
2012-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2013 CFR
2013-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
RF Power Transfer, Energy Harvesting, and Power Management Strategies
NASA Astrophysics Data System (ADS)
Abouzied, Mohamed Ali Mohamed
Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes.
Investigation of the flatband voltage (V(FB)) shift of Al2O3 on N2 plasma treated Si substrate.
Kim, Hyungchul; Lee, Jaesang; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag
2013-09-01
The relationships between the physical and electrical characteristics of films treated with N2 plasma followed by forming gas annealing (FGA) were investigated. The Si substrates were treated with various radio frequency (RF) power levels under a N2 ambient. Al2O3 films were then deposited on Si substrates via remote plasma atomic-layer deposition. The plasma characteristics, such as the radical and ion density, were investigated using optical emission spectroscopy. Through X-ray photoelectron spectroscopy, the chemical-bonding configurations of the samples treated with N2 plasma and FGA were examined. The quantity of Si-N bonds increased as the RF power was increased, and Si--O--N bonds were generated after FGA. The flatband voltage (VFB) was shifted in the negative direction with increasing RF power, but the VFB values of the samples after FGA shifted in the positive direction due to the formation of Si--O--N bonds. N2 plasma treatment with various RF power levels slightly increased the leakage current due to the generation of defect sites.
Plasma core reactor simulations using RF uranium seeded argon discharges
NASA Technical Reports Server (NTRS)
Roman, W. C.
1975-01-01
An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Ely, Jay J.; Richardson, Robert E.; Hatfield, Michael O.
2000-01-01
An investigation was performed to study the potential for radio frequency (RF) power radiated from Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. This paper describes the experimental methods used for measuring RF coupling to the fuel tank and Fuel Quantity Indication System (FQIS) wiring from PED sources located in the passenger cabin. To allow comparison of voltage/current data obtained in a laboratory chamber FQIS installation to an actual aircraft FQIS installation, aircraft fuel tank RF reverberation characteristics were also measured. Results from the measurements, along with a survey of threats from typical intentional transmitting PEDs are presented. The resulting worst-case power coupled onto fuel tank FQIS wiring is derived. The same approach can be applied to measure RF coupling into various other aircraft systems.
Repetitively Pulsed High Power RF Solid-State System
NASA Astrophysics Data System (ADS)
Bowman, Chris; Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Quinley, Morgan
2017-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a low-cost, fully solid-state architecture for the generation of the RF frequencies and power levels necessary for plasma heating and diagnostic systems at validation platform experiments within the fusion science community. In Year 1 of this program, EHT has developed a solid-state RF system that combines an inductive adder, nonlinear transmission line (NLTL), and antenna into a single system that can be deployed at fusion science experiments. EHT has designed and optimized a lumped-element NLTL that will be suitable RF generation near the lower-hybrid frequency at the High Beta Tokamak (HBT) located at Columbia University. In Year 2, EHT will test this system at the Helicity Injected Torus at the University of Washington and HBT at Columbia. EHT will present results from Year 1 testing and optimization of the NLTL-based RF system. With support of DOE SBIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
RF priming of a long pulse relativistic magnetron
NASA Astrophysics Data System (ADS)
White, William Michael
Rapid startup, increased pulsewidth and mode locking of magnetrons have been demonstrated experimentally on a relativistic magnetron by radio frequency (RF) priming. Experiments utilize a -300 kV, 2-8 kA, 300-500 ns electron beam to drive a Titan 6-vane relativistic magnetron (˜100 MW output power). The RF priming source is a 100 kW pulsed magnetron operating at 1.27-1.32 GHz. Tuning stubs were utilized in the Titan structure to adjust the operating frequency of the relativistic magnetron pi-mode upward by 30%. The tuning was guided by simulation in the MAGIC 3D code and experimental cold tests including a mapping of the azimuthal electric field inside the relativistic magnetron structure. The most successful tuning geometry was that of a standard anode resonant structure, but RF priming experiments were performed on a rising-sun structure as well. The Time Frequency Analysis (TFA) program was used to directly observe the effects of RF priming on the relativistic magnetron. RF priming was successful in decreasing mode competition by suppressing the generation of the 2pi/3-mode power by 41%. RF priming experiments were also successful in increasing microwave pulsewidth by 12% and decreasing microwave output delay by 22%. These improvements were observed while operating in a priming regime not satisfying Adler's Relation. Overall, the improvements made to the performance of the relativistic magnetron were modest because of the low priming power available (50-250 kW).
Rf capacitively-coupled electrodeless light source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.
2000-01-01
An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical couplermore » and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.« less
NASA Astrophysics Data System (ADS)
Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro
The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak.
RF Bearing Estimation in Wireless Sensor Networks
2010-01-01
are the main design drivers. Techniques based on ultrasonic and infrared signal modalities have short range and require line-of-sight. Clearly, RF...generating a Doppler shifted RF signal . The small frequency change can be measured even on low cost resource constrained nodes using a radio...is already included in the power budget and RF range is superior to most other signals . Radio signal strength (RSS) based approaches are the most
High Efficiency Microwave Power Amplifier: From the Lab to Industry
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)
2001-01-01
Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.
Tang, T B; Smith, S; Flynn, B W; Stevenson, J T M; Gundlach, A M; Reekie, H M; Murray, A F; Renshaw, D; Dhillon, B; Ohtori, A; Inoue, Y; Terry, J G; Walton, A J
2008-09-01
A wireless power transfer and communication system based on near-field inductive coupling has been designed and implemented. The feasibility of using such a system to remotely control drug release from an implantable drug delivery system is addressed. The architecture of the wireless system is described and the signal attenuation over distance in both water and phosphate buffered saline is studied. Additionally, the health risk due to exposure to radio frequency (RF) radiation is examined using a biological model. The experimental results demonstrate that the system can trigger the release of drug within 5 s, and that such short exposure to RF radiation does not produce any significant (
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
Parise, M.
2018-05-18
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
NASA Astrophysics Data System (ADS)
Parise, M.
2018-05-01
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effective tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.
Prediction of the Lorentz Force Detuning and Pressure Sensitivity for a Pillbox Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
2018-04-23
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Test results for the 201.25 MHZ tetrode power amplifier at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyles, J. T.; Archuletta, S.; Davis, J. L.
2004-01-01
A new RF amplifier has been constructed for use as the intermediate power amplifier stage for the 201.25 MHz Alvarez DTL at the Los Alamos Neutron Science Center (LANSCE). It is part of a larger upgrade to replace the entire RF plant with a new generation of components. The new RF power system under development will enable increased peak power with higher duty factor. The first tank requires over 400 kW of RF power. This can be satisfied using the TH781 tetrode in a THALES cavity amplifier. The same stage will be also used to drive a TH628 Diacrode(reg. sign)more » final power amplifier for each of the three remaining DTL tanks. In this application, it will only be required to deliver approximately 150 kW of peak power. Details of the system design, layout for DTL 1, and test results will be presented. The Thales cavity amplifier and TH78I tetrode have been tested for two upcoming requirements at LANSCE. As an IPA to drive a future TH628 Diacrode(reg. sign) FPA with 120-150 kW, the amplifier provided over 16 dB power gain with 50% efficiency or better. As a stand-alone FPA to drive a 5 MeV Alvarez DTI, tank, the amplifier provided 13.5 dB power gain with 50% efficiency or better. It can also be used to drive a 200 MHz RFQ in the future. Power supplies, driver amplifier and coaxial circulators are being specified for the complete installation.« less
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Tripathi, M. M.; Chaujar, Rishu
2018-04-01
In this work, a comprehensive analog and RF performance of a novel Black Phosphorus-Junctionless-Recessed Channel (BP-JL-RC) MOSFET has been explored at 45 nm technology node (Gate length = 20 nm). The integration of black phosphorus with junctionless recessed channel MOSFET, leads to higher drain current of about 0.3 mA and excellent switching ratio (of the order of 1011) due to reduced off-current which leads to improvement in sub-threshold slope (SS) (67mV/dec). Further, RF performance metrics have also been studied with an aim to analyze high-frequency performance. The following FOMs have been evaluated: cut-off frequency (fT), maximum oscillator frequency (fMAX), stern stability factor, various power gains and parasitic capacitances at THz frequency range. Thus, in addition to the high packing density offered by RC MOSFET, the proposed design finds numerous application at THz frequency making it a promising candidate at wafer scale integration level.
Power supply with air core transformer and seperated power supplies for high dynamic range
NASA Technical Reports Server (NTRS)
Orient, Otto (Inventor); Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor)
2001-01-01
A power supply for a quadrupole mass spectrometer which operates using an RF signal. The RF signal is controllable via a feedback loop. The feedback loop is from the output, through a comparator, and compared to a digital signal. An air core transformer is used to minimize the weight. The air core transformer is driven via two out of phase sawtooth signals which drive opposite ends of the transformer.
Brain MR imaging at ultra-low radiofrequency power.
Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B
2011-05-01
To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011
Studies on nickel-tungsten oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usha, K. S.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-10-15
Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created duemore » to the addition of tungsten, respectively.« less
Sensor Network Architectures for Monitoring Underwater Pipelines
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669
Implications of a 20-Hz Booster cycle-rate for Slip-stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
2014-06-10
We examine the potential impacts to slip-stacking from a change of the Booster cycle-rate from 15- to 20-Hz. We find that changing the Booster cycle-rate to 20-Hz would greatly increase the slip-stacking bucket area, while potentially requiring greater usage of the Recycler momentum aperture and additional power dissipation in the RF cavities. In particular, the losses from RF interference can be reduced by a factor of 4-10 (depending on Booster beam longitudinal parameters). We discuss the aspect ratio and beam emittance requirements for efficient slip-stacking in both cycle-rate cases. Using a different injection scheme can eliminate the need for greatermore » momentum aperture in the Recycler.« less
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Hall, David G.; Miranda, Felix A.
2004-01-01
The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.
Aerospace Communications Technologies in Support of NASA Mission
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2016-01-01
NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.
Sensor network architectures for monitoring underwater pipelines.
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.
An agile frequency synthesizer/RF generator for the SCAMP terminal
NASA Astrophysics Data System (ADS)
Wolfson, Harry M.
1992-09-01
This report describes a combination agile synthesizer and reference frequency generator called the RF Generator, which was developed for use in the Advanced SCAMP (ASCAMP) program. The ASCAMP is a hand-carried, battery-powered, man-portable ground terminal that is being developed for EHF satellite communications. In order to successfully achieve a truly portable terminal, all of the subsystems and components in ASCAMP were designed with the following critical goals: low power, lightweight, and small size. The RF Generator is based on a hybrid design approach of direct digital and direct analog synthesis techniques that was optimized for small size, low power consumption, fast tuning, low spurious, and low phase noise. The RF Generator was conceived with the philosophy that simplicity of design would lead to a synthesizer that differentiates itself from those used in the past by its ease of fabrication and tuning. By avoiding more complex design approaches, namely, indirect analog (phase lock loops), a more easily produceable design could be achieved. An effort was made to minimize the amount of circuitry in the RF Generator, thereby making trade-offs in performance versus complexity and parts count when it was appropriate.
Experimental Study of RF Sheath Formation on a Fast Wave Antenna and Limiter in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Carter, Troy
2015-11-01
Ion cyclotron resonance heating (ICRH) will be an essential component of heating power in ITER. During ICRH, radio frequency (RF) sheaths may form both at the exciting antenna and further away, e.g. in the divertor region, and may cause wall material sputtering and decreased RF power coupling to the plasma. It is important to do detailed laboratory experiments that fully diagnose the sheaths and wave fields. This is not possible in fusion devices. A new RF system has recently been constructed for performing such studies in the LAPD plasma column (ne ~1012 -1013cm-3 , Te ~ 1 - 10 eV ,B0 ~ 400 - 2000 G , diameter ~ 60cm , length ~ 18 m) . The RF system is capable of pulsing at the 1 Hz rep. rate of the LAPD plasma and operating between 2-6 MHz (1st - 9th harmonic of fci in H) with a power output of 200 kW. First results of this system driving a single-strap fast wave antenna will be presented. Emissive and Langmuir probe measurements in the vicinity of both the antenna and a remote limiter and wave coupling measured by magnetic pickup loops will be presented.
Localized Plasma Processing of Materials Using Atmospheric-Pressure Microplasma Jets
NASA Astrophysics Data System (ADS)
Yoshiki, Hiroyuki; Ikeda, Koichi; Wakaki, Akihiro; Togashi, Seisuke; Taniguchi, Kazutake; Horiike, Yasuhiro
2003-06-01
An atmospheric-pressure microplasma jet (μ-PJ) using RF (13.56 MHz) corona discharge was generated at the tip of a stainless steel surgical needle of 0.4 mm outer diameter at a RF power of 6-14 W. The needle functions as both a powered electrode and a narrow nozzle. The μ-PJ with a gas mixture of He/SF6/O2 was applied to localized Si etching. The etched profile exhibited an isotropic shape and the etch rate had a maximum value at the total gas flow rate of about 600 sccm and the SF6 concentration of 5%. The etch rate of 170 μm/min was obtained at a RF power of 14 W.
Fiedler, Thomas M; Ladd, Mark E; Bitz, Andreas K
2017-01-01
The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B 1 + maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations. © 2016 American Association of Physicists in Medicine.
Mobile phones, mobile phone base stations and cancer: a review.
Moulder, J E; Foster, K R; Erdreich, L S; McNamee, J P
2005-03-01
There have been reports in the media and claims in the courts that radiofrequency (RF) emissions from mobile phones are a cause of cancer, and there have been numerous public objections to the siting of mobile phone base antennas because of a fear of cancer. This review summarizes the current state of evidence concerning whether the RF energy used for wireless communication might be carcinogenic. Relevant studies were identified by searching MedLine with a combination of exposure and endpoint terms. This was supplemented by a review of the over 1700 citations assembled by the Institute of Electrical and Electronics Engineers (IEEE) International Committee on Electromagnetic Safety as part of their updating of the IEEE C95.1 RF energy safety guidelines. Where there were multiple studies, preference was given to recent reports, to positive reports of effects and to attempts to confirm such positive reports. Biophysical considerations indicate that there is little theoretical basis for anticipating that RF energy would have significant biological effects at the power levels used by modern mobile phones and their base station antennas. The epidemiological evidence for a causal association between cancer and RF energy is weak and limited. Animal studies have provided no consistent evidence that exposure to RF energy at non-thermal intensities causes or promotes cancer. Extensive in vitro studies have found no consistent evidence of genotoxic potential, but in vitro studies assessing the epigenetic potential of RF energy are limited. Overall, a weight-of-evidence evaluation shows that the current evidence for a causal association between cancer and exposure to RF energy is weak and unconvincing. However, the existing epidemiology is limited and the possibility of epigenetic effects has not been thoroughly evaluated, so that additional research in those areas will be required for a more thorough assessment of the possibility of a causal connection between cancer and the RF energy from mobile telecommunications.
UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal
NASA Astrophysics Data System (ADS)
Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.
2016-05-01
This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng
2018-04-01
Tin-doped indium oxide (ITO) nanowires are successfully fabricated using a radio frequency (RF) sputtering technique with a high RF power of 250 W. The fabrication of the ITO nanowires is optimized through the study of oxygen flow rates, temperatures and RF power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target is observed and the mechanism for the difference is discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method demonstrated good conductivity (15 Ω sq-1) and a transmittance of more than 64% at a wavelength longer than 550 nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices.
NASA Astrophysics Data System (ADS)
Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie
2017-10-01
A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.
UWB dual burst transmit driver
Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA
2012-04-17
A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.
A 1D ion species model for an RF driven negative ion source
NASA Astrophysics Data System (ADS)
Turner, I.; Holmes, A. J. T.
2017-08-01
A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.
System integration of RF based negative ion experimental facility at IPR
NASA Astrophysics Data System (ADS)
Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.
2010-02-01
The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
DC currents collected by a RF biased electrode quasi-parallel to the magnetic field
NASA Astrophysics Data System (ADS)
Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.
2017-10-01
Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.
Alcidi, L; Beneforti, E; Maresca, M; Santosuosso, U; Zoppi, M
2007-01-01
To investigate the analgesic effect of low power radiofrequency electromagnetic radiation (RF) in osteoarthritis (OA) of the knee. In a randomized study on 40 patients the analgesic effect of RF was compared with the effect of transcutaneous electrical nerve stimulation (TENS). RF and TENS applications were repeated every day for a period of 5 days. The therapeutic effect was evaluated by a visual analogue scale (VAS) and by Lequesne's index: tests were performed before, immediately after and 30 days after therapy. RF therapy induced a statistically significant and long lasting decrease of VAS and of Lequesne's index; TENS induced a decrease of VAS and of Lequesne's index which was not statistically significant. A therapeutic effect of RF was therefore demonstrated on pain and disability due to knee OA. This effect was better than the effect of TENS, which is a largely used analgesic technique. Such a difference of the therapeutic effect may be due to the fact that TENS acts only on superficial tissues and nerve terminals, while RF acts increasing superficial and deep tissue temperature.
NASA Technical Reports Server (NTRS)
Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl
2000-01-01
We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.
Standard/Handbook for RF Ionization Breakdown Prevention in Spacecraft Components
2015-06-19
localized glow discharge of the plasma ( corona ) while RF power is being applied. 8.4.3 RF Performance Changes If a breakdown occurs and damages the...in spacecraft components and systems. Ionization breakdown is a high-energy radio frequency (RF) discharge that can occur when the insulating media...energy can be discharged in a small volume, releasing large amounts of heat, melting local surfaces, and generating debris, all of which will likely
Standard/Handbook for RF Ionization Breakdown Prevention in Spacecraft Components
2015-06-19
localized glow discharge of the plasma ( corona ) while RF power is being applied. 8.4.3 RF Performance Changes If a breakdown occurs and damages the part...in spacecraft components and systems. Ionization breakdown is a high-energy radio frequency (RF) discharge that can occur when the insulating media...energy can be discharged in a small volume, releasing large amounts of heat, melting local surfaces, and generating debris, all of which will likely
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.
2009-01-01
In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.
NASA Astrophysics Data System (ADS)
Li, Ningzhi; Li, Shizhe; Shen, Jun
2017-06-01
In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (<= 4 Tesla (T)) to keep the local and averaged specific absorption rate (SAR) under the safety guidelines established by the International Electrotechnical Commission (IEC) and the US Food and Drug Administration (FDA). Alternately, carboxylic/amide carbons are coupled to protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.
Low Energy Dissipation Nano Device Research
NASA Astrophysics Data System (ADS)
Yu, Jenny
2015-03-01
The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
Development and testing of a double length pets for the CLIC experimental area
NASA Astrophysics Data System (ADS)
Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.
2014-05-01
CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.
RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, T. L.; DiMonte, N.; Nassiri, A.
A new S-band Photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the guns internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results ofmore » RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning.« less
Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun
2016-03-01
Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
Chaimanonart, Nattapon; Young, Darrin J
2009-01-01
A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.
Li, Shizhe; An, Li; Yu, Shao; Araneta, Maria Ferraris; Johnson, Christopher S.; Wang, Shumin; Shen, Jun
2015-01-01
Purpose 13C magnetic resonance spectroscopy (MRS) of human brain at 7 Tesla (T) may pose patient safety issues due to high RF power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo 13C MRS of human brain at 7 T using broadband low RF power proton decoupling. Methods Carboxylic/amide 13C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. 13C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. Results At 7 T, the peak amplitude of carboxylic/amide 13C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T 13C MRS technique used decoupling power and average transmit power of less than 35 W and 3.6 W, respectively. Conclusion In vivo 13C MRS studies of human brain can be performed at 7 T well below the RF safety threshold by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. PMID:25917936
Four-Tap RF Canceller Evaluation for Indoor In-Band Full-Duplex Wireless Operation
2016-07-24
2.45 GHz with +20 dBm of total output power . This waveform and power level are representative of many handheld wireless devices that can be used for...to investigate a canceller’s performance with higher transmit power levels that are characteristic of wireless nodes that cover larger areas. Fig. 5...Four-Tap RF Canceller Evaluation for Indoor In-Band Full-Duplex Wireless Operation Kenneth E. Kolodziej and Bradley T. Perry MIT Lincoln Laboratory
ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO
NASA Technical Reports Server (NTRS)
Coutts, T. J.
1987-01-01
This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.
Variable frequency matching to a radiofrequency source immersed in vacuum
NASA Astrophysics Data System (ADS)
Charles, C.; Boswell, R. W.; Bish, A.
2013-09-01
A low-weight (0.12 kg) low-volume fixed ceramic capacitor impedance matching system is developed for frequency agile tuning of a radiofrequency (rf) Helicon plasma thruster. Three fixed groups of capacitors are directly mounted onto a two loop rf antenna with the thruster immersed in a vacuum chamber. Optimum plasma tuning at the resonance frequency is demonstrated via measurements of the load impedance, power transfer efficiency and plasma density versus driving frequency in the 12.882-14.238 MHz range. The resonance frequency with the plasma on is higher than the resonance frequency in vacuum. The minimum rf power necessary for ignition decreases when the ignition frequency is shifted downwards from the resonance frequency. This development has direct applications in space qualification and space use of rf plasma thrusters.
NASA Astrophysics Data System (ADS)
Sun, Phillip Z.; Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Xiao, Gang; Wu, Renhua
2015-03-01
Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute exchangeable protons and local properties such as pH and temperate, yet its susceptibility to field inhomogeneity limits its in vivo applications. Particularly, CEST measurement varies with RF irradiation power, the dependence of which is complex due to concomitant direct RF saturation (RF spillover) effect. Because the volume transmitters provide relatively homogeneous RF field, they have been conventionally used for CEST imaging despite of their elevated specific absorption rate (SAR) and relatively low sensitivity than surface coils. To address this limitation, we developed an efficient B1 inhomogeneity correction algorithm that enables CEST MRI using surface transceiver coils. This is built on recent work that showed the inverse CEST asymmetry analysis (CESTRind) is not susceptible to confounding RF spillover effect. We here postulated that the linear relationship between RF power level and CESTRind can be extended for correcting B1 inhomogeneity induced CEST MRI artifacts. Briefly, we prepared a tissue-like Creatine gel pH phantom and collected multiparametric MRI including relaxation, field map and CEST MRI under multiple RF power levels, using a conventional surface transceiver coil. The raw CEST images showed substantial heterogeneity due to B1 inhomogeneity, with pH contrast to noise ratio (CNR) being 8.8. In comparison, pH MRI CNR of the fieldinhomogeneity corrected CEST MRI was found to be 17.2, substantially higher than that without correction. To summarize, our study validated an efficient field inhomogeneity correction that enables sensitive CEST MRI with surface transceiver, promising for in vivo translation.
NASA Astrophysics Data System (ADS)
Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter
2017-05-01
The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.
Measurements of uranium mass confined in high density plasmas
NASA Technical Reports Server (NTRS)
Stoeffler, R. C.
1976-01-01
An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Michael; Ives, Robert Lawrence; Marsden, David
The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range ofmore » advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.« less
Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D
NASA Astrophysics Data System (ADS)
Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.
2009-01-01
A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.
Röschmann, P
1991-10-01
The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champion, Mark S; Dean, Robert A; Galambos, John D
The Proton Power Upgrade Project is underway at the Spallation Neutron Source at Oak Ridge National Labor-atory and will double the proton beam power capability from 1.4 MW to 2.8 MW to provide increased neutron intensity at the first target station and to support future operation of the second target station. This will be ac-complished by increasing the beam energy to 1.3 GeV and the beam current to 38 mA (average during the macropulse). Installation of 28 additional superconduct-ing cavities and their associated technical systems will provide for the energy increase. Increased beam loading throughout the accelerator will be accommodatedmore » primar-ily through the use of existing margin in the RF systems and the installation of 700 kW klystrons to power the new superconducting cavities. Upgrades of a few existing RF stations may also be needed. The injection and ex-traction regions of the accumulator ring will be upgraded, a ring to second target station tunnel stub will be con-structed, and a 2 MW target will be developed for the first target station. The project anticipates attainment of Criti-cal Decision 1 in 2017 to ratify the project conceptual design and cost range.« less
NASA Astrophysics Data System (ADS)
Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun
2018-03-01
Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.
Proof of principle experiments for helicon discharges in hydrogen
NASA Astrophysics Data System (ADS)
Briefi, Stefan; Fantz, Ursel
2013-09-01
In order to reduce the amount of power required for generating CW hydrogen discharges with high electron densities and a high degree of dissociation via RF coupling, the helicon concept is investigated. For this purpose a small laboratory experiment (length of the discharge vessel 40 cm, diameter 10 cm) has been built up. The RF generator has a maximum power of 600 W (frequency 13.56 MHz) and a Nagoya type III antenna is applied. As water cooling was avoided in constructing the experiment for simplicity, the induction coils can only generate a rather low magnetic field up to 14 mT. The performed investigations cover a variation of the RF power and the magnetic field in a pressure range between 0.3 and 10 Pa. Around a magnetic field of 3 mT the low field peak which is typical for helicon discharges could be observed. As the high density mode of helicon discharges has not yet been reached, a different RF generator (2 MHz, 2 KW) and water cooled induction coils will be applied in a next step in order to increase the available power and the magnetic field.
Coupling of RF antennas to large volume helicon plasma
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang
2018-04-01
Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J
2015-08-01
Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.
Booster Synchrotron RF System Upgrade for SPEAR3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sanghyun; /SLAC; Corbett, Jeff
2012-07-06
Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RFmore » systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.« less
Flexible, reconfigurable, power efficient transmitter and method
NASA Technical Reports Server (NTRS)
Bishop, James W. (Inventor); Zaki, Nazrul H. Mohd (Inventor); Newman, David Childress (Inventor); Bundick, Steven N. (Inventor)
2011-01-01
A flexible, reconfigurable, power efficient transmitter device and method is provided. In one embodiment, the method includes receiving outbound data and determining a mode of operation. When operating in a first mode the method may include modulation mapping the outbound data according a modulation scheme to provide first modulation mapped digital data, converting the first modulation mapped digital data to an analog signal that comprises an intermediate frequency (IF) analog signal, upconverting the IF analog signal to produce a first modulated radio frequency (RF) signal based on a local oscillator signal, amplifying the first RF modulated signal to produce a first RF output signal, and outputting the first RF output signal via an isolator. In a second mode of operation method may include modulation mapping the outbound data according a modulation scheme to provide second modulation mapped digital data, converting the second modulation mapped digital data to a first digital baseband signal, conditioning the first digital baseband signal to provide a first analog baseband signal, modulating one or more carriers with the first analog baseband signal to produce a second modulated RF signal based on a local oscillator signal, amplifying the second RF modulated signal to produce a second RF output signal, and outputting the second RF output signal via the isolator. The digital baseband signal may comprise an in-phase (I) digital baseband signal and a quadrature (Q) baseband signal.
Alternative RF coupling configurations for H{sup −} ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briefi, S.; Fantz, U.; AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg
2015-04-08
RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H{sup −} current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been setmore » up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.« less
Alternative RF coupling configurations for H- ion sources
NASA Astrophysics Data System (ADS)
Briefi, S.; Gutmann, P.; Fantz, U.
2015-04-01
RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H- current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.
Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster
NASA Technical Reports Server (NTRS)
Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane
2014-01-01
In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.
SCIDAC Center for simulation of wave particle interactions CompX participation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R.W.
Harnessing the energy that is released in fusion reactions would provide a safe and abundant source of power to meet the growing energy needs of the world population. The next step toward the development of fusion as a practical energy source is the construction of ITER, a device capable of producing and controlling the high performance plasma required for self-sustaining fusion reactions, or “burning” plasma. The input power required to drive the ITER plasma into the burning regime will be supplied primarily with a combination of external power from radio frequency waves in the ion cyclotron range of frequencies andmore » energetic ions from neutral beam injection sources, in addition to internally generated Ohmic heating from the induced plasma current that also serves to create the magnetic equilibrium for the discharge. The ITER project is a large multi-billion dollar international project in which the US participates. The success of the ITER project depends critically on the ability to create and maintain burning plasma conditions, it is absolutely necessary to have physics-based models that can accurately simulate the RF processes that affect the dynamical evolution of the ITER discharge. The Center for Simulation of WavePlasma Interactions (CSWPI), also known as RF-SciDAC, is a multi-institutional collaboration that has conducted ongoing research aimed at developing: (1) Coupled core-to-edge simulations that will lead to an increased understanding of parasitic losses of the applied RF power in the boundary plasma between the RF antenna and the core plasma; (2) Development of models for core interactions of RF waves with energetic electrons and ions (including fusion alpha particles and fast neutral beam ions) that include a more accurate representation of the particle dynamics in the combined equilibrium and wave fields; and (3) Development of improved algorithms that will take advantage of massively parallel computing platforms at the petascale level and beyond to achieve the needed physics, resolution, and/or statistics to address these issues. CompX provides computer codes and analysis for the calculation of the electron and ion distributions in velocity-space and plasma radius which are necessary for reliable calculations of power deposition and toroidal current drive due to combined radiofrequency and neutral beam at high injected powers. It has also contributed to ray tracing modeling of injected radiofrequency powers, and to coupling between full-wave radiofrequency wave models and the distribution function calculations. In the course of this research, the Fokker-Planck distribution function calculation was made substantially more realistic by inclusion of finite-width drift-orbit effects (FOW). FOW effects were also implemented in a calculation of the phase-space diffusion resulting from radiofrequency full-wave models. Average level of funding for CompX was approximately three man-months per year.« less
Systematic uncertainties in RF-based measurement of superconducting cavity quality factors
Holzbauer, J. P.; Pischalnikov, Yu.; Sergatskov, D. A.; ...
2016-05-10
Q 0 determinations based on RF power measurements are subject to at least three potentially large systematic effects that have not been previously appreciated. Here, instrumental factors that can systematically bias RF based measurements of Q 0 are quantified and steps that can be taken to improve the determination of Q 0 are discussed.
Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS
NASA Astrophysics Data System (ADS)
Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo
2014-01-01
The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.
Remote shock sensing and notification system
Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN
2010-11-02
A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.
Remote shock sensing and notification system
Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.
2008-11-11
A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.
NASA Technical Reports Server (NTRS)
Knapp, C. F.; Evans, J. M.; Grande, K. J.; Murphy, C. D.; Patwardhan, A. R.
1992-01-01
Changes in autonomic outflow to peripheral organs during the development of bedrest induced orthostatic intolerance have not been determined. Recent studies have indicated that spectral analysis provides an indirect assessment of these changes. Eight male subjects were studied before and after 22 hours of 6 degree head down bedrest plus Lasix (40 mg. P.P.). Cardiovascular spectra (using an autoregressive technique) were determined for heart rate (HR, ECG), arterial pressure (AP, Finapres), radial artery flow (RF, Hokansen) and respiration rate (RR, BoMed). Spectra were obtained from 2.5 minute segments during control, lower body negative pressure (minus 10, 20, 30, 40, 50 mmHg) and recovery. Bedrest increased HR spectra power in the low frequency (.001 to .041 Hz) range, increased RF power in the low and mid (.04 to .18 Hz) range and increased AP power in the high (.18 to .50 Hz) frequency range. Increasing levels of lower body negative pressure decreased HR power and increased RF power in the high frequency range and decreased AP power in the low frequency range. Since spectral power of HR in the high frequency range has been shown to indicate parasympathetically mediated regulation and power in the low and mid frequency ranges indicates a sympathetic / parasympathetic mixture, then both bedrest and lower body negative pressure appeared to shift sympathetic / parasympathetic balance toward sympathetic regulation of HR. The interpretation of the spectral content of AP and RF with respect to their autonomic origins remains unclear.
Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Ngo, Duc H.
2003-01-01
This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.
Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Wagatsuma, Kazuaki
2017-07-01
This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Multi-Physics Analysis of the Fermilab Booster RF Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, M.; Reid, J.; Yakovlev, V.
After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetitio n rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis invest igating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.
Multi-Physics Analysis of the Fermilab Booster RF Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, M.; Reid, J.; Yakovlev, V.
After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.
Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Dotson; M. Drury; R. May
X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuablemore » for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.« less
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Nakano, Yudai; Ando, Akira
2017-07-01
A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.
Deposition of silicon nitride from SiCl4 and NH3 in a low pressure RF plasma
NASA Technical Reports Server (NTRS)
Ron, Y.; Raveh, A.; Carmi, U.; Inspektor, A.; Avni, R.
1983-01-01
Silicon nitride coatings were deposited in a low-pressure (1-10 Torr) RF plasma from SiCl4 and NH3 in the presence of argon onto stainless martensitic steel grounded and floating substrates at 300 C and 440 C respectively. The heating of the substrates depends mainly on the position and the induced RF power. The coatings were identified as silicon nitride by X-ray investigation and were found to contain chlorine by energy-dispersive analysis of X-rays. The growth rate, the microhardness and the chlorine concentration of the coatings were determined as a function of the total gas pressure, the RF power input and the NH3-to-SiCl4 ratio. It was observed that the coatings on the floating substrates have higher deposition rates and are of superior quality.
Measurements and modeling of radio frequency field structures in a helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. A.; Chen, Guangye; Arefiev, A. V.
2011-01-01
Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less
Electron series resonance in a magnetized 13.56 MHz symmetric capacitive coupled discharge
NASA Astrophysics Data System (ADS)
Joshi, J. K.; Binwal, S.; Karkari, S. K.; Kumar, Sunil
2018-03-01
A 13.56 MHz capacitive coupled radio-frequency (RF) argon discharge under transverse magnetic field has been investigated. The discharge is operated in a push-pull mode using a 1:1 isolation transformer with its centre tap grounded to a RF generator. The power delivered to the plasma has been calculated from phase-calibrated RF current/voltage waveforms measured on the secondary side of the isolation transformer. An equivalent electrical circuit of the discharge has been described to determine the net plasma impedance. It is found that in the presence of magnetic field, the discharge impedance exhibits a series resonance as the RF power level is increased gradually. However, in the un-magnetized case, the discharge remains entirely capacitive. A qualitative discussion has been given to explain the role of external magnetic field in achieving the series resonance.
NASA Astrophysics Data System (ADS)
Butkowski, Łukasz; Vogel, Vladimir; Schlarb, Holger; Szabatin, Jerzy
2017-06-01
The driving engine of the superconducting accelerator of the European X-ray free electron laser (XFEL) is a set of 27 radio frequency (RF) stations. Each of the underground RF stations consists of a multibeam horizontal klystron that can provide up to 10 MW of power at 1.3 GHz. Klystrons are sensitive devices with a limited lifetime and a high mean time between failures. In real operation, the lifetime of the tube can be significantly reduced because of failures. The special fast protection klystron lifetime management (KLM) system has been developed to minimize the influence of service conditions on the lifetime of klystrons. The main task of this system is to detect all events which can destroy the tube as quickly as possible, and switch off the driving RF signal or the high voltage. Detection of events is based on a comparison of the value of the real signal obtained at the system output with the value estimated on the basis of a high-power RF amplifier model and input signals. The KLM system has been realized in field-programmable gate array (FPGA) and implemented in XFEL. Implementation is based on the standard low-level RF micro telecommunications computing architecture (MTCA.4 or xTCA). The main part of the paper focuses on an estimation of the klystron model and the implementation of KLM in FPGA. The results of the performance of the KLM system will also be presented.
Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi
2017-10-01
The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.
VLF Radio Field Strength Measurement of power line carrier system in San Diego, California
NASA Technical Reports Server (NTRS)
Mertel, H. K.
1981-01-01
The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.
Measurement of plasma sheath overlap above a trench
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Steinberger, Thomas E.
2017-06-01
The plasma sheath above a rectangular trench has been experimentally characterized as the trench width is varied in a radio frequency (rf) plasma discharge for two different rf powers giving two different sets of plasma parameters. Measurements were made using the positions and all six normal mode frequencies of two dust particles floating just inside the sheath edge above the center of the trench. We find that sheath overlap occurs when the trench width ≲ 3 s 0 for a trench depth ≈0.7s0, where s0 is the planar sheath width. The electric field gradient inside the sheath edge increases with rf power.
AZO nanorods thin films by sputtering method
NASA Astrophysics Data System (ADS)
Rosli, A. B.; Shariffudin, S. S.; Awang, Z.; Herman, S. H.
2018-05-01
Al-doped zinc oxide (AZO) nanorods thin film were deposited on Au catalyst using RF sputtering at 300 °C. The 15 nm thickness Au catalyst were deposited on glass substrates by sputtering method followed by annealing for 15 min at 500 °C to form Au nanostructures on the glass substrate. The AZO thin films were then deposited on Au catalyst at different RF power ranging from 50 - 200 W. The morphology of AZO was characterized using Field Emission Scanning Electron Microscopy while X-ray Diffraction was used to examine crystallinity of AZO thin films. From this work, the AZO nanorods was found grow at 200 W RF power.
Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.
Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V
2016-10-01
The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental Study of RF Energy Transfer System in Indoor Environment
NASA Astrophysics Data System (ADS)
Adami, S.-E.; Proynov, P. P.; Stark, B. H.; Hilton, G. S.; Craddock, I. J.
2014-11-01
This paper presents a multi-transmitter, 2.43 GHz Radio-Frequency (RF) wireless power transfer (WPT) system for powering on-body devices. It is shown that under typical indoor conditions, the received power range spans several orders of magnitude from microwatts to milliwatts. A body-worn dual-polarised rectenna (rectifying antenna) is presented, designed for situations where the dominant polarization is unpredictable, as is the case for the on-body sensors. Power management circuitry is demonstrated that optimally loads the rectenna even under highly intermittent conditions, and boosts the voltage to charge an on-board storage capacitor.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.
2008-01-01
Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, R. J.; Ahn, J.W.; Bortolon, A.
The twelve-strap high-harmonic fast-wave (HHFW) antenna on NSTX has exhibited a high-voltage standoff around 25 kV during previous experimental campaigns; this standoff needs to be improved for increased power coupling. During the recent NSTX-U upgrade period, a test-stand was set up with two antenna straps along with Faraday screens for testing purposes. Using a diagnostic suite consisting of a fast camera, a residual gas analyzer, a pressure gage, high-voltage probes, and an infrared camera, several interesting discoveries were made, leading to possible improvements of the antenna RF voltage operation level. First, arcing was observed outside the Faraday shields towards themore » low-voltage ("grounded") end of the straps (faraday shield box ends); this arcing was successfully eliminated by installing an additional grounding point between the Faraday shield box and the vessel wall. Second, considerable outgassing was observed during the RF pulse and the amount of outgassing was found to decrease with increasing RF power, possibly indicative of multipacting. Finally, infrared camera measurements of heating on the Faraday shield assembly suggest that the return currents on the Faraday shield box are highly localized at the box sides and possibly account for the pressure increase observed. Computations of these RF currents using Microwave Studio show qualitative agreement with the heated regions. New grounding points between the antenna box and the vessel have been implemented in NSTX-U, where future tests will be done to determine if the high-voltage standoff has improved. Further antenna improvements will be sought through future experiments on the test stand.« less
NASA Astrophysics Data System (ADS)
Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.
2016-11-01
A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.
Estimating radiofrequency power deposition in body NMR imaging.
Bottomley, P A; Redington, R W; Edelstein, W A; Schenck, J F
1985-08-01
Simple theoretical estimates of the average, maximum, and spatial variation of the radiofrequency power deposition (specific absorption rate) during hydrogen nuclear magnetic resonance imaging are deduced for homogeneous spheres and for cylinders of biological tissue with a uniformly penetrating linear rf field directed axially and transverse to the cylindrical axis. These are all simple scalar multiples of the expression for the cylinder in an axial field published earlier (Med. Phys. 8, 510 (1981]. Exact solutions for the power deposition in the cylinder with axial (Phys. Med. Biol. 23, 630 (1978] and transversely directed rf field are also presented, and the spatial variation of power deposition in head and body models is examined. In the exact models, the specific absorption rates decrease rapidly and monotonically with decreasing radius despite local increases in rf field amplitude. Conversion factors are provided for calculating the power deposited by Gaussian and sinc-modulated rf pulses used for slice selection in NMR imaging, relative to rectangular profiled pulses. Theoretical estimates are compared with direct measurements of the total power deposited in the bodies of nine adult males by a 63-MHz body-imaging system with transversely directed field, taking account of cable and NMR coil losses. The results for the average power deposition agree within about 20% for the exact model of the cylinder with axial field, when applied to the exposed torso volume enclosed by the rf coil. The average values predicted by the simple spherical and cylindrical models with axial fields, the exact cylindrical model with transverse field, and the simple truncated cylinder model with transverse field were about two to three times that measured, while the simple model consisting of an infinitely long cylinder with transverse field gave results about six times that measured. The surface power deposition measured by observing the incremental power as a function of external torso radius was comparable to the average value. This is consistent with the presence of a variable thickness peripheral adipose layer which does not substantially increase surface power deposition with increasing torso radius. The absence of highly localized intensity artifacts in 63-MHz body images does not suggest anomalously intense power deposition at localized internal sites, although peak power is difficult to measure.
An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander
The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of themore » different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.« less
Micro-fabricated DC comparison calorimeter for RF power measurement.
Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel
2014-10-27
Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10⁻³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0−1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0−2 GHz and less than −16 dB at 2−4 GHz.
NASA Astrophysics Data System (ADS)
Janik, Dieter; Inoue, T.; Michaud, A.
2006-01-01
This report summarizes the results and the measuring methods of an international key comparison between twelve national metrology institutes (NMIs) and is concerning the calibration factor of RF power sensors in the coaxial 3.5 mm line for frequencies up to 26 GHz. Two RF power travelling standards fitted with male PC 3.5 mm connectors were measured at seven frequencies. The following NMIs participated: NMIJ (Japan), NRC (Canada), NIST (USA), METAS (Switzerland), CSIR-NML (South Africa), NMIA (Australia), NPL (UK), SiQ (Slovenia), IEN (Italy), VNIIFTRI (Russian Federation), SPRING (Singapore) and PTB (Germany), as the pilot laboratory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
NASA Astrophysics Data System (ADS)
Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.
2018-03-01
Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.
NASA Astrophysics Data System (ADS)
Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.
2000-08-01
Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.
NASA Astrophysics Data System (ADS)
Park, M. G.; Choi, W. S.; Hong, B.; Kim, Y. T.; Yoon, D. H.
2002-05-01
In this article, we investigated the dependence of optical and electrical properties of hydrogenated amorphous silicon carbide (a-SiC:H) films on annealing temperature (Ta) and radio frequency (rf) power. The substrate temperature (Ts) was 250 °C, the rf power was varied from 30 to 400 W, and the range of Ta was from 400 to 600 °C. The a-SiC:H films were deposited by using the plasma enhanced chemical vapor deposition system on Corning 7059 glasses and p-type Si (100) wafers with a SiH4+CH4 gas mixture. The experimental results have shown that the optical bandgap energy (Eg) of the a-SiC:H thin films changed little on the annealing temperature while Eg increased with the rf power. The Raman spectrum of the thin films annealed at high temperatures showed that graphitization of carbon clusters and microcrystalline silicon occurs. The current-voltage characteristics have shown good electrical properties in relation to the annealed films.
Update on developments at SNIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacks, J., E-mail: jamie.zacks@ccfe.ac.uk; Turner, I.; Day, I.
The Small Negative Ion Facility (SNIF) at CCFE has been undergoing continuous development and enhancement to both improve operational reliability and increase diagnostic capability. SNIF uses a CW 13.56MHz, 5kW RF driven volume source with a 30kV triode accelerator. Improvement and characterisation work includes: Installation of a new “L” type RF matching unit, used to calculate the load on the RF generator. Use of the electron suppressing biased insert as a Langmuir probe under different beam extraction conditions. Measurement of the hydrogen Fulcher molecular spectrum, used to calculate gas temperature in the source. Beam optimisation through parameter scans, using coppermore » target plate and visible cameras, with results compared with AXCEL-INP to provide beam current estimate. Modelling of the beam power density profile on the target plate using ANSYS to estimate beam power and provide another estimate of beam current. This work is described, and has allowed an estimation of the extracted beam current of approximately 6mA (4mA/cm2) at 3.5kW RF power and a source pressure of 0.6Pa.« less
Suppression of multipacting in high power RF couplers operating with superconducting cavities
NASA Astrophysics Data System (ADS)
Ostroumov, P. N.; Kazakov, S.; Morris, D.; Larter, T.; Plastun, A. S.; Popielarski, J.; Wei, J.; Xu, T.
2017-06-01
Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.
NASA Astrophysics Data System (ADS)
Kim, Hoe Jun; Jeon, Min Hwan; Mishra, Anurag Kumar; Kim, In Jun; Sin, Tae Ho; Yeom, Geun Young
2015-01-01
A SiO2 layer masked with an amorphous carbon layer (ACL) has been etched in an Ar/C4F8 gas mixture with dual frequency capacitively coupled plasmas under variable frequency (13.56-60 MHz)/pulsed rf source power and 2 MHz continuous wave (CW) rf bias power, the effects of the frequency and pulsing of the source rf power on the SiO2 etch characteristics were investigated. By pulsing the rf power, an increased SiO2 etch selectivity was observed with decreasing SiO2 etch rate. However, when the rf power frequency was increased, not only a higher SiO2 etch rate but also higher SiO2 etch selectivity was observed for both CW and pulse modes. A higher CF2/F ratio and lower electron temperature were observed for both a higher source frequency mode and a pulsed plasma mode. Therefore, when the C 1s binding states of the etched SiO2 surfaces were investigated using X-ray photoelectron spectroscopy (XPS), the increase of C-Fx bonding on the SiO2 surface was observed for a higher source frequency operation similar to a pulsed plasma condition indicating the increase of SiO2 etch selectivity over the ACL. The increase of the SiO2 etch rate with increasing etch selectivity for the higher source frequency operation appears to be related to the increase of the total plasma density with increasing CF2/F ratio in the plasma. The SiO2 etch profile was also improved not only by using the pulsed plasma but also by increasing the source frequency.
The RF-powered surface wave sensor oscillator--a successful alternative to passive wireless sensing.
Avramov, Ivan D
2004-09-01
A novel, passive wireless surface acoustic wave (SAW) sensor providing a highly coherent measurand proportional frequency, frequency modulated (FM) with identification (ID) data and immune to interference with multiple-path signals is described. The sensor is appropriate for bandwidth-limited applications requiring high-frequency accuracy. It comprises a low-power oscillator, stabilized with the sensing SAW resonator and powered by the rectified radio frequency (RF) power of the interrogating signal received by an antenna on the sensor part. A few hundred microwatts of direct current (DC) power are enough to power the sensor oscillator and ID modulation circuit and achieve stable operation at 1.0 and 2.49 GHz. Reliable sensor interrogation was achieved over a distance of 0.45 m from a SAW-based interrogation unit providing 50 mW of continuous RF power at 915 MHz. The -30 to -35 dBm of returned sensor power was enough to receive the sensor signal over a long distance and through several walls with a simple superheterodyne FM receiver converting the sensor signal to a low measurand proportional intermediate frequency and retrieving the ID data through FM detection. Different sensor implementations, including continuous and pulsed power versions and the possibility of transmitting data from several measurands with a single sensor, are discussed.
Zhang, Jinjin; Idiyatullin, Djaudat; Corum, Curtis A.; Kobayashi, Naoharu; Garwood, Michael
2017-01-01
Purpose Methods designed to image fast-relaxing spins, such as sweep imaging with Fourier transformation (SWIFT), often utilize high excitation bandwidth and duty cycle, and in some applications the optimal flip angle cannot be used without exceeding safe specific absorption rate (SAR) levels. The aim is to reduce SAR and increase the flexibility of SWIFT by applying time-varying gradient-modulation (GM). The modified sequence is called GM-SWIFT. Theory and Methods The method known as gradient-modulated offset independent adiabaticity was used to modulate the radiofrequency (RF) pulse and gradients. An expanded correlation algorithm was developed for GM-SWIFT to correct the phase and scale effects. Simulations and phantom and in vivo human experiments were performed to verify the correlation algorithm and to evaluate imaging performance. Results GM-SWIFT reduces SAR, RF amplitude, and acquisition time by up to 90%, 70%, and 45%, respectively, while maintaining image quality. The choice of GM parameter influences the lower limit of short T2* sensitivity, which can be exploited to suppress unwanted image haze from unresolvable ultrashort T2* signals originating from plastic materials in the coil housing and fixatives. Conclusions GM-SWIFT reduces peak and total RF power requirements and provides additional flexibility for optimizing SAR, RF amplitude, scan time, and image quality. PMID:25800547
Electron beam gun with kinematic coupling for high power RF vacuum devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borchard, Philipp
An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composedmore » of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.« less
NASA Astrophysics Data System (ADS)
Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya
2011-03-01
For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-21
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-01
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO
NASA Astrophysics Data System (ADS)
Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho
2015-06-01
Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.
Clasen, Stephan; Schmidt, Diethard; Boss, Andreas; Dietz, Klaus; Kröber, Stefan M; Claussen, Claus D; Pereira, Philippe L
2006-03-01
To evaluate the size and geometry of thermally induced coagulation by using multipolar radiofrequency (RF) ablation and to determine a mathematic model to predict coagulation volume. Multipolar RF ablations (n = 80) were performed in ex vivo bovine livers by using three internally cooled bipolar applicators with two electrodes on the same shaft. Applicators were placed in a triangular array (spacing, 2-5 cm) and were activated in multipolar mode (power output, 75-225 W). The size and geometry of the coagulation zone, together with ablation time, were assessed. Mathematic functions were fitted, and the goodness of fit was assessed by using r(2). Coagulation volume, short-axis diameter, and ablation time were dependent on power output and applicator distance. The maximum zone of coagulation (volume, 324 cm(3); short-axis diameter, 8.4 cm; ablation time, 193 min) was induced with a power output of 75 W at an applicator distance of 5 cm. Coagulation volume and ablation time decreased as power output increased. Power outputs of 100-125 W at applicator distances of 2-4 cm led to a reasonable compromise between coagulation volume and ablation time. At 2 cm (100 W), coagulation volume, short-axis diameter, and ablation time were 66 cm(3), 4.5 cm, and 19 min, respectively; at 3 cm (100 W), 90 cm(3), 5.2 cm, and 22 min, respectively; at 4 cm (100 W), 132 cm(3), 6.1 cm, and 27 min, respectively; at 2 cm (125 W), 56 cm(3), 4.2 cm, and 9 min, respectively; at 3 cm (125 W), 73 cm(3), 4.9 cm, and 12 min, respectively; and at 4 cm (125 W), 103 cm(3), 5.5 cm, and 16 min, respectively. At applicator distances of 4 cm (>125 W) and 5 cm (>100 W), the zones of coagulation were not confluent. Coagulation volume (r(2) = 0.80) and RF ablation time (r(2) = 0.93) were determined by using the mathematic model. Multipolar RF ablation with three bipolar applicators may produce large volumes of confluent coagulation ex vivo. A compromise is necessary between prolonged RF ablations at lower power outputs, which produce larger volumes of coagulation, and faster RF ablations at higher power outputs, which produce smaller volumes of coagulation. Copyright RSNA, 2006.
High Current Density Scandate Cathodes for Future Vacuum Electronics Applications
2008-05-30
of Technology HFSS Ansoft Corporation’s High Frequency Structure Simulator TWT Traveling Wave Tube - device for generating high levels of RF power ...cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a tungsten matrix impregnated with a mixture of barium oxide...electron beam with the largest possible diameter, consistent with high gain, bandwidth, and efficiency at W- Band . The research concentrated on photonic
REVIEW OF IMPROVEMENTS IN RADIO FREQUENCY PHOTONICS
2017-09-01
control boards keep the MZM biased at quadrature. A couple of methods exist for bias control: optical power monitoring or second harmonic power... bias , referred to as low- biasing . The increased RF gain for operating at the low bias point comes from the improved optical gain of the sidebands...Figure 3: Optical Gain for an MZM at Quadrature and Low Bias Operation ............................... 3 Figure 4: RF Gain for an MZM at Different
Development of a Self Powered Vehicle Detector
1978-10-01
Low Power RFTelemetry Link, Audio Tone kncoder/Decoder, 9mn’dlrectional Microstrip Antenna, RF Oscillator , RF Transmitter, Battery/ Solar Cell Tests...tuned Colpitts oscillator using a fundamental mode crystal, a reactance modulator (varactor diode), and a collector tank circuit tuned to the second...papers discussing this type of VCXO. The basic Colpitts oscillator equivalent circuit is shown in Figure 29 having a collector tank tuned to the 2nd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcazar, Mario D.; Yonehara, Katsuya; Moretti, Alfred
Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of themore » Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.« less
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2015-01-01
As it has done in the past, NASA is currently engaged in furthering the frontiers of space and planetary exploration. The effectiveness in gathering the desired science data in the amount and quality required to perform this pioneering work relies heavily on the communications capabilities of the spacecraft and space platforms being considered to enable future missions. Accordingly, the continuous improvement and development of radiofrequency and optical communications systems are fundamental to prevent communications to become the limiting factor for space explorations. This presentation will discuss some of the research and technology development efforts currently underway at the NASA Glenn Research Center in the radio frequency (RF) and Optical Communications. Examples of work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, thin films ferroelectric-based tunable components, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.
Wang, D.; Antipov, S.; Jing, C.; ...
2016-02-05
Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less
An RF amplifier for ICRF studies in the LAPD
NASA Astrophysics Data System (ADS)
Martin, M. J.; Pribyl, P.; Gekelman, W.; Lucky, Z.
2015-12-01
An RF amplifier system was designed and is under construction at the UCLA Basic Plasma Science Facility. The system is designed to output 200 kW peak RMS power at 1% duty cycle with a 1 Hz rep rate at frequencies of 2-6 MHz. This paper describes the RF amplifier system with preliminary benchmarks. Current design challenges and future work are discussed.
Q-switched slab RF discharge CO laser
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kochetkov, Yu V.; Kozlov, A. Yu; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemtsov, D. S.
2017-05-01
A compact repetitively pulsed cryogenically cooled slab RF discharge CO laser with double path V-type laser resonator equipped with external Q-switching system based on rotating mirror was developed and studied. The laser produced mid-IR (λ ~ 5-7 µm) radiation pulses of ~1 ÷ 2 µs duration (FWHM), peak power up to ~3 kW, and pulse repetition rate up to 130 Hz. Averaged output laser power reached 0.5 W, the laser spectrum consisted of ~80 laser lines with individual peak power up to 80 W.
Miniature Electron Sources for Tomorrow’s Vacuum THz Devices (MiPRI)
2006-07-01
Microwaves, Proceedings of the Fourth Workshop on High Power RF, 22 V. L. Bratman, N. S . Ginzburg, N. F. Kovalev, G. S . Nusinovich, and M. edited by R. M...3Po Kalynov, N. G. Kolganov, V. N. Manuilov, F. S . Rusin, S . V. Samsonov, and A. V. Savilov, in High Energy Density and High Power RF: 7th When this...showed that this will enable the design of future THz sources operating with relatively high efficiency at high power levels. 15. SUBJECT TERMS THz
Electron Heating and Quasiparticle Tunnelling in Superconducting Charge Qubits
NASA Technical Reports Server (NTRS)
Shaw, M. D.; Bueno, J.; Delsing, P.; Echternach, P. M.
2008-01-01
We have directly measured non-equilibrium quasiparticle tunnelling in the time domain as a function of temperature and RF carrier power for a pair of charge qubits based on the single Cooper-pair box, where the readout is performed with a multiplexed quantum capacitance technique. We have extracted an effective electron temperature for each applied RF power, using the data taken at the lowest power as a reference curve. This data has been fit to a standard T? electron heating model, with a reasonable correspondence with established material parameters.
RF performance of GaAs pHEMT switches with various upper/lower δ-doped ratio designs
NASA Astrophysics Data System (ADS)
Chiu, Hsien-Chin; Fu, Jeffrey S.; Chen, Chung-Wen
2009-02-01
AlGaAs/InGaAs pseudomorphic high-electron-mobility transistor (pHEMT) single-pole-single-throw (SPST) switches with various upper/lower δ-doped ratio designs were fabricated and investigated for the first time. Both off-state capacitance and the specific on-resistance ( Ron) of pHEMT are dominated factors and showed characteristics of sensitive to upper/lower δ-doped ratio for RF switch applications. By adopting the series-shunt architecture, upper/lower ratio of 3:1 switch achieved the lowest insertion loss compared to 4:1 design owing to the device shunt to ground (M2) of 4:1 design exhibited a worse fundamental signal isolation especially at high power level. As to the isolation under same architecture, however, due to the lowest Ron can be obtained, the 4:1 design provided better isolation performance. In addition, the M2 also dominated the second and third harmonics suppression and meanwhile, the lowest Ron of 4:1 design was found to be beneficial to the reduction of the harmonics power transmitted to the output terminal.
NASA Astrophysics Data System (ADS)
Swenson, Donald A.
A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.
An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments
Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...
2015-09-18
Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less
Favazza, Christopher P; Edmonson, Heidi A; Ma, Chi; Shu, Yunhong; Felmlee, Joel P; Watson, Robert E; Gorny, Krzysztof R
2017-11-01
To assess risks of RF-heating of a vagus nerve stimulator (VNS) during 1.5 T prostate MRI using body coil transmit and to compare these risks with those associated with MRI head exams using a transmit/receive head coil. Spatial distributions of radio-frequency (RF) B1 fields generated by transmit/receive (T/R) body and head coils were empirically assessed along the long axis of a 1.5 T MRI scanner bore. Measurements were obtained along the center axis of the scanner and laterally offset by 15 cm (body coil) and 7 cm (head coil). RF-field measurements were supplemented with direct measurements of RF-heating of 15 cm long copper wires affixed to and submerged in the "neck" region of the gelled saline-filled (sodium chloride and polyacrylic acid) "head-and-torso" phantom. Temperature elevations at the lead tips were measured using fiber-optic thermometers with the phantom positioned at systematically increased distances from the scanner isocenter. B1 field measurements demonstrated greater than 10 dB reduction in RF power at distances beyond 28 cm and 24 cm from isocenter for body and head coil, respectively. Moreover, RF power from body coil transmit at distances greater than 32 cm from isocenter was found to be lower than from the RF power from head coil transmit measured at locations adjacent to the coil array at its opening. Correspondingly, maximum temperature elevations at the tips of the copper wires decreased with increasing distance from isocenter - from 7.4°C at 0 cm to no appreciable heating at locations beyond 40 cm. For the particular scanner model evaluated in this study, positioning an implanted VNS farther than 32 cm from isocenter (configuration achievable for prostate exams) can reduce risks of RF-heating resulting from the body coil transmit to those associated with using a T/R head coil. © 2017 American Association of Physicists in Medicine.
Wireless Medical Devices for MRI-Guided Interventions
NASA Astrophysics Data System (ADS)
Venkateswaran, Madhav
Wireless techniques can play an important role in next-generation, image-guided surgical techniques with integration strategies being the key. We present our investigations on three wireless applications. First, we validate a position and orientation independent method to noninvasively monitor wireless power delivery using current perturbation measurements of switched load modulation of the RF carrier. This is important for safe and efficient powering without using bulky batteries or invasive cables. Use of MRI transmit RF pulses for simultaneous powering is investigated in the second part. We develop system models for the MRI transmit chain, wireless powering circuits and a typical load. Detailed analysis and validation of nonlinear and cascaded modeling strategies are performed, useful for decoupled optimization of the harvester coil and RF-DC converter. MRI pulse sequences are investigated for suitability for simultaneous powering. Simulations indicate that a 1.8V, 2 mA load can be powered with a 100% duty cycle using a 30° fGRE sequence, despite the RF duty cycle being 44 mW for a 30° flip angle, consistent with model predictions. Investigations on imaging artifacts indicates that distortion is mostly restricted to within the physical span of the harvester coil in the imaging volume, with the homogeneous B1+ transmit field providing positioning flexibility to minimize this for simultaneous powering. The models are potentially valuable in designing wireless powering solutions for implantable devices with simultaneous real-time imaging in MRI-guided surgical suites. Finally in the last section, we model endovascular MRI coil coupling during RF transmit. FEM models for a series-resonant multimode coil and quadrature birdcage coil fields are developed and computationally efficient, circuit and full-wave simulations are used to model inductive coupling. The Bloch Siegert B1 mapping sequence is used for validating at 24, 28 and 34 microT background excitation. Quantitative performance metrics are successfully predicted and the role of simulation in geometric optimization is demonstrated. In a pig study, we demonstrate navigation of a catheter, with tip-tracking and high-resolution intravascular imaging, through the vasculature into the heart, followed by contextual visualization. A potentially significant application is in MRI-guided cardiac ablation procedures.
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.
Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen
2010-02-01
An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.
NASA Astrophysics Data System (ADS)
Geiler, Michael
Yittrium Iron Garnet Y3Fe6O12 and Lithium ferrite LiFe5O8 mono and poly crystals were investigated for their spinwave linewidth ΔHk, ferromagnetic resonance linewidth ΔH and complex magnetic losses μ’ and μ’’ at L and S bands. Conventional methods of Spinwave linewidth typically require very high power microwave sources and associated high power components. Therefore, we developed a Dielectric Resonator (DR) based test method that allows for measurement of ΔHk using low power, common microwave laboratory equipment, while providing additional capability to measure the other relevant magnetic material characteristics. The samples used in this research were 0.030” diameter, abrasive milled spheres provided by Pacific Ceramics Inc, and Ferrisphere Inc. and included a variety of standard off-the-shelf material offerings. The saturation magnetization Ms of the samples ranged from 75 Gauss to 3700 Gauss. The ΔH and ΔHk of the samples were in the ranges of 0.5 to 200 Oersteds, and 0.5 to 30 Oersteds, respectively. Practical frequencies of operation for this system are 1 GHz to 20 GHz with less than 20W required RF power. Operation below 1 GHz and up to 40 GHz is possible. Reduction of intrinsic Ms in YIG in achieved by doping with Gadolinium and/or Aluminum. These additions were found to affect the microwave properties of the materials as well. Dopants like Cobalt, Manganese and Holmium do not effect the saturation magnetization but they do alter the high power microwave properties of the material similarly to Gd and Al. Several DRs were designed and modeled using Ansys HFSS electromagnetic finite element solver. We designed experiments that allow the measurement of all relevant microwave properties in one convenient test setup. This includes simultaneous control of multiple variables including RF field, frequency and power, and DC field strength.
Investigations of DC power supplies with optoelectronic transducers and RF energy converters
NASA Astrophysics Data System (ADS)
Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.
2016-04-01
Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.
Ballweg, Verena; Eibofner, Frank; Graf, Hansjorg
2011-10-01
State of the art to access radiofrequency (RF) heating near implants is computer modeling of the devices and solving Maxwell's equations for the specific setup. For a set of input parameters, a fixed result is obtained. This work presents a theoretical approach in the alternating current (ac) limit, which can potentially render closed formulas for the basic behavior of tissue heating near metallic structures. Dedicated experiments were performed to support the theory. For the ac calculations, the implant was modeled as an RLC parallel circuit, with L being the secondary of a transformer and the RF transmission coil being its primary. Parameters influencing coupling, power matching, and specific absorption rate (SAR) were determined and formula relations were established. Experiments on a copper ring with a radial gap as capacitor for inductive coupling (at 1.5 T) and on needles for capacitive coupling (at 3 T) were carried out. The temperature rise in the embedding dielectric was observed as a function of its specific resistance using an infrared (IR) camera. Closed formulas containing the parameters of the setup were obtained for the frequency dependence of the transmitted power at fixed load resistance, for the calculation of the resistance for optimum power transfer, and for the calculation of the transmitted power in dependence of the load resistance. Good qualitative agreement was found between the course of the experimentally obtained heating curves and the theoretically determined power curves. Power matching revealed as critical parameter especially if the sample was resonant close to the Larmor frequency. The presented ac approach to RF heating near an implant, which mimics specific values for R, L, and C, allows for closed formulas to estimate the potential of RF energy transfer. A first reference point for worst-case determination in MR testing procedures can be obtained. Numerical approaches, necessary to determine spatially resolved heating maps, can be supported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr
2016-03-25
This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less
DAWN Mission Bus and Waveguide Venting Analysis Review
NASA Technical Reports Server (NTRS)
Cragg, Clinton H.; Kichak, Robert A.; Sutter, James K.; Holder, Donald; Jeng, Frank; Ruitberg, Arthur; Sank, Victor
2007-01-01
A concern was raised regarding the time after launch when the DAWN Mission Communications Subsystem, which contains a 100 Watt X-Band Traveling Wave Tube Amplifier (TWTA) with a high voltage ((approximately 7 Kilo Volt (KV)) Electronic Power Converter (EPC), will be powered on for the first post-launch downlink. This activation is planned to be approximately one hour after launch. Orbital Sciences (the DAWN Mission spacecraft contractor) typically requires a 24-hour wait period prior to high voltage initiation for Earth-orbiting Science and GEO spacecraft. The concern relates to the issue of corona and/or radio frequency (RF) breakdown of the TWTA ((high voltage direct current (DC) and RF)), and of the microwave components (high voltage RF) in the presence of partial atmospheric pressures or outgassing constituents. In particular, generally the diplexer and circulator are susceptible to RF breakdown in the corona region due to the presence of small physical gaps (( 2.5 millimeter (mm)) between conductors that carry an RF voltage. The NESC concurred the DAWN Mission communication system is safe for activation.
Fabris, Martina; De Vita, Salvatore; Blasone, Nadia; Visentini, Daniela; Pezzarini, Elena; Pontarini, Elena; Fabro, Cinzia; Quartuccio, Luca; Mazzolini, Saulle; Curcio, Francesco; Tonutti, Elio
2010-11-01
Rheumatoid arthritis (RA) is characterized by the presence of circulating rheumatoid factor (RF) and anticitrullinated peptide antibodies (ACPA), which are positive in about 70-80% of patients. APCA have a higher specificity and therefore a higher diagnostic power than RF, but are less informative than RF in monitoring the course of the disease in patients under treatment. Recently, it has been reported that the anticitrullinated vimentin (a-MCV) antibody test can identify a particular subgroup of APCA that may be negative for anticyclic citrullinated peptide (a-CCP) antibodies. Concerning RF, the RF IgA isotype has been described as a more specific marker of erosive joint damage than total RF. The aim of our study was to monitor the levels of a-CCP, a-MCV, total RF and RF IgA in the follow-up of patients with RA treated with B-lymphocytedepletive rituximab (RTX), to detect any differences or peculiarities in patterns of these autoantibodies, especially in relation to their potential use as predictive markers of therapeutic response. We studied 30 patients with RA treated with RTX. All patients were previously unresponsive to at least 6 months of therapy with disease-modifying antirheumatic drugs (DMARDs; methotrexate, leflunomide, cyclosporine, chloroquine) and/or at least 6 months of therapy with anti-TNF biologics. The evaluation of response to RTX was made at month +6 using the EULAR criteria (DAS28). a-CCP, a-MCV, total RF and RF IgA were determined at baseline (before the first infusion of RTX) and after 1, 3 and 6 months. In serum samples obtained before treatment two cytokines essential for Blymphocyte proliferation, interleukin 6 (IL-6) and B-lymphocyte stimulator (BLyS) were also determined. In all patients a significant and consistent reduction in all the tested antibodies was found during follow-up, with no differences in respect of the degree of response to RTX. Of note, at baseline, generally a higher titre of all autoantibodies was seen in patients who then showed a better response to RTX. Finally, there were no differences in serum concentrations of IL-6 and BLyS in patients in relation to the presence or absence of the autoantibodies investigated, nor was there any significant correlation between the serum concentrations of the cytokines and the titres of the autoantibodies. Thus, neither a-MCV compared to a- CCP, nor RF IgA compared to routine total RF, provided any additional predictive information in the follow-up of patients with RA treated with RTX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Kazakevich, G.; Johnson, R.; Lebedev, V.; ...
2018-06-14
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Matching network for RF plasma source
Pickard, Daniel S.; Leung, Ka-Ngo
2007-11-20
A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.
A role for high frequency superconducting devices in free space power transmission systems
NASA Technical Reports Server (NTRS)
Christian, Jose L., Jr.; Cull, Ronald C.
1988-01-01
Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.
Radar Scattering and Block Size Properties of Lunar Crater Ejecta From Mini-RF and LROC NAC Data
NASA Technical Reports Server (NTRS)
Spudis, P. D.; Baloga, S. M.; Glaze, L. S.; Dixit, V.; Pantone, S. M.; Juvanescu, I.
2012-01-01
A major objective of the Mini-RF experiment is to distinguish lunar surfaces that may contain water/ice deposits [1,2]. Better understanding of the backscattering properties of craters of varying age and size is crucial for interpreting data received from the Mini-RF. The Mini-RF transmits a circularly polarized RF electromagnetic energy and coherently receives orthogonal linear polarization echoes [1]. The Mini- RF maps in two separate bands ( =12.6 and 4.5 cm) at a high resolution mode of 30 m/pixel [1]. Given the variables mentioned, the four stokes parameters are reconstructed. The Circular Polarization Ratio (CPR) is calculated for the purposes of understanding subsurface and surface roughness. The CPR is determined from reflections acquired from the ratio of power of the transmitted radio wave in same sense to the reflected radio wave in the opposite sense [1]. Ice in the permanently shadowed regions (PSRs) would be transparent to radar, but the inclusions of materials and imperfections would cause the radio wave to reflect multiple times [3], enhancing the number of same sense reflections and increasing the CPR. In addition, ice also displays the coherent backscatter opposition effect (CBOE), an interferrometric addition of same sense backscatter that further increases the CPR of ice targets [7]. High CPR values also correlate to multiple reflections and are typically associated with very rough surfaces [3]. The average dry lunar surface has a CPR in the range of 0.2-0.4 at 48deg incidence [3]. The purpose of this study is to begin to quantify degrees of surface wavelength-scale roughness with CPR and to understand how such surface roughness is created and gradually destroyed by erosion on the lunar surface. Another goal is to identify and isolate the possible causes of high CPR within the shadowed areas of anomalous polar craters [3]. All the studied craters are non-polar, so that we can see into their interiors in NAC images. The idea is to understand what controls blockiness in these craters so that we can rule out rocks (and rule in ice) for the anomalous polar dark ones [3].
Survey of electromagnetic field exposure in bedrooms of residences in lower Austria.
Tomitsch, Johannes; Dechant, Engelbert; Frank, Wilhelm
2010-04-01
Previous investigations of exposure to electric, magnetic, or electromagnetic fields (EMF) in households were either about electricity supply EMFs or radio frequency EMFs (RF-EMFs). We report results from spot measurements at the bedside that comprise electrostatic fields, extremely low-frequency electric fields (ELF-EFs), extremely low-frequency magnetic fields (ELF-MFs), and RF-EMFs. Measurements were taken in 226 households throughout Lower Austria. In addition, effects of simple reduction measures (e.g., removal of clock radios or increasing their distance from the bed, turning off Digital Enhanced Cordless Telecommunication (DECT) telephone base stations) were assessed. All measurements were well below International Commission on Non-Ionizing Radiation Protection (ICNIRP) guideline levels. Average night-time ELF-MFs (long-term measurement from 10 pm to 6 am, geometric mean over households) above 100 nT were obtained in 2.3%, and RF-EMFs above 1000 microW/m(2) in 7.1% of households. Highest ELF-EFs were primarily due to lamps beside the bed (max = 166 V/m), and highest ELF-MFs because of transformers of devices (max = 1030 nT) or high current of power lines (max = 380 nT). The highest values of RF-EMFs were caused by DECT telephone base stations (max = 28979 microW/m(2)) and mobile phone base stations (max = 4872 microW/m(2)). Simple reduction measures resulted in an average decrease of 23 nT for ELF-MFs, 23 V/m for ELF-EFs, and 246 microW/m(2) for RF-EMFs. A small but statistically significant correlation between ELF-MF exposure and overall RF-EMF levels of R = 0.16 (P = 0.008) was computed that was independent of type (flat, single family) and location (urban, rural) of houses. (c) 2009 Wiley-Liss, Inc.
Gene and protein expression following exposure to radiofrequency fields from mobile phones.
Vanderstraeten, Jacques; Verschaeve, Luc
2008-09-01
Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure.
L-Band High Power Amplifiers for CEBAF Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Killion, Richard; Nelson, Richard
1990-09-01
The high power portion of the CEBAF RF system utilizes 340 5kW klystrons providing 339 separately controlled outputs. Modulating anodes have been included in the klystron design to provide for economically efficient operation. The design includes shunt regulator-type modulating anode power supplies running from the cathode power supply, and switching filament power supplies. Remotely programmable filament voltage allows maximum cathode life to be realized. Klystron operating setpoint and fast klystron protection logic are provided by individual external CEBAF RF control modules. A single cathode power supply powers a block of eight klystrons. The design includes circulators and custom extrusion andmore » hybrid waveguide components which have allowed reduced physical size and lower cost in the design of the WR-650 waveguide transmission system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Uk; Hong, Byungyou; Choi, Won Seok
2009-07-15
Antimony-doped tin oxide (ATO) films were prepared on 7059 Corning glass substrate by the radio frequency (rf) magnetron sputtering method using SnO{sub 2} target mixed with Sb of 6 wt % at room temperature. The working pressure was varied from 0.67 to 2 Pa in steps of 0.67 Pa, and the rf power was varied from 100 to 175 W in steps of 25 W at room temperature. The thickness of the deposited ATO films was about 150 nm. X-ray diffraction (XRD) measurements showed the ATO films to be crystallized with a strong (101) preferred orientation as the rf powermore » is increased. The spectra revealed that the deposited films were polycrystalline, retaining the tetragonal structure. The grain size was estimated from the XRD spectra using the Scherrer equation and found to decrease with a decrease in the working pressure and an increase in the rf power, while the surface roughness was observed to be smoothened. The ATO film that was deposited at a working pressure of 0.67 Pa with rf power of 175 W showed the lowest resistivity of 8.6x10{sup -3} {Omega} cm, and the optical transmittance was 86.5% in the visible wavelength range from 400 to 800 nm.« less
RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials
NASA Astrophysics Data System (ADS)
Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.
2017-10-01
RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).
NASA Astrophysics Data System (ADS)
Siegel, Peter H.; Pikov, Victor
2010-02-01
As the application and commercial use of millimeter- and submillimeter-wavelength radiation become more widespread, there is a growing need to understand and quantify both the coupling mechanisms and the impact of this long wavelength energy on biological function. Independent of the health impact of high doses of radio frequency (RF) energy on full organisms, which has been extensively investigated, there exists the potential for more subtle effects, which can best be quantified in studies which examine real-time changes in cellular functions as RF energy is applied. In this paper we present the first real time examination of RF induced changes in cellular activity at absorbed power levels well below the existing safe exposure limits. Fluorescence microscopy imaging of immortalized epithelial and neuronal cells in vitro indicate increased cellular membrane permeability and nanoporation after short term exposure to modest levels (10-50 mW/cm2) of RF power at 60 GHz. Sensitive patch clamp measurements on pyramidal neurons in cortical slices of neonatal rats showed a dramatic increase in cellular membrane permeability resulting either in suppression or facilitation of neuronal activity during exposure to sub-μW/cm2 of RF power at 60 GHz. Non-invasive modulation of neuronal activity could prove useful in a variety of health applications from suppression of peripheral neuropathic pain to treatment of central neurological disorders.
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Collins, Michael; Boroson, Don M.; Lesh, James; Biswas, Abihijit; Orr, Richard; Schuchman, Leonard; Sands, O. Scott
2007-01-01
As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.
Compact RF ion source for industrial electrostatic ion accelerator
NASA Astrophysics Data System (ADS)
Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub
2016-02-01
Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.
Compact RF ion source for industrial electrostatic ion accelerator.
Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub
2016-02-01
Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.
High-power CO laser with RF discharge for isotope separation employing condensation repression
NASA Astrophysics Data System (ADS)
Baranov, I. Ya.; Koptev, A. V.
2008-10-01
High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.
Mode control in a high-gain relativistic klystron amplifier
NASA Astrophysics Data System (ADS)
Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang
2010-05-01
Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.
Design, construction and test of RF solid state power amplifier for IRANCYC-10
NASA Astrophysics Data System (ADS)
Azizi, H.; Dehghan, M.; Abbasi Davani, F.; Ghasemi, F.
2018-03-01
In this paper, design, simulation and construction of a high power amplifier to provide the required power of a cyclotron accelerator (IRANCYC-10) is presented step-by-step. The Push-Pull designed amplifier can generate 750 W at the operating frequency of 71 MHz continous wave (CW). In this study, achieving the best efficiency of the amplifier, as well as reducing overall volume using baluns, were two important goals. The new offered water-cooled heat sink was used for cooling the amplifier which increases the operating life of the transistor. The gain and PAE of the SSPA were obtained 20 dB and 77.7%, respectively. The simulated and measured RF results are in good agreement with each other. The results show that, using an RF transformer in matching impedance of matching networks, it causes a smaller size and also a better amplifier performance.
The study of helicon plasma source.
Miao, Ting-Ting; Zhao, Hong-Wei; Liu, Zhan-Wen; Shang, Yong; Sun, Liang-Ting; Zhang, Xue-Zhen; Zhao, Huan-Yu
2010-02-01
Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10(13) cm(-3) have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10(-3) Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.
A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE
NASA Astrophysics Data System (ADS)
Buttenschön, B.; Fahrenkamp, N.; Grulke, O.
2018-07-01
A plasma cell prototype for the plasma wakefield accelerator experiment AWAKE based on a helicon discharge is presented. In the 1 m long prototype module a multiple antenna helicon discharge with an rf power density of 100 MW m‑3 is established. Based on the helicon dispersion relation, a linear scaling of plasma density with magnetic field is observed for rf frequencies above the lower hybrid frequency, ω LH ≤ 0.8ω rf. Density profiles are highest on the device axis and show shallow radial gradients, thus providing a relatively constant plasma density in the center over a radial range of Δr ≈ 10 mm with less than 10% variation. Peak plasma densities up to 7 × 1020 m‑3 are transiently achieved with a reproducibility that is sufficient for AWAKE. The results are in good agreement with power balance calculations.
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
NASA Astrophysics Data System (ADS)
Degrassie, J. S.
1990-12-01
The Soliton Microwave Generator (SMG) represents a truly new concept in the field of high power microwave (HPM) generation. A nonlinear, dispersive transmission line is used to convert an input voltage pulse into an HPM burst at the output. The system is all solid state and projects to be efficient and reliable. Single module peak powers in excess of 1 GW appear feasible, while combining modular units leads to a 10 GW system projection. This project for the DOE has allowed the first steps necessary in experimentally demonstrating the SMG. The project has ended successfully. A relatively high power lumped circuit SMG operating in the uhf band was designed, fabricated, and tested. The maximum peak output RF power was 16 MW from this line approx. 90 cm in length and 2 sq cm in cross section with a peak power efficiency of roughly 20 percent. Additionally a low power continuous strip-line approach demonstrated microwave generation well into L band, at approx. 2 GHz.
Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.;
2011-01-01
Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.
Development of new S-band SLED for PAL-XFEL Linac
NASA Astrophysics Data System (ADS)
Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin
2017-01-01
In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.
Broadband Electric-Field Sensor Array Technology
2012-08-05
output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into
Advanced technology component derating
NASA Astrophysics Data System (ADS)
Jennings, Timothy A.
1992-02-01
A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.
Corona-glow transition in the atmospheric pressure RF-excited plasma needle
NASA Astrophysics Data System (ADS)
Sakiyama, Y.; Graves, D. B.
2006-08-01
We present clear evidence of two different discharge modes of the atmospheric pressure RF-excited plasma needle and the transition mechanism by the finite element method. The gas used is helium with 0.1% nitrogen addition. The needle has a point-to-plane geometry with a radius of 30 µm at the tip, 150 µm at the base and an inter-electrode gap of 1 mm. We employ the one-moment fluid model with the local field approximation. Our simulation results indicate that the plasma needle operates as a corona discharge at low power and that the discharge mode transitions to a glow discharge at a critical power. The discharge power increases but the discharge voltage drops abruptly by a factor of about 2 in the corona-glow transition. The plasma density and ionization is confined near the needle tip in corona-mode while it spreads back along the needle surface in glow-mode. The corona-glow transition is also characterized by a dramatic decrease in sheath thickness and an order of magnitude increase in plasma density and volume-averaged ionization. The transition is observed whether or not secondary electron emission is included in the model, and therefore we suggest that this is not an α -γ transition.
Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; College of Science, Donghua University, Shanghai 201620; Guo, Ying
The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant ofmore » pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.« less
NASA Technical Reports Server (NTRS)
Downey, Joseph A.
2004-01-01
The Jupiter Icy Moons Orbiter (JIMO) is set to launch between the years 2012 and 2015. It will possibly utilize a nuclear reactor power source and ion engines as it travels to the moons of Jupiter. The nuclear reactor will produce hundreds of kilowatts of power for propulsion, communication and various scientific instruments. Hence, the RF amplification devices aboard will be able to operate at a higher power level and data rate. The initial plan for the communications system is for an output of 1000 watts of RF power, a data rate of at least 10 megabits a second, and a frequency of 32 GHz. A higher data rate would be ideal to fully utilize the instruments aboard JIMO. At NASA Glenn, one of our roles in the JIMO project is to demonstrate RF power combining using multiple traveling wave tubes (TWT). In order for the power of separate TWT s to be combined, the RF output waves from each must be in-phase and have the same amplitude. Since different tubes act differently, we had to characterize each tube using a Network Analyzer. We took frequency sweeps and power sweeps to characterize each tube to ensure that they will behave similarly under the same conditions. The 200 watt Dornier tubes had been optimized to run at a lower power level (120 watts) for their extensive use in the ACTS program, so we also had to experiment with adjusting the voltage settings on several internal components (helix, anode, collector) of the tubes to reach the full 200 watt potential. from the ACTS program. Phase shifters and power attenuators were placed in the waveguide circuit at the inputs to the tubes so that adjustments could be made individually to match them exactly. A magic tee was used to route and combine the amplified electromagnetic RF waves on the tube output side. The demonstration of 200 watts of combined power was successful with efficiencies greater than 90% over a 500 MHz bandwidth. The next step will be to demonstrate the use of three amplifiers using two magic tees by adding a 200 watt Dornier tube to the Varian and Logimetrics combined setup for a total of 400 watts. After that we will use two 200 watt Dorniers for 400 watts and eventually four 200 watt Dornier tubes to demonstrate 800 watts. After demonstrating the success of power combining, we will need to verify the integrity of a modulated signal sent through the combined tubes. The purpose will be to see what effects separating and recombining will have on the modulated signal and also what effect it will have on combining efficiency. A Bit Error Rate (BER) will be determined by a Bit Error Rate Tester (BERT) by comparing the random information it transmits to what it receives back. The process began with two 100 watt tubes, a Varian and a Logimetrics, salvaged
RF-Plasma Source Commissioning in Indian Negative Ion Facility
NASA Astrophysics Data System (ADS)
Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.
2011-09-01
The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.
Buckus, Raimondas; Strukčinskienė, Birute; Raistenskis, Juozas; Stukas, Rimantas; Šidlauskienė, Aurelija; Čerkauskienė, Rimantė; Isopescu, Dorina Nicolina; Stabryla, Jan; Cretescu, Igor
2017-01-01
During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF) electromagnetic radiation (EMR) in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation) from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF) intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN). The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground) and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 μW/cm2. The results were compared with international exposure guidelines (ICNIRP). PMID:28257069
Buckus, Raimondas; Strukčinskienė, Birute; Raistenskis, Juozas; Stukas, Rimantas; Šidlauskienė, Aurelija; Čerkauskienė, Rimantė; Isopescu, Dorina Nicolina; Stabryla, Jan; Cretescu, Igor
2017-03-01
During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF) electromagnetic radiation (EMR) in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation) from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF) intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN). The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground) and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 μW/cm². The results were compared with international exposure guidelines (ICNIRP).
The rf coil as a sensitive motion detector for magnetic resonance imaging.
Buikman, D; Helzel, T; Röschmann, P
1988-01-01
A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.
A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey; Agustsson, R.; Hartzell, J
A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power testsmore » of the cathode assembly of the new gun.« less
Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature
NASA Technical Reports Server (NTRS)
Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric
2012-01-01
Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.
Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks
Leon-Gil, Jesus A.; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J.; Tovar-Padilla, Marco; Cardona-Castro, M. Antonia; Alvarez-Quintana, Jaime
2018-01-01
Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft–Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations. PMID:29510482
Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks.
Leon-Gil, Jesus A; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J; Tovar-Padilla, Marco; Cardona-Castro, M Antonia; Morales-Sánchez, Alfredo; Alvarez-Quintana, Jaime
2018-03-03
Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft-Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.
Multi-service highly sensitive rectifier for enhanced RF energy scavenging.
Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran
2015-05-07
Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.