Science.gov

Sample records for additional sensory cues

  1. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues.

    PubMed

    Assländer, Lorenz; Peterka, Robert J

    2016-08-01

    Removing or adding sensory cues from one sensory system during standing balance causes a change in the contribution of the remaining sensory systems, a process referred to as sensory reweighting. While reweighting changes have been described in many studies under steady-state conditions, less is known about the temporal dynamics of reweighting following sudden transitions to different sensory conditions. The present study changed sensory conditions by periodically adding or removing visual (lights On/Off) or proprioceptive cues (surface sway referencing On/Off) in 12 young, healthy subjects. Evidence for changes in sensory contributions to balance was obtained by measuring the time course of medial-lateral sway responses to a constant-amplitude 0.56-Hz sinusoidal stimulus, applied as support surface tilt (proprioceptive contribution), as visual scene tilt (visual contribution), or as binaural galvanic vestibular stimulation (vestibular contribution), and by analyzing the time course of sway variability. Sine responses and variability of body sway velocity showed significant changes following transitions and were highly correlated under steady-state conditions. A dependence of steady-state responses on upcoming transitions was observed, suggesting that knowledge of impending changes can influence sensory weighting. Dynamic changes in sway in the period immediately following sensory transitions were very inhomogeneous across sway measures and in different experimental tests. In contrast to steady-state results, sway response and variability measures were not correlated with one another in the dynamic transition period. Several factors influence sway responses following addition or removal of sensory cues, partly instigated by but also obscuring the effects of reweighting dynamics. PMID:27075544

  2. Role of Cigarette Sensory Cues in Modifying Puffing Topography

    PubMed Central

    Rees, Vaughan W.; Kreslake, Jennifer M.; Wayne, Geoffrey Ferris; O Connor, Richard J.; Cummings, K. Michael; Connolly, Gregory N.

    2012-01-01

    Background Human puffing topography promotes tobacco dependence by ensuring nicotine delivery, but the factors that determine puffing behavior are not well explained by existing models. Chemosensory cues generated by variations in cigarette product design features may serve as conditioned cues to allow the smoker to optimize nicotine delivery by adjusting puffing topography. Internal tobacco industry research documents were reviewed to understand the influence of sensory cues on puffing topography, and to examine how the tobacco industry has designed cigarettes, including modified risk tobacco products (MRTPs), to enhance puffing behavior to optimize nicotine delivery and product acceptability. Methods Relevant internal tobacco industry documents were identified using systematic searching with key search terms and phrases, and then snowball sampling method was applied to establish further search terms. Results Modern cigarettes are designed by cigarette manufacturers to provide sensory characteristics that not only maintain appeal, but provide cues which inform puffing intensity. Alterations in the chemosensory cues provided in tobacco smoke play an important role in modifying smoking behavior independently of the central effects of nicotine. Conclusions An associative learning model is proposed to explain the influence of chemosensory cues on variation in puffing topography. These cues are delivered via tobacco smoke and are moderated by design features and additives used in cigarettes. The implications for regulation of design features of modified risk tobacco products, which may act to promote intensive puffing while lowering risk perceptions, are discussed. PMID:22365895

  3. Sensory Cues, Visualization and Physics Learning

    ERIC Educational Resources Information Center

    Reiner, Miriam

    2009-01-01

    Bodily manipulations, such as juggling, suggest a well-synchronized physical interaction as if the person were a physics expert. The juggler uses "knowledge" that is rooted in bodily experience, to interact with the environment. Such enacted bodily knowledge is powerful, efficient, predictive, and relates to sensory perception of the dynamics of…

  4. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    NASA Astrophysics Data System (ADS)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  5. Reliability of the sensory responder classification to learned flavor cues: a test-retest study.

    PubMed

    Tepper, B J; Farkas, B K

    1994-10-01

    Previous work from this laboratory has examined the extent to which learned associations between the flavor of food and the caloric consequences of food ingestion influence daily energy intake in humans. We have consistently identified a subset of subjects, called sensory responders, whose intakes were strongly guided by flavor cues. Sensory responders were identified on the basis of post hoc examination of energy intake patterns. The purpose of this study was to confirm the reliability of this classification scheme using a test-retest paradigm. Eighteen normal-weight, free-living adults participated in the study. Subjects were first fed a high-calorie lunch with distinctive flavors for 5 consecutive days then a low-calorie lunch with different distinctive flavors for an additional 5 days. Following this training, the flavors in the lunches were covertly switched. Subjects whose intakes were influenced by the change in the flavor cues were classified as sensory responders and those whose intakes were not influenced by the switch in the flavor cues were classified as sensory nonresponders. Subjects then repeated the protocol. All subjects who were classified as sensory responders at the end of the first trial were similarly classified at the end of the second trial, indicating that their initial responses were reliable. PMID:7800754

  6. Reconciling sensory cues and varied consequences of avian repellents.

    PubMed

    Werner, Scott J; Provenza, Frederick D

    2011-02-01

    We learned previously that red-winged blackbirds (Agelaius phoeniceus) use affective processes to shift flavor preference, and cognitive associations (colors) to avoid food, subsequent to avoidance conditioning. We conducted three experiments with captive red-winged blackbirds to reconcile varied consequences of treated food with conditioned sensory cues. In Experiment 1, we compared food avoidance conditioned with lithium chloride (LiCl) or naloxone hydrochloride (NHCl) to evaluate cue-consequence specificity. All blackbirds conditioned with LiCl (gastrointestinal toxin) avoided the color (red) and flavor (NaCl) of food experienced during conditioning; birds conditioned with NHCl (opioid antagonist) avoided only the color (not the flavor) of food subsequent to conditioning. In Experiment 2, we conditioned experimentally naïve blackbirds using free choice of colored (red) and flavored (NaCl) food paired with an anthraquinone- (postingestive, cathartic purgative), methiocarb- (postingestive, cholinesterase inhibitor), or methyl anthranilate-based repellent (preingestive, trigeminal irritant). Birds conditioned with the postingestive repellents avoided the color and flavor of foods experienced during conditioning; methyl anthranilate conditioned only color (not flavor) avoidance. In Experiment 3, we used a third group of blackbirds to evaluate effects of novel comparison cues (blue, citric acid) subsequent to conditioning with red and NaCl paired with anthraquinone or methiocarb. Birds conditioned with the postingestive repellents did not avoid conditioned color or flavor cues when novel comparison cues were presented during the test. Thus, blackbirds cognitively associate pre- and postingestive consequences with visual cues, and reliably integrate visual and gustatory experience with postingestive consequences to procure nutrients and avoid toxins. PMID:20971129

  7. Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat

    NASA Astrophysics Data System (ADS)

    Page, Rachel A.; Schnelle, Tanja; Kalko, Elisabeth K. V.; Bunge, Thomas; Bernal, Ximena E.

    2012-06-01

    Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator's ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors.

  8. Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat.

    PubMed

    Page, Rachel A; Schnelle, Tanja; Kalko, Elisabeth K V; Bunge, Thomas; Bernal, Ximena E

    2012-06-01

    Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator's ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors. PMID:22592417

  9. Additivity of Clothing Cues in First Impressions.

    ERIC Educational Resources Information Center

    Lennon, Sharron J.

    1986-01-01

    The theory of information integration was used to predict that in first impression situations, clothing/physical appearance cues have differential importance depending upon the type of judgment elicited. Female college students (N=104) viewed and responded to slides of colored line drawings of female stimulus persons. Multiple regression of data…

  10. Oxytocin Mediates Entrainment of Sensory Stimuli to Social Cues of Opposing Valence

    PubMed Central

    Choe, Han Kyoung; Reed, Michael Douglas; Benavidez, Nora; Montgomery, Daniel; Soares, Natalie; Yim, Yeong Shin; Choi, Gloria B.

    2015-01-01

    Meaningful social interactions modify behavioral responses to sensory stimuli. The neural mechanisms underlying the entrainment of neutral sensory stimuli to salient social cues to produce social learning remains unknown. We used odor-driven behavioral paradigms to ask if oxytocin, a neuropeptide implicated in various social behaviors, plays a crucial role in the formation of learned associations between odor and socially significant cues. Through genetic, optogenetic and pharmacological manipulations, we show that oxytocin receptor signaling is crucial for entrainment of odor to social cues, but is dispensable for entrainment to non-social cues. Furthermore, we demonstrate that oxytocin directly impacts the piriform, the olfactory sensory cortex, to mediate social learning. Lastly, we provide evidence that oxytocin plays a role in both appetitive and aversive social learning. These results suggest that oxytocin conveys saliency of social stimuli to sensory representations in the piriform cortex during odor-driven social learning. PMID:26139372

  11. Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides.

    PubMed

    Artan, Murat; Jeong, Dae-Eun; Lee, Dongyeop; Kim, Young-Il; Son, Heehwa G; Husain, Zahabiya; Kim, Jinmahn; Altintas, Ozlem; Kim, Kyuhyung; Alcedo, Joy; Lee, Seung-Jae V

    2016-05-01

    Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs. PMID:27125673

  12. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    PubMed

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  13. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans

    PubMed Central

    Hukema, Renate K; Rademakers, Suzanne; Dekkers, Martijn P J; Burghoorn, Jan; Jansen, Gert

    2006-01-01

    Caenorhabditis elegans shows chemoattraction to 0.1–200 mM NaCl, avoidance of higher NaCl concentrations, and avoidance of otherwise attractive NaCl concentrations after prolonged exposure to NaCl (gustatory plasticity). Previous studies have shown that the ASE and ASH sensory neurons primarily mediate attraction and avoidance of NaCl, respectively. Here we show that balances between at least four sensory cell types, ASE, ASI, ASH, ADF and perhaps ADL, modulate the response to NaCl. Our results suggest that two NaCl-attraction signalling pathways exist, one of which uses Ca2+/cGMP signalling. In addition, we provide evidence that attraction to NaCl is antagonised by G-protein signalling in the ASH neurons, which is desensitised by the G-protein-coupled receptor kinase GRK-2. Finally, the response to NaCl is modulated by G-protein signalling in the ASI and ADF neurons, a second G-protein pathway in ASH and cGMP signalling in neurons exposed to the body fluid. PMID:16407969

  14. Assessment of Rival Males through the Use of Multiple Sensory Cues in the Fruitfly Drosophila pseudoobscura

    PubMed Central

    Price, Tom A. R.

    2015-01-01

    Environments vary stochastically, and animals need to behave in ways that best fit the conditions in which they find themselves. The social environment is particularly variable, and responding appropriately to it can be vital for an animal’s success. However, cues of social environment are not always reliable, and animals may need to balance accuracy against the risk of failing to respond if local conditions or interfering signals prevent them detecting a cue. Recent work has shown that many male Drosophila fruit flies respond to the presence of rival males, and that these responses increase their success in acquiring mates and fathering offspring. In Drosophila melanogaster males detect rivals using auditory, tactile and olfactory cues. However, males fail to respond to rivals if any two of these senses are not functioning: a single cue is not enough to produce a response. Here we examined cue use in the detection of rival males in a distantly related Drosophila species, D. pseudoobscura, where auditory, olfactory, tactile and visual cues were manipulated to assess the importance of each sensory cue singly and in combination. In contrast to D. melanogaster, male D. pseudoobscura require intact olfactory and tactile cues to respond to rivals. Visual cues were not important for detecting rival D. pseudoobscura, while results on auditory cues appeared puzzling. This difference in cue use in two species in the same genus suggests that cue use is evolutionarily labile, and may evolve in response to ecological or life history differences between species. PMID:25849643

  15. Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex

    PubMed Central

    Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko

    2015-01-01

    Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841

  16. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    PubMed Central

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  17. Skin-Derived Cues Control Arborization of Sensory Dendrites in Caenorhabditis elegans

    PubMed Central

    Salzberg, Yehuda; Díaz-Balzac, Carlos A.; Ramirez-Suarez, Nelson J.; Attreed, Matthew; Tecle, Eillen; Desbois, Muriel; Kaprielian, Zaven; Bülow, Hannes E.

    2013-01-01

    SUMMARY Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of “menorah”-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously. PMID:24120132

  18. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans.

    PubMed

    Salzberg, Yehuda; Díaz-Balzac, Carlos A; Ramirez-Suarez, Nelson J; Attreed, Matthew; Tecle, Eillen; Desbois, Muriel; Kaprielian, Zaven; Bülow, Hannes E

    2013-10-10

    Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously. PMID:24120132

  19. Dietary restraint and responsiveness to sensory-based food cues as measured by cephalic phase salivation and sensory specific satiety.

    PubMed

    Tepper, B J

    1992-08-01

    Responsiveness to sensory-based food cues was examined in restrained and unrestrained, normal-weight subjects identified with the Three-Factor Eating Questionnaire. Salivary flow rate was measured with no food present and while subjects viewed hot pizza. In the presence of food, restrained eaters had a mean salivary flow rate (0.388 g/min) greater than twice that of the unrestrained eaters (0.186 g/min). During sensory specific satiety testing, subjects tasted and rated the pleasantness of 9 foods, then received a meal of either cheese and crackers or cookies. Changes in pleasantness for the tasted foods were evaluated at 2, 20, and 40 min following the meal. Both restrained and unrestrained subjects displayed similar patterns of sensory specific satiety, i.e., the pleasantness foods which were eaten decreased relative to foods tasted but not eaten. These patterns were unaffected by the type of food consumed in the test meal. These data demonstrate that restrained eaters show moderately enhanced salivary responses but no changes in sensory-specific satiety to food stimuli, suggesting that heightened responsiveness to the sensory properties of foods may not be a generalized phenomenon in restrained eaters. PMID:1523258

  20. Dynamic sensory cues shape song structure in Drosophila

    NASA Astrophysics Data System (ADS)

    Coen, Philip; Clemens, Jan; Weinstein, Andrew J.; Pacheco, Diego A.; Deng, Yi; Murthy, Mala

    2014-03-01

    The generation of acoustic communication signals is widespread across the animal kingdom, and males of many species, including Drosophilidae, produce patterned courtship songs to increase their chance of success with a female. For some animals, song structure can vary considerably from one rendition to the next; neural noise within pattern generating circuits is widely assumed to be the primary source of such variability, and statistical models that incorporate neural noise are successful at reproducing the full variation present in natural songs. In direct contrast, here we demonstrate that much of the pattern variability in Drosophila courtship song can be explained by taking into account the dynamic sensory experience of the male. In particular, using a quantitative behavioural assay combined with computational modelling, we find that males use fast modulations in visual and self-motion signals to pattern their songs, a relationship that we show is evolutionarily conserved. Using neural circuit manipulations, we also identify the pathways involved in song patterning choices and show that females are sensitive to song features. Our data not only demonstrate that Drosophila song production is not a fixed action pattern, but establish Drosophila as a valuable new model for studies of rapid decision-making under both social and naturalistic conditions.

  1. Alliesthesia to food cues: heterogeneity across stimuli and sensory modalities.

    PubMed

    Jiang, Tao; Soussignan, Robert; Rigaud, Daniel; Martin, Sylviane; Royet, Jean-Pierre; Brondel, Laurent; Schaal, Benoist

    2008-10-20

    Negative alliesthesia to olfactory and visual stimuli was assessed in 29 normal-weight women who, on alternate days, were either fasting or in a postprandial state after an ad libitum lunch. The participants were alternatively exposed to food and non-food pictures and odorants, and then rated for their hedonic appreciation (liking) and their desire to ingest (wanting) the evoked foods. While negative alliesthesia was observed only for food stimuli, it did not equally affect all food categories in either sensory modality. The stimuli representing foods eaten in typical local main dishes or having high energy density (e.g., pizza, bacon, beef, cheese) evoked clear negative alliesthesia, whereas this was not the case for those less consumed within a customary meal or associated with desserts (i.e., fruits). Furthermore, the visual food stimuli triggered a more negative shift in liking than did the food odours. Finally, the shift in wanting between pre- and post-meal state was more important than the shift in liking. These results suggest that alliesthesia may be influenced by both metabolic and non-metabolic factors. PMID:18675834

  2. Sensory Cues Involved in Social Facilitation of Reproduction in Blattella germanica Females

    PubMed Central

    Uzsák, Adrienn; Schal, Coby

    2013-01-01

    Cockroaches, like many other animal species, form aggregations in which social stimuli from conspecifics can alter the physiology, morphology, or behavior of individuals. In adult females of the German cockroach, Blattella germanica, social isolation slows oocyte development, sexual maturation, and sexual receptivity, whereas social interactions as minimal as between just two females accelerate reproduction; however, the sensory modalities and pathways that mediate these physiological and behavioral changes are poorly understood. We explored the roles of visual, olfactory, and tactile cues in the reproductive physiology of German cockroach females, and whether their effects are species-specific and related to circadian time. Our results show that tactile cues are the primary sensory input associated with social conditions—with no evidence for involvement of the visual and olfactory systems—and that the antennae play an important role in the reception of these tactile cues. This conclusion is supported by the observation that interactions with other insect species of similar or larger size and with similar antennal morphology also stimulate oocyte development in B. germanica. Social facilitation of reproduction is expected to be influenced by the circadian timing system, as females engage in more social contact during the day when they shelter in aggregations with conspecifics. Surprisingly, however, the female's reproductive rate was unresponsive to social interactions during the photophase, whereas social interactions as short as two hours during the scotophase were sufficient to induce faster reproduction. We discuss the adaptive significance of these sensory-neuroendocrine responses in the German cockroach. PMID:23405195

  3. Sensory cues involved in social facilitation of reproduction in Blattella germanica females.

    PubMed

    Uzsák, Adrienn; Schal, Coby

    2013-01-01

    Cockroaches, like many other animal species, form aggregations in which social stimuli from conspecifics can alter the physiology, morphology, or behavior of individuals. In adult females of the German cockroach, Blattella germanica, social isolation slows oocyte development, sexual maturation, and sexual receptivity, whereas social interactions as minimal as between just two females accelerate reproduction; however, the sensory modalities and pathways that mediate these physiological and behavioral changes are poorly understood. We explored the roles of visual, olfactory, and tactile cues in the reproductive physiology of German cockroach females, and whether their effects are species-specific and related to circadian time. Our results show that tactile cues are the primary sensory input associated with social conditions--with no evidence for involvement of the visual and olfactory systems--and that the antennae play an important role in the reception of these tactile cues. This conclusion is supported by the observation that interactions with other insect species of similar or larger size and with similar antennal morphology also stimulate oocyte development in B. germanica. Social facilitation of reproduction is expected to be influenced by the circadian timing system, as females engage in more social contact during the day when they shelter in aggregations with conspecifics. Surprisingly, however, the female's reproductive rate was unresponsive to social interactions during the photophase, whereas social interactions as short as two hours during the scotophase were sufficient to induce faster reproduction.We discuss the adaptive significance of these sensory-neuroendocrine responses in the German cockroach. PMID:23405195

  4. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models.

    PubMed

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979

  5. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models

    PubMed Central

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979

  6. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target.

    PubMed

    Taku, Alemji A; Marcaccio, Christina L; Ye, Wenda; Krause, Gregory J; Raper, Jonathan A

    2016-01-01

    Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target. PMID:26732841

  7. Smelling on the fly: sensory cues and strategies for olfactory navigation in Drosophila.

    PubMed

    Gaudry, Quentin; Nagel, Katherine I; Wilson, Rachel I

    2012-04-01

    Navigating toward (or away from) a remote odor source is a challenging problem that requires integrating olfactory information with visual and mechanosensory cues. Drosophila melanogaster is a useful organism for studying the neural mechanisms of these navigation behaviors. There are a wealth of genetic tools in this organism, as well as a history of inventive behavioral experiments. There is also a large and growing literature in Drosophila on the neural coding of olfactory, visual, and mechanosensory stimuli. Here we review recent progress in understanding how these stimulus modalities are encoded in the Drosophila nervous system. We also discuss what strategies a fly might use to navigate in a natural olfactory landscape while making use of all these sources of sensory information. We emphasize that Drosophila are likely to switch between multiple strategies for olfactory navigation, depending on the availability of various sensory cues. Finally, we highlight future research directions that will be important in understanding the neural circuits that underlie these behaviors. PMID:22221864

  8. Multimodal Integration of Carbon Dioxide and Other Sensory Cues Drives Mosquito Attraction to Humans

    PubMed Central

    McMeniman, Conor J.; Corfas, Román A.; Matthews, Benjamin J.; Ritchie, Scott A.; Vosshall, Leslie B.

    2014-01-01

    SUMMARY Multiple sensory cues emanating from humans are thought to guide blood-feeding female mosquitoes to a host. To determine the relative contribution of carbon dioxide (CO2) detection to mosquito host-seeking behavior, we mutated the AaegGr3 gene, a subunit of the heteromeric CO2 receptor in Aedes aegypti mosquitoes. Gr3 mutants lack electrophysiological and behavioral responses to CO2. These mutants also fail to show CO2-evoked responses to heat and lactic acid, a human-derived attractant, suggesting that CO2 can gate responses to other sensory stimuli. While attraction of Gr3 mutants to live humans in a large semi-field environment was only slightly impaired, responses to an animal host were greatly reduced in a spatial-scale dependent manner. Synergistic integration of heat and odor cues likely drive host-seeking behavior in the absence of CO2 detection. We reveal a networked series of interactions by which multimodal integration of CO2, human odor, and heat orchestrates mosquito attraction to humans. PMID:24581501

  9. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    USGS Publications Warehouse

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  10. Storing maternal memories: Hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues

    PubMed Central

    Banerjee, Sunayana B.; Liu, Robert C.

    2013-01-01

    Much of the literature on maternal behavior has focused on the role of infant experience and hormones in a canonical subcortical circuit for maternal motivation and maternal memory. Although early studies demonstrated that the cerebral cortex also plays a significant role in maternal behaviors, little has been done to explore what that role may be. Recent work though has provided evidence that the cortex, particularly sensory cortices, contains correlates of sensory memories of infant cues, consistent with classical studies of experience-dependent sensory cortical plasticity in non-maternal paradigms. By reviewing the literature from both the maternal behavior and sensory cortical plasticity fields, focusing on the auditory modality, we hypothesize that maternal hormones (predominantly estrogen) may act to prime auditory cortical neurons for a longer-lasting neural trace of infant vocal cues, thereby facilitating recognition and discrimination. This could then more efficiently activate the subcortical circuit to elicit and sustain maternal behavior. PMID:23916405

  11. Brief Exposure to Sensory Cues Elicits Stimulus-Nonspecific General Sensitization in an Insect

    PubMed Central

    Colson, Violaine; Party, Virginie; Renou, Michel; Anderson, Peter; Gadenne, Christophe; Marion-Poll, Frédéric; Anton, Sylvia

    2012-01-01

    The effect of repeated exposure to sensory stimuli, with or without reward is well known to induce stimulus-specific modifications of behaviour, described as different forms of learning. In recent studies we showed that a brief single pre-exposure to the female-produced sex pheromone or even a predator sound can increase the behavioural and central nervous responses to this pheromone in males of the noctuid moth Spodoptera littoralis. To investigate if this increase in sensitivity might be restricted to the pheromone system or is a form of general sensitization, we studied here if a brief pre-exposure to stimuli of different modalities can reciprocally change behavioural and physiological responses to olfactory and gustatory stimuli. Olfactory and gustatory pre-exposure and subsequent behavioural tests were carried out to reveal possible intra- and cross-modal effects. Attraction to pheromone, monitored with a locomotion compensator, increased after exposure to olfactory and gustatory stimuli. Behavioural responses to sucrose, investigated using the proboscis extension reflex, increased equally after pre-exposure to olfactory and gustatory cues. Pheromone-specific neurons in the brain and antennal gustatory neurons did, however, not change their sensitivity after sucrose exposure. The observed intra- and reciprocal cross-modal effects of pre-exposure may represent a new form of stimulus-nonspecific general sensitization originating from modifications at higher sensory processing levels. PMID:22457821

  12. Emotional expression in music: contribution, linearity, and additivity of primary musical cues.

    PubMed

    Eerola, Tuomas; Friberg, Anders; Bresin, Roberto

    2013-01-01

    The aim of this study is to manipulate musical cues systematically to determine the aspects of music that contribute to emotional expression, and whether these cues operate in additive or interactive fashion, and whether the cue levels can be characterized as linear or non-linear. An optimized factorial design was used with six primary musical cues (mode, tempo, dynamics, articulation, timbre, and register) across four different music examples. Listeners rated 200 musical examples according to four perceived emotional characters (happy, sad, peaceful, and scary). The results exhibited robust effects for all cues and the ranked importance of these was established by multiple regression. The most important cue was mode followed by tempo, register, dynamics, articulation, and timbre, although the ranking varied across the emotions. The second main result suggested that most cue levels contributed to the emotions in a linear fashion, explaining 77-89% of variance in ratings. Quadratic encoding of cues did lead to minor but significant increases of the models (0-8%). Finally, the interactions between the cues were non-existent suggesting that the cues operate mostly in an additive fashion, corroborating recent findings on emotional expression in music (Juslin and Lindström, 2010). PMID:23908642

  13. Emotional expression in music: contribution, linearity, and additivity of primary musical cues

    PubMed Central

    Eerola, Tuomas; Friberg, Anders; Bresin, Roberto

    2013-01-01

    The aim of this study is to manipulate musical cues systematically to determine the aspects of music that contribute to emotional expression, and whether these cues operate in additive or interactive fashion, and whether the cue levels can be characterized as linear or non-linear. An optimized factorial design was used with six primary musical cues (mode, tempo, dynamics, articulation, timbre, and register) across four different music examples. Listeners rated 200 musical examples according to four perceived emotional characters (happy, sad, peaceful, and scary). The results exhibited robust effects for all cues and the ranked importance of these was established by multiple regression. The most important cue was mode followed by tempo, register, dynamics, articulation, and timbre, although the ranking varied across the emotions. The second main result suggested that most cue levels contributed to the emotions in a linear fashion, explaining 77–89% of variance in ratings. Quadratic encoding of cues did lead to minor but significant increases of the models (0–8%). Finally, the interactions between the cues were non-existent suggesting that the cues operate mostly in an additive fashion, corroborating recent findings on emotional expression in music (Juslin and Lindström, 2010). PMID:23908642

  14. Role of sensory cues on food searching behavior of a captive Manta birostris (Chondrichtyes, Mobulidae).

    PubMed

    Ari, Csilla; Correia, João P

    2008-07-01

    This study reports on the first experimental research designed specifically for Manta birostris behavior. The authors attempted to learn about the feeding behavior and environmental cues influencing this behavior, as well as general cognitive ability. The preconditioned Manta's ability to identify food, on the basis of a fraction of the ordinary food signal complex, was tested. The opening of cephalic fins was considered a good indicator of feeding motivation level. The study subject animal used its biological clock to predict time and also associated a specific location with food, suggesting an ability to build up a cognitive map of its environment. Both underwater visual stimuli and olfactory stimuli had a very intense effect on food searching behavior over a 30 m distance, in contrast to visual signs from above the water surface. In addition, although an underwater visual signal resulted in a more intense response than from an olfactory signal, the specimen did not discriminate between different objects tested on the basis of visual sensation. It could therefore be suggested that food searching behavior of Mantas are governed by triggering stimuli, including smell or visual recognition, and modulated by the cognitive spatial map stored in their long-term memory. These findings will hopefully prove useful while devising protecting policies in the natural environment and/or while keeping these animals in captivity. Zoo Biol 27:294-304, 2008. (c) 2008 Wiley-Liss, Inc. PMID:19360625

  15. Behavioural response of adult sea lamprey (Petromyzon marinus) to predator and conspecific alarm cues: evidence of additive effects

    USGS Publications Warehouse

    Di Rocco, Richard T; Imre, Istvan; Johnson, Nicholas; Brown, Grant B

    2015-01-01

    Sea lampreys Petromyzon marinus, an invasive pest in the Upper Great Lakes, avoid odours that represent danger in their habitat. These odours include conspecific alarm cues and predator cues, like 2-phenylethylamine hydrochloride (PEA HCl), which is found in the urine of mammalian predators. Whether conspecific alarm cues and predator cues function additively or synergistically when mixed together is unknown. The objectives of this experimental study were to determine if the avoidance response of sea lamprey to PEA HCl is proportional to the concentration delivered, and if the avoidance response to the combination of a predator cue (PEA HCl) and sea lamprey alarm cue is additive. To accomplish the first objective, groups of ten sea lampreys were placed in an artificial stream channel and presented with stepwise concentrations of PEA HCl ranging from 5 × 10−8 to 5 × 10−10 M and a deionized water control. Sea lampreys exhibited an increase in their avoidance behaviour in response to increasing concentrations of PEA HCl. To accomplish the second objective, sea lampreys were exposed to PEA HCl, conspecific alarm cue and a combination of the two. Sea lampreys responded to the combination of predator cue and conspecific alarm cue in an additive manner.

  16. Virtual reality and musculoskeletal pain: manipulating sensory cues to improve motor performance during walking.

    PubMed

    Powell, Wendy; Simmonds, Maureen J

    2014-06-01

    Musculoskeletal pain (MSP) is the most expensive nonmalignant health problem and the most common reason for activity limitation. Treatment approaches to improve movement without aggravating pain are urgently needed. Virtual reality (VR) can decrease acute pain, as well as influence movement speed. It is not clear whether VR can improve movement speed in individuals with MSP without aggravating pain. This study investigated the extent to which different audio and optic flow cues in a VR environment influenced walking speed in people with and without MSP. A total of 36 subjects participated, 19 with MSP and 17 controls. All walked on a motorized self-paced treadmill interfaced with a three-dimensional virtual walkway. The audio tempo was scaled (75%, 100%, and 125%) from baseline cadence, and optic flow was either absent, or scaled to 50% or 100% of preferred walking speed. Gait speed was measured during each condition, and pain was measured before and after the experiment. Repeated measures analysis of variance showed that audio tempo above baseline cadence significantly increased walking speed in both groups, F(3, 99)=10.41, p<0.001. Walking speed increases of more than 25% occurred in both groups in the 125% audio tempo condition, without any significant increase in pain. There was also a trend toward increased walking speeds with the use of optic flow, but the results in this study did not achieve significance at the p<0.05 level, F(2, 66)=2.01, p=0.14. Further research is needed to establish the generalizability of increasing movement speed across different physical performance tasks in VR. PMID:24892203

  17. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues

    PubMed Central

    Mann, Thomas H.; Seth Childers, W.; Blair, Jimmy A.; Eckart, Michael R.; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  18. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues.

    PubMed

    Mann, Thomas H; Seth Childers, W; Blair, Jimmy A; Eckart, Michael R; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  19. Additional sensory information reduces body sway of individuals with anterior cruciate ligament injury.

    PubMed

    Bonfim, Thatia Regina; Grossi, Débora Bevilaqua; Paccola, Cleber Antonio Jansen; Barela, José Angelo

    2008-08-29

    The purpose of this study was to investigate whether the additional sensory information could improve postural control in individuals with unilateral anterior cruciate ligament (ACL) injury. Twenty-eight individuals with unilateral ACL injury (mean age 23.6, 26 males, 2 females) and 28 healthy young control subjects (mean age 22.1 years, 26 males, 2 females) participated in this study. Postural control was evaluated with subjects single-leg standing on a force platform with eyes closed under two sensory conditions: normal sensory information and light touch to a stationary bar (applied force below 1N). Three trials of 30s were performed in each single-leg stance and in each sensory condition. Mean sway amplitude and predominant frequency of center of pressure were calculated for both anterior-posterior and medial-lateral directions. Individuals with ACL injury showed greater mean sway amplitude than healthy control individuals even though the predominant frequency was similar for both groups. Additional sensory information improved postural control performance in individuals with ACL injury and healthy control, with a greater effect observed for the ACL group. Based on these results, we suggest that reduction in postural control performance in individuals with ACL injury would be due to the reduction of sensory information provided by the ACL, but when sensory information is enhanced, postural control performance improves. These results have implications for novel approaches to improve stability in individuals with ACL injury. PMID:18582536

  20. Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream.

    PubMed

    Balthazar, C F; Silva, H L A; Celeguini, R M S; Santos, R; Pastore, G M; Junior, C A Conte; Freitas, M Q; Nogueira, L C; Silva, M C; Cruz, A G

    2015-07-01

    The effect of the addition of galactooligosaccharide (GOS) on the physicochemical, optical, and sensory characteristics of ice cream was investigated. Vanilla ice cream was supplemented with 0, 1.5, and 3.0% (wt/wt) GOS and characterized for pH, firmness, color, melting, overrun, as well as subjected to a discriminative sensory test (triangle test). For comparison purposes, ice creams containing fructooligosaccharide were also manufactured. The GOS ice creams were characterized by increased firmness and lower melting rates. Different perceptions were reported in the sensory evaluation for the 3.0% GOS ice cream when compared with the control, which was not observed for the fructooligosaccharide ice cream. Overall, the findings suggest it is possible to produce GOS ice cream with improved stability in relation to the physicochemical parameters and sensory perception. PMID:25912870

  1. The Addition of Saccharin to Taste Cues Affects Taste Preference Conditioning in Thirsty Rats

    ERIC Educational Resources Information Center

    Forestell, Catherine A.; LoLordo, Vincent M.

    2004-01-01

    Previous failures to condition preferences for the unacceptable taste cues sucrose octaacetate (SOA) and citric acid (CA) using a reverse-order, differential conditioning procedure (Forestell & LoLordo, 2000) may have been the result of low consumption of the taste cues in training or of their relatively low acceptability to rats that are thirsty…

  2. The effectiveness of external sensory cues in improving functional performance in individuals with Parkinson's disease: a systematic review with meta-analysis.

    PubMed

    Cassimatis, Constantine; Liu, Karen P Y; Fahey, Paul; Bissett, Michelle

    2016-09-01

    A systematic review with meta-analysis was performed to investigate the effect external sensory cued therapy on activities of daily living (ADL) performance that include walking and daily tasks such as dressing for individuals with Parkinson's disease (PD). A detailed computer-aided search of the literature was applied to MEDLINE, Cumulative Index to Nursing and Allied Health Literature, EMBASE and PubMed. Studies investigating the effects of external sensory cued therapy on ADL performance for individuals with PD in all stages of disease progression were collected. Relevant articles were critically reviewed and study results were synthesized by two independent researchers. A data-analysis method was used to extract data from selected articles. A meta-analysis was carried out for all randomized-controlled trials. Six studies with 243 individuals with PD were included in this review. All six studies yielded positive findings in favour of external sensory cues. The meta-analysis showed that external sensory cued therapy improved statistically after treatment (P=0.011) and at follow-up (P<0.001) for ADL performance. The results of this review provided evidence of an improvement in ADL performance in general in individuals with PD. It is recommended that clinicians incorporate external sensory into a training programme focused on improving daily task performance. PMID:27119224

  3. Designing Location-Based Learning Experiences for People with Intellectual Disabilities and Additional Sensory Impairments

    ERIC Educational Resources Information Center

    Brown, David J.; McHugh, David; Standen, Penny; Evett, Lindsay; Shopland, Nick; Battersby, Steven

    2011-01-01

    The research reported here is part of a larger project which seeks to combine serious games (or games-based learning) with location-based services to help people with intellectual disabilities and additional sensory impairments to develop work based skills. Specifically this paper reports on where these approaches are combined to scaffold the…

  4. Additional evidence that contour attributes are not essential cues for object recognition

    PubMed Central

    Greene, Ernest

    2008-01-01

    It is believed that certain contour attributes, specifically orientation, curvature and linear extent, provide essential cues for object (shape) recognition. The present experiment examined this hypothesis by comparing stimulus conditions that differentially provided such cues. A spaced array of dots was used to mark the outside boundary of namable objects, and subsets were chosen that contained either contiguous strings of dots or randomly positioned dots. These subsets were briefly and successively displayed using an MTDC information persistence paradigm. Across the major range of temporal separation of the subsets, it was found that contiguity of boundary dots did not provide more effective shape recognition cues. This is at odds with the concept that encoding and recognition of shapes is predicated on the encoding of contour attributes such as orientation, curvature and linear extent. PMID:18593469

  5. Lack of increased immediate early gene expression in rats reinstating cocaine-seeking behavior to discrete sensory cues.

    PubMed

    Riedy, Matthew D; Keefe, Kristen A

    2013-01-01

    Drug-seeking behavior elicited by drug-associated cues contributes to relapse in addiction; however, whether relapse elicited by drug-associated conditioned reinforcers (CR) versus discriminative stimuli (DS) involves distinct or overlapping neuronal populations is unknown. To address this question, we developed a novel cocaine self-administration and cue-induced reinstatement paradigm that exposed the same rats to distinct cocaine-associated CR and DS. Rats were trained to self-administer cocaine in separate sessions. In one, a DS signaled cocaine availability; in the other, cocaine delivery was paired with a different CR. After extinction training and reinstatement testing, where both cues were presented in separate sessions, rats were sacrificed and processed for cellular analysis of temporal activity by fluorescent in situ hybridization (CatFISH) for activity regulated cytoskeleton-associated protein (Arc) mRNA and for radioactive in situ hybridization for Arc and zif268 mRNAs. CatFISH did not reveal significant changes in Arc mRNA expression. Similar results were obtained with radioactive in situ hybridization. We have shown that while rats reinstate drug seeking in response to temporally discrete presentations of distinct drug-associated cues, such reinstatement is not associated with increased transcriptional activation of Arc or zif268 mRNAs, suggesting that expression of these genes may not be necessary for cue-induced reinstatement of drug-seeking behavior. PMID:24069163

  6. Chemical and Sensory Quality Preservation in Coated Almonds with the Addition of Antioxidants.

    PubMed

    Larrauri, Mariana; Demaría, María Gimena; Ryan, Liliana C; Asensio, Claudia M; Grosso, Nelson R; Nepote, Valeria

    2016-01-01

    Almonds provide many benefits such as preventing heart disease due to their high content of oleic fatty acid-rich oil and other important nutrients. However, they are susceptible to oxidation reactions causing rancidity during storage. The objective of this work was to evaluate the chemical and sensory quality preservation of almonds coated with carboxymethyl cellulose and with the addition of natural and synthetic antioxidants during storage. Four samples were prepared: almonds without coating (C), almonds coated with carboxymethyl cellulose (CMC), almonds coated with CMC supplemented with peanut skins extract (E), and almonds coated with CMC and supplemented with butylhydroxytoluene (BHT). Proximate composition and fatty acid profile were determined on raw almonds. Almond samples (C, CMC, E and BHT) were stored at 40 °C for 126 d. Lipid oxidation indicators: peroxide value (PV), conjugated dienes (CD), volatile compounds (hexanal and nonanal), and sensory attributes were determined for the stored samples. Samples showed small but significant increases in PV, CD, hexanal and nonanal contents, and intensity ratings of negative sensory attributes (oxidized and cardboard). C had the highest tendency to deterioration during storage. At the end of storage (126 d), C had the highest PV (3.90 meqO2 /kg), and BHT had the lowest PV (2.00 meqO2 /kg). CMC and E samples had similar intermediate PV values (2.69 and 2.57 meqO2 /kg, respectively). CMC coating and the addition of natural (peanut skin extract) and synthetic (BHT) antioxidants provide protection to the roasted almond product. PMID:26595771

  7. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi

    PubMed Central

    Tu, Kimberly C.; Bassler, Bonnie L.

    2007-01-01

    Quorum sensing is a cell–cell communication mechanism that bacteria use to collectively regulate gene expression and, at a higher level, to coordinate group behavior. In the bioluminescent marine bacterium Vibrio harveyi, sensory information from three independent quorum-sensing systems converges on the shared response regulator LuxO. When LuxO is phosphorylated, it activates the expression of a putative repressor that destabilizes the mRNA encoding the master quorum-sensing transcriptional regulator LuxR. In the closely related species Vibrio cholerae, this repressor was revealed to be the RNA chaperone Hfq together with four small regulatory RNAs (sRNAs) called Qrr1–4 (quorum regulatory RNA). Here, we identify five Qrr sRNAs that control quorum sensing in V. harveyi. Mutational analysis reveals that only four of the five Qrrs are required for destabilization of the luxR mRNA. Surprisingly, unlike in V. cholerae where the sRNAs act redundantly, in V. harveyi, the Qrr sRNAs function additively to control quorum sensing. This latter mechanism produces a gradient of LuxR that, in turn, enables differential regulation of quorum-sensing target genes. Other regulators appear to be involved in control of V. harveyi qrr expression, allowing the integration of additional sensory information into the regulation of quorum-sensing gene expression. PMID:17234887

  8. Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation.

    PubMed

    Vass, Lindsay K; Copara, Milagros S; Seyal, Masud; Shahlaie, Kiarash; Farias, Sarah Tomaszewski; Shen, Peter Y; Ekstrom, Arne D

    2016-03-16

    Low-frequency (delta/theta band) hippocampal neural oscillations play prominent roles in computational models of spatial navigation, but their exact function remains unknown. Some theories propose they are primarily generated in response to sensorimotor processing, while others suggest a role in memory-related processing. We directly recorded hippocampal EEG activity in patients undergoing seizure monitoring while they explored a virtual environment containing teleporters. Critically, this manipulation allowed patients to experience movement through space in the absence of visual and self-motion cues. The prevalence and duration of low-frequency hippocampal oscillations were unchanged by this manipulation, indicating that sensorimotor processing was not required to elicit them during navigation. Furthermore, the frequency-wise pattern of oscillation prevalence during teleportation contained spatial information capable of classifying the distance teleported. These results demonstrate that movement-related sensory information is not required to drive spatially informative low-frequency hippocampal oscillations during navigation and suggest a specific function in memory-related spatial updating. PMID:26924436

  9. Effects of xanthan, guar, carrageenan and locust bean gum addition on physical, chemical and sensory properties of meatballs.

    PubMed

    Demirci, Zeynep Ozben; Yılmaz, Ismail; Demirci, Ahmet Şukru

    2014-05-01

    This study evaluated the effects of xanthan gum, guar gum, carrageenan and locust bean gum on physical, chemical and sensory properties of meatballs. Meatball samples were produced with three different formulations including of 0.5, 1, and 1.5% each gum addition and gum added samples were compared with the control meatballs. Physical and chemical analyses were carried out on raw and cooked samples separately. Moisture contents of raw samples decreased by addition of gums. There were significant decreases (p < 0.05) in moisture and fat contents of raw and cooked meatball samples formulated with gum when compared with control. Ash contents and texture values increased with gum addition to meatballs. Meatball redness decreased with more gum addition in raw and cooked meatball samples, which means that addition of gums resulted in a lighter-coloured product. According to sensory analysis results, locust bean gum added (1%) samples were much preferred by the panelists. PMID:24803701

  10. Effect of corn bran as dietary fiber addition on baking and sensory quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of wholesome and nutritious fiber rich food products with acceptable functional and sensory quality is a major industrial concern, seeking to capture consumer’s interest in healthy and functional foods. Dietary fiber in corn bran is known for its beneficial effects on human health and n...

  11. Sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition.

    PubMed

    Arsa, Supeeraya; Theerakulkait, Chockchai

    2015-08-01

    The sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition were investigated. Rice bran protein concentrate (RBPC) was hydrolyzed by alcalase. Sucrose, glucose or fructose was added to the liquid rice bran protein hydrolysate (LRBPH) and subsequently spray dried. The sensory aroma intensities of the hydrolysates were evaluated. Results showed that after spray drying, the rice bran protein concentrate powder (RBPC-P) had higher sweet and cocoa-like aroma intensities than RBPC (p ≤ 0.05) and hydrolyzed rice bran protein powder (HRBPP) had higher milk powder-like aroma intensities than LRBPH (p ≤ 0.05). The sweet, cocoa-like and milk powder-like aroma intensities in hydrolyzed rice bran protein powder with fructose addition (HRBPP-F) were significantly higher (p ≤ 0.05) than those of hydrolyzed rice bran protein powder with sucrose or glucose addition (HRBPP-S or HRBPP-G). HRBPP-F had the highest overall aroma liking score. These results also indicate that spray drying and sugar addition could improve the sensory aroma characteristics of alcalase hydrolyzed RBPC. PMID:26243954

  12. Sensory Property Improvement of Jokbal (Korean Pettitoes) Made from Frozen Pig Feet by Addition of Herbal Mixture

    PubMed Central

    Lee, Ju-Woon

    2016-01-01

    This study was conducted to improve sensory quality of Jokbal (Korean Pettitoes) made from frozen pig feet by addition of herbal mixture (glasswort, raspberry and Sansa powders). After adding herbal mixture, lipid oxidation (2-thiobarbituric acid values, TBARS), sensory property, and textural property were determined. Herbs were individually added into cooking soup at concentration of 6% (low concentration treatment, LCT) or 12% (high concentration treatment, HCT) of raw pig feet. Refrigerated pig feet were used as control. Thawed feet without any herbal mixture were used as freezing treatment (FT). TBARS in LCT or HCT were lower than that in FT, and showed the similar to that in Control. Addition of the herbal mixture was effective in improving the flavor and textural property of thawed feet by inhibiting lipid oxidation and protein denaturation in a dose-dependent manner. PMID:27499659

  13. Sensory Property Improvement of Jokbal (Korean Pettitoes) Made from Frozen Pig Feet by Addition of Herbal Mixture.

    PubMed

    Hwang, Young-Jung; Hwang, Seol-A; Lee, Ju-Woon

    2016-01-01

    This study was conducted to improve sensory quality of Jokbal (Korean Pettitoes) made from frozen pig feet by addition of herbal mixture (glasswort, raspberry and Sansa powders). After adding herbal mixture, lipid oxidation (2-thiobarbituric acid values, TBARS), sensory property, and textural property were determined. Herbs were individually added into cooking soup at concentration of 6% (low concentration treatment, LCT) or 12% (high concentration treatment, HCT) of raw pig feet. Refrigerated pig feet were used as control. Thawed feet without any herbal mixture were used as freezing treatment (FT). TBARS in LCT or HCT were lower than that in FT, and showed the similar to that in Control. Addition of the herbal mixture was effective in improving the flavor and textural property of thawed feet by inhibiting lipid oxidation and protein denaturation in a dose-dependent manner. PMID:27499659

  14. Vascularized Nerve Bypass Graft: A Case Report of an Additional Treatment for Poor Sensory Recovery.

    PubMed

    Usami, Satoshi; Tanaka, Kentaro; Ohkubo, Alisa; Okazaki, Mutsumi

    2016-04-01

    End-to-side neurorrhaphy has proven effective in basic research and in clinical application. One of the methods of end-to-side neurorrhaphy, nerve bypass technique, has been reported and axon regeneration has been proven. In clinical application, the utility of the nerve bypass technique has been revealed in some cases; however, these bypasses were performed using nonvascularized nerves. We initially used the vascularized nerve bypass graft technique with the sural nerve as a secondary clinical procedure after median nerve injury in a 61-year-old patient and achieved motor and sensory nerve regeneration, as supported by a nerve conduction study and clinical sensory test. This technique has the potential to become one of the choices for salvage procedure of severe nerve injury. PMID:27200248

  15. Vascularized Nerve Bypass Graft: A Case Report of an Additional Treatment for Poor Sensory Recovery

    PubMed Central

    Tanaka, Kentaro; Ohkubo, Alisa; Okazaki, Mutsumi

    2016-01-01

    Summary: End-to-side neurorrhaphy has proven effective in basic research and in clinical application. One of the methods of end-to-side neurorrhaphy, nerve bypass technique, has been reported and axon regeneration has been proven. In clinical application, the utility of the nerve bypass technique has been revealed in some cases; however, these bypasses were performed using nonvascularized nerves. We initially used the vascularized nerve bypass graft technique with the sural nerve as a secondary clinical procedure after median nerve injury in a 61-year-old patient and achieved motor and sensory nerve regeneration, as supported by a nerve conduction study and clinical sensory test. This technique has the potential to become one of the choices for salvage procedure of severe nerve injury. PMID:27200248

  16. Evaluation of the use of Syzygium cumini fruit extract as an antioxidant additive in orange juice and its sensorial impact.

    PubMed

    Tobal, Thaise Mariá; da Silva, Roberto; Gomes, Eleni; Bolini, Helena Maria André; Boscolo, Mauricio

    2012-05-01

    This work is an exploratory study of the possibility of promoting the consumption of Syzygium cumini fruit by adding its extract to orange juice making good use of its functional (antioxidant) properties. S. cumini fruit extract was characterized in terms of its anthocyanin content (2.11 g/100 g expressed in cyanidine-3-glucoside equivalents), total phenolic compounds (360 mg/100 g expressed in gallic acid equivalents) and antioxidant capacity evaluated by the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method. The effects of the addition of S. cumini fruit crude extract as well as its chromatographic fractions on the juice were assessed chemically by headspace solid-phase micro-extraction and gas chromatography coupled with a mass spectrometry detector. Only six compounds had their chromatographic peak intensities clearly changed and the results are discussed in terms of the inhibition of the formation of 2-octanone, hexanol, α-copaene, and α-panasinsene and the conservation of octyl acetate and p-menth-1-en-9-ol. Sensory evaluation of orange juice with and without S. cumini crude extract addition did not show any significant differences in the sensorial profile, discriminative and acceptance tests. PMID:21981004

  17. Rheological and sensory behaviour of rice flour dough: effect of selected additives in relation to dough flattening.

    PubMed

    Dixit, Yash; Bhattacharya, Suvendu

    2015-08-01

    The handling of rice flour doughs in terms of sheeting, flattening and rolling is difficult due to the absence of gluten forming proteins; scope exists to improve these characteristics by incorporating appropriate additives during the preparation of rice doughs. Different levels of additives such as whey protein concentrate (WPC) (0-10 %), xanthan gum (0-5 %), sucrose (0-20 %) and salt (0-2 %) have been incorporated, and the rheological (small-deformation oscillation) as well as sensory characteristics have been determined, in addition to microstructural observations and finding inter-relationships. The second order polynomial can adequately explain the rheological parameters like storage modulus, loss modulus and complex viscosity (R = 0.863-0.889, p ≤ 0.01) while it is poor for phase angle (R = 0.659, p ≤ 0.01). Among these additives, xanthan gum imparts the strongest effect (significant at p ≤ 0.01) followed by whey protein concentrate. The effects of these additives are predominantly linear though quadratic effects are also significant in several cases. A cohesive microstructure with improved binding occurs with a high level (7.5 %) of WPC. It is concluded that a judicious selection of additives in appropriate levels can develop rice doughs that possess the desirable handling properties leading to preparation of products. PMID:26243905

  18. Effect of a phytogenic feed additive on performance, ovarian morphology, serum lipid parameters and egg sensory quality in laying hen

    PubMed Central

    Saki, Ali Asghar; Aliarabi, Hassan; Hosseini Siyar, Sayed Ali; Salari, Jalal; Hashemi, Mahdi

    2014-01-01

    This present study was conducted to evaluate the effects of dietary inclusion of 4, 8 and 12 g kg-1 phytogenic feed additives mixture on performance, egg quality, ovary parameters, serum biochemical parameters and yolk trimethylamine level in laying hens. The results of experiment have shown that egg weight was increased by supplementation of 12 g kg-1 feed additive whereas egg production, feed intake and feed conversion ratio (FCR) were not significantly affected. There were no significant differences in egg quality parameters by supplementation of phytogenic feed additive, whereas yolk trimethylamine level was decreased as the feed additive level increased. The sensory evaluation parameters did not differ significantly. No significant differences were found in serum cholesterol and triglyceride levels between the treatments but low- and high-density lipoprotein were significantly increased. Number of small follicles and ovary weight were significantly increased by supplementation of 12 g kg-1 feed additive. Overall, dietary supplementation of polyherbal additive increased egg weigh, improved ovary characteristics and declined yolk trimethylamine level. PMID:25610580

  19. Addition of garlic or onion before irradiation on lipid oxidation, volatiles and sensory characteristics of cooked ground beef.

    PubMed

    Yang, Han Sul; Lee, Eun Joo; Moon, Sun Hee; Paik, Hyun Dong; Ahn, Dong U

    2011-06-01

    Addition of 0.5% onion was effective in reducing lipid oxidation in irradiated cooked ground beef after 7 day storage. Addition of garlic or onion greatly increased the amounts of sulfur volatiles from cooked ground beef. Irradiation and storage both changed the amounts and compositions of sulfur compounds in both garlic- and onion-added cooked ground beef significantly. Although, addition of garlic and onion produced large amounts of sulfur compounds, the intensity of irradiation odor and irradiation flavor in irradiated cooked ground beef was similar to that of the nonirradiated control. Addition of garlic (0.1%) or onion (0.5%) to ground beef produced a garlic/onion aroma and flavor after cooking, and the intensity was stronger with 0.1% garlic than 0.5% onion treatment. Considering the sensory results and the amounts of sulfur compounds produced in cooked ground beef with added garlic or onion, 0.5% of onion or less than 0.1% of garlic is recommended to mask or change irradiation off-odor and off-flavor. PMID:21277693

  20. Effects of the Addition of Ecklonia cava Powder on the Selected Physicochemical and Sensory Quality of White Pan Bread.

    PubMed

    Lee, Jun Ho; Choi, Dong Won

    2013-12-01

    Physicochemical properties and consumer perception of white pan bread as influenced by the addition of Ecklonia cava powder (ECP) were investigated. Freeze-dried Ecklonia cava were ground, sieved through a laboratory sieve and a fraction with particles less than 250 μm was used. Amount of ECP added (0~3%) to the bread was found to affect the bread quality significantly (P<0.05). pH, bread height, and volume of the control was significantly higher than others (P<0.05) and decreased significantly (P<0.05) with the addition of ECP. Moisture content showed no significant differences (P>0.05). There were distinctive color changes with the addition of the powder: L*- and a*-values decreased but b*-value increased significantly (P<0.05). The hardness of bread was found to increase but both cohesiveness and springiness showed a reverse trend with the addition of the powder. Consumer acceptance test indicated that ECP content 1% on wheat flour could be the recommended supplementation level for the consumers without sacrificing sensory quality. PMID:24551832

  1. Adapting internal statistical models for interpreting visual cues to depth

    PubMed Central

    Seydell, Anna; Knill, David C.; Trommershäuser, Julia

    2010-01-01

    The informativeness of sensory cues depends critically on statistical regularities in the environment. However, statistical regularities vary between different object categories and environments. We asked whether and how the brain changes the prior assumptions about scene statistics used to interpret visual depth cues when stimulus statistics change. Subjects judged the slants of stereoscopically presented figures by adjusting a virtual probe perpendicular to the surface. In addition to stereoscopic disparities, the aspect ratio of the stimulus in the image provided a “figural compression” cue to slant, whose reliability depends on the distribution of aspect ratios in the world. As we manipulated this distribution from regular to random and back again, subjects’ reliance on the compression cue relative to stereoscopic cues changed accordingly. When we randomly interleaved stimuli from shape categories (ellipses and diamonds) with different statistics, subjects gave less weight to the compression cue for figures from the category with more random aspect ratios. Our results demonstrate that relative cue weights vary rapidly as a function of recently experienced stimulus statistics, and that the brain can use different statistical models for different object categories. We show that subjects’ behavior is consistent with that of a broad class of Bayesian learning models. PMID:20465321

  2. Additive effects of predator cues and dimethoate on different levels of biological organisation in the non-biting midge Chironomus riparius.

    PubMed

    Van Praet, Nander; De Jonge, Maarten; Stoks, Robby; Bervoets, Lieven

    2014-10-01

    The combined effects of a pesticide and predation risk on sublethal endpoints in the midge Chironomus riparius were investigated using a combination of predator-release kairomones from common carp (Cyprinus carpio) and alarm substances from conspecifics together with the pesticide dimethoate. Midge larvae were exposed for 30 days to three sublethal dimethoate concentrations (0.01, 0.1 and 0.25 mg L(-1)) in the presence or absence of predator cues. Sublethal endpoints were analysed at different levels of biological organisation. Available energy reserves, enzyme biomarkers, feeding rate and life history endpoints were investigated. Three endpoints were significantly affected by the two highest dimethoate concentrations, i.e. AChE activity, age at emergence and emergence success, with a significant decrease in response after exposure to 0.25, 0.1 and 0.01 mg L(-1) dimethoate, respectively. Four sublethal endpoints were significantly affected by predator stress: Total protein content, GST activity and biomass decreased only in the presence of the predation risk, while AChE activity further decreased significantly in the presence of predation cues and effects on AChE of combined exposure were additive. From this study we can conclude that sublethal life history characteristics should be included in ecotoxicity testing as well as natural environmental stressors such as predator stress, which might act additively with pollutants on fitness related endpoints. PMID:25063887

  3. Rethinking human visual attention: Spatial cueing effects and optimality of decisions by honeybees, monkeys and humans

    PubMed Central

    Eckstein, Miguel P.; Mack, Stephen C.; Liston, Dorion B.; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J.

    2014-01-01

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can

  4. Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans.

    PubMed

    Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J

    2013-06-01

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can

  5. A Critical Review of Screening and Diagnostic Instruments for Autism Spectrum Disorders in People with Sensory Impairments in Addition to Intellectual Disabilities

    ERIC Educational Resources Information Center

    de Vaan, Gitta; Vervloed, Mathijs P. J.; Hoevenaars-van den Boom, Marella; Antonissen, Anneke; Knoors, Harry; Verhoeven, Ludo

    2016-01-01

    Instruments that are used for diagnosing of, or screening for, autism spectrum disorder (ASD) may not be applicable to people with sensory disabilities in addition to intellectual disabilities. First, because they do not account for equifinality, the possibility that different conditions may lead to the same outcome. Second, because they do not…

  6. Polarizing cues.

    PubMed

    Nicholson, Stephen P

    2012-01-01

    People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues. PMID:22400143

  7. Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake.

    PubMed

    Campbell, Lydia; Euston, Stephen R; Ahmed, Mohamed A

    2016-03-01

    This paper investigates the sensory acceptability and textural properties of leavened wheat bread and sponge cake fortified with cow protein isolates that had been denatured and glycated by thermal treatment. Defatted cowpea flour was prepared from cow pea beans and the protein isolate was prepared (CPI) and thermally denatured (DCPI). To prepare glycated cowpea protein isolate (GCPI) the cowpea flour slurry was heat treated before isolation of the protein. CPI was more susceptible to thermal denaturation than GCPI as determined by turbidity and sulphydryl groups resulting in greater loss of solubility. This is attributed to the higher glycation degree and higher carbohydrate content of GCPI as demonstrated by glycoprotein staining of SDS PAGE gels. Water absorption of bread dough was significantly enhanced by DCPI and to a larger extent GCPI compared to the control, resulting in softer texture. CPI resulted in significantly increased crumb hardness in baked bread than the control whereas DCPI or GCPI resulted in significantly softer crumb. Bread fortified with 4% DCPI or GCPI was similar to control as regards sensory and textural properties whereas 4% CPI was significantly different, limiting its inclusion level to 2%. There was a trend for higher sensory acceptability scores for GCPI containing bread compared DCPI. Whole egg was replaced by 20% by GCPI (3.5%) in sponge cake without affecting the sensory acceptability, whereas CPI and DCPI supplemented cakes were significantly different than the control. PMID:26471676

  8. Impact of sensory feed additives on feed intake, feed preferences, and growth of female piglets during the early postweaning period.

    PubMed

    Clouard, C; Val-Laillet, D

    2014-05-01

    Our study aimed at investigating the effect of feed supplementation, from weaning, with 3 sensory feed additives (FA1, FA2, and FA3) on feed preferences, feed intake, and growth of piglets. The FA1 contained extract of Stevia rebaudiana (10 to 20%), extract of high-saponin plants (5 to 10%), and excipients (70 to 85%), the FA2 was mainly composed of a natural extract of Citrus sinensis (60 to 80%), and the FA3 was made of a blend of extracts of hot-flavored spices (5 to 15%) and excipients (85 to 95%). At weaning (d 1), a total of 32 female piglets housed in individual pens were allocated to 4 treatments (FA1, FA2, FA3, and control [CON]) of equivalent mean weight. The pigs were fed a standard pelleted prestarter diet from weaning (d 1) to d 15 and a starter diet from d 16 to 28. The diets were supplemented with the feed additives (FA) corresponding to their treatment, while the CON treatment was the standard diets with no additive. Feed refusals were weighed daily and piglets were weighed weekly on d 1, 7, 14, 21, and 28. On the day of feed transition (d 16) as well as 7 (d 23) and 10 d (d 26) later, the animals were consecutively subjected to 1- and 22-h double-choice feeding tests to investigate their preferences during a short period and a longer period of time for the CON starter diet and the starter diet added with the FA corresponding to their treatment. No overall effect of the feed additives was observed on ADFI, ADG, G:F, and final BW. No overall preference was highlighted for the FA1 treatment, except for a preference for the FA1 starter diet during the 1-h test on d 23 (78% of total feed intake; P < 0.01). For the FA2 treatment, the pigs consumed the FA2 starter diet more than the CON starter diet during the 22-h tests on d 16 (67% of total feed intake; P < 0.05) and 26 (62% of total feed intake; P < 0.01). For the FA3 treatment, on d 26, the FA3 starter diet was and tended to be consumed more than the CON starter diet during 1- (69% of total intake; P

  9. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    PubMed

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists. PMID:26604374

  10. Effect of dual sensory loss on auditory localization: implications for intervention.

    PubMed

    Simon, Helen J; Levitt, Harry

    2007-12-01

    Our sensory systems are remarkable in several respects. They are extremely sensitive, they each perform more than one function, and they interact in a complementary way, thereby providing a high degree of redundancy that is particularly helpful should one or more sensory systems be impaired. In this article, the problem of dual hearing and vision loss is addressed. A brief description is provided on the use of auditory cues in vision loss, the use of visual cues in hearing loss, and the additional difficulties encountered when both sensory systems are impaired. A major focus of this article is the use of sound localization by normal hearing, hearing impaired, and blind individuals and the special problem of sound localization in people with dual sensory loss. PMID:18003869

  11. Effect of additional of Hoodia Gordonii and seaweed powder on the sensory and physicochemical properties of brown rice bar

    NASA Astrophysics Data System (ADS)

    Hajal, Masturah Ebni; Ghani, Maaruf Abd; Daud, Norlida Mat

    2015-09-01

    Awareness of the nutritional content of food has increased with the emergence of various health products in the market. Cereal bar is one of the beneficial foods among consumer that concern on their healthy food. This study was conducted to develop a brown rice bar that contain active ingredients (H. gordonii and seaweed powder) and to determine the effect on sensory evaluation and physicochemical properties (colour, texture and proximate analysis) of this product. This study consisted of two phases in which the first phase consisted of development of ten formulations including control. All of the formulations were undergo analysis of colour, texture and sensory evaluation. Based on the sensory evaluation, Control (H. gordonii: 0%, seaweed: 0%) and two best formulations that consist of formulation 6 (H. gordonii: 1.6%; seaweed: 2.8%) and formulation 9 (H. gordonii: 2.4%, seaweed: 2.8%) were chosen to undergo the second phase which is proximate analysis. Base on the result, were significant different (p<0.05) on proximate analysis except for the protein and moisture content. Therefore, it can be concluded that H. gordonii is a good source of fiber when adding in a bar.

  12. Multisensory calibration is independent of cue reliability

    PubMed Central

    Zaidel, Adam; Turner, Amanda H.; Angelaki, Dora E.

    2011-01-01

    Multisensory calibration is fundamental for proficient interaction within a changing environment. Initial studies suggested a visual-dominant mechanism. More recently, a cue-reliability based model, similar to optimal cue-integration, has been proposed. However, a more general, reliability-independent model of fixed-ratio adaptation (of which visual-dominance is a sub-case) has never been tested. Here, we studied behavior of both humans and monkeys performing a heading-discrimination task. Subjects were presented with either visual (optic-flow), vestibular (motion-platform) or combined (visual/vestibular) stimuli, and required to report whether self-motion was to the right/left of straight ahead. A systematic heading-discrepancy was introduced between the visual and vestibular cues, without external feedback. Cue-calibration was measured by the resulting sensory adaptation. Both visual and vestibular cues significantly adapted in the direction required to reduce cue-conflict. However, unlike multisensory cue-integration, cue-calibration was not reliability-based. Rather, a model of fixed-ratio adaptation best described the data, whereby vestibular adaptation was greater than visual adaptation, irrespective of relative cue-reliability. The average ratio of vestibular to visual adaptation was 1.75 and 2.30 for the human and monkey data, respectively. Furthermore, only through modeling fixed-ratio adaptation (using the ratio extracted from the data), were we were able to account for reliability-based cue-integration during the adaptation process. The finding that cue-calibration does not depend on cue-reliability is consistent with the notion that it follows an underlying estimate of cue-accuracy. Cue-accuracy is generally independent of cue-reliability and its estimate may change with a much slower time-constant. Thus, greater vestibular vs. visual (fixed-ratio) adaptation suggests lower vestibular vs. visual cue-accuracy. PMID:21957256

  13. Addition of posttraumatic stress and sensory hypersensitivity more accurately estimates disability and pain than fear avoidance measures alone after whiplash injury.

    PubMed

    Pedler, Ashley; Kamper, Steven J; Sterling, Michele

    2016-08-01

    The fear avoidance model (FAM) has been proposed to explain the development of chronic disability in a variety of conditions including whiplash-associated disorders (WADs). The FAM does not account for symptoms of posttraumatic stress and sensory hypersensitivity, which are associated with poor recovery from whiplash injury. The aim of this study was to explore a model for the maintenance of pain and related disability in people with WAD including symptoms of PTSD, sensory hypersensitivity, and FAM components. The relationship between individual components in the model and disability and how these relationships changed over the first 12 weeks after injury were investigated. We performed a longitudinal study of 103 (74 female) patients with WAD. Measures of pain intensity, cold and mechanical pain thresholds, symptoms of posttraumatic stress, pain catastrophising, kinesiophobia, and fear of cervical spine movement were collected within 6 weeks of injury and at 12 weeks after injury. Mixed-model analysis using Neck Disability Index (NDI) scores and average 24-hour pain intensity as the dependent variables revealed that overall model fit was greatest when measures of fear of movement, posttraumatic stress, and sensory hypersensitivity were included. The interactive effects of time with catastrophising and time with fear of activity of the cervical spine were also included in the best model for disability. These results provide preliminary support for the addition of neurobiological and stress system components to the FAM to explain poor outcome in patients with WAD. PMID:27007066

  14. Discriminability and Perceptual Saliency of Temporal and Spectral Cues for Final Fricative Consonant Voicing in Simulated Cochlear-Implant and Bimodal Hearing.

    PubMed

    Kong, Ying-Yee; Winn, Matthew B; Poellmann, Katja; Donaldson, Gail S

    2016-01-01

    Multiple redundant acoustic cues can contribute to the perception of a single phonemic contrast. This study investigated the effect of spectral degradation on the discriminability and perceptual saliency of acoustic cues for identification of word-final fricative voicing in "loss" versus "laws", and possible changes that occurred when low-frequency acoustic cues were restored. Three acoustic cues that contribute to the word-final /s/-/z/ contrast (first formant frequency [F1] offset, vowel-consonant duration ratio, and consonant voicing duration) were systematically varied in synthesized words. A discrimination task measured listeners' ability to discriminate differences among stimuli within a single cue dimension. A categorization task examined the extent to which listeners make use of a given cue to label a syllable as "loss" versus "laws" when multiple cues are available. Normal-hearing listeners were presented with stimuli that were either unprocessed, processed with an eight-channel noise-band vocoder to approximate spectral degradation in cochlear implants, or low-pass filtered. Listeners were tested in four listening conditions: unprocessed, vocoder, low-pass, and a combined vocoder + low-pass condition that simulated bimodal hearing. Results showed a negative impact of spectral degradation on F1 cue discrimination and a trading relation between spectral and temporal cues in which listeners relied more heavily on the temporal cues for "loss-laws" identification when spectral cues were degraded. Furthermore, the addition of low-frequency fine-structure cues in simulated bimodal hearing increased the perceptual saliency of the F1 cue for "loss-laws" identification compared with vocoded speech. Findings suggest an interplay between the quality of sensory input and cue importance. PMID:27317666

  15. Cellular Basis of Head Direction and Contextual Cues in the Insect Brain.

    PubMed

    Varga, Adrienn G; Ritzmann, Roy E

    2016-07-25

    Animals rely upon integrated sensory information for spatial navigation. A question of wide importance in navigation is how sensory cues get transformed into neural codes that represent the animal's orientation within its proximal environment. Here, we investigated the possibility of head-direction coding in the central complex of the cockroach, Blaberus discoidalis. We used extracellular recordings in restrained animals that were rotated on a platform relative to a fixed landmark. The passive rotations allowed us to test for head-direction coding in the absence of self-generated motion cues. Our results indicate that individual cells in the central complex encode the animal's heading relative to a landmark's position in several ways. In some cells, directional tuning was established even in the absence of visual cues, suggesting that the directional code can be maintained solely based on the internal motion cues derived from the passive rotations. Additionally, some cells in the central complex encoded rotation-direction history, a navigational context cue, by increasing or decreasing the firing rate during the stationary periods following clockwise or counterclockwise rotations. Together, these results unveil head-direction cell-like activity in the insect central complex, which highly resemble similarly functioning cells in the mammalian brain that encode head direction. We predict that the observed head-orientation coding and directionally sensitive cells are essential components of the brain circuitry mediating insect navigation. PMID:27397888

  16. Integration of facial and newly learned visual cues in speech perception.

    PubMed

    Massaro, Dom; Cohen, Michael M; Meyer, Heidi; Stribling, Tracy; Sterling, Cass; Vanderhyden, Sam

    2011-01-01

    We are developing technology to translate acoustic characteristics of speech into visual cues that can be used to supplement speechreading when hearing is limited. Research and theory have established that perceivers are influenced by multiple sources of sensory and contextual information in spoken language processing. Previous research has also shown that additional sources of information can be learned and used to supplement those that are normally available but have been degraded by sensory impairment or difficult environments. We tested whether people can combine or integrate information from the face and information from newly learned cues in an optimal manner. Subjects first learned the visual cues and then were tested under three conditions.Words were presented with just the face, just the visual cues, or both together. Performance was much better with both cues than with either one alone. Similar to the description of previous results with audible and visible speech, the present results were well described by the Fuzzy Logical Model of Perception (Massaro, 1998), which predicts optimal or maximally efficient integration. PMID:21977695

  17. Sensory Augmentation for the Blind

    PubMed Central

    Kärcher, Silke M.; Fenzlaff, Sandra; Hartmann, Daniela; Nagel, Saskia K.; König, Peter

    2012-01-01

    Common navigational aids used by blind travelers during large-scale navigation divert attention away from important cues of the immediate environment (i.e., approaching vehicles). Sensory augmentation devices, relying on principles similar to those at work in sensory substitution, can potentially bypass the bottleneck of attention through sub-cognitive implementation of a set of rules coupling motor actions with sensory stimulation. We provide a late blind subject with a vibrotactile belt that continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. The present experimental approach demonstrates the positive potential of sensory augmentation devices for the help of handicapped people. PMID:22403535

  18. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  19. A review of visual cues associated with food on food acceptance and consumption.

    PubMed

    Wadhera, Devina; Capaldi-Phillips, Elizabeth D

    2014-01-01

    Several sensory cues affect food intake including appearance, taste, odor, texture, temperature, and flavor. Although taste is an important factor regulating food intake, in most cases, the first sensory contact with food is through the eyes. Few studies have examined the effects of the appearance of a food portion on food acceptance and consumption. The purpose of this review is to identify the various visual factors associated with food such as proximity, visibility, color, variety, portion size, height, shape, number, volume, and the surface area and their effects on food acceptance and consumption. We suggest some ways that visual cues can be used to increase fruit and vegetable intake in children and decrease excessive food intake in adults. In addition, we discuss the need for future studies that can further establish the relationship between several unexplored visual dimensions of food (specifically shape, number, size, and surface area) and food intake. PMID:24411766

  20. Active sensing via movement shapes spatiotemporal patterns of sensory feedback.

    PubMed

    Stamper, Sarah A; Roth, Eatai; Cowan, Noah J; Fortune, Eric S

    2012-05-01

    Previous work has shown that animals alter their locomotor behavior to increase sensing volumes. However, an animal's own movement also determines the spatial and temporal dynamics of sensory feedback. Because each sensory modality has unique spatiotemporal properties, movement has differential and potentially independent effects on each sensory system. Here we show that weakly electric fish dramatically adjust their locomotor behavior in relation to changes of modality-specific information in a task in which increasing sensory volume is irrelevant. We varied sensory information during a refuge-tracking task by changing illumination (vision) and conductivity (electroreception). The gain between refuge movement stimuli and fish tracking responses was functionally identical across all sensory conditions. However, there was a significant increase in the tracking error in the dark (no visual cues). This was a result of spontaneous whole-body oscillations (0.1 to 1 Hz) produced by the fish. These movements were costly: in the dark, fish swam over three times further when tracking and produced more net positive mechanical work. The magnitudes of these oscillations increased as electrosensory salience was degraded via increases in conductivity. In addition, tail bending (1.5 to 2.35 Hz), which has been reported to enhance electrosensory perception, occurred only during trials in the dark. These data show that both categories of movements - whole-body oscillations and tail bends - actively shape the spatiotemporal dynamics of electrosensory feedback. PMID:22496294

  1. Visual Cues, Verbal Cues and Child Development

    ERIC Educational Resources Information Center

    Valentini, Nadia

    2004-01-01

    In this article, the author discusses two strategies--visual cues (modeling) and verbal cues (short, accurate phrases) which are related to teaching motor skills in maximizing learning in physical education classes. Both visual and verbal cues are strong influences in facilitating and promoting day-to-day learning. Both strategies reinforce…

  2. The sensory ecology of ocean navigation.

    PubMed

    Lohmann, Kenneth J; Lohmann, Catherine M F; Endres, Courtney S

    2008-06-01

    How animals guide themselves across vast expanses of open ocean, sometimes to specific geographic areas, has remained an enduring mystery of behavioral biology. In this review we briefly contrast underwater oceanic navigation with terrestrial navigation and summarize the advantages and constraints of different approaches used to analyze animal navigation in the sea. In addition, we highlight studies and techniques that have begun to unravel the sensory cues that underlie navigation in sea turtles, salmon and other ocean migrants. Environmental signals of importance include geomagnetic, chemical and hydrodynamic cues, perhaps supplemented in some cases by celestial cues or other sources of information that remain to be discovered. An interesting similarity between sea turtles and salmon is that both have been hypothesized to complete long-distance reproductive migrations using navigational systems composed of two different suites of mechanisms that function sequentially over different spatial scales. The basic organization of navigation in these two groups of animals may be functionally similar, and perhaps also representative of other long-distance ocean navigators. PMID:18490387

  3. Homing orientation in salamanders: A mechanism involving chemical cues

    NASA Technical Reports Server (NTRS)

    Madison, D. M.

    1972-01-01

    A detailed description is given of experiments made to determine the senses and chemical cues used by salamanders for homing orientation. Sensory impairment and cue manipulative techniques were used in the investigation. All experiments were carried out at night. Results show that sense impaired animals did not home as readily as those who were blind but retained their sensory mechanism. This fact suggests that the olfactory mechanism is necessary for homing in the salamander. It was determined that after the impaired salamander regenerated its sensory mechanism it too returned home. It was concluded that homing ability in salamanders is direction independent, distant dependent, and vision independent.

  4. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties.

    PubMed

    Mitsumoto, Mitsuru; O'Grady, Michael N; Kerry, Joe P; Joe Buckley, D

    2005-04-01

    The effects of addition of tea catechins (TC) and vitamin C (VC) on sensory evaluation, colour and lipid stability in cooked or raw beef and chicken meat patties during refrigerated storage were studied. Fresh beef striploin and chicken breast muscles were minced, following removal of external fat and connective tissue. Following mincing, beef and chicken were assigned to one of the following five treatments: control (meat treated with no antioxidant); TC200, meat plus 200 mg TC/kg muscle; TC400, meat plus 400 mg TC/kg muscle; VC200, meat plus 200 mg VC/kg muscle, VC400, meat plus 400 mg VC/kg muscle. Sodium chloride (1%) was added to all samples. Patties (125 g portions), formed from the above-treated minced meat, were oven cooked, cooled, and packaged in 30% CO(2):70% N(2). Fresh raw beef and chicken patties were packaged in 80% O(2):20% CO(2). All samples were stored for up to 7 days under fluorescent lighting at 4 °C. Sensory parameters (colour, flavour, taste, tenderness and overall acceptability) were evaluated on cooked beef and chicken patties after 1, 3 and 6 days of storage. Surface colour (Hunter L, a and b values), and lipid oxidation (2-thiobarbituric acid reactive substances) were measured on days 1, 3 and 6 of storage for cooked meats and on days 2 and 7 for raw beef and chicken. Tea catechins addition (200 or 400 mg/kg) to minced meat caused (P<0.05) discolouration in cooked beef and chicken meat patties and significantly reduced (P<0.001) lipid oxidation in cooked or raw beef patties compared to the control. Beef, either raw or cooked, was more susceptible (P<0.01) to oxidation compared to chicken. Raw meat stored in high oxygen conditions was more susceptible to lipid oxidation than cooked meat stored in anaerobic conditions. Tea catechins treatments (TC200 and TC400) inhibited (P<0.05) lipid oxidation in raw beef to a greater extent than vitamin C treatments (VC200 and VC400). These results indicate that tea catechins are potent natural

  5. Vasopressin Proves Es-sense-tial: Vasopressin and the Modulation of Sensory Processing in Mammals

    PubMed Central

    Bester-Meredith, Janet K.; Fancher, Alexandria P.; Mammarella, Grace E.

    2015-01-01

    As mammals develop, they encounter increasing social complexity in the surrounding world. In order to survive, mammals must show appropriate behaviors toward their mates, offspring, and same-sex conspecifics. Although the behavioral effects of the neuropeptide arginine vasopressin (AVP) have been studied in a variety of social contexts, the effects of this neuropeptide on multimodal sensory processing have received less attention. AVP is widely distributed through sensory regions of the brain and has been demonstrated to modulate olfactory, auditory, gustatory, and visual processing. Here, we review the evidence linking AVP to the processing of social stimuli in sensory regions of the brain and explore how sensory processing can shape behavioral responses to these stimuli. In addition, we address the interplay between hormonal and neural AVP in regulating sensory processing of social cues. Because AVP pathways show plasticity during development, early life experiences may shape life-long processing of sensory information. Furthermore, disorders of social behavior such as autism and schizophrenia that have been linked with AVP also have been linked with dysfunctions in sensory processing. Together, these studies suggest that AVP’s diversity of effects on social behavior across a variety of mammalian species may result from the effects of this neuropeptide on sensory processing. PMID:25705203

  6. Effect of preservative addition on sensory and dynamic profile of Lucanian dry-sausages as assessed by quantitative descriptive analysis and temporal dominance of sensations.

    PubMed

    Braghieri, Ada; Piazzolla, Nicoletta; Galgano, Fernanda; Condelli, Nicola; De Rosa, Giuseppe; Napolitano, Fabio

    2016-12-01

    The quantitative descriptive analysis (QDA) was combined with temporal dominance of sensations (TDS) to assess the sensory properties of Lucanian dry-sausages either added with nitrate, nitrite and l-ascorbic acid (NS), or not (NNS). Both QDA and TDS differentiated the two groups of sausages. NNS products were perceived with higher intensity of hardness (P<0.05) and tended to be perceived with higher intensities of flavor (P<0.10), pepper (P<0.20), and oiliness (P<0.20), while resulting lower in chewiness (P<0.20). TDS showed that in all the sausages hardness was the first dominant attribute; then, in NNS products flavor remained dominant until the end of tasting, whereas in NS products oiliness prevailed. In conclusion, TDS showed that the perception of some textural parameters, such as oiliness, during mastication was more dominant in NS products, whereas using conventional QDA this attribute appeared higher in sausages manufactured without preservatives. Therefore, TDS provided additional information for the description and differentiation of Lucanian sausages. PMID:27486959

  7. Improvement of microbiological safety and sensorial quality of pork jerky by electron beam irradiation and by addition of onion peel extract and barbecue flavor

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo; Jung, Samooel; Yong, Hae In; Bae, Young Sik; Kang, Suk Nam; Kim, Il Suk; Jo, Cheorun

    2014-05-01

    The combined effects of electron-beam (EB) irradiation and addition of onion peel (OP) extract and barbecue flavor (BF) on inactivation of foodborne pathogens and the quality of pork jerky was investigated. Prepared pork jerky samples were irradiated (0, 1, 2, and 4 kGy) and stored for 2 month at 25 °C. The D10 values of Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium observed in the OP treated samples were 0.19, 0.18, and 0.19 kGy, whereas those in control were 0.25, 0.23, and 0.20 kGy, respectively. Irradiated samples with OP extract and BF had substantially lower total aerobic bacterial counts than the control had. Samples with added OP extract and BF had lower peroxide values than the control had. Sensory evaluation indicated that overall acceptability of treated samples was not changed up to 2 kGy. Therefore, EB irradiation, combined with OP extract and BF, has improved the microbiological safety with no negative effects on the quality of pork jerky.

  8. Physical and sensory properties of all-barley and all-oat breads with additional hydroxypropyl methylcellulose (HPMC) β-glucan.

    PubMed

    Kim, Yookyung; Yokoyama, Wallace H

    2011-01-26

    Hydroxypropyl methylcellulose (HPMC) is a substituted cellulose that reduces serum cholesterol at modest intake levels. HPMC has also been used for decades in gluten-free breads at a level to optimize loaf volume. Because consumers resist the consumption of whole wheat breads, the sensory and physical properties of all oat and barley breads incorporating HPMC were evaluated. Oat and barley also contain β-glucan, a glucose polymer similar to HPMC that also lowers cholesterol. The textural and sensory properties of the breads were determined by instrumental and chemical methods and sensory panels. HPMC increased the loaf volume of the breads by up to 2 times and decreased hardness immediately after baking and after up to 3 days of storage. Barley bread with HPMC was rated the highest in overall acceptability by sensory panelists compared to oat and wheat breads with or without HPMC. PMID:21189014

  9. Characterization of assortative mating in medaka: Mate discrimination cues and factors that bias sexual preference.

    PubMed

    Utagawa, Umi; Higashi, Shoichi; Kamei, Yasuhiro; Fukamachi, Shoji

    2016-08-01

    Somatolactin alpha (SLα) is a peptide hormone that regulates skin color, and SLα-deficient and SLα-excess strains have been established in medaka (Oryzias latipes). Their skin colors differ conspicuously and males prefer to mate with females from the same strain. Pre-mating sexual isolation in this model vertebrate provides an ideal platform for investigating the molecular mechanisms of mate choice. Thus, we studied the sensory cues utilized by these fish to discriminate the same and different strains. When males were given a choice under monochromatic light, where the skin colors differed only in terms of brightness but not in hue, mating occurred but it was not assortative. This suggests that: (1) a visual cue is essential for mate discrimination rather than odor or acoustic cues; (2) the visual cue is color and not shape, size, or motion; and (3) the color cue needs to be perceived as the relative balance of brightness at multiple wavelengths rather than the brightness at a specific wavelength. In addition, we introduced another skin-color mutation into the SLα-excess strain and found that this new strain and the original SLα-excess strain, which also overexpressed SLα but exhibited distinct skin colors, preferred different colors. This demonstrates that SLα is not a primary determinant of sexual preference. The symmetrically biased sexual preferences of the SLα-deficient and SLα-excess strains may be acquired postnatally depending on their individual skin color or that of tank mates. PMID:27260680

  10. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues.

    PubMed

    Seagraves, Kelly M; Arthur, Ben J; Egnor, S E Roian

    2016-05-15

    Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience - with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice. PMID:27207951

  11. Cue Reliability Represented in the Shape of Tuning Curves in the Owl's Sound Localization System

    PubMed Central

    Fischer, Brian J.; Peña, Jose L.

    2016-01-01

    Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons' selectivity was necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics. SIGNIFICANCE STATEMENT In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions, the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are debated. In this study, we used the barn owl's sound localization system to address this question. We demonstrated that the mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed for the neurons' selectivity to capture cue reliability, influencing the population readout commanding the owl's sound-orienting behavior. PMID:26888922

  12. Sensory mononeuropathies.

    PubMed

    Massey, E W

    1998-01-01

    The clinical neurologist frequently encounters patients with a variety of focal sensory symptoms and signs. This article reviews the clinical features, etiologies, laboratory findings, and management of the common sensory mononeuropathies including meralgia paresthetica, cheiralgia paresthetica, notalgia paresthetica, gonyalgia paresthetica, digitalgia paresthetica, intercostal neuropathy, and mental neuropathy. PMID:9608615

  13. Reactivity to Cannabis Cues in Virtual Reality Environments†

    PubMed Central

    Bordnick, Patrick S.; Copp, Hilary L.; Traylor, Amy; Graap, Ken M.; Carter, Brian L.; Walton, Alicia; Ferrer, Mirtha

    2014-01-01

    Virtual reality (VR) cue environments have been developed and successfully tested in nicotine, cocaine, and alcohol abusers. Aims in the current article include the development and testing of a novel VR cannabis cue reactivity assessment system. It was hypothesized that subjective craving levels and attention to cannabis cues would be higher in VR environments merits with cannabis cues compared to VR neutral environments. Twenty nontreatment-seeking current cannabis smokers participated in the VR cue trial. During the VR cue trial, participants were exposed to four virtual environments that contained audio, visual, olfactory, and vibrotactile sensory stimuli. Two VR environments contained cannabis cues that consisted of a party room in which people were smoking cannabis and a room containing cannabis paraphernalia without people. Two VR neutral rooms without cannabis cues consisted of a digital art gallery with nature videos. Subjective craving and attention to cues were significantly higher in the VR cannabis environments compared to the VR neutral environments. These findings indicate that VR cannabis cue reactivity may offer a new technology-based method to advance addiction research and treatment. PMID:19705672

  14. Sensory, motor, and combined contexts for context-specific adaptation of saccade gain in humans

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Clendaniel, Richard

    2002-01-01

    Saccadic eye movements can be adapted in a context-specific manner such that their gain can be made to depend on the state of a prevailing context cue. We asked whether context cues are more effective if their nature is primarily sensory, motor, or a combination of sensory and motor. Subjects underwent context-specific adaptation using one of three different context cues: a pure sensory context (head roll-tilt right or left); a pure motor context (changes in saccade direction); or a combined sensory-motor context (head roll-tilt and changes in saccade direction). We observed context-specific adaptation in each condition; the greatest degree of context-specificity occurred in paradigms that used the motor cue, alone or in conjunction with the sensory cue. Copyright 2002 Elsevier Science Ireland Ltd.

  15. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  16. Cue reactivity in virtual reality: the role of context.

    PubMed

    Paris, Megan M; Carter, Brian L; Traylor, Amy C; Bordnick, Patrick S; Day, Susan X; Armsworth, Mary W; Cinciripini, Paul M

    2011-07-01

    Cigarette smokers in laboratory experiments readily respond to smoking stimuli with increased craving. An alternative to traditional cue-reactivity methods (e.g., exposure to cigarette photos), virtual reality (VR) has been shown to be a viable cue presentation method to elicit and assess cigarette craving within complex virtual environments. However, it remains poorly understood whether contextual cues from the environment contribute to craving increases in addition to specific cues, like cigarettes. This study examined the role of contextual cues in a VR environment to evoke craving. Smokers were exposed to a virtual convenience store devoid of any specific cigarette cues followed by exposure to the same convenience store with specific cigarette cues added. Smokers reported increased craving following exposure to the virtual convenience store without specific cues, and significantly greater craving following the convenience store with cigarette cues added. However, increased craving recorded after the second convenience store may have been due to the pre-exposure to the first convenience store. This study offers evidence that an environmental context where cigarette cues are normally present (but are not), elicits significant craving in the absence of specific cigarette cues. This finding suggests that VR may have stronger ecological validity over traditional cue reactivity exposure methods by exposing smokers to the full range of cigarette-related environmental stimuli, in addition to specific cigarette cues, that smokers typically experience in their daily lives. PMID:21349649

  17. Sensory integration: neuronal filters for polarized light patterns.

    PubMed

    Krapp, Holger G

    2014-09-22

    Animal and human behaviour relies on local sensory signals that are often ambiguous. A new study shows how tuning neuronal responses to celestial cues helps locust navigation, demonstrating a common principle of sensory information processing: the use of matched filters. PMID:25247356

  18. Multiscale Cues Drive Collective Cell Migration

    PubMed Central

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  19. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  20. Multiscale Cues Drive Collective Cell Migration.

    PubMed

    Nam, Ki-Hwan; Kim, Peter; Wood, David K; Kwon, Sunghoon; Provenzano, Paolo P; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  1. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  2. Audiovisual Delay as a Novel Cue to Visual Distance

    PubMed Central

    Jaekl, Philip; Seidlitz, Jakob; Harris, Laurence R.; Tadin, Duje

    2015-01-01

    For audiovisual sensory events, sound arrives with a delay relative to light that increases with event distance. It is unknown, however, whether humans can use these ubiquitous sound delays as an information source for distance computation. Here, we tested the hypothesis that audiovisual delays can both bias and improve human perceptual distance discrimination, such that visual stimuli paired with auditory delays are perceived as more distant and are thereby an ordinal distance cue. In two experiments, participants judged the relative distance of two repetitively displayed three-dimensional dot clusters, both presented with sounds of varying delays. In the first experiment, dot clusters presented with a sound delay were judged to be more distant than dot clusters paired with equivalent sound leads. In the second experiment, we confirmed that the presence of a sound delay was sufficient to cause stimuli to appear as more distant. Additionally, we found that ecologically congruent pairing of more distant events with a sound delay resulted in an increase in the precision of distance judgments. A control experiment determined that the sound delay duration influencing these distance judgments was not detectable, thereby eliminating decision-level influence. In sum, we present evidence that audiovisual delays can be an ordinal cue to visual distance. PMID:26509795

  3. Intralist Cueing of Recognition

    ERIC Educational Resources Information Center

    Slamecka, Norman J.

    1975-01-01

    Two experiments tested for effects of intralist cues upon recognition probability. Categorized and random lists were each tested, with targets appearing with zero, one or three intralist cues. Experiments showed substantial effects of trials and list type, but not of intralist context. (CHK)

  4. Hemodynamic Response Pattern of Spatial Cueing is Different for Social and Symbolic Cues

    PubMed Central

    Lockhofen, Denise Elfriede Liesa; Gruppe, Harald; Ruprecht, Christoph; Gallhofer, Bernd; Sammer, Gebhard

    2014-01-01

    Directional social gaze and symbolic arrow cues both serve as spatial cues, causing seemingly reflexive shifts of an observer’s attention. However, the underlying neural substrates remain a point at issue. The present study specifically addressed the differences in the activation patterns associated with non-predictive gaze and arrow cues, placing special emphasis on brain regions known to be involved in the processing of social information [superior temporal sulcus (STS), fusiform gyrus (FFG)]. Additionally, the functional connectivity of these brain regions with other areas involved in gaze processing and spatial attention was investigated. Results indicate that gaze and arrow cues recruit several brain regions differently, with gaze cues increasing activation in occipito-temporal regions and arrow cues increasing activation in occipito-parietal regions. Specifically, gaze cues in contrast to arrow cues enhanced activation in the FFG and the STS. Functional connectivity analysis revealed that during gaze cueing the STS was more strongly connected to the intraparietal sulcus (IPS) and the frontal eye fields, whereas the FFG was more strongly connected to the IPS and the amygdala. PMID:25426057

  5. Multimodal integration: Visual cues helps odor-seeking fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that integration of sensory modalities is critical to the process of odor-source location. Attractive food odors initiate flies’ response to visual cues to maintain narrow angle turns with respect to the wind line; loss of odor contact due to idiothetic motion or experimen...

  6. Sensory analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensory evaluation can answer questions about a product that instruments cannot. The human subject is the instrument, and data can provide a wealth of information for a product developer, or results can be very variable and erroneous if all the precautions to minimize bias and external noise are no...

  7. Sensory Dysfunction

    MedlinePlus

    ... to Web version Sensory Dysfunction Overview Why are smell and taste important? Your senses of smell and taste let you fully enjoy the scents ... bitter and sour. Flavor involves both taste and smell. For example, because a person is able to ...

  8. Sensory characterisation and consumer acceptability of potassium chloride and sunflower oil addition in small-caliber non-acid fermented sausages with a reduced content of sodium chloride and fat.

    PubMed

    Mora-Gallego, Héctor; Guàrdia, Maria Dolors; Serra, Xavier; Gou, Pere; Arnau, Jacint

    2016-02-01

    The effect of the simultaneous reduction of fat proportion (from 20% to 10% and 7%) and added salt (from 2.5% to 1.5%) and the subsequent addition of 0.64% KCl and sunflower oil (1.5% and 3.0%) on the physicochemical, instrumental colour and texture, sensory properties and consumer acceptability of small caliber non-acid fermented sausages (fuet type) was studied. This simultaneous reduction of fat and salt increased weight loss, moisture, water activity (aw), redness, instrumental texture parameters (hardness, chewiness and cohesiveness), sensory attributes (darkness, hardness, elasticity) and the consumer acceptability. The subsequent addition of 0.64% KCl to the leanest batch decreased the aw and barely affected instrumental texture parameters and consumer acceptability. Subsequent sunflower oil addition decreased hardness, chewiness and cohesiveness and increased crumbliness and oil flavour which may decrease the consumer acceptability. The simultaneous reduction of fat and NaCl with the addition of 0.64% KCl was the preferred option by the consumers. PMID:26497101

  9. Sensory influences on food intake control: moving beyond palatability.

    PubMed

    McCrickerd, K; Forde, C G

    2016-01-01

    The sensory experience of eating is an important determinant of food intake control, often attributed to the positive hedonic response associated with certain sensory cues. However, palatability is just one aspect of the sensory experience. Sensory cues based on a food's sight, smell, taste and texture are operational before, during and after an eating event. The focus of this review is to look beyond palatability and highlight recent advances in our understanding of how certain sensory characteristics can be used to promote better energy intake control. We consider the role of visual and odour cues in identifying food in the near environment, guiding food choice and memory for eating, and highlight the ways in which tastes and textures influence meal size and the development of satiety after consumption. Considering sensory characteristics as a functional feature of the foods and beverages we consume provides the opportunity for research to identify how sensory enhancements might be combined with energy reduction in otherwise palatable foods to optimize short-term energy intake regulation in the current food environment. Moving forward, the challenge for sensory nutritional science will be to assess the longer-term impact of these principles on weight management. PMID:26662879

  10. Are computers effective lie detectors? A meta-analysis of linguistic cues to deception.

    PubMed

    Hauch, Valerie; Blandón-Gitlin, Iris; Masip, Jaume; Sporer, Siegfried L

    2015-11-01

    This meta-analysis investigates linguistic cues to deception and whether these cues can be detected with computer programs. We integrated operational definitions for 79 cues from 44 studies where software had been used to identify linguistic deception cues. These cues were allocated to six research questions. As expected, the meta-analyses demonstrated that, relative to truth-tellers, liars experienced greater cognitive load, expressed more negative emotions, distanced themselves more from events, expressed fewer sensory-perceptual words, and referred less often to cognitive processes. However, liars were not more uncertain than truth-tellers. These effects were moderated by event type, involvement, emotional valence, intensity of interaction, motivation, and other moderators. Although the overall effect size was small, theory-driven predictions for certain cues received support. These findings not only further our knowledge about the usefulness of linguistic cues to detect deception with computers in applied settings but also elucidate the relationship between language and deception. PMID:25387767

  11. A magnetoencephalography study of multi-modal processing of pain anticipation in primary sensory cortices.

    PubMed

    Gopalakrishnan, R; Burgess, R C; Plow, E B; Floden, D P; Machado, A G

    2015-09-24

    Pain anticipation plays a critical role in pain chronification and results in disability due to pain avoidance. It is important to understand how different sensory modalities (auditory, visual or tactile) may influence pain anticipation as different strategies could be applied to mitigate anticipatory phenomena and chronification. In this study, using a countdown paradigm, we evaluated with magnetoencephalography the neural networks associated with pain anticipation elicited by different sensory modalities in normal volunteers. When encountered with well-established cues that signaled pain, visual and somatosensory cortices engaged the pain neuromatrix areas early during the countdown process, whereas the auditory cortex displayed delayed processing. In addition, during pain anticipation, the visual cortex displayed independent processing capabilities after learning the contextual meaning of cues from associative and limbic areas. Interestingly, cross-modal activation was also evident and strong when visual and tactile cues signaled upcoming pain. Dorsolateral prefrontal cortex and mid-cingulate cortex showed significant activity during pain anticipation regardless of modality. Our results show pain anticipation is processed with great time efficiency by a highly specialized and hierarchical network. The highest degree of higher-order processing is modulated by context (pain) rather than content (modality) and rests within the associative limbic regions, corroborating their intrinsic role in chronification. PMID:26210576

  12. Some neural correlates of sensorial and cognitive control of behavior

    NASA Astrophysics Data System (ADS)

    Ogmen, Haluk; Prakash, R. V.; Moussa, M.

    1992-07-01

    Development and maintenance of unsupervised intelligent activity relies on an active interaction with the environment. Such active exploratory behavior plays an essential role in both the development and adult phases of higher biological systems including humans. Exploration initiates a self-organization process whereby a coherent fusion of different sensory and motor modalities can be achieved (sensory-motor development) and maintained (adult rearrangement). In addition, the development of intelligence depends critically on an active manipulation of the environment. These observations are in sharp contrast with current attempts of artificial intelligence and various neural network models. In this paper, we present a neural network model that combines internal drives and environmental cues to reach behavioral decisions for the exploratory activity. The vision system consists of an ambient and a focal system. The ambient vision system guides eye movements by using nonassociative learning. This sensory based attentional focusing is augmented by a `cognitive' system using models developed for various aspects of frontal lobe function. The combined system has nonassociative learning, reinforcement learning, selective attention, habit formation, and flexible criterion categorization properties.

  13. Ontogenetic changes in responses to settlement cues by Anemonefish

    NASA Astrophysics Data System (ADS)

    Dixson, D. L.; Munday, P. L.; Pratchett, M.; Jones, G. P.

    2011-12-01

    Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred naïve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.

  14. Auditory cueing in Parkinson's patients with freezing of gait. What matters most: Action-relevance or cue-continuity?

    PubMed

    Young, William R; Shreve, Lauren; Quinn, Emma Jane; Craig, Cathy; Bronte-Stewart, Helen

    2016-07-01

    Gait disturbances are a common feature of Parkinson's disease, one of the most severe being freezing of gait. Sensory cueing is a common method used to facilitate stepping in people with Parkinson's. Recent work has shown that, compared to walking to a metronome, Parkinson's patients without freezing of gait (nFOG) showed reduced gait variability when imitating recorded sounds of footsteps made on gravel. However, it is not known if these benefits are realised through the continuity of the acoustic information or the action-relevance. Furthermore, no study has examined if these benefits extend to PD with freezing of gait. We prepared four different auditory cues (varying in action-relevance and acoustic continuity) and asked 19 Parkinson's patients (10 nFOG, 9 with freezing of gait (FOG)) to step in place to each cue. Results showed a superiority of action-relevant cues (regardless of cue-continuity) for inducing reductions in Step coefficient of variation (CV). Acoustic continuity was associated with a significant reduction in Swing CV. Neither cue-continuity nor action-relevance was independently sufficient to increase the time spent stepping before freezing. However, combining both attributes in the same cue did yield significant improvements. This study demonstrates the potential of using action-sounds as sensory cues for Parkinson's patients with freezing of gait. We suggest that the improvements shown might be considered audio-motor 'priming' (i.e., listening to the sounds of footsteps will engage sensorimotor circuitry relevant to the production of that same action, thus effectively bypassing the defective basal ganglia). PMID:27163397

  15. Reactivity to nicotine cues over repeated cue reactivity sessions.

    PubMed

    LaRowe, Steven D; Saladin, Michael E; Carpenter, Matthew J; Upadhyaya, Himanshu P

    2007-12-01

    The present study investigated whether reactivity to nicotine-related cues would attenuate across four experimental sessions held 1 week apart. Participants were nineteen non-treatment seeking, nicotine-dependent males. Cue reactivity sessions were performed in an outpatient research center using in vivo cues consisting of standardized smoking-related paraphernalia (e.g., cigarettes) and neutral comparison paraphernalia (e.g., pencils). Craving ratings were collected before and after both cue presentations while physiological measures (heart rate, skin conductance) were collected before and during the cue presentations. Although craving levels decreased across sessions, smoking-related cues consistently evoked significantly greater increases in craving relative to neutral cues over all four experimental sessions. Skin conductance was higher in response to smoking cues, though this effect was not as robust as that observed for craving. Results suggest that, under the described experimental parameters, craving can be reliably elicited over repeated cue reactivity sessions. PMID:17537583

  16. Npn-1 Contributes to Axon-Axon Interactions That Differentially Control Sensory and Motor Innervation of the Limb

    PubMed Central

    Bianchi, Elisa; Novitch, Bennett G.; Huber, Andrea B.

    2011-01-01

    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs. PMID:21364975

  17. Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses.

    PubMed

    Merfeld, D M; Zupan, L H

    2002-02-01

    All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues. PMID:11826049

  18. Perception of health from facial cues.

    PubMed

    Henderson, Audrey J; Holzleitner, Iris J; Talamas, Sean N; Perrett, David I

    2016-05-01

    Impressions of health are integral to social interactions, yet poorly understood. A review of the literature reveals multiple facial characteristics that potentially act as cues to health judgements. The cues vary in their stability across time: structural shape cues including symmetry and sexual dimorphism alter slowly across the lifespan and have been found to have weak links to actual health, but show inconsistent effects on perceived health. Facial adiposity changes over a medium time course and is associated with both perceived and actual health. Skin colour alters over a short time and has strong effects on perceived health, yet links to health outcomes have barely been evaluated. Reviewing suggested an additional influence of demeanour as a perceptual cue to health. We, therefore, investigated the association of health judgements with multiple facial cues measured objectively from two-dimensional and three-dimensional facial images. We found evidence for independent contributions of face shape and skin colour cues to perceived health. Our empirical findings: (i) reinforce the role of skin yellowness; (ii) demonstrate the utility of global face shape measures of adiposity; and (iii) emphasize the role of affect in facial images with nominally neutral expression in impressions of health. PMID:27069057

  19. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  20. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D. L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth's gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  1. Effects of learned flavor cues on single meal and daily food intake in humans.

    PubMed

    Shaffer, S E; Tepper, B J

    1994-06-01

    This study examined the effects of learned flavor cues on lunch-meal and daily food intake in 39, normal-weight, free-living adults. Subjects were fed distinctly flavored high-calorie (HC) and low-calorie (LC) milkshake preloads. Following the repeated flavor-calorie pairings, the flavors of the milkshakes were covertly switched. Twenty-three percent of the participants were classified as sensory responders. That is, their lunch intake reflected the anticipated caloric content of the preloads based on the sensory properties rather than the true energy value. Short-term sensory learning did not reliably alter 24-h energy intake in these subjects. The remaining subjects (i.e., sensory nonresponders) ignored the flavor cues and consumed the same size lunches across all phases of the study. Compensation for the preloads was examined during the training period (i.e., before the flavors were switched). Sensory responders accurately adjusted lunch intakes on the first day of exposure to both preloads, demonstrating unlearned compensation for energy density. Compensation continued to be accurate across training days for the HC (85%) but not the LC preload (65%). Sensory nonresponders did not compensate accurately for either of the preloads. Thus, sensory responders were initially more responsive to the caloric density of the preloads and continued to make accurate adjustments when the flavor cue matched the caloric load (i.e., during training) but were misled by the flavor cue when it did not match the caloric consequence (i.e., when the flavors were switched). Sensory nonresponders ignored the sensory cues and ate the same size lunches regardless of the caloric value of the preload.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8047588

  2. Sensory feedback in a bump attractor model of path integration.

    PubMed

    Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P

    2016-04-01

    Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error. PMID:26754972

  3. Sight or Scent: Lemur Sensory Reliance in Detecting Food Quality Varies with Feeding Ecology

    PubMed Central

    Rushmore, Julie; Leonhardt, Sara D.; Drea, Christine M.

    2012-01-01

    Visual and olfactory cues provide important information to foragers, yet we know little about species differences in sensory reliance during food selection. In a series of experimental foraging studies, we examined the relative reliance on vision versus olfaction in three diurnal, primate species with diverse feeding ecologies, including folivorous Coquerel's sifakas (Propithecus coquereli), frugivorous ruffed lemurs (Varecia variegata spp), and generalist ring-tailed lemurs (Lemur catta). We used animals with known color-vision status and foods for which different maturation stages (and hence quality) produce distinct visual and olfactory cues (the latter determined chemically). We first showed that lemurs preferentially selected high-quality foods over low-quality foods when visual and olfactory cues were simultaneously available for both food types. Next, using a novel apparatus in a series of discrimination trials, we either manipulated food quality (while holding sensory cues constant) or manipulated sensory cues (while holding food quality constant). Among our study subjects that showed relatively strong preferences for high-quality foods, folivores required both sensory cues combined to reliably identify their preferred foods, whereas generalists could identify their preferred foods using either cue alone, and frugivores could identify their preferred foods using olfactory, but not visual, cues alone. Moreover, when only high-quality foods were available, folivores and generalists used visual rather than olfactory cues to select food, whereas frugivores used both cue types equally. Lastly, individuals in all three of the study species predominantly relied on sight when choosing between low-quality foods, but species differed in the strength of their sensory biases. Our results generally emphasize visual over olfactory reliance in foraging lemurs, but we suggest that the relative sensory reliance of animals may vary with their feeding ecology. PMID:22870229

  4. Sight or scent: lemur sensory reliance in detecting food quality varies with feeding ecology.

    PubMed

    Rushmore, Julie; Leonhardt, Sara D; Drea, Christine M

    2012-01-01

    Visual and olfactory cues provide important information to foragers, yet we know little about species differences in sensory reliance during food selection. In a series of experimental foraging studies, we examined the relative reliance on vision versus olfaction in three diurnal, primate species with diverse feeding ecologies, including folivorous Coquerel's sifakas (Propithecus coquereli), frugivorous ruffed lemurs (Varecia variegata spp), and generalist ring-tailed lemurs (Lemur catta). We used animals with known color-vision status and foods for which different maturation stages (and hence quality) produce distinct visual and olfactory cues (the latter determined chemically). We first showed that lemurs preferentially selected high-quality foods over low-quality foods when visual and olfactory cues were simultaneously available for both food types. Next, using a novel apparatus in a series of discrimination trials, we either manipulated food quality (while holding sensory cues constant) or manipulated sensory cues (while holding food quality constant). Among our study subjects that showed relatively strong preferences for high-quality foods, folivores required both sensory cues combined to reliably identify their preferred foods, whereas generalists could identify their preferred foods using either cue alone, and frugivores could identify their preferred foods using olfactory, but not visual, cues alone. Moreover, when only high-quality foods were available, folivores and generalists used visual rather than olfactory cues to select food, whereas frugivores used both cue types equally. Lastly, individuals in all three of the study species predominantly relied on sight when choosing between low-quality foods, but species differed in the strength of their sensory biases. Our results generally emphasize visual over olfactory reliance in foraging lemurs, but we suggest that the relative sensory reliance of animals may vary with their feeding ecology. PMID:22870229

  5. Humans use predictive kinematic models to calibrate visual cues to three-dimensional surface slant.

    PubMed

    Scarfe, Peter; Glennerster, Andrew

    2014-07-30

    When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball's bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants, and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world. PMID:25080598

  6. Humans Use Predictive Kinematic Models to Calibrate Visual Cues to Three-Dimensional Surface Slant

    PubMed Central

    Glennerster, Andrew

    2014-01-01

    When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball's bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants, and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world. PMID:25080598

  7. Modulation of prey capture kinematics and the role of lingual sensory feedback in the lizard Pogona vitticeps.

    PubMed

    Schaerlaeken, Vicky; Meyers, Jay J; Herrel, Anthony

    2007-01-01

    Most organisms feed on a variety of prey that may differ dramatically in their physical and behavioural characteristics (e.g. mobility, mass, texture, etc.). Thus the ability to modulate prey capture behaviour in accordance with the characteristics of the food appears crucial. In animals that use rapid tongue movements to capture prey (frogs and chameleons), the coordination of jaws and tongue is based on visual cues gathered prior to the prey capture event. However, most iguanian lizards have much slower tongue-based prey capture systems suggesting that sensory feedback from the tongue may play an important role in coordinating jaw and tongue movements. We investigated the modulation of prey capture kinematics in the agamid lizard Pogona vitticeps when feeding on a range of food items differing in their physical characteristics. As the lizard is a dietary generalist, we expected it to be able to modulate its prey capture kinematics as a function of the (mechanical) demands imposed by the prey. Additionally, we investigated the role of lingual sensory feedback by transecting the trigeminal sensory afferents. Our findings demonstrated that P. vitticeps modulates its prey capture kinematics according to specific prey properties (e.g. size). In addition, transection of the trigeminal sensory nerves had a strong effect on prey capture kinematics. However, significant prey type effects and prey type by transection effects suggest that other sources of sensory information are also used to modulate the prey capture kinematics in P. vitticeps. PMID:17368008

  8. Updating Sensory "versus" Task Representations during Task-Switching: Insights from Cognitive Brain Potentials in Humans

    ERIC Educational Resources Information Center

    Perianez, Jose A.; Barcelo, Francisco

    2009-01-01

    Task-cueing studies suggest that the updating of sensory and task representations both contribute to behavioral task-switch costs [Forstmann, B. U., Brass, M., & Koch, I. (2007). "Methodological and empirical issues when dissociating cue-related from task-related processes in the explicit task-cuing procedure." "Psychological Research, 71"(4),…

  9. Multisensor image cueing (MUSIC)

    NASA Astrophysics Data System (ADS)

    Rodvold, David; Patterson, Tim J.

    2002-07-01

    There have been many years of research and development in the Automatic Target Recognition (ATR) community. This development has resulted in numerous algorithms to perform target detection automatically. The morphing of the ATR acronym to Aided Target Recognition provides a succinct commentary regarding the success of the automatic target recognition research. Now that the goal is aided recognition, many of the algorithms which were not able to provide autonomous recognition may now provide valuable assistance in cueing a human analyst where to look in the images under consideration. This paper describes the MUSIC system being developed for the US Air Force to provide multisensor image cueing. The tool works across multiple image phenomenologies and fuses the evidence across the set of available imagery. MUSIC is designed to work with a wide variety of sensors and platforms, and provide cueing to an image analyst in an information-rich environment. The paper concentrates on the current integration of algorithms into an extensible infrastructure to allow cueing in multiple image types.

  10. CRYPTOGENIC SENSORY POLYNEUROPATHY

    PubMed Central

    Pasnoor, Mamatha; Dimachkie, Mazen M.; Barohn, Richard J.

    2014-01-01

    Chronic sensory or sensorimotor polyneuropathy is a common cause for referral to neurologists. Despite extensive diagnostic testing, up to one-third of these patients remain without a known cause. They are referred to as having cryptogenic sensory peripheral neuropathy (CSPN). The age of onset is variable but usually in the sixth to seventh decade of life, affecting men and women equally. CSPN symptoms progress slowly, most patients present with distal leg paresthesias or pain that progressed over years to involve the hands. On examination, there may be additional mild toe flexion and extension weakness. Electrophysiologic testing and histology reveals axonal neuropathy. Prognosis is usually favorable as most patients maintain independent ambulation. Besides patient education and reassurance, management is focused on pharmacotherapy of neuropathic pain (see Treatment of Painful Peripheral Neuropathy chapter) and physical therapy for balance training and occasionally assistive devices. PMID:23642719

  11. Weighting of Static and Transition Cues in Voiceless Fricatives and Stops in Children Wearing Cochlear Implants

    PubMed Central

    Hedrick, Mark; von Hapsburg, Deborah

    2014-01-01

    Objectives To determine how normal-hearing adults (NHA), normal-hearing children (NHC) and children wearing cochlear implants (CI) differ in the perceptual weight given cues for fricative consonants (having a comparatively long static cue and short transition cue) versus stop consonants (having a comparatively short static cue and long transition cue). Methods Ten NHA, eleven 5- to 8-year-old NHC and eight 5- to 8-year-old children wearing CI were participated. Fricative /su/-/∫u/ and stop /pu/-/tu/continua were constructed by varying the fricative/burst cue and the F2 onset transition cue. A quantitative method of analysis (analysis of variance model) was used to determine cue weighting and measure cue interaction within groups. Results For the fricative consonant, all groups gave more weight to the frication spectral cue than to the formant transition. For the voiceless stop consonant, all groups gave more weight to the transition cue than to the burst cue. The CI group showed similar cue weighting strategies to age-matched NHC, but integration of cues by the CI group was not significant. Conclusion All groups favored the longer-duration cue in both continua to make phonemic judgments. Additionally, developmental patterns across groups were evident. Results of the current study may be used to guide development of CI devices and in efforts to improve speech and language of children wearing CIs. PMID:25436042

  12. The Human Brain Maintains Contradictory and Redundant Auditory Sensory Predictions

    PubMed Central

    Pieszek, Marika; Widmann, Andreas; Gruber, Thomas; Schröger, Erich

    2013-01-01

    Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs) in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants’ task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound) as well as violations of the visual-auditory prediction (i.e., an incongruent sound) elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]). Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density) equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events. PMID:23308266

  13. Extracting Social Information from Chemosensory Cues: Consideration of Several Scenarios and Their Functional Implications

    PubMed Central

    Ben-Shaul, Yoram

    2015-01-01

    Across all sensory modalities, stimuli can vary along multiple dimensions. Efficient extraction of information requires sensitivity to those stimulus dimensions that provide behaviorally relevant information. To derive social information from chemosensory cues, sensory systems must embed information about the relationships between behaviorally relevant traits of individuals and the distributions of the chemical cues that are informative about these traits. In simple cases, the mere presence of one particular compound is sufficient to guide appropriate behavior. However, more generally, chemosensory information is conveyed via relative levels of multiple chemical cues, in non-trivial ways. The computations and networks needed to derive information from multi-molecule stimuli are distinct from those required by single molecule cues. Our current knowledge about how socially relevant information is encoded by chemical blends, and how it is extracted by chemosensory systems is very limited. This manuscript explores several scenarios and the neuronal computations required to identify them. PMID:26635515

  14. Generalized regressive motion: a visual cue to collision.

    PubMed

    Chalupka, Krzysztof; Dickinson, Michael; Perona, Pietro

    2016-01-01

    Brains and sensory systems evolved to guide motion. Central to this task is controlling the approach to stationary obstacles and detecting moving organisms. Looming has been proposed as the main monocular visual cue for detecting the approach of other animals and avoiding collisions with stationary obstacles. Elegant neural mechanisms for looming detection have been found in the brain of insects and vertebrates. However, looming has not been analyzed in the context of collisions between two moving animals. We propose an alternative strategy, generalized regressive motion (GRM), which is consistent with recently observed behavior in fruit flies. Geometric analysis proves that GRM is a reliable cue to collision among conspecifics, whereas agent-based modeling suggests that GRM is a better cue than looming as a means to detect approach, prevent collisions and maintain mobility. PMID:27427952

  15. Human Factors Assessment of Respiratory Support Pack (RSP) Cue Card

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Hudy, Cynthia; Smith, Danielle; Byrne, Vicky

    2005-01-01

    The Respiratory Support Pack (RSP) is a medical pack onboard the International Space Station (ISS) that contains much of the necessary equipment for providing aid to a conscious or unconscious crewmember in respiratory distress. Inside the RSP lid pocket is a 5.5 by 11 inch paper cue card, which is used by a Crew Medical Officer as the procedure to set up the equipment and deliver oxygen to a crewmember. In training, crewmembers expressed concerns about the readability and usability of the cue card; consequently, updating the cue card was prioritized as an activity to be completed prior to Space Shuttle return-to-flight. The Usability Testing and Analysis Facility at the Johnson Space Center evaluated the current layout of the cue card, and proposed several new cue card designs based on human factors principals. A series of three studies were performed in order to experimentally compare performance with each of the cue card designs. Nonmedically trained personnel used either a redesigned RSP cue card, or the original card to simulate resuscitation (using a mannequin along with the hardware). Time to completion, errors and subjective ratings were recorded. The addition of pictures, colors, borders, and simplification of the flow of information (making minimal changes to the actual procedure content) elicited great benefits during testing. Time to complete RSP procedures was reduced by as much as three minutes with the final cue card design. Detailed results from these studies, as well as general guidelines for cue card design will be discussed.

  16. Coordinated sensor cueing for chemical plume detection

    NASA Astrophysics Data System (ADS)

    Abraham, Nathan J.; Jensenius, Andrea M.; Watkins, Adam S.; Hawthorne, R. Chad; Stepnitz, Brian J.

    2011-05-01

    This paper describes an organic data fusion and sensor cueing approach for Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. The Joint Warning and Reporting Network (JWARN) uses a hardware component referred to as the JWARN Component Interface Device (JCID). The Edgewood Chemical and Biological Center has developed a small footprint and open architecture solution for the JCID capability called JCID-on-a-Chip (JoaC). The JoaC program aims to reduce the cost and complexity of the JCID by shrinking the necessary functionality down to a small single board computer. This effort focused on development of a fusion and cueing algorithm organic to the JoaC hardware. By embedding this capability in the JoaC, sensors have the ability to receive and process cues from other sensors without the use of a complex and costly centralized infrastructure. Additionally, the JoaC software is hardware agnostic, as evidenced by its drop-in inclusion in two different system-on-a-chip platforms including Windows CE and LINUX environments. In this effort, a partnership between JPM-CA, JHU/APL, and the Edgewood Chemical and Biological Center (ECBC), the authors implemented and demonstrated a new algorithm for cooperative detection and localization of a chemical agent plume. This experiment used a pair of mobile Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD) units which were controlled by fusion and cueing algorithms hosted on a JoaC. The algorithms embedded in the JoaC enabled the two sensor systems to perform cross cueing and cooperatively form a higher fidelity estimate of chemical releases by combining sensor readings. Additionally, each JSLSCAD had the ability to focus its search on smaller regions than those required by a single sensor system by using the cross cue information from the other sensor.

  17. Mind your pricing cues.

    PubMed

    Anderson, Eric; Simester, Duncan

    2003-09-01

    For most of the items they buy, consumers don't have an accurate sense of what the price should be. Ask them to guess how much a four-pack of 35-mm film costs, and you'll get a variety of wrong answers: Most people will underestimate; many will only shrug. Research shows that consumers' knowledge of the market is so far from perfect that it hardly deserves to be called knowledge at all. Yet people happily buy film and other products every day. Is this because they don't care what kind of deal they're getting? No. Remarkably, it's because they rely on retailers to tell them whether they're getting a good price. In subtle and not-so-subtle ways, retailers send signals to customers, telling them whether a given price is relatively high or low. In this article, the authors review several common pricing cues retailers use--"sale" signs, prices that end in 9, signpost items, and price-matching guarantees. They also offer some surprising facts about how--and how well--those cues work. For instance, the authors' tests with several mail-order catalogs reveal that including the word "sale" beside a price can increase demand by more than 50%. The practice of using a 9 at the end of a price to denote a bargain is so common, you'd think customers would be numb to it. Yet in a study the authors did involving a women's clothing catalog, they increased demand by a third just by changing the price of a dress from $34 to $39. Pricing cues are powerful tools for guiding customers' purchasing decisions, but they must be applied judiciously. Used inappropriately, the cues may breach customers' trust, reduce brand equity, and give rise to lawsuits. PMID:12964397

  18. Cue combination and color edge detection in natural scenes.

    PubMed

    Zhou, Chunhong; Mel, Bartlett W

    2008-01-01

    Biological vision systems are adept at combining cues to maximize the reliability of object boundary detection, but given a set of co-localized edge detectors operating on different sensory channels, how should their responses be combined to compute overall edge probability? To approach this question, we collected joint responses of red-green and blue-yellow edge detectors both ON- and OFF-edges using a human-labeled image database as ground truth (D. Martin, C. Fowlkes, D. Tal, & J. Malik, 2001). From a Bayesian perspective, the rule for combining edge cues is linear in the individual cue strengths when the ON-edge and OFF-edge joint distributions are (1) statistically independent and (2) lie in an exponential ratio to each other. Neither condition held in the color edge data we collected, and the function P(ON cues)-dubbed the "combination rule"-was correspondingly complex and nonlinear. To characterize the statistical dependencies between edge cues, we developed a generative model ("saturated common factor," SCF) that provided good fits to the measured ON-edge and OFF-edge joint distributions. We also found that a divisive normalization scheme derived from the SCF model transformed raw edge detector responses into values with simpler distributions that satisfied both preconditions for a linear combination rule. A comparison to another normalization scheme (O. Schwartz & E. Simoncelli, 2001) suggests that apparently minor details of the normalization process can strongly influence its performance. Implications of the SCF normalization scheme for cue combination in biological sensory systems are discussed. PMID:18484843

  19. Research on integration of visual and motion cues for flight simulation and ride quality investigation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Oman, C. M.; Curry, R. E.

    1977-01-01

    Vestibular perception and integration of several sensory inputs in simulation were studied. The relationship between tilt sensation induced by moving fields and those produced by actual body tilt is discussed. Linearvection studies were included and the application of the vestibular model for perception of orientation based on motion cues is presented. Other areas of examination includes visual cues in approach to landing, and a comparison of linear and nonlinear wash out filters using a model of the human vestibular system is given.

  20. Flexible integration of visual cues in adolescents with autism spectrum disorder

    PubMed Central

    Pellicano, Elizabeth; Mareschal, Denis

    2015-01-01

    Although children with autism spectrum disorder (ASD) show atypical sensory processing, evidence for impaired integration of multisensory information has been mixed. In this study, we took a Bayesian model‐based approach to assess within‐modality integration of congruent and incongruent texture and disparity cues to judge slant in typical and autistic adolescents. Human adults optimally combine multiple sources of sensory information to reduce perceptual variance but in typical development this ability to integrate cues does not develop until late childhood. While adults cannot help but integrate cues, even when they are incongruent, young children's ability to keep cues separate gives them an advantage in discriminating incongruent stimuli. Given that mature cue integration emerges in later childhood, we hypothesized that typical adolescents would show adult‐like integration, combining both congruent and incongruent cues. For the ASD group there were three possible predictions (1) “no fusion”: no integration of congruent or incongruent cues, like 6‐year‐old typical children; (2) “mandatory fusion”: integration of congruent and incongruent cues, like typical adults; (3) “selective fusion”: cues are combined when congruent but not incongruent, consistent with predictions of Enhanced Perceptual Functioning (EPF) theory. As hypothesized, typical adolescents showed significant integration of both congruent and incongruent cues. The ASD group showed results consistent with “selective fusion,” integrating congruent but not incongruent cues. This allowed adolescents with ASD to make perceptual judgments which typical adolescents could not. In line with EPF, results suggest that perception in ASD may be more flexible and less governed by mandatory top‐down feedback. Autism Res 2016, 9: 272–281. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26097109

  1. Flexible integration of visual cues in adolescents with autism spectrum disorder.

    PubMed

    Bedford, Rachael; Pellicano, Elizabeth; Mareschal, Denis; Nardini, Marko

    2016-02-01

    Although children with autism spectrum disorder (ASD) show atypical sensory processing, evidence for impaired integration of multisensory information has been mixed. In this study, we took a Bayesian model-based approach to assess within-modality integration of congruent and incongruent texture and disparity cues to judge slant in typical and autistic adolescents. Human adults optimally combine multiple sources of sensory information to reduce perceptual variance but in typical development this ability to integrate cues does not develop until late childhood. While adults cannot help but integrate cues, even when they are incongruent, young children's ability to keep cues separate gives them an advantage in discriminating incongruent stimuli. Given that mature cue integration emerges in later childhood, we hypothesized that typical adolescents would show adult-like integration, combining both congruent and incongruent cues. For the ASD group there were three possible predictions (1) "no fusion": no integration of congruent or incongruent cues, like 6-year-old typical children; (2) "mandatory fusion": integration of congruent and incongruent cues, like typical adults; (3) "selective fusion": cues are combined when congruent but not incongruent, consistent with predictions of Enhanced Perceptual Functioning (EPF) theory. As hypothesized, typical adolescents showed significant integration of both congruent and incongruent cues. The ASD group showed results consistent with "selective fusion," integrating congruent but not incongruent cues. This allowed adolescents with ASD to make perceptual judgments which typical adolescents could not. In line with EPF, results suggest that perception in ASD may be more flexible and less governed by mandatory top-down feedback. PMID:26097109

  2. Only pre-cueing but no retro-cueing effects emerge with masked arrow cues.

    PubMed

    Janczyk, Markus; Reuss, Heiko

    2016-05-01

    The impact of masked stimulation on cognitive control processes is investigated with much interest. In many cases, masked stimulation suffices to initiate and employ control processes. Shifts of attention either happen in the external environment or internally, for example, in working memory. In the former, even masked cues (i.e., cues that are presented for a period too short to allow strategic use) were shown efficient for shifting attention to particular locations in pre-cue paradigms. Internal attention shifting can be investigated using retro-cues: long after encoding, a valid cue indicates the location to-be-tested via change detection, and this improves performance (retro-cue effect). In the present experiment, participants performed in both a pre- and a retro-cue task with masked and normally presented cues. While the masked cues benefitted performance in the pre-cue task, they did not in the retro-cue task. These results inform about limits of masked stimulation. PMID:26998561

  3. Role of hippocampus in polymodal-cue guided tasks in rats.

    PubMed

    Miniaci, Maria Concetta; Lippiello, Pellegrino; Monda, Marcellino; Scotto, Pietro

    2016-09-01

    To examine how signals from different sensory modalities are integrated to generate an appropriate goal-oriented behavior, we trained rats in an eight-arm radial maze to visit a cue arm provided with intramaze cues from different sensory modalities, i.e. visual, tactile and auditory, in order to obtain a reward. When the same rats were then examined on test trials in which the cue arm contained one of the stimuli that the animals were trained with (i.e. light, sound or rough sheet), they showed a significant impairment with respect to the performance on the polymodal-cue task. The contribution of the dorsal hippocampus to the acquisition and retention of polymodal-cue guided task was also examined. We found that rats with dorsal hippocampal lesions before training showed a significant deficit in the acquisition of polymodal-cue oriented task that improved with overtraining. The selective lesion of the dorsal hippocampus after training disrupted memory retention, but the animals' performance improved following retraining of the polymodal task. All hippocampal lesioned rats displayed an impaired performance on the unimodal test. These findings suggest that the dorsal hippocampus contributes to the processing of multimodal sensory information for the associative memory formation and consolidation. PMID:27342815

  4. Why Barbie feels heavier than Ken: the influence of size-based expectancies and social cues on the illusory perception of weight.

    PubMed

    Dijker, Anton J M

    2008-03-01

    In order to examine the relative influence of size-based expectancies and social cues on the perceived weight of objects, two studies were performed, using equally weighing dolls differing in sex-related and age-related vulnerability or physical strength cues. To increase variation in perceived size, stimulus objects were viewed through optical lenses of varying reducing power. Different groups of participants were required to provide magnitude estimates of perceived size, physical strength, or weight, or of expected weight. A size-weight illusion (SWI) was demonstrated, such that smaller objects felt heavier than larger ones, that was entirely accounted for by the mediating role of expected weight. Yet, perceived physical strength exerted an additional and more reactive influence on perceived weight independently of measured expectancies. Results are used to clarify the nature of "embodied", internal sensory-motor representations of physical and social properties. PMID:17599820

  5. Age-related changes in human posture control: Sensory organization tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural control was measured in 214 human subjects ranging in age from 7 to 81 years. Sensory organization tests measured the magnitude of anterior-posterior body sway during six 21 s trials in which visual and somatosensory orientation cues were altered (by rotating the visual surround and support surface in proportion to the subject's sway) or vision eliminated (eyes closed) in various combinations. No age-related increase in postural sway was found for subjects standing on a fixed support surface with eyes open or closed. However, age-related increases in sway were found for conditions involving altered visual or somatosensory cues. Subjects older than about 55 years showed the largest sway increases. Subjects younger than about 15 years were also sensitive to alteration of sensory cues. On average, the older subjects were more affected by altered visual cues whereas younger subjects had more difficulty with altered somatosensory cues.

  6. Sensorimotor Adaptations Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Harm, D. L.; Reschke, M. F.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. We hypothesize that multi-sensory integration will be adaptively optimized in altered gravity environments based on the dynamics of other sensory information available, with greater changes in otolith-mediated responses in the mid-frequency range where there is a crossover of tilt and translation responses. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation.

  7. Amplitudes of Pain-Related Evoked Potentials Are Useful to Detect Small Fiber Involvement in Painful Mixed Fiber Neuropathies in Addition to Quantitative Sensory Testing – An Electrophysiological Study

    PubMed Central

    Hansen, Niels; Kahn, Ann-Kathrin; Zeller, Daniel; Katsarava, Zaza; Sommer, Claudia; Üçeyler, Nurcan

    2015-01-01

    To investigate the usefulness of pain-related evoked potentials (PREP) elicited by electrical stimulation for the identification of small fiber involvement in patients with mixed fiber neuropathy (MFN). Eleven MFN patients with clinical signs of large fiber impairment and neuropathic pain and ten healthy controls underwent clinical and electrophysiological evaluation. Small fiber function, electrical conductivity and morphology were examined by quantitative sensory testing (QST), PREP, and skin punch biopsy. MFN was diagnosed following clinical and electrophysiological examination (chronic inflammatory demyelinating neuropathy: n = 6; vasculitic neuropathy: n = 3; chronic axonal ­neuropathy: n = 2). The majority of patients with MFN characterized their pain by descriptors that mainly represent C-fiber-mediated pain. In QST, patients displayed elevated cold, warm, mechanical, and vibration detection thresholds and cold pain thresholds indicative of MFN. PREP amplitudes in patients correlated with cold (p < 0.05) and warm detection thresholds (p < 0.05). Burning pain and the presence of par-/dysesthesias correlated negatively with PREP amplitudes (p < 0.05). PREP amplitudes correlating with cold and warm detection thresholds, burning pain, and par-/dysesthesias support employing PREP amplitudes as an additional tool in conjunction with QST for detecting small fiber impairment in patients with MFN. PMID:26696950

  8. Cognitive mechanisms associated with auditory sensory gating.

    PubMed

    Jones, L A; Hills, P J; Dick, K M; Jones, S P; Bright, P

    2016-02-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  9. Cognitive mechanisms associated with auditory sensory gating

    PubMed Central

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  10. Auditory feedback blocks memory benefits of cueing during sleep

    PubMed Central

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-01-01

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep. PMID:26507814

  11. Vocal cues to deception: a comparative channel approach.

    PubMed

    Scherer, K R; Feldstein, S; Bond, R N; Rosenthal, R

    1985-07-01

    The study investigated the leakage potential of different voice and speech cues using a cue isolation and masking design. Speech samples taken from an earlier experiment were used in which 15 female students of nursing dissimulated negative affect produced by an unpleasant movie or told the truth about positive affect following a pleasant movie. Several groups of judges rated these speech samples in five conditions: (1) forward or clear, (2) electronic filtering, (3) random splicing, (4) backwards, (5) pitch inversion, (6) tone-silence sequences. The results show that vocal cues do indeed carry leakage information and that, as reflected in the differences among the conditions masking different types of cues respectively, voice quality cues may be centrally implicated. In addition, gender differences in decoding ability are discussed. PMID:4032322

  12. Auditory feedback blocks memory benefits of cueing during sleep.

    PubMed

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-01-01

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep. PMID:26507814

  13. Ventral Pallidum Neurons Encode Incentive Value and Promote Cue-Elicited Instrumental Actions.

    PubMed

    Richard, Jocelyn M; Ambroggi, Frederic; Janak, Patricia H; Fields, Howard L

    2016-06-15

    The ventral pallidum (VP) is posited to contribute to reward seeking by conveying upstream signals from the nucleus accumbens (NAc). Yet, very little is known about how VP neuron responses contribute to behavioral responses to incentive cues. Here, we recorded activity of VP neurons in a cue-driven reward-seeking task previously shown to require neural activity in the NAc. We find that VP neurons encode both learned cue value and subsequent reward seeking and that activity in VP neurons is required for robust cue-elicited reward seeking. Surprisingly, the onset of VP neuron responses occurs at a shorter latency than cue-elicited responses in NAc neurons. This suggests that this VP encoding is not a passive response to signals generated in the NAc and that VP neurons integrate sensory and motivation-related information received directly from other mesocorticolimbic inputs. PMID:27238868

  14. Sensory reweighting dynamics in human postural control

    PubMed Central

    Peterka, Robert J.

    2014-01-01

    Healthy humans control balance during stance by using an active feedback mechanism that generates corrective torque based on a combination of movement and orientation cues from visual, vestibular, and proprioceptive systems. Previous studies found that the contribution of each of these sensory systems changes depending on perturbations applied during stance and on environmental conditions. The process of adjusting the sensory contributions to balance control is referred to as sensory reweighting. To investigate the dynamics of reweighting for the sensory modalities of vision and proprioception, 14 healthy young subjects were exposed to six different combinations of continuous visual scene and platform tilt stimuli while sway responses were recorded. Stimuli consisted of two components: 1) a pseudorandom component whose amplitude periodically switched between low and high amplitudes and 2) a low-amplitude sinusoidal component whose amplitude remained constant throughout a trial. These two stimuli were mathematically independent of one another and, thus, permitted separate analyses of sway responses to the two components. For all six stimulus combinations, the sway responses to the constant-amplitude sine were influenced by the changing amplitude of the pseudorandom component in a manner consistent with sensory reweighting. Results show clear evidence of intra- and intermodality reweighting. Reweighting dynamics were asymmetric, with slower reweighting dynamics following a high-to-low transition in the pseudorandom stimulus amplitude compared with low-to-high amplitude shifts, and were also slower for inter- compared with intramodality reweighting. PMID:24501263

  15. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.

    PubMed

    Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M

    2015-12-01

    The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa. PMID:25898842

  16. Boosting Vocabulary Learning by Verbal Cueing During Sleep.

    PubMed

    Schreiner, Thomas; Rasch, Björn

    2015-11-01

    Reactivating memories during sleep by re-exposure to associated memory cues (e.g., odors or sounds) improves memory consolidation. Here, we tested for the first time whether verbal cueing during sleep can improve vocabulary learning. We cued prior learned Dutch words either during non-rapid eye movement sleep (NonREM) or during active or passive waking. Re-exposure to Dutch words during sleep improved later memory for the German translation of the cued words when compared with uncued words. Recall of uncued words was similar to an additional group receiving no verbal cues during sleep. Furthermore, verbal cueing failed to improve memory during active and passive waking. High-density electroencephalographic recordings revealed that successful verbal cueing during NonREM sleep is associated with a pronounced frontal negativity in event-related potentials, a higher frequency of frontal slow waves as well as a cueing-related increase in right frontal and left parietal oscillatory theta power. Our results indicate that verbal cues presented during NonREM sleep reactivate associated memories, and facilitate later recall of foreign vocabulary without impairing ongoing consolidation processes. Likewise, our oscillatory analysis suggests that both sleep-specific slow waves as well as theta oscillations (typically associated with successful memory encoding during wakefulness) might be involved in strengthening memories by cueing during sleep. PMID:24962994

  17. Helmets: conventional to cueing

    NASA Astrophysics Data System (ADS)

    Sedillo, Michael R.; Dixon, Sharon A.

    2003-09-01

    Aviation helmets have always served as an interface between technology and flyers. The functional evolution of helmets continued with the advent of radio when helmets were modified to accept communication components and later, oxygen masks. As development matured, interest in safety increased as evident in more robust designs. Designing helmets became a balance between adding new capabilities and reducing the helmet's weight. As the research community better defined acceptable limits of weight-tolerances with tools such as the "Knox Box" criteria, system developers added and subtracted technologies while remaining within these limits. With most helmet-mounted technologies being independent of each other, the level of precision in mounting these technologies was not as significant a concern as it is today. The attachment of new components was acceptable as long as the components served their purpose. However this independent concept has become obsolete with the dawn of modern helmet mounted displays. These complex systems are interrelated and demand precision in their attachment to the helmet. The helmets' role now extends beyond serving as a means to mount the technologies to the head, but is now instrumental in critical visual alignment of complex night vision and missile cueing technologies. These new technologies demand a level of helmet fit and component alignment previously not seen in past helmet designs. This paper presents some of the design, integration and logistical issues gleaned during the development of the Joint Helmet Mounted Cueing System (JHMCS) to include the application of head-track technologies in forensic investigations.

  18. HMD cueing mode degradation

    NASA Astrophysics Data System (ADS)

    Speck, Richard P.; Fidopiastis, Cali M.; Herz, Norman E., Jr.

    2003-09-01

    Pilot cueing is a valuable use of Head Mounted Displays (HMDs) as it greatly helps the user to visually locate electronically identified targets. It is well known that a target which is hard to spot in the sky can be easily tracked and studied after it has been visually located. Transients, including sun glint, can reveal much about distant targets as they are visually studied. This is implicit in the "Visual Rules of Engagement". The term "Virtual Beyond Visual Range" has been coined to reflect the fact that optimized HMD cueing can extend visual identification to ranges previously covered only by radar data. The visual acquisition range can drop by a factor of three, however, when HMD image correlation errors expand the uncertainty zone a pilot must visually search. We have demonstrated that system errors, tolerable for off axis missile targeting, can produce this large drop in operational effectiveness. Studies using the Spectron SE1430 HMD analysis system have shown that errors of this magnitude can develop in current HMD models, and that these errors were neither identified by "ready room" tests nor were they correctable in the cockpit. The focus of this study was to develop affordable techniques to quantify the relationship of combat effectiveness to HMD defects for this and other advanced operating modes. When combined with field monitoring of HMD degradation, this makes economic optimization of the HMD supply/maintenance model possible while fulfilling operational mission requirements.

  19. Cues and Cue Interactions in Segmenting Words in Fluent Speech

    ERIC Educational Resources Information Center

    Newman, Rochelle S.; Sawusch, James R.; Wunnenberg, Tyler

    2011-01-01

    Fluent speech does not contain obvious breaks to word boundaries, yet there are a number of cues that listeners can use to help them segment the speech stream. Most of these cues have been investigated in isolation from one another. In previous work, Norris, McQueen, Cutler, and Butterfield (1997) suggested that listeners use a Possible Word…

  20. Cue combination in the motion correspondence problem.

    PubMed Central

    Hibbard, P B; Bradshaw, M F; Eagle, R A

    2000-01-01

    Image motion is a primary source of visual information about the world. However, before this information can be used the visual system must determine the spatio-temporal displacements of the features in the dynamic retinal image, which originate from objects moving in space. This is known as the motion correspondence problem. We investigated whether cross-cue matching constraints contribute to the solution of this problem, which would be consistent with physiological reports that many directionally selective cells in the visual cortex also respond to additional visual cues. We measured the maximum displacement limit (Dmax) for two-frame apparent motion sequences. Dmax increases as the number of elements in such sequences decreases. However, in our displays the total number of elements was kept constant while the number of a subset of elements, defined by a difference in contrast polarity, binocular disparity or colour, was varied. Dmax increased as the number of elements distinguished by a particular cue was decreased. Dmax was affected by contrast polarity for all observers, but only some observers were influenced by binocular disparity and others by colour information. These results demonstrate that the human visual system exploits local, cross-cue matching constraints in the solution of the motion correspondence problem. PMID:10972134

  1. Sensory neuropeptides and airway function.

    PubMed

    Solway, J; Leff, A R

    1991-12-01

    Sensory nerves synthesize tachykinins and calcitonin-gene related peptide and package these neuropeptides together in synaptic vesicles. Stimulation of these C-fibers by a range of chemical and physical factors results in afferent neuronal conduction that elicits central parasympathetic reflexes and in antidromic conduction that results in local release of neuropeptides through the axon reflex. In the airways, sensory neuropeptides act on bronchial smooth muscle, the mucosal vasculature, and submucosal glands to promote airflow obstruction, hyperemia, microvascular hyperpermeability, and mucus hypersecretion. In addition, tachykinins potentiate cholinergic neurotransmission. Proinflammatory effects of these peptides also promote the recruitment, adherence, and activation of granulocytes that may further exacerbate neurogenic inflammation (i.e., neuropeptide-induced plasma extravasation and vasodilation). Enzymatic degradation limits the physiological effects of tachykinins but may be impaired by respiratory infection or other factors. Given their sensitivity to noxious compounds and physical stimuli and their potent effects on airway function, it is possible that neuropeptide-containing sensory nerves play an important role in mediating airway responses in human disease. Supporting this view are the striking phenomenological similarities between hyperpnea-induced bronchoconstriction (HIB) in guinea pigs and HIB in patients with exercise-induced asthma. Endogenous tachykinins released from airway sensory nerves mediate HIB in guinea pigs and also cause hyperpnea-induced bronchovascular hyperpermeability in these animals. On the basis of these observations, it is reasonable to speculate that sensory neuropeptides participate in the pathogenesis of hyperpnea-induced airflow obstruction in human asthmatic subjects as well. PMID:1663932

  2. On the dichotomy in auditory perception between temporal envelope and fine structure cues (L)

    NASA Astrophysics Data System (ADS)

    Zeng, Fan-Gang; Nie, Kaibao; Liu, Sheng; Stickney, Ginger; del Rio, Elsa; Kong, Ying-Yee; Chen, Hongbin

    2004-09-01

    It is important to know what cues the sensory system extracts from natural stimuli and how the brain uses them to form perception. To explore this issue, Smith, Delgutte, and Oxenham [Nature (London) 416, 87-90 (2002)] mixed one sound's temporal envelope with another sound's fine temporal structure to produce auditory chimaeras and found that ``the perceptual importance of the envelope increases with the number of frequency bands, while that of the fine structure diminishes.'' This study addressed two technical issues related to natural cochlear filtering and artificial filter ringing in the chimaerizing algorithm. In addition, this study found that the dichotomy in auditory perception revealed by auditory chimaeras is an epiphenomenon of the classic dichotomy between low- and high-frequency processing. Finally, this study found that the temporal envelope determines sound location as long as the interaural level difference cue is present. The present result reinforces the original hypothesis that the temporal envelope is critical for speech perception whereas temporal fine structure is critical for pitch perception, but does not support the assertion regarding the temporal envelope and fine structure as the acoustic basis for the ``what'' and ``where'' mechanisms.

  3. Sensory pleasure.

    PubMed

    Cabanac, M

    1979-03-01

    In response to a stimulus, a sensation is tridimensional: qualitative, quantitative, and affective. The affective part of sensation, pleasure or displeasure, depends on the qualities of the stimulus. Within a narrow range of intensity, chemical, thermal, and mechanical stimuli are able to arouse pleasure. In addition, pleasure depends on the internal state of the subject. This is easily observed in the case of temperature: pleasure is aroused by a warm stimulus in a hypothermic subject and by a cold stimulus in a hyperthermic subject. This property of a given stimulus to arouse pleasure or displeasure according to the internal state of the subject is termed alliethesia. Alliesthesia is also produced by chemical and mechanical stimuli. Acquired preferences or aversions for alimentary stimuli represent a case of alliesthesia. In the same way, the capacity of any indifferent stimulus to become rewarding, or punishing, by association with some reward or punishment, is also a case of alliethesia. In all cases, pleasure is a sign of a stimulus useful to the subject; displeasure a sign of danger. Usefulness and danger are judged by the central nervous system with reference to homeostasis and the set point of the implied regulation. Pleasure and displeasure thus appear to motivate useful behaviors. PMID:379894

  4. Gaze Cueing of Attention

    PubMed Central

    Frischen, Alexandra; Bayliss, Andrew P.; Tipper, Steven P.

    2007-01-01

    During social interactions, people’s eyes convey a wealth of information about their direction of attention and their emotional and mental states. This review aims to provide a comprehensive overview of past and current research into the perception of gaze behavior and its effect on the observer. This encompasses the perception of gaze direction and its influence on perception of the other person, as well as gaze-following behavior such as joint attention, in infant, adult, and clinical populations. Particular focus is given to the gaze-cueing paradigm that has been used to investigate the mechanisms of joint attention. The contribution of this paradigm has been significant and will likely continue to advance knowledge across diverse fields within psychology and neuroscience. PMID:17592962

  5. Forgotten but not gone: Retro-cue costs and benefits in a double-cueing paradigm suggest multiple states in visual short-term memory.

    PubMed

    van Moorselaar, Dirk; Olivers, Christian N L; Theeuwes, Jan; Lamme, Victor A F; Sligte, Ilja G

    2015-11-01

    Visual short-term memory (VSTM) performance is enhanced when the to-be-tested item is cued after encoding. This so-called retro-cue benefit is typically accompanied by a cost for the noncued items, suggesting that information is lost from VSTM upon presentation of a retrospective cue. Here we assessed whether noncued items can be restored to VSTM when made relevant again by a subsequent second cue. We presented either 1 or 2 consecutive retro-cues (80% valid) during the retention interval of a change-detection task. Relative to no cue, a valid cue increased VSTM capacity by 2 items, while an invalid cue decreased capacity by 2. Importantly, when a second, valid cue followed an invalid cue, capacity regained 2 items, so that performance was back on par. In addition, when the second cue was also invalid, there was no extra loss of information from VSTM, suggesting that those items that survived a first invalid cue, automatically also survived a second. We conclude that these results are in support of a very versatile VSTM system, in which memoranda adopt different representational states depending on whether they are deemed relevant now, in the future, or not at all. We discuss a neural model that is consistent with this conclusion. PMID:25867613

  6. Perception of aircraft Deviation Cues

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra

    2005-01-01

    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  7. Reliability-Based Weighting of Visual and Vestibular Cues in Displacement Estimation

    PubMed Central

    ter Horst, Arjan C.; Koppen, Mathieu; Selen, Luc P. J.; Medendorp, W. Pieter

    2015-01-01

    When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement. PMID:26658990

  8. Reliability-Based Weighting of Visual and Vestibular Cues in Displacement Estimation.

    PubMed

    ter Horst, Arjan C; Koppen, Mathieu; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement. PMID:26658990

  9. Multimodal stimulation of the Colorado potato beetle: Prevalence of visual over olfactory cues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order processing and behavioral output. He...

  10. Superior Temporal Activation in Response to Dynamic Audio-Visual Emotional Cues

    ERIC Educational Resources Information Center

    Robins, Diana L.; Hunyadi, Elinora; Schultz, Robert T.

    2009-01-01

    Perception of emotion is critical for successful social interaction, yet the neural mechanisms underlying the perception of dynamic, audio-visual emotional cues are poorly understood. Evidence from language and sensory paradigms suggests that the superior temporal sulcus and gyrus (STS/STG) play a key role in the integration of auditory and visual…

  11. Effects of degraded optical conditions on behavioural responses to alarm cues in a freshwater fish.

    PubMed

    Ranåker, Lynn; Nilsson, P Anders; Brönmark, Christer

    2012-01-01

    Prey organisms often use multiple sensory cues to gain reliable information about imminent predation threat. In this study we test if a freshwater fish increases the reliance on supplementary cues when the reliability of the primary cue is reduced. Fish commonly use vision to evaluate predation threat, but may also use chemical cues from predators or injured conspecifics. Environmental changes, such as increasing turbidity or water colour, may compromise the use of vision through changes in the optical properties of water. In an experiment we tested if changes in optical conditions have any effects on how crucian carp respond to chemical predator cues. In turbidity treatments we added either clay or algae, and in a brown water colour treatment we added water with a high humic content. We found that carp reduced activity in response to predator cues, but only in the turbidity treatments (clay, algae), whereas the response in the brown water treatment was intermediate, and not significantly different from, clear and turbid water treatments. The increased reliance on chemical cues indicates that crucian carp can compensate for the reduced information content from vision in waters where optical conditions are degraded. The lower effect in brown water may be due to the reduction in light intensity, changes in the spectral composition (reduction of UV light) or to a change in chemical properties of the cue in humic waters. PMID:22745663

  12. Contextual taste cues modulate olfactory learning in C. elegans by an occasion-setting mechanism.

    PubMed

    Law, Eric; Nuttley, William M; van der Kooy, Derek

    2004-07-27

    Manipulations of context can affect learning and memory performance across species in many associative learning paradigms. Using taste cues to create distinct contexts for olfactory adaptation assays in the nematode Caenorhabditis elegans, we now show that performance in this associative learning paradigm is sensitive to context manipulations, and we investigate the mechanism(s) used for the integration of context cues in learning. One possibility is that the taste and olfactory stimuli are perceived as a combined, blended cue that the animals then associate with the unconditioned stimulus (US) in the same manner as with any other unitary conditioned stimuli (CS). Alternatively, an occasion-setting model suggests that the taste cues only define the appropriate context for olfactory memory retrieval without directly entering into the primary association. Analysis of genetic mutants demonstrated that the olfactory and context cues are sensed by distinct primary sensory neurons and that the animals' ability to use taste cues to modulate olfactory learning is independent from their ability to utilize these same taste cues for adaptation. We interpret these results as evidence for the occasion-setting mechanism in which context cues modulate primary Pavlovian association by functioning in a hierarchical manner to define the appropriate setting for memory recall. PMID:15268863

  13. Sight or smell? Behavioural and heart rate responses in subordinate rainbow trout exposed to cues from dominant fish

    PubMed Central

    Axelsson, Michael; Dahy, Ronja; Gustavsson, Lena; Johnsson, Jörgen I.

    2015-01-01

    Many animals, including fish, can utilize both vision and the chemical senses in intra-specific communication. However, the relative influence of these sensory modalities on behavioral and physiological responses in social interactions is not well understood. The aim of this study was therefore to investigate the relative effects of visual and chemical stimuli from dominant individuals on the behavioral and physiological responses of subordinate rainbow trout (Oncorhynchus mykiss). External electrodes were used to detect ECG signals from free-swimming fish. This method allowed the simultaneous recording of behavioral and physiological responses, and possible sex differences in these responses were also investigated. The results suggest that, in this context, visual cues are more important than chemical cues in settling the social hierarchy in rainbow trout because a combination of chemical and visual exposure generally yielded a response in focal fish that was similar to the response elicited by visual exposure alone. Both activity and physiological responses were most pronounced during the first ten seconds after exposure, with subordinate fish moving closer to the dominant, accompanied by a strong bradycardic response. Furthermore, females acted more boldly and moved closer to the dominant fish than males, but here the effect of the modes was additive, with a stronger effect of the combined visual and chemical exposure. Overall, the extra information furnished to the fish in the form of chemical cues did not change either the behavioral or the physiological response. This result suggests that visual cues are more important than chemically mediated ones for social communication and individual recognition in rainbow trout. PMID:26339547

  14. A Novel Pathway for Sensory-Mediated Arousal Involves Splicing of an Intron in the period Clock Gene

    PubMed Central

    Cao, Weihuan; Edery, Isaac

    2015-01-01

    Study Objectives: D. melanogaster is an excellent animal model to study how the circadian (≅ 24-h) timing system and sleep regulate daily wake-sleep cycles. Splicing of a temperature-sensitive 3'-terminal intron (termed dmpi8) from the circadian clock gene period (per) regulates the distribution of daily activity in Drosophila. The role of dmpi8 splicing on daily behavior was further evaluated by analyzing sleep. Design: Transgenic flies of the same genetic background but expressing either a wild-type recombinant per gene or one where the efficiency of dmpi8 splicing was increased were exposed to different temperatures in daily light-dark cycles and sleep parameters measured. In addition, transgenic flies were briefly exposed to a variety of sensory-mediated stimuli to measure arousal responses. Results: Surprisingly, we show that the effect of dmpi8 splicing on daytime activity levels does not involve a circadian role for per but is linked to adjustments in sensory-dependent arousal and sleep behavior. Genetically altered flies with high dmpi8 splicing efficiency remain aroused longer following short treatments with light and non-photic cues such as mechanical stimulation. Conclusions: We propose that the thermal regulation of dmpi8 splicing acts as a temperature-calibrated rheostat in a novel arousal mechanism, so that on warm days the inefficient splicing of the dmpi8 intron triggers an increase in quiescence by decreasing sensory-mediated arousal, thus ensuring flies minimize being active during the hot midday sun despite the presence of light in the environment, which is usually a strong arousal cue for diurnal animals. Citation: Cao W, Edery I. A novel pathway for sensory-mediated arousal involves splicing of an intron in the period clock gene. SLEEP 2015;38(1):41–51. PMID:25325457

  15. Multimodal cues improve prey localization under complex environmental conditions.

    PubMed

    Rhebergen, F; Taylor, R C; Ryan, M J; Page, R A; Halfwerk, W

    2015-09-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  16. Multimodal cues improve prey localization under complex environmental conditions

    PubMed Central

    Rhebergen, F.; Taylor, R. C.; Ryan, M. J.; Page, R. A.; Halfwerk, W.

    2015-01-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  17. Learning of Sensory Sequences in Cerebellar Patients

    PubMed Central

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for age, sex, handedness, musicality, and level of education were tested. Auditory and visual sensory sequences were presented out of different sensory pattern categories (tones with different acoustic frequencies and durations, visual stimuli with different spatial locations and colors, sequential vision of irregular shapes) and different ranges of inter-cue time intervals (fast and slow). Motor requirements were small, with vocal responses and no time restrictions. Perception of visual and acoustic stimuli was generally preserved in patients and controls. The number of errors was significantly higher in the faster tempo of sequence presentation in learning of sequences of tones of different frequencies and in learning of sequences of visual stimuli of different spatial locations and different colors. No difference in tempo between the groups was shown. The total number of errors between the two groups was identical in the sequence conditions. No major disturbances in acquisition or discrimination of various sensory sequences were observed in the group of cerebellar patients. Sequence learning may be impaired only in tasks with significant motor demands. PMID:15169865

  18. Characterising reward outcome signals in sensory cortex☆

    PubMed Central

    FitzGerald, Thomas H.B.; Friston, Karl J.; Dolan, Raymond J.

    2013-01-01

    Reward outcome signalling in the sensory cortex is held as important for linking stimuli to their consequences and for modulating perceptual learning in response to incentives. Evidence for reward outcome signalling has been found in sensory regions including the visual, auditory and somatosensory cortices across a range of different paradigms, but it is unknown whether the population of neurons signalling rewarding outcomes are the same as those processing predictive stimuli. We addressed this question using a multivariate analysis of high-resolution functional magnetic resonance imaging (fMRI), in a task where subjects were engaged in instrumental learning with visual predictive cues and auditory signalled reward feedback. We found evidence that outcome signals in sensory regions localise to the same areas involved in stimulus processing. These outcome signals are non-specific and we show that the neuronal populations involved in stimulus representation are not their exclusive target, in keeping with theoretical models of value learning. Thus, our results reveal one likely mechanism through which rewarding outcomes are linked to predictive sensory stimuli, a link that may be key for both reward and perceptual learning. PMID:23811411

  19. Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues.

    PubMed

    Ubernickel, Kirstin; Tschapka, Marco; Kalko, Elisabeth K V

    2013-01-01

    Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behavior to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behavior. We studied the adaptations in the behavior of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behavior at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behavior to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behavior during approaches within very short reaction times depending on the sensory information available. PMID:23675352

  20. Cues, quantification, and agreement in language comprehension.

    PubMed

    Tanner, Darren; Bulkes, Nyssa Z

    2015-12-01

    We investigated factors that affect the comprehension of subject-verb agreement in English, using quantification as a window into the relationship between morphosyntactic processes in language production and comprehension. Event-related brain potentials (ERPs) were recorded while participants read sentences with grammatical and ungrammatical verbs, in which the plurality of the subject noun phrase was either doubly marked (via overt plural quantification and morphological marking on the noun) or singly marked (via only plural morphology on the noun). Both acceptability judgments and the ERP data showed heightened sensitivity to agreement violations when quantification provided an additional cue to the grammatical number of the subject noun phrase, over and above plural morphology. This is consistent with models of grammatical comprehension that emphasize feature prediction in tandem with cue-based memory retrieval. Our results additionally contrast with those of prior studies that showed no effects of plural quantification on agreement in language production. These findings therefore highlight some nontrivial divergences in the cues and mechanisms supporting morphosyntactic processing in language production and comprehension. PMID:25987192

  1. The Sensory Ecology of Ant Navigation: From Natural Environments to Neural Mechanisms.

    PubMed

    Knaden, Markus; Graham, Paul

    2016-03-11

    Animals moving through the world are surrounded by potential information. But the components of this rich array that they extract will depend on current behavioral requirements and the animal's own sensory apparatus. Here, we consider the types of information available to social hymenopteran insects, with a specific focus on ants. This topic has a long history and much is known about how ants and other insects use idiothetic information, sky compasses, visual cues, and odor trails. Recent research has highlighted how insects use other sensory information for navigation, such as the olfactory cues provided by the environment. These cues are harder to understand because they submit less easily to anthropomorphic analysis. Here, we take an ecological approach, considering first what information is available to insects, then how different cues might interact, and finally we discuss potential neural correlates of these behaviors. PMID:26527301

  2. Sensory Conversion Devices

    NASA Astrophysics Data System (ADS)

    Medelius, Pedro

    The human body has five basic sensory functions: touch, vision, hearing, taste, and smell. The effectiveness of one or more of these human sensory functions can be impaired as a result of trauma, congenital defects, or the normal ageing process. Converting one type of function into another, or translating a function to a different part of the body, could result in a better quality of life for a person with diminished sensorial capabilities.

  3. Cue reactivity and its relation to craving and relapse in alcohol dependence: a combined laboratory and field study.

    PubMed

    Witteman, Jurriaan; Post, Hans; Tarvainen, Mika; de Bruijn, Avalon; Perna, Elizabeth De Sousa Fernandes; Ramaekers, Johannes G; Wiers, Reinout W

    2015-10-01

    The present study investigated the nature of physiological cue reactivity and craving in response to alcohol cues among alcohol-dependent patients (N = 80) who were enrolled in detoxification treatment. Further, the predictive value with regard to future drinking of both the magnitude of the physiological and craving response to alcohol cues while in treatment and the degree of alcohol-cue exposure in patients' natural environment was assessed. Physiological reactivity and craving in response to experimental exposure to alcohol and soft drink advertisements were measured during detoxification treatment using heart rate variability and subjective rating of craving. Following discharge, patients monitored exposure to alcohol advertisements for five consecutive weeks with a diary and were followed up with an assessment of relapse at 5 weeks and 3 months post-discharge. The results indicated that the presence of alcohol cues such as the portrayal of the drug and drinking behaviour induced physiological cue reactivity and craving. Additionally, cue reactivity and craving were positively correlated, and cue reactivity was larger for patients with shorter histories of alcohol dependence. Further, patients reported a substantial daily exposure to alcohol cues. The magnitude of cue reactivity and the craving response to alcohol cues at baseline and degree of exposure to alcohol cues in patients' natural environment did not predict relapse. It is concluded that the presence of alcohol cues such as portrayal of alcoholic beverages and drinking behaviour induces cue reactivity and craving in alcohol dependence through a conditioned appetitive response. PMID:26257163

  4. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  5. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  6. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain.

    PubMed

    Cazettes, Fanny; Fischer, Brian J; Pena, Jose L

    2014-01-01

    The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. PMID:25531067

  7. Optimal assessment of multiple cues.

    PubMed Central

    Fawcett, Tim W; Johnstone, Rufus A

    2003-01-01

    In a wide range of contexts from mate choice to foraging, animals are required to discriminate between alternative options on the basis of multiple cues. How should they best assess such complex multicomponent stimuli? Here, we construct a model to investigate this problem, focusing on a simple case where a 'chooser' faces a discrimination task involving two cues. These cues vary in their accuracy and in how costly they are to assess. As an example, we consider a mate-choice situation where females choose between males of differing quality. Our model predicts the following: (i) females should become less choosy as the cost of finding new males increases; (ii) females should prioritize cues differently depending on how choosy they are; (iii) females may sometimes prioritize less accurate cues; and (iv) which cues are most important depends on the abundance of desirable mates. These predictions are testable in mate-choice experiments where the costs of choice can be manipulated. Our findings are applicable to other discrimination tasks besides mate choice, for example a predator's choice between palatable and unpalatable prey, or an altruist's choice between kin and non-kin. PMID:12908986

  8. Foraging costs drive female resistance to a sensory trap

    PubMed Central

    Garcia, Constantino Macías; Lemus, Yolitzi Saldívar

    2012-01-01

    Male ornaments can evolve through the exploitation of female perceptual biases such as those involved in responding to cues from food. This type of sensory exploitation may lead to confusion between the male signals and the cues that females use to find/recognize food. Such interference would be costly to females and may be one reason why females evolve resistance to the male ornaments. Using a group of species of viviparous fish where resistance to a sensory trap has evolved, we demonstrate that females exposed to an ornament that resembles food have a diminished foraging efficiency, that this effect is apparent when foraging on a food item with which the ornament shares visual attributes, and that not all species are equally affected by such confusion. Our results lend support to the model of ornamental evolution through chase-away sexual conflict. PMID:22298856

  9. Cue-induced cigarette craving and mixed emotions: a role for positive affect in the craving process.

    PubMed

    Veilleux, Jennifer C; Conrad, Megan; Kassel, Jon D

    2013-04-01

    Craving is an important component of nicotine addiction, and extant research has demonstrated a clear link between cue-induced craving and negative affect, with mixed results in the positive affect domain. The current study was designed to test the idea that cue-reactive craving might be associated with a mixed emotional process, or the simultaneous experience of positive and negative affect. Participants were 86 non-deprived regular smokers and tobacco chippers who provided simultaneous ratings of positive and negative affect during cue exposure to pleasant, unpleasant, neutral and cigarette cues. Results indicated that self-reported craving was elevated in response to cigarette cues compared to other valenced cue types and craving was higher to pleasant cues than either neutral or unpleasant cues. Mixed emotional responses were higher to cigarette cues than other cue types. In addition, mixed emotional responses to cigarette cues predicted craving even after controlling for smoker type, difficulties regulating negative emotion, baseline craving level and mixed emotional responses to neutral cues. As the first study to investigate mixed emotions and cigarette craving, our results highlight the importance of examining the relationship between cue-reactive craving and emotional response using models of emotion that allow for measurement of nuanced emotional experience. In addition, our findings suggest that positive affect processes may indeed play a role in craving among non-deprived smokers. PMID:23380484

  10. The effect of contextual cues on the encoding of motor memories.

    PubMed

    Howard, Ian S; Wolpert, Daniel M; Franklin, David W

    2013-05-01

    Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues. PMID:23446696

  11. The effect of contextual cues on the encoding of motor memories

    PubMed Central

    Wolpert, Daniel M.; Franklin, David W.

    2013-01-01

    Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues. PMID:23446696

  12. Dorsolateral striatum is critical for the expression of surprise-induced enhancements in cue associability.

    PubMed

    Asem, Judith S A; Schiffino, Felipe L; Holland, Peter C

    2015-09-01

    The dorsolateral striatum (DLS) is frequently implicated in sensory-motor integration, including the performance of sensory orienting responses (ORs) and learned stimulus-response habits. Our laboratory previously identified a role for the DLS in rats' performance of conditioned ORs to Pavlovian cues for food delivery. Here, we considered whether DLS is also critical to another aspect of attention in associative learning, the surprise-induced enhancement of cue associability. A large behavioral literature shows that a cue present when an expected event is omitted enters into new associations more rapidly when that cue is subsequently paired with food. Research from our laboratory has shown that both cue associability enhancements and conditioned ORs depend on the function of a circuit that includes the amygdala central nucleus and the substantia nigra pars compacta. In three experiments, we explored the involvement of DLS in surprise-induced associability enhancements, using a three-stage serial prediction task that permitted separation of DLS function in registering surprise (prediction error) and enhancing cue associability, and in using that increased associability to learn more rapidly about that cue later. The results showed that DLS is critical to the expression, but not the establishment, of the enhanced cue associability normally produced by surprise in this task. They extend the role of DLS and the amygdalo-nigro-striatal circuit underlying learned orienting to more subtle aspects of attention in associative learning, but are consistent with the general notion that DLS is more important in the expression of previously acquired tendencies than in their acquisition. PMID:26108257

  13. Lexical distributional cues, but not situational cues, are readily used to learn abstract locative verb-structure associations.

    PubMed

    Twomey, Katherine E; Chang, Franklin; Ambridge, Ben

    2016-08-01

    Children must learn the structural biases of locative verbs in order to avoid making overgeneralisation errors (e.g., (∗)I filled water into the glass). It is thought that they use linguistic and situational information to learn verb classes that encode structural biases. In addition to situational cues, we examined whether children and adults could use the lexical distribution of nouns in the post-verbal noun phrase of transitive utterances to assign novel verbs to locative classes. In Experiment 1, children and adults used lexical distributional cues to assign verb classes, but were unable to use situational cues appropriately. In Experiment 2, adults generalised distributionally-learned classes to novel verb arguments, demonstrating that distributional information can cue abstract verb classes. Taken together, these studies show that human language learners can use a lexical distributional mechanism that is similar to that used by computational linguistic systems that use large unlabelled corpora to learn verb meaning. PMID:27183399

  14. Electromagnetic Characterization Of Metallic Sensory Alloy

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  15. Understanding the sensory irregularities of esophageal disease.

    PubMed

    Farmer, Adam D; Brock, Christina; Frøkjaer, Jens Brøndum; Gregersen, Hans; Khan, Sheeba; Lelic, Dina; Lottrup, Christian; Drewes, Asbjørn Mohr

    2016-08-01

    Symptoms relating to esophageal sensory abnormalities can be encountered in the clinical environment. Such sensory abnormalities may be present in demonstrable disease, such as erosive esophagitis, and in the ostensibly normal esophagus, such as non-erosive reflux disease or functional chest pain. In this review, the authors discuss esophageal sensation and the esophageal pain system. In addition, the authors provide a primer concerning the techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of esophageal sensory function. Such technological advances, whilst not readily available in the clinic may facilitate the stratification and individualization of therapy in disorders of esophageal sensation in the future. PMID:26890720

  16. Electromagnetic characterization of metallic sensory alloy

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Wallace, Terryl; Newman, Andy; Leser, Paul; Lahue, Rob

    2013-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  17. Quality of Visual Cue Affects Visual Reweighting in Quiet Standing.

    PubMed

    Moraes, Renato; de Freitas, Paulo Barbosa; Razuk, Milena; Barela, José Angelo

    2016-01-01

    Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision. PMID:26939058

  18. Quality of Visual Cue Affects Visual Reweighting in Quiet Standing

    PubMed Central

    Moraes, Renato; de Freitas, Paulo Barbosa; Razuk, Milena; Barela, José Angelo

    2016-01-01

    Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision. PMID:26939058

  19. Sensory Correlations in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Trivedi, Madhukar H.; Grannemann, Bruce D.; Garver, Carolyn R.; Johnson, Danny G.; Andrews, Alonzo A.; Savla, Jayshree S.; Mehta, Jyutika A.; Schroeder, Jennifer L.

    2007-01-01

    This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different…

  20. Both parents respond equally to infant cues in the cooperatively breeding common marmoset, Callithrix jacchus

    PubMed Central

    Sánchez, Susana M.; Ziegler, Toni E.; Snowdon, Charles T.

    2014-01-01

    Although there has been great interest in the evolutionary approach to cooperative breeding species, few studies actually directly compare fathers and mothers on their motivation to parent offspring. We tested the responsiveness of common marmoset mothers and fathers to vocal and olfactory cues from their own and other infants using a two-chamber test apparatus designed to evaluate responses in the absence of competition from other caregivers within the family. We tested parentally experienced mothers and fathers living with young infants and former parents with no current offspring to address the following questions: (1) do mothers and fathers respond equally to sensory cues of infants; (2) do parents discriminate cues of their own offspring when the infants are highly dependent and when the infants are more independent; and (3) are parents responsive to both auditory and olfactory cues? Mothers and fathers reacted similarly in all tests. Parents responded equally to isolation calls from their own and unfamiliar dependent infants and there was minimal response to olfactory cues. Responses to infant vocal cues were significantly stronger when infants were dependent upon direct parental care. There was no difference in response between parents whose infants were no longer dependent and former parents with no current offspring. The results show that both parents are highly responsive to infant vocal cues when their own infants are dependent on parental care, supporting an effect of hormonal priming. However, parents only showed behavioural discrimination between vocalizations from their own and unfamiliar infants when their infants were mostly independent. PMID:25342858

  1. Sensory Feedback Control of Mammalian Vocalizations

    PubMed Central

    Smotherman, Michael S.

    2007-01-01

    Somatosensory and auditory feedback mechanisms are dynamic components of the vocal motor pattern generator in mammals. This review explores how sensory cues arising from central auditory and somatosensory pathways actively guide the production of both simple sounds and complex phrases in mammals. While human speech is a uniquely sophisticated example of mammalian vocal behavior, other mammals can serve as examples of how sensory feedback guides complex vocal patterns. Echolocating bats in particular are unique in their absolute dependence on voice control for survival: these animals must constantly adjust the acoustic and temporal patterns of their orientation sounds to efficiently navigate and forage for insects at high speeds under the cover of darkness. Many species of bats also utter a broad repertoire of communication sounds. The functional neuroanatomy of the bat vocal motor pathway is basically identical to other mammals, but the acute significance of sensory feedback in echolocation has made this a profitable model system for studying general principles of sensorimotor integration with regard to vocalizing. Bats and humans are similar in that they both maintain precise control of many different voice parameters, both exhibit a similar suite of responses to altered auditory feedback, and for both the efficacy of sensory feedback depends upon behavioral context. By comparing similarities and differences in the ways sensory feedback influences voice in humans and bats, we may shed light on the basic architecture of the mammalian vocal motor system and perhaps be able to better distinguish those features of human vocal control that evolved uniquely in support of speech and language. PMID:17449116

  2. Sensory feedback control of mammalian vocalizations.

    PubMed

    Smotherman, Michael S

    2007-09-01

    Somatosensory and auditory feedback mechanisms are dynamic components of the vocal motor pattern generator in mammals. This review explores how sensory cues arising from central auditory and somatosensory pathways actively guide the production of both simple sounds and complex phrases in mammals. While human speech is a uniquely sophisticated example of mammalian vocal behavior, other mammals can serve as examples of how sensory feedback guides complex vocal patterns. Echolocating bats in particular are unique in their absolute dependence on voice control for survival: these animals must constantly adjust the acoustic and temporal patterns of their orientation sounds to efficiently navigate and forage for insects at high speeds under the cover of darkness. Many species of bats also utter a broad repertoire of communication sounds. The functional neuroanatomy of the bat vocal motor pathway is basically identical to other mammals, but the acute significance of sensory feedback in echolocation has made this a profitable model system for studying general principles of sensorimotor integration with regard to vocalizing. Bats and humans are similar in that they both maintain precise control of many different voice parameters, both exhibit a similar suite of responses to altered auditory feedback, and for both the efficacy of sensory feedback depends upon behavioral context. By comparing similarities and differences in the ways sensory feedback influences voice in humans and bats, we may shed light on the basic architecture of the mammalian vocal motor system and perhaps be able to better distinguish those features of human vocal control that evolved uniquely in support of speech and language. PMID:17449116

  3. Role of plant sensory perception in plant-animal interactions.

    PubMed

    Mescher, Mark C; De Moraes, Consuelo M

    2015-02-01

    The sedentary lifestyle of plants can give the false impression that they are passive participants in interactions with other organisms and the broader environment. In fact, plants have evolved sophisticated perceptual abilities that allow them to monitor and respond to a wide range of changing biotic and abiotic conditions. In this paper, we discuss recent research exploring the diverse ways in which plant sensory abilities mediate interactions between plants and animals, especially insects. Such interactions include the detection and capture of animal prey by carnivorous plants, active plant responses to pollinator visitation, the perception of various cues associated with the immediate presence and feeding of herbivores, and plant responses to (olfactory) cues indicating the threat of future herbivory. We are only beginning to understand the full range of sensory cues that mediate such interactions and to elucidate the mechanisms by which plants perceive, interpret, and respond to them. Nevertheless, it is clear that plants continually gather information about their environments via a range of sensory modalities and actively respond in ways that profoundly influence their interactions with other organisms. PMID:25371503

  4. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  5. Effect of training and familiarity on responsiveness to human cues in domestic dogs (Canis familiaris).

    PubMed

    Cunningham, Clare L; Ramos, Mari F

    2014-05-01

    Domestic dogs (Canis familiaris) seem to possess an evolved competency to follow human-given cues, often out-performing their wild progenitor the wolf (Canis lupus) on cue-following tasks. However, domestication may not be solely responsible for the socio-cognitive skills of dogs, with ontogenetic experience also playing a role. This research evaluated the effects of intensive training on cue-following behaviour using an unreinforced object-choice paradigm. The responses of dogs that were trained to competitive levels were compared to those of pet dogs with only basic training, and dogs living in an animal shelter that demonstrated no or only rudimentary following of basic commands. Using a cue-following task where three types of cues were presented by familiar and unfamiliar human partners, the number of cues followed by each training group were recorded. All dogs found cues where gesture was combined with a congruent head and eye movement easier to follow than either gesture or eye gaze alone. Whether the cue-giver was familiar or not had a significant effect on number of cues followed in homed dogs, and the performance of shelter dogs was comparable to the other groups when faced with an unfamiliar cue-giver. Contrary to predictions, level of training did not improve performance on the cue-following task. This work does provide support for the presence of an evolved adaptation to exploit social cues provided by humans that can be augmented by familiarity with the cue giver. However, additional joint activity as experienced in an intensive training regime does not seem to increase accuracy in following human-given cues. PMID:24318516

  6. Multisensory feedback in advanced teleoperations: benefits of auditory cues

    NASA Astrophysics Data System (ADS)

    Apostolos, Margo K.; Zak, Haya; Das, Hari; Schenker, Paul S.

    1992-11-01

    This paper describes work conducted at the JPL Advanced Teleoperation Laboratory in an experiment that demonstrated the value of auditory cues in teleoperation as part of a simulated Solar Maximum Satellite Repair (SMSR). An experiment was designed to examine a specific teleoperation task of unbolting an electrical connector screw based on the apparent significance of auditory signals. Visual and kinesthetic feedback have usually been the primary modes for cueing operator manual control actions in remote manipulation tasks; however, auditory information may have further beneficial effects on operator performance. In addition to the visual cues available from a pair of stereoscopic cameras and contact force feedback cues from the operator's manual hand controller, we gave the operator an amplified microphonic task presentation. In general, sounds within the robot workspace are not heard in the operator control room. Such auditory cues had not been used in the Advanced Teleoperation Laboratory (ATOP) prior to this experiment. Six subjects participated in the experiment which examined the performance benefits of vision, force, and sound feedback. Our data infers that audio cues can make a significant difference in task completion time.

  7. Pigeons exhibit contextual cueing to both simple and complex backgrounds.

    PubMed

    Wasserman, Edward A; Teng, Yuejia; Castro, Leyre

    2014-05-01

    Repeated pairings of a particular visual context with a specific location of a target stimulus facilitate target search in humans. We explored an animal model of this contextual cueing effect using a novel Cueing-Miscueing design. Pigeons had to peck a target which could appear in one of four possible locations on four possible color backgrounds or four possible color photographs of real-world scenes. On 80% of the trials, each of the contexts was uniquely paired with one of the target locations; on the other 20% of the trials, each of the contexts was randomly paired with the remaining target locations. Pigeons came to exhibit robust contextual cueing when the context preceded the target by 2s, with reaction times to the target being shorter on correctly-cued trials than on incorrectly-cued trials. Contextual cueing proved to be more robust with photographic backgrounds than with uniformly colored backgrounds. In addition, during the context-target delay, pigeons predominately pecked toward the location of the upcoming target, suggesting that attentional guidance contributes to contextual cueing. These findings confirm the effectiveness of animal models of contextual cueing and underscore the important part played by associative learning in producing the effect. This article is part of a Special Issue entitled: SQAB 2013: Contextual Con. PMID:24491468

  8. Cue Utilization and Cognitive Load in Novel Task Performance

    PubMed Central

    Brouwers, Sue; Wiggins, Mark W.; Helton, William; O’Hare, David; Griffin, Barbara

    2016-01-01

    This study was designed to examine whether differences in cue utilization were associated with differences in performance during a novel, simulated rail control task, and whether these differences reflected a reduction in cognitive load. Two experiments were conducted, the first of which involved the completion of a 20-min rail control simulation that required participants to re-route trains that periodically required a diversion. Participants with a greater level of cue utilization recorded a consistently greater response latency, consistent with a strategy that maintained accuracy, but reduced the demands on cognitive resources. In the second experiment, participants completed the rail task, during which a concurrent, secondary task was introduced. The results revealed an interaction, whereby participants with lesser levels of cue utilization recorded an increase in response latency that exceeded the response latency recorded for participants with greater levels of cue utilization. The relative consistency of response latencies for participants with greater levels of cue utilization, across all blocks, despite the imposition of a secondary task, suggested that those participants with greater levels of cue utilization had adopted a strategy that was effectively minimizing the impact of additional sources of cognitive load on their performance. PMID:27064669

  9. Sensory substitution as an artificially acquired synaesthesia.

    PubMed

    Ward, Jamie; Wright, Thomas

    2014-04-01

    In this review we explore the relationship between synaesthesia and sensory substitution and argue that sensory substitution does indeed show properties of synaesthesia. Both are associated with atypical perceptual experiences elicited by the processing of a qualitatively different stimulus to that which normally gives rise to that experience. In the most common forms of sensory substitution, perceptual processing of an auditory or tactile signal (which has been converted from a visual signal) is experienced as visual-like in addition to retaining auditory/tactile characteristics. We consider different lines of evidence that support, to varying degrees, the assumption that sensory substitution is associated with visual-like experiences. We then go on to analyse the key similarities and differences between sensory substitution and synaesthesia. Lastly, we propose two testable predictions: firstly that, in an expert user of a sensory substitution device, the substituting modality should not be lost. Secondly that stimulation within the substituting modality, but by means other than a sensory substitution device, should still produce sensation in the normally substituted modality. PMID:22885223

  10. Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  11. Protein synthesis in distal axons is not required for growth cone responses to guidance cues

    PubMed Central

    Roche, Florence K.; Marsick, Bonnie M.; Letourneau, Paul C.

    2009-01-01

    Recent evidence suggests growth cone responses to guidance cues require local protein synthesis. Using chick neurons, we investigated whether protein synthesis is required for growth cones of several types to respond to guidance cues. First, we found that global inhibition of protein synthesis stops axonal elongation after two hr. When protein synthesis inhibitors were added 15 min before adding guidance cues, we found no changes in the typical responses of retinal, sensory and sympathetic growth cones. In the presence of cycloheximide or anisomycin, ephrin-A2, slit-3, and semaphorin3A still induced growth cone collapse and loss of actin filaments, NGF and NT-3 still induced growth cone protrusion and increased F-actin, and sensory growth cones turned toward an NGF source. In compartmented chambers that separated perikarya from axons, axons grew for 24-48 hr in the presence of cycloheximide and responded to negative and positive cues. Our results indicate that protein synthesis is not strictly required in the mechanisms for growth cone responses to many guidance cues. Differences between our results and other studies may exist because of different cellular metabolic levels in in vitro conditions, and a difference in when axonal functions become dependent on local protein synthesis. PMID:19158291

  12. The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.; Parris, B. L.

    1980-01-01

    Data are presented that show the effects of motion system cues, g-seat cues, and pilot experience on pilot performance during takeoffs with engine failures, during in-flight precision turns, and during landings with wind shear. Eight groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The basic cueing system was a fixed-base type (no-motion cueing) with visual cueing. The other three systems were produced by the presence of either a motion system or a g-seat, or both. Extensive statistical analysis of the data was performed and representative performance means were examined. These data show that the addition of motion system cueing results in significant improvement in pilot performance for all three tasks; however, the use of g-seat cueing, either alone or in conjunction with the motion system, provides little if any performance improvement for these tasks and for this aircraft type.

  13. Hypermnesia: the role of multiple retrieval cues.

    PubMed

    Otani, H; Widner, R L; Whiteman, H L; St Louis, J P

    1999-09-01

    We demonstrate that encoding multiple cues enhances hypermnesia. College students were presented with 36 (Experiment 1) or 60 (Experiments 2 and 3) sets of words and were asked to encode the sets under single- or multiple-cue conditions. In the single-cue conditions, each set consisted of a cue and a target. In the multiple-cue conditions, each set consisted of three cues and a target. Following the presentation of the word sets, the participants received either three cued recall tests (Experiments 1 and 2) or three free recall tests (Experiment 3). With this manipulation, we observed greater hypermnesia in the multiple-cue conditions than in the single-cue conditions. Furthermore, the greater hypermnesic recall resulted from increased reminiscence rather than reduced intertest forgetting. The present findings support the hypothesis that the availability of multiple retrieval cues plays an important role in hypermnesia. PMID:10540821

  14. Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese.

    PubMed

    Goswami, Usha; Wang, H-L Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-02-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development. PMID:20146613

  15. A systematic review of sensory processing interventions for children with autism spectrum disorders.

    PubMed

    Case-Smith, Jane; Weaver, Lindy L; Fristad, Mary A

    2015-02-01

    Children with autism spectrum disorders often exhibit co-occurring sensory processing problems and receive interventions that target self-regulation. In current practice, sensory interventions apply different theoretic constructs, focus on different goals, use a variety of sensory modalities, and involve markedly disparate procedures. Previous reviews examined the effects of sensory interventions without acknowledging these inconsistencies. This systematic review examined the research evidence (2000-2012) of two forms of sensory interventions, sensory integration therapy and sensory-based intervention, for children with autism spectrum disorders and concurrent sensory processing problems. A total of 19 studies were reviewed: 5 examined the effects of sensory integration therapy and 14 sensory-based intervention. The studies defined sensory integration therapies as clinic-based interventions that use sensory-rich, child-directed activities to improve a child's adaptive responses to sensory experiences. Two randomized controlled trials found positive effects for sensory integration therapy on child performance using Goal Attainment Scaling (effect sizes ranging from .72 to 1.62); other studies (Levels III-IV) found positive effects on reducing behaviors linked to sensory problems. Sensory-based interventions are characterized as classroom-based interventions that use single-sensory strategies, for example, weighted vests or therapy balls, to influence a child's state of arousal. Few positive effects were found in sensory-based intervention studies. Studies of sensory-based interventions suggest that they may not be effective; however, they did not follow recommended protocols or target sensory processing problems. Although small randomized controlled trials resulted in positive effects for sensory integration therapies, additional rigorous trials using manualized protocols for sensory integration therapy are needed to evaluate effects for children with autism

  16. Alcohol sensory processing and its relevance for ingestion.

    PubMed

    Brasser, Susan M; Castro, Norma; Feretic, Brian

    2015-09-01

    Alcohol possesses complex sensory attributes that are first detected by the body via sensory receptors and afferent fibers that promptly transmit signals to brain areas involved in mediating ingestive motivation, reinforcement, and addictive behavior. Given that the chemosensory cues accompanying alcohol consumption are among the most intimate, consistent, and immediate predictors of alcohol's postabsorptive effects, with experience these stimuli also gain powerful associative incentive value to elicit craving and related physiologic changes, maintenance of ongoing alcohol use, and reinstatement of drug seeking after periods of abstinence. Despite the above, preclinical research has traditionally dichotomized alcohol's taste and postingestive influences as independent regulators of motivation to drink. The present review summarizes current evidence regarding alcohol's ability to directly activate peripheral and central oral chemosensory circuits, relevance for intake of the drug, and provides a framework for moving beyond a dissociation between the sensory and postabsorptive effects of alcohol to understand their neurobiological integration and significance for alcohol addiction. PMID:25304192

  17. Cue validity probability influences neural processing of targets.

    PubMed

    Arjona, Antonio; Escudero, Miguel; Gómez, Carlos M

    2016-09-01

    The neural bases of the so-called Spatial Cueing Effect in a visuo-auditory version of the Central Cue Posneŕs Paradigm (CCPP) are analyzed by means of behavioral patterns (Reaction Times and Errors) and Event-Related Potentials (ERPs), namely the Contingent Negative Variation (CNV), N1, P2a, P2p, P3a, P3b and Negative Slow Wave (NSW). The present version consisted of three types of trial blocks with different validity/invalidity proportions: 50% valid - 50% invalid trials, 68% valid - 32% invalid trials and 86% valid - 14% invalid trials. Thus, ERPs can be analyzed as the proportion of valid trials per block increases. Behavioral (Reaction Times and Incorrect responses) and ERP (lateralized component of CNV, P2a, P3b and NSW) results showed a spatial cueing effect as the proportion of valid trials per block increased. Results suggest a brain activity modulation related to sensory-motor attention and working memory updating, in order to adapt to external unpredictable contingencies. PMID:27430935

  18. Effects of visual and motion simulation cueing systems on pilot performance during takeoffs with engine failures

    NASA Technical Reports Server (NTRS)

    Parris, B. L.; Cook, A. M.

    1978-01-01

    Data are presented that show the effects of visual and motion during cueing on pilot performance during takeoffs with engine failures. Four groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The most basic of these systems was of the instrument-only type. Visual scene simulation and/or motion simulation was added to produce the other systems. Learning curves, mean performance, and subjective data are examined. The results show that the addition of visual cueing results in significant improvement in pilot performance, but the combined use of visual and motion cueing results in far better performance.

  19. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  20. Cueing and pop-out.

    PubMed

    Ziebell, O; Nothdurft, H C

    1999-06-01

    We describe experiments on the dynamics of pop-out from orientation. Target lines at an oblique orientation and orthogonal background elements were presented with various onset delays, and subjects' performance in target detection was measured. Detection rates increased for short delays compared to synchronous stimulus presentation, with a maximum at delta t = 30-60 ms. Control experiments showed that this effect did not reveal specific interactions between target and background lines; a similar effect was obtained when targets were cued with non-oriented stimuli presented shortly before stimulus onset. Specific and non-specific cues improved the target detection rate even when four cues, at different potential target positions were shown simultaneously. Non-localized cues, however, and cues at positions irrelevant for the task did not improve performance. While the effect might partially resemble the temporal modulation transfer function of the visual system, we did not find evidence for other dynamic processes in the tested time intervals (10-300 ms), in particular not for synchronization effects as assumed to provide perceptual linking of background elements. PMID:10343794

  1. Examining Sensory Quadrants in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…

  2. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  3. Experiments in sensing transient rotational acceleration cues on a flight simulator

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.

    1979-01-01

    Results are presented for two transient motion sensing experiments which were motivated by the identification of an anomalous roll cue (a 'jerk' attributed to an acceleration spike) in a prior investigation of realistic fighter motion simulation. The experimental results suggest the consideration of several issues for motion washout and challenge current sensory system modeling efforts. Although no sensory modeling effort is made it is argued that such models must incorporate the ability to handle transient inputs of short duration (some of which are less than the accepted latency times for sensing), and must represent separate channels for rotational acceleration and velocity sensing.

  4. Balance control enhancement using sub-sensory stimulation and visual-auditory biofeedback strategies for amputee subjects.

    PubMed

    Lee, Ming-Yih; Lin, Chih-Feng; Soon, Kok-Soon

    2007-12-01

    Sub-sensory electrical or mechanical stimulation can enhance the sensitivity of the human somatosensory system to improve the balance control capabilities of elderly. In addition, clinical studies suggest that visual-auditory biofeedback can improve sensory compensation for the elderly. This study hypothesizes that the static balance and gait performance of single leg quiet standing and treadmill walking could be improved for providing proprioceptive neuromuscular facilitation using sub-sensory stimulation and visual-auditory biofeedback in amputee subjects. To test this, a computerized foot pressure biofeedback sensory compensation system using sub-threshold low-level electrical stimulation combined with visual-auditory biofeedback was developed. Seven unilateral trans-tibial amputees who wore prostheses over 2 years were recruited. The subjects performed multiple single leg quiet standing trials with sub-sensory electrical stimulation applied at the quadriceps muscle during half of the trials. Static balance performance was characterized by using a Zebris motion analysis system to measure the sway distance and duration of the centre of mass on the second sacral (S2) of the subjects. In addition, multiple treadmill ambulatory trials with or without visual-auditory biofeedback was performed. Dynamic gait performance was characterized with a Zebris instrumented insole to measure the temporal responses of foot pressure sensors. Experimental results showed an improvement in three balance performance indices (Holding Time Index, HTI, Maximum Sway Distance Index, MSDI, and Average Sway Distance Index, ASDI) during single leg quiet standing by applying sub-sensory stimulation. The improvement ratio of these balance performance indices across subjects for single leg quiet standing tests resulted in 132.34% in HTI, 44.61% in MSDI, and 61.45% in ASDI. With visual-auditory biofeedback as a cue for heel contact and toe push-off condition during treadmill ambulation, the

  5. Estimating Location without External Cues

    PubMed Central

    Cheung, Allen

    2014-01-01

    The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system. PMID:25356642

  6. Estimating location without external cues.

    PubMed

    Cheung, Allen

    2014-10-01

    The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system. PMID:25356642

  7. The attentional effects of single cues and color singletons on visual sensitivity.

    PubMed

    White, Alex L; Lunau, Rasmus; Carrasco, Marisa

    2014-04-01

    Sudden changes in the visual periphery can automatically draw attention to their locations. For example, the brief flash of a single object (a "cue") rapidly enhances contrast sensitivity for subsequent stimuli in its vicinity. Feature singletons (e.g., a red circle among green circles) can also capture attention in a variety of tasks. Here, we evaluate whether a peripheral cue that enhances contrast sensitivity when it appears alone has a similar effect when it appears as a color singleton, with the same stimuli and task. In four experiments we asked observers to report the orientation of a target Gabor stimulus, which was preceded by an uninformative cue array consisting either of a single disk or of 16 disks containing a color or luminance singleton. Accuracy was higher and contrast thresholds lower when the single cue appeared at or near the target's location, compared with farther away. The color singleton also modulated performance but to a lesser degree and only when it appeared exactly at the target's location. Thus, this is the first study to demonstrate that cueing by color singletons, like single cues, can enhance sensory signals at an early stage of processing. PMID:23875570

  8. Unconscious Reward Cues Increase Invested Effort, but Do Not Change Speed-Accuracy Tradeoffs

    ERIC Educational Resources Information Center

    Bijleveld, Erik; Custers, Ruud; Aarts, Henk

    2010-01-01

    While both conscious and unconscious reward cues enhance effort to work on a task, previous research also suggests that conscious rewards may additionally affect speed-accuracy tradeoffs. Based on this idea, two experiments explored whether reward cues that are presented above (supraliminal) or below (subliminal) the threshold of conscious…

  9. Trauma-Cueing and Short-Term Memory in College Students with PTSD

    ERIC Educational Resources Information Center

    Kolts, Russell L.; Lombardo, Thomas W.; Faulkner, Ginger

    2004-01-01

    A number of studies have revealed short-term memory deficits in individuals with PTSD. The current study sought to extend these findings to a college PTSD population. Additionally, a cueing manipulation was used to examine the effects of trauma-memory cueing on memory in PTSD and control groups. The study utilized a 2 x 2 (PTSD, No PTSD;…

  10. The Effect of an Extinction Cue on ABA-Renewal: Does Valence Matter?

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Maes, Joseph H. R.

    2011-01-01

    The present human fear conditioning study examined whether the valence of an extinction cue has a differential effect on attenuating renewal that is induced by removal of the extinction context. Additionally, the study aimed to assess whether such attenuating effect is based on a modulatory or safety-signal role of the cue. In acquisition,…

  11. Noise and Inattentiveness to Social Cues

    ERIC Educational Resources Information Center

    Cohen, Sheldon; Lezak, Anne

    1977-01-01

    The effects of environmental stress on the processing of task-irrelevant cues of a social nature were examined. While noise did not affect memory for the task-relevant cues, task-irrelevant cues, regardless of whether they depicted calm or distressed persons, were remembered less well under noise than under quiet. (Author/MA)

  12. Effects of Spatial Cueing on Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.; Kumar, Anuradha Mohan; Carp, Charlotte L.

    2009-01-01

    Effects of a spatial cue on representational momentum were examined. If a cue was present during or after target motion and indicated the location at which the target would vanish or had vanished, forward displacement of that target decreased. The decrease in forward displacement was larger when cues were present after target motion than when cues…

  13. Fragrances as Cues for Remembering Words

    ERIC Educational Resources Information Center

    Eich, James Eric

    1978-01-01

    Results of this experiment suggest that specific encoding of a word is not a necessary condition for cue effectiveness. Results imply that the effect of a nominal fragrance cue arises through the mediation of a functional, implicitly generated semantic cue. (Author/SW)

  14. When Symbolic Spatial Cues Go before Numbers

    ERIC Educational Resources Information Center

    Herrera, Amparo; Macizo, Pedro

    2011-01-01

    This work explores the effect of spatial cueing on number processing. Participants performed a parity judgment task. However, shortly before the target number, a cue (arrow pointing to left, arrow pointing to right or a cross) was centrally presented. In Experiment 1, in which responses were lateralized, the cue direction modulated the interaction…

  15. The Influence of Cue Reliability and Cue Representation on Spatial Reorientation in Young Children

    ERIC Educational Resources Information Center

    Lyons, Ian M.; Huttenlocher, Janellen; Ratliff, Kristin R.

    2014-01-01

    Previous studies of children's reorientation have focused on cue representation (e.g., whether cues are geometric) as a predictor of performance but have not addressed cue reliability (the regularity of the relation between a given cue and an outcome) as a predictor of performance. Here we address both factors within the same series of…

  16. Cue salience influences the use of height cues in reorientation in pigeons (Columba livia).

    PubMed

    Du, Yu; Mahdi, Nuha; Paul, Breanne; Spetch, Marcia L

    2016-07-01

    Although orienting ability has been examined with numerous types of cues, most research has focused only on cues from the horizontal plane. The current study investigated pigeons' use of wall height, a vertical cue, in an open-field task and compared it with their use of horizontal cues. Pigeons were trained to locate food in 2 diagonal corners of a rectangular enclosure with 2 opposite high walls as height cues. Before each trial, pigeons were rotated to disorient them. In training, pigeons could use either the horizontal cues from the rectangular enclosure or the height information from the walls to locate the food. In testing, the apparatus was modified to provide (a) horizontal cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. In Experiment 1 the lower and high walls, respectively, were 40 and 80 cm, whereas in Experiment 2 they were made more perceptually salient by shortening them to 20 and 40 cm. Pigeons accurately located the goal corners with horizontal cues alone in both experiments, but they searched accurately with height cues alone only in Experiment 2. When the height cues conflicted with horizontal cues, pigeons preferred the horizontal cues over the height cues in Experiment 1 but not in Experiment 2, suggesting that perceptual salience influences the relative weighting of cues. (PsycINFO Database Record PMID:27379717

  17. Sustained Perceptual Deficits from Transient Sensory Deprivation

    PubMed Central

    Sanes, Dan H.

    2015-01-01

    Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development

  18. Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator

    NASA Technical Reports Server (NTRS)

    Green, Andrea M.; Angelaki, Dora E.

    2003-01-01

    The ability to simultaneously move in the world and maintain stable visual perception depends critically on the contribution of vestibulo-ocular reflexes (VORs) to gaze stabilization. It is traditionally believed that semicircular canal signals drive compensatory responses to rotational head disturbances (rotational VOR), whereas otolith signals compensate for translational movements [translational VOR (TVOR)]. However, a sensory ambiguity exists because otolith afferents are activated similarly during head translations and reorientations relative to gravity (i.e., tilts). Extra-otolith cues are, therefore, necessary to ensure that dynamic head tilts do not elicit a TVOR. To investigate how extra-otolith signals contribute, we characterized the temporal and viewing distance-dependent properties of a TVOR elicited in the absence of a lateral acceleration stimulus to the otoliths during combined translational/rotational motion. We show that, in addition to otolith signals, angular head position signals derived by integrating sensory canal information drive the TVOR. A physiological basis for these results is proposed in a model with two distinct integration steps. Upstream of the well known oculomotor velocity-to-position neural integrator, the model incorporates a separate integration element that could represent the "velocity storage integrator," whose functional role in the oculomotor system has so far remained controversial. We propose that a key functional purpose of the velocity storage network is to temporally integrate semicircular canal signals, so that they may be used to extract translation information from ambiguous otolith afferent signals in the natural and functionally relevant bandwidth of head movements.

  19. Developmentally distinct gaze processing systems: luminance versus geometric cues.

    PubMed

    Doherty, Martin J; McIntyre, Alex H; Langton, Stephen R H

    2015-04-01

    Two experiments examined how the different cues to gaze direction contribute to children's abilities to follow and make explicit judgements about gaze. In each study participants were shown blurred images of faces containing only luminance cues to gaze direction, line-drawn images containing only fine-grained detail supporting a geometric analysis of gaze direction, and unmanipulated images. In Experiment 1a, 2- and 3-year olds showed gaze-cued orienting of attention in response to unmanipulated and blurred faces, but not line-drawn faces. Adult participants showed cueing effects to line drawn faces as well as the other two types of face cue in Experiment 1b. In Experiment 2, 2-year-olds were poor at judging towards which of four objects blurred and line-drawn faces were gazing, whereas 3- and 4-year-olds performed above chance with these faces. All age groups performed above chance with unmanipulated images. These findings are consistent with an early-developing luminance-based mechanism, which supports gaze following, but which cannot initially support explicit judgements, and a later-developing mechanism, additionally using geometric cues in the eye, which supports explicit judgements about gaze. PMID:25618009

  20. Improved curveball hitting through the enhancement of visual cues.

    PubMed

    Osborne, K; Rudrud, E; Zezoney, F

    1990-01-01

    This study investigated the effectiveness of using visual cues to highlight the seams of baseballs to improve the hitting of curveballs. Five undergraduate varsity baseball team candidates served as subjects. Behavior change was assessed through an alternating treatments design involving unmarked balls and two treatment conditions that included baseballs with 1/4-in. and 1/8-in. orange stripes marking the seams of the baseballs. Results indicated that subjects hit a greater percentage of marked than unmarked balls. These results suggest that the addition of visual cues may be a significant and beneficial technique to enhance hitting performance. Further research is suggested regarding the training procedures, effect of feedback, rate of fading cues, generalization to live pitching, and generalization to other types of pitches. PMID:2249972

  1. Model for human use of motion cues in vehicular control

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A feedback model for human use of motion cues in tracking and regulation tasks is offered. The motion cue model is developed as a simple extension of a structural model of the human pilot, although other equivalent dynamic representations of the pilot could be used in place of the structural model. In the structural model,it is hypothesized that proprioceptive cues and an internal representation of the vehicle dynamics allow the human to create compensation characteristics that are appropriate for the dynamics of the particular vehicle being controlled. It is shown that an additional loop closure involving motion feedback can improve the pilot/vehicle dynamics by decreasing high-frequency phase lags in the effective open-loop system transfer function. Data from a roll-attitude tracking/regulation task conducted on a moving base simulator are used to verify the modeling approach.

  2. Human Perception of Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Zhang, Guan-Lu

    2010-01-01

    Human daily activities on Earth involve motions that elicit both tilt and translation components of the head (i.e. gazing and locomotion). With otolith cues alone, tilt and translation can be ambiguous since both motions can potentially displace the otolithic membrane by the same magnitude and direction. Transitions between gravity environments (i.e. Earth, microgravity and lunar) have demonstrated to alter the functions of the vestibular system and exacerbate the ambiguity between tilt and translational motion cues. Symptoms of motion sickness and spatial disorientation can impair human performances during critical mission phases. Specifically, Space Shuttle landing records show that particular cases of tilt-translation illusions have impaired the performance of seasoned commanders. This sensorimotor condition is one of many operational risks that may have dire implications on future human space exploration missions. The neural strategy with which the human central nervous system distinguishes ambiguous inertial motion cues remains the subject of intense research. A prevailing theory in the neuroscience field proposes that the human brain is able to formulate a neural internal model of ambiguous motion cues such that tilt and translation components can be perceptually decomposed in order to elicit the appropriate bodily response. The present work uses this theory, known as the GIF resolution hypothesis, as the framework for experimental hypothesis. Specifically, two novel motion paradigms are employed to validate the neural capacity of ambiguous inertial motion decomposition in ground-based human subjects. The experimental setup involves the Tilt-Translation Sled at Neuroscience Laboratory of NASA JSC. This two degree-of-freedom motion system is able to tilt subjects in the pitch plane and translate the subject along the fore-aft axis. Perception data will be gathered through subject verbal reports. Preliminary analysis of perceptual data does not indicate that

  3. Predation risk assessment by olfactory and visual cues in a coral reef fish

    NASA Astrophysics Data System (ADS)

    McCormick, M. I.; Manassa, R.

    2008-03-01

    Assessment of predation risk is vital for the success of an individual. Primary cues for the assessment include visual and olfactory stimuli, but the relative importance of these sources of information for risk assessment has seldom been assessed for marine fishes. This study examined the importance of visual and chemical cues in assessing risk for the star goby, Asterropteryx semipunctatus. Visual and chemical cue intensities were used that were indicative of a high threat situation. The behavioural response elicited by both the visual cues of a predator (the rock cod, Cephalopholis boenak) and the chemical alarm cues from conspecifics were similar in magnitude, with responses including a decrease in feeding strikes and moves. A bobbing behaviour was exhibited when the predator was visible and not when only exposed to the chemical alarm cue. When visual and chemical cues were presented together they yielded a stronger antipredator response than when gobies were exposed solely to conspecific alarm cues. This suggests additivity of risk assessment information at the levels of threat used, however, the goby’s response is also likely to depend on the environmental and social context of the predator-prey encounter. This study highlights the importance of chemical cues in the assessment of predation risk for a coral reef fish.

  4. Efficacy of monitoring the sensory taste characteristics in pomegranate juice with electronic tongue, and chemical measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to flavor attributes, pomegranate juices have sweet, sour, bitter tastes, astringent, and toothetch feeling factors. Many factors influence tastes and feeling factors. Measuring these attributes without a sensory panel makes economic sense. This investigation compares descriptive sensory...

  5. Sensory integration during reaching: the effects of manipulating visual target availability.

    PubMed

    Khanafer, Sajida; Cressman, Erin K

    2014-12-01

    When using visual and proprioceptive information to plan a reach, it has been proposed that the brain combines these cues to estimate the object and/or limb's location. Specifically, according to the maximum-likelihood estimation (MLE) model, sensory inputs are combined such that more reliable inputs are assigned a greater weight (Ernst and Banks in Nature 415:429-433, 2002). In this paper, we examined if the brain is able to adjust which sensory cue it weights the most. Specifically, we asked if the brain changes how it weights sensory information when the availability of a visual cue is manipulated. Twelve healthy subjects reached to visual (V), proprioceptive (P), or visual + proprioceptive (VP) targets under different visual delay conditions (e.g., on V and VP trials, the visual target was available for the entire reach; it was removed with the go signal, or it was removed 1 s before the go signal). To establish which sensory cue subjects weighted the most, we compared endpoint positions achieved on V and P reaches to VP reaches. Results indicated that subjects combined visual and proprioceptive cues in accordance with the MLE model when reaching to VP targets. Moreover, subjects' reaching errors to visual targets increased with longer visual delays (particularly in the vertical direction). However, there was no change in reach variability with longer delays, and subjects did not reweight visual information as the availability of visual information was manipulated. Thus, a change in visual environment is not sufficient to cause the brain to reweight how it processes sensory information. PMID:25146571

  6. Visual cues for data mining

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Rabenhorst, David A.; Gerth, John A.; Kalin, Edward B.

    1996-04-01

    This paper describes a set of visual techniques, based on principles of human perception and cognition, which can help users analyze and develop intuitions about tabular data. Collections of tabular data are widely available, including, for example, multivariate time series data, customer satisfaction data, stock market performance data, multivariate profiles of companies and individuals, and scientific measurements. In our approach, we show how visual cues can help users perform a number of data mining tasks, including identifying correlations and interaction effects, finding clusters and understanding the semantics of cluster membership, identifying anomalies and outliers, and discovering multivariate relationships among variables. These cues are derived from psychological studies on perceptual organization, visual search, perceptual scaling, and color perception. These visual techniques are presented as a complement to the statistical and algorithmic methods more commonly associated with these tasks, and provide an interactive interface for the human analyst.

  7. [Visual cues as a therapeutic tool in Parkinson's disease. A systematic review].

    PubMed

    Muñoz-Hellín, Elena; Cano-de-la-Cuerda, Roberto; Miangolarra-Page, Juan Carlos

    2013-01-01

    Sensory stimuli or sensory cues are being used as a therapeutic tool for improving gait disorders in Parkinson's disease patients, but most studies seem to focus on auditory stimuli. The aim of this study was to conduct a systematic review regarding the use of visual cues over gait disorders, dual tasks during gait, freezing and the incidence of falls in patients with Parkinson to obtain therapeutic implications. We conducted a systematic review in main databases such as Cochrane Database of Systematic Reviews, TripDataBase, PubMed, Ovid MEDLINE, Ovid EMBASE and Physiotherapy Evidence Database, during 2005 to 2012, according to the recommendations of the Consolidated Standards of Reporting Trials, evaluating the quality of the papers included with the Downs & Black Quality Index. 21 articles were finally included in this systematic review (with a total of 892 participants) with variable methodological quality, achieving an average of 17.27 points in the Downs and Black Quality Index (range: 11-21). Visual cues produce improvements over temporal-spatial parameters in gait, turning execution, reducing the appearance of freezing and falls in Parkinson's disease patients. Visual cues appear to benefit dual tasks during gait, reducing the interference of the second task. Further studies are needed to determine the preferred type of stimuli for each stage of the disease. PMID:23735596

  8. Development of individually distinct recognition cues.

    PubMed

    Mateo, Jill M

    2006-11-01

    Despite extensive research on the functions of kin recognition, little is known about ontogenetic changes in the cues mediating such recognition. In Belding's ground squirrels, Spermophilus beldingi, secretions from oral glands are both individually distinct and kin distinct, and function in social recognition across many contexts. Behavioral studies of recognition and kin preferences suggest that these cues may change across development, particularly around the time of weaning and emergence from natal burrows (around 25 days of age). I used an habituation-discrimination task with captive S. beldingi, presenting subjects with odors collected from a pair of pups at several ages across early development. I found that at 21 days of age, but not at 7 or 14, young produce detectable odors. Odors are not individually distinct, however, until 28 days of age, after young have emerged from their burrows and begun foraging. In addition, an individual's odor continues to develop after emergence: odors produced by an individual at 20 and 40 days of age are perceived as dissimilar, yet odors produced at 28 and 40 days are treated as similar. Developmental changes in odors provide a proximate explanation for why S. beldingi littermate preferences are not consolidated until after natal emergence, and demonstrate that conspecifics must update their recognition templates as young develop. PMID:17016836

  9. Environmental tobacco smoke: Sensory reactions of occupants

    NASA Astrophysics Data System (ADS)

    Cain, William S.; Tosun, Tarik; See, Lai-Chu; Leaderer, Brian

    Occupants sat in a thermally-neutral environmental chamber for 2 h at a time and rated the following sensory attributes: magnitude of eye irritation and its acceptability, throat irritation and its acceptability, nose irritation and its acceptability, odor and its acceptability, and overall acceptability. Without the knowledge of the judges, cigarette smoking began at one or another time during occupancy. Smoking rate was tailored to achieve environmentally realistic levels of carbon monoxide, 2 ppm or 5 ppm above ambient background. Although the 2-ppm condition caused significant irritation above baseline, dissatisfaction among the occupants averaged only about 10%. The 5-ppm condition caused steadily increasing irritation and dissatisfaction in excess of 20% over time. Electrostatic precipitation of the paniculate matter diminished the magnitude of irritation and odor consistently, though not dramatically. It had a less consistent effect on dissatisfaction. Blockage of the nose via a noseclip in order to eliminate odor cues had no effect on eye irritation and implied that previous assessments of eye irritation in the presence of the possible biasing cue of odor can be trusted. The degree of dissatisfaction aroused from environmental tobacco smoke (ETS) correlates very strongly with perceived intensity of irritation or odor, with overall dissatisfaction deriving almost exclusively from whichever channel (eyes, throat, etc.) is most severely affected.

  10. How chimpanzees integrate sensory information to select figs.

    PubMed

    Dominy, Nathaniel J; Yeakel, Justin D; Bhat, Uttam; Ramsden, Lawrence; Wrangham, Richard W; Lucas, Peter W

    2016-06-01

    Figs are keystone resources that sustain chimpanzees when preferred fruits are scarce. Many figs retain a green(ish) colour throughout development, a pattern that causes chimpanzees to evaluate edibility on the basis of achromatic accessory cues. Such behaviour is conspicuous because it entails a succession of discrete sensory assessments, including the deliberate palpation of individual figs, a task that requires advanced visuomotor control. These actions are strongly suggestive of domain-specific information processing and decision-making, and they call attention to a potential selective force on the origin of advanced manual prehension and digital dexterity during primate evolution. To explore this concept, we report on the foraging behaviours of chimpanzees and the spectral, chemical and mechanical properties of figs, with cutting tests revealing ease of fracture in the mouth. By integrating the ability of different sensory cues to predict fructose content in a Bayesian updating framework, we quantified the amount of information gained when a chimpanzee successively observes, palpates and bites the green figs of Ficus sansibarica. We found that the cue eliciting ingestion was not colour or size, but fig mechanics (including toughness estimates from wedge tests), which relays higher-quality information on fructose concentrations than colour vision. This result explains why chimpanzees evaluate green figs by palpation and dental incision, actions that could explain the adaptive origins of advanced manual prehension. PMID:27274803

  11. How chimpanzees integrate sensory information to select figs

    PubMed Central

    Yeakel, Justin D.; Bhat, Uttam; Ramsden, Lawrence; Wrangham, Richard W.; Lucas, Peter W.

    2016-01-01

    Figs are keystone resources that sustain chimpanzees when preferred fruits are scarce. Many figs retain a green(ish) colour throughout development, a pattern that causes chimpanzees to evaluate edibility on the basis of achromatic accessory cues. Such behaviour is conspicuous because it entails a succession of discrete sensory assessments, including the deliberate palpation of individual figs, a task that requires advanced visuomotor control. These actions are strongly suggestive of domain-specific information processing and decision-making, and they call attention to a potential selective force on the origin of advanced manual prehension and digital dexterity during primate evolution. To explore this concept, we report on the foraging behaviours of chimpanzees and the spectral, chemical and mechanical properties of figs, with cutting tests revealing ease of fracture in the mouth. By integrating the ability of different sensory cues to predict fructose content in a Bayesian updating framework, we quantified the amount of information gained when a chimpanzee successively observes, palpates and bites the green figs of Ficus sansibarica. We found that the cue eliciting ingestion was not colour or size, but fig mechanics (including toughness estimates from wedge tests), which relays higher-quality information on fructose concentrations than colour vision. This result explains why chimpanzees evaluate green figs by palpation and dental incision, actions that could explain the adaptive origins of advanced manual prehension. PMID:27274803

  12. GABAergic synapses: their plasticity and role in sensory cortex

    PubMed Central

    Griffen, Trevor C.; Maffei, Arianna

    2014-01-01

    The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function. PMID:24723851

  13. Emerging Role of Sensory Perception in Aging and Metabolism.

    PubMed

    Riera, Celine E; Dillin, Andrew

    2016-05-01

    Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. PMID:27067041

  14. Sensory activity affects sensory axon development in C. elegans.

    PubMed

    Peckol, E L; Zallen, J A; Yarrow, J C; Bargmann, C I

    1999-05-01

    The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure. PMID:10101123

  15. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control

    PubMed Central

    Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which

  16. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition

    PubMed Central

    Miller, Adam M. P.; Vedder, Lindsey C.; Law, L. Matthew; Smith, David M.

    2014-01-01

    Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory. PMID:25140141

  17. Emotional pictures and sounds: a review of multimodal interactions of emotion cues in multiple domains

    PubMed Central

    Gerdes, Antje B. M.; Wieser, Matthias J.; Alpers, Georg W.

    2014-01-01

    In everyday life, multiple sensory channels jointly trigger emotional experiences and one channel may alter processing in another channel. For example, seeing an emotional facial expression and hearing the voice’s emotional tone will jointly create the emotional experience. This example, where auditory and visual input is related to social communication, has gained considerable attention by researchers. However, interactions of visual and auditory emotional information are not limited to social communication but can extend to much broader contexts including human, animal, and environmental cues. In this article, we review current research on audiovisual emotion processing beyond face-voice stimuli to develop a broader perspective on multimodal interactions in emotion processing. We argue that current concepts of multimodality should be extended in considering an ecologically valid variety of stimuli in audiovisual emotion processing. Therefore, we provide an overview of studies in which emotional sounds and interactions with complex pictures of scenes were investigated. In addition to behavioral studies, we focus on neuroimaging, electro- and peripher-physiological findings. Furthermore, we integrate these findings and identify similarities or differences. We conclude with suggestions for future research. PMID:25520679

  18. Recording Sensory Words

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2007-01-01

    From children's viewpoints, what they experience in the world is what the world is like--for everyone. "What do others experience with their senses when they are in the same situation?" is a question that young children can explore by collecting data as they use a "feely box," or take a "sensory walk." There are many ways to focus the children's…

  19. Studying Sensory Perception.

    ERIC Educational Resources Information Center

    Ackerly, Spafford C.

    2001-01-01

    Explains the vestibular organ's role in balancing the body and stabilizing the visual world using the example of a hunter. Describes the relationship between sensory perception and learning. Recommends using optical illusions to illustrate the distinctions between external realities and internal perceptions. (Contains 13 references.) (YDS)

  20. Structured Sensory Trauma Interventions

    ERIC Educational Resources Information Center

    Steele, William; Kuban, Caelan

    2010-01-01

    This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…

  1. Sensory Perception, Rationalism and Outdoor Environmental Education

    ERIC Educational Resources Information Center

    Auer, Matthew R.

    2008-01-01

    There is a strong emphasis on sensory perception and "hands-on" learning in the outdoor environmental education of children. In addition, normative concerns infuse children's environmental curricula, and in particular, the notion that environmental education is not a passive undertaking; when one appreciates the essential value of the environment,…

  2. Are face representations depth cue invariant?

    PubMed

    Dehmoobadsharifabadi, Armita; Farivar, Reza

    2016-06-01

    The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition. PMID:27271993

  3. Quit interest influences smoking cue-reactivity.

    PubMed

    Veilleux, Jennifer C; Skinner, Kayla D; Pollert, Garrett A

    2016-12-01

    Interest in quitting smoking is important to model in cue-reactivity studies, because the craving elicited by cue exposure likely requires different self-regulation efforts for smokers who are interested in quitting compared to those without any quit interest. The objective of the current study was to evaluate the role of quit interest in how cigarette cue exposure influences self-control efforts. Smokers interested in quitting (n=37) and smokers with no interest in quitting (n=53) were randomly assigned to a cigarette or neutral cue exposure task. Following the cue exposure, all participants completed two self-control tasks, a measure of risky gambling (the Iowa Gambling Task) and a cold pressor tolerance task. Results indicated that smokers interested in quitting had worse performance on the gambling task when exposed to a cigarette cue compared to neutral cue exposure. We also found that people interested in quitting tolerated the cold pressor task for a shorter amount of time than people not interested in quitting. Finally, we found that for people interested in quitting, exposure to a cigarette cue was associated with increased motivation to take steps toward decreasing use. Overall these results suggest that including quit interest in studies of cue reactivity is valuable, as quit interest influenced smoking cue-reactivity responses. PMID:27487082

  4. Sensory analysis of lipstick.

    PubMed

    Yap, K C S; Aminah, A

    2011-06-01

    Sensory analysis of lipstick product by trained panellists started with recruiting female panels who are lipstick users, in good health condition and willing to be a part of sensory members. This group of people was further scrutinized with duo-trio method using commercial lipstick samples that are commonly used among them. About 40% of the 15 panels recruited were unable to differentiate the lipstick samples they usually use better than chance. The balance of nine panels that were corrected at least with 65% across all trials in panels screening process was formed a working group to develop sensory languages as a means of describing product similarities and differences and a scoring system. Five sessions with each session took about 90 min were carried out using 10 types of lipsticks with different waxes mixture ratio in the formulation together with six commercial lipsticks that are the most common to the panels. First session was focus on listing out the panels' perception towards the characteristic of the lipstick samples after normal application on their lips. Second session was focus on the refining and categorizing the responses gathered from the first session and translated into sensory attributes with its definition. Third session was focus on the scoring system. Fourth and fifth sessions were repetition of the third session to ensure consistency. In a collective effort of the panels, sensory attributes developed for lipstick were Spreadability, Off flavour, Hardness, Smoothness, Moist, Not messy, Glossy and Greasy. Analysis of variance was able to provide ample evidence on gauging the panel performance. A proper panels selecting and training was able to produce a reliable and sensitive trained panel for evaluating the product based on the procedures being trained. PMID:21272038

  5. Aging and Sensory Substitution in a Virtual Navigation Task

    PubMed Central

    Levy-Tzedek, S.; Maidenbaum, S.; Amedi, A.; Lackner, J.

    2016-01-01

    Virtual environments are becoming ubiquitous, and used in a variety of contexts–from entertainment to training and rehabilitation. Recently, technology for making them more accessible to blind or visually impaired users has been developed, by using sound to represent visual information. The ability of older individuals to interpret these cues has not yet been studied. In this experiment, we studied the effects of age and sensory modality (visual or auditory) on navigation through a virtual maze. We added a layer of complexity by conducting the experiment in a rotating room, in order to test the effect of the spatial bias induced by the rotation on performance. Results from 29 participants showed that with the auditory cues, it took participants a longer time to complete the mazes, they took a longer path length through the maze, they paused more, and had more collisions with the walls, compared to navigation with the visual cues. The older group took a longer time to complete the mazes, they paused more, and had more collisions with the walls, compared to the younger group. There was no effect of room rotation on the performance, nor were there any significant interactions among age, feedback modality and room rotation. We conclude that there is a decline in performance with age, and that while navigation with auditory cues is possible even at an old age, it presents more challenges than visual navigation. PMID:27007812

  6. Aging and Sensory Substitution in a Virtual Navigation Task.

    PubMed

    Levy-Tzedek, S; Maidenbaum, S; Amedi, A; Lackner, J

    2016-01-01

    Virtual environments are becoming ubiquitous, and used in a variety of contexts-from entertainment to training and rehabilitation. Recently, technology for making them more accessible to blind or visually impaired users has been developed, by using sound to represent visual information. The ability of older individuals to interpret these cues has not yet been studied. In this experiment, we studied the effects of age and sensory modality (visual or auditory) on navigation through a virtual maze. We added a layer of complexity by conducting the experiment in a rotating room, in order to test the effect of the spatial bias induced by the rotation on performance. Results from 29 participants showed that with the auditory cues, it took participants a longer time to complete the mazes, they took a longer path length through the maze, they paused more, and had more collisions with the walls, compared to navigation with the visual cues. The older group took a longer time to complete the mazes, they paused more, and had more collisions with the walls, compared to the younger group. There was no effect of room rotation on the performance, nor were there any significant interactions among age, feedback modality and room rotation. We conclude that there is a decline in performance with age, and that while navigation with auditory cues is possible even at an old age, it presents more challenges than visual navigation. PMID:27007812

  7. Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect.

    PubMed

    Hermann, Sara L; Thaler, Jennifer S

    2014-11-01

    Predators can affect prey in two ways-by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator-prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male "risk" predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29% compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24% less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey's response. Volatile odor cues from predators reduced beetle feeding by 10% overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment. PMID:25234373

  8. Effects of a Context Shift and Multiple Context Extinction on Reactivity to Alcohol Cues

    PubMed Central

    MacKillop, James; Lisman, Stephen A.

    2008-01-01

    Cue exposure treatment (CET) attempts to reduce the influence of conditioned substance cues on addictive behavior via prolonged cue exposure with response prevention (i.e., extinction), but has received only modest empirical support in clinical trials. This may be because extinction learning appears to be context dependent and a change in context may result in a return of conditioned responding (i.e., renewal), although this has received only limited empirical examination. The current study used a four-session laboratory analogue of CET to examine whether a change in context following three sessions of alcohol cue exposure with response prevention would result in renewal of conditioned responding. In addition, this study examined whether conducting extinction in multiple contexts would attenuate renewal of conditioned responding. In a one-way between-subjects design, 73 heavy drinkers (71% male) were randomized to three conditions: 1) single context extinction (extinction to alcohol cues in the same context for three sessions followed by a context shift at the fourth session); 2) multiple context extinction (extinction to alcohol cues in different contexts each day for all four sessions); and 3) pseudo-extinction control condition (exposure to neutral cues in the same context for three sessions followed by exposure to alcohol cues at the fourth session). The results revealed the predicted cue reactivity and extinction effects, but the hypotheses that a context shift would generate renewed cue reactivity and that multiple contexts would enhance extinction were not supported. Methodological aspects of the study and the need for parametric data on the context dependency of extinction to alcohol cues are discussed. PMID:18729687

  9. A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.

    2002-01-01

    This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is

  10. Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues.

    PubMed

    Kraft, James M; Maloney, Shannon I; Brainard, David H

    2002-01-01

    Two experiments were conducted to study how scene complexity and cues to depth affect human color constancy. Specifically, two levels of scene complexity were compared. The low-complexity scene contained two walls with the same surface reflectance and a test patch which provided no information about the illuminant. In addition to the surfaces visible in the low-complexity scene, the high-complexity scene contained two rectangular solid objects and 24 paper samples with diverse surface reflectances. Observers viewed illuminated objects in an experimental chamber and adjusted the test patch until it appeared achromatic. Achromatic settings made tinder two different illuminants were used to compute an index that quantified the degree of constancy. Two experiments were conducted: one in which observers viewed the stimuli directly, and one in which they viewed the scenes through an optical system that reduced cues to depth. In each experiment, constancy was assessed for two conditions. In the valid-cue condition, many cues provided valid information about the illuminant change. In the invalid-cue condition, some image cues provided invalid information. Four broad conclusions are drawn from the data: (a) constancy is generally better in the valid-cue condition than in the invalid-cue condition: (b) for the stimulus configuration used, increasing image complexity has little effect in the valid-cue condition but leads to increased constancy in the invalid-cue condition; (c) for the stimulus configuration used, reducing cues to depth has little effect for either constancy condition: and (d) there is moderate individual variation in the degree of constancy exhibited, particularly in the degree to which the complexity manipulation affects performance. PMID:11922136

  11. Sun compass integration of skylight cues in migratory monarch butterflies.

    PubMed

    Heinze, Stanley; Reppert, Steven M

    2011-01-27

    Migrating monarch butterflies (Danaus plexippus) use a time-compensated sun compass to navigate from eastern North America to their overwintering grounds in central Mexico. Here we describe the neuronal layout of those aspects of the butterfly's central complex likely to establish part of the internal sun compass and find them highly homologous to those of the desert locust. Intracellular recordings from neurons in the monarch sun compass network reveal responses tuned to specific E-vector angles of polarized light, as well as azimuth-dependent responses to unpolarized light, independent of spectral composition. The neural responses to these two stimuli in individual neurons are mediated through different regions of the compound eye. Moreover, these dual responses are integrated to create a consistent representation of skylight cues in the sun compass throughout the day. The results advance our understanding of how ambiguous sensory signals are processed by the brain to elicit a robust behavioral response. PMID:21262471

  12. Understanding Sensory Integration. ERIC Digest.

    ERIC Educational Resources Information Center

    DiMatties, Marie E.; Sammons, Jennifer H.

    This brief paper summarizes what is known about sensory integration and sensory integration dysfunction (DSI). It outlines evaluation of DSI, treatment approaches, and implications for parents and teachers, including compensatory strategies for minimizing the impact of DSI on a child's life. Review of origins of sensory integration theory in the…

  13. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance.

    PubMed

    Halfwerk, Wouter; Slabbekoorn, Hans

    2015-04-01

    Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception. PMID:25904319

  14. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance

    PubMed Central

    Halfwerk, Wouter; Slabbekoorn, Hans

    2015-01-01

    Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception. PMID:25904319

  15. Perceptual integration for qualitatively different 3-D cues in the human brain.

    PubMed

    Dövencioğlu, Dicle; Ban, Hiroshi; Schofield, Andrew J; Welchman, Andrew E

    2013-09-01

    The visual system's flexibility in estimating depth is remarkable: We readily perceive 3-D structure under diverse conditions from the seemingly random dots of a "magic eye" stereogram to the aesthetically beautiful, but obviously flat, canvasses of the Old Masters. Yet, 3-D perception is often enhanced when different cues specify the same depth. This perceptual process is understood as Bayesian inference that improves sensory estimates. Despite considerable behavioral support for this theory, insights into the cortical circuits involved are limited. Moreover, extant work tested quantitatively similar cues, reducing some of the challenges associated with integrating computationally and qualitatively different signals. Here we address this challenge by measuring fMRI responses to depth structures defined by shading, binocular disparity, and their combination. We quantified information about depth configurations (convex "bumps" vs. concave "dimples") in different visual cortical areas using pattern classification analysis. We found that fMRI responses in dorsal visual area V3B/KO were more discriminable when disparity and shading concurrently signaled depth, in line with the predictions of cue integration. Importantly, by relating fMRI and psychophysical tests of integration, we observed a close association between depth judgments and activity in this area. Finally, using a cross-cue transfer test, we found that fMRI responses evoked by one cue afford classification of responses evoked by the other. This reveals a generalized depth representation in dorsal visual cortex that combines qualitatively different information in line with 3-D perception. PMID:23647559

  16. Odour cues from suitors' nests determine mating success in a fish.

    PubMed

    Lehtonen, Topi K; Kvarnemo, Charlotta

    2015-05-01

    Animals use a range of sensory cues for finding food, avoiding predators and choosing mates. In this regard, the aquatic environment is particularly suitable for the use of olfactory and other chemical cues. Nevertheless, mate choice research, even on aquatic organisms, has focused on visual signals, while chemical cues relevant in sexual selection have been assumed to be 'intrinsic' excretions of mate candidates. Here, using the sand goby Pomatoschistus minutus, a small fish with paternal egg care, we investigated the possibility that 'extrinsic' chemical cues in the males' nests could also have a significant contribution to mating success. We found that females strongly avoided laying eggs into nests subject to the odour of Saprolegnia water moulds (an egg infection) and that this effect was independent of the females' initial, visually based preference for males. To the best of our knowledge, this is the first study to show that chemical cues related to parental failure can play a large role in sexual selection. PMID:25948566

  17. Odour cues from suitors’ nests determine mating success in a fish

    PubMed Central

    Lehtonen, Topi K.; Kvarnemo, Charlotta

    2015-01-01

    Animals use a range of sensory cues for finding food, avoiding predators and choosing mates. In this regard, the aquatic environment is particularly suitable for the use of olfactory and other chemical cues. Nevertheless, mate choice research, even on aquatic organisms, has focused on visual signals, while chemical cues relevant in sexual selection have been assumed to be ‘intrinsic’ excretions of mate candidates. Here, using the sand goby Pomatoschistus minutus, a small fish with paternal egg care, we investigated the possibility that ‘extrinsic’ chemical cues in the males’ nests could also have a significant contribution to mating success. We found that females strongly avoided laying eggs into nests subject to the odour of Saprolegnia water moulds (an egg infection) and that this effect was independent of the females’ initial, visually based preference for males. To the best of our knowledge, this is the first study to show that chemical cues related to parental failure can play a large role in sexual selection. PMID:25948566

  18. The role of a generalized ultraviolet cue for blackbird food selection.

    PubMed

    Werner, Scott J; Tupper, Shelagh K; Carlson, James C; Pettit, Susan E; Ellis, Jeremy W; Linz, George M

    2012-07-16

    Birds utilize ultraviolet (UV) wavelengths for plumage signaling and sexual selection. Ultraviolet cues may also be used for the process of avian food selection. The aim of our study was to investigate whether a UV cue and a postingestive repellent can be used to condition food avoidance in red-winged blackbirds (Agelaius phoeniceus). We found that birds conditioned with an UV-absorbent, postingestive repellent subsequently avoided UV-absorbent food. Thus, the UV-absorbent cue (coupled with 0-20% of the conditioned repellent concentration) was used to maintain avoidance for up to 18 days post-conditioning. Similarly, birds conditioned with the UV-absorbent, postingestive repellent subsequently avoided UV-reflective food. Thus, conditioned avoidance of an UV-absorbent cue can be generalized to an unconditioned, UV-reflective cue for nutrient selection and toxin avoidance. These findings support the hypothesized function of UV vision for avian food selection, the implications of which remain to be explored for the sensory and behavioral ecology within agronomic and natural environments. PMID:22525492

  19. Sensory evaluation techniques - make "good for you" taste "good".

    PubMed

    Civille, Gail Vance; Oftedal, Katherine Nolen

    2012-11-01

    Sensory evaluation techniques are frequently used, however applied sensory is most often used within private industry. Basic sensory techniques can be an invaluable aid to research on nutritional or functional benefits of natural products such as whole fruits, nuts and vegetables (through varietal selection, breeding, etc.) in addition to clinical trials of botanicals. Products' sensory properties, including fruits and vegetables, must be tailored to ultimately appeal to the "consumer": no matter how healthy and nutritious a food is, if it does not appeal to its intended end user, it is unlikely to succeed in today's marketplace. This paper outlines the "5 S's" or basic principles of applied sensory testing; Subjects, Site, Samples, Statistics, and Sensory Methods. Two case studies are detailed where applied sensory is used to benefic academic research; one as a clinical trial of broccoli sprout extract, and the second as plant breeding research on strawberries. Finally, more in-depth techniques are discussed so that one can ensure that product sensory properties are aligned with consumer expectations, in other words, that sensory congruence is achieved. PMID:22554616

  20. Children do not recalibrate motor-sensory temporal order after exposure to delayed sensory feedback

    PubMed Central

    Vercillo, Tiziana; Burr, David; Sandini, Giulio; Gori, Monica

    2015-01-01

    Prolonged adaptation to delayed sensory feedback to a simple motor act (such as pressing a key) causes recalibration of sensory-motor synchronization, so instantaneous feedback appears to precede the motor act that caused it (Stetson, Cui, Montague & Eagleman, 2006). We investigated whether similar recalibration occurs in school-age children. Although plasticity may be expected to be even greater in children than in adults, we found no evidence of recalibration in children aged 8–11 years. Subjects adapted to delayed feedback for 100 trials, intermittently pressing a key that caused a tone to sound after a 200 ms delay. During the test phase, subjects responded to a visual cue by pressing a key, which triggered a tone to be played at variable intervals before or after the keypress. Subjects judged whether the tone preceded or followed the keypress, yielding psychometric functions estimating the delay when they perceived the tone to be synchronous with the action. The psychometric functions also gave an estimate of the precision of the temporal order judgment. In agreement with previous studies, adaptation caused a shift in perceived synchrony in adults, so the keypress appeared to trail behind the auditory feedback, implying sensory-motor recalibration. However, school children of 8 to 11 years showed no measureable adaptation of perceived simultaneity, even after adaptation with 500 ms lags. Importantly, precision in the simultaneity task also improved with age, and this developmental trend correlated strongly with the magnitude of recalibration. This suggests that lack of recalibration of sensory-motor simultaneity after adaptation in school-age children is related to their poor precision in temporal order judgments. To test this idea we measured recalibration in adult subjects with auditory noise added to the stimuli (which hampered temporal precision). Under these conditions, recalibration was greatly reduced, with the magnitude of recalibration strongly

  1. Cannabis cue reactivity and craving among never, infrequent and heavy cannabis users.

    PubMed

    Henry, Erika A; Kaye, Jesse T; Bryan, Angela D; Hutchison, Kent E; Ito, Tiffany A

    2014-04-01

    Substance cue reactivity is theorized as having a significant role in addiction processes, promoting compulsive patterns of drug-seeking and drug-taking behavior. However, research extending this phenomenon to cannabis has been limited. To that end, the goal of the current work was to examine the relationship between cannabis cue reactivity and craving in a sample of 353 participants varying in self-reported cannabis use. Participants completed a visual oddball task whereby neutral, exercise, and cannabis cue images were presented, and a neutral auditory oddball task while event-related brain potentials (ERPs) were recorded. Consistent with past research, greater cannabis use was associated with greater reactivity to cannabis images, as reflected in the P300 component of the ERP, but not to neutral auditory oddball cues. The latter indicates the specificity of cue reactivity differences as a function of substance-related cues and not generalized cue reactivity. Additionally, cannabis cue reactivity was significantly related to self-reported cannabis craving as well as problems associated with cannabis use. Implications for cannabis use and addiction more generally are discussed. PMID:24264815

  2. Anuran tadpoles learn to recognize injury cues from members of the same prey guild.

    PubMed

    Pueta, Mariana; Perotti, Maria Gabriela

    2016-07-01

    Recognition of predation risk from cues released from injured heterospecific could be beneficial when prey belongs to the same prey guild. Here, we performed three experiments. Experiment 1 showed that P. thaul tadpoles reduced their activity levels when exposed to conspecific injury cues, but not when exposed to amphipod injury cues. Experiment 2 tested whether P. thaul tadpoles can learn to recognize predation risk from chemical cues released from injured heterospecifics from the same prey guild (amphipod, Hyalella patagonica). A group of tadpoles were conditioned by exposing them to a specific concentration of amphipod injury cues paired with conspecific injury cues. Two days later, we evaluated changes in the activity of tadpoles when they were exposed to amphipod cues. As a control of learning, we used an unpaired group. Additionally, we used more control groups to fully investigate the learning mechanism. Our results showed that tadpoles can learn to recognize predation risk from injured amphipods and that the mechanism underlying the observed learned response could be associative. Experiment 3 replicated Experiment 2 and also showed that a low concentration of amphipod cues did not sustain that learning. PMID:26968427

  3. Natural visual cues eliciting predator avoidance in fiddler crabs

    PubMed Central

    Smolka, Jochen; Zeil, Jochen; Hemmi, Jan M.

    2011-01-01

    To efficiently provide an animal with relevant information, the design of its visual system should reflect the distribution of natural signals and the animal's tasks. In many behavioural contexts, however, we know comparatively little about the moment-to-moment information-processing challenges animals face in their daily lives. In predator avoidance, for instance, we lack an accurate description of the natural signal stream and its value for risk assessment throughout the prey's defensive behaviour. We characterized the visual signals generated by real, potentially predatory events by video-recording bird approaches towards an Uca vomeris colony. Using four synchronized cameras allowed us to simultaneously monitor predator avoidance responses of crabs. We reconstructed the signals generated by dangerous and non-dangerous flying animals, identified the cues that triggered escape responses and compared them with those triggering responses to dummy predators. Fiddler crabs responded to a combination of multiple visual cues (including retinal speed, elevation and visual flicker) that reflect the visual signatures of distinct bird and insect behaviours. This allowed crabs to discriminate between dangerous and non-dangerous events. The results demonstrate the importance of measuring natural sensory signatures of biologically relevant events in order to understand biological information processing and its effects on behavioural organization. PMID:21490009

  4. Natural visual cues eliciting predator avoidance in fiddler crabs.

    PubMed

    Smolka, Jochen; Zeil, Jochen; Hemmi, Jan M

    2011-12-01

    To efficiently provide an animal with relevant information, the design of its visual system should reflect the distribution of natural signals and the animal's tasks. In many behavioural contexts, however, we know comparatively little about the moment-to-moment information-processing challenges animals face in their daily lives. In predator avoidance, for instance, we lack an accurate description of the natural signal stream and its value for risk assessment throughout the prey's defensive behaviour. We characterized the visual signals generated by real, potentially predatory events by video-recording bird approaches towards an Uca vomeris colony. Using four synchronized cameras allowed us to simultaneously monitor predator avoidance responses of crabs. We reconstructed the signals generated by dangerous and non-dangerous flying animals, identified the cues that triggered escape responses and compared them with those triggering responses to dummy predators. Fiddler crabs responded to a combination of multiple visual cues (including retinal speed, elevation and visual flicker) that reflect the visual signatures of distinct bird and insect behaviours. This allowed crabs to discriminate between dangerous and non-dangerous events. The results demonstrate the importance of measuring natural sensory signatures of biologically relevant events in order to understand biological information processing and its effects on behavioural organization. PMID:21490009

  5. Visual cues for landmine detection

    NASA Astrophysics Data System (ADS)

    Staszewski, James J.; Davison, Alan D.; Tischuk, Julia A.; Dippel, David J.

    2007-04-01

    Can human vision supplement the information that handheld landmine detection equipment provides its operators to increase detection rates and reduce the hazard of the task? Contradictory viewpoints exist regarding the viability of visual detection of landmines. Assuming both positions are credible, this work aims to reconcile them by exploring the visual information produced by landmine burial and how any visible signatures change as a function of time in a natural environment. Its objective is to acquire objective, foundational knowledge on which training could be based and subsequently evaluated. A representative set of demilitarized landmines were buried at a field site with bare soil and vegetated surfaces using doctrinal procedures. High resolution photographs of the ground surface were taken for approximately one month starting in April 2006. Photos taken immediately after burial show clearly visible surface signatures. Their features change with time and weather exposure, but the patterns they define persist, as photos taken a month later show. An analysis exploiting the perceptual sensitivity of expert observers showed signature photos to domain experts with instructions to identify the cues and patterns that defined the signatures. Analysis of experts' verbal descriptions identified a small set of easily communicable cues that characterize signatures and their changes over the duration of observation. Findings suggest that visual detection training is viable and has potential to enhance detection capabilities. The photos and descriptions generated offer materials for designing such training and testing its utility. Plans for investigating the generality of the findings, especially potential limiting conditions, are discussed.

  6. No difference in cross-modal attention or sensory discrimination thresholds in autism and matched controls.

    PubMed

    Haigh, Sarah M; Heeger, David J; Heller, Laurie M; Gupta, Akshat; Dinstein, Ilan; Minshew, Nancy J; Behrmann, Marlene

    2016-04-01

    Autism has been associated with abnormalities in sensory and attentional processing. Here, we assessed these processes independently in the visual and auditory domains using a visual contrast-discrimination task and an auditory modulation-depth discrimination task. To evaluate changes in sensory function by attention, we measured behavioral performance (discrimination accuracy) when subjects were cued to attend and respond to the same stimulus (frequent valid cue) or cued to attend to one stimulus and respond to the non-cued stimulus (infrequent invalid cue). The stimuli were presented at threshold to ensure equal difficulty across participants and groups. Results from fifteen high-functioning adult individuals with autism and fifteen matched controls revealed no significant differences in visual or auditory discrimination thresholds across groups. Furthermore, attention robustly modulated performance accuracy (performance was better for valid than invalid cues) in both sensory modalities and to an equivalent extent in both groups. In conclusion, when using this well-controlled method, we found no evidence of atypical sensory function or atypical attentional modulation in a group of high functioning individuals with clear autism symptomatology. PMID:26940029

  7. Contour identification with pitch and loudness cues using cochlear implants.

    PubMed

    Luo, Xin; Masterson, Megan E; Wu, Ching-Chih

    2014-01-01

    Different from speech, pitch and loudness cues may or may not co-vary in music. Cochlear implant (CI) users with poor pitch perception may use loudness contour cues more than normal-hearing (NH) listeners. Contour identification was tested in CI users and NH listeners; the five-note contours contained either pitch cues alone, loudness cues alone, or both. Results showed that NH listeners' contour identification was better with pitch cues than with loudness cues; CI users performed similarly with either cues. When pitch and loudness cues were co-varied, CI performance significantly improved, suggesting that CI users were able to integrate the two cues. PMID:24437857

  8. Invalid retro-cues can eliminate the retro-cue benefit: Evidence for a hybridized account

    PubMed Central

    Gözenman, Filiz; Tanoue, Ryan T.; Metoyer, Terina; Berryhill, Marian E.

    2014-01-01

    The contents of visual working memory (VWM) are capacity limited and require frequent updating. The retrospective cueing (retro-cueing) paradigm clarifies how directing internal attention among VWM items boosts VWM performance. In this paradigm a cue appears prior to retrieval, but after encoding and maintenance. The retro-cue effect (RCE) refers to superior VWM after valid versus neutral retro-cues. Here we investigated the effect of the invalid retro-cues inclusion on VWM performance. We conducted two pairs of experiments changing both probe type (recognition/recall) and in the presence/absence of invalid retro-cue trials. Furthermore, to fully characterize these effects over time we also used extended post-retro-cue delay durations. In the first set of experiments probing VWM using recognition indicated that the RCE remained consistent in magnitude with or without invalid retro-cue trials. In the second set of experiments VWM was probed with recall. Here, the RCE was eliminated when invalid retro-cues were included. This finer-grained measure of VWM fidelity showed that all items were subject to decay over time. We conclude that the invalid retro-cues impaired the protection of validly cues items, but they remain accessible, suggesting greater concordance with a prioritization account. PMID:25045904

  9. ROLES OF OPIOID RECEPTOR SUBTYPES IN MEDIATING ALCOHOL SEEKING INDUCED BY DISCRETE CUES AND CONTEXT

    PubMed Central

    Marinelli, Peter W.; Funk, Douglas; Harding, Stephen; Li, Zhaoxia; Juzytsch, Walter; Lê, A.D.

    2009-01-01

    The aim of this study was to assess the effects of selective blockade of the delta (DOP) or mu opioid (MOP) receptors on alcohol seeking induced by discrete cues and context. In Experiment 1, rats were trained to self-administer alcohol in an environment with distinct sensory properties. After extinction in a different context with separate sensory properties, rats were tested for context-induced renewal in the original context following treatment with the DOP receptor antagonist naltrindole (0 – 15-mg/kg, IP) or the MOP receptor antagonist CTOP (0 – 3-µg/kg ICV). In a separate set of experiments, reinstatement was tested with the presentation of a discrete light+tone cue previously associated with alcohol delivery, following extinction without the cue. In Experiment 2, the effects of naltrindole (0 – 5-mg/kg, IP) or CTOP (0 – 3-µg/kg µg ICV) were assessed. For context-induced renewal, 7.5-mg/kg naltrindole reduced responding without affecting locomotor activity. Both doses of CTOP attenuated responding in the first 15 min of the renewal test session; however, total responses did not differ at the end of the session. For discrete cue-induced reinstatement, 1 and 5-mg/kg naltrindole attenuated responding, but CTOP had no effect. We conclude that while DOP receptors mediate alcohol seeking induced by discrete cues and context, MOP receptors may play a modest role only in context-induced renewal. These findings point to a differential involvement of opioid receptor subtypes in the effects of different kinds of conditioned stimuli on alcohol seeking, and support a more prominent role for DOP receptors. PMID:19686472

  10. Roles of opioid receptor subtypes in mediating alcohol-seeking induced by discrete cues and context.

    PubMed

    Marinelli, Peter W; Funk, Douglas; Harding, Stephen; Li, Zhaoxia; Juzytsch, Walter; Lê, A D

    2009-08-01

    The aim of this study was to assess the effects of selective blockade of the delta (DOP) or mu (MOP) opioid receptors on alcohol-seeking induced by discrete cues and context. In Experiment 1, rats were trained to self-administer alcohol in an environment with distinct sensory properties. After extinction in a different context with separate sensory properties, rats were tested for context-induced renewal in the original context following treatment with the DOP receptor antagonist naltrindole (0-15 mg/kg, i.p.) or the MOP receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP) (0-3 microg/4 microL, i.c.v.). In Experiment 2, reinstatement was tested with the presentation of a discrete light + tone cue previously associated with alcohol delivery, following extinction without the cue. The effects of naltrindole (0-5 mg/kg, i.p.) or CTOP (0-3 microg/4 microL, i.c.v.) were assessed. For context-induced renewal, 7.5 mg/kg naltrindole reduced responding without affecting locomotor activity. Both doses of CTOP attenuated responding in the first 15 min of the renewal test session; however, total responses did not differ at the end of the session. For discrete-cue-induced reinstatement, 1 and 5 mg/kg naltrindole attenuated responding but CTOP had no effect. We conclude that whereas DOP receptors mediate alcohol-seeking induced by discrete cues and context, MOP receptors may play a modest role only in context-induced renewal. These findings point to a differential involvement of opioid receptor subtypes in the effects of different kinds of conditioned stimuli on alcohol-seeking and support a more prominent role for DOP receptors. PMID:19686472

  11. Integration of Pragmatic and Phonetic Cues in Spoken Word Recognition

    PubMed Central

    Rohde, Hannah; Ettlinger, Marc

    2015-01-01

    Although previous research has established that multiple top-down factors guide the identification of words during speech processing, the ultimate range of information sources that listeners integrate from different levels of linguistic structure is still unknown. In a set of experiments, we investigate whether comprehenders can integrate information from the two most disparate domains: pragmatic inference and phonetic perception. Using contexts that trigger pragmatic expectations regarding upcoming coreference (expectations for either he or she), we test listeners' identification of phonetic category boundaries (using acoustically ambiguous words on the/hi/∼/∫i/continuum). The results indicate that, in addition to phonetic cues, word recognition also reflects pragmatic inference. These findings are consistent with evidence for top-down contextual effects from lexical, syntactic, and semantic cues, but they extend this previous work by testing cues at the pragmatic level and by eliminating a statistical-frequency confound that might otherwise explain the previously reported results. We conclude by exploring the time-course of this interaction and discussing how different models of cue integration could be adapted to account for our results. PMID:22250908

  12. Modeling the utility of binaural cues for underwater sound localization.

    PubMed

    Schneider, Jennifer N; Lloyd, David R; Banks, Patchouly N; Mercado, Eduardo

    2014-06-01

    The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2°), and lower resolution toward the periphery (9°). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. PMID:24727491

  13. Sensing the Cardiac Environment: Exploiting Cues for Regeneration

    PubMed Central

    Pereira, Maria José Nunes; Carvalho, Isabel Fidalgo

    2012-01-01

    Recent pre-clinical and clinical studies indicate that certain exogenous stem cells and biomaterials can preserve cardiac tissue after myocardial infarction. Regarding stem cells, a growing body of data suggests that the short-term positive outcomes are mainly attributed to paracrine signaling mechanisms. The release of such factors is due to the cell’s ability to sense cardiac environmentally derived cues, though the exact feedback loops are still poorly understood. However, given the limited engraftment and survival of transplanted cells in the ischemic environment, the long-term clinical benefits of these therapies have not yet been realized. To overcome this, the long-term controlled delivery of bioactive factors using biomaterials is a promising approach. A major challenge has been the ability to develop timely and spatially controlled gradients of different cues, pivotal for the development and regeneration of tissues. In addition, given the complexity of the remodeling process after myocardial infarction, multiple factors may be required at distinct disease stages to maximize therapeutic outcomes. Therefore, novel smart materials that can sense the surrounding environment and generate cues through on demand mechanisms will be of major importance in the translation of these promising advanced therapies. This article reviews how the cardiac environment can mediate the release profiles of bioactive cues from cells and biomaterials and how the controlled delivery impacts heart regeneration. PMID:21735303

  14. Integration of pragmatic and phonetic cues in spoken word recognition.

    PubMed

    Rohde, Hannah; Ettlinger, Marc

    2012-07-01

    Although previous research has established that multiple top-down factors guide the identification of words during speech processing, the ultimate range of information sources that listeners integrate from different levels of linguistic structure is still unknown. In a set of experiments, we investigate whether comprehenders can integrate information from the 2 most disparate domains: pragmatic inference and phonetic perception. Using contexts that trigger pragmatic expectations regarding upcoming coreference (expectations for either he or she), we test listeners' identification of phonetic category boundaries (using acoustically ambiguous words on the /hi/∼/∫i/ continuum). The results indicate that, in addition to phonetic cues, word recognition also reflects pragmatic inference. These findings are consistent with evidence for top-down contextual effects from lexical, syntactic, and semantic cues, but they extend this previous work by testing cues at the pragmatic level and by eliminating a statistical-frequency confound that might otherwise explain the previously reported results. We conclude by exploring the time course of this interaction and discussing how different models of cue integration could be adapted to account for our results. PMID:22250908

  15. Van Gogh and Frizzled Act Redundantly in the Drosophila Sensory Organ Precursor Cell to Orient Its Asymmetric Division

    PubMed Central

    Schweisguth, François

    2009-01-01

    Drosophila sensory organ precursor cells (SOPs) divide asymmetrically along the anterior-posterior (a-p) body axis to generate two different daughter cells. Planar Cell Polarity (PCP) regulates the a-p orientation of the SOP division. The localization of the PCP proteins Van Gogh (Vang) and Frizzled (Fz) define anterior and posterior apical membrane domains prior to SOP division. Here, we investigate the relative contributions of Vang, Fz and Dishevelled (Dsh), a membrane-associated protein acting downstream of Fz, in orienting SOP polarity. Genetic and live imaging analyses suggest that Dsh restricts the localization of a centrosome-attracting activity to the anterior cortex and that Vang is a target of Dsh in this process. Using a clone border assay, we provide evidence that the Vang and fz genes act redundantly in SOPs to orient its polarity axis in response to extrinsic local PCP cues. Additionally, we find that the activity of Vang is dispensable for the non-autonomous polarizing activity of fz. These observations indicate that both Vang and Fz act as cues for downstream effectors orienting the planar polarity axis of dividing SOPs. PMID:19214234

  16. Cueing Animations: Dynamic Signaling Aids Information Extraction and Comprehension

    ERIC Educational Resources Information Center

    Boucheix, Jean-Michel; Lowe, Richard K.; Putri, Dian K.; Groff, Jonathan

    2013-01-01

    The effectiveness of animations containing two novel forms of animation cueing that target relations between event units rather than individual entities was compared with that of animations containing conventional entity-based cueing or no cues. These relational event unit cues ("progressive path" and "local coordinated" cues) were specifically…

  17. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish

    PubMed Central

    Yokogawa, Tohei; Hannan, Markus C.; Burgess, Harold A.

    2012-01-01

    During waking behavior animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. Following a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context. PMID:23100441

  18. Sensory functions of motile cilia and implication for bronchiectasis

    PubMed Central

    Jain, Raksha; Javidan-Nejad, Cylen; Alexander-Brett, Jennifer; Horani, Amjad; Cabellon, Michelle C.; Walter, Michael J.; Brody, Steven L.

    2013-01-01

    Cilia are specialized organelles that extend from the surface of cells into the local environment. Airway epithelial cell cilia are motile to provide mucociliary clearance for host defense. On other cells, solitary cilia are specialized to detect chemical or mechanosensory signals. Sensory proteins in motile cilia have recently been identified that detect shear stress, osmotic force, fluid flow, bitter taste and sex hormones. The relationship of sensory function in human motile cilia to disease is now being revealed. One example is polycystin-1 and polycystin-2. As a complex, these proteins function as a flow sensor in cilia and are mutated in autosomal dominant polycystic kidney disease (ADPKD). The polycystins are also expressed in motile cilia of the airways, potentially operating as sensors in the lung. Computed tomography studies from patients with ADPKD revealed radiographic evidence for bronchiectasis, suggesting that polycystin-1 and -2 are important in lung function. The expression of this complex and sensory channel TRPV4, and bitter taste and sex hormones receptors in motile cilia indicate that the cell is wired to interpret environmental cues to regulate cilia beat frequency and other functions. Defective signaling of sensory proteins may result in a ciliopathy that includes lung disease. PMID:22202111

  19. Dynamic Clustering of the Bacterial Sensory Kinase BaeS.

    PubMed

    Koler, Moriah; Frank, Vered; Amartely, Hadar; Friedler, Assaf; Vaknin, Ady

    2016-01-01

    Several bacterial sensory-kinase receptors form clusters on the cell membrane. However, the dynamics of sensory-kinase clustering are largely unclear. Using measurements of fluorescence anisotropy and time-lapse imaging of Escherichia coli cells, we demonstrate that copper ions trigger self-association of BaeS receptors and lead to rapid formation of clusters, which can be reversibly dispersed by a metal chelator. Copper ions did not trigger self-association of other fluorescently tagged sensory kinases, and other divalent metal ions could not elicit self-association of BaeS. The histidine residues in the BaeS periplasmic domain are essential for copper binding in vitro and are important for the copper-induced BaeS responses in vivo. BaeS clustering was triggered also under conditions that directly triggered BaeS-dependent transcriptional responses. Thus, clustering of sensory kinase receptors can be dynamic and context dependent and can be triggered by specific environmental cues. PMID:26950881

  20. Dynamic Clustering of the Bacterial Sensory Kinase BaeS

    PubMed Central

    Koler, Moriah; Frank, Vered; Amartely, Hadar; Friedler, Assaf; Vaknin, Ady

    2016-01-01

    Several bacterial sensory-kinase receptors form clusters on the cell membrane. However, the dynamics of sensory-kinase clustering are largely unclear. Using measurements of fluorescence anisotropy and time-lapse imaging of Escherichia coli cells, we demonstrate that copper ions trigger self-association of BaeS receptors and lead to rapid formation of clusters, which can be reversibly dispersed by a metal chelator. Copper ions did not trigger self-association of other fluorescently tagged sensory kinases, and other divalent metal ions could not elicit self-association of BaeS. The histidine residues in the BaeS periplasmic domain are essential for copper binding in vitro and are important for the copper-induced BaeS responses in vivo. BaeS clustering was triggered also under conditions that directly triggered BaeS-dependent transcriptional responses. Thus, clustering of sensory kinase receptors can be dynamic and context dependent and can be triggered by specific environmental cues. PMID:26950881

  1. Thermodynamic Costs of Information Processing in Sensory Adaptation

    PubMed Central

    Sartori, Pablo; Granger, Léo; Lee, Chiu Fan; Horowitz, Jordan M.

    2014-01-01

    Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of their internal degrees of freedom, they can be regarded as computational devices manipulating information. Landauer established that information is ultimately physical, and its manipulation subject to the entropic and energetic bounds of thermodynamics. Thus the fundamental costs of biological sensory adaptation can be elucidated by tracking how the information the system has about its environment is altered. These bounds are particularly relevant for small organisms, which unlike everyday computers, operate at very low energies. In this paper, we establish a general framework for the thermodynamics of information processing in sensing. With it, we quantify how during sensory adaptation information about the past is erased, while information about the present is gathered. This process produces entropy larger than the amount of old information erased and has an energetic cost bounded by the amount of new information written to memory. We apply these principles to the E. coli's chemotaxis pathway during binary ligand concentration changes. In this regime, we quantify the amount of information stored by each methyl group and show that receptors consume energy in the range of the information-theoretic minimum. Our work provides a basis for further inquiries into more complex phenomena, such as gradient sensing and frequency response. PMID:25503948

  2. Colorful success: preschoolers' use of perceptual color cues to solve a spatial reasoning problem.

    PubMed

    Joh, Amy S; Spivey, Leigh A

    2012-12-01

    Spatial reasoning, a crucial skill for everyday actions, develops gradually during the first several years of childhood. Previous studies have shown that perceptual information and problem solving strategies are critical for successful spatial reasoning in young children. Here, we sought to link these two factors by examining children's use of perceptual color cues and whether their use of such cues would lead to the acquisition of a general problem solving strategy. Forty-eight 3-year-olds were asked to predict the trajectory of a ball dropped into one of three intertwined tubes. Children who received additional perceptual cues in the form of distinctly colored tubes succeeded twice as often as those who did not receive the cues. A third group of children who received the additional cues on only the first half of the test trials succeeded while the cues were present but reverted to making errors once they were removed. These findings demonstrate that perceptual color cues provide preschoolers with answers to spatial reasoning problems but might not teach children a general strategy for solving the problem. PMID:22878085

  3. Measurement in Sensory Modulation: The Sensory Processing Scale Assessment

    PubMed Central

    Miller, Lucy J.; Sullivan, Jillian C.

    2014-01-01

    OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464

  4. Retrieving autobiographical memories: How different retrieval strategies associated with different cues explain reaction time differences.

    PubMed

    Uzer, Tugba

    2016-02-01

    Previous research has shown that memories cued by concrete concepts, such as objects, are retrieved faster than those cued by more abstract concepts, such as emotions. This effect has been explained by the fact that more memories are directly retrieved from object versus emotion cues. In the present study, we tested whether RT differences between memories cued by emotion versus object terms occur not only because object cues elicit direct retrieval of more memories (Uzer, Lee, & Brown, 2012), but also because of differences in memory generation in response to emotions versus objects. One hundred university students retrieved memories in response to basic-level (e.g. orange), superordinate-level (e.g. plant), and emotion (e.g. surprised) cues. Retrieval speed was measured and participants reported whether memories were directly retrieved or generated on each trial. Results showed that memories were retrieved faster in response to basic-level versus superordinate-level and emotion cues because a) basic-level cues elicited more directly retrieved memories, and b) generating memories was more difficult when cues were abstract versus concrete. These results suggest that generative retrieval is a cue generation process in which additional cues that provide contextual information including the target event are produced. Memories are retrieved more slowly in response to emotion cues in part because emotion labels are less effective cues of appropriate contextual information. This particular finding is inconsistent with the idea that emotion is a primary organizational unit for autobiographical memories. In contrast, the difficulty of emotional memory generation implies that emotions represent low-level event information in the organization of autobiographical memory. PMID:26802518

  5. Differential processing of binocular and monocular gloss cues in human visual cortex

    PubMed Central

    Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.

    2016-01-01

    The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596

  6. Differential processing of binocular and monocular gloss cues in human visual cortex.

    PubMed

    Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E

    2016-06-01

    The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596

  7. Cue System Utilization among Beginning Readers.

    ERIC Educational Resources Information Center

    Englander, Meryl; Harste, Jerome

    A study was conducted to determine which of three major cue systems (linguistic, cognitive, or extralinguistic) 146 subjects at the kindergarten, first grade and second grade levels used to reconstruct meaning when confronted with a reading task. Cue system utilization was related to four factors: modality (listening versus reading), reading…

  8. Cue Reliance in L2 Written Production

    ERIC Educational Resources Information Center

    Wiechmann, Daniel; Kerz, Elma

    2014-01-01

    Second language learners reach expert levels in relative cue weighting only gradually. On the basis of ensemble machine learning models fit to naturalistic written productions of German advanced learners of English and expert writers, we set out to reverse engineer differences in the weighting of multiple cues in a clause linearization problem. We…

  9. Nonvisual Cues for Aligning to Cross Streets

    ERIC Educational Resources Information Center

    Scott, Alan C.; Barlow, Janet M.; Guth, David A.; Bentzen, Billie Louise; Cunningham, Christopher M.; Long, Richard

    2011-01-01

    Accurately aligning to a crosswalk is an important component of safe street crossing for pedestrians who are blind. Six alignment cues were evaluated in a simulated crosswalk environment in which the angle of the crosswalk was not always in line with the slope of the ramp. The effectiveness of each cue is reported and implications are discussed.…

  10. Enhancing Interactive Tutorial Effectiveness through Visual Cueing

    ERIC Educational Resources Information Center

    Jamet, Eric; Fernandez, Jonathan

    2016-01-01

    The present study investigated whether learning how to use a web service with an interactive tutorial can be enhanced by cueing. We expected the attentional guidance provided by visual cues to facilitate the selection of information in static screen displays that corresponded to spoken explanations. Unlike most previous studies in this area, we…

  11. Stereotyping in Fear of Success Cues.

    ERIC Educational Resources Information Center

    Juran, Shelley

    Prior studies suggest that sex-role stereotypes influence responses to Horner's fear of success cue. This study investigates stereotypes about both sex roles and achievement settings. One hundred sixty college males and females wrote stories to different cues, then rated the masculinity-femininity of their story characters. Both "John and "Anne"…

  12. Auditory Emotional Cues Enhance Visual Perception

    ERIC Educational Resources Information Center

    Zeelenberg, Rene; Bocanegra, Bruno R.

    2010-01-01

    Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…

  13. How rats combine temporal cues.

    PubMed

    Guilhardi, Paulo; Keen, Richard; MacInnis, Mika L M; Church, Russell M

    2005-05-31

    The procedures for classical and operant conditioning, and for many timing procedures, involve the delivery of reinforcers that may be related to the time of previous reinforcers and responses, and to the time of onsets and terminations of stimuli. The behavior resulting from such procedures can be described as bouts of responding that occur in some pattern at some rate. A packet theory of timing and conditioning is described that accounts for such behavior under a wide range of procedures. Applications include the food searching by rats in Skinner boxes under conditions of fixed and random reinforcement, brief and sustained stimuli, and several response-food contingencies. The approach is used to describe how multiple cues from reinforcers and stimuli combine to determine the rate and pattern of response bouts. PMID:15845307

  14. [Sound localization cues of binaural hearing].

    PubMed

    Paulus, E

    2003-04-01

    The ability to localize sound sources in space is of considerable importance to the human safety- and survival-system. Consequently the current scientific interest in improving the safety-standard i. e. in air-traffic control has provided a new momentum for investigating spatial hearing. This review deals with the nature and the relative salience of the localization cues. Localization refers to judgements of the direction and distance of a sound source but here we will deal with direction only. We begin with a short introduction into the so-called Duplex theory which dates back to John William Strutt (later Lord Rayleigh). The idea is that sound localization is based on interaural time differences (ITD) at low frequencies and interaural level differences (ILD) at high frequencies. If the head remains stationary neither a given ITD nor an ILD can sufficiently define the position of a sound source in space. On such a theoretical basis cones of confusion which open outward from each ear can be predicted ambiguously projecting any source on the surface of such a cone onto an interaural axis. Our restricted ability at localizing sound sources in the vertical median plane is another example of possible ambiguity. At the end of the 19th century scientists already realized that occlusion of the pinnae cavities decreases localization competence. As a result of later achievements in physics and signal-theory it became more obvious that the pinnae may provide an additional cue for spatial hearing and that the outer ear together with the head and the upper torso form a sophisticated direction-dependent filter. The action of such a filter is mathematically described by the so-called Anatomical Transfer Function (ATF). The spectral patterning of the sound produced by the pinnae and the head is most effective when the source has spectral energy over a wide range and contains frequencies above 6 kHz, that is it contains wavelengths short enough to interact with the anatomical

  15. Information Integration in Multiple Cue Judgment: A Division of Labor Hypothesis

    ERIC Educational Resources Information Center

    Juslin, Peter; Karlsson, Linnea; Olsson, Henrik

    2008-01-01

    There is considerable evidence that judgment is constrained to additive integration of information. The authors propose an explanation of why serial and additive cognitive integration can produce accurate multiple cue judgment both in additive and non-additive environments in terms of an adaptive division of labor between multiple representations.…

  16. The effectiveness of sentence cues in measuring the Big Three motives.

    PubMed

    Langan-Fox, Janice; Grant, Sharon

    2007-10-01

    Despite the popularity of free response measures in the motivation literature, research geared toward the development of a standard battery of cues for measuring the Big Three motives (achievement, affiliation, power) has been lacking. The current research examined the effectiveness of sentence cues in eliciting motive imagery in two studies (students, entrepreneurs) comprising 242 men and women. Results indicated that sentence cues were effective in eliciting achievement and affiliation imagery, but not power imagery. In addition, an examination of the subcategories underlying each motive scoring system indicated that there were several infrequently scored subcategories in the achievement and power motive scoring systems that could be considered for removal. PMID:17764388

  17. Fear is the mother of invention: anuran embryos exposed to predator cues alter life-history traits, post-hatching behaviour and neuronal activity patterns.

    PubMed

    Gazzola, Andrea; Brandalise, Federico; Rubolini, Diego; Rossi, Paola; Galeotti, Paolo

    2015-12-01

    Neurophysiological modifications associated to phenotypic plasticity in response to predators are largely unexplored, and there is a gap of knowledge on how the information encoded in predator cues is processed by prey sensory systems. To explore these issues, we exposed Rana dalmatina embryos to dragonfly chemical cues (kairomones) up to hatching. At different times after hatching (up to 40 days), we recorded morphology and anti-predator behaviour of tadpoles from control and kairomone-treated embryo groups as well as their neural olfactory responses, by recording the activity of their mitral neurons before and after exposure to a kairomone solution. Treated embryos hatched later and hatchlings were smaller than control siblings. In addition, the tadpoles from the treated group showed a stronger anti-predator response than controls at 10 days (but not at 30 days) post-hatching, though the intensity of the contextual response to the kairomone stimulus did not differ between the two groups. Baseline neuronal activity at 30 days post-hatching, as assessed by the frequency of spontaneous excitatory postsynaptic events and by the firing rate of mitral cells, was higher among tadpoles from the treated versus the control embryo groups. At the same time, neuronal activity showed a stronger increase among tadpoles from the treated versus the control group after a local kairomone perfusion. Hence, a different contextual plasticity between treatments at the neuronal level was not mirrored by the anti-predator behavioural response. In conclusion, our experiments demonstrate ontogenetic plasticity in tadpole neuronal activity after embryonic exposure to predator cues, corroborating the evidence that early-life experience contributes to shaping the phenotype at later life stages. PMID:26567349

  18. The use of contextual cues to improve warning symbol comprehension: making the connection for older adults

    PubMed Central

    Lesch, Mary F.; Powell, W. Ryan; Horrey, William J.; Wogalter, Michael S.

    2013-01-01

    This study teased apart the effects of comprehensibility and complexity on older adults' comprehension of warning symbols by manipulating the relevance of additional information in further refining the meaning of the symbol. Symbols were systematically altered such that increased visual complexity (in the form of contextual cues) resulted in increased comprehensibility. One hundred older adults, aged 50–71 years, were tested on their comprehension of these symbols before and after training. High comprehensibility–complexity symbols were found to be better understood than low- or medium-comprehensibility–complexity symbols and the effectiveness of the contextual cues varied as a function of training. Therefore, the nature of additional detail determines whether increased complexity is detrimental or beneficial to older adults' comprehension – if the additional details provide ‘cues to knowledge’, older adults' comprehension improves as a result of the increased complexity. However, some cues may require training in order to be effective. Practitioner Summary: Research suggests that older adults have greater difficulty in understanding more complex symbols. However, we found that when the complexity of symbols was increased through the addition of contextual cues, older adults' comprehension actually improved. Contextual cues aid older adults in making the connection between the symbol and its referent. PMID:23767856

  19. Stance width changes how sensory feedback is used for multisegmental balance control.

    PubMed

    Goodworth, Adam D; Mellodge, Patricia; Peterka, Robert J

    2014-08-01

    A multilink sensorimotor integration model of frontal plane balance control was developed to determine how stance width influences the use of sensory feedback in healthy adults. Data used to estimate model parameters came from seven human participants who stood on a continuously rotating surface with three different stimulus amplitudes, with eyes open and closed, and at four different stance widths. Dependent variables included lower body (LB) and upper body (UB) sway quantified by frequency-response functions. Results showed that stance width had a major influence on how parameters varied across stimulus amplitude and between visual conditions. Active mechanisms dominated LB control. At narrower stances, with increasing stimulus amplitude, subjects used sensory reweighting to shift reliance from proprioceptive cues to vestibular and/or visual cues that oriented the LB more toward upright. When vision was available, subjects reduced reliance on proprioception and increased reliance on vision. At wider stances, LB control did not exhibit sensory reweighting. In the UB system, both active and passive mechanisms contributed and were dependent on stance width. UB control changed across stimulus amplitude most in wide stance (opposite of the pattern found in LB control). The strong influence of stance width on sensory integration and neural feedback control implies that rehabilitative therapies for balance disorders can target different aspects of balance control by using different stance widths. Rehabilitative strategies designed to assess or modify sensory reweighting will be most effective with the use of narrower stances, whereas wider stances present greater challenges to UB control. PMID:24760788

  20. Stance width changes how sensory feedback is used for multisegmental balance control

    PubMed Central

    Mellodge, Patricia; Peterka, Robert J.

    2014-01-01

    A multilink sensorimotor integration model of frontal plane balance control was developed to determine how stance width influences the use of sensory feedback in healthy adults. Data used to estimate model parameters came from seven human participants who stood on a continuously rotating surface with three different stimulus amplitudes, with eyes open and closed, and at four different stance widths. Dependent variables included lower body (LB) and upper body (UB) sway quantified by frequency-response functions. Results showed that stance width had a major influence on how parameters varied across stimulus amplitude and between visual conditions. Active mechanisms dominated LB control. At narrower stances, with increasing stimulus amplitude, subjects used sensory reweighting to shift reliance from proprioceptive cues to vestibular and/or visual cues that oriented the LB more toward upright. When vision was available, subjects reduced reliance on proprioception and increased reliance on vision. At wider stances, LB control did not exhibit sensory reweighting. In the UB system, both active and passive mechanisms contributed and were dependent on stance width. UB control changed across stimulus amplitude most in wide stance (opposite of the pattern found in LB control). The strong influence of stance width on sensory integration and neural feedback control implies that rehabilitative therapies for balance disorders can target different aspects of balance control by using different stance widths. Rehabilitative strategies designed to assess or modify sensory reweighting will be most effective with the use of narrower stances, whereas wider stances present greater challenges to UB control. PMID:24760788

  1. Visual cues given by humans are not sufficient for Asian elephants (Elephas maximus) to find hidden food.

    PubMed

    Plotnik, Joshua M; Pokorny, Jennifer J; Keratimanochaya, Titiporn; Webb, Christine; Beronja, Hana F; Hennessy, Alice; Hill, James; Hill, Virginia J; Kiss, Rebecca; Maguire, Caitlin; Melville, Beckett L; Morrison, Violet M B; Seecoomar, Dannah; Singer, Benjamin; Ukehaxhaj, Jehona; Vlahakis, Sophia K; Ylli, Dora; Clayton, Nicola S; Roberts, John; Fure, Emilie L; Duchatelier, Alicia P; Getz, David

    2013-01-01

    Recent research suggests that domesticated species--due to artificial selection by humans for specific, preferred behavioral traits--are better than wild animals at responding to visual cues given by humans about the location of hidden food. \\Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses) and wild (including wolves and chimpanzees) animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus) on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7) in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants' inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation. PMID:23613804

  2. Sensory bases of navigation.

    PubMed

    Gould, J L

    1998-10-01

    Navigating animals need to know both the bearing of their goal (the 'map' step), and how to determine that direction (the 'compass' step). Compasses are typically arranged in hierarchies, with magnetic backup as a last resort when celestial information is unavailable. Magnetic information is often essential to calibrating celestial cues, though, and repeated recalibration between celestial and magnetic compasses is important in many species. Most magnetic compasses are based on magnetite crystals, but others make use of induction or paramagnetic interactions between short-wavelength light and visual pigments. Though odors may be used in some cases, most if not all long-range maps probably depend on magnetite. Magnetitebased map senses are used to measure only latitude in some species, but provide the distance and direction of the goal in others. PMID:9778524

  3. LOCOMOTOR SENSORY ORGANIZATION TEST: A NOVEL PARADIGM FOR THE ASSESSMENT OF SENSORY CONTRIBUTIONS IN GAIT

    PubMed Central

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-01-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body’s movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure (netCOP) sway variability was used. This corresponds to the performance index of the center of pressure (COP) trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient

  4. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2016-09-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat's adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  5. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    PubMed

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. PMID:25623426

  6. Volatile and sensory profiling of cocktail bitters.

    PubMed

    Johnson, Arielle J; Heymann, Hildegarde; Ebeler, Susan E

    2015-07-15

    Aromatic cocktail bitters are derived from the alcoholic extraction of a variety of plant materials and are used as additives in mixed drinks to enhance aroma and flavor. In this study sixteen commercial bitters were analyzed using volatile (GC-MS) and sensory profiling and multivariate statistics including Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS). The samples differed significantly in their citrus, celery, and spice characteristics. 148 volatile compounds were tentatively identified and the composition varied significantly with the type of bitters sample evaluated. PLS analysis showed that the volatile data correlated well overall to the sensory data, explaining 60% of the overall variability in the dataset. Primary aldehydes and phenylpropanoids were most closely related to green and spice-related sensory descriptors. However, the sensory impact of terpenoid compounds was difficult to predict in many cases. This may be due to the wide range of aroma qualities associated with terpenes as well as to concentration, synergistic or masking effects. PMID:25722175

  7. Involuntary attentional orienting in the absence of awareness speeds up early sensory processing.

    PubMed

    Schettino, Antonio; Rossi, Valentina; Pourtois, Gilles; Müller, Matthias M

    2016-01-01

    A long-standing controversy in the field of human neuroscience has revolved around the question whether attended stimuli are processed more rapidly compared to unattended stimuli. We conducted two event-related potential (ERP) experiments employing a temporal order judgment procedure in order to assess whether involuntary attention accelerates sensory processing, as indicated by latency modulations of early visual ERP components. A non-reportable exogenous cue could precede the first target with equal probability at the same (compatible) or opposite (incompatible) location. The use of non-reportable cues promoted automatic, bottom-up attentional capture, and ensured the elimination of any confounds related to the use of stimulus features that are common to both cue and target. Behavioral results confirmed involuntary exogenous orienting towards the unaware cue. ERP results showed that the N1pc, an electrophysiological measure of attentional orienting, was smaller and peaked earlier in compatible as opposed to incompatible trials, indicating cue-dependent changes in magnitude and speed of first target processing in extrastriate visual areas. Complementary Bayesian analysis confirmed the presence of this effect regardless of whether participants were actively looking for the cue (Experiment 1) or were not informed of it (Experiment 2), indicating purely automatic, stimulus-driven orienting mechanisms. PMID:26673944

  8. Peripheral cues and involvement level: influences on acceptance of a mammography message.

    PubMed

    Kirby, S D; Ureda, J R; Rose, R L; Hussey, J

    1998-01-01

    The elaboration likelihood model (ELM) suggests that some communication elements are processed differently depending on a receiver's involvement with the message topic. We hypothesized that women with high levels of breast cancer involvement would be more influenced by a mammography message's arguments than by the message's peripheral cues and, conversely, that women with low levels of involvement would be more influenced by a mammography message's peripheral cues than by the message's arguments. We exposed 89 low-income African American women aged 40 to 65 years to two repetitions of a mammography promotion public service announcement embedded as a commercial within a television talk show. We used a 2 (involvement level) x 2 (argument strength) x 2 (peripheral cue favorability) factorial posttest-only design. The analysis detected a significant main effect for involvement and an interaction between peripheral cue favorability and involvement. High-involvement women reported stronger intentions than did low-involvement women to seek additional mammography information, regardless of argument strength or cue favorability. Low-involvement women reported stronger intentions to seek more mammography information only when exposed to the favorable cue condition. The analysis detected no effect for argument strength in high- or low-involvement women. The ELM appears useful for designing mammography messages. As many women may have low involvement with breast cancer, mammography promotion messages that include favorable peripheral cues may be more likely to impact mammography information seeking than argument-based-only messages. PMID:10977249

  9. Immersive virtual environments in cue exposure.

    PubMed

    Kuntze, M F; Stoermer, R; Mager, R; Roessler, A; Mueller-Spahn, F; Bullinger, A H

    2001-08-01

    Cue reactivity to drug-related stimuli is a frequently observed phenomenon in drug addiction. Cue reactivity refers to a classical conditioned response pattern that occurs when an addicted subject is exposed to drug-related stimuli. This response consists of physiological and cognitive reactions. Craving, a subjective desire to use the drug of choice, is believed to play an important role in the occurrence of relapse in the natural setting. Besides craving, other subjective cue-elicited reactions have been reported, including withdrawal symptoms, drug-agonistic effects, and mood swings. Physiological reactions that have been investigated include skin conductance, heart rate, salivation, and body temperature. Conditioned reactivity to cues is an important factor in addiction to alcohol, nicotine, opiates, and cocaine. Cue exposure treatment (CET) refers to a manualized, repeated exposure to drug-related cues, aimed at the reduction of cue reactivity by extinction. In CET, different stimuli are presented, for example, slides, video tapes, pictures, or paraphernalia in nonrealistic, experimental settings. Most often assessments consist in subjective ratings by craving scales. Our pilot study will show that immersive virtual reality (IVR) is as good or even better in eliciting subjective and physiological craving symptoms as classical devices. PMID:11708729

  10. Action Experience Changes Attention to Kinematic Cues

    PubMed Central

    Filippi, Courtney A.; Woodward, Amanda L.

    2016-01-01

    The current study used remote corneal reflection eye-tracking to examine the relationship between motor experience and action anticipation in 13-months-old infants. To measure online anticipation of actions infants watched videos where the actor’s hand provided kinematic information (in its orientation) about the type of object that the actor was going to reach for. The actor’s hand orientation either matched the orientation of a rod (congruent cue) or did not match the orientation of the rod (incongruent cue). To examine relations between motor experience and action anticipation, we used a 2 (reach first vs. observe first) × 2 (congruent kinematic cue vs. incongruent kinematic cue) between-subjects design. We show that 13-months-old infants in the observe first condition spontaneously generate rapid online visual predictions to congruent hand orientation cues and do not visually anticipate when presented incongruent cues. We further demonstrate that the speed that these infants generate predictions to congruent motor cues is correlated with their own ability to pre-shape their hands. Finally, we demonstrate that following reaching experience, infants generate rapid predictions to both congruent and incongruent hand shape cues—suggesting that short-term experience changes attention to kinematics. PMID:26913012

  11. Eliciting nicotine craving with virtual smoking cues.

    PubMed

    Gamito, Pedro; Oliveira, Jorge; Baptista, André; Morais, Diogo; Lopes, Paulo; Rosa, Pedro; Santos, Nuno; Brito, Rodrigo

    2014-08-01

    Craving is a strong desire to consume that emerges in every case of substance addiction. Previous studies have shown that eliciting craving with an exposure cues protocol can be a useful option for the treatment of nicotine dependence. Thus, the main goal of this study was to develop a virtual platform in order to induce craving in smokers. Fifty-five undergraduate students were randomly assigned to two different virtual environments: high arousal contextual cues and low arousal contextual cues scenarios (17 smokers with low nicotine dependency were excluded). An eye-tracker system was used to evaluate attention toward these cues. Eye fixation on smoking-related cues differed between smokers and nonsmokers, indicating that smokers focused more often on smoking-related cues than nonsmokers. Self-reports of craving are in agreement with these results and suggest a significant increase in craving after exposure to smoking cues. In sum, these data support the use of virtual environments for eliciting craving. PMID:24660864

  12. Out of thin air: Sensory detection of oxygen and carbon dioxide

    PubMed Central

    Scott, Kristin

    2011-01-01

    Oxygen and carbon dioxide levels vary in different environments and locally fluctuate during respiration and photosynthesis. Recent studies in diverse animals have identified sensory neurons that detect these external variations and direct a variety of behaviors. Detection allows animals to stay within a preferred environment as well as identify potential food or dangers. The complexity of sensation is reflected in the fact that neurons compartmentalize detection into increases, decreases, short-range and long-range cues. Animals also adjust their responses to these prevalent signals in context of other cues, allowing for flexible behaviors. In general, the molecular mechanisms for detection suggest that sensory neurons adopted ancient strategies for cellular detection and coupled them to brain activity and behavior. This review highlights the multiple strategies that animals use to extract information about their environment from variations in oxygen and carbon dioxide. PMID:21262460

  13. Inhibitory cueing effects following manual and saccadic responses to arrow cues.

    PubMed

    Ding, Yun; He, Tao; Satel, Jason; Wang, Zhiguo

    2016-05-01

    With two cueing tasks, in the present study we examined output-based inhibitory cueing effects (ICEs) with manual responses to arrow targets following manual or saccadic responses to arrow cues. In all experiments, ICEs were observed when manual localization responses were required to both the cues and targets, but only when the cue-target onset asynchrony (CTOA) was 2,000 ms or longer. In contrast, when saccadic responses were made in response to the cues, ICEs were only observed with CTOAs of 2,000 ms or less-and only when an auditory cue-back signal was used. The present study also showed that the magnitude of ICEs following saccadic responses to arrow cues decreased with time, much like traditional inhibition-of-return effects. The magnitude of ICEs following manual responses to arrow cues, however, appeared later in time and had no sign of decreasing even 3 s after cue onset. These findings suggest that ICEs linked to skeletomotor activation do exist and that the ICEs evoked by oculomotor activation can carry over to the skeletomotor system. PMID:26956560

  14. Cues of maternal condition influence offspring selfishness.

    PubMed

    Wong, Janine W Y; Lucas, Christophe; Kölliker, Mathias

    2014-01-01

    The evolution of parent-offspring communication was mostly studied from the perspective of parents responding to begging signals conveying information about offspring condition. Parents should respond to begging because of the differential fitness returns obtained from their investment in offspring that differ in condition. For analogous reasons, offspring should adjust their behavior to cues/signals of parental condition: parents that differ in condition pay differential costs of care and, hence, should provide different amounts of food. In this study, we experimentally tested in the European earwig (Forficula auricularia) if cues of maternal condition affect offspring behavior in terms of sibling cannibalism. We experimentally manipulated female condition by providing them with different amounts of food, kept nymph condition constant, allowed for nymph exposure to chemical maternal cues over extended time, quantified nymph survival (deaths being due to cannibalism) and extracted and analyzed the females' cuticular hydrocarbons (CHC). Nymph survival was significantly affected by chemical cues of maternal condition, and this effect depended on the timing of breeding. Cues of poor maternal condition enhanced nymph survival in early broods, but reduced nymph survival in late broods, and vice versa for cues of good condition. Furthermore, female condition affected the quantitative composition of their CHC profile which in turn predicted nymph survival patterns. Thus, earwig offspring are sensitive to chemical cues of maternal condition and nymphs from early and late broods show opposite reactions to the same chemical cues. Together with former evidence on maternal sensitivities to condition-dependent nymph chemical cues, our study shows context-dependent reciprocal information exchange about condition between earwig mothers and their offspring, potentially mediated by cuticular hydrocarbons. PMID:24498046

  15. Design of a robotic device for assessment and rehabilitation of hand sensory function.

    PubMed

    Lambercy, Olivier; Robles, Alejandro Juárez; Kim, Yeongmi; Gassert, Roger

    2011-01-01

    This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies. PMID:22275636

  16. Visuospatial cueing by self-caused features: Orienting of attention and action-outcome associative learning.

    PubMed

    Gozli, Davood G; Aslam, Hira; Pratt, Jay

    2016-04-01

    The effect of a salient visual feature in orienting spatial attention was examined as a function of the learned association between the visual feature and the observer's action. During an initial acquisition phase, participants learned that two keypress actions consistently produced red and green visual cues. Next, in a test phase, participants' actions continued to result in singletons, but their color could be either congruent or incongruent with the learned action-color associations. Furthermore, the color singletons now functioned as valid or invalid spatial cues in a visual search, in which participants looked for a tilted line ("/" or "\\") among distractors ("X"s). The results showed that an action-congruent color was more effective as a valid cue in the search task (increased benefit), but less effective as an invalid cue (reduced cost). We discuss our findings in terms of both an inhibition account and a preactivation account of action-driven sensory bias, and argue in favor of the preactivation account. PMID:26228183

  17. Issues in the use of acoustic cues for auditory scene analysis

    NASA Astrophysics Data System (ADS)

    Bregman, Albert S.

    2003-04-01

    Issues concerning auditory scene analysis (ASA) raised by the previous speakers will be discussed: (1) Disorders of ASA in humans can tell us about the weighting of cues in ASA. (2) The apparent weakness of spatial cues for ASA may simply show that they interact strongly with other ASA cues (c.f., recent research in the author's lab). (3) The power of harmonic relations among partials as a grouping cue is not guaranteed, but depends on many other factors. (4) Abstract models of ASA may require the peripheral auditory system to carry out analyses that are questionable, based on current psychophysical and physiological findings. Is this where psychologists and computational ASA (CASA) modelers part company? (5) The ``old-plus-new heuristic,'' one of the most potent ASA mechanisms, is neglected by existing CASA models. (6) The different roles of bottom-up and top-down processes (e.g., in ``exclusive allocation'' of sensory evidence) should be reflected in models. (7) Should the output of a CASA system be the reconstructed signal of a single source, as a front end to a recognition system, or should grouping mechanisms merely form an interacting part of a larger system that outputs a higher-level description (e.g., a series of words)?

  18. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain

    PubMed Central

    Cazettes, Fanny; Fischer, Brian J; Pena, Jose L

    2014-01-01

    The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. DOI: http://dx.doi.org/10.7554/eLife.04854.001 PMID:25531067

  19. Role of visual and non-visual cues in constructing a rotation-invariant representation of heading in parietal cortex.

    PubMed

    Sunkara, Adhira; DeAngelis, Gregory C; Angelaki, Dora E

    2015-01-01

    As we navigate through the world, eye and head movements add rotational velocity patterns to the retinal image. When such rotations accompany observer translation, the rotational velocity patterns must be discounted to accurately perceive heading. The conventional view holds that this computation requires efference copies of self-generated eye/head movements. Here we demonstrate that the brain implements an alternative solution in which retinal velocity patterns are themselves used to dissociate translations from rotations. These results reveal a novel role for visual cues in achieving a rotation-invariant representation of heading in the macaque ventral intraparietal area. Specifically, we show that the visual system utilizes both local motion parallax cues and global perspective distortions to estimate heading in the presence of rotations. These findings further suggest that the brain is capable of performing complex computations to infer eye movements and discount their sensory consequences based solely on visual cues. PMID:25693417

  20. Some influences of touch and pressure cues on human spatial orientation

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1978-01-01

    In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.

  1. Molecular cues guiding inflammatory responses.

    PubMed

    Barreiro, Olga; Martín, Pilar; González-Amaro, Roberto; Sánchez-Madrid, Francisco

    2010-05-01

    Alarm signals generated at inflammatory foci reach the vascular lumen to attract immune cells towards the affected tissue. Different leucocyte subsets decipher and integrate these complex signals in order to make adequate decisions for their migration towards the inflamed tissue. Soluble cues (cytokines and chemokines) and membrane receptors in both endothelium and leucocytes orchestrate the coordinated recruitment of specific inflammatory cell subsets. All these molecules are spatio-temporally organized in specialized structures at the luminal side of endothelium and the leucocyte membrane or are generated as chemical gradients in the damaged tissue. Thus, the repertoire of chemokines and their receptors as well as adhesion molecules expressed by each leucocyte subset determine their recruitment for participation in specific inflammatory pathologies. Whenever inflammatory signals are altered or misprocessed, inflammation can become chronic, causing extensive tissue damage. To combat chronic inflammation and autoimmune diseases, novel therapeutic strategies attempt to silence the predominant signals in each inflammatory scenario. In this review, we provide a general overview of all these aspects related to the molecular regulation of leucocyte guidance in inflammatory responses. PMID:20053659

  2. The shading cue in context

    PubMed Central

    Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J

    2010-01-01

    The shading cue is supposed to be a major factor in monocular stereopsis. However, the hypothesis is hardly corroborated by available data. For instance, the conventional stimulus used in perception research, which involves a circular disk with monotonic luminance gradient on a uniform surround, is theoretically ‘explained’ by any quadric surface, including spherical caps or cups (the conventional response categories), cylindrical ruts or ridges, and saddle surfaces. Whereas cylindrical ruts or ridges are reported when the outline is changed from circular to square, saddle surfaces are never reported. We introduce a method that allows us to differentiate between such possible responses. We report observations on a number of variations of the conventional stimulus, including variations of shape and quality of the boundary, and contexts that allow the observer to infer illumination direction. We find strong and expected influences of outline shape, but, perhaps surprisingly, we fail to find any influence of context, and only partial influence of outline quality. Moreover, we report appreciable differences within the generic population. We trace some of the idiosyncrasies (as compared to shape from shading algorithms) of the human observer to generic properties of the environment, in particular the fact that many objects are limited in size and elliptically convex over most of their boundaries. PMID:23145221

  3. Sensory adaptation for timing perception

    PubMed Central

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-01-01

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception. PMID:25788590

  4. The influence of imagery vividness on cognitive and perceptual cues in circular auditorily-induced vection

    PubMed Central

    Väljamäe, Aleksander; Sell, Sara

    2014-01-01

    In the absence of other congruent multisensory motion cues, sound contribution to illusions of self-motion (vection) is relatively weak and often attributed to purely cognitive, top-down processes. The present study addressed the influence of cognitive and perceptual factors in the experience of circular, yaw auditorily-induced vection (AIV), focusing on participants imagery vividness scores. We used different rotating sound sources (acoustic landmark vs. movable types) and their filtered versions that provided different binaural cues (interaural time or level differences, ITD vs. ILD) when delivering via loudspeaker array. The significant differences in circular vection intensity showed that (1) AIV was stronger for rotating sound fields containing auditory landmarks as compared to movable sound objects; (2) ITD based acoustic cues were more instrumental than ILD based ones for horizontal AIV; and (3) individual differences in imagery vividness significantly influenced the effects of contextual and perceptual cues. While participants with high scores of kinesthetic and visual imagery were helped by vection “rich” cues, i.e., acoustic landmarks and ITD cues, the participants from the low-vivid imagery group did not benefit from these cues automatically. Only when specifically asked to use their imagination intentionally did these external cues start influencing vection sensation in a similar way to high-vivid imagers. These findings are in line with the recent fMRI work which suggested that high-vivid imagers employ automatic, almost unconscious mechanisms in imagery generation, while low-vivid imagers rely on more schematic and conscious framework. Consequently, our results provide an additional insight into the interaction between perceptual and contextual cues when experiencing purely auditorily or multisensory induced vection. PMID:25520683

  5. The influence of imagery vividness on cognitive and perceptual cues in circular auditorily-induced vection.

    PubMed

    Väljamäe, Aleksander; Sell, Sara

    2014-01-01

    In the absence of other congruent multisensory motion cues, sound contribution to illusions of self-motion (vection) is relatively weak and often attributed to purely cognitive, top-down processes. The present study addressed the influence of cognitive and perceptual factors in the experience of circular, yaw auditorily-induced vection (AIV), focusing on participants imagery vividness scores. We used different rotating sound sources (acoustic landmark vs. movable types) and their filtered versions that provided different binaural cues (interaural time or level differences, ITD vs. ILD) when delivering via loudspeaker array. The significant differences in circular vection intensity showed that (1) AIV was stronger for rotating sound fields containing auditory landmarks as compared to movable sound objects; (2) ITD based acoustic cues were more instrumental than ILD based ones for horizontal AIV; and (3) individual differences in imagery vividness significantly influenced the effects of contextual and perceptual cues. While participants with high scores of kinesthetic and visual imagery were helped by vection "rich" cues, i.e., acoustic landmarks and ITD cues, the participants from the low-vivid imagery group did not benefit from these cues automatically. Only when specifically asked to use their imagination intentionally did these external cues start influencing vection sensation in a similar way to high-vivid imagers. These findings are in line with the recent fMRI work which suggested that high-vivid imagers employ automatic, almost unconscious mechanisms in imagery generation, while low-vivid imagers rely on more schematic and conscious framework. Consequently, our results provide an additional insight into the interaction between perceptual and contextual cues when experiencing purely auditorily or multisensory induced vection. PMID:25520683

  6. Optimisation of nonlinear motion cueing algorithm based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid

    2015-04-01

    Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching

  7. Social influence on metacognitive evaluations: The power of nonverbal cues.

    PubMed

    Eskenazi, Terry; Montalan, Benoît; Jacquot, Amélie; Proust, Joëlle; Grèzes, Julie; Conty, Laurence

    2016-11-01

    Metacognitive evaluations refer to the processes by which people assess their own cognitive operations with respect to their current goal. Little is known about whether this process is susceptible to social influence. Here we investigate whether nonverbal social signals spontaneously influence metacognitive evaluations. Participants performed a two-alternative forced-choice task, which was followed by a face randomly gazing towards or away from the response chosen by the participant. Participants then provided a metacognitive evaluation of their response by rating their confidence in their answer. In Experiment 1, the participants were told that the gaze direction was irrelevant to the task purpose and were advised to ignore it. The results revealed an effect of implicit social information on confidence ratings even though the gaze direction was random and therefore unreliable for task purposes. In addition, nonsocial cues (car) did not elicit this effect. In Experiment 2, the participants were led to believe that cue direction (face or car) reflected a previous participant's response to the same question-that is, the social information provided by the cue was made explicit, yet still objectively unreliable for the task. The results showed a similar social influence on confidence ratings, observed with both cues (car and face) but with an increased magnitude relative to Experiment 1. We additionally showed in Experiment 2 that social information impaired metacognitive accuracy. Together our results strongly suggest an involuntary susceptibility of metacognitive evaluations to nonverbal social information, even when it is implicit (Experiment 1) and unreliable (Experiments 1 and 2). PMID:26594787

  8. Smells Like Home: The Role of Olfactory Cues in the Homing Behavior of Blacktip Sharks, Carcharhinus limbatus.

    PubMed

    Gardiner, Jayne M; Whitney, Nicholas M; Hueter, Robert E

    2015-09-01

    Animal navigation in the marine environment is believed to be guided by different sensory cues over different spatial scales. Geomagnetic cues are thought to guide long-range navigation, while visual or olfactory cues allow animals to pinpoint precise locations, but the complete behavioral sequence is not yet understood. Terra Ceia Bay is a primary nursery area for blacktip sharks, Carcharhinus limbatus, on southwestern Florida's Gulf of Mexico coast. Young-of-the-year animals show strong fidelity to a specific home range in the northeastern end of the bay and rapidly return when displaced. Older juveniles demonstrate annual philopatry for the first few years, migrating as far south as the Florida Keys each fall, then returning to Terra Ceia Bay each spring. To examine the sensory cues used in homing, we captured neonate (<3 weeks old) blacktip sharks from within their home range, fitted them with acoustic tags, and translocated them to sites 8 km away in adjacent Tampa Bay and released them. Intact animals returned to their home range, within 34 h on average, and remained there. With olfaction blocked, fewer animals returned to their home range and they took longer to do so, 130 h on average. However, they did not remain there but instead moved throughout Terra Ceia Bay and in and out of Tampa Bay. Since sharks from both treatments returned at night in tannic and turbid water, vision is likely not playing a major role in navigation by these animals. The animals in this study also returned on incoming or slack tides, suggesting that sharks, like many other fish, may use selective tidal stream transport to conserve energy and aid navigation during migration. Collectively, these results suggest that while other cues, possibly geomagnetic and/or tidal information, might guide sharks over long distances, olfactory cues are required for recognizing their specific home range. PMID:26173711

  9. Sensory aspects of movement disorders

    PubMed Central

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  10. The Perceptual Cues that Reshape Expert Reasoning

    NASA Astrophysics Data System (ADS)

    Harré, Michael; Bossomaier, Terry; Snyder, Allan

    2012-07-01

    The earliest stages in our perception of the world have a subtle but powerful influence on later thought processes; they provide the contextual cues within which our thoughts are framed and they adapt to many different environments throughout our lives. Understanding the changes in these cues is crucial to understanding how our perceptual ability develops, but these changes are often difficult to quantify in sufficiently complex tasks where objective measures of development are available. Here we simulate perceptual learning using neural networks and demonstrate fundamental changes in these cues as a function of skill. These cues are cognitively grouped together to form perceptual templates that enable rapid `whole scene' categorisation of complex stimuli. Such categories reduce the computational load on our capacity limited thought processes, they inform our higher cognitive processes and they suggest a framework of perceptual pre-processing that captures the central role of perception in expertise.

  11. Visual Cues for Enhancing Depth Perception.

    ERIC Educational Resources Information Center

    O'Donnell, L. M.; Smith, A. J.

    1994-01-01

    This article describes the physiological mechanisms involved in three-dimensional depth perception and presents a variety of distance and depth cues and strategies for detecting and estimating curbs and steps for individuals with impaired vision. (Author/DB)

  12. The Perceptual Cues that Reshape Expert Reasoning

    PubMed Central

    Harré, Michael; Bossomaier, Terry; Snyder, Allan

    2012-01-01

    The earliest stages in our perception of the world have a subtle but powerful influence on later thought processes; they provide the contextual cues within which our thoughts are framed and they adapt to many different environments throughout our lives. Understanding the changes in these cues is crucial to understanding how our perceptual ability develops, but these changes are often difficult to quantify in sufficiently complex tasks where objective measures of development are available. Here we simulate perceptual learning using neural networks and demonstrate fundamental changes in these cues as a function of skill. These cues are cognitively grouped together to form perceptual templates that enable rapid ‘whole scene' categorisation of complex stimuli. Such categories reduce the computational load on our capacity limited thought processes, they inform our higher cognitive processes and they suggest a framework of perceptual pre-processing that captures the central role of perception in expertise. PMID:22792435

  13. The effect of monocular depth cues on the detection of moving objects by moving observers.

    PubMed

    Royden, Constance S; Parsons, Daniel; Travatello, Joshua

    2016-07-01

    An observer moving through the world must be able to identify and locate moving objects in the scene. In principle, one could accomplish this task by detecting object images moving at a different angle or speed than the images of other items in the optic flow field. While angle of motion provides an unambiguous cue that an object is moving relative to other items in the scene, a difference in speed could be due to a difference in the depth of the objects and thus is an ambiguous cue. We tested whether the addition of information about the distance of objects from the observer, in the form of monocular depth cues, aided detection of moving objects. We found that thresholds for detection of object motion decreased as we increased the number of depth cues available to the observer. PMID:27264029

  14. The polarization compass dominates over idiothetic cues in path integration of desert ants.

    PubMed

    Lebhardt, Fleur; Koch, Julja; Ronacher, Bernhard

    2012-02-01

    Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern. PMID:22246261

  15. Reorienting driver attention with dynamic tactile cues.

    PubMed

    Ho, Cristy; Gray, Rob; Spence, Charles

    2014-03-01

    A series of three experiments was designed to investigate whether the presentation of moving tactile warning signals that are presented in a particular spatiotemporal configuration may be particularly effective in terms of facilitating a driver's response to a target event. In the experiments reported here, participants' visual attention was manipulated such that they were either attending to the frontal object that might occasionally approach them on a collision course, or else they were distracted by a color discrimination task presented from behind. We measured how rapidly participants were able to initiate a braking response to a looming visual target following the onset of vibrotactile warning signals presented from around their waist. The vibrotactile warning signals consisted of single, double, and triple upward moving cues (Experiment 1), triple upward and downward moving cues (Experiment 2), and triple random cues (Experiment 3). The results demonstrated a significant performance advantage following the presentation of dynamic triple cues over the static single tactile cues, regardless of the specific configuration of the triple cues. These findings point to the potential benefits of embedding dynamic information in warning signals for dynamic target events. These findings have important implications for the design of future vibrotactile warning signals. PMID:24845749

  16. Capturing spatial attention with multisensory cues.

    PubMed

    Santangelo, Valerio; Ho, Cristy; Spence, Charles

    2008-04-01

    We assessed the influence ofmultisensory interactions on the exogenous orienting of spatial attention by comparing the ability of auditory, tactile, and audiotactile exogenous cues to capture visuospatial attention under conditions of no perceptual load versus high perceptual load. In Experiment 1, participants discriminated the elevation of visual targets preceded by either unimodal or bimodal cues under conditions of either a high perceptual load (involving the monitoring of a rapidly presented central stream of visual letters for occasionally presented target digits) or no perceptual load (when the central stream was replaced by a fixation point). All of the cues captured spatial attention in the no-load condition, whereas only the bimodal cues captured visuospatial attention in the high-load condition. In Experiment 2, we ruled out the possibility that the presentation of any changing stimulus at fixation (i.e., a passively monitored stream of letters) would eliminate exogenous orienting, which instead appears to be a consequence of high perceptual load conditions (Experiment 1). These results demonstrate that multisensory cues capture spatial attention more effectively than unimodal cues under conditions of concurrent perceptual load. PMID:18488658

  17. Crossmodal and Incremental Perception of Audiovisual Cues to Emotional Speech

    ERIC Educational Resources Information Center

    Barkhuysen, Pashiera; Krahmer, Emiel; Swerts, Marc

    2010-01-01

    In this article we report on two experiments about the perception of audiovisual cues to emotional speech. The article addresses two questions: (1) how do visual cues from a speaker's face to emotion relate to auditory cues, and (2) what is the recognition speed for various facial cues to emotion? Both experiments reported below are based on tests…

  18. Stimulus-driven attentional capture by subliminal onset cues.

    PubMed

    Schoeberl, Tobias; Fuchs, Isabella; Theeuwes, Jan; Ansorge, Ulrich

    2015-04-01

    In two experiments, we tested whether subliminal abrupt onset cues capture attention in a stimulus-driven way. An onset cue was presented 16 ms prior to the stimulus display that consisted of clearly visible color targets. The onset cue was presented either at the same side as the target (the valid cue condition) or on the opposite side of the target (the invalid cue condition). Because the onset cue was presented 16 ms before other placeholders were presented, the cue was subliminal to the participant. To ensure that this subliminal cue captured attention in a stimulus-driven way, the cue's features did not match the top-down attentional control settings of the participants: (1) The color of the cue was always different than the color of the non-singleton targets ensuring that a top-down set for a specific color or for a singleton would not match the cue, and (2) colored targets and distractors had the same objective luminance (measured by the colorimeter) and subjective lightness (measured by flicker photometry), preventing a match between the top-down set for target and cue contrast. Even though a match between the cues and top-down settings was prevented, in both experiments, the cues captured attention, with faster response times in valid than invalid cue conditions (Experiments 1 and 2) and faster response times in valid than the neutral conditions (Experiment 2). The results support the conclusion that subliminal cues capture attention in a stimulus-driven way. PMID:25520044

  19. Direct and Indirect Cues to Knowledge States during Word Learning

    ERIC Educational Resources Information Center

    Saylor, Megan M.; Carroll, C. Brooke

    2009-01-01

    The present study investigated three-year-olds' sensitivity to direct and indirect cues to others' knowledge states for word learning purposes. Children were given either direct, physical cues to knowledge or indirect, verbal cues to knowledge. Preschoolers revealed a better ability to learn words from a speaker following direct, physical cues to…

  20. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities.

    PubMed

    Hanganu-Opatz, Ileana L

    2010-09-01

    Sensory systems processing information from the environment rely on precisely formed and refined neuronal networks that build maps of sensory receptor epithelia at different subcortical and cortical levels. These sensory maps share similar principles of function and emerge according to developmental processes common in visual, somatosensory and auditory systems. Whereas molecular cues set the coarse organization of cortico-subcortical topography, its refinement is known to succeed under the influence of experience-dependent electrical activity during critical periods. However, coordinated patterns of activity synchronize the cortico-subcortical networks long before the meaningful impact of environmental inputs on sensory maps. Recent studies elucidated the cellular and network mechanisms underlying the generation of these early patterns of activity and highlighted their similarities across species. Moreover, the experience-independent activity appears to act as a functional template for the maturation of sensory networks and cortico-subcortical maps. A major goal for future research will be to analyze how this early activity interacts with the molecular cues and to determine whether it is permissive or rather supporting for the establishment of sensory topography. PMID:20381527

  1. Substrate Three-Dimensionality Induces Elemental Morphological Transformation of Sensory Neurons on a Physiologic Timescale

    PubMed Central

    Ribeiro, Andreia; Vargo, Shelby; Powell, Elizabeth M.

    2012-01-01

    The natural environment of a neuron is the three-dimensional (3D) tissue. In vivo, embryonic sensory neurons transiently express a bipolar morphology with two opposing neurites before undergoing cytoplasmic and cytoskeletal rearrangement to a more mature pseudo-unipolar axonal arbor before birth. The unipolar morphology is crucial in the adult for correct information transmission from the periphery to the central nervous system. On two-dimensional (2D) substrates this transformation is delayed significantly or absent. We report that a 3D culture platform can invoke the characteristic transformation to the unipolar axonal arbor within a time frame similar to in vivo, overcoming the loss of this essential milestone in 2D substrates. Additionally, 3D substrates alone provided an environment that promoted axonal branching features that reflect morphological patterns observed in vivo. We have also analyzed the involvement of soluble cues in these morphogenic processes by culturing the neurons in the presence and absence of nerve growth factor (NGF), a molecule that plays distinct roles in the development of the peripheral and central nervous systems. Without NGF, both 2D and 3D cultures had significant decreases in the relative population of unipolar neurons as well as shorter neurite lengths and fewer branch points compared to cultures with NGF. Interestingly, branching features of neurons cultured in 3D without NGF resemble those of neurons cultured in 2D with NGF. Therefore, neurons cultured in 3D without NGF lost the ability to differentiate into unipolar neurons, suggesting that this morphological hallmark requires not only presentation of soluble cues like NGF, but also the surrounding 3D presentation of adhesive ligands to allow for realization of the innate morphogenic program. We propose that in a 3D environment, various matrix and soluble cues are presented toward all surfaces of the cell; this optimized milieu allows neurons to elaborate their genuine

  2. Perceptual separation of transparent motion components: the interaction of motion, luminance and shape cues.

    PubMed

    Meso, Andrew Isaac; Durant, Szonya; Zanker, Johannes M

    2013-09-01

    Transparency is perceived when two or more objects or surfaces can be separated by the visual system whilst they are presented in the same region of the visual field at the same time. This segmentation of distinct entities on the basis of overlapping local visual cues poses an interesting challenge for the understanding of cortical information processing. In psychophysical experiments, we studied stimuli that contained randomly positioned disc elements, moving at two different speeds in the same direction, to analyse the interaction of cues during the perception of motion transparency. The current work extends findings from previous experiments with sine wave luminance gratings which only vary in one spatial dimension. The reported experiments manipulate low-level cues, like differences in speed or luminance, and what are likely to be higher level cues such as the relative size of the elements or the superposition rules that govern overlapping regions. The mechanism responsible for separation appears to be mediated by combination of the relevant and available cues. Where perceived transparency is stronger, the neural representations of components are inferred to be more distinguishable from each other across what appear to be multiple cue dimensions. The disproportionally large effect on transparency strength of the type of superposition of disc suggests that with this manipulation, there may be enhanced separation above what might be expected from the linear combination of low-level cues in a process we term labelling. A mechanism for transparency perception consistent with the current results would require a minimum of three stages; in addition to the local motion detection and global pooling and separation of motion signals, findings suggest a powerful additional role of higher level separation cues. PMID:23831850

  3. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    PubMed

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode. PMID:27314235

  4. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory

    PubMed Central

    Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects’ performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode. PMID:27314235

  5. Influence of whole-body pitch tilt and kinesthetic cues on the perceived gravity-referenced eye level.

    PubMed

    Bringoux, L; Tamura, K; Faldon, M; Gresty, M A; Bronstein, A M

    2004-04-01

    We investigated the effects of whole body tilt and lifting the arm against gravity on perceptual estimates of the Gravity-Referenced Eye Level (GREL), which corresponds to the subjective earth-referenced horizon. The results showed that the perceived GREL was influenced by body tilt, that is, lowered with forward tilt and elevated with backward tilt of the body. GREL estimates obtained by arm movements without vision were more biased by whole-body tilt than purely visual estimates. Strikingly, visual GREL estimates became more dependent on whole-body tilt when the indication of level was obtained by arm lifting. These findings indicate that active motor involvement and/or the addition of kinesthetic information increases the body tilt-induced bias when making GREL judgements. The introduction of motor/kinaesthetic cues may induce a switch from a semi-geocentric to a more egocentric frame of reference. This result challenges the assumption that combining non-conflicting multiple sensory inputs and/or using intermodal information provided during action should improve perceptual performance. PMID:14663543

  6. Foraging and ingestive behaviors of whale sharks, Rhincodon typus, in response to chemical stimulus cues.

    PubMed

    Dove, Alistair D M

    2015-02-01

    Whale sharks, Rhincodon typus, display a number of behaviors that suggest these animals can locate food from afar, as well as identify and discriminate between food items. However, their intractably large size and relative rarity in the field has so far prevented direct studies of their behavior and sensory capability. A small population of aquarium-held whale sharks facilitated direct studies of behavior in response to chemical stimulus plumes. Whale sharks were exposed to plumes composed of either homogenized krill or simple aqueous solutions of dimethyl sulfide (DMS), which is associated with krill aggregations and is used by several pelagic species as a food-finding stimulus. Whale sharks exhibited pronounced ingestive and search behaviors when exposed to both types of stimuli, compared to control trials. Ingestive behaviors included open mouth swimming and active surface feeding (gulping). These behaviors were stronger and more prevalent in response to krill homogenate plumes than to DMS plumes. Both chemical stimuli also increased visitation rate, and krill homogenate plumes additionally affected swimming speed. Whale sharks use chemosensory cues of multiple types to locate and identify palatable food, suggesting that chemical stimuli can help direct long-range movements and allow discrimination of different food items. There appears to be a hierarchy of responses: krill metabolites directly associated with food produced more frequent and intense feeding responses relative to DMS, which is indirectly associated with krill. DMS is used to find food by a number of pelagic species and may be an important signaling molecule in pelagic food webs. PMID:25745101

  7. Emotional influences on food choice: sensory, physiological and psychological pathways.

    PubMed

    Gibson, Edward Leigh

    2006-08-30

    Sensory, physiological and psychological mechanisms are reviewed that underlie emotional influences on food choice. Both moods and emotions are considered. Eating a meal will reliably alter mood and emotional predisposition, typically reducing arousal and irritability, and increasing calmness and positive affect. However, this depends on the meal size and composition being close to the eater's habit, expectations and needs. Unusual meals--e.g. too small, unhealthy--may negatively affect mood. Sweetness, and sensory cues to high energy density, such as fatty texture, can improve mood and mitigate effects of stress via brain opioidergic and dopaminergic neurotransmission. However, adaptation in these pathways, perhaps enhanced by inherited sensitivity, with chronic exposure to such sensory qualities, could lead to overeating of energy-dense foods and consequent obesity. Sweet, fatty foods low in protein may also provide alleviation from stress in vulnerable people via enhanced function of the serotonergic system. Moreover, in rats, such foods seem to act as part of a feedback loop, via release of glucocorticoid hormones and insulin, to restrain activity of the hypothalamic pituitary adrenal axis during stress. However, this effect is also associated with abdominal obesity. In humans, a number of psychological characteristics predict the tendency to choose such foods when stressed, such as restrained or emotional eating, neuroticism, depression and premenstrual dysphoria, all of which could indicate neurophysiological sensitivity to reinforcing effects of such foods. Greater understanding of such predictive traits and the underlying mechanisms could lead to tailoring of diet to meet personal emotional needs. PMID:16545403

  8. Brain response to prosodic boundary cues depends on boundary position

    PubMed Central

    Holzgrefe, Julia; Wellmann, Caroline; Petrone, Caterina; Truckenbrodt, Hubert; Höhle, Barbara; Wartenburger, Isabell

    2013-01-01

    Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer's syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well-understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP) study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name) as compared to later in the utterance (i.e., after the second name). A closure positive shift (CPS)—marking the processing of a prosodic phrase boundary—was elicited for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context. PMID:23882234

  9. Parasite and predator risk assessment: nuanced use of olfactory cues.

    PubMed

    Sharp, John G; Garnick, Sarah; Elgar, Mark A; Coulson, Graeme

    2015-10-22

    Foraging herbivores face twin threats of predation and parasite infection, but the risk of predation has received much more attention. We evaluated, experimentally, the role of olfactory cues in predator and parasite risk assessment on the foraging behaviour of a population of marked, free-ranging, red-necked wallabies (Macropus rufogriseus). The wallabies adjusted their behaviour according to these olfactory cues. They foraged less, were more vigilant and spent less time at feeders placed in the vicinity of faeces from dogs that had consumed wallaby or kangaroo meat compared with that of dogs feeding on sheep, rabbit or possum meat. Wallabies also showed a species-specific faecal aversion by consuming less food from feeders contaminated with wallaby faeces compared with sympatric kangaroo faeces, whose gastrointestinal parasite fauna differs from that of the wallabies. Combining both parasite and predation cues in a single field experiment revealed that these risks had an additive effect, rather than the wallabies compromising their response to one risk at the expense of the other. PMID:26468246

  10. Effects of Verbal Cues versus Pictorial Cues on the Transfer of Stimulus Control for Children with Autism

    ERIC Educational Resources Information Center

    West, Elizabeth Anne

    2008-01-01

    The author examined the transfer of stimulus control from instructor assistance to verbal cues and pictorial cues. The intent was to determine whether it is easier to transfer stimulus control to one form of cue or the other. No studies have conducted such comparisons to date; however, literature exists to suggest that visual cues may be…

  11. An Eye Tracking Comparison of External Pointing Cues and Internal Continuous Cues in Learning with Complex Animations

    ERIC Educational Resources Information Center

    Boucheix, Jean-Michel; Lowe, Richard K.

    2010-01-01

    Two experiments used eye tracking to investigate a novel cueing approach for directing learner attention to low salience, high relevance aspects of a complex animation. In the first experiment, comprehension of a piano mechanism animation containing spreading-colour cues was compared with comprehension obtained with arrow cues or no cues. Eye…

  12. Incidental rewarding cues influence economic decisions in people with obesity.

    PubMed

    Simmank, Jakob; Murawski, Carsten; Bode, Stefan; Horstmann, Annette

    2015-01-01

    Recent research suggests that obesity is linked to prominent alterations in learning and decision-making. This general difference may also underlie the preference for immediately consumable, highly palatable but unhealthy and high-calorie foods. Such poor food-related inter-temporal decision-making can explain weight gain; however, it is not yet clear whether this deficit can be generalized to other domains of inter-temporal decision-making, for example financial decisions. Further, little is known about the stability of decision-making behavior in obesity, especially in the presence of rewarding cues. To answer these questions, obese and lean participants (n = 52) completed two sessions of a novel priming paradigm including a computerized monetary delay discounting task. In the first session, general differences between groups in financial delay discounting were measured. In the second session, we tested the general stability of discount rates. Additionally, participants were primed by affective visual cues of different contextual categories before making financial decisions. We found that the obese group showed stronger discounting of future monetary rewards than the lean group, but groups did not differ in their general stability between sessions nor in their sensitivity toward changes in reward magnitude. In the obese group, a fast decrease of subjective value over time was directly related to a higher tendency for opportunistic eating. Obese in contrast to lean people were primed by the affective cues, showing a sex-specific pattern of priming direction. Our findings demonstrate that environments rich of cues, aiming at inducing unhealthy consumer decisions, can be highly detrimental for obese people. It also underscores that obesity is not merely a medical condition but has a strong cognitive component, meaning that current dietary and medical treatment strategies may fall too short. PMID:26528158

  13. Incidental rewarding cues influence economic decisions in people with obesity

    PubMed Central

    Simmank, Jakob; Murawski, Carsten; Bode, Stefan; Horstmann, Annette

    2015-01-01

    Recent research suggests that obesity is linked to prominent alterations in learning and decision-making. This general difference may also underlie the preference for immediately consumable, highly palatable but unhealthy and high-calorie foods. Such poor food-related inter-temporal decision-making can explain weight gain; however, it is not yet clear whether this deficit can be generalized to other domains of inter-temporal decision-making, for example financial decisions. Further, little is known about the stability of decision-making behavior in obesity, especially in the presence of rewarding cues. To answer these questions, obese and lean participants (n = 52) completed two sessions of a novel priming paradigm including a computerized monetary delay discounting task. In the first session, general differences between groups in financial delay discounting were measured. In the second session, we tested the general stability of discount rates. Additionally, participants were primed by affective visual cues of different contextual categories before making financial decisions. We found that the obese group showed stronger discounting of future monetary rewards than the lean group, but groups did not differ in their general stability between sessions nor in their sensitivity toward changes in reward magnitude. In the obese group, a fast decrease of subjective value over time was directly related to a higher tendency for opportunistic eating. Obese in contrast to lean people were primed by the affective cues, showing a sex-specific pattern of priming direction. Our findings demonstrate that environments rich of cues, aiming at inducing unhealthy consumer decisions, can be highly detrimental for obese people. It also underscores that obesity is not merely a medical condition but has a strong cognitive component, meaning that current dietary and medical treatment strategies may fall too short. PMID:26528158

  14. Co-expression of anoctamins in cilia of olfactory sensory neurons.

    PubMed

    Henkel, Bastian; Drose, Daniela R; Ackels, Tobias; Oberland, Sonja; Spehr, Marc; Neuhaus, Eva M

    2015-02-01

    Vertebrates can sense and identify a vast array of chemical cues. The molecular machinery involved in chemodetection and transduction is expressed within the cilia of olfactory sensory neurons. Currently, there is only limited information available on the distribution and density of individual signaling components within the ciliary compartment. Using super-resolution microscopy, we show here that cyclic-nucleotide-gated channels and calcium-activated chloride channels of the anoctamin family are localized to discrete microdomains in the ciliary membrane. In addition to ANO2, a second anoctamin, ANO6, also localizes to ciliary microdomains. This observation, together with the fact that ANO6 and ANO2 co-localize, indicates a role for ANO6 in olfactory signaling. We show that both ANO2 and ANO6 can form heteromultimers and that this heteromerization alters the recombinant channels' physiological properties. Thus, we provide evidence for interaction of ANO2 and ANO6 in olfactory cilia, with possible physiological relevance for olfactory signaling. PMID:25500808

  15. Measuring Physiological Responses of Drosophila Sensory Neurons to Lipid Pheromones Using Live Calcium Imaging.

    PubMed

    Shankar, Shruti; Calvert, Meredith E K; Yew, Joanne Y

    2016-01-01

    Unlike mammals, insects such as Drosophila have multiple taste organs. The chemosensory neurons on the legs, proboscis, wings and ovipositor of Drosophila express gustatory receptors(1,2), ion channels(3-6), and ionotropic receptors(7) that are involved in the detection of volatile and non-volatile sensory cues. These neurons directly contact tastants such as food, noxious substances and pheromones and therefore influence many complex behaviors such as feeding, egg-laying and mating. Electrode recordings and calcium imaging have been widely used in insects to quantify the neuronal responses evoked by these tastants. However, electrophysiology requires specialized equipment and obtaining measurements from a single taste sensillum can be technically challenging depending on the cell-type, size, and position. In addition, single neuron resolution in Drosophila can be difficult to achieve since taste sensilla house more than one type of chemosensory neuron. The live calcium imaging method described here allows responses of single gustatory neurons in live flies to be measured. This method is especially suitable for imaging neuronal responses to lipid pheromones and other ligand types that have low solubility in water-based solvents. PMID:27168110

  16. Living productively with sensory loss.

    PubMed

    Kinderknecht, C H; Garner, J D

    1993-01-01

    As the avenues for fully perceiving and experiencing life, our sensory organs are the bridge between Self and the outside world. Of the many disorders affecting the senses of the older woman, those that affect vision and hearing have the greatest potential for disrupting her activities of daily living, and diminishing her quality of life and level of independence. While adapting to and coping successfully with sensory loss may require significant effort and adjustment on the part of the afflicted older woman, strategies designed to maximize the older woman's function, her sense of personal control, and her social support system can mediate the negative effects of the sensory loss. PMID:23077999

  17. Do visual cues contribute to the neural estimate of viewing distance used by the oculomotor system?

    PubMed

    Wei, Min; DeAngelis, Gregory C; Angelaki, Dora E

    2003-09-10

    Perceived shape and depth judgments that require knowledge of viewing distance are strongly influenced by both vergence angle and the pattern of vertical disparities across large visual fields. On the basis of this established contribution of visual cues to the neural estimate of viewing distance, we hypothesized that the oculomotor system would also make use of high-level visual cues to distance. To address this hypothesis, we investigated how compensatory eye movements during whole-body translation scale with viewing distance. Monkeys viewed large-field (85 x 68 degrees ) random-dot stereograms that were rear projected onto a fixed screen and simulated either a textured wall or pyramid at different viewing distances. In these stereograms, we independently manipulated vergence angle, horizontal and vertical disparity gradients, relative horizontal disparities, and textural cues to viewing distance. For comparison, random-dot patterns were also projected onto a moveable screen placed at different physical distances from the animal. Several cycles of left-right sinusoidal motion of the monkey at 5 Hz were interleaved with several cycles of motion in darkness, and the relationship between eye movement responses and viewing distance was quantified. As expected from previous work, the amplitude of compensatory eye movements depended strongly on vergence angle. Although visual cues to distance had a statistically significant effect on eye movements, these effects were approximately 20-fold weaker than the effect of vergence angle. We conclude that sensory and motor systems do not share a common neural estimate of viewing distance and that the oculomotor system relies far less on visual cues than the perceptual system. PMID:12967996

  18. Stress increases cue-triggered "wanting" for sweet reward in humans.

    PubMed

    Pool, Eva; Brosch, Tobias; Delplanque, Sylvain; Sander, David

    2015-04-01

    Stress can increase reward pursuits: This has traditionally been seen as an attempt to relieve negative affect through the hedonic properties of a reward. However, reward pursuit is not always proportional to the pleasure experienced, because reward processing involves distinct components, including the motivation to obtain a reward (i.e., wanting) and the hedonic pleasure during the reward consumption (i.e., liking). Research conducted on rodents demonstrates that stress might directly amplify the cue-triggered wanting, suggesting that under stress wanting can be independent from liking. Here, we aimed to test whether a similar mechanism exists in humans. We used analog of a Pavlovian-Instrumental Transfer test (PIT) with an olfactory reward to measure the cue triggered wanting for a reward but also the sensory hedonic liking felt during the consumption of the same reward. The analog of a PIT procedure, in which participants learned to associate a neutral image and an instrumental action with a chocolate odor, was combined with either a stress-inducing or stress-free behavioral procedure. Results showed that compared with participants in the stress-free condition, those in the stress condition mobilized more effort in instrumental action when the reward-associated cue was displayed, even though they did not report the reward as being more pleasurable. These findings suggest that, in humans, stress selectively increases cue-triggered wanting, independently of the hedonic properties of the reward. Such a mechanism supports the novel explanation proposed by animal research as to why stress often produces cue-triggered bursts of binge eating, relapses in drug addiction, or gambling. PMID:25734754

  19. Cues for Better Writing: Empirical Assessment of a Word Counter and Cueing Application's Effectiveness

    ERIC Educational Resources Information Center

    Vijayasarathy, Leo R.; Gould, Susan Martin; Gould, Michael

    2015-01-01

    Written clarity and conciseness are desired by employers and emphasized in business communication courses. We developed and tested the efficacy of a cueing tool--Scribe Bene--to help students reduce their use of imprecise and ambiguous words and wordy phrases. Effectiveness was measured by comparing cue word usage between a treatment group given…

  20. Colliding Cues in Word Segmentation: The Role of Cue Strength and General Cognitive Processes

    ERIC Educational Resources Information Center

    Weiss, Daniel J.; Gerfen, Chip; Mitchel, Aaron D.

    2010-01-01

    The process of word segmentation is flexible, with many strategies potentially available to learners. This experiment explores how segmentation cues interact, and whether successful resolution of cue competition is related to general executive functioning. Participants listened to artificial speech streams that contained both statistical and…

  1. Extended exposure to environmental cues, but not to sucrose, reduces sucrose cue reactivity in rats.

    PubMed

    Harkness, John H; Wells, Jason; Webb, Sierra; Grimm, Jeffrey W

    2016-03-01

    In the present study, we examined the effects of extinction of sucrose-predictive contextual cues and/or sucrose satiation on the expression of sucrose cue reactivity in a rat model of relapse. Context extinction was imposed by housing rats in their home cage or in the operant conditioning chamber for 17 h prior to testing. For sucrose satiation, rats were allowed unlimited access to water or sucrose for 17 h prior to testing. Cue reactivity was assessed after either one (Day 1) or 30 (Day 30) days of forced abstinence from sucrose self-administration. An abstinence-dependent increase in sucrose cue reactivity was observed in all conditions ("incubation of craving"). Context extinction dramatically reduced lever responding on both Day 1 and Day 30. Sucrose satiation had no significant effect on cue reactivity in any condition. These results demonstrate that the context in which self-administration occurs maintains a powerful influence over cue reactivity, even after extended forced abstinence. In contrast, the primary reinforcer has little control over cue reactivity. These findings highlight the important role of conditioned contextual cues in driving relapse behavior. PMID:26169836

  2. Neglect following stroke: the role of sensory sensitivity in visuo-spatial performance.

    PubMed

    Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge

    2014-11-01

    Both proprioceptive and visual manipulations have led to some improvement of the spatial neglect syndrome. Until now, their effects on visuo-spatial behaviour have never been compared simultaneously. The objective of this study was to determine their influence, as a function of the presence of neglect and the side of the brain damage. 19 stroke patients with right and 14 with left brain damage, without or with neglect; realized the Bells test in 5 conditions: a reference condition and 4 sensory conditions, defined according to the side of application (contralesional vs ipsilesional) and the type of perturbation (visual vs proprioceptive). The visuo-spatial behaviour was analyzed for global and spatial aspects and for individual extreme performances. For the neglect group, the restriction of the visual field to the ipsilesional hemi-field significantly diverted the centre of exploration towards the ipsilesional side compared to all other conditions. The weighting of visual cues from the ipsilesional hemi-field seems to be increased in sensory-motor integration processes in neglect patients. In all the groups, although some improvements in performance did occur with sensory manipulation, they were dependent on the individual, particularly for neglect patients. A same performance can be achieved through the use of different sensory-motor strategies, which are individual-related. It is thus important to consider the sensory sensitivity and the responsiveness of each patient before beginning any sensory therapies. PMID:25240591

  3. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation.

    PubMed

    Bieszczad, Kasia M; Bechay, Kiro; Rusche, James R; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M; McGaugh, James L; Wood, Marcelo A

    2015-09-23

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  4. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation

    PubMed Central

    Bechay, Kiro; Rusche, James R.; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M.; McGaugh, James L.

    2015-01-01

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  5. The CUE Domain of Cue1 Aligns Growing Ubiquitin Chains with Ubc7 for Rapid Elongation.

    PubMed

    von Delbrück, Maximilian; Kniss, Andreas; Rogov, Vladimir V; Pluska, Lukas; Bagola, Katrin; Löhr, Frank; Güntert, Peter; Sommer, Thomas; Dötsch, Volker

    2016-06-16

    Ubiquitin conjugation is an essential process modulating protein function in eukaryotic cells. Surprisingly, little is known about how the progressive assembly of ubiquitin chains is managed by the responsible enzymes. Only recently has ubiquitin binding activity emerged as an important factor in chain formation. The Ubc7 activator Cue1 carries a ubiquitin binding CUE domain that substantially stimulates K48-linked polyubiquitination mediated by Ubc7. Our results from NMR-based analysis and in vitro ubiquitination reactions point out that two parameters accelerate ubiquitin chain assembly: the increasing number of CUE binding sites and the position of CUE binding within a growing chain. In particular, interactions with a ubiquitin moiety adjacent to the acceptor ubiquitin facilitate chain elongation. These data indicate a mechanism for ubiquitin binding in which Cue1 positions Ubc7 and the distal acceptor ubiquitin for rapid polyubiquitination. Disrupting this mechanism results in dysfunction of the ERAD pathway by a delayed turnover of substrates. PMID:27264873

  6. Frontostriatal Circuit Dynamics Correlate with Cocaine Cue-Evoked Behavioral Arousal during Early Abstinence.

    PubMed

    Smith, Wesley C; Rosenberg, Matthew H; Claar, Leslie D; Chang, Victoria; Shah, Sagar N; Walwyn, Wendy M; Evans, Christopher J; Masmanidis, Sotiris C

    2016-01-01

    It is thought that frontostriatal circuits play an important role in mediating conditioned behavioral responses to environmental stimuli that were previously encountered during drug administration. However, the neural correlates of conditioned responses to drug-associated cues are not well understood at the level of large populations of simultaneously recorded neurons, or at the level of local field potential (LFP) synchrony in the frontostriatal network. Here we introduce a behavioral assay of conditioned arousal to cocaine cues involving pupillometry in awake head-restrained mice. After just 24 h of drug abstinence, brief exposures to olfactory stimuli previously paired with cocaine injections led to a transient dilation of the pupil, which was greater than the dilation effect to neutral cues. In contrast, there was no cue-selective change in locomotion, as measured by the rotation of a circular treadmill. The behavioral assay was combined with simultaneous recordings from dozens of electrophysiologically identified units in the medial prefrontal cortex (mPFC) and ventral striatum (VS). We found significant relationships between cocaine cue-evoked pupil dilation and the proportion of inhibited principal cells in the mPFC and VS. Additionally, LFP coherence analysis revealed a significant correlation between pupillary response and synchrony in the 25-45 Hz frequency band. Together, these results show that pupil dilation is sensitive to drug-associated cues during acute stages of abstinence, and that individual animal differences in this behavioral arousal response can be explained by two complementary measures of frontostriatal network activity. PMID:27390774

  7. Environmental Physical Cues Determine the Lineage Specification of Mesenchymal Stem Cells

    PubMed Central

    Huang, Chao; Dai, Jingxing; Zhang, Xin A.

    2015-01-01

    Background Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. Scope of review Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. Major conclusions Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. General significance These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. PMID:25727396

  8. Use of slope and feature cues in pigeon (Columba livia) goal-searching behavior.

    PubMed

    Nardi, Daniele; Mauch, Roseanne J; Klimas, Diana B; Bingman, Verner P

    2012-08-01

    Terrain slope provides a directional frame of reference for reorientation and navigation, similar to cardinal directions. Previous studies have shown that, in a goal location task, slope is a very salient cue and that pigeons tend to rely on it even if it is not the most informative cue. Such a strong dependence on one type of information, when there are more effective predictors of reward, is a key premise for a modular view of information processing. Here we tested the provocative hypothesis of a "slope module" for reorientation in slanted environments. Pigeons had to solve a goal location task using slope or another, theoretically salient cue: a beacon feature. Overall, searching behavior was controlled almost equally by the two cues. The fact that, for the first time, slope failed to capture most of the associative strength allows us to reject a strong modularity view and suggests instead that there is competition between cues based on salience. As an interesting additional finding, the reliance on slope and the feature was affected by training location (uphill vs. downhill), suggesting the possibility of a modulatory role of effort on the cue-weighting mechanism of reorientation. PMID:22390622

  9. Gaze direction – A cue for hidden food in rooks (Corvus frugilegus)?

    PubMed Central

    Schmidt, Judith; Scheid, Christelle; Kotrschal, Kurt; Bugnyar, Thomas; Schloegl, Christian

    2011-01-01

    Other individual's head- and eye-directions can be used as social cues indicating the presence of important events. Among birds, ravens and rooks have been shown to co-orient with conspecifics and with humans by following their gaze direction into distant space and behind visual screens. Both species use screens to cache food in private; also, it had been suggested that they may rely on gaze cues to detect hidden food. However, in an object-choice task, ravens failed to do so, and their competitive lifestyle may have prevented them from relying on these cues. Here we tested closely related and cooperative rooks. Food was hidden in one of two cups and the experimenter gazed at the baited cup. In a second experiment, we aimed to increase the birds’ motivation to choose correctly by increasing the investment needed to obtain the reward. To do so, the birds had to pull on a string to obtain the cup. Here, the birds as a group tended to rely on gaze cues. In addition, individual birds quickly learned to use the cue in both experiments. Although rooks may not use gaze cues to find hidden food spontaneously, they may quickly learn to do so. PMID:21855614

  10. Frontostriatal Circuit Dynamics Correlate with Cocaine Cue-Evoked Behavioral Arousal during Early Abstinence123

    PubMed Central

    Shah, Sagar N.; Evans, Christopher J.

    2016-01-01

    It is thought that frontostriatal circuits play an important role in mediating conditioned behavioral responses to environmental stimuli that were previously encountered during drug administration. However, the neural correlates of conditioned responses to drug-associated cues are not well understood at the level of large populations of simultaneously recorded neurons, or at the level of local field potential (LFP) synchrony in the frontostriatal network. Here we introduce a behavioral assay of conditioned arousal to cocaine cues involving pupillometry in awake head-restrained mice. After just 24 h of drug abstinence, brief exposures to olfactory stimuli previously paired with cocaine injections led to a transient dilation of the pupil, which was greater than the dilation effect to neutral cues. In contrast, there was no cue-selective change in locomotion, as measured by the rotation of a circular treadmill. The behavioral assay was combined with simultaneous recordings from dozens of electrophysiologically identified units in the medial prefrontal cortex (mPFC) and ventral striatum (VS). We found significant relationships between cocaine cue-evoked pupil dilation and the proportion of inhibited principal cells in the mPFC and VS. Additionally, LFP coherence analysis revealed a significant correlation between pupillary response and synchrony in the 25–45 Hz frequency band. Together, these results show that pupil dilation is sensitive to drug-associated cues during acute stages of abstinence, and that individual animal differences in this behavioral arousal response can be explained by two complementary measures of frontostriatal network activity. PMID:27390774

  11. Alcohol-related cues potentiate alcohol impairment of behavioral control in drinkers.

    PubMed

    Weafer, Jessica; Fillmore, Mark T

    2015-06-01

    The acute impairing effects of alcohol on inhibitory control are well-established, and these disinhibiting effects are thought to play a role in its abuse potential. Alcohol impairment of inhibitory control is typically assessed in the context of arbitrary cues, yet drinking environments are comprised of an array of alcohol-related cues that are thought to influence drinking behavior. Recent evidence suggests that alcohol-related stimuli reduce behavioral control in sober drinkers, suggesting that alcohol impairment of inhibitory control might be potentiated in the context of alcohol cues. The current study tested this hypothesis by examining performance on the attentional-bias behavioral activation (ABBA) task that measures the degree to which alcohol-related stimuli can reduce inhibition of inappropriate responses in a between-subjects design. Social drinkers (N = 40) performed the task in a sober condition, and then again following placebo (0.0 g/kg) and a moderate dose of alcohol (0.65 g/kg) in counterbalanced order. Inhibitory failures were greater following alcohol images compared to neutral images in sober drinkers, replicating previous findings with the ABBA task. Moreover, alcohol-related cues exacerbated alcohol impairment of inhibitory control as evidenced by more pronounced alcohol-induced disinhibition following alcohol cues compared to neutral cues. Finally, regression analyses showed that greater alcohol-induced disinhibition following alcohol cues predicted greater self-reported alcohol consumption. These findings have important implications regarding factors contributing to binge or "loss of control" drinking. That is, the additive effect of disrupted control mechanisms via both alcohol cues and the pharmacological effects of the drug could compromise an individual's control over ongoing alcohol consumption. (PsycINFO Database Record PMID:25134023

  12. Enhancing Manual Scan Registration Using Audio Cues

    NASA Astrophysics Data System (ADS)

    Ntsoko, T.; Sithole, G.

    2014-04-01

    Indoor mapping and modelling requires that acquired data be processed by editing, fusing, formatting the data, amongst other operations. Currently the manual interaction the user has with the point cloud (data) while processing it is visual. Visual interaction does have limitations, however. One way of dealing with these limitations is to augment audio in point cloud processing. Audio augmentation entails associating points of interest in the point cloud with audio objects. In coarse scan registration, reverberation, intensity and frequency audio cues were exploited to help the user estimate depth and occupancy of space of points of interest. Depth estimations were made reliably well when intensity and frequency were both used as depth cues. Coarse changes of depth could be estimated in this manner. The depth between surfaces can therefore be estimated with the aid of the audio objects. Sound reflections of an audio object provided reliable information of the object surroundings in some instances. For a point/area of interest in the point cloud, these reflections can be used to determine the unseen events around that point/area of interest. Other processing techniques could benefit from this while other information is estimated using other audio cues like binaural cues and Head Related Transfer Functions. These other cues could be used in position estimations of audio objects to aid in problems such as indoor navigation problems.

  13. Chemosensory Cues for Mosquito Oviposition Site Selection.

    PubMed

    Afify, Ali; Galizia, C Giovanni

    2015-03-01

    Gravid mosquitoes use chemosensory (olfactory, gustatory, or both) cues to select oviposition sites suitable for their offspring. In nature, these cues originate from plant infusions, microbes, mosquito immature stages, and predators. While attractants and stimulants are cues that could show the availability of food (plant infusions and microbes) and suitable conditions (the presence of conspecifics), repellents and deterrents show the risk of predation, infection with pathogens, or strong competition. Many studies have addressed the question of which substances can act as positive or negative cues in different mosquito species, with sometimes apparently contradicting results. These studies often differ in species, substance concentration, and other experimental details, making it difficult to compare the results. In this review, we compiled the available information for a wide range of species and substances, with particular attention to cues originating from larval food, immature stages, predators, and to synthetic compounds. We note that the effect of many substances differs between species, and that many substances have been tested in few species only, revealing that the information is scattered across species, substances, and experimental conditions. PMID:26336295

  14. Kin-informative recognition cues in ants

    PubMed Central

    Nehring, Volker; Evison, Sophie E. F.; Santorelli, Lorenzo A.; d'Ettorre, Patrizia; Hughes, William O. H.

    2011-01-01

    Although social groups are characterized by cooperation, they are also often the scene of conflict. In non-clonal systems, the reproductive interests of group members will differ and individuals may benefit by exploiting the cooperative efforts of other group members. However, such selfish behaviour is thought to be rare in one of the classic examples of cooperation—social insect colonies—because the colony-level costs of individual selfishness select against cues that would allow workers to recognize their closest relatives. In accord with this, previous studies of wasps and ants have found little or no kin information in recognition cues. Here, we test the hypothesis that social insects do not have kin-informative recognition cues by investigating the recognition cues and relatedness of workers from four colonies of the ant Acromyrmex octospinosus. Contrary to the theoretical prediction, we show that the cuticular hydrocarbons of ant workers in all four colonies are informative enough to allow full-sisters to be distinguished from half-sisters with a high accuracy. These results contradict the hypothesis of non-heritable recognition cues and suggest that there is more potential for within-colony conflicts in genetically diverse societies than previously thought. PMID:21123270

  15. Scene-based contextual cueing in pigeons.

    PubMed

    Wasserman, Edward A; Teng, Yuejia; Brooks, Daniel I

    2014-10-01

    Repeated pairings of a particular visual context with a specific location of a target stimulus facilitate target search in humans. We explored an animal model of such contextual cueing. Pigeons had to peck a target, which could appear in 1 of 4 locations on color photographs of real-world scenes. On half of the trials, each of 4 scenes was consistently paired with 1 of 4 possible target locations; on the other half of the trials, each of 4 different scenes was randomly paired with the same 4 possible target locations. In Experiments 1 and 2, pigeons exhibited robust contextual cueing when the context preceded the target by 1 s to 8 s, with reaction times to the target being shorter on predictive-scene trials than on random-scene trials. Pigeons also responded more frequently during the delay on predictive-scene trials than on random-scene trials; indeed, during the delay on predictive-scene trials, pigeons predominately pecked toward the location of the upcoming target, suggesting that attentional guidance contributes to contextual cueing. In Experiment 3, involving left-right and top-bottom scene reversals, pigeons exhibited stronger control by global than by local scene cues. These results attest to the robustness and associative basis of contextual cueing in pigeons. PMID:25546098

  16. Cue effectiveness in communicatively efficient discourse production.

    PubMed

    Qian, Ting; Jaeger, T Florian

    2012-01-01

    Recent years have seen a surge in accounts motivated by information theory that consider language production to be partially driven by a preference for communicative efficiency. Evidence from discourse production (i.e., production beyond the sentence level) has been argued to suggest that speakers distribute information across discourse so as to hold the conditional per-word entropy associated with each word constant, which would facilitate efficient information transfer (Genzel & Charniak, 2002). This hypothesis implies that the conditional (contextualized) probabilities of linguistic units affect speakers' preferences during production. Here, we extend this work in two ways. First, we explore how preceding cues are integrated into contextualized probabilities, a question which so far has received little to no attention. Specifically, we investigate how a cue's maximal informativity about upcoming words (the cue's effectiveness) decays as a function of the cue's recency. Based on properties of linguistic discourses as well as properties of human memory, we analytically derive a model of cue effectiveness decay and evaluate it against cross-linguistic data from 12 languages. Second, we relate the information theoretic accounts of discourse production to well-established mechanistic (activation-based) accounts: We relate contextualized probability distributions over words to their relative activation in a lexical network given preceding discourse. PMID:22671700

  17. Deciphering faces: quantifiable visual cues to weight.

    PubMed

    Coetzee, Vinet; Chen, Jingying; Perrett, David I; Stephen, Ian D

    2010-01-01

    Body weight plays a crucial role in mate choice, as weight is related to both attractiveness and health. People are quite accurate at judging weight in faces, but the cues used to make these judgments have not been defined. This study consisted of two parts. First, we wanted to identify quantifiable facial cues that are related to body weight, as defined by body mass index (BMI). Second, we wanted to test whether people use these cues to judge weight. In study 1, we recruited two groups of Caucasian and two groups of African participants, determined their BMI and measured their 2-D facial images for: width-to-height ratio, perimeter-to-area ratio, and cheek-to-jaw-width ratio. All three measures were significantly related to BMI in males, while the width-to-height and cheek-to-jaw-width ratios were significantly related to BMI in females. In study 2, these images were rated for perceived weight by Caucasian observers. We showed that these observers use all three cues to judge weight in African and Caucasian faces of both sexes. These three facial cues, width-to-height ratio, perimeter-to-area ratio, and cheek-to-jaw-width ratio, are therefore not only related to actual weight but provide a basis for perceptual attributes as well. PMID:20301846

  18. Human Factors Assessment and Redesign of the ISS Respiratory Support Pack (RSP) Cue Card

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Hudy, Cynthia; Whitmore, Mihriban; Smith, Danielle

    2007-01-01

    , borders, and simplification of the flow of information. The time to complete the RSP procedure was reduced by approximately three minutes with the new design. In an emergency situation, three minutes significantly increases the probability of saving a life. In addition, participants showed the highest preference for this design. The results of the studies and the new design were presented to a focus group of astronauts, flight surgeons, medical trainers, and procedures personnel. The final cue card was presented to a medical control board and approved for flight. The revised RSP cue card is currently onboard ISS.

  19. Conditioning as a Technique for Studying the Sensory Systems Involved in Animal Orientation, Homing and Navigation ? a Review

    NASA Astrophysics Data System (ADS)

    Mora, Cordula V.; Davison, Michael; Walker, Michael M.

    Knowing what information, and from which sensory cues, is available to an animal regarding its position and direction of movement is vital for unravelling the mechanisms underlying animal navigation. Although considerable progress has been made with traditional field and laboratory techniques, these approaches generally do not provide direct control over the animal's motivation to display its sensory abilities. In contrast, psychologists have for many decades used conditioning as a reliable tool to study sensory perception as well as the mechanisms underlying learning. There has been growing interest in the use of conditioning techniques to investigate responses to stimuli that might be used in guiding movement over long distances. This review seeks to facilitate that development by providing a general introduction to conditioning and the considerations involved in designing robust conditioning experiments together with a perspective for its future use in studying sensory systems in migratory and homing species.

  20. Cues for cellular assembly of vascular elastin networks

    NASA Astrophysics Data System (ADS)

    Kothapalli, Chandrasekhar R.

    Elastin, a structural protein distributed in the extracellular matrix of vascular tissues is critical to the maintenance of vascular mechanics, besides regulation of cell-signaling pathways involved in injury response and morphogenesis. Thus, congenital absence or disease-mediated degradation of vascular elastin and its malformation within native vessels due to innately poor elastin synthesis by adult vascular cells compromise vascular homeostasis. Current elastin regenerative strategies using tissue engineering principles are limited by the progressive destabilization of tropoelastin mRNA expression in adult vascular cells and the unavailability of scaffolds that can provide cellular cues necessary to up-regulate elastin synthesis and regenerate faithful mimics of native elastin. Since our earlier studies demonstrated the elastogenic utility of hyaluronan (HA)-based cues, we have currently sought to identify a unique set of culture conditions based on HA fragments (0.756-2000 kDa), growth factors (TGF-beta1, IGF-1) and other biomolecules (Cu2+ ions, LOX), which will together enhance synthesis, crosslinking, maturation and fibrous elastin matrix formation by adult SMCs, under both healthy and inflammatory conditions. It was observed that TGF-beta1 (1 ng/mL) together with HA oligomers (0.2 microg/mL) synergistically suppressed SMC proliferation, enhanced tropoelastin (8-fold) and matrix elastin synthesis (5.5-fold), besides improving matrix yield (4.5-fold), possibly by increasing production and activity of lysyl oxidase (LOX). Though addition of IGF-1 alone did not offer any advantage, HA fragments (20-200 kDa) in the presence of IGF-1 stimulated tropoelastin and soluble elastin synthesis more than 2.2-fold, with HMW HA contributing for ˜5-fold increase in crosslinked matrix elastin synthesis. Similarly, 0.1 M of Cu2+ ions, alone or together with HA fragments stimulated synthesis of tropoelastin (4-fold) and crosslinked matrix elastin (4.5-fold), via increases in

  1. Distracted by cues for suppressed memories.

    PubMed

    Hertel, Paula T; Hayes, Jeffrey A

    2015-06-01

    We examined the potential cost of practicing suppression of negative thoughts on subsequent performance in an unrelated task. Cues for previously suppressed and unsuppressed (baseline) responses in a think/no-think procedure were displayed as irrelevant flankers for neutral words to be judged for emotional valence. These critical flankers were homographs with one negative meaning denoted by their paired response during learning. Responses to the targets were delayed when suppression cues (compared with baseline cues and new negative homographs) were used as flankers, but only following direct-suppression instructions and not when benign substitutes had been provided to aid suppression. On a final recall test, suppression-induced forgetting following direct suppression and the flanker task was positively correlated with the flanker effect. Experiment 2 replicated these findings. Finally, valence ratings of neutral targets were influenced by the valence of the flankers but not by the prior role of the negative flankers. PMID:25904596

  2. Optic-flow selective cortical sensory regions associated with self-reported states of vection

    PubMed Central

    Uesaki, Maiko; Ashida, Hiroshi

    2015-01-01

    Optic flow is one of the most important visual cues to the estimation of self-motion. It has repeatedly been demonstrated that a cortical network including visual, multisensory, and vestibular areas is implicated in processing optic flow; namely, visual areas middle temporal cortex (MT+), V6; multisensory areas ventral intra-parietal area (VIP), cingulate sulcus visual area, precuneus motion area (PcM); and vestibular areas parieto-insular vestibular cortex (PIVC) and putative area 2v (p2v). However, few studies have investigated the roles of and interaction between the optic-flow selective sensory areas within the context of self-motion perception. When visual information (i.e., optic flow) is the sole cue to computing self-motion parameters, the discrepancy amongst the sensory signals may induce an illusion of self-motion referred to as ‘vection.’ This study aimed to identify optic-flow selective sensory areas that are involved in the processing of visual cues to self-motion, by introducing vection as an index and assessing activation in which of those areas reflect vection, using functional magnetic resonance imaging. The results showed that activity in visual areas MT+ and V6, multisensory area VIP and vestibular area PIVC was significantly greater while participants were experiencing vection, as compared to when they were experiencing no vection, which may indicate that activation in MT+, V6, VIP, and PIVC reflects vection. The results also place VIP in a good position to integrate visual cues related to self-motion and vestibular information. PMID:26106350

  3. Adaptation to Supernormal Auditory Localization Cues in AN Auditory Virtual Enrivonment.

    NASA Astrophysics Data System (ADS)

    Shinn-Cunningham, Barbara Gail

    An auditory virtual environment was used to investigate adaptation to transformed auditory localization cues which were "supernormal" in that physical cues were emphasized. A nonlinear transformation of the mapping from auditory localization cues to source position was used to create an artificial acoustic "fovea" in which cue resolution was enhanced directly in front of the subject and was decreased at the edges of the range. The experiments were driven in part by the fact that sensorimotor alterations will occur in all types of virtual environments, making it important to learn how such changes affect users of these systems. In addition, these experiments were designed to see whether better-than -normal performance could be achieved when supernormal localization cues were used. Bias and resolution were measured over time to see how changes in performance evolved with exposure to the altered cues. In all the experiments, mean response changed over time as expected, reducing the size of the average errors. Changes in bias were consistent with the changes in mean response, showing a reduction of about 50% at the end of the altered-cue exposure period. Resolution in the initial altered-cue run showed better-than-normal resolution in the fovea; however, resolution in the final altered -cue run tended to be smaller than the initial altered-cue test. Additional analysis showed that the mean responses during each run were always linearly related to the position that corresponded to the normal position of the cues before they were transformed. It was concluded that subjects did not adapt to the nonlinear transformation employed but rather to a linear approximation of the transformation. This mean slope (between perceived position and corresponding normal-cue position) changed exponentially over time, approaching an asymptote by the final altered -cue test. This asymptote was, on average, only 5% away from the slope of the line which minimized the mean-square error from

  4. Spatially valid proprioceptive cues improve the detection of a visual stimulus

    PubMed Central

    Miall, R. Chris; Balslev, Daniela

    2010-01-01

    Vision and proprioception are the main sensory modalities that convey hand location and direction of movement. Fusion of these sensory signals into a single robust percept is now well documented. However, it is not known whether these modalities also interact in the spatial allocation of attention, which has been demonstrated for other modality pairings. The aim of this study was to test whether proprioceptive signals can spatially cue a visual target to improve its detection. Participants were instructed to use a planar manipulandum in a forward reaching action and determine during this movement whether a near-threshold visual target appeared at either of two lateral positions. The target presentation was followed by a masking stimulus, which made its possible location unambiguous, but not its presence. Proprioceptive cues were given by applying a brief lateral force to the participant’s arm, either in the same direction (validly cued) or in the opposite direction (invalidly cued) to the on-screen location of the mask. The d′ detection rate of the target increased when the direction of proprioceptive stimulus was compatible with the location of the visual target compared to when it was incompatible. These results suggest that proprioception influences the allocation of attention in visual space. PMID:20567807

  5. Motion cue effects on pilot tracking

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Stapleford, R. L.

    1972-01-01

    The results of two successive experimental investigations of the effects of motion cues on manual control tracking tasks are reported. The first of these was an IFR single-axis VTOL roll attitude control task. Describing function data show the dominant motion feedback quantity to be angular velocity. The second experimental task was multiaxis, that of precision hovering of a VTOL using separated instrument displays with reduced motion amplitude scaling. Performance data and pilot opinion show angular position to be the dominant cue when simulator linear motion is absent.

  6. Cognitive cues are more compelling than facial cues in determining adults' reactions towards young children.

    PubMed

    Hernández Blasi, Carlos; Bjorklund, David F; Soler, Marcos Ruiz

    2015-01-01

    Previous research has demonstrated the significant influence that both children's facial features (Lorenz, 1943) and children's cognitive expressions (Bjorklund, Hernández Blasi, and Periss, 2010) have on adults' perception of young children. However, until now, these two types of cues have been studied independently. The present study contrasted these two types of cues simultaneously in a group of college students. To this purpose, we designed five experimental conditions (Consistent, Inconsistent, Mature-Face, Immature-Face, and Faces-Only) in which we varied the presentation of a series of mature and immature vignettes (including two previously studied types of thinking: natural thinking and supernatural thinking) associated with a series of more mature and less mature children's faces. Performance in these conditions was contrasted with data from a Vignettes-Only condition taken from Bjorklund et al. (2010). Results indicated that cognitive cues were more powerful than facial cues in determining adults' perceptions of young children. From an evolutionary developmental perspective, we suggest that facial cues are more relevant to adults during infancy than during the preschool period, when, with the development of spoken language, the verbalized expressions of children's thoughts become the principal cues influencing adults' perceptions, with facial cues playing a more secondary role. PMID:26111592

  7. Selective conversion of fibroblasts into peripheral sensory neurons

    PubMed Central

    Blanchard, Joel W; Eade, Kevin T; Szűcs, Attila; Sardo, Valentina Lo; Tsunemoto, Rachel K; Williams, Daniel; Sanna, Pietro Paolo; Baldwin, Kristin K

    2015-01-01

    Humans and mice detect pain, itch, temperature, pressure, stretch and limb position via signaling from peripheral sensory neurons. These neurons are divided into three functional classes (nociceptors/pruritoceptors, mechanoreceptors and proprioceptors) that are distinguished by their selective expression of TrkA, TrkB or TrkC receptors, respectively. We found that transiently coexpressing Brn3a with either Ngn1 or Ngn2 selectively reprogrammed human and mouse fibroblasts to acquire key properties of these three classes of sensory neurons. These induced sensory neurons (iSNs) were electrically active, exhibited distinct sensory neuron morphologies and matched the characteristic gene expression patterns of endogenous sensory neurons, including selective expression of Trk receptors. In addition, we found that calcium-imaging assays could identify subsets of iSNs that selectively responded to diverse ligands known to activate itch- and pain-sensing neurons. These results offer a simple and rapid means for producing genetically diverse human sensory neurons suitable for drug screening and mechanistic studies. PMID:25420069

  8. Sensory feedback, error correction, and remapping in a multiple oscillator model of place-cell activity.

    PubMed

    Monaco, Joseph D; Knierim, James J; Zhang, Kechen

    2011-01-01

    Mammals navigate by integrating self-motion signals ("path integration") and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid-cells demonstrate a phase relationship with the local theta (6-10 Hz) rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of "partial remapping" responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments. PMID:21994494

  9. Identification and characterization of mouse otic sensory lineage genes

    PubMed Central

    Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan

    2015-01-01

    Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475

  10. Nipping cue reactivity in the bud: baclofen prevents limbic activation elicited by subliminal drug cues.

    PubMed

    Young, Kimberly A; Franklin, Teresa R; Roberts, David C S; Jagannathan, Kanchana; Suh, Jesse J; Wetherill, Reagan R; Wang, Ze; Kampman, Kyle M; O'Brien, Charles P; Childress, Anna Rose

    2014-04-01

    Relapse is a widely recognized and difficult to treat feature of the addictions. Substantial evidence implicates cue-triggered activation of the mesolimbic dopamine system as an important contributing factor. Even drug cues presented outside of conscious awareness (i.e., subliminally) produce robust activation within this circuitry, indicating the sensitivity and vulnerability of the brain to potentially problematic reward signals. Because pharmacological agents that prevent these early cue-induced responses could play an important role in relapse prevention, we examined whether baclofen-a GABAB receptor agonist that reduces mesolimbic dopamine release and conditioned drug responses in laboratory animals-could inhibit mesolimbic activation elicited by subliminal cocaine cues in cocaine-dependent individuals. Twenty cocaine-dependent participants were randomized to receive baclofen (60 mg/d; 20 mg t.i.d.) or placebo. Event-related BOLD fMRI and a backward-masking paradigm were used to examine the effects of baclofen on subliminal cocaine (vs neutral) cues. Sexual and aversive cues were included to examine specificity. We observed that baclofen-treated participants displayed significantly less activation in response to subliminal cocaine (vs neutral) cues, but not sexual or aversive (vs neutral) cues, than placebo-treated participants in a large interconnected bilateral cluster spanning the ventral striatum, ventral pallidum, amygdala, midbrain, and orbitofrontal cortex (voxel threshold p < 0.005; cluster corrected at p < 0.05). These results suggest that baclofen may inhibit the earliest type of drug cue-induced motivational processing-that which occurs outside of awareness-before it evolves into a less manageable state. PMID:24695721

  11. Mechano- and Chemo-Sensory Polycystins

    NASA Astrophysics Data System (ADS)

    Patel, Amanda; Delmas, Patrick; Honoré, Eric

    Polycystins belong to the superfamily of transient receptor potential (TRP) channels and comprise five PKD1-like and three PKD2-like (TRPP) subunits. In this chapter, we review the general properties of polycystins and discuss their specific role in both mechanotransduction and chemoreception. The heteromer PKD1/PKD2 expressed at the membrane of the primary cilium of kidney epithelial cells is proposed to form a mechano-sensitive calcium channel that is opened by physiological fluid flow. Dysfunction or loss of PKD1 or PKD2 polycystin genes may be responsible for the inability of epithelial cells to sense mechanical cues, thus provoking autosomal dominant polycystic kidney disease (ADPKD), one of the most prevalent genetic kidney disorders. pkd1 and pkd2 knock-out mice recapitulate the human disease. Similarly, PKD2 may function as a mechanosensory calcium channel in the immotile monocilia of the developing node transducing leftward flow into an increase in calcium and specifying the left-right axis. pkd2, unlike pkd1 knock-out embryos are characterized by right lung isomerism (situs inversus). Mechanical stimuli also induce cleavage and nuclear translocation of the PKD1 C-terminal tail, which enters the nucleus and initiates signaling processes involving the AP-1, STAT6 and P100 pathways. This intraproteolytic mechanism is implicated in the transduction of a change in renal fluid flow to a transcriptional long-term response. The heteromer PKD1L3/PKD2L1 is the basis for acid sensing in specialised sensory cells including the taste bud cells responsible for sour taste. Moreover, PKD1L3/PKD2L1 may be implicated in the chemosensitivity of neurons surrounding the spinal cord canal, sensing protons in the cerebrospinal fluid. These recent results demonstrate that polycystins fulfill a major sensory role in a variety of cells including kidney epithelial cells, taste buds cells and spinal cord neurons. Such mechanisms are involved in short- and long-term physiological

  12. Path planning versus cue responding: a bio-inspired model of switching between navigation strategies.

    PubMed

    Dollé, Laurent; Sheynikhovich, Denis; Girard, Benoît; Chavarriaga, Ricardo; Guillot, Agnès

    2010-10-01

    In this article, we describe a new computational model of switching between path-planning and cue-guided navigation strategies. It is based on three main assumptions: (i) the strategies are mediated by separate memory systems that learn independently and in parallel; (ii) the learning algorithms are different in the two memory systems-the cue-guided strategy uses a temporal-difference (TD) learning rule to approach a visible goal, whereas the path-planning strategy relies on a place-cell-based graph-search algorithm to learn the location of a hidden goal; (iii) a strategy selection mechanism uses TD-learning rule to choose the most successful strategy based on past experience. We propose a novel criterion for strategy selection based on the directions of goal-oriented movements suggested by the different strategies. We show that the selection criterion based on this "common currency" is capable of choosing the best among TD-learning and planning strategies and can be used to solve navigational tasks in continuous state and action spaces. The model has been successfully applied to reproduce rat behavior in two water-maze tasks in which the two strategies were shown to interact. The model was used to analyze competitive and cooperative interactions between different strategies during these tasks as well as relative influence of different types of sensory cues. PMID:20617443

  13. Effectiveness of a specific cueing method for improving autobiographical memory recall in patients with schizophrenia.

    PubMed

    Potheegadoo, Jevita; Cordier, Adrian; Berna, Fabrice; Danion, Jean-Marie

    2014-01-01

    Autobiographical memory deficits in schizophrenia have a significant impact on patients' daily life. Our study was aimed at testing the effectiveness of a specific cueing (SC) method for improving autobiographical memory recall in patients with schizophrenia, particularly the phenomenological details of their memories. Twenty-five patients with schizophrenia and 25 comparison participants took part in the study. They recalled 6 specific autobiographical events which occurred during 3 different life periods. After each memory recall, participants were given a general cue which allowed them to add further information to their narration. The SC was then applied by means of a series of specific questions to elicit more precise memory detail. The overall memory specificity as well as the number and richness of 5 categories of memory detail (perceptual/sensory, temporal, contextual, emotional, and cognitive) were assessed before and after the SC phase. Before SC, patients' memories were less specific and less detailed. SC had a beneficial effect on patients' memory recall. The overall memory specificity of patients improved. The gain in the number and richness of memory details was comparable between patients and comparison participants. The difference between groups in terms of the number of memory details was not significant. Richness of details was still lower in patients, except for emotional and cognitive details, which were similarly rich in both groups. The cueing method reduces the autobiographical memory impairment of patients with schizophrenia and paves the way for developing specific cognitive remediation therapies to help patients in their daily life. PMID:24268933

  14. EFFECT OF POSITIVE AND NEGATIVE AFFECTIVE STIMULI AND BEVERAGE CUES ON MEASURES OF CRAVING IN NON TREATMENT-SEEKING ALCOHOLICS

    PubMed Central

    Mason, Barbara J.; Light, John M.; Escher, Tobie; Drobes, David J.

    2009-01-01

    Rationale Laboratory paradigms are useful for investigating mechanisms of human alcohol cue reactivity in a highly controlled environment. A number of studies have examined the effects of beverage exposure or negative affective stimuli on cue reactivity independently, but only a few have reported on interaction effects between beverage cue and affective stimuli, and none have evaluated the effects of positive stimuli on beverage cue reactivity. Objectives To assess independent and interactive effects of both positive and negative affective stimuli and beverage cue on psychophysiological and subjective measures of reactivity in alcohol dependence. Methods A total of 47 non treatment-seeking paid volunteers with current alcohol dependence participated in a within-subjects trial where each was exposed to a standardized set of pleasant, neutral, or unpleasant visual stimuli followed by alcohol or water cues. Psychophysiological cue reactivity measures were obtained during beverage presentation, and subjective reactivity measures were taken directly following beverage presentation. Results Mixed-effect models revealed a significant main effect of beverage and positive (but not negative) affective stimuli on subjective strength of craving, and significant main effects of both positive and negative affective stimuli on ratings of emotionality. Despite the power to detect relatively small interaction effects, no significant interactions were observed between affect and beverage conditions on any reactivity measure. A key finding of this study is that positive affective stimuli commonly associated with drinking situations can induce craving in the absence of alcohol cues. Conclusions Main effects of beverage cue replicated results from previous studies. In addition, positive affective stimuli influenced craving strength. Beverage and affective cues showed no interaction effects. PMID:18604601

  15. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  16. Social information and community dynamics: nontarget effects from simulating social cues for management.

    PubMed

    Fletcher, Robert J

    2008-10-01

    Artificially creating social stimuli may be an effective tool for facilitating settlement by rare and/or declining species into suitable habitat. However, the potential consequences for other community members have not been explored and should be considered when evaluating the overall utility of using such management strategies. I report on nontarget, community-wide effects that occurred when manipulating social cues of two competitors that are species of concern in the western United States, the dominant Least Flycatcher (Empidonax minimus) and the subordinate American Redstart (Setophaga ruticilla). The experiment consisted of surveying birds during a pretreatment year, which allows for the control of baseline communities, and a treatment year, in which treatments were applied just prior to settlement by migratory birds. Treatments included broadcasting songs of flycatchers and redstarts and were compared to controls. While the addition of redstart cues did not significantly influence community structure, the addition of flycatcher cues reduced species richness of migratory birds by approximately 30%. This pattern was driven by an absence of local colonizations of small-bodied migrants to sites with added flycatcher cues, rather than by local extinctions occurring from manipulations. The artificial flycatcher stimuli were more responsible for declines in species richness than were changes in actual flycatcher densities. I conclude by identifying some fundamental issues that managers and conservation practitioners should weigh when considering simulating social cues for species conservation prior to implementation. PMID:18839770

  17. Listeners' expectation of room acoustical parameters based on visual cues

    NASA Astrophysics Data System (ADS)

    Valente, Daniel L.

    . The addressed visual makeup of the performer included: (1) an actual video of the performance, (2) a surrogate image of the performance, for example a loudspeaker's image reproducing the performance, (3) no visual image of the performance (empty room), or (4) a multi-source visual stimulus (actual video of the performance coupled with two images of loudspeakers positioned to the left and right of the performer). For this experiment, perceived auditory events of sound were measured in terms of two subjective spatial metrics: Listener Envelopment (LEV) and Apparent Source Width (ASW) These metrics were hypothesized to be dependent on the visual imagery of the presented performance. Data was also collected by participants matching direct and reverberant sound levels for the presented audio-visual scenes. In the final experiment, participants judged spatial expectations of an ensemble of musicians presented in the five physical spaces from Experiment 1. Supporting data was accumulated in two stages. First, participants were given an audio-visual matching test, in which they were instructed to align the auditory width of a performing ensemble to a varying set of audio and visual cues. In the second stage, a conjoint analysis design paradigm was explored to extrapolate the relative magnitude of explored audio-visual factors in affecting three assessed response criteria: Congruency (the perceived match-up of the auditory and visual cues in the assessed performance), ASW and LEV. Results show that both auditory and visual factors affect the collected responses, and that the two sensory modalities coincide in distinct interactions. This study reveals participant resiliency in the presence of forced auditory-visual mismatch: Participants are able to adjust the acoustic component of the cross-modal environment in a statistically similar way despite randomized starting values for the monitored parameters. Subjective results of the experiments are presented along with objective

  18. CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--HOME ECONOMICS.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.; AND OTHERS

    THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN HOME ECONOMICS. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE, AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH…

  19. Industrial Arts Humanities Media Guide: CUE.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This curriculum guide is for teacher use in course and lesson planning for ninth grade industrial arts. It was developed by Project CUE (Culture, Understanding, Enrichment), a project funded by the U.S. Office of Education, as part of a group of materials designed to integrate and encourage humanities instruction in various subject areas. The…

  20. Spatial limitations in averaging social cues.

    PubMed

    Florey, Joseph; Clifford, Colin W G; Dakin, Steven; Mareschal, Isabelle

    2016-01-01

    The direction of social attention from groups provides stronger cueing than from an individual. It has previously been shown that both basic visual features such as size or orientation and more complex features such as face emotion and identity can be averaged across multiple elements. Here we used an equivalent noise procedure to compare observers' ability to average social cues with their averaging of a non-social cue. Estimates of observers' internal noise (uncertainty associated with processing any individual) and sample-size (the effective number of gaze-directions pooled) were derived by fitting equivalent noise functions to discrimination thresholds. We also used reverse correlation analysis to estimate the spatial distribution of samples used by participants. Averaging of head-rotation and cone-rotation was less noisy and more efficient than averaging of gaze direction, though presenting only the eye region of faces at a larger size improved gaze averaging performance. The reverse correlation analysis revealed greater sampling areas for head rotation compared to gaze. We attribute these differences in averaging between gaze and head cues to poorer visual processing of faces in the periphery. The similarity between head and cone averaging are examined within the framework of a general mechanism for averaging of object rotation. PMID:27573589

  1. Visual Cues and Listening Effort: Individual Variability

    ERIC Educational Resources Information Center

    Picou, Erin M.; Ricketts, Todd A; Hornsby, Benjamin W. Y.

    2011-01-01

    Purpose: To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Method: Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and…

  2. Effects of similarity on environmental context cueing.

    PubMed

    Smith, Steven M; Handy, Justin D; Angello, Genna; Manzano, Isabel

    2014-01-01

    Three experiments examined the prediction that context cues which are similar to study contexts can facilitate episodic recall, even if those cues are never seen before the recall test. Environmental context cueing effects have typically produced such small effect sizes that influences of moderating factors, such as the similarity between encoding and retrieval contexts, would be difficult to observe experimentally. Videos of environmental contexts, however, can be used to produce powerful context-dependent memory effects, particularly when only one memory target is associated with each video context, intentional item-context encoding is encouraged, and free recall tests are used. Experiment 1 showed that a not previously viewed video of the study context provided an effective recall cue, although it was not as effective as the originally viewed video context. Experiments 2 and 3 showed that videos of environments that were conceptually similar to encoding contexts (e.g., both were videos of ball field games) also cued recall, but not as well if the encoding contexts were given specific labels (e.g., "home run") incompatible with test contexts (e.g., a soccer scene). A fourth experiment that used incidental item-context encoding showed that video context reinstatement has a robust effect on paired associate memory, indicating that the video context reinstatement effect does not depend on interactive item-context encoding or free recall testing. PMID:23721293

  3. CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--SCIENCE.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.; AND OTHERS

    THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN SCIENCE. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE, AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH SCHOOLS. THE…

  4. Cue combination for 3D location judgements

    PubMed Central

    Svarverud, Ellen; Gilson, Stuart J.; Glennerster, Andrew

    2010-01-01

    Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only ‘physical’ (stereo and motion parallax) or ‘texture-based’ cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the target relative to other objects was varied, the ratio of ‘physical’ to ‘texture-based’ thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying traditional models of 3D reconstruction. PMID:20143898

  5. Preschoolers Benefit from Visually Salient Speech Cues

    ERIC Educational Resources Information Center

    Lalonde, Kaylah; Holt, Rachael Frush

    2015-01-01

    Purpose: This study explored visual speech influence in preschoolers using 3 developmentally appropriate tasks that vary in perceptual difficulty and task demands. They also examined developmental differences in the ability to use visually salient speech cues and visual phonological knowledge. Method: Twelve adults and 27 typically developing 3-…

  6. Cue combination for 3D location judgements.

    PubMed

    Svarverud, Ellen; Gilson, Stuart J; Glennerster, Andrew

    2010-01-01

    Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only 'physical' (stereo and motion parallax) or 'texture-based' cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the target relative to other objects was varied, the ratio of 'physical' to 'texture-based' thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying traditional models of 3D reconstruction. PMID:20143898

  7. Directing driver attention with augmented reality cues

    PubMed Central

    Rusch, Michelle L.; Schall, Mark C.; Gavin, Patrick; Lee, John D.; Dawson, Jeffrey D.; Vecera, Shaun; Rizzo, Matthew

    2013-01-01

    This simulator study evaluated the effects of augmented reality (AR) cues designed to direct the attention of experienced drivers to roadside hazards. Twenty-seven healthy middle-aged licensed drivers with a range of attention capacity participated in a 54 mile (1.5 hour) drive in an interactive fixed-base driving simulator. Each participant received AR cues to potential roadside hazards in six simulated straight (9 mile long) rural roadway segments. Drivers were evaluated on response time for detecting a potentially hazardous event, detection accuracy for target (hazard) and non-target objects, and headway with respect to the hazards. Results showed no negative outcomes associated with interference. AR cues did not impair perception of non-target objects, including for drivers with lower attentional capacity. Results showed near significant response time benefits for AR cued hazards. AR cueing increased response rate for detecting pedestrians and warning signs but not vehicles. AR system false alarms and misses did not impair driver responses to potential hazards. PMID:24436635

  8. Probabilistic Cue Combination: Less Is More

    ERIC Educational Resources Information Center

    Yurovsky, Daniel; Boyer, Ty W.; Smith, Linda B.; Yu, Chen

    2013-01-01

    Learning about the structure of the world requires learning probabilistic relationships: rules in which cues do not predict outcomes with certainty. However, in some cases, the ability to track probabilistic relationships is a handicap, leading adults to perform non-normatively in prediction tasks. For example, in the "dilution effect,"…

  9. Verbal Cueing as a Behavior Change Instrument.

    ERIC Educational Resources Information Center

    Prieto, Alfonso G.; Rutherford, Robert B., Jr.

    A study involving four boys (9 to 14 years old) labeled as emotionally handicapped was conducted to examine the effect of a verbal cueing technique (involving an illogical statement which evokes psychological reactance) on behaviorally disordered children. Illogical statements made by the teacher produced positive change in target behaviors (such…

  10. Communication in Writing: The Problem of Cueing.

    ERIC Educational Resources Information Center

    White, Ronald V.

    Writing exercises used as a means of reinforcing language presented and practiced in the spoken medium should include clear cues for the student that can stimulate and guide the writing of connected sentences. Three principles are suggested as being fundamental to the planning and use of effective exercises: (1) focus throughout should be on the…

  11. Differential Cognitive Cues in Pictorial Depth Perception.

    ERIC Educational Resources Information Center

    Omari, Issa M.; Cook, Harold

    The experiment described in this report investigates the effects of various cognitive cues in questions asked regarding the relationship of elements in pictorial depth perception. The subjects of this study are 40 third grade Black and Puerto Rican children. They are confronted with four pictures from the Hudson Depth Perception Tests and asked to…

  12. Object Cueing System For Infrared Images

    NASA Astrophysics Data System (ADS)

    Ranganath, H. S.; McIngvale, Pat; Speigle, Scott

    1987-09-01

    This paper considers the design of an object cueing system as a rule-based expert system. The architecture is modular and the control strategy permits dynamic scheduling of tasks. In this approach, results of several algorithms and many object recognition heuristics are combined to achieve better performance levels. Importance of spatial knowledge representatiOn is also discussed.

  13. Spatial limitations in averaging social cues

    PubMed Central

    Florey, Joseph; Clifford, Colin W. G.; Dakin, Steven; Mareschal, Isabelle

    2016-01-01

    The direction of social attention from groups provides stronger cueing than from an individual. It has previously been shown that both basic visual features such as size or orientation and more complex features such as face emotion and identity can be averaged across multiple elements. Here we used an equivalent noise procedure to compare observers’ ability to average social cues with their averaging of a non-social cue. Estimates of observers’ internal noise (uncertainty associated with processing any individual) and sample-size (the effective number of gaze-directions pooled) were derived by fitting equivalent noise functions to discrimination thresholds. We also used reverse correlation analysis to estimate the spatial distribution of samples used by participants. Averaging of head-rotation and cone-rotation was less noisy and more efficient than averaging of gaze direction, though presenting only the eye region of faces at a larger size improved gaze averaging performance. The reverse correlation analysis revealed greater sampling areas for head rotation compared to gaze. We attribute these differences in averaging between gaze and head cues to poorer visual processing of faces in the periphery. The similarity between head and cone averaging are examined within the framework of a general mechanism for averaging of object rotation. PMID:27573589

  14. CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--INDUSTRIAL ARTS.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.; AND OTHERS

    THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN INDUSTRIAL ARTS. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE, AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH…

  15. The (Un)Clear Effects of Invalid Retro-Cues

    PubMed Central

    Gressmann, Marcel; Janczyk, Markus

    2016-01-01

    Studies with the retro-cue paradigm have shown that validly cueing objects in visual working memory long after encoding can still benefit performance on subsequent change detection tasks. With regard to the effects of invalid cues, the literature is less clear. Some studies reported costs, others did not. We here revisit two recent studies that made interesting suggestions concerning invalid retro-cues: One study suggested that costs only occur for larger set sizes, and another study suggested that inclusion of invalid retro-cues diminishes the retro-cue benefit. New data from one experiment and a reanalysis of published data are provided to address these conclusions. The new data clearly show costs (and benefits) that were independent of set size, and the reanalysis suggests no influence of the inclusion of invalid retro-cues on the retro-cue benefit. Thus, previous interpretations may be taken with some caution at present. PMID:27065894

  16. A pilot evaluation of two G-seat cueing schemes

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.

    1978-01-01

    A comparison was made of two contrasting G-seat cueing schemes. The G-seat, an aircraft simulation subsystem, creates aircraft acceleration cues via seat contour changes. Of the two cueing schemes tested, one was designed to create skin pressure cues and the other was designed to create body position cues. Each cueing scheme was tested and evaluated subjectively by five pilots regarding its ability to cue the appropriate accelerations in each of four simple maneuvers: a pullout, a pushover, an S-turn maneuver, and a thrusting maneuver. A divergence of pilot opinion occurred, revealing that the perception and acceptance of G-seat stimuli is a highly individualistic phenomena. The creation of one acceptable G-seat cueing scheme was, therefore, deemed to be quite difficult.

  17. Facebook Influence among Incoming College Freshmen: Sticky Cues and Alcohol.

    PubMed

    D'Angelo, Jonathan; Zhang, Chong; Eickhoff, Jens; Moreno, Megan

    2014-02-01

    Alcohol displays on Facebook are ever-present and can be socially desirable for college students. As problematic drinking is a concern for college students, this research sought to understand how different types of information on a Facebook page influence likelihood to drink. Telephone interviews were conducted with 338 incoming college freshmen from two large national universities. Data were obtained from a vignette prompt which presented a scenario in which a senior college student's Facebook profile displayed wall-posts, pictures, and status updates that were drinking-related or pro-social in nature. Participants were asked to report intention to drink alcohol with that student if together at a party. Findings supported the hypotheses: wall-posts were most influential (the stickiest), followed by pictures, followed by status updates. Findings provide additional empirical support for established online impression formation patterns, and additionally provide evidence that virtual cues are being ingrained as schema in interpersonal communication. These results are discussed in relation to the conception of "sticky cues" in impression formation. PMID:25328264

  18. Flexible cue use in food-caching birds.

    PubMed

    LaDage, Lara D; Roth, Timothy C; Fox, Rebecca A; Pravosudov, Vladimir V

    2009-05-01

    An animal's memory may be limited in capacity, which may result in competition among available memory cues. If such competition exists, natural selection may favor prioritization of different memory cues based on cue reliability and on associated differences in the environment and life history. Food-caching birds store numerous food items and appear to rely on memory to retrieve caches. Previous studies suggested that caching species should always prioritize spatial cues over non-spatial cues when both are available, because non-spatial cues may be unreliable in a changing environment; however, it remains unclear whether non-spatial cues should always be ignored when spatial cues are available. We tested whether mountain chickadees (Poecile gambeli), a food-caching species, prioritize memory for spatial cues over color cues when relocating previously found food in an associative learning task. In training trials, birds were exposed to food in a feeder where both spatial location and color were associated. During subsequent unrewarded test trials, color was dissociated from spatial location. Chickadees showed a significant pattern of inspecting feeders associated with correct color first, prior to visiting correct spatial locations. Our findings argue against the hypothesis that the memory of spatial cues should always take priority over any non-spatial cues, including color cues, in food-caching species, because in our experiment mountain chickadees chose color over spatial cues. Our results thus suggest that caching species may be more flexible in cue use than previously thought, possibly dependent upon the environment and complexity of available cues. PMID:19050946

  19. Sensory Neuronopathy and Autoimmune Diseases

    PubMed Central

    Martinez, Alberto R. M.; Nunes, Marcelo B.; Nucci, Anamarli; França, Marcondes C.

    2012-01-01

    Sensory neuronopathies (SNs) are a specific subgroup of peripheral nervous system diseases characterized by primary degeneration of dorsal root ganglia and their projections. Multifocal sensory symptoms often associated to ataxia are the classical features of SN. Several different etiologies have been described for SNs, but immune-mediated damage plays a key role in most cases. SN may herald the onset of some systemic autoimmune diseases, which further emphasizes how important the recognition of SN is in clinical practice. We have thus reviewed available clinical, neurophysiological, and therapeutic data on autoimmune disease-related SN, namely, in patients with Sjögren's syndrome, autoimmune hepatitis, and celiac disease. PMID:22312482

  20. Simple visual cues of event boundaries.

    PubMed

    Tauzin, Tibor

    2015-06-01

    A stream of sensory information is organized into discrete temporal units through event segmentation. On the basis of several studies measuring participants' explicit decisions about event boundaries, some theorists suggest that this segmentation is induced by increased unpredictability. Since this approach cannot describe the segmentation of unfamiliar events, we assumed that event segmentation might be perceptually driven. We hypothesized that when a new event-relevant object is represented, it triggers event segmentation. In addition to explicit decisions, we measured memory performance, since it has previously been found to be a strong indicator of event segmentation. We presented simple videos to the participants in which geometric objects were flashing consecutively while an unpredictable change occurred. In the New Object condition flashing objects were replaced, while in the Same Object condition one non-kind-relevant feature of the objects was changed. In Experiment 1 the participants' task was to press a button when they detected a meaningful change in the stimuli. In line with the predictability-based theories, we found that both changes triggered the detection of an event boundary. To contrast our hypothesis with the predictions of earlier theories, in Experiments 2 and 3 memory accuracy was measured using the stimuli of Experiment 1. We only found a significant change in memory accuracy in the New Object condition, which suggests that the appearance of an event-relevant object can induce segmentation on its own, and indicates that the explicit-decisions methodology might lead to the improper conclusion that event segmentation is solely based on predictability. PMID:25867112

  1. The Sensory Environment and Participation of Preschool Children With Autism Spectrum Disorder.

    PubMed

    Piller, Aimee; Pfeiffer, Beth

    2016-07-01

    Sensory processing is recognized as impacting participation for preschool children with autism spectrum disorder (ASD). Little research exists to examine the impact of the sensory environment on the participation patterns of children with ASD, specifically from a contextual standpoint. The researchers in this study examined the viewpoint of teachers and occupational therapists on the sensory-related environmental barriers to participation within the preschool context. Qualitative descriptive methodology was used for data collection and analysis. Thirteen preschool teachers and occupational therapists were interviewed. Sensory aspects of the environment both inhibited and enhanced participation. Physical and temporal components of the environment are identified as being the most influential. Modifications of the environment are identified as increasing participation. It is important to consider the sensory aspects of the environment, in addition to the sensory processing patterns of the person in assessment and intervention planning within the preschool environment. PMID:27618846

  2. Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue.

    PubMed

    Brignani, D; Guzzon, D; Marzi, C A; Miniussi, C

    2009-01-01

    Exogenous orienting has been widely studied by using peripheral cues whereas endogenous orienting has been studied with directional central cues. However, recent evidence has shown that centrally presented eye-gaze and arrows may produce an automatic rather than voluntary orienting of attention. Therefore, the aim of the present study was to investigate the behavioural and electrophysiological (event-related potentials-ERP) correlates of the attentional shift induced by arrows and eye-gaze. In order to have a control condition, we compared arrows and eye-gaze with a purely endogenous cue, i.e., a texture arbitrarily coding one direction. We analyzed the ERP components (P1, N1, P2a, P2p, P3) elicited by the cue stimuli and the early lateralised attentional effect (early directing attention negativity-EDAN). In addition, in order to investigate the topography of the neural mechanisms underlying the cortical activity in each cueing condition, we applied a temporal segmentation procedure. The results showed that the three cueing conditions induced a different strength of activation within the same cortical network. Occipito-parietal regions were involved in the early processing of visual information, followed by an involvement of frontal areas, likely implicated in learning associations. These data confirm the assumption that, in contrast to purely endogenous cues, arrows and eye-gaze induce a very fast attentional shift. However, the similarity of the ERP components and of the topographical cortical maps among conditions suggest that this early orienting of attention is more likely related to an overlearned association mechanism rather than to a real exogenous attentional process. PMID:18926835

  3. Augmented reality cues to assist older drivers with gap estimation for left-turns.

    PubMed

    Rusch, Michelle L; Schall, Mark C; Lee, John D; Dawson, Jeffrey D; Rizzo, Matthew

    2014-10-01

    The objective of this study was to assess the effects of augmented reality (AR) cues designed to assist middle-aged and older drivers with a range of UFOV impairments, judging when to make left-turns across oncoming traffic. Previous studies have shown that AR cues can help middle-aged and older drivers respond to potential roadside hazards by increasing hazard detection without interfering with other driving tasks. Intersections pose a critical challenge for cognitively impaired drivers, prone to misjudge time-to-contact with oncoming traffic. We investigated whether AR cues improve or interfere with hazard perception in left-turns across oncoming traffic for drivers with age-related cognitive decline. Sixty-four middle-aged and older drivers with a range of UFOV impairment judged when it would be safe to turn left across oncoming traffic approaching the driver from the opposite direction in a rural stop-sign controlled intersection scenario implemented in a static base driving simulator. Outcome measures used to evaluate the effectiveness of AR cueing included: Time-to-Contact (TTC), Gap Time Variation (GTV), Response Rate, and Gap Response Variation (GRV). All drivers estimated TTCs were shorter in cued than in uncued conditions. In addition, drivers responded more often in cued conditions than in uncued conditions and GRV decreased for all drivers in scenarios that contained AR cues. For both TTC and response rate, drivers also appeared to adjust their behavior to be consistent with the cues, especially drivers with the poorest UFOV scores (matching their behavior to be close to middle-aged drivers). Driver ratings indicated that cueing was not considered to be distracting. Further, various conditions of reliability (e.g., 15% miss rate) did not appear to affect performance or driver ratings. PMID:24950128

  4. AUGMENTED REALITY CUES TO ASSIST OLDER DRIVERS WITH GAP ESTIMATION FOR LEFT-TURNS

    PubMed Central

    Rusch, Michelle L.; Schall, Mark C.; Lee, John D.; Dawson, Jeffrey D.; Rizzo, Matthew

    2014-01-01

    The objective of this study was to assess the effects of augmented reality (AR) cues designed to assist middle-aged and older drivers with a range of UFOV impairments, judging when to make left-turns across oncoming traffic. Previous studies have shown that AR cues can help middle-aged and older drivers respond to potential roadside hazards by increasing hazard detection without interfering with other driving tasks. Intersections pose a critical challenge for cognitively impaired drivers, prone to misjudge time-to-contact with oncoming traffic. We investigated whether AR cues improve or interfere with hazard perception in left-turns across oncoming traffic for drivers with age-related cognitive decline. Sixty-four middle-aged and older drivers with a range of UFOV impairment judged when it would be safe to turn left across oncoming traffic approaching the driver from the opposite direction in a rural stop-sign controlled intersection scenario implemented in a static base driving simulator. Outcome measures used to evaluate the effectiveness of AR cueing included: Time-to-Contact (TTC), Gap Time Variation (GTV), Response Rate, and Gap Response Variation (GRV). All drivers estimated TTCs were shorter in cued than in uncued conditions. In addition, drivers responded more often in cued conditions than in uncued conditions and GRV decreased for all drivers in scenarios that contained AR cues. For both TTC and response rate, drivers also appeared to adjust their behavior to be consistent with the cues, especially drivers with the poorest UFOV scores (matching their behavior to be close to middle-aged drivers). Driver ratings indicated that cueing was not considered to be distracting. Further, various conditions of reliability (e.g., 15% miss rate) did not appear to affect performance or driver ratings. PMID:24950128

  5. Degradation of chemical alarm cues and assessment of risk throughout the day.

    PubMed

    Chivers, Douglas P; Dixson, Danielle L; White, James R; McCormick, Mark I; Ferrari, Maud C O

    2013-10-01

    The use of chemical information in assessment of predation risk is pervasive across animal taxa. However, by its very nature, chemical information can be temporally unreliable. Chemical cues persist for some period of time after they are released into the environment. Yet, we know surprisingly little about the rate of degradation of chemical cues under natural conditions and hence little about how they function in temporal risk assessment under natural conditions. Here, we conducted an experiment to identify a concentration of fresh alarm cues that evoke a strong antipredator response in coral reef damselfish, Pomacentrus ambonensis. We then tested the rate at which these alarm cues degraded under natural conditions in ocean water, paying attention to whether the rate of degradation varied throughout the day and whether the temporal pattern correlated with physicochemical factors that could influence the rate of degradation. Fresh alarm cues released into ocean water evoke strong avoidance responses in juvenile fish, while those aged for 30 min no longer evoke antipredator responses. Fish exposed to cues aged for 10 or 20 min show intermediate avoidance responses. We found a marked temporal pattern of response throughout the day, with much faster degradation in early to mid-afternoon, the time of day when solar radiation, temperature, dissolved oxygen, and pH are nearing their peak. Ecologists have spent considerable effort elucidating the role of chemical information in mediating predator-prey interactions, yet we know almost nothing about the temporal dynamics of risk assessment using chemical information. We are in dire need of additional comparative field experiments on the rate of breakdown of chemical cues, particularly given that global change in UV radiation, temperature, and water chemistry could be altering the rates of degradation and the potential use of this information in risk assessment. PMID:24198950

  6. Humidity sensation, cockroaches, worms, and humans: are common sensory mechanisms for hygrosensation shared across species?

    PubMed

    Filingeri, Davide

    2015-08-01

    Although the ability to detect humidity (i.e., hygrosensation) represents an important sensory attribute in many animal species (including humans), the neurophysiological and molecular bases of such sensory ability remain largely unknown in many animals. Recently, Russell and colleagues (Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT. Proc Natl Acad Sci USA 111: 8269-8274, 2014) provided for the first time neuromolecular evidence for the sensory integration of thermal and mechanical sensory cues which underpin the hygrosensation strategy of an animal (i.e., the free-living roundworm Caenorhabditis elegans) that lacks specific sensory organs for humidity detection (i.e., hygroreceptors). Due to the remarkable similarities in the hygrosensation transduction mechanisms used by hygroreceptor-provided (e.g., insects) and hygroreceptor-lacking species (e.g., roundworms and humans), the findings of Russell et al. highlight potentially universal mechanisms for humidity detection that could be shared across a wide range of species, including humans. PMID:25318766

  7. Humidity sensation, cockroaches, worms, and humans: are common sensory mechanisms for hygrosensation shared across species?

    PubMed Central

    2014-01-01

    Although the ability to detect humidity (i.e., hygrosensation) represents an important sensory attribute in many animal species (including humans), the neurophysiological and molecular bases of such sensory ability remain largely unknown in many animals. Recently, Russell and colleagues (Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT. Proc Natl Acad Sci USA 111: 8269–8274, 2014) provided for the first time neuromolecular evidence for the sensory integration of thermal and mechanical sensory cues which underpin the hygrosensation strategy of an animal (i.e., the free-living roundworm Caenorhabditis elegans) that lacks specific sensory organs for humidity detection (i.e., hygroreceptors). Due to the remarkable similarities in the hygrosensation transduction mechanisms used by hygroreceptor-provided (e.g., insects) and hygroreceptor-lacking species (e.g., roundworms and humans), the findings of Russell et al. highlight potentially universal mechanisms for humidity detection that could be shared across a wide range of species, including humans. PMID:25318766

  8. Attention Drives Synchronization of Alpha and Beta Rhythms between Right Inferior Frontal and Primary Sensory Neocortex

    PubMed Central

    Sacchet, Matthew D.; LaPlante, Roan A.; Wan, Qian; Pritchett, Dominique L.; Lee, Adrian K.C.; Hämäläinen, Matti; Moore, Christopher I.; Kerr, Catherine E.

    2015-01-01

    The right inferior frontal cortex (rIFC) is specifically associated with attentional control via the inhibition of behaviorally irrelevant stimuli and motor responses. Similarly, recent evidence has shown that alpha (7–14 Hz) and beta (15–29 Hz) oscillations in primary sensory neocortical areas are enhanced in the representation of non-attended stimuli, leading to the hypothesis that allocation of these rhythms plays an active role in optimal inattention. Here, we tested the hypothesis that selective synchronization between rIFC and primary sensory neocortex occurs in these frequency bands during inattention. We used magnetoencephalography to investigate phase synchrony between primary somatosensory (SI) and rIFC regions during a cued-attention tactile detection task that required suppression of response to uncertain distractor stimuli. Attentional modulation of synchrony between SI and rIFC was found in both the alpha and beta frequency bands. This synchrony manifested as an increase in the alpha-band early after cue between non-attended SI representations and rIFC, and as a subsequent increase in beta-band synchrony closer to stimulus processing. Differences in phase synchrony were not found in several proximal control regions. These results are the first to reveal distinct interactions between primary sensory cortex and rIFC in humans and suggest that synchrony between rIFC and primary sensory representations plays a role in the inhibition of irrelevant sensory stimuli and motor responses. PMID:25653364

  9. Perceived Causalities of Physical Events Are Influenced by Social Cues

    ERIC Educational Resources Information Center

    Zhou, Jifan; Huang, Xiang; Jin, Xinyi; Liang, Junying; Shui, Rende; Shen, Mowei

    2012-01-01

    In simple mechanical events, we can directly perceive causal interactions of the physical objects. Physical cues (especially spatiotemporal features of the display) are found to associate with causal perception. Here, we demonstrate that cues of a completely different domain--"social cues"--also impact the causal perception of "physical" events:…

  10. The Effects of Overt and Covert Cues on Written Syntax.

    ERIC Educational Resources Information Center

    Combs, Warren E.; Smith, William L.

    1980-01-01

    Experiments conducted with freshman composition students suggested that (1) the repeated use of a control stimulus passage does not result in increased syntactic complexity; (2) both overt and covert cues elicit more complex writing than do no-cue situations; and (3) the effect of overt cues seems to be retained, at least across a short duration.…

  11. Mental Effort in Binary Categorization Aided by Binary Cues

    ERIC Educational Resources Information Center

    Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael

    2013-01-01

    Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…

  12. Cueing Complex Animations: Does Direction of Attention Foster Learning Processes?

    ERIC Educational Resources Information Center

    Lowe, Richard; Boucheix, Jean-Michel

    2011-01-01

    The time course of learners' processing of a complex animation was studied using a dynamic diagram of a piano mechanism. Over successive repetitions of the material, two forms of cueing (standard colour cueing and anti-cueing) were administered either before or during the animated segment of the presentation. An uncued group and two other control…

  13. Perceptual and Conceptual Priming of Cue Encoding in Task Switching

    ERIC Educational Resources Information Center

    Schneider, Darryl W.

    2016-01-01

    Transition effects in task-cuing experiments can be partitioned into task switching and cue repetition effects by using multiple cues per task. In the present study, the author shows that cue repetition effects can be partitioned into perceptual and conceptual priming effects. In 2 experiments, letters or numbers in their uppercase/lowercase or…

  14. Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding.

    PubMed

    Endres, Courtney S; Putman, Nathan F; Ernst, David A; Kurth, Jessica A; Lohmann, Catherine M F; Lohmann, Kenneth J

    2016-01-01

    Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands. PMID:26941625

  15. Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding

    PubMed Central

    Endres, Courtney S.; Putman, Nathan F.; Ernst, David A.; Kurth, Jessica A.; Lohmann, Catherine M. F.; Lohmann, Kenneth J.

    2016-01-01

    Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles’ foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands. PMID:26941625

  16. Sex-specific processing of social cues in the medial amygdala

    PubMed Central

    Bergan, Joseph F; Ben-Shaul, Yoram; Dulac, Catherine

    2014-01-01

    Animal–animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli. DOI: http://dx.doi.org/10.7554/eLife.02743.001 PMID:24894465

  17. Sex-specific processing of social cues in the medial amygdala.

    PubMed

    Bergan, Joseph F; Ben-Shaul, Yoram; Dulac, Catherine

    2014-01-01

    Animal-animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli.DOI: http://dx.doi.org/10.7554/eLife.02743.001. PMID:24894465

  18. Predator cues magnify effects of the pesticide endosulfan in water bugs in a multi-species test in outdoor containers.

    PubMed

    Trekels, Hendrik; Van de Meutter, Frank; Stoks, Robby

    2013-08-15

    Pesticides have become major stressors in many aquatic communities. Laboratory studies suggest their impact may be further magnified in the presence of cues from predators. Despite their importance for ecological risk assessment, synergisms between pesticides and predator cues have not been confirmed under semi-natural outdoor conditions. We evaluated how the presence of predator cues and the presence of a non-corixid community affect the pesticide sensitivity of five water bug (Corixidae) species in an outdoor, multi-species container experiment. The experiment employed a full factorial design with two pesticide treatments, two predator cue treatments and two (non-corixid) community treatments (absence versus presence of Cloeon dipterum mayfly larvae, Ischnura elegans damselfly larvae and Physa acuta snails). The pesticide treatment negatively affected survival in Cymatia coleoptrata, and to a lesser extent, Sigara lateralis, but not in the other three Corixidae species (Hesperocorixa linnaei, Sigara iactans and Sigara striata). The addition of pesticides did not significantly affect body mass in the latter four species, unless combined with predator cues. To our knowledge this is the first report of this synergism under semi-natural, outdoor conditions. Neither lethal nor sublethal pesticide effects in the Corixidae depended on the community context, yet the presence of the non-corixid community when combined with predator cues reduced survival and body mass. Our results suggest that the here documented synergism between pesticides and predator cues may occur in nature. PMID:23728356

  19. Greater Corticolimbic Activation to High-Calorie Food Cues after Eating in Obese vs. Normal-Weight Adults

    PubMed Central

    Dimitropoulos, Anastasia; Tkach, Jean; Ho, Alan; Kennedy, James

    2011-01-01

    The goal of this research is to identify the neural response to rewarding food cues before and after eating in overweight/obese (OB) and normal-weight (NW) adults. Based on the previous literature, we expected greater differential activation to food cues vs. objects for OB compared to NW participants both prior to eating and after consumption of a typical lunch. Twenty-two overweight/obese (11 male) and 16 normal-weight (6 male) individuals participated in a functional magnetic resonance imaging task examining neural response to visual cues of high- and low-calorie foods before and after eating. The OB group demonstrated increased neural response to high- and low-calorie foods after eating in comparison to the NW participants in frontal, temporal, and limbic regions. In addition, greater activation in corticolimbic regions (lateral OFC, caudate, anterior cingulate) to high-calorie food cues was evident in OB vs. NW participants after eating. These findings suggest that for OB individuals, high-calorie food cues show sustained response in brain regions implicated in reward and addiction even after eating. Moreover, food cues did not elicit similar brain response after eating in the NW group suggesting that neural activity in response to food cues diminishes with reduced hunger for these individuals. PMID:22063094

  20. Novel cues reinstate cocaine-seeking behavior and induce Fos protein expression as effectively as conditioned cues.

    PubMed

    Bastle, Ryan M; Kufahl, Peter R; Turk, Mari N; Weber, Suzanne M; Pentkowski, Nathan S; Thiel, Kenneth J; Neisewander, Janet L

    2012-08-01

    Cue reinstatement of extinguished cocaine-seeking behavior is a widely used model of cue-elicited craving in abstinent human addicts. This study examined Fos protein expression in response to cocaine cues or to novel cues as a control for activation produced by test novelty. Rats were trained to self-administer cocaine paired with either a light or a tone cue, or received yoked saline and cue presentations, and then underwent daily extinction training. They were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either the cocaine-paired cue or a novel cue (that is, tone for those trained with a light or vice versa). Surprisingly, conditioned and novel cues both reinstated responding and increased Fos similarly in most brain regions. Exceptions included the anterior cingulate, which was sensitive to test cue modality in saline controls and the dorsomedial caudate-putamen, where Fos was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel, and not a familiar, light or tone. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a reinforcement history with cocaine or sucrose, and that both types of cues activate similar brain circuits. Several explanations as to why converging processes may drive drug and novel cue reinforcement and seeking behavior are discussed. PMID:22534624

  1. Novel Cues Reinstate Cocaine-Seeking Behavior and Induce Fos Protein Expression as Effectively as Conditioned Cues

    PubMed Central

    Bastle, Ryan M; Kufahl, Peter R; Turk, Mari N; Weber, Suzanne M; Pentkowski, Nathan S; Thiel, Kenneth J; Neisewander, Janet L

    2012-01-01

    Cue reinstatement of extinguished cocaine-seeking behavior is a widely used model of cue-elicited craving in abstinent human addicts. This study examined Fos protein expression in response to cocaine cues or to novel cues as a control for activation produced by test novelty. Rats were trained to self-administer cocaine paired with either a light or a tone cue, or received yoked saline and cue presentations, and then underwent daily extinction training. They were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either the cocaine-paired cue or a novel cue (that is, tone for those trained with a light or vice versa). Surprisingly, conditioned and novel cues both reinstated responding and increased Fos similarly in most brain regions. Exceptions included the anterior cingulate, which was sensitive to test cue modality in saline controls and the dorsomedial caudate-putamen, where Fos was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel, and not a familiar, light or tone. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a reinforcement history with cocaine or sucrose, and that both types of cues activate similar brain circuits. Several explanations as to why converging processes may drive drug and novel cue reinforcement and seeking behavior are discussed. PMID:22534624

  2. Sensory Integration Regulating Male Courtship Behavior in Drosophila

    PubMed Central

    Krstic, Dimitrije; Boll, Werner; Noll, Markus

    2009-01-01

    The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i) between initiation and maintenance of courtship, (ii) between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii) between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior. PMID:19214231

  3. Drivers of cultural success: The case of sensory metaphors.

    PubMed

    Akpinar, Ezgi; Berger, Jonah

    2015-07-01

    Why do some cultural items catch on and become more popular than others? Language is one of the basic foundations of culture. But what leads some phrases to become more culturally successful? There are multiple ways to convey the same thing and phrases with similar meanings often act as substitutes, competing for usage. A not so friendly person, for example, can be described as unfriendly or cold. We study how the senses shape cultural success, suggesting that compared with their semantic equivalents (e.g., unfriendly person), phrases which relate to senses in metaphoric ways (e.g., cold person) should be more culturally successful. Data from 5 million books over 200 years support this prediction: Sensory metaphors are used more frequently over time than are their semantic equivalents. Experimental evidence demonstrates that sensory metaphors are more memorable because they relate more to the senses and have more associative cues. These findings shed light on how senses shape language and the psychological foundations of culture more broadly. PMID:26030055

  4. Exploring Natural Pedagogy in Play with Preschoolers: Cues Parents Use and Relations among Them

    ERIC Educational Resources Information Center

    Sage, Kara; Baldwin, Dare

    2012-01-01

    Recent developmental work demonstrates a range of effects of pedagogical cues on childhood learning. The present work investigates natural pedagogy in informal parent-child play. Preschool-aged children participated in free play and a toy task with a parent in addition to a toy task with an experimenter. Sessions were extensively coded for use of…

  5. The Failure of Deactivating Intentions: Aftereffects of Completed Intentions in the Repeated Prospective Memory Cue Paradigm

    ERIC Educational Resources Information Center

    Walser, Moritz; Fischer, Rico; Goschke, Thomas

    2012-01-01

    We used a newly developed experimental paradigm to investigate aftereffects of completed intentions on subsequent performance that required the maintenance and execution of new intentions. Participants performed an ongoing number categorization task and an additional prospective memory (PM) task, which required them to respond to PM cues that…

  6. The Elaboration Likelihood Model and Proxemic Violations as Peripheral Cues to Information Processing.

    ERIC Educational Resources Information Center

    Eaves, Michael

    This paper provides a literature review of the elaboration likelihood model (ELM) as applied in persuasion. Specifically, the paper addresses distraction with regard to effects on persuasion. In addition, the application of proxemic violations as peripheral cues in message processing is discussed. Finally, the paper proposes to shed new light on…

  7. Sensory Aids for the Blind.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Prosthetics Research and Development.

    The problems of providing sensory aids for the blind are presented and a report on the present status of aids discusses direct translation and recognition reading machines as well as mobility aids. Aspects of required research considered are the following: assessment of needs; vision, audition, taction, and multimodal communication; reading aids,…

  8. Making Sense of Sensory Systems

    ERIC Educational Resources Information Center

    Hendrix, Marie

    2010-01-01

    The role of caregivers requires that they continuously assess the needs and performance of children and provide the support necessary for them to achieve their potential. A thorough understanding of child development, including the role and impact of sensory development, is critical for caregivers to properly evaluate and assist these children.…

  9. The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana

    PubMed Central

    Costanzo, Katie; Monteiro, Antónia

    2007-01-01

    Investigating the relative importance of multiple cues for mate choice within a species may highlight possible mechanisms that led to the diversification of closely related species in the past. Here, we investigate the importance of close-range pheromones produced by male Bicyclus anynana butterflies and determine the relative importance of these chemical cues versus visual cues in sexual selection by female choice. We first blocked putative androconial organs on the fore- and hindwings of males, while also manipulating the ability of females to perceive chemical signals via their antenna. We found that male chemical signals were emitted by both fore- and hindwing pairs and that they play an important role in female choice. We subsequently tested the relative importance of these chemical cues versus visual cues, previously identified for this species, and found that they play an equally important role in female choice in our laboratory setting. In addition, females will mate with males with only one signal present and blocking both androconial organs on males seems to interfere with male to male recognition. We discuss the possible functions of these signals and how this bimodal system may be used in intra- and interspecific mate evaluation. PMID:17251116

  10. The shaping of social perception by stimulus and knowledge cues to human animacy

    PubMed Central

    Ramsey, Richard; Liepelt, Roman; Prinz, Wolfgang; Hamilton, Antonia F. de C.

    2016-01-01

    Although robots are becoming an ever-growing presence in society, we do not hold the same expectations for robots as we do for humans, nor do we treat them the same. As such, the ability to recognize cues to human animacy is fundamental for guiding social interactions. We review literature that demonstrates cortical networks associated with person perception, action observation and mentalizing are sensitive to human animacy information. In addition, we show that most prior research has explored stimulus properties of artificial agents (humanness of appearance or motion), with less investigation into knowledge cues (whether an agent is believed to have human or artificial origins). Therefore, currently little is known about the relationship between stimulus and knowledge cues to human animacy in terms of cognitive and brain mechanisms. Using fMRI, an elaborate belief manipulation, and human and robot avatars, we found that knowledge cues to human animacy modulate engagement of person perception and mentalizing networks, while stimulus cues to human animacy had less impact on social brain networks. These findings demonstrate that self–other similarities are not only grounded in physical features but are also shaped by prior knowledge. More broadly, as artificial agents fulfil increasingly social roles, a challenge for roboticists will be to manage the impact of pre-conceived beliefs while optimizing human-like design. PMID:26644594

  11. The shaping of social perception by stimulus and knowledge cues to human animacy.

    PubMed

    Cross, Emily S; Ramsey, Richard; Liepelt, Roman; Prinz, Wolfgang; de C Hamilton, Antonia F

    2016-01-19

    Although robots are becoming an ever-growing presence in society, we do not hold the same expectations for robots as we do for humans, nor do we treat them the same. As such, the ability to recognize cues to human animacy is fundamental for guiding social interactions. We review literature that demonstrates cortical networks associated with person perception, action observation and mentalizing are sensitive to human animacy information. In addition, we show that most prior research has explored stimulus properties of artificial agents (humanness of appearance or motion), with less investigation into knowledge cues (whether an agent is believed to have human or artificial origins). Therefore, currently little is known about the relationship between stimulus and knowledge cues to human animacy in terms of cognitive and brain mechanisms. Using fMRI, an elaborate belief manipulation, and human and robot avatars, we found that knowledge cues to human animacy modulate engagement of person perception and mentalizing networks, while stimulus cues to human animacy had less impact on social brain networks. These findings demonstrate that self-other similarities are not only grounded in physical features but are also shaped by prior knowledge. More broadly, as artificial agents fulfil increasingly social roles, a challenge for roboticists will be to manage the impact of pre-conceived beliefs while optimizing human-like design. PMID:26644594

  12. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  13. BOLD data representing activation and connectivity for rare no-go versus frequent go cues.

    PubMed

    Meffert, Harma; Hwang, Soonjo; Nolan, Zachary T; Chen, Gang; Blair, James R

    2016-06-01

    The neural circuitry underlying response control is often studied using go/no-go tasks, in which participants are required to respond as fast as possible to go cues and withhold from responding to no-go stimuli. In the current task, response control was studied using a fully counterbalanced design in which blocks with a low frequency of no-go cues (75% go, 25% no-go) were alternated with blocks with a low frequency of go cues (25% go, 75% no-go); see also "Segregating attention from response control when performing a motor inhibition task: Segregating attention from response control" [1]. We applied a whole brain corrected, paired t-test to the data assessing for regions differentially activated by low frequency no-go cues relative to high frequency go cues. In addition, we conducted a generalized psychophysiological interaction analysis on the data using a right inferior frontal gyrus seed region. This region was identified through the BOLD response t-test and was chosen because right inferior gyrus is highly implicated in response inhibition. PMID:26955650

  14. The antagonism of ghrelin alters the appetitive response to learned cues associated with food.

    PubMed

    Dailey, Megan J; Moran, Timothy H; Holland, Peter C; Johnson, Alexander W

    2016-04-15

    The rapid increase in obesity may be partly mediated by an increase in the exposure to cues for food. Food-paired cues play a role in food procurement and intake under conditions of satiety. The mechanism by which this occurs requires characterization, but may involve ghrelin. This orexigenic peptide alters the response to food-paired conditioned stimuli, and neural responses to food images in reward nuclei. Therefore, we tested whether a ghrelin receptor antagonist alters the influence of food-paired cues on the performance of instrumental responses that earn food and the consumption of food itself using tests of Pavlovian-to-instrumental transfer (PIT) and cue potentiated feeding (CPF), respectively. Food-deprived rats received Pavlovian conditioning where an auditory cue was paired with delivery of sucrose solution followed by instrumental conditioning to lever press for sucrose. Following training, rats were given ad libitum access to chow. On test day, rats were injected with the ghrelin receptor antagonist GHRP-6 [D-Lys3] and then tested for PIT or CPF. Disrupting ghrelin signaling enhanced expression of PIT. In addition, GHRP-6 [D-Lys3] impaired the initiation of feeding behavior in CPF without influencing overall intake of sucrose. Finally, in PIT tested rats, enhanced FOS immunoreactivity was revealed following the antagonist in regions thought to underlie PIT; however, the antagonist had no effect on FOS immunoreactivity in CPF tested rats. PMID:26802728

  15. Weighted Hashing with Multiple Cues for Cell-Level Analysis of Histopathological Images.

    PubMed

    Zhang, Xiaofan; Su, Hai; Yang, Lin; Zhang, Shaoting

    2015-01-01

    Recently, content-based image retrieval has been investigated for histopathological image analysis, focusing on improving the accuracy and scalability. The main motivation is to interpret a new image (i.e., query image) by searching among a potentially large-scale database of training images in real-time. Hashing methods have been employed because of their promising performance. However, most previous works apply hashing algorithms on the whole images, while the important information of histopathological images usually lies in individual cells. In addition, they usually only hash one type of features, even though it is often necessary to inspect multiple cues of cells. Therefore, we propose a probabilistic-based hashing framework to model multiple cues of cells for accurate analysis of histopathological images. Specifically, each cue of a cell is compressed as binary codes by kernelized and supervised hashing, and the importance of each hash entry is determined adaptively according to its discriminativity, which can be represented as probability scores. Given these scores, we also propose several feature fusion and selection schemes to integrate their strengths. The classification of the whole image is conducted by aggregating the results from multiple cues of all cells. We apply our algorithm on differentiating adenocarcinoma and squamous carcinoma, i.e., two types of lung cancers, using a large dataset containing thousands of lung microscopic tissue images. It achieves 90.3% accuracy by hashing and retrieving multiple cues of half-million cells. PMID:26221682

  16. Are We Modular Lying Cues Detectors? The Answer Is "Yes, Sometimes".

    PubMed

    Arminjon, Mathieu; Chamseddine, Amer; Kopta, Vladimir; Paunović, Aleksandar; Mohr, Christine

    2015-01-01

    We quickly form first impressions about newly encountered people guiding our subsequent behaviour (approach, avoidance). Such instant judgments might be innate and automatic, being performed unconsciously and independently to other cognitive processes. Lying detection might be subject to such a modular process. Unfortunately, numerous studies highlighted problems with lying detection paradigms such as high error rates and learning effects. Additionally, humans should be motivated doing both detecting others' lies and disguising own lies. Disguising own lies might even be more challenging than detecting other people's lies. Thus, when trying to disguise cheating behaviour, liars might display a mixture of disguising (fake) trust cues and uncontrolled lying cues making the interpretation of the expression difficult (perceivers are guessing). In two consecutive online studies, we tested whether seeing an increasing amount (range 0-4) of lying cues (LC) and non-lying cues (NLC) on a standard face results in enhanced guessing behaviour (studies 1 and 2) and that enhanced guessing is accompanied by slower responding (study 2). Results showed that pronounced guessing and slowest responding occurred for faces with an intermediate number and not with the highest number of LC and NLC. In particular, LC were more important than NLC to uncertain lying decisions. Thus, only a few LC may interfere with automatic processing of lying detection (irrespective of NLC), probably because too little lying cue information is yet available. PMID:26349057

  17. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    PubMed

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. PMID:27389345

  18. Electrophysiological mechanisms of biased response to smoking-related cues in young smokers.

    PubMed

    Cheng, Jiadong; Guan, Yanyan; Zhang, Yajuan; Bi, Yanzhi; Bu, Limei; Li, Yangding; Shi, Sha; Liu, Peng; Lu, Xiaoqi; Yu, Dahua; Yuan, Kai

    2016-08-26

    Cigarette smoking during young adult may result in serious health issues in later life. Hence, it is extremely necessary to study the smoking neurophysiological mechanisms in this critical transitional period. However, few studies revealed the electrophysiological mechanisms of cognitive processing biases in young adult smokers. In present study, nineteen young smokers with 12h abstinent and 19 matched nonsmokers were recruited. By employing event-related potentials (ERP) measurements during a smoking cue induced craving task, electrophysiological brain responses were compared between the young adult smokers and nonsmokers. The Slow Positive Wave (SPW) amplitude of smoking-related cues was enhanced in young adult smokers compared with nonsmokers. In addition, increased P300/SPW component of smoking-related cues relative to neutral cues were found in young adult smokers. Meanwhile, a positive correlation between Cigarette Per Day (CPD) and the amplitude of ERPs wave (P300/SPW) at anterior (Fz), central (Cz) were observed in young adult smokers. Our findings provided direct electrophysiological evidence for the cognitive processing bias of smoking cue and may shed new insights into the smoking behavior in young adult smokers. PMID:27373532

  19. Introspective responses to cues and motivation to reduce cigarette smoking influence state and behavioral responses to cue exposure.

    PubMed

    Veilleux, Jennifer C; Skinner, Kayla D

    2016-09-01

    In the current study, we aimed to extend smoking cue-reactivity research by evaluating delay discounting as an outcome of cigarette cue exposure. We also separated introspection in response to cues (e.g., self-reporting craving and affect) from cue exposure alone, to determine if introspection changes behavioral responses to cigarette cues. Finally, we included measures of quit motivation and resistance to smoking to assess motivational influences on cue exposure. Smokers were invited to participate in an online cue-reactivity study. Participants were randomly assigned to view smoking images or neutral images, and were randomized to respond to cues with either craving and affect questions (e.g., introspection) or filler questions. Following cue exposure, participants completed a delay discounting task and then reported state affect, craving, and resistance to smoking, as well as an assessment of quit motivation. We found that after controlling for trait impulsivity, participants who introspected on craving and affect showed higher delay discounting, irrespective of cue type, but we found no effect of response condition on subsequent craving (e.g., craving reactivity). We also found that motivation to quit interacted with experimental conditions to predict state craving and state resistance to smoking. Although asking about craving during cue exposure did not increase later craving, it resulted in greater delaying of discounted rewards. Overall, our findings suggest the need to further assess the implications of introspection and motivation on behavioral outcomes of cue exposure. PMID:27115733

  20. Spatial and Identity Cues Differentially Affect Implicit Contextual Cueing in Adolescents and Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Travers, Brittany G.; Powell, Patrick S.; Mussey, Joanna L.; Klinger, Laura G.; Crisler, Megan E.; Klinger, Mark R.

    2013-01-01

    The present studies examined implicit contextual cueing in adolescents and adults with Autism Spectrum Disorder (ASD). In Study 1, 16 individuals with ASD and 20 matched individuals with typical development completed a contextual cueing task using stimulus-identity cues. In Study 2, 12 individuals with ASD and 16 individuals with typical…

  1. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea

    PubMed Central

    Pollonara, Enrica; Luschi, Paolo; Guilford, Tim; Wikelski, Martin; Bonadonna, Francesco; Gagliardo, Anna

    2015-01-01

    Pelagic seabirds wander the open oceans then return accurately to their habitual nest-sites. We investigated the effects of sensory manipulation on oceanic navigation in Scopoli’s shearwaters (Calonectris diomedea) breeding at Pianosa island (Italy), by displacing them 400 km from their colony and tracking them. A recent experiment on Atlantic shearwaters (Cory’s shearwater, Calonectris borealis) breeding in the Azores indicated a crucial role of olfaction over the open ocean, but left open the question of whether birds might navigate by topographical landmark cues when available. Our experiment was conducted in the Mediterranean sea, where the availability of topographical cues may provide an alternative navigational mechanism for homing. Magnetically disturbed shearwaters and control birds oriented homeward even when the coast was not visible and rapidly homed. Anosmic shearwaters oriented in a direction significantly different from the home direction when in open sea. After having approached a coastline their flight path changed from convoluted to homeward oriented, so that most of them eventually reached home. Beside confirming that magnetic cues appear unimportant for oceanic navigation by seabirds, our results support the crucial role of olfactory cues for birds’ navigation and reveal that anosmic shearwaters are able to home eventually by following coastal features. PMID:26548946

  2. The Semantic Representation of Event Information Depends on the Cue Modality: An Instance of Meaning-Based Retrieval

    PubMed Central

    Karlsson, Kristina; Sikström, Sverker; Willander, Johan

    2013-01-01

    The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues. PMID:24204561

  3. Activation of Six1 Expression in Vertebrate Sensory Neurons

    PubMed Central

    Sato, Shigeru; Yajima, Hiroshi; Furuta, Yasuhide; Ikeda, Keiko; Kawakami, Kiyoshi

    2015-01-01

    SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development. PMID:26313368

  4. Activation of Six1 Expression in Vertebrate Sensory Neurons.

    PubMed

    Sato, Shigeru; Yajima, Hiroshi; Furuta, Yasuhide; Ikeda, Keiko; Kawakami, Kiyoshi

    2015-01-01

    SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development. PMID:26313368

  5. Effects of motion base and g-seat cueing of simulator pilot performance

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.; Mckissick, B. T.; Parrish, R. V.

    1984-01-01

    In order to measure and analyze the effects of a motion plus g-seat cueing system, a manned-flight-simulation experiment was conducted utilizing a pursuit tracking task and an F-16 simulation model in the NASA Langley visual/motion simulator. This experiment provided the information necessary to determine whether motion and g-seat cues have an additive effect on the performance of this task. With respect to the lateral tracking error and roll-control stick force, the answer is affirmative. It is shown that presenting the two cues simultaneously caused significant reductions in lateral tracking error and that using the g-seat and motion base separately provided essentially equal reductions in the pilot's lateral tracking error.

  6. Completeness and accuracy of morning reports after a recall cue: comparison of dream and film reports.

    PubMed

    Montangero, Jacques; Ivanyi, Corinne Tihon; de Saint-Hilaire, Zara

    2003-03-01

    Our goal was to test the efficiency and accuracy of a complementary morning report, after recall cue, of an experience (having a dream or viewing a film) made and first described during the night. Twenty participants were awakened 10 min after the onset of the second REM sleep. Upon awakening, on one night they described the dream they just had and on the other night they were presented a 4-min video, then had to describe it. A new description requested in the morning after a recall cue yielded an important amount of new information both for the film and the dreams, and for the film, where the accuracy could be checked, 86% of this new information was accurate. Some aspects of the results pointed to an effect of hypermnesia. In conclusion, the morning additional information after recall cue stems from a good access to the memory of the night experience. PMID:12617862

  7. Evaluation of a linear washout for simulator motion cue presentation during landing approach

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Martin, D. J., Jr.

    1975-01-01

    The comparison of a fixed-base versus a five-degree-of-freedom motion base simulation of a 737 conventional take-off and landing (CTOL) aircraft performing instrument landing system (ILS) landing approaches was used to evaluate a linear motion washout technique. The fact that the pilots felt that the addition of motion increased the pilot workload and this increase was not reflected in the objective data results, indicates that motion cues, as presented, are not a contributing factor to root-mean-square (rms) performance during the landing approach task. Subjective results from standard maneuvering about straight-and-level flight for specific motion cue evaluation revealed that the longitudinal channels (pitch and surge) possibly the yaw channel produce acceptable motions. The roll cue representation, involving both roll and sway channels, was found to be inadequate for large roll inputs, as used for example, in turn entries.

  8. A review on intelligent sensory modelling

    NASA Astrophysics Data System (ADS)

    Tham, H. J.; Tang, S. Y.; Teo, K. T. K.; Loh, S. P.

    2016-06-01

    Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. Classically, factorial multivariate methods such as Principle Component Analysis (PCA), Partial Least Square (PLS) method, Multiple Regression (MLR) method and Response Surface Method (RSM) are the common tools used to analyse sensory data. These methods can model some of the sensory data but may not be robust enough to analyse nonlinear data. In these situations, intelligent modelling techniques such as Fuzzy Logic and Artificial neural network (ANNs) emerged to solve the vagueness and uncertainty of sensory data. This paper outlines literature of intelligent sensory modelling on sensory data analysis.

  9. Cue-Responding Behaviors During Pharmacy Counseling Sessions With Patients With Asthma About Inhaled Corticosteroids: Potential Relations With Medication Beliefs and Self-Reported Adherence.

    PubMed

    Driesenaar, Jeanine A; De Smet, Peter A G M; van Hulten, Rolf; Noordman, Janneke; van Dulmen, Sandra

    2016-10-01

    The aim of this study was to examine cue-responding behavior at the pharmacy while counseling about inhaled corticosteroids (ICS) in relation to medication adherence and medication beliefs. Patients with asthma aged ≥18 years using ICS were recruited from 12 pharmacies. Counseling sessions were video-recorded. Patients' emotional and informational cues and pharmacists' and pharmacy technicians' cue-responding behaviors were coded using an expanded version of the Medical Interview Aural Rating Scale. The Beliefs about Medicines Questionnaire assessed patients' ICS concern and necessity beliefs. Self-reported ICS adherence was measured by four questions. During the 86 sessions, patients expressed on average 2.3, mostly informational, cues (70.8%). In 26.7% of the sessions, no cues were expressed. Pharmacists' and technicians' responses to emotional cues (59.3%) were mostly inadequate, and to informational cues mostly appropriate (63.6%). Providing inappropriate information (20.3%) was related to higher concerns post session (p < .05), and cue exploration to higher self-reported adherence at 3 months (p < .05). Apparently, providers' responses to patients' cues might have therapeutic value. In addition, patients might need to be encouraged to ask questions and express their concerns. PMID:26940701

  10. Sensory exploitation and sexual conflict

    PubMed Central

    Arnqvist, Göran

    2006-01-01

    Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism. PMID:16612895

  11. Oceanic navigation in Cory's shearwaters: evidence for a crucial role of olfactory cues for homing after displacement.

    PubMed

    Gagliardo, Anna; Bried, Joël; Lambardi, Paolo; Luschi, Paolo; Wikelski, Martin; Bonadonna, Francesco

    2013-08-01

    Pelagic birds, which wander in the open sea most of the year and often nest on small remote oceanic islands, are able to pinpoint their breeding colony even within an apparently featureless environment, such as the open ocean. The mechanisms underlying their surprising navigational performance are still unknown. In order to investigate the nature of the cues exploited for oceanic navigation, Cory's shearwaters, Calonectris borealis, nesting in the Azores were displaced and released in open ocean at about 800 km from their colony, after being subjected to sensory manipulation. While magnetically disturbed shearwaters showed unaltered navigational performance and behaved similarly to unmanipulated control birds, the shearwaters deprived of their sense of smell were dramatically impaired in orientation and homing. Our data show that seabirds use olfactory cues not only to find their food but also to navigate over vast distances in the ocean. PMID:23842626

  12. Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images.

    PubMed

    Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A

    2013-06-01

    This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces. PMID:23250787

  13. Sensory characterization of bowel cleansing solutions

    PubMed Central

    Sharara, Ala I; Daroub, Hamza; Georges, Camille; Shayto, Rani; Nader, Ralph; Chalhoub, Jean; Olabi, Ammar

    2016-01-01

    AIM To evaluate the sensory characteristics of commercial bowel cleansing preparations. METHODS Samples of 4 commercially available bowel cleansing preparations, namely polyethylene glycol electrolyte solution (PEG), PEG + ascorbic acid (PEG-Asc), sodium picosulfate (SPS), and oral sodium sulfate (OSS) were prepared according to the manufacturer’s instructions. Descriptive analysis was conducted (n = 14) using a 15-cm line scale with the Compusense at-hand® sensory evaluation software. Acceptability testing (n = 80) was conducted using the 9-point hedonic scale. In addition, a Just-About-Right (JAR) scale was included for the four basic tastes to determine their intensity compatibility with acceptability levels in the products. RESULTS Samples were significantly different, in descriptive analysis, for all attributes (P < 0.05) except for sweetness. SPS received the highest ratings for turbidity, viscosity appearance, orange odor and orange flavor; PEG-Asc for citrus odor and citrus flavor; OSS for sweetener taste, sweet aftertaste, bitterness, astringency, mouthcoating, bitter aftertaste and throatburn, and along with PEG-Asc, the highest ratings for saltiness, sourness and adhesiveness. Acceptability results showed significant differences between the various samples (P < 0.05). SPS received significantly higher ratings for overall acceptability, acceptability of taste, odor and mouthfeel (P < 0.05). JAR ratings showed that PEG and PEG-Asc were perceived as slightly too salty; SPS and OSS were slightly too sweet, while SPS, PEG-Asc and OSS were slightly too sour and OSS slightly too bitter. While using small sample volumes was necessary to avoid unwanted purgative effects, acceptability ratings do not reflect the true effect of large volumes intake thus limiting the generalization of the results. CONCLUSION Further improvements are needed to enhance the sensory profile and to optimize the acceptability for better compliance with these bowel cleansing solutions

  14. Social traits modulate attention to affiliative cues

    PubMed Central

    Moore, Sarah R.; Fu, Yu; Depue, Richard A.

    2014-01-01

    Neurobehavioral models of personality suggest that the salience assigned to particular classes of stimuli vary as a function of traits that reflect both the activity of neurobiological encoding and relevant social experience. In turn, this joint influence modulates the extent that salience influences attentional processes, and hence learning about and responding to those stimuli. Applying this model to the domain of social valuation, we assessed the differential effects on attentional guidance by affiliative cues of (i) a higher-order temperament trait (Social Closeness), and (ii) attachment style in a sample of 57 women. Attention to affiliative pictures paired with either incentive or neutral pictures was assessed using camera eye-tracking. Trait social closeness and attachment avoidance interacted to modulate fixation frequency on affiliative but not on incentive pictures, suggesting that both traits influence the salience assigned to affiliative cues specifically. PMID:25009524

  15. Effects of Polysialic Acid on Sensory Innervation of the Cornea

    PubMed Central

    Mao, Xiuli; Zhang, Yuntao; Schwend, Tyler; Conrad, Gary W.

    2014-01-01

    Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-D-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation. PMID:25478909

  16. Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders

    PubMed Central

    Baracchi, D.; Petrocelli, I.; Chittka, L.; Ricciardi, G.; Turillazzi, S.

    2015-01-01

    Social insects have evolved sophisticated recognition systems enabling them to accept nest-mates but reject alien conspecifics. In the social wasp, Liostenogaster flavolineata (Stenogastrinae), individuals differ in their cuticular hydrocarbon profiles according to colony membership; each female also possesses a unique (visual) facial pattern. This species represents a unique model to understand how vision and olfaction are integrated and the extent to which wasps prioritize one channel over the other to discriminate aliens and nest-mates. Liostenogaster flavolineata females are able to discriminate between alien and nest-mate females using facial patterns or chemical cues in isolation. However, the two sensory modalities are not equally efficient in the discrimination of ‘friend’ from ‘foe’. Visual cues induce an increased number of erroneous attacks on nest-mates (false alarms), but such attacks are quickly aborted and never result in serious injury. Odour cues, presented in isolation, result in an increased number of misses: erroneous acceptances of outsiders. Interestingly, wasps take the relative efficiencies of the two sensory modalities into account when making rapid decisions about colony membership of an individual: chemical profiles are entirely ignored when the visual and chemical stimuli are presented together. Thus, wasps adopt a strategy to ‘err on the safe side’ by memorizing individual faces to recognize colony members, and disregarding odour cues to minimize the risk of intrusion from colony outsiders. PMID:25652836

  17. Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders.

    PubMed

    Baracchi, D; Petrocelli, I; Chittka, L; Ricciardi, G; Turillazzi, S

    2015-03-01

    Social insects have evolved sophisticated recognition systems enabling them to accept nest-mates but reject alien conspecifics. In the social wasp, Liostenogaster flavolineata (Stenogastrinae), individuals differ in their cuticular hydrocarbon profiles according to colony membership; each female also possesses a unique (visual) facial pattern. This species represents a unique model to understand how vision and olfaction are integrated and the extent to which wasps prioritize one channel over the other to discriminate aliens and nest-mates. Liostenogaster flavolineata females are able to discriminate between alien and nest-mate females using facial patterns or chemical cues in isolation. However, the two sensory modalities are not equally efficient in the discrimination of 'friend' from 'foe'. Visual cues induce an increased number of erroneous attacks on nest-mates (false alarms), but such attacks are quickly aborted and never result in serious injury. Odour cues, presented in isolation, result in an increased number of misses: erroneous acceptances of outsiders. Interestingly, wasps take the relative efficiencies of the two sensory modalities into account when making rapid decisions about colony membership of an individual: chemical profiles are entirely ignored when the visual and chemical stimuli are presented together. Thus, wasps adopt a strategy to 'err on the safe side' by memorizing individual faces to recognize colony members, and disregarding odour cues to minimize the risk of intrusion from colony outsiders. PMID:25652836

  18. Joint UK-Australian Space Surveillance Target Tracking, Cueing and Sensor Data Fusion Experiment

    NASA Astrophysics Data System (ADS)

    Donnelly, P.; Harwood, N.; Ash, A.; Eastment, J.; Ladd, D.; Walden, C.; Bennett, J.; Smith, C.; Ritchie, I.; Rutten, M.; Gordon, N.

    2014-09-01

    In February 2014 the UK and Australia carried out a joint space surveillance target tracking, cueing, and sensor data fusion experiment. Four organisations were involved, these being the UK Defence Science and Technology Laboratory (DSTL) and Science and Technology Facilities Council (STFC) with the Defence Science and Technology Organisation (DSTO) and Electro Optic Systems (EOS) of Australia. The experiment utilised the UK STFC CAMRa radar located at Chilbolton in southern England and an Australian optical camera and laser system owned and operated by EOS and located at Mount Stromlo near Canberra, Australia. An additional experimental camera owned and operated by DSTO and located at Adelaide, Australia also contributed. Three initial objectives of the experiment were all achieved, these being: 1) Use multiple CAMRa orbit passes to cue EOS optical sensor; 2) Use single CAMRa passes constrained by TLEs to cue EOS optical sensor; 3) Use EOS laser returns to provide an updated "reverse" cue for CAMRa radar. Due to the success of these three objectives, two additional objectives were also set during the trials, these being: 4) Use CAMRa orbits to cue DSTO experimental optical sensor; 5) Use CAMRa orbits to provide CAMRa self-cue. These objectives were also achieved. The experiments were performed over two one week periods with a one week separation between tracking campaigns. This paper describes the experimental programme from a top-level perspective and outlines the planning and execution of the experiment together with some initial analysis results. The main achievements and implications for use of dissimilar and geographically separated sensors for space situational awareness are highlighted. Two companion papers describe the sensor aspects of the experiment (Eastment et al.) and the data fusion aspects (Rutten et al.) respectively.

  19. Trading off stimulus salience for identity: A cueing approach to disentangle visual selection strategies.

    PubMed

    Paoletti, Davide; Weaver, Matthew D; Braun, Christoph; van Zoest, Wieske

    2015-08-01

    Recent studies show that time plays a primary role in determining whether visual selection is influenced by stimulus salience or guided by observers' intentions. Accordingly, when a response is made seems critically important in defining the outcome of selection. The present study investigates whether observers are able to control the timing of selection and regulate the trade-off between stimulus- and goal-driven influences. One experiment was conducted in which participants were asked to make a saccade to the target, a tilted bar embedded in a matrix of vertical lines. An additional distractor, more or less salient than the target, was presented concurrently with the search display. To manipulate when in time the response was given we cued participants before each trial to be either fast or accurate. Participants received periodic feedback regarding performance speed and accuracy. The results showed participants were able to control the timing of selection: the distribution of responses was relatively fast or slow depending on the cue. Performance in the fast-cue condition appeared to be primarily driven by stimulus salience, while in the accurate-cue condition saccades were guided by the search template. Examining the distribution of responses that temporally overlapped between the two cue conditions revealed a main effect of cue. This suggests the cue had an additional benefit to performance independent of the effect of salience. These findings show that although early selection may be constrained by stimulus salience, observers are flexible in guiding the 'when' signal and consequently establishing a trade-off between saliency and identity. PMID:25152318

  20. Negative emotion provides cues for orienting auditory spatial attention

    PubMed Central

    Asutay, Erkin; Västfjäll, Daniel

    2015-01-01

    The auditory stimuli provide information about the objects and events around us. They can also carry biologically significant emotional information (such as unseen dangers and conspecific vocalizations), which provides cues for allocation of attention and mental resources. Here, we investigated whether task-irrelevant auditory emotional information can provide cues for orientation of auditory spatial attention. We employed a covert spatial orienting task: the dot-probe task. In each trial, two task-irrelevant auditory cues were simultaneously presented at two separate locations (left–right or front–back). Environmental sounds were selected to form emotional vs. neutral, emotional vs. emotional, and neutral vs. neutral cue pairs. The participants’ task was to detect the location of an acoustic target that was presented immediately after the task-irrelevant auditory cues. The target was presented at the same location as one of the auditory cues. The results indicated that participants were significantly faster to locate the target when it replaced the negative cue compared to when it replaced the neutral cue. The positive cues did not produce a clear attentional bias. Further, same valence pairs (emotional–emotional or neutral–neutral) did not modulate reaction times due to a lack of spatial attention capture by one cue in the pair. Taken together, the results indicate that negative affect can provide cues for the orientation of spatial attention in the auditory domain. PMID:26029149