Science.gov

Sample records for additional signal processing

  1. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  2. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  3. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  4. Signal processing for microcalorimeters

    NASA Astrophysics Data System (ADS)

    Szymkowiak, A. E.; Kelley, R. L.; Moseley, S. H.; Stahle, C. K.

    1993-11-01

    Most of the power in the signals from microcalorimeters occurs at relatively low frequencies. At these frequencies, typical amplifiers will have significant amounts of 1/f noise. Our laboratory systems can also suffer from pickup at several harmonics of the AC power line, and from microphonic pickup at frequencies that vary with the configuration of the apparatus. We have developed some optimal signal processing techniques in order to construct the best possible estimates of our pulse heights in the presence of these non-ideal effects. In addition to a discussion of our laboratory systems, we present our plans for providing this kind of signal processing in flight experiments.

  5. Oil additive process

    SciTech Connect

    Bishop, H.

    1988-10-18

    This patent describes a method of making an additive comprising: (a) adding 2 parts by volume of 3% sodium hypochlorite to 45 parts by volume of diesel oil fuel to form a sulphur free fuel, (b) removing all water and foreign matter formed by the sodium hypochlorite, (c) blending 30 parts by volume of 24% lead naphthanate with 15 parts by volume of the sulphur free fuel, 15 parts by volume of light-weight material oil to form a blended mixture, and (d) heating the blended mixture slowly and uniformly to 152F.

  6. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a

  7. Signal Processing, Analysis, & Display

    SciTech Connect

    Lager, Darrell; Azevado, Stephen

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  8. Advanced signal processing

    NASA Astrophysics Data System (ADS)

    Creasey, D. J.

    1985-12-01

    A collection of papers on advanced signal processing in radar, sonar, and communications is presented. The topics addressed include: transmitter aerials, high-power amplifier design for active sonar, radar transmitters, receiver array technology for sonar, new underwater acoustic detectors, diversity techniques in communications receivers, GaAs IC amplifiers for radar and communication receivers, integrated optical techniques for acoustooptic receivers, logarithmic receivers, CCD processors for sonar, acoustooptic correlators, designing in silicon, very high performance integrated circuits, and digital filters. Also discussed are: display types, scan converters in sonar, display ergonomics, simulators, high throughput sonar processors, optical fiber systems for signal processing, satellite communications, VLSI array processor for image and signal processing, ADA, future of cryogenic devices for signal processing applications, advanced image understanding, and VLSI architectures for real-time image processing.

  9. Signal Processing, Analysis, & Display

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible andmore » are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  10. Array signal processing

    SciTech Connect

    Haykin, S.; Justice, J.H.; Owsley, N.L.; Yen, J.L.; Kak, A.C.

    1985-01-01

    This is the first book to be devoted completely to array signal processing, a subject that has become increasingly important in recent years. The book consists of six chapters. Chapter 1, which is introductory, reviews some basic concepts in wave propagation. The remaining five chapters deal with the theory and applications of array signal processing in (a) exploration seismology, (b) passive sonar, (c) radar, (d) radio astronomy, and (e) tomographic imaging. The various chapters of the book are self-contained. The book is written by a team of five active researchers, who are specialists in the individual fields covered by the pertinent chapters.

  11. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  12. Digital signal processing

    NASA Astrophysics Data System (ADS)

    Morgera, Salvatore D.; Krishna, Hari

    Computationally efficient digital signal-processing algorithms over finite fields are developed analytically, and the relationship of these algorithms to algebraic error-correcting codes is explored. A multidisciplinary approach is employed, in an effort to make the results accessible to engineers, mathematicians, and computer scientists. Chapters are devoted to systems of bilinear forms, efficient finite-field algorithms, multidimensional methods, a new class of linear codes, and a new error-control scheme.

  13. Digital signal processing

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    The theory, realization techniques, and applications of digital filtering are surveyed, with an emphasis on the development of software, in a handbook for advanced students of electrical and electronic engineering and practicing development engineers. The foundations of the theory of discrete signals and systems are introduced. The design of one-dimensional linear systems is discussed, and the techniques are expanded to the treatment of two-dimensional discrete and multidimensional analog systems. Numerical systems, quantification and limitation, and the characteristics of particular signal-processing devices are considered in a section on design realization. An appendix contains definitions of the basic mathematical concepts, derivations and proofs, and tables of integration and differentiation formulas.

  14. Signal processing in magnetoencephalography.

    PubMed

    Vrba, J; Robinson, S E

    2001-10-01

    The subject of this article is detection of brain magnetic fields, or magnetoencephalography (MEG). The brain fields are many orders of magnitude smaller than the environmental magnetic noise and their measurement represent a significant metrological challenge. The only detectors capable of resolving such small fields and at the same time handling the large dynamic range of the environmental noise are superconducting quantum interference devices (or SQUIDs). The SQUIDs are coupled to the brain magnetic fields using combinations of superconducting coils called flux transformers (primary sensors). The environmental noise is attenuated by a combination of shielding, primary sensor geometry, and synthetic methods. One of the most successful synthetic methods for noise elimination is synthetic higher-order gradiometers. How the gradiometers can be synthesized is shown and examples of their noise cancellation effectiveness are given. The MEG signals measured on the scalp surface must be interpreted and converted into information about the distribution of currents within the brain. This task is complicated by the fact that such inversion is nonunique. Additional mathematical simplifications, constraints, or assumptions must be employed to obtain useful source images. Methods for the interpretation of the MEG signals include the popular point current dipole, minimum norm methods, spatial filtering, beamformers, MUSIC, and Bayesian techniques. The use of synthetic aperture magnetometry (a class of beamformers) is illustrated in examples of interictal epileptic spiking and voluntary hand-motor activity. PMID:11812209

  15. Acoustic signal processing toolbox for array processing

    NASA Astrophysics Data System (ADS)

    Pham, Tien; Whipps, Gene T.

    2003-08-01

    The US Army Research Laboratory (ARL) has developed an acoustic signal processing toolbox (ASPT) for acoustic sensor array processing. The intent of this document is to describe the toolbox and its uses. The ASPT is a GUI-based software that is developed and runs under MATLAB. The current version, ASPT 3.0, requires MATLAB 6.0 and above. ASPT contains a variety of narrowband (NB) and incoherent and coherent wideband (WB) direction-of-arrival (DOA) estimation and beamforming algorithms that have been researched and developed at ARL. Currently, ASPT contains 16 DOA and beamforming algorithms. It contains several different NB and WB versions of the MVDR, MUSIC and ESPRIT algorithms. In addition, there are a variety of pre-processing, simulation and analysis tools available in the toolbox. The user can perform simulation or real data analysis for all algorithms with user-defined signal model parameters and array geometries.

  16. [Signal Processing Suite Design

    NASA Technical Reports Server (NTRS)

    Sahr, John D.; Mir, Hasan; Morabito, Andrew; Grossman, Matthew

    2003-01-01

    Our role in this project was to participate in the design of the signal processing suite to analyze plasma density measurements on board a small constellation (3 or 4) satellites in Low Earth Orbit. As we are new to space craft experiments, one of the challenges was to simply gain understanding of the quantity of data which would flow from the satellites, and possibly to interact with the design teams in generating optimal sampling patterns. For example, as the fleet of satellites were intended to fly through the same volume of space (displaced slightly in time and space), the bulk plasma structure should be common among the spacecraft. Therefore, an optimal, limited bandwidth data downlink would take advantage of this commonality. Also, motivated by techniques in ionospheric radar, we hoped to investigate the possibility of employing aperiodic sampling in order to gain access to a wider spatial spectrum without suffering aliasing in k-space.

  17. Analog and digital signal processing

    NASA Astrophysics Data System (ADS)

    Baher, H.

    The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.

  18. Signal and Image Processing Operations

    1995-05-10

    VIEW is a software system for processing arbitrary multidimensional signals. It provides facilities for numerical operations, signal displays, and signal databasing. The major emphasis of the system is on the processing of time-sequences and multidimensional images. The system is designed to be both portable and extensible. It runs currently on UNIX systems, primarily SUN workstations.

  19. Advanced detectors and signal processing

    NASA Technical Reports Server (NTRS)

    Greve, D. W.; Rasky, P. H. L.; Kryder, M. H.

    1986-01-01

    Continued progress is reported toward development of a silicon on garnet technology which would allow fabrication of advanced detection and signal processing circuits on bubble memories. The first integrated detectors and propagation patterns have been designed and incorporated on a new mask set. In addition, annealing studies on spacer layers are performed. Based on those studies, a new double layer spacer is proposed which should reduce contamination of the silicon originating in the substrate. Finally, the magnetic sensitivity of uncontaminated detectors from the last lot of wafers is measured. The measured sensitivity is lower than anticipated but still higher than present magnetoresistive detectors.

  20. Signal processing in SETI

    NASA Technical Reports Server (NTRS)

    Cullers, D. K.; Linscott, I. R.; Oliver, B. M.

    1985-01-01

    It is believed that the Galaxy might contain ten billion potential life sites. In view of the physical inaccessibility of extraterrestrial life on account of the vast distances involved, a logical first step in a search for extraterrestrial intelligence (SETI) appears to be an attempt to detect signals already being radiated. The characteristics of the signals to be expected are discussed together with the search strategy of a NASA program. It is pointed out that all presently planned searches will use existing radio-astronomy antennas. If no extraterrestrial intelligence signals are discovered, society will have to decide whether SETI justifies a dedicated facility of much greater collecting area. Attention is given to a multichannel spectrum analyzer, CW signal detection, pulse detection, the pattern detector, and details of SETI system operation.

  1. Digital processing of bandpass signals

    NASA Astrophysics Data System (ADS)

    Jackson, M. C.; Matthewson, P.

    Modern radar and radio systems rely on digital signal processing to enhance the quality of received signals. Prior to such processing, these signals must be converted to digital form. The historical development of signal digitization is briefly discussed in this paper and leads to a description of some current work on digital mixing. A method of directly sampling a band-limited intermediate frequency (i.f.) signal is presented, using a pair of digital mixer channels to produce complex low-pass samples of the signal envelope. The method is found to produce well matched channel outputs. Finally, the applicability of the method to radar is discussed.

  2. Nanotubes for noisy signal processing

    NASA Astrophysics Data System (ADS)

    Lee, Ian Yenyin

    Nanotubes can process noisy signals. We present two central results in support of this general thesis and make an informed extrapolation that uses nanotubes to improve body armor. The first result is that noise can help nanotubes detect weak signals. The finding confirmed a stochastic-resonance theoretical prediction that noise can enhance detection at the nano-level. Laboratory experiments with nanotubes showed that three types of noise improved three measures of detection. Small amounts of Gaussian, uniform, and Cauchy additive white noise increased mutual-information, cross-correlation, and bit-error-rate measures before degrading them with further increases in noise. Nanotubes can apply this noise-enhancement and nanotube electrical and mechanical properties to improve signal processing. Similar noise enhancement may benefit a proposed nanotube-array cochlear-model spectral processing. The second result is that nanotube antennas can directly detect narrowband electromagnetic (EM) signals. The finding showed that nanotube and thin-wire dipoles are similar: They are resonant and narrowband and can implement linear-array designs if the EM waves in the nanotubes propagate at or near the free-space velocity of light. The nanotube-antenna prediction is based on a Fresnel-zone or near-zone analysis of antenna impedance using a quantum-conductor model. The analysis also predicts a failure to resonate if the nanotube EM-wave propagation is much slower than free-space light propagation. We extrapolate based on applied and theoretical analysis of body armor. Field experiments used a baseball comparison and statistical and other techniques to model body-armor bruising effects. A baseball comparison showed that a large caliber handgun bullet can hit an armored chest as hard as a fast baseball can hit a bare chest. Adaptive fuzzy systems learned to predict a bruise profile directly from the experimental data and also from statistical analysis of the data. Nanotube signal

  3. Processing of real ELT signals for Sarsat

    NASA Astrophysics Data System (ADS)

    Chung, T.; Carter, C. R.

    1987-01-01

    The performance of different processing strategies on real signals recorded from an emergency locator transmitter (ELT) test bed in Ottawa is examined. A processor based on the use of ordered statistics is developed. This new processor greatly reduces the interference produced by the ELT sidebands while maintaining good detection performance on weak signals. In addition, the maximum entropy method is found to be effective in processing ELT signals having noncoherent characteristics.

  4. Digital signal processing the Tevatron BPM signals

    SciTech Connect

    Cancelo, G.; James, E.; Wolbers, S.; /Fermilab

    2005-05-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.

  5. Signal processing in SETI.

    PubMed

    Cullers, D K; Linscott, I R; Oliver, B M

    1985-11-01

    The development of a multi-channel spectrum analyzer (MCSA) for the SETI program is described. The spectrum analyzer is designed for both all-sky surveys and targeted searches. The mechanisms of the MCSA are explained and a diagram is provided. Detection of continuous wave signals, pulses, and patterns is examined. PMID:11542023

  6. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  7. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG; a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a `repeat` sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  8. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  9. Signal processing development

    NASA Astrophysics Data System (ADS)

    Barrett, T. B.; Marshall, R.; Bloom, J.; Comer, C.; Caulfield, J.; Warde, C.; Salour, M.

    1989-11-01

    This electron microscope has been applied to the study of the growth of thin epitaxial films on silicon substrates. The study of the nature of platinum-silicide films formed by heating evaporated platinum films on these substrates is discussed. The use of ultra high vacuum systems together with a residual gas analyzer (RGA) is discussed as they relate to the preparation of silicides, a dielectric layer of silicon monoxide is evaporated and an ion beam implanter is used to form a special buried layer as a step toward silicon devices. Synthesis and single crystal growth of indium phosphide in a one-step in-situ process at high ambient pressures is discussed. Analysis of heat transfer by convection, conduction, and radiation in a closed pressure vessel is given. A set of source modules and NOS procedures have been prepared to permit easy access to a 3-dimensional, non-isotrophic ray-tracing program (the Jones - Stephenson program). This system is designed to be run on a CDC CYBER computer system or equivalent using the operating system.

  10. Systolic processor for signal processing

    SciTech Connect

    Frank, G.A.; Greenawalt, E.M.; Kulkarni, A.V.

    1982-01-01

    A systolic array is a natural architecture for a high-performance signal processor, in part because of the extensive use of inner-product operations in signal processing. The modularity and simple interconnection of systolic arrays promise to simplify the development of cost-effective, high-performance, special-purpose processors. ESL incorporated has built a proof of concept model of a systolic processor. It is flexible enough to permit experimentation with a variety of algorithms and applications. ESL is exploring the application of systolic processors to image- and signal-processing problems. This paper describes this experimental system and some of its applications to signal processing. ESL is also pursuing new types of systolic architectures, including the VLSI implementation of systolic cells for solving systems of linear equations. These new systolic architectures allow the real-time design of adaptive filters. 14 references.

  11. Effects of additional interfering signals on adaptive array performance

    NASA Technical Reports Server (NTRS)

    Moses, Randolph L.

    1989-01-01

    The effects of additional interference signals on the performance of a fully adaptive array are considered. The case where the number of interference signals exceeds the number of array degrees of freedom is addressed. It is shown how performance is affected as a function of the number of array elements, the number of interference signals, and the directivity of the array antennas. By using directive auxiliary elements, the performance of the array can be as good as the performance when the additional interference signals are not present.

  12. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  13. VLSI mixed signal processing system

    NASA Technical Reports Server (NTRS)

    Alvarez, A.; Premkumar, A. B.

    1993-01-01

    An economical and efficient VLSI implementation of a mixed signal processing system (MSP) is presented in this paper. The MSP concept is investigated and the functional blocks of the proposed MSP are described. The requirements of each of the blocks are discussed in detail. A sample application using active acoustic cancellation technique is described to demonstrate the power of the MSP approach.

  14. Energetic additive manufacturing process with feed wire

    SciTech Connect

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  15. Signal processing of anthropometric data

    NASA Astrophysics Data System (ADS)

    Zimmermann, W. J.

    1983-09-01

    The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.

  16. Signal processing of anthropometric data

    NASA Technical Reports Server (NTRS)

    Zimmermann, W. J.

    1983-01-01

    The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.

  17. [Anesthesia in the Signal Processing Methods].

    PubMed

    Gu, Jiajun; Huang, Yan; Ye, Jilun; Wang, Kaijun; Zhang, Meimei

    2015-09-01

    Anesthesia plays an essential role in clinical operations. Guiding anesthesia by EEG signals is one of the most promising methods at present and it has obtained good results. The analysis and process of the EEG signals in anesthesia can provide clean signal for further research. This paper used variance threshold method to remove the mutation fast and large interfering signals; and used notch filter to remove frequency interference, smoothing filter to remove baseline drift and Butterworth low-pass filter to remove high frequency noise at the same time. In addition to this, the translation invariant wavelet method to remove interference noise on the signals which was after the classical filter and retained non-stationary characteristics was used to evaluate parameter calculation. By comparing the calculated parameters from treated signal using this paper's methods and untreated signal and standard signal, the standard deviation and correlation has been improved, particularly the major parameters BetaR, which provides better signal for integration of multi-parameter to evaluate depth of anesthesia index for the latter. PMID:26904870

  18. Intelligent Signal Processing for Detection System Optimization

    SciTech Connect

    Fu, C Y; Petrich, L I; Daley, P F; Burnham, A K

    2004-06-18

    A wavelet-neural network signal processing method has demonstrated approximately tenfold improvement in the detection limit of various nitrogen and phosphorus compounds over traditional signal-processing methods in analyzing the output of a thermionic detector attached to the output of a gas chromatograph. A blind test was conducted to validate the lower detection limit. All fourteen of the compound spikes were detected when above the estimated threshold, including all three within a factor of two above. In addition, two of six were detected at levels 1/2 the concentration of the nominal threshold. We would have had another two correct hits if we had allowed human intervention to examine the processed data. One apparent false positive in five nulls was traced to a solvent impurity, whose presence was identified by running a solvent aliquot evaporated to 1% residual volume, while the other four nulls were properly classified. We view this signal processing method as broadly applicable in analytical chemistry, and we advocate that advanced signal processing methods be applied as directly as possible to the raw detector output so that less discriminating preprocessing and post-processing does not throw away valuable signal.

  19. Intelligent Signal Processing for Detection System Optimization

    SciTech Connect

    Fu, C Y; Petrich, L I; Daley, P F; Burnham, A K

    2004-12-05

    A wavelet-neural network signal processing method has demonstrated approximately tenfold improvement over traditional signal-processing methods for the detection limit of various nitrogen and phosphorus compounds from the output of a thermionic detector attached to a gas chromatograph. A blind test was conducted to validate the lower detection limit. All fourteen of the compound spikes were detected when above the estimated threshold, including all three within a factor of two above the threshold. In addition, two of six spikes were detected at levels of 1/2 the concentration of the nominal threshold. Another two of the six would have been detected correctly if we had allowed human intervention to examine the processed data. One apparent false positive in five nulls was traced to a solvent impurity, whose presence was subsequently identified by analyzing a solvent aliquot evaporated to 1% residual volume, while the other four nulls were properly classified. We view this signal processing method as broadly applicable in analytical chemistry, and we advocate that advanced signal processing methods should be applied as directly as possible to the raw detector output so that less discriminating preprocessing and post-processing does not throw away valuable signal.

  20. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  1. Lagrange wavelets for signal processing.

    PubMed

    Shi, Z; Wei, G W; Kouri, D J; Hoffman, D K; Bao, Z

    2001-01-01

    This paper deals with the design of interpolating wavelets based on a variety of Lagrange functions, combined with novel signal processing techniques for digital imaging. Halfband Lagrange wavelets, B-spline Lagrange wavelets and Gaussian Lagrange (Lagrange distributed approximating functional (DAF)) wavelets are presented as specific examples of the generalized Lagrange wavelets. Our approach combines the perceptually dependent visual group normalization (VGN) technique and a softer logic masking (SLM) method. These are utilized to rescale the wavelet coefficients, remove perceptual redundancy and obtain good visual performance for digital image processing. PMID:18255493

  2. Wave-based signal processing

    NASA Astrophysics Data System (ADS)

    McClure, Mark Richard

    The efficacy of imbedding knowledge of wave-scattering phenomenology into the processing of remote-sensing data is examined. In particular, the processing of radar and sonar phase history and synthetic-aperture imagery is considered. Algorithms are developed for effecting signal denoising, feature extraction (for use in target identification/classification) and detection. Three classes of algorithms are presented: (1) superresolution, (2) adaptive-signal decomposition, and (3) template matching. A superresolution signal-processing algorithm is used for the identification of wavefronts from the fields scattered from several canonical targets. Particular wave objects that are examined are single and multiple edge diffraction, scattering from flat and curved surfaces, cone diffraction, and creeping waves. General properties of superresolution processing of such data--independent of the particular algorithm used--are assessed through examination of the Cramer-Rao bounds. The method of matching pursuits is used to effect data-adaptive signal decomposition. This algorithm utilizes a nonlinear iterative procedure to project a given waveform onto a particular dictionary. For scattering problems, the most appropriate dictionary is composed of waveobjects consistent with the underlying wave phenomenology. A signal scattered from most targets of interest can be decomposed in terms of wavefronts, resonances, and chirps--and each of these subclasses can be further subdivided based on characteristic wave physics. Here the efficacy of applying the method of matching pursuits with a wave-based dictionary is examined, for the processing of scattering data. Detection test statistics are derived based on matching-pursuits results from each dictionary separately as well as with the cumulative results from multiple dictionaries. Examples are presented using measured data, for wideband, time-domain acoustic scattering from a submerged elastic shell. Finally, a full-wave electromagnetic

  3. Nuclear sensor signal processing circuit

    DOEpatents

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  4. Threshold detection in generalized non-additive signals and noise

    SciTech Connect

    Middleton, D., LLNL

    1997-12-22

    The classical theory of optimum (binary-on-off) threshold detection for additive signals and generalized (i.e. nongaussian) noise is extended to the canonical nonadditive threshold situation. In the important (and usual) applications where the noise is sampled independently, a canonical threshold optimum theory is outlined here, which is found formally to parallel the earlier additive theory, including the critical properties of locally optimum Bayes detection algorithms, which are asymptotically normal and optimum as well. The important Class A clutter model provides an explicit example of optimal threshold envelope detection, for the non-additive cases of signal and noise. Various extensions are noted in the concluding section, as are selected references.

  5. Detection of continuous-time quaternion signals in additive noise

    NASA Astrophysics Data System (ADS)

    Navarro-Moreno, Jesús; Ruiz-Molina, Juan Carlos; Oya, Antonia; Quesada-Rubio, José M.

    2012-12-01

    Different kinds of quaternion signal detection problems in continuous-time by using a widely linear processing are dealt with. The suggested solutions are based on an extension of the Karhunen-Loève expansion to the quaternion domain which provides uncorrelated scalar real-valued random coefficients. This expansion presents the notable advantage of transforming the original four-dimensional eigen problem to a one-dimensional problem. Firstly, we address the problem of detecting a quaternion deterministic signal in quaternion Gaussian noise and a version of Pitcher's Theorem is given. Also the particular case of a general quaternion Wiener noise is studied and an extension of the Cameron-Martin formula is presented. Finally, the problem of detecting a quaternion random signal in quaternion white Gaussian noise is tackled. In such a case, it is shown that the detector depends on the quaternion widely linear estimator of the signal.

  6. Signal Processing Expert Code (SPEC)

    SciTech Connect

    Ames, H.S.

    1985-12-01

    The purpose of this paper is to describe a prototype expert system called SPEC which was developed to demonstrate the utility of providing an intelligent interface for users of SIG, a general purpose signal processing code. The expert system is written in NIL, runs on a VAX 11/750 and consists of a backward chaining inference engine and an English-like parser. The inference engine uses knowledge encoded as rules about the formats of SIG commands and about how to perform frequency analyses using SIG. The system demonstrated that expert system can be used to control existing codes.

  7. Processing Oscillatory Signals by Incoherent Feedforward Loops.

    PubMed

    Zhang, Carolyn; Tsoi, Ryan; Wu, Feilun; You, Lingchong

    2016-09-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175

  8. Processing oscillatory signals by incoherent feedforward loops

    NASA Astrophysics Data System (ADS)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  9. 29 CFR 1926.1421 - Signals-voice signals-additional requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Signals-voice signals-additional requirements. 1926.1421 Section 1926.1421 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes...

  10. 29 CFR 1926.1421 - Signals-voice signals-additional requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Signals-voice signals-additional requirements. 1926.1421 Section 1926.1421 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes...

  11. 29 CFR 1926.1421 - Signals-voice signals-additional requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Signals-voice signals-additional requirements. 1926.1421 Section 1926.1421 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes...

  12. 29 CFR 1926.1421 - Signals-voice signals-additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Signals-voice signals-additional requirements. 1926.1421 Section 1926.1421 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes...

  13. VLSI systems design for digital signal processing. Volume 1 - Signal processing and signal processors

    NASA Astrophysics Data System (ADS)

    Bowen, B. A.; Brown, W. R.

    This book is concerned with the design of digital signal processing systems which utilize VLSI (Very Large Scale Integration) components. The presented material is intended for use by electrical engineers at the senior undergraduate or introductory graduate level. It is the purpose of this volume to present an overview of the important elements of background theory, processing techniques, and hardware evolution. Digital signals are considered along with linear systems and digital filters, taking into account the transform analysis of deterministic signals, a statistical signal model, time domain representations of discrete-time linear systems, and digital filter design techniques and implementation issues. Attention is given to aspects of detection and estimation, digital signal processing algorithms and techniques, issues which must be resolved in a processor design methodology, the fundamental concepts of high performance processing in terms of two early super computers, and the extension of these concepts to more recent processors.

  14. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  15. Situ process for making multifunctional fuel additives

    SciTech Connect

    Carrier, R.C.; Allen, B.R.

    1984-02-28

    Disclosed is an in situ or ''one pot'' process for making a fuel additive comprising reacting an excess of at least one N-primary alkylalkylene diamine with maleic anhydride in the presence of from 20 to 36 weight percent of a mineral oil reaction diluent at a temperature ranging from ambient to about 225/sup 0/ F. and recovering a product containing a primary aliphatic hydrocarbon amino alkylene substituted asparagine, an N-primary alkylalkylene diamine in the reaction oil with the product having a by-product succinimide content not in excess of 1.0 weight percent, based on the weight of asparagine present.

  16. Processing Electromyographic Signals to Recognize Words

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Lee, D. D.

    2009-01-01

    A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.

  17. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect

    PubMed Central

    Maram, Reza; Van Howe, James; Li, Ming; Azaña, José

    2014-01-01

    Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207

  18. BPSK Demodulation Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Garcia, Thomas R.

    1996-01-01

    A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.

  19. Digital Signal Processing Based Biotelemetry Receivers

    NASA Technical Reports Server (NTRS)

    Singh, Avtar; Hines, John; Somps, Chris

    1997-01-01

    This is an attempt to develop a biotelemetry receiver using digital signal processing technology and techniques. The receiver developed in this work is based on recovering signals that have been encoded using either Pulse Position Modulation (PPM) or Pulse Code Modulation (PCM) technique. A prototype has been developed using state-of-the-art digital signal processing technology. A Printed Circuit Board (PCB) is being developed based on the technique and technology described here. This board is intended to be used in the UCSF Fetal Monitoring system developed at NASA. The board is capable of handling a variety of PPM and PCM signals encoding signals such as ECG, temperature, and pressure. A signal processing program has also been developed to analyze the received ECG signal to determine heart rate. This system provides a base for using digital signal processing in biotelemetry receivers and other similar applications.

  20. Study Of Adaptive-Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar H.; Griffiths, Lloyd

    1990-01-01

    Report describes study of adaptive signal-processing techniques for suppression of mutual satellite interference in mobile (on ground)/satellite communication system. Presents analyses and numerical simulations of performances of two approaches to signal processing for suppression of interference. One approach, known as "adaptive side lobe canceling", second called "adaptive temporal processing".

  1. Correlation theory-based signal processing method for CMF signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-lin; Tu, Ya-qing

    2016-06-01

    Signal processing precision of Coriolis mass flowmeter (CMF) signals affects measurement accuracy of Coriolis mass flowmeters directly. To improve the measurement accuracy of CMFs, a correlation theory-based signal processing method for CMF signals is proposed, which is comprised of the correlation theory-based frequency estimation method and phase difference estimation method. Theoretical analysis shows that the proposed method eliminates the effect of non-integral period sampling signals on frequency and phase difference estimation. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of frequency and phase difference estimation and has better estimation performance than the adaptive notch filter, discrete Fourier transform and autocorrelation methods in terms of frequency estimation and the data extension-based correlation, Hilbert transform, quadrature delay estimator and discrete Fourier transform methods in terms of phase difference estimation, which contributes to improving the measurement accuracy of Coriolis mass flowmeters.

  2. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  3. Bistatic SAR: Signal Processing and Image Formation.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  4. Fiber-optic lattice signal processing

    NASA Astrophysics Data System (ADS)

    Moslehi, B.; Goodman, J. W.; Shaw, H. J.; Tur, M.

    1984-07-01

    It is pointed out that fiber-optic signal processing devices can be constructed to perform various functions, such as convolution, correlation, matrix operations, and frequency filtering. Previous studies have concentrated on classical tapped-delay-line forms (transversal filters). The present investigation is concerned with different fiber-optic structures, taking into account lattice (or ladder) forms, which can be used as alternatives for performing optical signal processing. The elements to perform the various signal processing operations are considered along with fiber-optic lattice configurations. Aspects of mathematical analysis are discussed, taking into account Z-transform techniques, transfer-matrix and chain-matrix formulations, modern control theory formulations, and positive optical systems. Attention is given to time-domain signal processing applications, and frequency-domain signal processing applications.

  5. Signal processing and analyzing works of art

    NASA Astrophysics Data System (ADS)

    Johnson, Don H.; Johnson, C. Richard, Jr.; Hendriks, Ella

    2010-08-01

    In examining paintings, art historians use a wide variety of physico-chemical methods to determine, for example, the paints, the ground (canvas primer) and any underdrawing the artist used. However, the art world has been little touched by signal processing algorithms. Our work develops algorithms to examine x-ray images of paintings, not to analyze the artist's brushstrokes but to characterize the weave of the canvas that supports the painting. The physics of radiography indicates that linear processing of the x-rays is most appropriate. Our spectral analysis algorithms have an accuracy superior to human spot-measurements and have the advantage that, through "short-space" Fourier analysis, they can be readily applied to entire x-rays. We have found that variations in the manufacturing process create a unique pattern of horizontal and vertical thread density variations in the bolts of canvas produced. In addition, we measure the thread angles, providing a way to determine the presence of cusping and to infer the location of the tacks used to stretch the canvas on a frame during the priming process. We have developed weave matching software that employs a new correlation measure to find paintings that share canvas weave characteristics. Using a corpus of over 290 paintings attributed to Vincent van Gogh, we have found several weave match cliques that we believe will refine the art historical record and provide more insight into the artist's creative processes.

  6. Signal processing methods for MFE plasma diagnostics

    SciTech Connect

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  7. Electronics Signal Processing for Medical Imaging

    NASA Astrophysics Data System (ADS)

    Turchetta, Renato

    This paper describes the way the signal coming from a radiation detector is conditioned and processed to produce images useful for medical applications. First of all, the small signal produce by the radiation is processed by analogue electronics specifically designed to produce a good signal-over-noise ratio. The optimised analogue signal produced at this stage can then be processed and transformed into digital information that is eventually stored in a computer, where it can be further processed as required. After an introduction to the general requirements of the processing electronics, we will review the basic building blocks that process the `tiny' analogue signal coming from a radiation detector. We will in particular analyse how it is possible to optimise the signal-over-noise ratio of the electronics. Some exercises, developed in the tutorial, will help to understand this fundamental part. The blocks needed to process the analogue signal and transform it into a digital code will be described. The description of electronics systems used for medical imaging systems will conclude the lecture.

  8. SignalPlant: an open signal processing software platform.

    PubMed

    Plesinger, F; Jurco, J; Halamek, J; Jurak, P

    2016-07-01

    The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats. PMID:27243208

  9. Multiwavelet design for cardiac signal processing.

    PubMed

    Peelers, R L M; Karel, J M H; Westra, R L; Haddad, S A P; Serdijn, W A

    2006-01-01

    An approach for designing multiwavelets is introduced, for use in cardiac signal processing. The parameterization of the class of multiwavelets is in terms of associated FIR polyphase all-pass filters. Orthogonality and a balanced vanishing moment of order 1 are built into the parameterization. An optimization criterion is developed to associate the wavelets with different meaningful segments of a signal. This approach is demonstrated on the simultaneous detection of QRS-complexes and T-peaks in ECG signals. PMID:17946917

  10. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  11. Surface Electromyography Signal Processing and Classification Techniques

    PubMed Central

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  12. Sparse representation in speech signal processing

    NASA Astrophysics Data System (ADS)

    Lee, Te-Won; Jang, Gil-Jin; Kwon, Oh-Wook

    2003-11-01

    We review the sparse representation principle for processing speech signals. A transformation for encoding the speech signals is learned such that the resulting coefficients are as independent as possible. We use independent component analysis with an exponential prior to learn a statistical representation for speech signals. This representation leads to extremely sparse priors that can be used for encoding speech signals for a variety of purposes. We review applications of this method for speech feature extraction, automatic speech recognition and speaker identification. Furthermore, this method is also suited for tackling the difficult problem of separating two sounds given only a single microphone.

  13. Signal processing by the endosomal system.

    PubMed

    Villaseñor, Roberto; Kalaidzidis, Yannis; Zerial, Marino

    2016-04-01

    Cells need to decode chemical or physical signals from their environment in order to make decisions on their fate. In the case of signalling receptors, ligand binding triggers a cascade of chemical reactions but also the internalization of the activated receptors in the endocytic pathway. Here, we highlight recent studies revealing a new role of the endosomal network in signal processing. The diversity of entry pathways and endosomal compartments is exploited to regulate the kinetics of receptor trafficking, and interactions with specific signalling adaptors and effectors. By governing the spatio-temporal distribution of signalling molecules, the endosomal system functions analogously to a digital-analogue computer that regulates the specificity and robustness of the signalling response. PMID:26921695

  14. Digital signal processor and programming system for parallel signal processing

    SciTech Connect

    Van den Bout, D.E.

    1987-01-01

    This thesis describes an integrated assault upon the problem of designing high-throughput, low-cost digital signal-processing systems. The dual prongs of this assault consist of: (1) the design of a digital signal processor (DSP) which efficiently executes signal-processing algorithms in either a uniprocessor or multiprocessor configuration, (2) the PaLS programming system which accepts an arbitrary algorithm, partitions it across a group of DSPs, synthesizes an optimal communication link topology for the DSPs, and schedules the partitioned algorithm upon the DSPs. The results of applying a new quasi-dynamic analysis technique to a set of high-level signal-processing algorithms were used to determine the uniprocessor features of the DSP design. For multiprocessing applications, the DSP contains an interprocessor communications port (IPC) which supports simple, flexible, dataflow communications while allowing the total communication bandwidth to be incrementally allocated to achieve the best link utilization. The net result is a DSP with a simple architecture that is easy to program for both uniprocessor and multi-processor modes of operation. The PaLS programming system simplifies the task of parallelizing an algorithm for execution upon a multiprocessor built with the DSP.

  15. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed. PMID:2180633

  16. Processing Motion Signals in Complex Environments

    NASA Technical Reports Server (NTRS)

    Verghese, Preeti

    2000-01-01

    Motion information is critical for human locomotion and scene segmentation. Currently we have excellent neurophysiological models that are able to predict human detection and discrimination of local signals. Local motion signals are insufficient by themselves to guide human locomotion and to provide information about depth, object boundaries and surface structure. My research is aimed at understanding the mechanisms underlying the combination of motion signals across space and time. A target moving on an extended trajectory amidst noise dots in Brownian motion is much more detectable than the sum of signals generated by independent motion energy units responding to the trajectory segments. This result suggests that facilitation occurs between motion units tuned to similar directions, lying along the trajectory path. We investigated whether the interaction between local motion units along the motion direction is mediated by contrast. One possibility is that contrast-driven signals from motion units early in the trajectory sequence are added to signals in subsequent units. If this were the case, then units later in the sequence would have a larger signal than those earlier in the sequence. To test this possibility, we compared contrast discrimination thresholds for the first and third patches of a triplet of sequentially presented Gabor patches, aligned along the motion direction. According to this simple additive model, contrast increment thresholds for the third patch should be higher than thresholds for the first patch.The lack of a measurable effect on contrast thresholds for these various manipulations suggests that the pooling of signals along a trajectory is not mediated by contrast-driven signals. Instead, these results are consistent with models that propose that the facilitation of trajectory signals is achieved by a second-level network that chooses the strongest local motion signals and combines them if they occur in a spatio-temporal sequence consistent

  17. Haotic, Fractal, and Nonlinear Signal Processing. Proceedings

    SciTech Connect

    Katz, R.A.

    1996-10-01

    These proceedings include papers presented at the Third Technical Conference on Nonlinear Dynamics and Full{minus}Spectrum Processing held in Mystic, Connecticut. The Conference focus was on the latest advances in chaotic, fractal and nonlinear signal processing methods. Topics of discussion covered in the Conference include: mathematical frontiers; predictability and control of chaos, detection and classification with applications in acoustics; advanced applied signal processing methods(linear and nonlinear); stochastic resonance; machinery diagnostics; turbulence; geophysics; medicine; and recent novel approaches to modeling nonlinear systems. There were 58 papers in the conference and all have been abstracted for the Energy Science and Technology database. (AIP)

  18. Group-normalized wavelet packet signal processing

    NASA Astrophysics Data System (ADS)

    Shi, Zhuoer; Bao, Zheng

    1997-04-01

    Since the traditional wavelet and wavelet packet coefficients do not exactly represent the strength of signal components at the very time(space)-frequency tilling, group- normalized wavelet packet transform (GNWPT), is presented for nonlinear signal filtering and extraction from the clutter or noise, together with the space(time)-frequency masking technique. The extended F-entropy improves the performance of GNWPT. For perception-based image, soft-logic masking is emphasized to remove the aliasing with edge preserved. Lawton's method for complex valued wavelets construction is extended to generate the complex valued compactly supported wavelet packets for radar signal extraction. This kind of wavelet packets are symmetry and unitary orthogonal. Well-defined wavelet packets are chosen by the analysis remarks on their time-frequency characteristics. For real valued signal processing, such as images and ECG signal, the compactly supported spline or bi- orthogonal wavelet packets are preferred for perfect de- noising and filtering qualities.

  19. Time domain cyclostationarity signal-processing tools

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2015-10-01

    This paper proposes four different time-domain tools to estimate first-order time cyclostationary signals without the need of a keyphasor signal. Applied to gearbox signals, these tacho-less methods appear intuitively simple, offer user-friendly graphic interfaces to visualize a pattern and allow the retrieval and removal of the selected cyclostationarity components in order to process higher-order spectra. Two of these tools can deal with time-varying operating conditions since they use an adaptive resampled signal driven by the vibration signal itself for order tracking. Three coherency indicators are proposed, one for every sample of the time pattern, one for each impact (tooth shock) observed in the gear mesh pattern, and one for the whole pattern. These indicators are used to detect a cyclostationarity and analyze the pattern repeatability. A gear mesh graph is also proposed to illustrate the cyclostationarity in 3D.

  20. Complexity of Receptor Tyrosine Kinase Signal Processing

    PubMed Central

    Volinsky, Natalia; Kholodenko, Boris N.

    2013-01-01

    Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities. PMID:23906711

  1. Signal processing in cryogenic particle detection

    NASA Astrophysics Data System (ADS)

    Yuryev, Y. N.; Jang, Y. S.; Kim, S. K.; Lee, K. B.; Lee, M. K.; Lee, S. J.; Yoon, W. S.; Kim, Y. H.

    2011-04-01

    We describe a signal-processing program for a data acquisition system for cryogenic particle detectors. The program is based on an optimal-filtering method for high-resolution measurement of calorimetric signals with a significant amount of noise of unknown origin and non-stationary behavior. The program was applied to improve the energy resolution of the alpha particle spectrum of an 241Am source.

  2. Discrete Signal Processing on Graphs: Sampling Theory

    NASA Astrophysics Data System (ADS)

    Chen, Siheng; Varma, Rohan; Sandryhaila, Aliaksei; Kovacevic, Jelena

    2015-12-01

    We propose a sampling theory for signals that are supported on either directed or undirected graphs. The theory follows the same paradigm as classical sampling theory. We show that perfect recovery is possible for graph signals bandlimited under the graph Fourier transform. The sampled signal coefficients form a new graph signal, whose corresponding graph structure preserves the first-order difference of the original graph signal. For general graphs, an optimal sampling operator based on experimentally designed sampling is proposed to guarantee perfect recovery and robustness to noise; for graphs whose graph Fourier transforms are frames with maximal robustness to erasures as well as for Erd\\H{o}s-R\\'enyi graphs, random sampling leads to perfect recovery with high probability. We further establish the connection to the sampling theory of finite discrete-time signal processing and previous work on signal recovery on graphs. To handle full-band graph signals, we propose a graph filter bank based on sampling theory on graphs. Finally, we apply the proposed sampling theory to semi-supervised classification on online blogs and digit images, where we achieve similar or better performance with fewer labeled samples compared to previous work.

  3. New Optical Methods for Signal Processing

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    This doctoral thesis studies the optical implementations of various new algorithms and methods for large bandwidth signal and image processing. Among the schemes to be studied are the long data stream convolution/correlation, the Gabor and the wavelet transforms, and their applications to system failure prediction, dense target signal processing and image coding. Based on the Chinese remainder theorem, optically implementable algorithms are described, which convert the convolution/correlation of long data streams to relatively small scale linear operations such as a group of short -term vector-matrix multiplications or short-term convolutions/correlations. The proposed algorithms can be realized by using the existing optical analog data processors. Simulations were performed to prove their validity. Technical problems and fundamental limitations of the above schemes are studied. Following the consideration of the above time domain operations, signal's representations in joint time -frequency (scale) domain are then considered. An opto -electronic Gabor coefficient processor is designed to perform the Gabor transform on short one-dimensional (1-D) signals in real-time. Some experimental results are presented to confirm the operational principle of the system. As an application of this processor, Gabor transform based transient signal detection is studied. Other schemes for implementing Gabor transform of long 1-D signals based on the long data stream convolver, and 2-D signals are also investigated. Following the study of the Gabor transform, the newly suggested wavelet transform is considered for its optical implementation. Using commercially available opto-electronic components, an optical wavelet processor is designed and built to perform the wavelet transforms on short 1-D signals in real-time. As an extension, architectures for 2-D optical wavelet transform are also described and computer simulated with the consideration of their technical problems of optical

  4. A unified approach to sparse signal processing

    NASA Astrophysics Data System (ADS)

    Marvasti, Farokh; Amini, Arash; Haddadi, Farzan; Soltanolkotabi, Mahdi; Khalaj, Babak Hossein; Aldroubi, Akram; Sanei, Saeid; Chambers, Janathon

    2012-12-01

    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, component analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing, and rate of innovation. The redundancy introduced by channel coding in finite and real Galois fields is then related to over-sampling with similar reconstruction algorithms. The error locator polynomial (ELP) and iterative methods are shown to work quite effectively for both sampling and coding applications. The methods of Prony, Pisarenko, and MUltiple SIgnal Classification (MUSIC) are next shown to be targeted at analyzing signals with sparse frequency domain representations. Specifically, the relations of the approach of Prony to an annihilating filter in rate of innovation and ELP in coding are emphasized; the Pisarenko and MUSIC methods are further improvements of the Prony method under noisy environments. The iterative methods developed for sampling and coding applications are shown to be powerful tools in spectral estimation. Such narrowband spectral estimation is then related to multi-source location and direction of arrival estimation in array processing. Sparsity in unobservable source signals is also shown to facilitate source separation in sparse component analysis; the algorithms developed in this area such as linear programming and matching pursuit are also widely used in compressed sensing. Finally

  5. Designer cell signal processing circuits for biotechnology

    PubMed Central

    Bradley, Robert W.; Wang, Baojun

    2015-01-01

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192

  6. Designer cell signal processing circuits for biotechnology.

    PubMed

    Bradley, Robert W; Wang, Baojun

    2015-12-25

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192

  7. Signal Processing Methods Monitor Cranial Pressure

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Dr. Norden Huang, of Goddard Space Flight Center, invented a set of algorithms (called the Hilbert-Huang Transform, or HHT) for analyzing nonlinear and nonstationary signals that developed into a user-friendly signal processing technology for analyzing time-varying processes. At an auction managed by Ocean Tomo Federal Services LLC, licenses of 10 U.S. patents and 1 domestic patent application related to HHT were sold to DynaDx Corporation, of Mountain View, California. DynaDx is now using the licensed NASA technology for medical diagnosis and prediction of brain blood flow-related problems, such as stroke, dementia, and traumatic brain injury.

  8. Array algebra estimation in signal processing

    NASA Astrophysics Data System (ADS)

    Rauhala, U. A.

    A general theory of linear estimators called array algebra estimation is interpreted in some terms of multidimensional digital signal processing, mathematical statistics, and numerical analysis. The theory has emerged during the past decade from the new field of a unified vector, matrix and tensor algebra called array algebra. The broad concepts of array algebra and its estimation theory cover several modern computerized sciences and technologies converting their established notations and terminology into one common language. Some concepts of digital signal processing are adopted into this language after a review of the principles of array algebra estimation and its predecessors in mathematical surveying sciences.

  9. Signal processing method and system for noise removal and signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren

    2009-04-14

    A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.

  10. Stimulus Contrast and Retinogeniculate Signal Processing

    PubMed Central

    Rathbun, Daniel L.; Alitto, Henry J.; Warland, David K.; Usrey, W. Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  11. Stimulus Contrast and Retinogeniculate Signal Processing.

    PubMed

    Rathbun, Daniel L; Alitto, Henry J; Warland, David K; Usrey, W Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  12. Cross-frequency Doppler sensitive signal processing

    NASA Astrophysics Data System (ADS)

    Wagstaff, Ronald A.

    2005-04-01

    When there is relative motion between an acoustic source and a receiver, a signal can be Doppler shifted in frequency and enter or leave the processing bins of the conventional signal processor. The amount of the shift is determined by the frequency and the rate of change in the distance between the source and the receiver. This frequency Doppler shifting can cause severe reductions in the processors performance. Special cross-frequency signal processing algorithms have recently been developed to mitigate the effects of Doppler. They do this by using calculation paths that cut across frequency bins in order to follow signals during frequency shifting. Cross-frequency spectral grams of a fast-flying sound source were compared to conventional grams, to evaluate the performance of this new signal processing method. The Doppler shifts in the data ranged up to 70 contiguous frequency bins. The resulting cross-frequency grams showed that three paths provided small to no improvement. Four paths showed improvements for either up-frequency or down-frequency shifting, but not for both. Two paths showed substantial improvement for both up-frequency and down-frequency shifting. The cross-frequency paths will be defined, and comparisons between conventional and cross-frequency grams will be presented. [Work supported by Miltec Corporation.

  13. Visual signal processing, speechreading, and related issues

    NASA Astrophysics Data System (ADS)

    Levitt, Harry

    2003-06-01

    People with hearing loss make use of visual speech cues to supplement the impoverished speech signal. This process, known as speechreading (or lipreading) can be very effective because of the complementary nature of auditory and visual speech cues. Despite the importance of visual speech cues (for both normal-hearing and hearing-impaired people) research on the visual characteristics of speech has lagged behind research on the acoustic characteristics of speech. The field of acoustic phonetics benefited substantially from the availability of powerful techniques for acoustic signal analysis. The substantial, recent advances in optical signal processing have opened up new vistas for visual speech analysis analogous to the way technological innovation revolutionized the field of acoustic phonetics. This paper describes several experiments in the emerging field of optic phonetics.

  14. Signal processing for distributed sensor concept: DISCO

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2007-04-01

    Distributed Sensor concept - DISCO proposed for multiplication of individual sensor capabilities through cooperative target engagement. DISCO relies on ability of signal processing software to format, to process and to transmit and receive sensor data and to exploit those data in signal synthesis process. Each sensor data is synchronized formatted, Signal-to-Noise Ration (SNR) enhanced and distributed inside of the sensor network. Signal processing technique for DISCO is Recursive Adaptive Frame Integration of Limited data - RAFIL technique that was initially proposed [1] as a way to improve the SNR, reduce data rate and mitigate FPA correlated noise of an individual sensor digital video-signal processing. In Distributed Sensor Concept RAFIL technique is used in segmented way, when constituencies of the technique are spatially and/or temporally separated between transmitters and receivers. Those constituencies include though not limited to two thresholds - one is tuned for optimum probability of detection, the other - to manage required false alarm rate, and limited frame integration placed somewhere between the thresholds as well as formatters, conventional integrators and more. RAFIL allows a non-linear integration that, along with SNR gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability [2]. DISCO architecture allows flexible optimization of SNR gain, data rates and noise suppression on sensor's side and limited integration, re-formatting and final threshold on node's side. DISCO with Recursive Adaptive Frame Integration of Limited data may have flexible architecture that allows segmenting the hardware and software to be best suitable for specific DISCO applications and sensing needs - whatever it is air-or-space platforms, ground terminals or integration of sensors network.

  15. Displays, memories, and signal processing: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given.

  16. Signal processing aspects of windshear detection

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.; Baxa, Ernest G., Jr.; Bracalente, Emedio M.

    1993-01-01

    Low-altitude windshear (LAWS) has been identified as a major hazard to aircraft, particularly during takeoff and landing. The Federal Aviation Administration (FAA) has been involved with developing technology to detect LAWS. A key element in this technology is high resolution pulse Doppler weather radar equipped with signal and data processing to provide timely information about possible hazardous conditions.

  17. Efficient multiprocessor architecture for digital signal processing

    SciTech Connect

    Auguin, M.; Boeri, F.

    1982-01-01

    There is a continuing pressure of better processing performances in numerical signal processing. Effective utilization of LSI semiconductor technology allows the consideration of multiprocessor architectures. The problem of interconnecting the components of the architecture arises. The authors describe a control algorithm of the Benes interconnection network in a asynchronous multiprocessor system. A simulation study of the time-shared bus, of the omega network, of the benes network and of the crossbar network gives a comparison of performances. 8 references.

  18. Signal processing of ultrasonic tomographic data

    NASA Astrophysics Data System (ADS)

    Tsihrintzis, George A.; Devaney, Anthony J.

    1992-12-01

    We process a set of data measured with a prototype ultrasonic scanner developed by the Norwegian company Norwave Development AS, Oslo, Norway in collaboration with the American company A.J. Devaney Associates, Boston, Massachusetts. In particular, we apply signal processing algorithms, recently developed by the authors to locate known test objects in a fluid background. Possible applications of the research include locating and identifying cancerous tumors in human tissue. These and other avenues for future research are discussed in the paper.

  19. Spatial acoustic signal processing for immersive communication

    NASA Astrophysics Data System (ADS)

    Atkins, Joshua

    Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to

  20. Stepped-frequency radar signal processing

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-01-01

    Stepped-frequency radar is a prominent example of the class of continuous-wave radar systems. Since raw data are recorded in frequency-domain direct investigations referring to the frequency content can be done on the raw data. However, a transformation of these data is required in order to obtain a time-domain representation of the targets illuminated by the radar. In this paper we present different ways of arranging the raw data which then are processed by means of the inverse fast Fourier transform. On the basis of the time-domain result we discuss strengths and weaknesses of each of these data structures. Furthermore, we investigate the influence of phase noise on the time-domain signal by means of an appropriate model implemented in our simulation tool. We also demonstrate the effects of commonly known techniques of digital signal processing, such as windowing and zero-padding of frequency-domain data. Finally we present less commonly known methods, such as the processing gain of the (inverse) fast Fourier transform by means of which the signal to noise ratio of the time-domain signal can be increased.

  1. Signal processing in impulsive electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Zabin, Serena M.

    1991-06-01

    Statistical signal processing functions such as signal detection, estimating, and identification play a key role in the development of effective communications, radar, and sonar systems. For example, advanced statistical methods are emerging as being particularly important in digital communications systems operating in channels corrupted by interference from such phenomena as multiple-access noise, intentional jamming, and impulsive noise sources. Conventional demodulation methods, such as coherent matched filtering, often suffer serious performance degradation when subjected to interference of these types; however, this degradation can frequently be eliminated through the use of more sophisticated signal processing techniques. A central issue in the design of effective signal processing procedures for system operating in channels such as those noted above is that of channel identification. Although certain aspects of channel identification have been studied extensively, one area in which there is a pressing need for further research is that of identification of impulsive channels. Communication systems are seldom interfered with by white Gaussian noise alone, yet receiving systems in general use are those which are optimum for white Gaussian noise.

  2. Digital signal processing for ionospheric propagation diagnostics

    NASA Astrophysics Data System (ADS)

    Rino, Charles L.; Groves, Keith M.; Carrano, Charles S.; Gunter, Jacob H.; Parris, Richard T.

    2015-08-01

    For decades, analog beacon satellite receivers have generated multifrequency narrowband complex data streams that could be processed directly to extract total electron content (TEC) and scintillation diagnostics. With the advent of software-defined radio, modern digital receivers generate baseband complex data streams that require intermediate processing to extract the narrowband modulation imparted to the signal by ionospheric structure. This paper develops and demonstrates a processing algorithm for digital beacon satellite data that will extract TEC and scintillation components. For algorithm evaluation, a simulator was developed to generate noise-limited multifrequency complex digital signal realizations with representative orbital dynamics and propagation disturbances. A frequency-tracking procedure is used to capture the slowly changing frequency component. Dynamic demodulation against the low-frequency estimate captures the scintillation. The low-frequency reference can be used directly for dual-frequency TEC estimation.

  3. Simplified signal processing for impedance spectroscopy with spectrally sparse sequences

    NASA Astrophysics Data System (ADS)

    Annus, P.; Land, R.; Reidla, M.; Ojarand, J.; Mughal, Y.; Min, M.

    2013-04-01

    Classical method for measurement of the electrical bio-impedance involves excitation with sinusoidal waveform. Sinusoidal excitation at fixed frequency points enables wide variety of signal processing options, most general of them being Fourier transform. Multiplication with two quadrature waveforms at desired frequency could be easily accomplished both in analogue and in digital domains, even simplest quadrature square waves can be considered, which reduces signal processing task in analogue domain to synchronous switching followed by low pass filter, and in digital domain requires only additions. So called spectrally sparse excitation sequences (SSS), which have been recently introduced into bio-impedance measurement domain, are very reasonable choice when simultaneous multifrequency excitation is required. They have many good properties, such as ease of generation and good crest factor compared to similar multisinusoids. Typically, the usage of discrete or fast Fourier transform in signal processing step is considered so far. Usage of simplified methods nevertheless would reduce computational burden, and enable simpler, less costly and less energy hungry signal processing platforms. Accuracy of the measurement with SSS excitation when using different waveforms for quadrature demodulation will be compared in order to evaluate the feasibility of the simplified signal processing. Sigma delta modulated sinusoid (binary signal) is considered to be a good alternative for a synchronous demodulation.

  4. Parallel digital signal processing architectures for image processing

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Shirish P.; Hartley, David A.; Harvey, David M.; Hobson, Clifford A.

    1994-10-01

    This paper describes research into a high speed image processing system using parallel digital signal processors for the processing of electro-optic images. The objective of the system is to reduce the processing time of non-contact type inspection problems including industrial and medical applications. A single processor can not deliver sufficient processing power required for the use of applications hence, a MIMD system is designed and constructed to enable fast processing of electro-optic images. The Texas Instruments TMS320C40 digital signal processor is used due to its high speed floating point CPU and the support for the parallel processing environment. A custom designed VISION bus is provided to transfer images between processors. The system is being applied for solder joint inspection of high technology printed circuit boards.

  5. Signal Subspace Processing Of Experimental Radio Data

    NASA Astrophysics Data System (ADS)

    Martin, Gordon E.

    1988-02-01

    The research related to this paper was concerned with the application of EigenVector EigenValue ( EVEV ) signal processing techniques to experimental data. The signal subspace methods of Schmidt (called MUSIC), Johnson, and Pisarenko were considered and compared with results of conventional beamformers. Almost all oral and written papers regarding these EVEV processors involve theoretical studies, possibly using simulated data and incoherent noise, but not experimental data. Contrary to that trend, we have reported behavior of EVEV processors using experimental data in this and other papers. The data used here are predominantly due to an HF radio experiment, but the distribution of eigenvalues is also reported for acoustic data. The paper emphasizes two general subtopics of signal subspace processing. First, the eigenvalues of sampled covariance matrices are examined and related to those of incoherent noise. These results include actual data, all of which we found were not Gaussian incoherent noise. A new test related to the ratio of eigenvalues is developed. The MDL and AIC criteria give misleading results with actual noise. Second, directional responses of EVEV and conventional processors are compared using HF radio data that has high signal-to-noise ratio in the non-Gaussian noise. MUSIC is found to have very favorable directional characteristics.

  6. Assess sleep stage by modern signal processing techniques.

    PubMed

    Wu, Hau-tieng; Talmon, Ronen; Lo, Yu-Lun

    2015-04-01

    In this paper, two modern adaptive signal processing techniques, empirical intrinsic geometry and synchrosqueezing transform, are applied to quantify different dynamical features of the respiratory and electroencephalographic signals. We show that the proposed features are theoretically rigorously supported, as well as capture the sleep information hidden inside the signals. The features are used as input to multiclass support vector machines with the radial basis function to automatically classify sleep stages. The effectiveness of the classification based on the proposed features is shown to be comparable to human expert classification-the proposed classification of awake, REM, N1, N2, and N3 sleeping stages based on the respiratory signal (resp. respiratory and EEG signals) has the overall accuracy 81.7% (resp. 89.3%) in the relatively normal subject group. In addition, by examining the combination of the respiratory signal with the electroencephalographic signal, we conclude that the respiratory signal consists of ample sleep information, which supplements to the information stored in the electroencephalographic signal. PMID:25438301

  7. Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement

    NASA Astrophysics Data System (ADS)

    Henry, C. A.; Diwakar, P. K.; Hahn, D. W.

    2007-12-01

    The role of helium addition on the analyte signal enhancement in laser-induced breakdown spectroscopy for analysis of pure gaseous systems was examined using carbon and hydrogen atomic emission lines. Increased analyte response, as measured by peak-to-base and signal-to-noise ratios, was observed with increasing helium addition, with maximum enhancement approaching a factor of 7. Additional measurements revealed a significant decrease in plasma electron density with increasing helium addition. To explore the mechanisms of analyte signal enhancement, the helium emission lines were also examined and found to be effectively quenched with nitrogen addition. In consideration of the data, it is concluded that the role of metastable helium is not as important as the overall changes in plasma properties, namely electron density and laser-plasma coupling. Helium addition is concluded to affect the electron density via Penning ionization, as well as to play a role in the initial plasma breakdown processes.

  8. Macrocell design for concurrent signal processing

    SciTech Connect

    Pope, S.P.; Brodersen, R.W.

    1983-01-01

    Macrocells serve as subsystems at the top level of the hardware design hierarchy. The authors present the macrocell design technique as applied to the implementation of real-time, sampled-data signal processing functions. The design of such circuits is particularly challenging due to the computationally intensive nature of signal-processing algorithms and the constraints of real-time operation. The most efficient designs make use of a high degree of concurrency-a property facilitated by the microcell approach. Two circuit projects whose development resulted largely from the macrocell methodology described are used as examples throughout the report: a linear-predictive vocoder circuit, and a front-end filter-bank chip for a speech recognition system. Both are monolithic multiprocessor implementations: the lpc vocoder circuit contains three processors, the filter-bank chip two processors. 10 references.

  9. ISLE (Image and Signal Lisp Environment): A functional language interface for signal and image processing

    SciTech Connect

    Azevedo, S.G.; Fitch, J.P.

    1987-05-01

    Conventional software interfaces which utilize imperative computer commands or menu interactions are often restrictive environments when used for researching new algorithms or analyzing processed experimental data. We found this to be true with current signal processing software (SIG). Existing ''functional language'' interfaces provide features such as command nesting for a more natural interaction with the data. The Image and Signal Lisp Environment (ISLE) will be discussed as an example of an interpreted functional language interface based on Common LISP. Additional benefits include multidimensional and multiple data-type independence through dispatching functions, dynamic loading of new functions, and connections to artificial intelligence software.

  10. EXPOSURE TO CHEMICAL ADDITIVES FROM POLYVINYL CHLORIDE POLYMER EXTRUSION PROCESSING

    EPA Science Inventory

    This report presents a model to predict worker inhalation exposure due to off-gassing of additives during polyvinyl chloride (PVC) extrusion processing. ata on off-gassing of additives were reviewed in the literature, the off-gassing at normal PVC processing temperatures was stud...

  11. Digital signal processing in acoustics. I

    NASA Astrophysics Data System (ADS)

    Davies, H.; McNeil, D. J.

    1985-11-01

    Digital signal processing techniques have gained steadily in importance over the past few years in many areas of science and engineering and have transformed the character of instrumentation used in laboratory and plant. This is particularly marked in acoustics, which has both benefited from the developments in signal processing and provided significant stimulus for these developments. As a result acoustical techniques are now used in a very wide range of applications and acoustics is one area in which digital signal processing is exploited to its limits. For example, the development of fast algorithms for computing Fourier transforms and the associated developments in hardware have led to remarkable advances in the use of spectral analysis as a means of investigating the nature and characteristics of acoustic sources. Speech research has benefited considerably in this respect, and, in a rather more technological application, spectral analysis of machinery noise provides information about changes in machine condition which may indicate imminent failure. More recently the observation that human and animal muscles emit low intensity noise suggests that spectral analysis of this noise may yield information about muscle structure and performance.

  12. Roles for RNA in Telomerase Nucleotide and Repeat Addition Processivity

    PubMed Central

    Lai, Cary K.; Miller, Michael C.; Collins, Kathleen

    2010-01-01

    Summary Telomerase is a ribonucleoprotein reverse transcriptase with two subunits critical for catalytic activity, the protein telomerase reverse transcriptase (TERT) and telomerase RNA. In this study, we establish additional roles of the telomerase RNA subunit by demonstrating that RNA motifs stimulate the processivity of nucleotide and repeat addition. These functions are both functionally and physically separable from the roles of other RNA motifs in establishing a properly defined template. Binding of Tetrahymena telomerase RNA stem IV to TERT enhances nucleotide addition processivity, while a cooperation of the RNA pseudoknot and stem IV promotes repeat addition processivity. The low processivity of DNA synthesis by telomerase ribonucleoproteins lacking the pseudoknot and/or stem IV can be rescued by addition of the deleted region in trans. These findings demonstrate RNA elements with roles in telomerase elongation processivity that are distinct from RNA elements that specify the internal template. PMID:12820978

  13. Using Seismic Signals to Forecast Volcanic Processes

    NASA Astrophysics Data System (ADS)

    Salvage, R.; Neuberg, J. W.

    2012-04-01

    Understanding seismic signals generated during volcanic unrest have the ability to allow scientists to more accurately predict and understand active volcanoes since they are intrinsically linked to rock failure at depth (Voight, 1988). In particular, low frequency long period signals (LP events) have been related to the movement of fluid and the brittle failure of magma at depth due to high strain rates (Hammer and Neuberg, 2009). This fundamentally relates to surface processes. However, there is currently no physical quantitative model for determining the likelihood of an eruption following precursory seismic signals, or the timing or type of eruption that will ensue (Benson et al., 2010). Since the beginning of its current eruptive phase, accelerating LP swarms (< 10 events per hour) have been a common feature at Soufriere Hills volcano, Montserrat prior to surface expressions such as dome collapse or eruptions (Miller et al., 1998). The dynamical behaviour of such swarms can be related to accelerated magma ascent rates since the seismicity is thought to be a consequence of magma deformation as it rises to the surface. In particular, acceleration rates can be successfully used in collaboration with the inverse material failure law; a linear relationship against time (Voight, 1988); in the accurate prediction of volcanic eruption timings. Currently, this has only been investigated for retrospective events (Hammer and Neuberg, 2009). The identification of LP swarms on Montserrat and analysis of their dynamical characteristics allows a better understanding of the nature of the seismic signals themselves, as well as their relationship to surface processes such as magma extrusion rates. Acceleration and deceleration rates of seismic swarms provide insights into the plumbing system of the volcano at depth. The application of the material failure law to multiple LP swarms of data allows a critical evaluation of the accuracy of the method which further refines current

  14. Signal processing for ION mobility spectrometers

    NASA Technical Reports Server (NTRS)

    Taylor, S.; Hinton, M.; Turner, R.

    1995-01-01

    Signal processing techniques for systems based upon Ion Mobility Spectrometry will be discussed in the light of 10 years of experience in the design of real-time IMS. Among the topics to be covered are compensation techniques for variations in the number density of the gas - the use of an internal standard (a reference peak) or pressure and temperature sensors. Sources of noise and methods for noise reduction will be discussed together with resolution limitations and the ability of deconvolution techniques to improve resolving power. The use of neural networks (either by themselves or as a component part of a processing system) will be reviewed.

  15. C language algorithms for digital signal processing

    SciTech Connect

    Embree, P.M.; Kimble, B.

    1991-01-01

    The use of the C programming language to construct digital signal-processing (DSP) algorithms for operation on high-performance personal computers is described in a textbook for engineering students. Chapters are devoted to the fundamental principles of DSP, basic C programming techniques, user-interface and disk-storage routines, filtering routines, discrete Fourier transforms, matrix and vector routines, and image-processing routines. Also included is a floppy disk containing a library of standard C mathematics, character-string, memory-allocation, and I/O functions; a library of DSP functions; and several sample DSP programs. 83 refs.

  16. Parallel Signal Processing and System Simulation using aCe

    NASA Technical Reports Server (NTRS)

    Dorband, John E.; Aburdene, Maurice F.

    2003-01-01

    Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).

  17. NOVEL SIGNAL PROCESSING WITH NONLINEAR TRANSMISSION LINES

    SciTech Connect

    D. REAGOR; ET AL

    2000-08-01

    Nonlinear dielectrics offer uniquely strong and tunable nonlinearities that make them attractive for current devices (for example, frequency-agile microwave filters) and for future signal-processing technologies. The goal of this project is to understand pulse propagation on nonlinear coplanar waveguide prototype devices. We have performed time-domain and frequency-domain experimental studies of simple waveguide structures and pursued a theoretical understanding of the propagation of signals on these nonlinear waveguides. To realistically assess the potential applications, we used a time-domain measurement and analysis technique developed during this project to perform a broadband electrodynamics characterization in terms of nonlinear, dispersive, and dissipative effects. We completed a comprehensive study of coplanar waveguides made from high-temperature superconducting thin-film YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} electrodes on nonlinear dielectric single-crystal SrTiO{sub 3} substrates. By using parameters determined from small-signal (linear) transmission characteristics of the waveguides, we develop a model equation that successfully predicts and describes large-signal (nonlinear) behavior.

  18. Radar transponder apparatus and signal processing technique

    SciTech Connect

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1994-12-31

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance tile transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag, through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  19. Signal processing in impulsive electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Zabin, Serena M.

    1993-06-01

    Statistical signal processing functions such as signal detection, estimation, and identification play a key role in the development of effective communications, radar, and sonar systems. For example, advanced statistical methods are emerging as being particularly important in digital communications systems operating in channels corrupted by interference from such phenomena as multiple-access noise, intentional jamming, and impulsive noise sources. Conventional demodulation methods, such as coherent matched filtering, often suffer serious performance degradation when subject to interference of these types; however, this degradation can frequently be eliminated through the use of more sophisticated signal processing techniques. During this reporting period, the focus of our work has been on the problem of obtaining optimum and efficient identification and detection procedures for impulsive channels. Of particular interest is the Middleton Class A noise model, which is a widely-accepted statistical-physical model for impulsive interference superimposed on a Gaussian background. The model has two basic parameters that can be adjusted to fit a wide variety of impulsive noise phenomena occurring in practice.

  20. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  1. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  2. Optical signal processing at Essex Corporation

    NASA Astrophysics Data System (ADS)

    Franklin, William R.

    1996-02-01

    The most current research and development in optical signal processing and its application at Essex Corporation is summarized. In progress for more than a decade, this work has evolved from the development of highly specialized algorithms for the intelligence community to more general domains embracing such diverse areas as radar signal processing, medical ultrasound and magnetic resonance imaging, acoustic tomography, and cellular and satellite communications. Essex develops algorithms and designs, fabricates, and tests breadboard designs and transforms these into rugged, compact products for use in harsh environments. Descriptions of the most important investigations in these areas are presented. An image synthesizer called ImSynTM is described that forms images from the measured spatial Fourier components of the object to be imaged. Applications to synthetic aperture radar, acoustic tomography, medical resonance imaging, and synthetic aperture microscopy are shown. An acousto-optic radar signal processor is described that can produce high-resolution, high-dynamic-range range Doppler maps from instantaneous wideband radar returns. A design for a fiber optic true-time delay beamformer is presented. Finally, an optoelectronic telecommunications switch is discussed.

  3. Automatic generation of signal processing integrated circuits

    SciTech Connect

    Pope, S.P.

    1985-01-01

    A system for the automated design of signal processing integrated circuits is described in this thesis. The system is based on a library of circuit cells, and a software package that can configure the cells into complete integrated circuits. The architecture of the cell library is optimized for low and medium bandwidth digital signal processing applications. Circuits designed with the system use a multiprocessor architecture. Input to the system is a design file written in a specialized programming language. Software emulation from the design file is used to verify performance. A two-pass silicon compiler is used to translate the design file into a mask-level description of an integrated circuit. A major goal of the project is to make the system useable by those with little or no formal training in integrated circuits. A second goal is to reduce the time and cost associated with performing an integrated circuit design, while still producing designs which are reasonably efficient in their use of the technology. Development of the system was guided by basic research on appropriate architectures and circuit constructs for signal processors. As part of this research an integrated circuit was designed which performs speech analysis and synthesis. This vocoder circuit is intended for use in low-bit-rate digital speech transmission systems.

  4. Exposure to chemical additives from polyvinyl chloride polymer extrusion processing

    SciTech Connect

    Lamb, C.S.

    1989-12-01

    The report presents a model to predict worker inhalation exposure due to off-gassing of additives during polyvinyl chloride (PVC) extrusion processing. Data on off-gassing of additives were reviewed in the literature, the off-gassing at normal PVC processing temperatures was studied in the laboratory, process variables were estimated from an equipment manufacturer survey, and worker-activities and possible exposure sources were observed in an industrial survey. The purpose of the study was to develop a theoretical model to predict worker inhalation exposure to additives used during PVC extrusion processing. A model to estimate the generation rate of the additive from the polymer extrudate was derived from the mass transport equations governing diffusion. The mass flow rate, initial additive volatile weight fraction, off-gassing time, diffusivity, and slab thickness are required to determine the generation rate from the model.

  5. An intelligent, onboard signal processing payload concept

    SciTech Connect

    Shriver, P. M.; Harikumar, J.; Briles, S. C.; Gokhale, M.

    2003-01-01

    Our approach to onboard processing will enable a quicker return and improved quality of processed data from small, remote-sensing satellites. We describe an intelligent payload concept which processes RF lightning signal data onboard the spacecraft in a power-aware manner. Presently, onboard processing is severely curtailed due to the conventional management of limited resources and power-unaware payload designs. Delays of days to weeks are commonly experienced before raw data is received, processed into a human-usable format, and finally transmitted to the end-user. We enable this resource-critical technology of onboard processing through the concept of Algorithm Power Modulation (APM). APM is a decision process used to execute a specific software algorithm, from a suite of possible algorithms, to make the best use of the available power. The suite of software algorithms chosen for our application is intended to reduce the probability of false alarms through postprocessing. Each algorithm however also has a cost in energy usage. A heuristic decision tree procedure is used which selects an algorithm based on the available power, time allocated, algorithm priority, and algorithm performance. We demonstrate our approach to power-aware onboard processing through a preliminary software simulation.

  6. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  7. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  8. Signal processing electronics for a capacitive microsensor

    NASA Astrophysics Data System (ADS)

    Amendola, Gilles; Lu, Guo N.

    2000-04-01

    An interface circuit in a 0.8-micrometers CMOS process for the on- chip integration of a capacitive micro-sensor used as a microphone is presented. In order to circumvent 1/f noise contributions and to improve the signal/noise ratio, a synchronous modulation-demodulation technique has been applied. For the implementation of this technique, we have studied and designed several functional block, such as modulator with signal conversion, low-noise amplifier, demodulator, etc. To deal with problems related to dispersion of intrinsic capacitance of the sensor, a feedback compensating solution is suggested. The designed circuit has a sensibility of 1200 V/pF, with a minimum detectable capacitance variation of 2 10-6 pF.

  9. FPGA-Based Filterbank Implementation for Parallel Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Berner, Stephan; DeLeon, Phillip

    1999-01-01

    One approach to parallel digital signal processing decomposes a high bandwidth signal into multiple lower bandwidth (rate) signals by an analysis bank. After processing, the subband signals are recombined into a fullband output signal by a synthesis bank. This paper describes an implementation of the analysis and synthesis banks using (Field Programmable Gate Arrays) FPGAs.

  10. Efficient audio signal processing for embedded systems

    NASA Astrophysics Data System (ADS)

    Chiu, Leung Kin

    As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine

  11. Seismic signal processing on heterogeneous supercomputers

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Ermert, Laura; Fichtner, Andreas

    2015-04-01

    The processing of seismic signals - including the correlation of massive ambient noise data sets - represents an important part of a wide range of seismological applications. It is characterized by large data volumes as well as high computational input/output intensity. Development of efficient approaches towards seismic signal processing on emerging high performance computing systems is therefore essential. Heterogeneous supercomputing systems introduced in the recent years provide numerous computing nodes interconnected via high throughput networks, every node containing a mix of processing elements of different architectures, like several sequential processor cores and one or a few graphical processing units (GPU) serving as accelerators. A typical representative of such computing systems is "Piz Daint", a supercomputer of the Cray XC 30 family operated by the Swiss National Supercomputing Center (CSCS), which we used in this research. Heterogeneous supercomputers provide an opportunity for manifold application performance increase and are more energy-efficient, however they have much higher hardware complexity and are therefore much more difficult to program. The programming effort may be substantially reduced by the introduction of modular libraries of software components that can be reused for a wide class of seismology applications. The ultimate goal of this research is design of a prototype for such library suitable for implementing various seismic signal processing applications on heterogeneous systems. As a representative use case we have chosen an ambient noise correlation application. Ambient noise interferometry has developed into one of the most powerful tools to image and monitor the Earth's interior. Future applications will require the extraction of increasingly small details from noise recordings. To meet this demand, more advanced correlation techniques combined with very large data volumes are needed. This poses new computational problems that

  12. Smart signal processing for an evolving electric grid

    NASA Astrophysics Data System (ADS)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  13. Digital signal processing for radioactive decay studies

    SciTech Connect

    Miller, D.; Madurga, M.; Paulauskas, S. V.; Ackermann, D.; Heinz, S.; Hessberger, F. P.; Hofmann, S.; Grzywacz, R.; Miernik, K.; Rykaczewski, K.; Tan, H.

    2011-11-30

    The use of digital acquisition system has been instrumental in the investigation of proton and alpha emitting nuclei. Recent developments extend the sensitivity and breadth of the application. The digital signal processing capabilities, used predominately by UT/ORNL for decay studies, include digitizers with decreased dead time, increased sampling rates, and new innovative firmware. Digital techniques and these improvements are furthermore applicable to a range of detector systems. Improvements in experimental sensitivity for alpha and beta-delayed neutron emitters measurements as well as the next generation of superheavy experiments are discussed.

  14. Inertial processing of vestibulo-ocular signals

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1999-01-01

    New evidence for a central resolution of gravito-inertial signals has been recently obtained by analyzing the properties of the vestibulo-ocular reflex (VOR) in response to combined lateral translations and roll tilts of the head. It is found that the VOR generates robust compensatory horizontal eye movements independent of whether or not the interaural translatory acceleration component is canceled out by a gravitational acceleration component due to simultaneous roll-tilt. This response property of the VOR depends on functional semicircular canals, suggesting that the brain uses both otolith and semicircular canal signals to estimate head motion relative to inertial space. Vestibular information about dynamic head attitude relative to gravity is the basis for computing head (and body) angular velocity relative to inertial space. Available evidence suggests that the inertial vestibular system controls both head attitude and velocity with respect to a gravity-centered reference frame. The basic computational principles underlying the inertial processing of otolith and semicircular canal afferent signals are outlined.

  15. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  16. Computational problems and signal processing in SETI

    NASA Technical Reports Server (NTRS)

    Deans, Stanley R.; Cullers, D. K.; Stauduhar, Richard

    1991-01-01

    The Search for Extraterrestrial Intelligence (SETI), currently being planned at NASA, will require that an enormous amount of data (on the order of 10 exp 11 distinct signal paths for a typical observation) be analyzed in real time by special-purpose hardware. Even though the SETI system design is not based on maximum entropy and Bayesian methods (partly due to the real-time processing constraint), it is expected that enough data will be saved to be able to apply these and other methods off line where computational complexity is not an overriding issue. Interesting computational problems that relate directly to the system design for processing such an enormous amount of data have emerged. Some of these problems are discussed, along with the current status on their solution.

  17. GLAST Burst Monitor Signal Processing System

    SciTech Connect

    Bhat, P. Narayana; Briggs, Michael; Connaughton, Valerie; Paciesas, William; Preece, Robert; Diehl, Roland; Greiner, Jochen; Kienlin, Andreas von; Lichti, Giselher; Steinle, Helmut; Fishman, Gerald; Kouveliotou, Chryssa; Meegan, Charles; Wilson-Hodge, Colleen; Kippen, R. Marc; Persyn, Steven

    2007-07-12

    The onboard Data Processing Unit (DPU), designed and built by Southwest Research Institute, performs the high-speed data acquisition for GBM. The analog signals from each of the 14 detectors are digitized by high-speed multichannel analog data acquisition architecture. The streaming digital values resulting from a periodic (period of 104.2 ns) sampling of the analog signal by the individual ADCs are fed to a Field-Programmable Gate Array (FPGA). Real-time Digital Signal Processing (DSP) algorithms within the FPGA implement functions like filtering, thresholding, time delay and pulse height measurement. The spectral data with a 12-bit resolution are formatted according to the commandable look-up-table (LUT) and then sent to the High-Speed Science-Date Bus (HSSDB, speed=1.5 MB/s) to be telemetered to ground. The DSP offers a novel feature of a commandable and constant event deadtime. The ADC non-linearities have been calibrated so that the spectral data can be corrected during analysis. The best temporal resolution is 2 {mu}s for the pre-burst and post-trigger time-tagged events (TTE) data. The time resolution of the binned data types is commandable from 64 msec to 1.024 s for the CTIME data (8 channel spectral resolution) and 1.024 to 32.768 s for the CSPEC data (128 channel spectral resolution). The pulse pile-up effects have been studied by Monte Carlo simulations. For a typical GRB, the possible shift in the Epeak value at high-count rates ({approx}100 kHz) is {approx}1% while the change in the single power-law index could be up to 5%.

  18. Digital Signal Processing in the GRETINA Spectrometer

    NASA Astrophysics Data System (ADS)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  19. Digital signal processing using virtual instruments

    NASA Astrophysics Data System (ADS)

    Anderson, James A.; Korrapati, Raghu; Swain, Nikunja K.

    2000-08-01

    The area of test and measurement is changing rapidly because of the recent developments in software and hardware. The test and measurement systems are increasingly becoming PC based. Most of these PC based systems use graphical programming language to design test and measurement modules called virtual instruments (Vis). These Vis provide visual representation of dat or models, and make understanding of abstract concepts and algorithms easier. This allows users to express their ideas in a concise manner. One such virtual instruments package is LabVIEW from National Instruments Corporation at Austin, Texas. This software package is one of the first graphical programming products and is currently used in number of academic institutions, industries, Department of Defense graphical programming products and is currently sued in number of academic institutions, industries, Department of Defense, Department of Energy, and National Aeronautics and Space Administration for various test, measurement, and control applications. LabVIEW has an extensive built-in VI library that can be used to design and develop solutions for different applications. Besides using the built-in VI library that can be used to design and develop solutions for different applications. Besides using the built-in VI modules in LabVIEW, the user can design new VI modules easily. This paper discusses the use of LabVIEW to design and develop digital signal processing VI modules such as Fourier Analysis and Windowing. Instructors can use these modules to teach some of the signal processing concepts effectively.

  20. Simple Additivity of Stochastic Psychological Processes: Tests and Measures.

    ERIC Educational Resources Information Center

    Balakrishnan, J. D.

    1994-01-01

    Methods of testing relatively complete (distributional) models of internal psychological processes are described. It is shown that there is a sufficient condition for additive models to imply this property of the likelihood ratio. Also discussed are the examination of hazard rate functions of component processes and change in cumulative…

  1. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  2. Linearly-Constrained Adaptive Signal Processing Methods

    NASA Astrophysics Data System (ADS)

    Griffiths, Lloyd J.

    1988-01-01

    In adaptive least-squares estimation problems, a desired signal d(n) is estimated using a linear combination of L observation values samples xi (n), x2(n), . . . , xL-1(n) and denoted by the vector X(n). The estimate is formed as the inner product of this vector with a corresponding L-dimensional weight vector W. One particular weight vector of interest is Wopt which minimizes the mean-square between d(n) and the estimate. In this context, the term `mean-square difference' is a quadratic measure such as statistical expectation or time average. The specific value of W which achieves the minimum is given by the prod-uct of the inverse data covariance matrix and the cross-correlation between the data vector and the desired signal. The latter is often referred to as the P-vector. For those cases in which time samples of both the desired and data vector signals are available, a variety of adaptive methods have been proposed which will guarantee that an iterative weight vector Wa(n) converges (in some sense) to the op-timal solution. Two which have been extensively studied are the recursive least-squares (RLS) method and the LMS gradient approximation approach. There are several problems of interest in the communication and radar environment in which the optimal least-squares weight set is of interest and in which time samples of the desired signal are not available. Examples can be found in array processing in which only the direction of arrival of the desired signal is known and in single channel filtering where the spectrum of the desired response is known a priori. One approach to these problems which has been suggested is the P-vector algorithm which is an LMS-like approximate gradient method. Although it is easy to derive the mean and variance of the weights which result with this algorithm, there has never been an identification of the corresponding underlying error surface which the procedure searches. The purpose of this paper is to suggest an alternative

  3. Parallel Processing with Digital Signal Processing Hardware and Software

    NASA Technical Reports Server (NTRS)

    Swenson, Cory V.

    1995-01-01

    The assembling and testing of a parallel processing system is described which will allow a user to move a Digital Signal Processing (DSP) application from the design stage to the execution/analysis stage through the use of several software tools and hardware devices. The system will be used to demonstrate the feasibility of the Algorithm To Architecture Mapping Model (ATAMM) dataflow paradigm for static multiprocessor solutions of DSP applications. The individual components comprising the system are described followed by the installation procedure, research topics, and initial program development.

  4. Ultrasonic signal processing and tissue characterization

    NASA Astrophysics Data System (ADS)

    Mu, Zhiping

    Ultrasound imaging has become one of the most widely used diagnostic tools in medicine. While it has advantages, compared with other modalities, in terms of safety, low-cost, accessibility, portability and capability of real-time imaging, it has limitations. One of the major disadvantages of ultrasound imaging is the relatively low image quality, especially the low signal-to-noise ratio (SNR) and the low spatial resolution. Part of this dissertation is dedicated to the development of digital ultrasound signal and image processing methods to improve ultrasound image quality. Conventional B-mode ultrasound systems display the demodulated signals, i.e., the envelopes, in the images. In this dissertation, I introduce the envelope matched quadrature filtering (EMQF) technique, which is a novel demodulation technique generating optimal performance in envelope detection. In ultrasonography, the echo signals are the results of the convolution of the pulses and the medium responses, and the finite pulse length is a major source of the degradation of the image resolution. Based on the more appropriate complex-valued medium response assumption rather than the real-valued assumption used by many researchers, a nonparametric iterative deconvolution method, the Least Squares method with Point Count regularization (LSPC), is proposed. This method was tested using simulated and experimental data, and has produced excellent results showing significant improvements in resolution. During the past two decades, ultrasound tissue characterization (UTC) has emerged as an active research field and shown potentials of applications in a variety of clinical areas. Particularly interesting to me is a group of methods characterizing the scatterer spatial distribution. For resolvable regular structures, a deconvolution based method is proposed to estimate parameters characterizing such structures, including mean scatterer spacing, and has demonstrated superior performance when compared to

  5. System for monitoring non-coincident, nonstationary process signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.

    2005-01-04

    An improved system for monitoring non-coincident, non-stationary, process signals. The mean, variance, and length of a reference signal is defined by an automated system, followed by the identification of the leading and falling edges of a monitored signal and the length of the monitored signal. The monitored signal is compared to the reference signal, and the monitored signal is resampled in accordance with the reference signal. The reference signal is then correlated with the resampled monitored signal such that the reference signal and the resampled monitored signal are coincident in time with each other. The resampled monitored signal is then compared to the reference signal to determine whether the resampled monitored signal is within a set of predesignated operating conditions.

  6. Keeping Signals Straight: How Cells Process Information and Make Decisions

    PubMed Central

    Laub, Michael T.

    2016-01-01

    As we become increasingly dependent on electronic information-processing systems at home and work, it’s easy to lose sight of the fact that our very survival depends on highly complex biological information-processing systems. Each of the trillions of cells that form the human body has the ability to detect and respond to a wide range of stimuli and inputs, using an extraordinary set of signaling proteins to process this information and make decisions accordingly. Indeed, cells in all organisms rely on these signaling proteins to survive and proliferate in unpredictable and sometimes rapidly changing environments. But how exactly do these proteins relay information within cells, and how do they keep a multitude of incoming signals straight? Here, I describe recent efforts to understand the fidelity of information flow inside cells. This work is providing fundamental insight into how cells function. Additionally, it may lead to the design of novel antibiotics that disrupt the signaling of pathogenic bacteria or it could help to guide the treatment of cancer, which often involves information-processing gone awry inside human cells. PMID:27427909

  7. Keeping Signals Straight: How Cells Process Information and Make Decisions.

    PubMed

    Laub, Michael T

    2016-07-01

    As we become increasingly dependent on electronic information-processing systems at home and work, it's easy to lose sight of the fact that our very survival depends on highly complex biological information-processing systems. Each of the trillions of cells that form the human body has the ability to detect and respond to a wide range of stimuli and inputs, using an extraordinary set of signaling proteins to process this information and make decisions accordingly. Indeed, cells in all organisms rely on these signaling proteins to survive and proliferate in unpredictable and sometimes rapidly changing environments. But how exactly do these proteins relay information within cells, and how do they keep a multitude of incoming signals straight? Here, I describe recent efforts to understand the fidelity of information flow inside cells. This work is providing fundamental insight into how cells function. Additionally, it may lead to the design of novel antibiotics that disrupt the signaling of pathogenic bacteria or it could help to guide the treatment of cancer, which often involves information-processing gone awry inside human cells. PMID:27427909

  8. A Novel Approach for Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Chen, Ya-Chin; Juang, Jer-Nan

    1998-01-01

    Adaptive linear predictors have been used extensively in practice in a wide variety of forms. In the main, their theoretical development is based upon the assumption of stationarity of the signals involved, particularly with respect to the second order statistics. On this basis, the well-known normal equations can be formulated. If high- order statistical stationarity is assumed, then the equivalent normal equations involve high-order signal moments. In either case, the cross moments (second or higher) are needed. This renders the adaptive prediction procedure non-blind. A novel procedure for blind adaptive prediction has been proposed and considerable implementation has been made in our contributions in the past year. The approach is based upon a suitable interpretation of blind equalization methods that satisfy the constant modulus property and offers significant deviations from the standard prediction methods. These blind adaptive algorithms are derived by formulating Lagrange equivalents from mechanisms of constrained optimization. In this report, other new update algorithms are derived from the fundamental concepts of advanced system identification to carry out the proposed blind adaptive prediction. The results of the work can be extended to a number of control-related problems, such as disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. The applications implemented are speech processing, such as coding and synthesis. Simulations are included to verify the novel modelling method.

  9. Recursive ideal observer detection of known M-ary signals in multiplicative and additive Gaussian noise.

    NASA Technical Reports Server (NTRS)

    Painter, J. H.; Gupta, S. C.

    1973-01-01

    This paper presents the derivation of the recursive algorithms necessary for real-time digital detection of M-ary known signals that are subject to independent multiplicative and additive Gaussian noises. The motivating application is minimum probability of error detection of digital data-link messages aboard civil aircraft in the earth reflection multipath environment. For each known signal, the detector contains one Kalman filter and one probability computer. The filters estimate the multipath disturbance. The estimates and the received signal drive the probability computers. Outputs of all the computers are compared in amplitude to give the signal decision. The practicality and usefulness of the detector are extensively discussed.

  10. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.

    1991-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  11. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  12. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  13. Control of pyrite addition in coal liquefaction process

    DOEpatents

    Schmid, Bruce K.; Junkin, James E.

    1982-12-21

    Pyrite addition to a coal liquefaction process (22, 26) is controlled (118) in inverse proportion to the calcium content of the feed coal to maximize the C.sub.5 --900.degree. F. (482.degree. C.) liquid yield per unit weight of pyrite added (110). The pyrite addition is controlled in this manner so as to minimize the amount of pyrite used and thus reduce pyrite contribution to the slurry pumping load and disposal problems connected with pyrite produced slag.

  14. Signal Processing Issues in Fourier Transform Spectrometers

    NASA Astrophysics Data System (ADS)

    Hayes, Monson H.

    2002-12-01

    There are a number of interesting and challenging signal processing problems related to the design of a Fourier Transform Spectrometer (FTS). In this project, we look at a few of these problems in two different types of spectrometers-the Geostationary Imaging Fourier Transform Spectrometer (GIFTS), and a Far Infrared (FIR) FTS. One of the si nal processing challenges in GIFTS is the reduction of the massive data rate (2.4 x 109 bps) to an affordable telemetry rate of less than 60 Mbps. Since the GIFTS interferograms are heavily over-sampled, the first step is to decimate (down-sample) the interferograms with minimal distortion while keeping the signal processing algorithms simple enough to be implemented in the GIFTS hardware. Therefore, the first problem we looked at was the design of the decimation filters. Specifically, we performed a detailed analysis of two competing approaches that were being considered. The first, proposed by the Space Dynamics Lab (SDL), was to use a double sideband (real) band-pass filter. The second, proposed by Lincoln Laboratories (LL), was to use a single sideband (complex) band-pass filter. What the study showed was that a complex filter (LL approach) results in a savings of about 25% in the filtering requirements for the long-wave band, while in the mid-wave band the savings are approximately 50%. As a result, the decision was made to use a complex filter. Once the decision to use a complex filter had been made, we looked at some of the consequences of this decision. The most significant of these was the discovery that, with a complex filter, it is possible to extend the long-wave IR band beyond the folding frequency of 1174/cm and recover the SO2 line at 1176.5/cm. What this requires is the design of a band-pass decimation filter with a wider passband, and consequently of higher order. Specifically, it was shown that with about 25% more filter operations, the elusive SO2 line, believed to be irretrievable, could in fact be recovered

  15. Tunable signal processing through modular control of transcription factor translocation

    PubMed Central

    Hao, Nan; Budnik, Bogdan A.; Gunawardena, Jeremy; O’Shea, Erin K.

    2013-01-01

    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal processing functions are integrated into a single molecule and provide a guide for the design of TFs with “programmable” signal processing functions. PMID:23349292

  16. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    SciTech Connect

    van Swol, Frank B.; Miller, James E.

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  17. Advances in white-light optical signal processing

    NASA Technical Reports Server (NTRS)

    Yu, F. T. S.

    1984-01-01

    A technique that permits signal processing operations which can be carried out by white light source is described. The method performs signal processing that obeys the concept of coherent light rather than incoherent optics. Since the white light source contains all the color wavelengths of the visible light, the technique is very suitable for color signal processing.

  18. Dynamic range control of audio signals by digital signal processing

    NASA Astrophysics Data System (ADS)

    Gilchrist, N. H. C.

    It is often necessary to reduce the dynamic range of musical programs, particularly those comprising orchestral and choral music, for them to be received satisfactorily by listeners to conventional FM and AM broadcasts. With the arrival of DAB (Digital Audio Broadcasting) a much wider dynamic range will become available for radio broadcasting, although some listeners may prefer to have a signal with a reduced dynamic range. This report describes a digital processor developed by the BBC to control the dynamic range of musical programs in a manner similar to that of a trained Studio Manager. It may be used prior to transmission in conventional broadcasting, replacing limiters or other compression equipment. In DAB, it offers the possibility of providing a dynamic range control signal to be sent to the receiver via an ancillary data channel, simultaneously with the uncompressed audio, giving the listener the option of the full dynamic range or a reduced dynamic range.

  19. DLP switched blaze grating: the heart of optical signal processing

    NASA Astrophysics Data System (ADS)

    Duncan, Walter M.; Lee, Benjamin L.; Rancuret, Paul; Sawyers, Bryce D.; Endsley, Lynn; Powell, Donald

    2003-01-01

    We have developed an approach for processing communication signals in the optical domain using a DLP digital mirror array driven by a Digital Signal Processor (DSP). In optical communication systems, modulation rates of 10 GB/s and above are common, hence, direct processing of Dense Wavelength Division Multiplexed (DWDM) optical signals without undergoing Optical to Electrical conversion has become a key requirement for cost effective deployment of dynamic optical networks. This work will discuss primarily applications of Optical Signal Processing (OSP) to coherent DWDM signals. Optical Signal Processing has also found applications in spectroscopy, microscopy, sensing, optical correlation, and testing.

  20. Signal processing schemes for optical voltage transducer

    NASA Astrophysics Data System (ADS)

    Chen, Jinling; Xie, Delin; Chen, Hongbin; Xie, Latang; Song, Jianhe; Luo, Xiaoni

    2006-02-01

    This paper describes an optical voltage transducer(OVT) for a 35kV system based on Pockels effect in a BGO(Bi 4Ge 3O 12) crystal. OVT used to measure the voltage of power are superior to conventional electromagnet-induced voltage transducer in many aspects, thus it has great potential to applications. It has some advantages. These advantages are: 1)Optics provides total galvanic separation between the measuring point at high voltage (HV) potential and the measuring equipment at ground potential. 2)Transmission of measuring signals in optical fibers is immune to induced electromagnetic noise even in EMI-environment of switchyards and other high voltage installations. 3)Optics and especially optical fibers make the insulation costs independent of voltage levels thus giving an economical advantage at voltage levels above 100kV. 4)The use of optics is expected to reduce the weight of the transducers. 5)Optical transducers are expected to have a large bandwidth than conventional transducers. 6)The output-signals from an optical transducer are easily interfaced with computers and electronically operated equipment such as digital relays. New techniques developed in electronics and optical field including fiber optic technology bring new contributions to the measurement of voltage and electric field. A Pockels voltage sensor has been widely introduced to electrical power transmission and distribution systems and some advantage of the optical voltage measuring techniques are reported. In this paper, a brief summary of electro-optic effects and the principle of OVT is proposed. The signal processing schemes of different optical path and features are analyzed. The basic principle of OVT is to modulate the irradiance of the light-directed to OVT by an optical fiber-according to the potential difference between the HV-line and the ground potential. The modulation of the light is accomplished by placing a material-that has an optical property (the birefringence), which is

  1. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  2. Effects of acetylacetone additions on PZT thin film processing

    SciTech Connect

    Schwartz, R.W.; Assink, R.A.; Dimos, D.; Sinclair, M.B.; Boyle, T.J.; Buchheit, C.D.

    1995-02-01

    Sol-gel processing methods are frequently used for the fabrication of lead zirconate titanate (PZT) thin films for many electronic applications. Our standard approach for film fabrication utilizes lead acetate and acetic acid modified metal alkoxides of zirconium and titanium in the preparation of our precursor solutions. This report highlights some of our recent results on the effects of the addition of a second chelating ligand, acetylacetone, to this process. The authors discuss the changes in film drying behavior, densification and ceramic microstructure which accompany acetylacetone additions to the precursor solution and relate the observed variations in processing behavior to differences in chemical precursor structure induced by the acetylacetone ligand. Improvements in thin film microstructure, ferroelectric and optical properties are observed when acetylacetone is added to the precursor solution.

  3. Pedagogical reforms of digital signal processing education

    NASA Astrophysics Data System (ADS)

    Christensen, Michael

    The future of the engineering discipline is arguably predicated heavily upon appealing to the future generation, in all its sensibilities. The greatest burden in doing so, one might rightly believe, lies on the shoulders of the educators. In examining the causal means by which the profession arrived at such a state, one finds that the technical revolution, precipitated by global war, had, as its catalyst, institutions as expansive as the government itself to satisfy the demand for engineers, who, as a result of such an existential crisis, were taught predominantly theoretical underpinnings to address a finite purpose. By contrast, the modern engineer, having expanded upon this vision and adapted to an evolving society, is increasingly placed in the proverbial role of the worker who must don many hats: not solely a scientist, yet often an artist; not a businessperson alone, but neither financially naive; not always a representative, though frequently a collaborator. Inasmuch as change then serves as the only constancy in a global climate, therefore, the educational system - if it is to mimic the demands of the industry - is left with an inherent need for perpetual revitalization to remain relevant. This work aims to serve that end. Motivated by existing research in engineering education, an epistemological challenge is molded into the framework of the electrical engineer with emphasis on digital signal processing. In particular, it is investigated whether students are better served by a learning paradigm that tolerates and, when feasible, encourages error via a medium free of traditional adjudication. Through the creation of learning modules using the Adobe Captivate environment, a wide range of fundamental knowledge in signal processing is challenged within the confines of existing undergraduate courses. It is found that such an approach not only conforms to the research agenda outlined for the engineering educator, but also reflects an often neglected reality

  4. A review of channel selection algorithms for EEG signal processing

    NASA Astrophysics Data System (ADS)

    Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq

    2015-12-01

    Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.

  5. User's manual SIG: a general-purpose signal processing program

    SciTech Connect

    Lager, D.; Azevedo, S.

    1983-10-25

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Many of the basic operations one would perform on digitized data are contained in the core SIG package. Out of these core commands, more powerful signal processing algorithms may be built. Many different operations on time- and frequency-domain signals can be performed by SIG. They include operations on the samples of a signal, such as adding a scalar to each sample, operations on the entire signal such as digital filtering, and operations on two or more signals such as adding two signals. Signals may be simulated, such as a pulse train or a random waveform. Graphics operations display signals and spectra.

  6. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  7. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-04-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  8. Microwave photonic delay line signal processing.

    PubMed

    Diehl, John F; Singley, Joseph M; Sunderman, Christopher E; Urick, Vincent J

    2015-11-01

    This paper provides a path for the design of state-of-the-art fiber-optic delay lines for signal processing. The theoretical forms for various radio-frequency system performance metrics are derived for four modulation types: X- and Z-cut Mach-Zehnder modulators, a phase modulator with asymmetric Mach-Zehnder interferometer, and a polarization modulator with control waveplate and polarizing beam splitter. Each modulation type is considered to cover the current and future needs for ideal system designs. System gain, compression point, and third-order output intercept point are derived from the transfer matrices for each modulation type. A discussion of optical amplifier placement and fiber-effect mitigation is offered. The paper concludes by detailing two high-performance delay lines, built for unique applications, that exhibit performance levels an order of magnitude better than commercial delay lines. This paper should serve as a guide to maximizing the performance of future systems and offer a look into current and future research being done to further improve photonics technologies. PMID:26560620

  9. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, J. J.

    1993-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a level uniform flyover is considered in the study, but the code can accept more general flight profiles. The effects of spectral smearing and its removal are discussed. Using test data acquired from an XV-15 tilt-rotor flyover, comparisons are made between the measured and corrected spectra. Frequency shifts are accurately accounted for by the de-Dopplerization procedure. It is shown that by correcting for spherical spreading and Doppler amplitude, along with frequency, can give some idea about noise source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  10. Closed orbit feedback with digital signal processing

    SciTech Connect

    Chung, Y.; Kirchman, J.; Lenkszus, F.

    1994-08-01

    The closed orbit feedback experiment conducted on the SPEAR using the singular value decomposition (SVD) technique and digital signal processing (DSP) is presented. The beam response matrix, defined as beam motion at beam position monitor (BPM) locations per unit kick by corrector magnets, was measured and then analyzed using SVD. Ten BPMs, sixteen correctors, and the eight largest SVD eigenvalues were used for closed orbit correction. The maximum sampling frequency for the closed loop feedback was measured at 37 Hz. Using the proportional and integral (PI) control algorithm with the gains Kp = 3 and K{sub I} = 0.05 and the open-loop bandwidth corresponding to 1% of the sampling frequency, a correction bandwidth ({minus}3 dB) of approximately 0.8 Hz was achieved. Time domain measurements showed that the response time of the closed loop feedback system for 1/e decay was approximately 0.25 second. This result implies {approximately} 100 Hz correction bandwidth for the planned beam position feedback system for the Advanced Photon Source storage ring with the projected 4-kHz sampling frequency.

  11. Optical signal processing using photonic reservoir computing

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Dehyadegari, Louiza

    2014-10-01

    As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.

  12. The metallurgy and processing science of metal additive manufacturing

    SciTech Connect

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-01-01

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developed for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.

  13. The metallurgy and processing science of metal additive manufacturing

    DOE PAGESBeta

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  14. Biologically-based signal processing system applied to noise removal for signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren I.

    2004-07-13

    The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.

  15. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  16. Bacteriorhodopsin films for optical signal processing and data storage

    NASA Technical Reports Server (NTRS)

    Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)

    1996-01-01

    This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.

  17. Nonlinear signal processing using neural networks: Prediction and system modelling

    SciTech Connect

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  18. Statistical signal processing in sensor networks

    NASA Astrophysics Data System (ADS)

    Guerriero, Marco

    In this dissertation we focus on decentralized signal processing in Sensor Networks (SN). Four topics are studied: (i) Direction of Arrival (DOA) estimation using a Wireless Sensor network (WSN), (ii) multiple target tracking in large SN, (iii) decentralized target detection in SN and (iv) decentralized sequential detection in SN with communication constraints. The first topic of this thesis addresses the problem of estimating the DOA of an acoustic wavefront using a a WSN made of isotropic (hence individually useless) sensors. The WSN was designed according to the SENMA (SEnsor Network with Mobile Agents) architecture with a mobile agent (MA) that successively queries the sensors lying inside its field of view. We propose both fast/simple and optimal DOA-estimation schemes, and an optimization of the MAs observation management is also carried out, with the surprising finding that the MA ought to orient itself at an oblique angle to the expected DOA, rather than directly toward it. We also consider the extension to multiple sources; intriguingly, per-source DOA accuracy is higher when there is more than one source. In all cases, performance is investigated by simulation and compared, when appropriate, with asymptotic bounds; these latter are usually met after a moderate number of MA dwells. In the second topic, we study the problem of tracking multiple targets in large SN. While these networks hold significant potential for surveillance, it is of interest to address fundamental limitations in large-scale implementations. We first introduce a simple analytical tracker performance model. Analysis of this model suggests that scan-based tracking performance improves with increasing numbers of sensors, but only to a certain point beyond which degradation is observed. Correspondingly, we address model-based optimization of the local sensor detection threshold and the number of sensors. Next, we propose a two-stage tracking approach (fuse-before-track) as a possible

  19. Microwave signal processing with photorefractive dynamic holography

    NASA Astrophysics Data System (ADS)

    Fotheringham, Edeline B.

    Have you ever found yourself listening to the music playing from the closest stereo rather than to the bromidic (uninspiring) person speaking to you? Your ears receive information from two sources but your brain listens to only one. What if your cell phone could distinguish among signals sharing the same bandwidth too? There would be no "full" channels to stop you from placing or receiving a call. This thesis presents a nonlinear optical circuit capable of distinguishing uncorrelated signals that have overlapping temporal bandwidths. This so called autotuning filter is the size of a U.S. quarter dollar and requires less than 3 mW of optical power to operate. It is basically an oscillator in which the losses are compensated with dynamic holographic gain. The combination of two photorefractive crystals in the resonator governs the filter's winner-take-all dynamics through signal-competition for gain. This physical circuit extracts what is mathematically referred to as the largest principal component of its spatio-temporal input space. The circuit's practicality is demonstrated by its incorporation in an RF-photonic system. An unknown mixture of unknown microwave signals, received by an antenna array, constitutes the input to the system. The output electronically returns one of the original microwave signals. The front-end of the system down converts the 10 GHz microwave signals and amplifies them before the signals phase modulate optical beams. The optical carrier is suppressed from these beams so that it may not be considered as a signal itself to the autotuning filter. The suppression is achieved with two-beam coupling in a single photorefractive crystal. The filter extracts the more intense of the signals present on the carrier-suppressed input beams. The detection of the extracted signal restores the microwave signal to an electronic form. The system, without the receiving antenna array, is packaged in a 13 x 18 x 6″ briefcase. Its power consumption equals that

  20. Basic concepts in the processing of SARSAT signals

    NASA Astrophysics Data System (ADS)

    Chung, T.; Carter, C. R.

    1987-03-01

    Search and rescue satellite-aided tracking (SARSAT) involves the use of satellites in low-polar orbits which relay the emergency signals of distressed vehicles to an earth station for signal analysis. In this paper, some basic concepts and a theoretical analysis of the spectra produced by coherent and noncoherent emergency locator transmitter signals are presented. It is shown that coherent signals can be easily processed using linear spectral analysis. Noncoherent signals, however, require more advanced methods.

  1. Adaptive Noise Suppression Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Kozel, David; Nelson, Richard

    1996-01-01

    A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.

  2. Structural order in additive processed bulk heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Rogers, James Thomas

    Considerable academic and industrial efforts have been dedicated to resolving scientific and technological issues associated with the fabrication of efficient plastic solar cells via solution deposition techniques. The most successful strategy used to generate solution processable devices implements a two component donor-acceptor type system composed of a (p-type) narrow bandgap conjugated polymer donor blended with a (n-type) fullerene acceptor. Due to the limited exciton diffusion lengths (~10 nm) inherent to these materials, efficient photoinduced charge generation requires heterojunction formation (i.e. donor/acceptor interfaces) in close proximity to the region of exciton generation. Maximal charge extraction therefore requires that donor and acceptor components form nanoscale phase separated percolating pathways to their respective electrodes. Devices exhibiting these structural characteristics are termed bulk heterojunction devices (BHJ). Although the BHJ architecture highlights the basic characteristics of functional donor-acceptor type organic solar cells, device optimization requires internal order within each phase and proper organization relative to the substrate in order to maximize charge transport efficiencies and minimize charge carrier recombination losses. The economic viability of BHJ solar cells hinges upon the minimization of processing costs; thus, commercially relevant processing techniques should generate optimal structural characteristics during film formation, eliminating the need for additional post deposition processing steps. Empirical optimization has shown that solution deposition using high boiling point additives (e.g. octanedithiol (ODT)) provides a simple and widely used fabrication method for maximizing the power conversion efficiencies of BHJ solar cells. This work will show using x-ray scattering that a small percentage of ODT (~2%) in chlorobenzene induces the nucleation of polymeric crystallites within 2 min of deposition

  3. Signal processing techniques for stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2014-05-01

    The U.S. Army Research Laboratory (ARL) has developed the impulse-based, ground vehicle-based, forward-looking ultra-wideband (UWB), synthetic aperture radar (SAR) to detect concealed targets. Although the impulse-based architecture offers its own advantages, one of the important challenges is that when using this architecture it is very difficult to transmit a radar signal with an arbitrary bandwidth and shape. This feature is crucial for the radar to be compliant with the local frequency authority. In addition, being able to transmit signals with an arbitrary spectral shape is an important step in creating the next generation of smart (cognitive) radars. Therefore, we have designed a next-generation prototype radar to take advantage of the stepped frequency architecture. The design and building of the radar hardware is underway. In this paper, we study the radar transmit and acquisition scheme; the trade-offs between SAR image performance and various key radar parameters; and data reconstruction techniques for radar signals with an arbitrary spectrum. This study demonstrates performance, provides some guidelines for the radar design, and serves as a foundation for the signal and image processing stage.

  4. Neural Networks for Signal Processing and Control

    NASA Astrophysics Data System (ADS)

    Hesselroth, Ted Daniel

    cortex by the application of lateral interactions during the learning phase. The organization of the mature network is compared to that found in the macaque monkey by several analytical tests. The capacity of the network to process images is investigated. By a method of reconstructing the input images in terms of V1 activities, the simulations show that images can be faithfully represented in V1 by the proposed network. The signal-to-noise ratio of the image is improved by the representation, and compression ratios of well over two-hundred are possible. Lateral interactions between V1 neurons sharpen their orientational tuning. We further study the dynamics of the processing, showing that the rate of decrease of the error of the reconstruction is maximized for the receptive fields used. Lastly, we employ a Fokker-Planck equation for a more detailed prediction of the error value vs. time. The Fokker-Planck equation for an underdamped system with a driving force is derived, yielding an energy-dependent diffusion coefficient which is the integral of the spectral densities of the force and the velocity of the system. The theory is applied to correlated noise activation and resonant activation. Simulation results for the error of the network vs time are compared to the solution of the Fokker-Planck equation.

  5. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, D.J.

    1999-08-24

    A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.

  6. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, David J.

    1999-01-01

    A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.

  7. Advanced Integrated Optical Signal Processing Components.

    NASA Astrophysics Data System (ADS)

    Rastani, Kasra

    This research was aimed at the development of advanced integrated optical components suitable for devices capable of processing multi-dimensional inputs. In such processors, densely packed waveguide arrays with low crosstalk are needed to provide dissection of the information that has been partially processed. Waveguide arrays also expand the information in the plane of the processor while maintaining its coherence. Rib waveguide arrays with low loss, high mode confinement and highly uniform surface quality (660 elements, 8 μm wide, 1 μm high, and 1 cm long with 2 mu m separations) were fabricated on LiNbO _3 substrates through the ion beam milling technique. A novel feature of the multi-dimensional IO processor architecture proposed herein is the implementation of large area uniform outcoupling (with low to moderate outcoupling efficiencies) from rib waveguide arrays in order to access the third dimension of the processor structure. As a means of outcoupling, uniform surface gratings (2 μm and 4 μm grating periods, 0.05 μm high and 1 mm long) with low outcoupling efficiencies (of approximately 2-18%/mm) were fabricated on the nonuniform surface of the rib waveguide arrays. As a practical technique of modulating the low outcoupling efficiencies of the surface gratings, it was proposed to alter the period of the grating as a function of position along each waveguide. Large aperture (2.5 mm) integrated lenses with short positive focal lengths (1.2-2.5 cm) were developed through a modification of the titanium-indiffused proton exchanged (TIPE) technique. Such integrated lenses were fabricated by increasing the refractive index of the slab waveguides by the TIPE process while maintaining the refractive index of the lenses at the lower level of Ti:LiNbO _3 waveguide. By means of curvature reversal of the integrated lenses, positive focal length lenses have been fabricated while providing high mode confinement for the slab waveguide. The above elements performed as

  8. Processable high temperature resistant addition type polyimide laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.

  9. Process monitoring of additive manufacturing by using optical tomography

    SciTech Connect

    Zenzinger, Guenter E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander E-mail: alexander.ladewig@mtu.de; Hess, Thomas E-mail: alexander.ladewig@mtu.de; Henkel, Benjamin E-mail: alexander.ladewig@mtu.de; Satzger, Wilhelm E-mail: alexander.ladewig@mtu.de

    2015-03-31

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  10. Process monitoring of additive manufacturing by using optical tomography

    NASA Astrophysics Data System (ADS)

    Zenzinger, Guenter; Bamberg, Joachim; Ladewig, Alexander; Hess, Thomas; Henkel, Benjamin; Satzger, Wilhelm

    2015-03-01

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  11. Optimizing signal and image processing applications using Intel libraries

    NASA Astrophysics Data System (ADS)

    Landré, Jérôme; Truchetet, Frédéric

    2007-01-01

    This paper presents optimized signal and image processing libraries from Intel Corporation. Intel Performance Primitives (IPP) is a low-level signal and image processing library developed by Intel Corporation to optimize code on Intel processors. Open Computer Vision library (OpenCV) is a high-level library dedicated to computer vision tasks. This article describes the use of both libraries to build flexible and efficient signal and image processing applications.

  12. Review of biomedical signal and image processing

    PubMed Central

    2013-01-01

    This article is a review of the book “Biomedical Signal and Image Processing” by Kayvan Najarian and Robert Splinter, which is published by CRC Press, Taylor & Francis Group. It will evaluate the contents of the book and discuss its suitability as a textbook, while mentioning highlights of the book, and providing comparison with other textbooks.

  13. Development of an Ontology-Directed Signal Processing Toolbox

    SciTech Connect

    Stephen W. Lang

    2011-05-27

    This project was focused on the development of tools for the automatic configuration of signal processing systems. The goal is to develop tools that will be useful in a variety of Government and commercial areas and useable by people who are not signal processing experts. In order to get the most benefit from signal processing techniques, deep technical expertise is often required in order to select appropriate algorithms, combine them into a processing chain, and tune algorithm parameters for best performance on a specific problem. Therefore a significant benefit would result from the assembly of a toolbox of processing algorithms that has been selected for their effectiveness in a group of related problem areas, along with the means to allow people who are not signal processing experts to reliably select, combine, and tune these algorithms to solve specific problems. Defining a vocabulary for problem domain experts that is sufficiently expressive to drive the configuration of signal processing functions will allow the expertise of signal processing experts to be captured in rules for automated configuration. In order to test the feasibility of this approach, we addressed a lightning classification problem, which was proposed by DOE as a surrogate for problems encountered in nuclear nonproliferation data processing. We coded a toolbox of low-level signal processing algorithms for extracting features of RF waveforms, and demonstrated a prototype tool for screening data. We showed examples of using the tool for expediting the generation of ground-truth metadata, for training a signal recognizer, and for searching for signals with particular characteristics. The public benefits of this approach, if successful, will accrue to Government and commercial activities that face the same general problem - the development of sensor systems for complex environments. It will enable problem domain experts (e.g. analysts) to construct signal and image processing chains without

  14. Method for controlling a laser additive process using intrinsic illumination

    NASA Astrophysics Data System (ADS)

    Tait, Robert; Cai, Guoshuang; Azer, Magdi; Chen, Xiaobin; Liu, Yong; Harding, Kevin

    2015-05-01

    One form of additive manufacturing is to use a laser to generate a melt pool from powdered metal that is sprayed from a nozzle. The laser net-shape machining system builds the part a layer at a time by following a predetermined path. However, because the path may need to take many turns, maintaining a constant melt pool may not be easy. A straight section may require one speed and power while a sharp bend would over melt the metal at the same settings. This paper describes a process monitoring method that uses the intrinsic IR radiation from the melt pool along with a process model configured to establish target values for the parameters associated with the manufacture or repair. This model is based upon known properties of the metal being used as well as the properties of the laser beam. An adaptive control technique is then employed to control process parameters of the machining system based upon the real-time weld pool measurement. Since the system uses the heat radiant from the melt pool, other previously deposited metal does not confuse the system as only the melted material is seen by the camera.

  15. Information processing in multi-step signaling pathways

    NASA Astrophysics Data System (ADS)

    Ganesan, Ambhi; Hamidzadeh, Archer; Zhang, Jin; Levchenko, Andre

    Information processing in complex signaling networks is limited by a high degree of variability in the abundance and activity of biochemical reactions (biological noise) operating in living cells. In this context, it is particularly surprising that many signaling pathways found in eukaryotic cells are composed of long chains of biochemical reactions, which are expected to be subject to accumulating noise and delayed signal processing. Here, we challenge the notion that signaling pathways are insulated chains, and rather view them as parts of extensively branched networks, which can benefit from a low degree of interference between signaling components. We further establish conditions under which this pathway organization would limit noise accumulation, and provide evidence for this type of signal processing in an experimental model of a calcium-activated MAPK cascade. These results address the long-standing problem of diverse organization and structure of signaling networks in live cells.

  16. Nonlinear filtering for robust signal processing

    SciTech Connect

    Palmieri, F.

    1987-01-01

    A generalized framework for the description and design of a large class of nonlinear filters is proposed. Such a family includes, among others, the newly defined Ll-estimators, that generalize the order statistic filters (L-filters) and the nonrecursive linear filters (FIR). Such estimators are particularly efficient in filtering signals that do not follow gaussian distributions. They can be designed to restore signals and images corrupted by noise of impulsive type. Such filters are very appealing since they are suitable for being made robust against perturbations on the assumed model, or insensitive to the presence of spurious outliers in the data. The linear part of the filter is used to characterize their essential spectral behavior. It can be constrained to a given shape to obtain nonlinear filters that combine given frequency characteristics and noise immunity. The generalized nonlinear filters can also be used adaptively with the coefficients computed dynamically via LMS or RLS algorithms.

  17. Moving source localization using seismic signal processing

    NASA Astrophysics Data System (ADS)

    Asgari, Shadnaz; Stafsudd, Jing Z.; Hudson, Ralph E.; Yao, Kung; Taciroglu, Ertugrul

    2015-01-01

    Accurate localization of a seismic source in a near-field scenario where the distances between sensors and the source are less than a few wavelengths of the generated signal has shown to be a challenging task. Conventional localization algorithms often prove to be ineffective, as near-field seismic signals exhibit characteristics different from the well-studied far-field signals. The current work is aimed at the employment of a seismic sensor array for the localization and tracking of a near-field wideband moving source. In this paper, the mathematical derivation of a novel DOA estimation algorithm-dubbed the Modified Kirlin Method-has been presented in details. The estimated DOAs are then combined using a least-squares optimization method for source localization. The performance of the proposed method has been evaluated in a field experiment to track a moving truck. We also compare the DOA estimation and source localization results of the proposed method with those of two other existing methods originally developed for localization of a stationary wideband source; Covariance Matrix Analysis and the Surface Wave Analysis. Our results indicate that both the Surface Wave Analysis and the Modified Kirlin Methods are effective in locating and tracking a moving truck.

  18. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  19. Fabrication of a Flexible Amperometric Glucose Sensor Using Additive Processes

    PubMed Central

    Du, Xiaosong; Durgan, Christopher J.; Matthews, David J.; Motley, Joshua R.; Tan, Xuebin; Pholsena, Kovit; Árnadóttir, Líney; Castle, Jessica R.; Jacobs, Peter G.; Cargill, Robert S.; Ward, W. Kenneth; Conley, John F.; Herman, Gregory S.

    2015-01-01

    This study details the use of printing and other additive processes to fabricate a novel amperometric glucose sensor. The sensor was fabricated using a Au coated 12.7 μm thick polyimide substrate as a starting material, where micro-contact printing, electrochemical plating, chloridization, electrohydrodynamic jet (e-jet) printing, and spin coating were used to pattern, deposit, chloridize, print, and coat functional materials, respectively. We have found that e-jet printing was effective for the deposition and patterning of glucose oxidase inks with lateral feature sizes between ~5 to 1000 μm in width, and that the glucose oxidase was still active after printing. The thickness of the permselective layer was optimized to obtain a linear response for glucose concentrations up to 32 mM and no response to acetaminophen, a common interfering compound, was observed. The use of such thin polyimide substrates allow wrapping of the sensors around catheters with high radius of curvature ~250 μm, where additive and microfabrication methods may allow significant cost reductions. PMID:26634186

  20. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    PubMed Central

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  1. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  2. Digital signal processing in the radio science stability analyzer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1995-01-01

    The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.

  3. Signal processing at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Signal processing for Mesosphere-Stratosphere-Troposphere (MST) radar is carried out by a combination of hardware in high-speed, special-purpose devices and software in a general-purpose, minicomputer/array processor. A block diagram of the signal processing system is presented, and the steps in the processing pathway are described. The current processing capabilities are given, and a system offering greater coherent integration speed is advanced which hinges upon a high speed preprocessor.

  4. Signal processing and electronic noise in LZ

    NASA Astrophysics Data System (ADS)

    Khaitan, D.

    2016-03-01

    The electronics of the LUX-ZEPLIN (LZ) experiment, the 10-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), consists of low-noise dual-gain amplifiers and a 100-MHz, 14-bit data acquisition system for the TPC PMTs. Pre-prototypes of the analog amplifiers and the 32-channel digitizers were tested extensively with simulated pulses that are similar to the prompt scintillation light and the electroluminescence signals expected in LZ. These studies are used to characterize the noise and to measure the linearity of the system. By increasing the amplitude of the test signals, the effect of saturating the amplifier and the digitizers was studied. The RMS ADC noise of the digitizer channels was measured to be 1.19± 0.01 ADCC. When a high-energy channel of the amplifier is connected to the digitizer, the measured noise remained virtually unchanged, while the noise added by a low-energy channel was estimated to be 0.38 ± 0.02 ADCC (46 ± 2 μV). A test facility is under construction to study saturation, mitigate noise and measure the performance of the LZ electronics and data acquisition chain.

  5. [Dynamic Pulse Signal Processing and Analyzing in Mobile System].

    PubMed

    Chou, Yongxin; Zhang, Aihua; Ou, Jiqing; Qi, Yusheng

    2015-09-01

    In order to derive dynamic pulse rate variability (DPRV) signal from dynamic pulse signal in real time, a method for extracting DPRV signal was proposed and a portable mobile monitoring system was designed. The system consists of a front end for collecting and wireless sending pulse signal and a mobile terminal. The proposed method is employed to extract DPRV from dynamic pulse signal in mobile terminal, and the DPRV signal is analyzed both in the time domain and the frequency domain and also with non-linear method in real time. The results show that the proposed method can accurately derive DPRV signal in real time, the system can be used for processing and analyzing DPRV signal in real time. PMID:26904868

  6. Additive manufacturing of stretchable tactile sensors: Processes, materials, and applications

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza

    3D printing technology is becoming more ubiquitous every day especially in the area of smart structures. However, fabrication of multi-material, functional, and smart structures is problematic because of the process and material limitations. This thesis sought to develop a Direct Print Photopolymerization (DPP) fabrication technique that appreciably extends the manufacturing space for the 3D smart structures. This method employs a robotically controlled micro-extrusion of a filament equipped with a photopolymerization process. The ability to use polymers and ultimately their nanocomposites in this process is the advantage of the proposed process over the current fabrication methods in the fabrication of 3D structures featuring mechanical, physical, and electrical functionalities. In addition, this study focused to develop a printable, conductive, and stretchable nanocomposite based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs). This nanocomposite exhibited piezoresistivity, means its resistivity changes as it deforms. This property is a favorable factor in developing resistance based tactile sensors. They were also able to resist high tensile strains while they showed conductivity. Furthermore, this study offered a possible and low-cost method to have a unique and highly stretchable pressure sensitive polymer. This disruptive pressure sensitive polymer composed of an Ionic Liquid (IL) and a stretchable photopolymer embedded between two layers of Carbon Nanotube (CNTs) based stretchable electrodes. The developed IL-polymer showed both field effect property and piezoresistivity that can detect large tensile strains up 30%. In summary, this research study focused to present feasible methods and materials for printing a 3D smart structure especially in the context of flexible tactile sensors. This study provides a foundation for the future efforts in fabrication of skin like tactile sensors in three-dimensional motifs

  7. Statistical mechanics and visual signal processing

    NASA Astrophysics Data System (ADS)

    Potters, Marc; Bialek, William

    1994-11-01

    We show how to use the language of statistical field theory to address and solve problems in which one must estimate some aspect of the environnent from the data in an array of sensors. In the field theory formulation the optimal estimator can be written as an expectation value in an ensemble where the input data act as external field. Problems at low signal-to-noise ratio can be solved in perturbation theory, while high signal-to-noise ratios are treated with a saddle-point approximation. These ideas are illustrated in detail by an example of visual motion estimation which is chosen to model a problem solved by the fly's brain. The optimal estimator bas a rich structure, adapting to various parameters of the environnent such as the mean-square contrast and the corrélation time of contrast fluctuations. This structure is in qualitative accord with existing measurements on motion sensitive neurons in the fly's brain, and the adaptive properties of the optimal estimator may help resolve conficts among different interpretations of these data. Finally we propose some crucial direct tests of the adaptive behavior. Nous montrons comment employer le langage de la théorie statistique des champs pour poser et résoudre des problèmes où l'on doit estimer une caractéristique de l'environnement à l'aide de données provenant d'un ensemble de détecteurs. Dans ce formalisme, l'estimateur optimal peut être écrit comme la valeur moyenne d'un opérateur, l'ensemble des données d'entrée agissant comme un champ externe. Les problèmes à faible rapport signal-bruit sont résolus par la théorie des perturbations. La méthode du col est employée pour ceux à haut rapport signal-bruit. Ces idées sont illustrées en détails sur un modèle d'estimation visuelle du mouvement basé sur un problème résolu par la mouche. L'estimateur optimal a une structure très riche, s'adaptant à divers paramètres de l'environnement tels la variance du contraste et le temps de corr

  8. Time reversal signal processing for communication.

    SciTech Connect

    Young, Derek P.; Jacklin, Neil; Punnoose, Ratish J.; Counsil, David T.

    2011-09-01

    Time-reversal is a wave focusing technique that makes use of the reciprocity of wireless propagation channels. It works particularly well in a cluttered environment with associated multipath reflection. This technique uses the multipath in the environment to increase focusing ability. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. It does not require controlled geometric placement of the transmit antennas. Unlike existing techniques it can work without line-of-sight. We have explored the performance of time-reversal focusing in a variety of simulated environments. We have also developed new algorithms to simultaneously focus at a location while nulling at an eavesdropper location. We have experimentally verified these techniques in a realistic cluttered environment.

  9. Gravity Influences Top-Down Signals in Visual Processing

    PubMed Central

    Cheron, Guy; Leroy, Axelle; Palmero-Soler, Ernesto; De Saedeleer, Caty; Bengoetxea, Ana; Cebolla, Ana-Maria; Vidal, Manuel; Dan, Bernard; Berthoz, Alain; McIntyre, Joseph

    2014-01-01

    Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene. PMID:24400069

  10. Gravity influences top-down signals in visual processing.

    PubMed

    Cheron, Guy; Leroy, Axelle; Palmero-Soler, Ernesto; De Saedeleer, Caty; Bengoetxea, Ana; Cebolla, Ana-Maria; Vidal, Manuel; Dan, Bernard; Berthoz, Alain; McIntyre, Joseph

    2014-01-01

    Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene. PMID:24400069

  11. Neuromorphic opto-electronic integrated circuits for optical signal processing

    NASA Astrophysics Data System (ADS)

    Romeira, B.; Javaloyes, J.; Balle, S.; Piro, O.; Avó, R.; Figueiredo, J. M. L.

    2014-08-01

    The ability to produce narrow optical pulses has been extensively investigated in laser systems with promising applications in photonics such as clock recovery, pulse reshaping, and recently in photonics artificial neural networks using spiking signal processing. Here, we investigate a neuromorphic opto-electronic integrated circuit (NOEIC) comprising a semiconductor laser driven by a resonant tunneling diode (RTD) photo-detector operating at telecommunication (1550 nm) wavelengths capable of excitable spiking signal generation in response to optical and electrical control signals. The RTD-NOEIC mimics biologically inspired neuronal phenomena and possesses high-speed response and potential for monolithic integration for optical signal processing applications.

  12. Pyrrolidinone derivatives as processing additives for solution processed organic solar cells

    NASA Astrophysics Data System (ADS)

    Vongsaysy, Uyxing; Pavageau, Bertrand; Servant, Laurent; Aziz, Hany

    2014-10-01

    Processing additives are widely used to increase the efficiency of solution processed organic solar cells. We use the Hansen solubility parameters (HSPs) to investigate novel processing additives. The HSPs predict pyrrolidinone derivatives to be efficient processing additives for OSC systems based on poly(3-hexylthiophene)/[6,6]-phenyl-C61- butyric acid methyl ester (P3HT/PCBM). Two pyrrolidinone derivatives are identified: 1-methyl-2-pyrrolidinone and 1- benzyl-2-pyrrolidinone. The processing additives are introduced with various concentrations in the formulation of P3HT and PCBM solution. The electrical characterizations show that the two processing additives significantly increase the short circuit current and thus the power conversion efficiency of the OSCs. The results thus highlight HSPs as an effective and relatively straightforward tool that can be employed to optimize OSC morphology from a theoretical standpoint. Such a tool will be invaluable for identifying additives for novel high efficiency polymer species as they are synthesized, and thus to streamline the device fabrication and device optimization process.

  13. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.

    PubMed

    Peng, Fulai; Liu, Hongyun; Wang, Weidong

    2015-10-01

    A photoplethysmographic (PPG) signal can provide very useful information about a subject's cardiovascular status. Motion artifacts (MAs), which usually deteriorate the waveform of a PPG signal, severely obstruct its applications in the clinical diagnosis and healthcare area. To reduce the MAs from a PPG signal, in the present study we present a comb filter based signal processing method. Firstly, wavelet de-noising was implemented to preliminarily suppress a part of the MAs. Then, the PPG signal in the time domain was transformed into the frequency domain by a fast Fourier transform (FFT). Thirdly, the PPG signal period was estimated from the frequency domain by tracking the fundamental frequency peak of the PPG signal. Lastly, the MAs were removed by the comb filter which was designed based on the obtained PPG signal period. Experiments with synthetic and real-world datasets were implemented to validate the performance of the method. Results show that the proposed method can effectively restore the PPG signals from the MA corrupted signals. Also, the accuracy of blood oxygen saturation (SpO2), calculated from red and infrared PPG signals, was significantly improved after the MA reduction by the proposed method. Our study demonstrates that the comb filter can effectively reduce the MAs from a PPG signal provided that the PPG signal period is obtained. PMID:26334000

  14. Thermal processing of EVA encapsulants and effects of formulation additives

    SciTech Connect

    Pern, F.J.; Glick, S.H.

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  15. New signal processing technique for density profile reconstruction using reflectometry

    SciTech Connect

    Clairet, F.; Bottereau, C.; Ricaud, B.; Briolle, F.; Heuraux, S.

    2011-08-15

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10{sup 16} m{sup -1}. For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  16. New signal processing technique for density profile reconstruction using reflectometry.

    PubMed

    Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C

    2011-08-01

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma. PMID:21895243

  17. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    SciTech Connect

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  18. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.; Smith, James A.

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  19. Understanding the effects of pre-processing on extracted signal features from gait accelerometry signals.

    PubMed

    Millecamps, Alexandre; Lowry, Kristin A; Brach, Jennifer S; Perera, Subashan; Redfern, Mark S; Sejdić, Ervin

    2015-07-01

    Gait accelerometry is an important approach for gait assessment. Previous contributions have adopted various pre-processing approaches for gait accelerometry signals, but none have thoroughly investigated the effects of such pre-processing operations on the obtained results. Therefore, this paper investigated the influence of pre-processing operations on signal features extracted from gait accelerometry signals. These signals were collected from 35 participants aged over 65years: 14 of them were healthy controls (HC), 10 had Parkinson׳s disease (PD) and 11 had peripheral neuropathy (PN). The participants walked on a treadmill at preferred speed. Signal features in time, frequency and time-frequency domains were computed for both raw and pre-processed signals. The pre-processing stage consisted of applying tilt correction and denoising operations to acquired signals. We first examined the effects of these operations separately, followed by the investigation of their joint effects. Several important observations were made based on the obtained results. First, the denoising operation alone had almost no effects in comparison to the trends observed in the raw data. Second, the tilt correction affected the reported results to a certain degree, which could lead to a better discrimination between groups. Third, the combination of the two pre-processing operations yielded similar trends as the tilt correction alone. These results indicated that while gait accelerometry is a valuable approach for the gait assessment, one has to carefully adopt any pre-processing steps as they alter the observed findings. PMID:25935124

  20. Understanding the effects of pre-processing on extracted signal features from gait accelerometry signals

    PubMed Central

    Millecamps, Alexandre; Brach, Jennifer S.; Lowry, Kristin A.; Perera, Subashan; Redfern, Mark S.

    2015-01-01

    Gait accelerometry is an important approach for gait assessment. Previous contributions have adopted various pre-processing approaches for gait accelerometry signals, but none have thoroughly investigated the effects of such pre-processing operations on the obtained results. Therefore, this paper investigated the influence of pre-processing operations on signal features extracted from gait accelerometry signals. These signals were collected from 35 participants aged over 65 years-old: 14 of them were healthy controls (HC), 10 had Parkinson’s disease (PD) and 11 had peripheral neuropathy (PN). The participants walked on a treadmill at preferred speed. Signal features in time, frequency and time-frequency domains were computed for both raw and pre-processed signals. The pre-processing stage consisted of applying tilt correction and de-noising operations to acquired signals. We first examined the effects of these operations separately, followed by the investigation of their joint effects. Several important observations were made based on the obtained results. First, the denoising operation alone had almost no effects in comparison to the trends observed in the raw data. Second, the tilt correction affected the reported results to a certain degree, which could lead to a better discrimination between groups. Third, the combination of the two pre-processing operations yielded similar trends as the tilt correction alone. These results indicated that while gait accelerometry is a valuable approach for the gait assessment, one has to carefully adopt any pre-processing steps as they alter the observed findings. PMID:25935124

  1. Chatter, process damping, and chip segmentation in turning: A signal processing approach

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher M.; Turner, Sam; Sims, Neil D.

    2010-11-01

    An increasing number of aerospace components are manufactured from titanium and nickel alloys that are difficult to machine due to their thermal and mechanical properties. This limits the metal removal rates that can be achieved from the production process. However, under these machining conditions the phenomenon of process damping can be exploited to help avoid self-excited vibrations known as regenerative chatter. This means that greater widths of cut can be taken so as to increase the metal removal rate, and hence offset the cutting speed restrictions that are imposed by the thermo-mechanical properties of the material. However, there is little or no consensus as to the underlying mechanisms that cause process damping. The present study investigates two process damping mechanisms that have previously been proposed in the machining literature: the tool flank/workpiece interference effect, and the short regenerative effect. A signal processing procedure is employed to identify flank/workpiece interference from experimental data. Meanwhile, the short regenerative model is solved using a new frequency domain approach that yields additional insight into its stabilising effect. However, analysis and signal processing of the experimentally obtained data reveals that neither of these models can fully explain the increases in stability that are observed in practice. Meanwhile, chip segmentation effects were observed in a number of measurements, and it is suggested that segmentation could play an important role in the process-damped chatter stability of these materials.

  2. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  3. Digital signal processing based on inverse scattering transform.

    PubMed

    Turitsyna, Elena G; Turitsyn, Sergei K

    2013-10-15

    Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal. PMID:24321955

  4. Preliminary development of digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  5. Modeling laser velocimeter signals as triply stochastic Poisson processes

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  6. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    PubMed

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets. PMID:26025535

  7. Developments in cardiovascular ultrasound: Part 1: Signal processing and instrumentation.

    PubMed

    Fish, P J; Hoskins, P R; Moran, C; McDicken, W N

    1997-11-01

    One of the major contributions to the improvement of spectral Doppler and colour flow imaging instruments has been the development of advanced signal-processing techniques made possible by increasing computing power. Model-based or parametric spectral estimators, time-frequency transforms, station-arising algorithms and spectral width correction techniques have been investigated as possible improvements on the FFT-based estimators currently used for real-time spectral estimation of Doppler signals. In colour flow imaging some improvement on velocity estimation accuracy has been achieved by the use of new algorithms but at the expense of increased computational complexity compared with the conventional autocorrelation method. Polynomial filters have been demonstrated to have some advantages over IIR filters for stationary echo cancellation. Several methods of velocity vector estimation to overcome the problem of angle dependence have been studied, including 2D feature tracking, two and three beam approaches and the use of spectral width in addition to mean frequency. 3D data acquisition and display and Doppler power imaging have also been investigated. The use of harmonic imaging, using the second harmonic generated by encapsulated bubble contrast media, seems promising particularly for imaging slow flow. Parallel image data acquisition using non-sequential scanning or broad beam transmission, followed by simultaneous reception along a number of beams, has been studied to speed up 'real-time' imaging. PMID:9538529

  8. HYMOSS signal processing for pushbroom spectral imaging

    NASA Technical Reports Server (NTRS)

    Ludwig, David E.

    1991-01-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  9. HYMOSS signal processing for pushbroom spectral imaging

    NASA Astrophysics Data System (ADS)

    Ludwig, David E.

    1991-06-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  10. Novel sonar signal processing tool using Shannon entropy

    SciTech Connect

    Quazi, A.H.

    1996-06-01

    Traditionally, conventional signal processing extracts information from sonar signals using amplitude, signal energy or frequency domain quantities obtained using spectral analysis techniques. The object is to investigate an alternate approach which is entirely different than that of traditional signal processing. This alternate approach is to utilize the Shannon entropy as a tool for the processing of sonar signals with emphasis on detection, classification, and localization leading to superior sonar system performance. Traditionally, sonar signals are processed coherently, semi-coherently, and incoherently, depending upon the a priori knowledge of the signals and noise. Here, the detection, classification, and localization technique will be based on the concept of the entropy of the random process. Under a constant energy constraint, the entropy of a received process bearing finite number of sample points is maximum when hypothesis H{sub 0} (that the received process consists of noise alone) is true and decreases when correlated signal is present (H{sub 1}). Therefore, the strategy used for detection is: (I) Calculate the entropy of the received data; then, (II) compare the entropy with the maximum value; and, finally, (III) make decision: H{sub 1} is assumed if the difference is large compared to pre-assigned threshold and H{sub 0} is otherwise assumed. The test statistics will be different between entropies under H{sub 0} and H{sub 1}. Here, we shall show the simulated results for detecting stationary and non-stationary signals in noise, and results on detection of defects in a Plexiglas bar using an ultrasonic experiment conducted by Hughes. {copyright} {ital 1996 American Institute of Physics.}

  11. Signal processing techniques for synchronization of wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Jaehan; Wu, Yik-Chung; Chaudhari, Qasim; Qaraqe, Khalid; Serpedin, Erchin

    2010-11-01

    Clock synchronization is a critical component in wireless sensor networks, as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and sleep wake-up scheduling, etc. Early studies on clock synchronization for wireless sensor networks mainly focus on protocol design. However, clock synchronization problem is inherently related to parameter estimation, and recently, studies of clock synchronization from the signal processing viewpoint started to emerge. In this article, a survey of latest advances on clock synchronization is provided by adopting a signal processing viewpoint. We demonstrate that many existing and intuitive clock synchronization protocols can be interpreted by common statistical signal processing methods. Furthermore, the use of advanced signal processing techniques for deriving optimal clock synchronization algorithms under challenging scenarios will be illustrated.

  12. Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry

    NASA Technical Reports Server (NTRS)

    Hong, Yie-Ming

    1973-01-01

    Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.

  13. Synthetic aperture radar signal processing: Trends and technologies

    NASA Technical Reports Server (NTRS)

    Curlander, John C.

    1993-01-01

    An overview of synthetic aperture radar (SAR) technology is presented in vugraph form. The following topics are covered: an SAR ground data system; SAR signal processing algorithms; SAR correlator architectures; and current and future trends.

  14. Array signal processing in the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Pham, Timothy T.; Jongeling, Andre P.

    2004-01-01

    In this paper, we will describe the benefits of arraying and past as well as expected future use of this application. The signal processing aspects of array system are described. Field measurements via actual tracking spacecraft are also presented.

  15. Comparative analysis of genomic signal processing for microarray data clustering.

    PubMed

    Istepanian, Robert S H; Sungoor, Ala; Nebel, Jean-Christophe

    2011-12-01

    Genomic signal processing is a new area of research that combines advanced digital signal processing methodologies for enhanced genetic data analysis. It has many promising applications in bioinformatics and next generation of healthcare systems, in particular, in the field of microarray data clustering. In this paper we present a comparative performance analysis of enhanced digital spectral analysis methods for robust clustering of gene expression across multiple microarray data samples. Three digital signal processing methods: linear predictive coding, wavelet decomposition, and fractal dimension are studied to provide a comparative evaluation of the clustering performance of these methods on several microarray datasets. The results of this study show that the fractal approach provides the best clustering accuracy compared to other digital signal processing and well known statistical methods. PMID:22157075

  16. The physics of bat echolocation: Signal processing techniques

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2004-12-01

    The physical principles and signal processing techniques underlying bat echolocation are investigated. It is shown, by calculation and simulation, how the measured echolocation performance of bats can be achieved.

  17. Software for biomedical engineering signal processing laboratory experiments.

    PubMed

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms. PMID:19964035

  18. Functional description of signal processing in the Rogue GPS receiver

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1988-01-01

    Over the past year, two Rogue GPS prototype receivers have been assembled and successfully subjected to a variety of laboratory and field tests. A functional description is presented of signal processing in the Rogue receiver, tracing the signal from RF input to the output values of group delay, phase, and data bits. The receiver can track up to eight satellites, without time multiplexing among satellites or channels, simultaneously measuring both group delay and phase for each of three channels (L1-C/A, L1-P, L2-P). The Rogue signal processing described requires generation of the code for all three channels. Receiver functional design, which emphasized accuracy, reliability, flexibility, and dynamic capability, is summarized. A detailed functional description of signal processing is presented, including C/A-channel and P-channel processing, carrier-aided averaging of group delays, checks for cycle slips, acquistion, and distinctive features.

  19. 28. Perimeter acquisition radar building room #302, signal process and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Perimeter acquisition radar building room #302, signal process and analog receiver room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  20. Relationships between digital signal processing and control and estimation theory

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1978-01-01

    Research areas associated with digital signal processing and control and estimation theory are identified. Particular attention is given to image processing, system identification problems (parameter identification, linear prediction, least squares, Kalman filtering), stability analyses (the use of the Liapunov theory, frequency domain criteria, passivity), and multiparameter systems, distributed processes, and random fields.

  1. All-optical signal processing using dynamic Brillouin gratings

    NASA Astrophysics Data System (ADS)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-04-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science.

  2. All-optical signal processing using dynamic Brillouin gratings

    PubMed Central

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  3. Techniques of EMG signal analysis: detection, processing, classification and applications

    PubMed Central

    Hussain, M.S.; Mohd-Yasin, F.

    2006-01-01

    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694

  4. A Study on Signal Group Processing of AUTOSAR COM Module

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Hwan; Hwang, Hyun Yong; Han, Tae Man; Ahn, Yong Hak

    2013-06-01

    In vehicle, there are many ECU(Electronic Control Unit)s, and ECUs are connected to networks such as CAN, LIN, FlexRay, and so on. AUTOSAR COM(Communication) which is a software platform of AUTOSAR(AUTomotive Open System ARchitecture) in the international industry standards of automotive electronic software processes signals and signal groups for data communications between ECUs. Real-time and reliability are very important for data communications in the vehicle. Therefore, in this paper, we analyze functions of signals and signal groups used in COM, and represent that functions of signal group are more efficient than signals in real-time data synchronization and network resource usage between the sender and receiver.

  5. Two-dimensional signal processing with application to image restoration

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1974-01-01

    A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.

  6. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  7. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-03-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  8. Simplified signal processing for an airborne CO2 Doppler lidar

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Spowart, M. P.

    1992-01-01

    In the development of the National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS), we have emphasized a simple, modular design to suit the instrument to its mission of providing measurements of atmospheric structure and dynamics from an aircraft platform. Based on our research to this point, we believe that a significant simplification of the signal processing approach compared to that now used is possible by using high speed digitization of the signal. The purpose here is to place signal processing in the context of the overall system design and to explore the basis of the alternative technique so that the community can comment on the approach.

  9. Signal-processing theory for the TurboRogue receiver

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1995-01-01

    Signal-processing theory for the TurboRogue receiver is presented. The signal form is traced from its formation at the GPS satellite, to the receiver antenna, and then through the various stages of the receiver, including extraction of phase and delay. The analysis treats the effects of ionosphere, troposphere, signal quantization, receiver components, and system noise, covering processing in both the 'code mode' when the P code is not encrypted and in the 'P-codeless mode' when the P code is encrypted. As a possible future improvement to the current analog front end, an example of a highly digital front end is analyzed.

  10. A comparison of signal processing techniques for Intrinsic Optical Signal imaging in mice.

    PubMed

    Turley, Jordan A; Nilsson, Michael; Walker, Frederick Rohan; Johnson, Sarah J

    2015-08-01

    Intrinsic Optical Signal imaging is a technique which allows the visualisation and mapping of activity related changes within the brain with excellent spatial and temporal resolution. We analysed a variety of signal and image processing techniques applied to real mouse imaging data. The results were compared in an attempt to overcome the unique issues faced when performing the technique on mice and improve the understanding of post processing options available. PMID:26737728

  11. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  12. Removing Background Noise with Phased Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  13. Effects of chemical additives on microbial enhanced oil recovery processes

    SciTech Connect

    Bryant, R.S.; Chase, K.L.; Bertus, K.M.; Stepp, A.K.

    1989-12-01

    An extensive laboratory study has been conducted to determine (1) the role of the microbial cells and products in oil displacement, (2) the relative rates of transport of microbial cells and chemical products from the metabolism of nutrient in porous media, and (3) the effects of chemical additives on the oil recovery efficiency of microbial formulations. This report describes experiments relating to the effects of additives on oil recovery efficiency of microbial formulations. The effects of additives on the oil recovery efficiency of microbial formulations were determined by conducting oil displacement experiments in 1-foot-long Berea sandstone cores. Sodium tripolyphosphate (STPP), a low-molecular-weight polyacrylamide polymer, a lignosulfonate surfactant, and sodium bicarbonate were added to a microbial formulation at a concentration of 1%. The effects of using these additives in a preflush prior to injection of the microbial formulation were also evaluated. Oil-displacement experiments with and without a sodium bicarbonate preflush were conducted in 4-foot-long Berea sandstone cores, and samples of in situ fluids were collected at various times at four intermediate points along the core. The concentrations of metabolic products and microbes in the fluid samples were determined. 9 refs., 22 figs., 8 tabs.

  14. A user's guide for the signal processing software for image and speech compression developed in the Communications and Signal Processing Laboratory (CSPL), version 1

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Lin, F. Y.; Vaishampayan, V.; Farvardin, N.

    1986-01-01

    A complete documentation of the software developed in the Communication and Signal Processing Laboratory (CSPL) during the period of July 1985 to March 1986 is provided. Utility programs and subroutines that were developed for a user-friendly image and speech processing environment are described. Additional programs for data compression of image and speech type signals are included. Also, programs for the zero-memory and block transform quantization in the presence of channel noise are described. Finally, several routines for simulating the perfromance of image compression algorithms are included.

  15. Auxiliary signal processing system for a multiparameter radar

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Gray, G. R.; Caylor, I. J.

    1993-01-01

    The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card and personal computer controller. With the use of such a concept, an auxiliary processor was implemented for the NCAR CP-2 radar during a 1991 summer field campaign and allowed measurement of additional polarimetric parameters, namely, the differential phase and the copolar cross correlation. Sample data are presented from both the auxiliary and existing radar signal processors.

  16. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  17. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  18. Seismic Electric Signals: An additional fact showing their physical interconnection with seismicity

    NASA Astrophysics Data System (ADS)

    Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S.; Lazaridou, M. S.

    2013-03-01

    Natural time analysis reveals novel dynamical features hidden behind time series in complex systems. By applying it to the time series of earthquakes, we find that the order parameter of seismicity exhibits a unique change approximately at the date(s) at which Seismic Electric Signals (SES) activities have been reported to initiate. In particular, we show that the fluctuations of the order parameter of seismicity in Japan exhibits a clearly detectable minimum approximately at the time of the initiation of the SES activity observed by Uyeda and coworkers almost two months before the onset of the volcanic-seismic swarm activity in 2000 in the Izu Island region, Japan. To the best of our knowledge, this is the first time that, well before the occurrence of major earthquakes, anomalous changes are found to appear almost simultaneously in two independent datasets of different geophysical observables (geoelectrical measurements, seismicity). In addition, we show that these two phenomena are also linked closely in space.

  19. Microstructure-controllable Laser Additive Manufacturing Process for Metal Products

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chuang, Chuan-Sheng; Lin, Ching-Chih; Wu, Chih-Hsien; Lin, De-Yau; Liu, Sung-Ho; Tseng, Wen-Peng; Horng, Ji-Bin

    Controlling the cooling rate of alloy during solidification is the most commonly used method for varying the material microstructure. However, the cooling rate of selective laser melting (SLM) production is constrained by the optimal parameter settings for a dense product. This study proposes a method for forming metal products via the SLM process with electromagnetic vibrations. The electromagnetic vibrations change the solidification process for a given set of SLM parameters, allowing the microstructure to be varied via magnetic flux density. This proposed method can be used for creating microstructure-controllable bio-implant products with complex shapes.

  20. Information processing and signal integration in bacterial quorum sensing

    PubMed Central

    Mehta, Pankaj; Goyal, Sidhartha; Long, Tao; Bassler, Bonnie L; Wingreen, Ned S

    2009-01-01

    Bacteria communicate using secreted chemical signaling molecules called autoinducers in a process known as quorum sensing. The quorum-sensing network of the marine bacterium Vibrio harveyi uses three autoinducers, each known to encode distinct ecological information. Yet how cells integrate and interpret the information contained within these three autoinducer signals remains a mystery. Here, we develop a new framework for analyzing signal integration on the basis of information theory and use it to analyze quorum sensing in V. harveyi. We quantify how much the cells can learn about individual autoinducers and explain the experimentally observed input–output relation of the V. harveyi quorum-sensing circuit. Our results suggest that the need to limit interference between input signals places strong constraints on the architecture of bacterial signal-integration networks, and that bacteria probably have evolved active strategies for minimizing this interference. Here, we analyze two such strategies: manipulation of autoinducer production and feedback on receptor number ratios. PMID:19920810

  1. Optimal and adaptive methods of processing hydroacoustic signals (review)

    NASA Astrophysics Data System (ADS)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  2. Relationships between digital signal processing and control and estimation theory

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1978-01-01

    Research directions in the fields of digital signal processing and modern control and estimation theory are discussed. Stability theory, linear prediction and parameter identification, system synthesis and implementation, two-dimensional filtering, decentralized control and estimation, and image processing are considered in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the disciplines.

  3. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  4. Research on Signal Processing Algorithms in GPS Receivers

    NASA Astrophysics Data System (ADS)

    Cai, Fan; Yin, Yan; Zhang, Xiu-Zhong

    2007-03-01

    The modern standard satellite navigation receivers are commonly based on ASICs for signal processing and fast microprocessors for application calculations. The software satellite navigation receiver is also developed in recent years. The research on software receivers becomes one trend of satellite navigation receiver. For algorithms on signal processing play an important role in satellite navigation receivers, the paper illuminates the signal processing algorithms in detail. The GPS receiver is widely used at present. So the paper places emphasis on signal processing algorithms about GPS receiver. Signal processing algorithms include three aspects: the algorithm on signal acquisition, the algorithm on carrier tracking and the algorithm on PRN (pseudo random noise) code tracking. In the part of signal acquisition, the method of using FFT to get the result of circular correlation is introduced. The paper carefully researches the method and discusses the derivation process of the method. In the part of carrier tracking, the paper describes the principle of frequency locked loop (FLL) and phase locked loop (PLL) and analyzes the principle of loop filter. The method of transition from s-domain to z-domain is introduced. The computation of noise bandwidth of the loop filter are expatiated and the structures of one-step digital loop filter, two-step digital loop filter and three step are given. Other parameters of loop filters are also given. In the part of code tracking, delay-early locked loop (DLL) is introduced. Theoretical analysis and experiment results demonstrate the algorithms in the paper. Through the simulation testing, the performance of combination of PLL and FLL can be acknowledged.

  5. Signal processing techniques for atrial fibrillation source detection.

    PubMed

    Ambadkar, Minal; Leonelli, Fabio M; Sankar, Ravi

    2014-01-01

    In clinical practice, Atrial Fibrillation (AF) is the most common and critical cardiac arrhythmia encountered. The treatment that can ensure permanent AF removal is catheter ablation, where cardiologists destroy the affected cardiac muscle cells with RF or Laser. In this procedure it is necessary to know exactly from which part of the heart AF triggers are originated. Various signal processing algorithms provide a strong tool to track AF sources. This study proposes, signal processing techniques that can be exploited for characterization, analysis and source detection of AF signals. These algorithms are implemented on Electrocardiogram (ECG) and intracardiac signals which contain important information that allows the analysis of anatomic and physiologic aspects of the whole cardiac muscle. PMID:25570578

  6. SIG: a general-purpose signal processing program

    SciTech Connect

    Lager, D.; Azevedo, S.

    1986-02-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. It also accommodates other representations for data such as transfer function polynomials. Signal processing operations include digital filtering, auto/cross spectral density, transfer function/impulse response, convolution, Fourier transform, and inverse Fourier transform. Graphical operations provide display of signals and spectra, including plotting, cursor zoom, families of curves, and multiple viewport plots. SIG provides two user interfaces with a menu mode for occasional users and a command mode for more experienced users. Capability exits for multiple commands per line, command files with arguments, commenting lines, defining commands, automatic execution for each item in a repeat sequence, etc. SIG is presently available for VAX(VMS), VAX (BERKELEY 4.2 UNIX), SUN (BERKELEY 4.2 UNIX), DEC-20 (TOPS-20), LSI-11/23 (TSX), and DEC PRO 350 (TSX). 4 refs., 2 figs.

  7. Application of homomorphic signal processing to stress wave factor analysis

    NASA Technical Reports Server (NTRS)

    Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.

    1985-01-01

    The stress wave factor (SWF) signal, which is the output of an ultrasonic testing system where the transmitting and receiving transducers are coupled to the same face of the test structure, is analyzed in the frequency domain. The SWF signal generated in an isotropic elastic plate is modelled as the superposition of successive reflections. The reflection which is generated by the stress waves which travel p times as a longitudinal (P) wave and s times as a shear (S) wave through the plate while reflecting back and forth between the bottom and top faces of the plate is designated as the reflection with p, s. Short-time portions of the SWF signal are considered for obtaining spectral information on individual reflections. If the significant reflections are not overlapped, the short-time Fourier analysis is used. A summary of the elevant points of homomorphic signal processing, which is also called cepstrum analysis, is given. Homomorphic signal processing is applied to short-time SWF signals to obtain estimates of the log spectra of individual reflections for cases in which the reflections are overlapped. Two typical SWF signals generated in aluminum plates (overlapping and non-overlapping reflections) are analyzed.

  8. Application of homomorphic signal processing to stress wave factor analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Karaguelle, H.

    1985-01-01

    The stress wave factor (SWF) signal, which is the output of an ultrasonic testing system where the transmitting and receiving transducers are coupled to the same face of the test structure, is analyzed in the frequency domain. The SWF signal generated in an isotropic elastic plate is modelled as the superposition of successive reflections. The reflection which is generated by the stress waves which travel P times as a longitudinal (P) wave and s times as a shear (S) wave through the plate while reflecting back and forth between the bottom and top faces of the plate is designated as the reflection with P, s. Short-time portions of the SWF signal are considered for obtaining spectral information on individual reflections. If the significant reflections are not overlapped, the short-time Fourier analysis is used. A summary of the elevant points of homomorphic signal processing, which is also called cepstrum analysis, is given. Homomorphic signal processing is applied to short-time SWF signals to obtain estimates of the log spectra of individual reflections for cases in which the reflections are overlapped. Two typical SWF signals generated in aluminum plates (overlapping and non-overlapping reflections) are analyzed.

  9. GNSS-based bistatic SAR: a signal processing view

    NASA Astrophysics Data System (ADS)

    Antoniou, Michail; Cherniakov, Mikhail

    2013-12-01

    This article presents signal processing algorithms used as a new remote sensing tool, that is passive bistatic SAR with navigation satellites (e.g. GPS, GLONASS or Galileo) as transmitters of opportunity. Signal synchronisation and image formation algorithms are described for two system variants: one where the receiver is moving and one where it is fixed on the ground. The applicability and functionality of the algorithms described is demonstrated through experimental imagery that ultimately confirms the feasibility of the overall technology.

  10. Passive silicon photonic devices for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Wu, Jiayang; Peng, Jizong; Liu, Boyu; Pan, Ting; Zhou, Huanying; Mao, Junming; Yang, Yuxing; Qiu, Ciyuan; Su, Yikai

    2016-08-01

    We present our recent progress on microwave signal processing (MSP) using on-chip passive silicon photonic devices, including tunable microwave notch filtering/millimeter-wave (MMW) signal generation based on self-coupled micro-resonators (SCMRs), and tunable radio-frequency (RF) phase shifting implemented by a micro-disk resonator (MDR). These schemes can provide improved flexibility and performances of MSP. The experimental results are in good agreement with theoretical predictions, which validate the effectiveness of the proposed schemes.

  11. Digital signal processing for fiber-optic thermometers

    SciTech Connect

    Fernicola, V.; Crovini, L.

    1994-12-31

    A digital signal processing scheme for measurement of exponentially-decaying signals, such as those found in fluorescence, lifetime-based, fiber-optic sensors, is proposed. The instrument uses a modified digital phase-sensitive-detection technique with the phase locked to a fixed value and the modulation period tracking the measured lifetime. Typical resolution of the system is 0.05% for slow decay (>500 {mu}s) and 0.1% for fast decay.

  12. Array enhanced stochastic resonance: Implications for signal processing

    SciTech Connect

    Inchiosa, M.E.; Bulsara, A.R.; Lindner, J.F.; Meadows, B.K.; Ditto, W.L.

    1996-06-01

    In computer simulations, we enhance the response of a {open_quote}{open_quote}stochastic resonator{close_quote}{close_quote} by coupling it into an array of identical resonators. We relate this array enhanced stochastic resonance (AESR) to the global spatiotemporal dynamics of the array and show how noise and coupling cooperate to organize spatial order, temporal periodicity, and peak output signal-to-noise ratio. We consider the application of AESR to signal processing. {copyright} {ital 1996 American Institute of Physics.}

  13. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    PubMed Central

    Kumar, Dhiraj; Dua, Raina; Srikanth, Ravichandran; Jayaswal, Shilpi; Siddiqui, Zaved; Rao, Kanury VS

    2008-01-01

    Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR) under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile. PMID:18798986

  14. Thermographic process monitoring in powderbed based additive manufacturing

    SciTech Connect

    Krauss, Harald Zaeh, Michael F.; Zeugner, Thomas

    2015-03-31

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  15. Thermographic process monitoring in powderbed based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.

    2015-03-01

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  16. Bicoid Signal Extraction with a Selection of Parametric and Nonparametric Signal Processing Techniques

    PubMed Central

    Ghodsi, Zara; Silva, Emmanuel Sirimal; Hassani, Hossein

    2015-01-01

    The maternal segmentation coordinate gene bicoid plays a significant role during Drosophila embryogenesis. The gradient of Bicoid, the protein encoded by this gene, determines most aspects of head and thorax development. This paper seeks to explore the applicability of a variety of signal processing techniques at extracting bicoid expression signal, and whether these methods can outperform the current model. We evaluate the use of six different powerful and widely-used models representing both parametric and nonparametric signal processing techniques to determine the most efficient method for signal extraction in bicoid. The results are evaluated using both real and simulated data. Our findings show that the Singular Spectrum Analysis technique proposed in this paper outperforms the synthesis diffusion degradation model for filtering the noisy protein profile of bicoid whilst the exponential smoothing technique was found to be the next best alternative followed by the autoregressive integrated moving average. PMID:26197438

  17. Bicoid signal extraction with a selection of parametric and nonparametric signal processing techniques.

    PubMed

    Ghodsi, Zara; Silva, Emmanuel Sirimal; Hassani, Hossein

    2015-06-01

    The maternal segmentation coordinate gene bicoid plays a significant role during Drosophila embryogenesis. The gradient of Bicoid, the protein encoded by this gene, determines most aspects of head and thorax development. This paper seeks to explore the applicability of a variety of signal processing techniques at extracting bicoid expression signal, and whether these methods can outperform the current model. We evaluate the use of six different powerful and widely-used models representing both parametric and nonparametric signal processing techniques to determine the most efficient method for signal extraction in bicoid. The results are evaluated using both real and simulated data. Our findings show that the Singular Spectrum Analysis technique proposed in this paper outperforms the synthesis diffusion degradation model for filtering the noisy protein profile of bicoid whilst the exponential smoothing technique was found to be the next best alternative followed by the autoregressive integrated moving average. PMID:26197438

  18. How cells process information: Quantification of spatiotemporal signaling dynamics

    PubMed Central

    Ganesan, Ambhighainath; Zhang, Jin

    2012-01-01

    Arguably, one of the foremost distinctions between life and non-living matter is the ability to sense environmental changes and respond appropriately—an ability that is invested in every living cell. Within a single cell, this function is largely carried out by networks of signaling molecules. However, the details of how signaling networks help cells make complicated decisions are still not clear. For instance, how do cells read graded, analog stress signals but convert them into digital live-or-die responses? The answer to such questions may originate from the fact that signaling molecules are not static but dynamic entities, changing in numbers and activity over time and space. In the past two decades, researchers have been able to experimentally monitor signaling dynamics and use mathematical techniques to quantify and abstract general principles of how cells process information. In this review, the authors first introduce and discuss various experimental and computational methodologies that have been used to study signaling dynamics. The authors then discuss the different types of temporal dynamics such as oscillations and bistability that can be exhibited by signaling systems and highlight studies that have investigated such dynamics in physiological settings. Finally, the authors illustrate the role of spatial compartmentalization in regulating cellular responses with examples of second-messenger signaling in cardiac myocytes. PMID:22573643

  19. All-optical signal processing technique for secure optical communication

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Su, Bing; Ye, Ya-lin; Zhang, Qian; Lin, Shao-feng; Duan, Tao; Duan, Jie

    2015-10-01

    Secure optical communication technologies are important means to solve the physical layer security for optical network. We present a scheme of secure optical communication system by all-optical signal processing technique. The scheme consists of three parts, as all-optical signal processing unit, optical key sequence generator, and synchronous control unit. In the paper, all-optical signal processing method is key technology using all-optical exclusive disjunction (XOR) gate based on optical cross-gain modulation effect, has advantages of wide dynamic range of input optical signal, simple structure and so on. All-optical XOR gate composed of two semiconductor optical amplifiers (SOA) is a symmetrical structure. By controlling injection current, input signal power, delay and filter bandwidth, the extinction ratio of XOR can be greater than 8dB. Finally, some performance parameters are calculated and the results are analyzed. The simulation and experimental results show that the proposed method can be achieved over 10Gbps optical signal encryption and decryption, which is simple, easy to implement, and error-free diffusion.

  20. Filamentous fungi for production of food additives and processing aids.

    PubMed

    Archer, David B; Connerton, Ian F; MacKenzie, Donald A

    2008-01-01

    Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic. PMID:18253709

  1. Detectors and signal processing for high-energy physics

    SciTech Connect

    Rehak, P.

    1981-01-01

    Basic principles of the particle detection and signal processing for high-energy physics experiments are presented. It is shown that the optimum performance of a properly designed detector system is not limited by incidental imperfections, but solely by more fundamental limitations imposed by the quantum nature and statistical behavior of matter. The noise sources connected with the detection and signal processing are studied. The concepts of optimal filtering and optimal detector/amplifying device matching are introduced. Signal processing for a liquid argon calorimeter is analyzed in some detail. The position detection in gas counters is studied. Resolution in drift chambers for the drift coordinate measurement as well as the second coordinate measurement is discussed.

  2. Single photon laser altimeter simulator and statistical signal processing

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  3. Distributed Signal Processing for Wireless EEG Sensor Networks.

    PubMed

    Bertrand, Alexander

    2015-11-01

    Inspired by ongoing evolutions in the field of wireless body area networks (WBANs), this tutorial paper presents a conceptual and exploratory study of wireless electroencephalography (EEG) sensor networks (WESNs), with an emphasis on distributed signal processing aspects. A WESN is conceived as a modular neuromonitoring platform for high-density EEG recordings, in which each node is equipped with an electrode array, a signal processing unit, and facilities for wireless communication. We first address the advantages of such a modular approach, and we explain how distributed signal processing algorithms make WESNs more power-efficient, in particular by avoiding data centralization. We provide an overview of distributed signal processing algorithms that are potentially applicable in WESNs, and for illustration purposes, we also provide a more detailed case study of a distributed eye blink artifact removal algorithm. Finally, we study the power efficiency of these distributed algorithms in comparison to their centralized counterparts in which all the raw sensor signals are centralized in a near-end or far-end fusion center. PMID:25850092

  4. Phosphorelays Provide Tunable Signal Processing Capabilities for the Cell

    PubMed Central

    Kothamachu, Varun B.; Feliu, Elisenda; Wiuf, Carsten; Cardelli, Luca; Soyer, Orkun S.

    2013-01-01

    Achieving a complete understanding of cellular signal transduction requires deciphering the relation between structural and biochemical features of a signaling system and the shape of the signal-response relationship it embeds. Using explicit analytical expressions and numerical simulations, we present here this relation for four-layered phosphorelays, which are signaling systems that are ubiquitous in prokaryotes and also found in lower eukaryotes and plants. We derive an analytical expression that relates the shape of the signal-response relationship in a relay to the kinetic rates of forward, reverse phosphorylation and hydrolysis reactions. This reveals a set of mathematical conditions which, when satisfied, dictate the shape of the signal-response relationship. We find that a specific topology also observed in nature can satisfy these conditions in such a way to allow plasticity among hyperbolic and sigmoidal signal-response relationships. Particularly, the shape of the signal-response relationship of this relay topology can be tuned by altering kinetic rates and total protein levels at different parts of the relay. These findings provide an important step towards predicting response dynamics of phosphorelays, and the nature of subsequent physiological responses that they mediate, solely from topological features and few composite measurements; measuring the ratio of reverse and forward phosphorylation rate constants could be sufficient to determine the shape of the signal-response relationship the relay exhibits. Furthermore, they highlight the potential ways in which selective pressures on signal processing could have played a role in the evolution of the observed structural and biochemical characteristic in phosphorelays. PMID:24244132

  5. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    PubMed

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  6. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    PubMed Central

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  7. Protein import into plant mitochondria: signals, machinery, processing, and regulation.

    PubMed

    Murcha, Monika W; Kmiec, Beata; Kubiszewski-Jakubiak, Szymon; Teixeira, Pedro F; Glaser, Elzbieta; Whelan, James

    2014-12-01

    The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis. PMID:25324401

  8. Signal Processing For Chemical Sensing: Statistics or Biological Inspiration

    NASA Astrophysics Data System (ADS)

    Marco, Santiago

    2011-09-01

    Current analytical instrumentation and continuous sensing can provide huge amounts of data. Automatic signal processing and information evaluation is needed to overcome drowning in data. Today, statistical techniques are typically used to analyse and extract information from continuous signals. However, it is very interesting to note that biology (insects and vertebrates) has found alternative solutions for chemical sensing and information processing. This is a brief introduction to the developments in the European Project: Bio-ICT NEUROCHEM: Biologically Inspired Computation for Chemical Sensing (grant no. 216916) Fp7 project devoted to biomimetic olfactory systems.

  9. Digital signal processing utilizing a generic instruction set

    NASA Astrophysics Data System (ADS)

    Mosley, V. V. W.; Bronder, J.; Wenk, A.

    In order to maintain a degree of technological equivalence between software and hardware in advanced VLSI development efforts, a set of generic instructions has been defined in the form of Ada-callable procedures which invoke a complex sequence of events for the execution of vector instructions in signal processing modules. Attention is presently given to real time signal processing functions in the cases of fighter aircraft fire control radar, passive sonar surveillance, communications systems' FSK demodulation and bit regeneration, and electronic warfare support measures and countermeasures. Generalized examples of each application are given as data flow graphs.

  10. Optical signal acquisition and processing in future accelerator diagnostics

    SciTech Connect

    Jackson, G.P. ); Elliott, A. )

    1992-01-01

    Beam detectors such as striplines and wall current monitors rely on matched electrical networks to transmit and process beam information. Frequency bandwidth, noise immunity, reflections, and signal to noise ratio are considerations that require compromises limiting the quality of the measurement. Recent advances in fiber optics related technologies have made it possible to acquire and process beam signals in the optical domain. This paper describes recent developments in the application of these technologies to accelerator beam diagnostics. The design and construction of an optical notch filter used for a stochastic cooling system is used as an example. Conceptual ideas for future beam detectors are also presented.

  11. Optical signal acquisition and processing in future accelerator diagnostics

    SciTech Connect

    Jackson, G.P.; Elliott, A.

    1992-12-31

    Beam detectors such as striplines and wall current monitors rely on matched electrical networks to transmit and process beam information. Frequency bandwidth, noise immunity, reflections, and signal to noise ratio are considerations that require compromises limiting the quality of the measurement. Recent advances in fiber optics related technologies have made it possible to acquire and process beam signals in the optical domain. This paper describes recent developments in the application of these technologies to accelerator beam diagnostics. The design and construction of an optical notch filter used for a stochastic cooling system is used as an example. Conceptual ideas for future beam detectors are also presented.

  12. Using image processing techniques on proximity probe signals in rotordynamics

    NASA Astrophysics Data System (ADS)

    Diamond, Dawie; Heyns, Stephan; Oberholster, Abrie

    2016-06-01

    This paper proposes a new approach to process proximity probe signals in rotordynamic applications. It is argued that the signal be interpreted as a one dimensional image. Existing image processing techniques can then be used to gain information about the object being measured. Some results from one application is presented. Rotor blade tip deflections can be calculated through localizing phase information in this one dimensional image. It is experimentally shown that the newly proposed method performs more accurately than standard techniques, especially where the sampling rate of the data acquisition system is inadequate by conventional standards.

  13. Nitrogen addition using a gas blow in an ESR process

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Momoi, Y.; Kajikawa, K.

    2016-07-01

    A new nitrogen method for adding in an ESR process using nitrogen gas blown in through the electrode was investigated. Nitrogen gas blown through a center bore of the electrode enabled contact between the nitrogen gas and the molten steel directly underneath the electrode tip. A ɸ 145mm diameter, laboratory-sized PESR furnace was used for the study on the reaction kinetics. Also, we carried out a water-model experiment in order to check the injection depth of the gas blown in the slag. The water model showed that the gas did not reach the upper surface of the molten metal and flowed on the bottom surface of the electrode only. An EPMA was carried out for a droplet remaining on the tip of the electrode after melting. The molten steel from the tip of the electrode shows that nitrogen gas absorption occurred at the tip of the electrode. The mass transfer coefficient was around 1.0x10-2 cm/sec in the system. This value is almost the same as the coefficient at the molten steel free surface.

  14. Calcium Signals: The Lead Currency of Plant Information Processing

    PubMed Central

    Kudla, Jörg; Batistič, Oliver; Hashimoto, Kenji

    2010-01-01

    Ca2+ signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca2+ signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca2+ elevations. Cellular Ca2+ signals are decoded and transmitted by a toolkit of Ca2+ binding proteins that relay this information into downstream responses. Major transduction routes of Ca2+ signaling involve Ca2+-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca2+-regulated transcription factors and Ca2+-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca2+ signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca2+ signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca2+ currency into defined changes in protein–protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored. PMID:20354197

  15. Does Signal Degradation Affect Top-Down Processing of Speech?

    PubMed

    Wagner, Anita; Pals, Carina; de Blecourt, Charlotte M; Sarampalis, Anastasios; Başkent, Deniz

    2016-01-01

    Speech perception is formed based on both the acoustic signal and listeners' knowledge of the world and semantic context. Access to semantic information can facilitate interpretation of degraded speech, such as speech in background noise or the speech signal transmitted via cochlear implants (CIs). This paper focuses on the latter, and investigates the time course of understanding words, and how sentential context reduces listeners' dependency on the acoustic signal for natural and degraded speech via an acoustic CI simulation.In an eye-tracking experiment we combined recordings of listeners' gaze fixations with pupillometry, to capture effects of semantic information on both the time course and effort of speech processing. Normal-hearing listeners were presented with sentences with or without a semantically constraining verb (e.g., crawl) preceding the target (baby), and their ocular responses were recorded to four pictures, including the target, a phonological (bay) competitor and a semantic (worm) and an unrelated distractor.The results show that in natural speech, listeners' gazes reflect their uptake of acoustic information, and integration of preceding semantic context. Degradation of the signal leads to a later disambiguation of phonologically similar words, and to a delay in integration of semantic information. Complementary to this, the pupil dilation data show that early semantic integration reduces the effort in disambiguating phonologically similar words. Processing degraded speech comes with increased effort due to the impoverished nature of the signal. Delayed integration of semantic information further constrains listeners' ability to compensate for inaudible signals. PMID:27080670

  16. Respiratory rate detection algorithms by photoplethysmography signal processing.

    PubMed

    Lee, E M; Kim, N H; Trang, N T; Hong, J H; Cha, E J; Lee, T S

    2008-01-01

    Photoplethysmography (PPG) offers the clinically meaningful parameters, such as, heart rate, and respiratory rate. In this study, we presented three respiratory signal detection algorithms using photoplethysmography raw data generated from commercial PPG sensor: (1)Min-Max (2)Peak-to-Peak (3)Pulse Shape. As reference signal, nasal sensor signal was acquired simultaneously and compared and analyzed. We used two types of moving average filtering technique to process three PPG parameters. In laboratory experiment, 6 subjects' PPG signals were measured when they respire ten and fifteen, and arbitrary times per minute. From the results, following conclusions were drawn. Min-Max and Peak-to-Peak algorithms perform better than Pulse shape algorithm. They can be used to detect respiratory rate. But, Pulse Shape algorithm was accurate for subject 4 only. More experimental data is necessary to improve the accuracy and reliability. PMID:19162865

  17. Analysis of signal processing techniques in pulsed thermography

    NASA Astrophysics Data System (ADS)

    Lopez, Fernando; Ibarra-Castanedo, Clemente; Maldague, Xavier; de Paulo Nicolau, Vicente

    2013-05-01

    Pulsed Thermography (PT) is one of the most widely used approaches for the inspection of composites materials, being its main attraction the deployment in transient regime. However, due to the physical phenomena involved during the inspection, the signals acquired by the infrared camera are nearly always affected by external reflections and local emissivity variations. Furthermore, non-uniform heating at the surface and thermal losses at the edges of the material also represent constraints in the detection capability. For this reason, the thermographics signals should be processed in order to improve - qualitatively and quantitatively - the quality of the thermal images. Signal processing constitutes an important step in the chain of thermal image analysis, especially when defects characterization is required. Several of the signals processing techniques employed nowadays are based on the one-dimensional solution of Fourier's law of heat conduction. This investigation brings into discussion the three-most used techniques based on the 1D Fourier's law: Thermographic Signal Reconstruction (TSR), Differential Absolute Contrast (DAC) and Pulsed Phase Thermography (PPT), applied on carbon fiber laminated composites. It is of special interest to determine the detection capabilities of each technique, allowing in this way more reliable results when performing an inspection by PT.

  18. Fault Detection of Gearbox from Inverter Signals Using Advanced Signal Processing Techniques

    NASA Astrophysics Data System (ADS)

    Pislaru, C.; Lane, M.; Ball, A. D.; Gu, F.

    2012-05-01

    The gear faults are time-localized transient events so time-frequency analysis techniques (such as the Short-Time Fourier Transform, Wavelet Transform, motor current signature analysis) are widely used to deal with non-stationary and nonlinear signals. Newly developed signal processing techniques (such as empirical mode decomposition and Teager Kaiser Energy Operator) enabled the recognition of the vibration modes that coexist in the system, and to have a better understanding of the nature of the fault information contained in the vibration signal. However these methods require a lot of computational power so this paper presents a novel approach of gearbox fault detection using the inverter signals to monitor the load, rather than the motor current. The proposed technique could be used for continuous monitoring as well as on-line damage detection systems for gearbox maintenance.

  19. Thirty years of underwater acoustic signal processing in China

    NASA Astrophysics Data System (ADS)

    Li, Qihu

    2012-11-01

    Advances in technology and theory in 30 years of underwater acoustic signal processing and its applications in China are presented in this paper. The topics include research work in the field of underwater acoustic signal modeling, acoustic field matching, ocean waveguide and internal wave, the extraction and processing technique for acoustic vector signal information, the space/time correlation characteristics of low frequency acoustic channels, the invariant features of underwater target radiated noise, the transmission technology of underwater voice/image data and its anti-interference technique. Some frontier technologies in sonar design are also discussed, including large aperture towed line array sonar, high resolution synthetic aperture sonar, deep sea siren and deep sea manned subsea vehicle, diver detection sonar and demonstration projector of national ocean monitoring system in China, etc.

  20. SoC-based architecture for biomedical signal processing.

    PubMed

    Gutiérrez-Rivas, R; Hernández, A; García, J J; Marnane, W

    2015-01-01

    Over the last decades, many algorithms have been proposed for processing biomedical signals. Most of these algorithms have been focused on the elimination of noise and artifacts existing in these signals, so they can be used for automatic monitoring and/or diagnosis applications. With regard to remote monitoring, the use of portable devices often requires a reduced number of resources and power consumption, being necessary to reach a trade-off between the accuracy of algorithms and their computational complexity. This paper presents a SoC (System-on-Chip) architecture, based on a FPGA (Field-Programmable Gate Array) device, suitable for the implementation of biomedical signal processing. The proposal has been successfully validated by implementing an efficient QRS complex detector. The results show that, using a reduced amount of resources, values of sensitivity and positive predictive value above 99.49% are achieved, which make the proposed approach suitable for telemedicine applications. PMID:26737663

  1. Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration.

    PubMed

    Nguyen Tan, Hung; Matsuura, Motoharu; Katafuchi, Tomoya; Kishi, Naoto

    2009-12-01

    A multiple-channel multiple-function optical signal processor (MCMF-OSP) including wavelength-waveform conversions, pulsewidth tunability, and signal regeneration is realized through AND logic gate based on optical parametric processing with a pulsewidth-tunable RZ clock pump. The proposed scheme simultaneously offers four signal processing functions which are useful in wavelength-division multiplexing (WDM) transmission systems, and at network nodes with the necessity for multiple-channel data processing. After the discussions on the concept of MCMF-OSP, a proof-of concept experiment is demonstrated on four 10 Gb/s nonreturn-to-zero (NRZ) data format channels using nonlinearities in semiconductor optical amplifier (SOA) and highly nonlinear fiber (HNLF). A wavelength and waveform conversions to return-to-zero (RZ) modulation format are obtained together with pulsewidth-tunable range from 20% to 80% duty cycles for all input signals. The converted signals inherit the timing and waveform of the RZ clock pump, thus resulting in a time regeneration and large tolerance to narrow-band optical filtering (NAOF) and fiber accumulated chromatic dispersion (CD). PMID:20052222

  2. Jitter model and signal processing techniques for pulse width modulation optical recording

    NASA Technical Reports Server (NTRS)

    Liu, Max M.-K.

    1991-01-01

    A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.

  3. Parallel Processing of Broad-Band PPM Signals

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).

  4. The Khoros software development environment for image and signal processing.

    PubMed

    Konstantinides, K; Rasure, J R

    1994-01-01

    Data flow visual language systems allow users to graphically create a block diagram of their applications and interactively control input, output, and system variables. Khoros is an integrated software development environment for information processing and visualization. It is particularly attractive for image processing because of its rich collection of tools for image and digital signal processing. This paper presents a general overview of Khoros with emphasis on its image processing and DSP tools. Various examples are presented and the future direction of Khoros is discussed. PMID:18291923

  5. An Evaluation of Two Signal-Processing Hearing Aids.

    ERIC Educational Resources Information Center

    Dempsey, James J.; Linzalone, Tanya G.

    1991-01-01

    This study, involving 15 older adults with hearing impairments, investigated the relationship between sentence recognition ability and two types of signal processing in hearing aids. Results indicated a significant improvement in sentence recognition when employing an instrument with adaptive compression versus an instrument with an adaptive…

  6. Signal processing for the TOPAZ Time Projection Chamber

    SciTech Connect

    Ikeda, H.; Iwasaki, H.; Iwata, S.; Kobayashi, M.; Matsuda, T.; Nakamura, K.; Yamauchi, M.; Aihara, H.; Enomoto, R.; Fujii, H.

    1987-02-01

    The signals from the TOPAZ Time Projection Chamber, after being processed by a low noise preamplifier and a shaper amplifier, are recorded by a CCD based digitizer system. The system achieved an integral operation in the environment of FASTBUS with Sector Sequencers and FPI.

  7. Ultrafast lasers for coherent communications and signal processing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Gee, S.; Lee, W.; Ozharar, S.; Quinlan, F.; Izadpanah, H.; Delfyett, P. J.; Plant, J. J.; Juodawlkis, P. W.

    2005-05-01

    This paper discusses use of optical frequency combs generated by modelocked semiconductor lasers for coherent photonic signal processing applications. Key in our approach is a high Q cavity, supermode suppression and low spontaneous emission. Targeted applications of the stabilized optical frequency combs lie in areas of metrology, optical sampling, arbitrary waveform generation and communications using coherent detection.

  8. Signal processing in the cochlea: The structure equations

    PubMed Central

    2011-01-01

    Background Physical and physiological invariance laws, in particular time invariance and local symmetry, are at the outset of an abstract model. Harmonic analysis and Lie theory are the mathematical prerequisites for its deduction. Results The main result is a linear system of partial differential equations (referred to as the structure equations) that describe the result of signal processing in the cochlea. It is formulated for phase and for the logarithm of the amplitude. The changes of these quantities are the essential physiological observables in the description of signal processing in the auditory pathway. Conclusions The structure equations display in a quantitative way the subtle balance for processing information on the basis of phase versus amplitude. From a mathematical point of view, the linear system of equations is classified as an inhomogeneous - equation. In suitable variables the solutions can be represented as the superposition of a particular solution (determined by the system) and a holomorphic function (determined by the incoming signal). In this way, a global picture of signal processing in the cochlea emerges. PMID:22656650

  9. Signal processing techniques for clutter filtering and wind shear detection

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Deshpande, Manohar D

    1991-01-01

    An extended Prony algorithm applicable to signal processing techniques for clutter filtering and windshear detection is discussed. The algorithm is based upon modelling the radar return as a time series, and appears to offer potential for improving hazard factor estimates in the presence of strong clutter returns.

  10. A robust sinusoidal signal processing method for interferometers

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-long; Zhang, Hui; Tseng, Yang-Yu; Fan, Kuang-Chao

    2013-10-01

    Laser interferometers are widely used as a reference for length measurement. Reliable bidirectional optical fringe counting is normally obtained by using two orthogonally sinusoidal signals derived from the two outputs of an interferometer with path difference. These signals are subject to be disturbed by the geometrical errors of the moving target that causes the separation and shift of two interfering light spots on the detector. It results in typical Heydemann errors, including DC drift, amplitude variation and out-of-orthogonality of two sinusoidal signals that will seriously reduce the accuracy of fringe counting. This paper presents a robust sinusoidal signal processing method to correct the distorted waveforms by hardware. A corresponding circuit board has been designed. A linear stage equipped with a laser displacement interferometer and a height gauge equipped with a linear grating interferometer are used as the test beds. Experimental results show that, even with a seriously disturbed input waveform, the output Lissajous circle can always be stabilized after signal correction. This robust method increases the stability and reliability of the sinusoidal signals for data acquisition device to deal with pulse count and phase subdivision.

  11. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  12. Snore related signals processing in a private cloud computing system.

    PubMed

    Qian, Kun; Guo, Jian; Xu, Huijie; Zhu, Zhaomeng; Zhang, Gongxuan

    2014-09-01

    Snore related signals (SRS) have been demonstrated to carry important information about the obstruction site and degree in the upper airway of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in recent years. To make this acoustic signal analysis method more accurate and robust, big SRS data processing is inevitable. As an emerging concept and technology, cloud computing has motivated numerous researchers and engineers to exploit applications both in academic and industry field, which could have an ability to implement a huge blue print in biomedical engineering. Considering the security and transferring requirement of biomedical data, we designed a system based on private cloud computing to process SRS. Then we set the comparable experiments of processing a 5-hour audio recording of an OSAHS patient by a personal computer, a server and a private cloud computing system to demonstrate the efficiency of the infrastructure we proposed. PMID:25205499

  13. Toward optical signal processing using photonic reservoir computing.

    PubMed

    Vandoorne, Kristof; Dierckx, Wouter; Schrauwen, Benjamin; Verstraeten, David; Baets, Roel; Bienstman, Peter; Van Campenhout, Jan

    2008-07-21

    We propose photonic reservoir computing as a new approach to optical signal processing in the context of large scale pattern recognition problems. Photonic reservoir computing is a photonic implementation of the recently proposed reservoir computing concept, where the dynamics of a network of nonlinear elements are exploited to perform general signal processing tasks. In our proposed photonic implementation, we employ a network of coupled Semiconductor Optical Amplifiers (SOA) as the basic building blocks for the reservoir. Although they differ in many key respects from traditional software-based hyperbolic tangent reservoirs, we show using simulations that such a photonic reservoir can outperform traditional reservoirs on a benchmark classification task. Moreover, a photonic implementation offers the promise of massively parallel information processing with low power and high speed. PMID:18648434

  14. New challenges in signal processing in astrophysics: the SKA case

    NASA Astrophysics Data System (ADS)

    Faulkner, Andrew; Zarb-Adami, Kristian; Geralt Bij de Vaate, Jan

    2015-07-01

    Signal processing and communications are driving the latest generation of radio telescopes with major developments taking place for use on the Square Kilometre Array, SKA, the next generation low frequency radio telescope. The data rates and processing performance that can be achieved with currently available components means that concepts from the earlier days of radio astronomy, phased arrays, can be used at higher frequencies, larger bandwidths and higher numbers of beams. Indeed it has been argued that the use of dishes as a mechanical beamformer only gained strong acceptance to mitigate the processing load from phased array technology. The balance is changing and benefits in both performance and cost can be realised. In this paper we will mostly consider the signal processing implementation and control for very large phased arrays consisting of hundreds of thousands of antennas or even millions of antennas. They can use current technology for the initial deployments. These systems are very large extending to hundreds of racks with thousands of signal processing modules that link through high-speed, but commercially available data networking devices. There are major challenges to accurately calibrate the arrays, mitigate power consumption and make the system maintainable.

  15. Additive manufacturing of Inconel 718 using electron beam melting: Processing, post-processing, & mechanical properties

    NASA Astrophysics Data System (ADS)

    Sames, William James, V.

    Additive Manufacturing (AM) process parameters were studied for production of the high temperature alloy Inconel 718 using Electron Beam Melting (EBM) to better understand the relationship between processing, microstructure, and mechanical properties. Processing parameters were analyzed for impact on process time, process temperature, and the amount of applied energy. The applied electron beam energy was shown to be integral to the formation of swelling defects. Standard features in the microstructure were identified, including previously unidentified solidification features such as shrinkage porosity and non-equilibrium phases. The as-solidified structure does not persist in the bulk of EBM parts due to a high process hold temperature (˜1000°C), which causes in situ homogenization. The most significant variability in as-fabricated microstructure is the formation of intragranular delta-phase needles, which can form in samples produced with lower process temperatures (< 960°C). A novel approach was developed and demonstrated for controlling the temperature of cool down, thus providing a technique for in situ heat treatment of material. This technique was used to produce material with hardness of 478+/-7 HV with no post-processing, which exceeds the hardness of peak-aged Inconel 718. Traditional post-processing methods of hot isostatic pressing (HIP) and solution treatment and aging (STA) were found to result in variability in grain growth and phase solution. Recrystallization and grain structure are identified as possible mechanisms to promote grain growth. These results led to the conclusion that the first step in thermal post-processing of EBM Inconel 718 should be an optimized solution treatment to reset phase variation in the as-fabricated microstructure without incurring significant grain growth. Such an optimized solution treatment was developed (1120°C, 2hr) for application prior to aging or HIP. The majority of as-fabricated tensile properties met ASTM

  16. A self-regulating biomolecular comparator for processing oscillatory signals.

    PubMed

    Agrawal, Deepak K; Franco, Elisa; Schulman, Rebecca

    2015-10-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  17. Digital Signal Processing Techniques for the GIFTS SM EDU

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Reisse, Robert A.; Gazarik, Michael J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes several digital signal processing (DSP) techniques involved in the development of the calibration model. In the first stage, the measured raw interferograms must undergo a series of processing steps that include filtering, decimation, and detector nonlinearity correction. The digital filtering is achieved by employing a linear-phase even-length FIR complex filter that is designed based on the optimum equiripple criteria. Next, the detector nonlinearity effect is compensated for using a set of pre-determined detector response characteristics. In the next stage, a phase correction algorithm is applied to the decimated interferograms. This is accomplished by first estimating the phase function from the spectral phase response of the windowed interferogram, and then correcting the entire interferogram based on the estimated phase function. In the calibration stage, we first compute the spectral responsivity based on the previous results and the ideal Planck blackbody spectra at the given temperatures, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. In the post-calibration stage, we estimate the Noise Equivalent Spectral Radiance (NESR) from the calibrated ABB and HBB spectra. The NESR is generally considered as a measure of the instrument noise performance, and can be estimated as

  18. Signal processing techniques for surveillance radar - An overview

    NASA Astrophysics Data System (ADS)

    Farina, A.; Galati, G.

    1985-06-01

    The present paper is concerned with a survey of the signal processing techniques presently employed in modern air defense and surveillance radars and those techniques likely to be applied in the future. Attention is given to the requirements for enhancing performance in surveillance radar, current processing techniques, advanced techniques, low probability of intercept (LPI) and anti-ARM (anti-radiation missile), anti-stealth, digital beamforming (DBF), adaptivity, high directivity and high resolution, multidimensional processing, target classification, and fieldability. Stealth is the term given to means of reducing the radar cross section of a target and the reduction of infrared emissions from the engine exhaust.

  19. Improved fundamental frequency coding in cochlear implant signal processing.

    PubMed

    Milczynski, Matthias; Wouters, Jan; van Wieringen, Astrid

    2009-04-01

    A new signal processing algorithm for improved pitch perception in cochlear implants is proposed. The algorithm realizes fundamental frequency (F0) coding by explicitly modulating the amplitude of the electrical stimulus. The proposed processing scheme is compared with the standard advanced combination encoder strategy in psychophysical music perception related tasks. Possible filter-bank and loudness cues between the strategies under study were minimized to predominantly focus on differences in temporal processing. The results demonstrate significant benefits provided by the new coding strategy for pitch ranking, melodic contour identification, and familiar melody identification. PMID:19354401

  20. Analysis of Wide-Band Signals Using Wavelet Array Processing

    NASA Astrophysics Data System (ADS)

    Nisii, V.; Saccorotti, G.

    2005-12-01

    Wavelets transforms allow for precise time-frequency localization in the analysis of non-stationary signals. In wavelet analysis the trade-off between frequency bandwidth and time duration, also known as Heisenberg inequality, is by-passed using a fully scalable modulated window which solves the signal-cutting problem of Windowed Fourier Transform. We propose a new seismic array data processing procedure capable of displaying the localized spatial coherence of the signal in both the time- and frequency-domain, in turn deriving the propagation parameters of the most coherent signals crossing the array. The procedure consists in: a) Wavelet coherence analysis for each station pair of the instruments array, aimed at retrieving the frequency- and time-localisation of coherent signals. To this purpose, we use the normalised wavelet cross- power spectrum, smoothed along the time and scale domains. We calculate different coherence spectra adopting smoothing windows of increasing lengths; a final, robust estimate of the time-frequency localisation of spatially-coherent signals is eventually retrieved from the stack of the individual coherence distribution. This step allows for a quick and reliable signal discrimination: wave groups propagating across the network will manifest as high-coherence patches spanning the corresponding time-scale region. b) Once the signals have been localised in the time and frequency domain,their propagation parameters are estimated using a modified MUSIC (MUltiple SIgnal Characterization) algorithm. We select the MUSIC approach as it demonstrated superior performances in the case of low SNR signals, more plane waves contemporaneously impinging at the array and closely separated sources. The narrow-band Coherent Signal Subspace technique is applied to the complex Continuous Wavelet Transform of multichannel data for improving the singularity of the estimated cross-covariance matrix and the accuracy of the estimated signal eigenvectors. Using

  1. A theoretical bound for the processing of SARSAT signals

    NASA Astrophysics Data System (ADS)

    Carter, C. R.

    1986-01-01

    A theoretical bound is calculated for a matched filter receiver for search and rescue satellite-aided tracking (SARSAT) signals. The processor is assumed to give the best possible performance when a single signal is immersed in noise. A solution in closed form is deduced, and values are calculated for several different cases. The results show that, for a processing duration of 125 ms, an emergency locator transmitter signal can be detected within + or - 8 Hz when the carrier-to-noise density ratio is only 15 dB-Hz. The bound can be used to evaluate the performance of more practical implementations, although it may also be possible to realize the matched filter in certain cases.

  2. Symmetrical modified dual tree complex wavelet transform for processing quadrature Doppler ultrasound signals.

    PubMed

    Serbes, G; Aydin, N

    2011-01-01

    Dual-tree complex wavelet transform (DTCWT), which is a shift invariant transform with limited redundancy, is an improved version of discrete wavelet transform. Complex quadrature signals are dual channel signals obtained from the systems employing quadrature demodulation. An example of such signals is quadrature Doppler signal obtained from blood flow analysis systems. Prior to processing Doppler signals using the DTCWT, directional flow signals must be obtained and then two separate DTCWT applied, increasing the computational complexity. In this study, in order to decrease computational complexity, a symmetrical modified DTCWT algorithm is proposed (SMDTCWT). A comparison between the new transform and the symmetrical phasing-filter technique is presented. Additionally denoising performance of SMDTCWT is compared with the DWT and the DTCWT using simulated signals. The results show that the proposed method gives the same output as the symmetrical phasing-filter method, the computational complexity for processing quadrature signals using DTCWT is greatly reduced and finally the SMDTCWT based denoising outperforms conventional DWT with same computational complexity. PMID:22255416

  3. Synthetic aperture radar signal processing on the MPP

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Seiler, E. J.

    1987-01-01

    Satellite-borne Synthetic Aperture Radars (SAR) sense areas of several thousand square kilometers in seconds and transmit phase history signal data several tens of megabits per second. The Shuttle Imaging Radar-B (SIR-B) has a variable swath of 20 to 50 km and acquired data over 100 kms along track in about 13 seconds. With the simplification of separability of the reference function, the processing still requires considerable resources; high speed I/O, large memory and fast computation. Processing systems with regular hardware take hours to process one Seasat image and about one hour for a SIR-B image. Bringing this processing time closer to acquisition times requires an end-to-end system solution. For the purpose of demonstration, software was implemented on the present Massively Parallel Processor (MPP) configuration for processing Seasat and SIR-B data. The software takes advantage of the high processing speed offered by the MPP, the large Staging Buffer, and the high speed I/O between the MPP array unit and the Staging Buffer. It was found that with unoptimized Parallel Pascal code, the processing time on the MPP for a 4096 x 4096 sample subset of signal data ranges between 18 and 30.2 seconds depending on options.

  4. Digital signal processing algorithms for automatic voice recognition

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1987-01-01

    The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.

  5. Signal Processing in Periodically Forced Gradient Frequency Neural Networks

    PubMed Central

    Kim, Ji Chul; Large, Edward W.

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858

  6. The high speed low noise multi-data processing signal process circuit research of remote sensing

    NASA Astrophysics Data System (ADS)

    Su, Lei; Jiang, Haibin; Dong, Wang

    2013-08-01

    The high speed, low noise and integration characteristic are the main technology and the main development directions on the signal process circuit of the image sensor, especially in high resolution remote sensing. With these developments, the high noise limiting circuits, high speed data transfer system and the integrated design of the signal process circuit become more and more important. Therefore the requirement of the circuit system simulation is more and more important during the system design and PCB board design process. A CCD signal process circuit system which has the high speed, low noise and several selectable operate modes function was designed and certificated in this paper, during the CCD signal process circuit system design, simulation was made which include the signal integrity and the power integrity. The important devices such as FPGA and the DDR2 device were simulated, using the power integrity simulation the sensitive power planes of the FPGA on the PCB was modified to make the circuit operate more stabilize on a higher frequency. The main clock path and the high speed data path of the PCB board were simulated with the signal integrity. All the simulation works make the signal process circuit system's image's SNR value get higher and make the circuit system could operate well on higher frequency. In the board testing process, the PCB time diagrams were listed on the testing chapter and the wave's parameter meets the request. The real time diagram and the simulated result of the PCB board was listed respectively. The CCD signal process circuit system's images' SNR (Signal Noise Ratio) value, the 14bit AFE slew rate and the data transfer frequency is listed in the paper respective.

  7. Biological signal processing with a genetic toggle switch.

    PubMed

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  8. Task effects on BOLD signal correlates of implicit syntactic processing.

    PubMed

    Caplan, David

    2010-07-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  9. A MUSIC-based method for SSVEP signal processing.

    PubMed

    Chen, Kun; Liu, Quan; Ai, Qingsong; Zhou, Zude; Xie, Sheng Quan; Meng, Wei

    2016-03-01

    The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100%. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications. PMID:26831487

  10. Task effects on BOLD signal correlates of implicit syntactic processing

    PubMed Central

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  11. Deterring watermark collusion attacks using signal processing techniques

    NASA Astrophysics Data System (ADS)

    Lemma, Aweke N.; van der Veen, Michiel

    2007-02-01

    Collusion attack is a malicious watermark removal attack in which the hacker has access to multiple copies of the same content with different watermarks and tries to remove the watermark using averaging. In the literature, several solutions to collusion attacks have been reported. The main stream solutions aim at designing watermark codes that are inherently resistant to collusion attacks. The other approaches propose signal processing based solutions that aim at modifying the watermarked signals in such a way that averaging multiple copies of the content leads to a significant degradation of the content quality. In this paper, we present signal processing based technique that may be deployed for deterring collusion attacks. We formulate the problem in the context of electronic music distribution where the content is generally available in the compressed domain. Thus, we first extend the collusion resistance principles to bit stream signals and secondly present experimental based analysis to estimate a bound on the maximum number of modified versions of a content that satisfy good perceptibility requirement on one hand and destructive averaging property on the other hand.

  12. Biological Signal Processing with a Genetic Toggle Switch

    PubMed Central

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  13. Coherent broadband sonar signal processing with the environmentally corrected matched filter

    NASA Astrophysics Data System (ADS)

    Camin, Henry John, III

    The matched filter is the standard approach for coherently processing active sonar signals, where knowledge of the transmitted waveform is used in the detection and parameter estimation of received echoes. Matched filtering broadband signals provides higher levels of range resolution and reverberation noise suppression than can be realized through narrowband processing. Since theoretical processing gains are proportional to the signal bandwidth, it is typically desirable to utilize the widest band signals possible. However, as signal bandwidth increases, so do environmental effects that tend to decrease correlation between the received echo and the transmitted waveform. This is especially true for ultra wideband signals, where the bandwidth exceeds an octave or approximately 70% fractional bandwidth. This loss of coherence often results in processing gains and range resolution much lower than theoretically predicted. Wiener filtering, commonly used in image processing to improve distorted and noisy photos, is investigated in this dissertation as an approach to correct for these environmental effects. This improved signal processing, Environmentally Corrected Matched Filter (ECMF), first uses a Wiener filter to estimate the environmental transfer function and then again to correct the received signal using this estimate. This process can be viewed as a smarter inverse or whitening filter that adjusts behavior according to the signal to noise ratio across the spectrum. Though the ECMF is independent of bandwidth, it is expected that ultra wideband signals will see the largest improvement, since they tend to be more impacted by environmental effects. The development of the ECMF and demonstration of improved parameter estimation with its use are the primary emphases in this dissertation. Additionally, several new contributions to the field of sonar signal processing made in conjunction with the development of the ECMF are described. A new, nondimensional wideband

  14. Communications, Signal Processing, and Telemetering Research Program Review

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A Communications, Signal Processing, and Telemetering Research Program Review was held on February 23, 1999. Research conducted under the grant was presented and reviewed, for progress, and for possible technology transfers. The research reviewed was in the following areas: (1) Bandwidth-efficient Modulation and nonlinear equalization; (2) Investigation of an architecture for parallel signal processing applicable to communications problems; (3)Coded partial response over satellites; (4) synchronization at Low SNR; (5) Serial concatenated convolutional codes and some implementation issues on high rate turbo codes; (6) Flight experiments; (7) Real time doppler tracking; (8) Space protocol testing; (9) Lightweight optical communications without carrying a laser in space. The presentations are given by the graduate students who performed the research.

  15. Signal processing software for ground penetrating radar, user's manual

    NASA Astrophysics Data System (ADS)

    Liem, Ronnie; Davis, Thomas J.

    1988-03-01

    This is the user's manual for the signal processing software for reducing ground penetrating radar (GPR) data. The manual provides background information and instructions for operating the computer program. The developed program is based on the synthetic aperture focusing technique. Input data to the program consists of digitized sequential GPR scans from a linear survey. The format for the input data is specified in Appendix C. The output of the program are two-dimensional plots of the ground profile showing the stations and depth of the objects identified by the program. Features of the program include utilities to determine the velocity of propagation of the GPR signal and the location of the ground surface as well as semi-automatic and automatic processing of the data. The program is designed to operate on an IBM PC or compatible computer. Other hardware and supporting software requirements for operating the program are specified in Appendix B.

  16. Nonlinear Signal Processing Using Fiber-Optics Neurograms

    NASA Astrophysics Data System (ADS)

    Szu, Harold

    1986-02-01

    A novel optical device for nonlinear signal processing is described based upon the following observations: (a) A phase space for signal processing is identified with a time-frequency joint representation (TFJR) that appears almost everywhere naturally, for example in bats, in music, etc. (b) A sudden slow down mechanism is responsible for the transition from a phase coherent-to-incoherent wavefront and provides us the sharpest tone transduction from a Bekesy traveling wave in a model of the inner ear. The cause of the slowdown is physically identified to be due to three forces. This has been used to derive a cubic deceleration polynomial responsible for a cusp bifurcation phenomenon which occur for every tone transducted along the nonuniform elastic membrane. The liquid-filled inner ear cochlea channel is divided by the membrane into an upper duct that has hair cells for the forward sound-generated flow and the lower duct for the backward balance-return flow.

  17. Statistical Signal Processing Methods in Scattering and Imaging

    NASA Astrophysics Data System (ADS)

    Zambrano Nunez, Maytee

    This Ph.D. dissertation project addresses two related topics in wave-based signal processing: 1) Cramer-Rao bound (CRB) analysis of scattering systems formed by pointlike scatterers in one-dimensional (1D) and three-dimensional (3D) spaces. 2) Compressive optical coherent imaging, based on the incorporation of sparsity priors in the reconstructions. The first topic addresses for wave scattering systems in 1D and 3D spaces the information content about scattering parameters, in particular, the targets' positions and strengths, and derived quantities, that is contained in scattering data corresponding to reflective, transmissive, and more general sensing modalities. This part of the dissertation derives the Cramer-Rao bound (CRB) for the estimation of parameters of scalar wave scattering systems formed by point scatterers. The results shed light on the fundamental difference between the approximate Born approximation model for weak scatterers and the more general multiple scattering model, and facilitate the identification of regions in parameter space where multiple scattering facilitates or obstructs the estimation of parameters from scattering data, as well as of sensing configurations giving maximal or minimal information about the parameters. The derived results are illustrated with numerical examples, with particular emphasis on the imaging resolution which we quantify via a relative resolution index borrowed from a previous paper. Additionally, this work investigates fundamental limits of estimation performance for the localization of the targets and the inverse scattering problem. The second topic of the effort describes a novel compressive-sensing-based technique for optical imaging with a coherent single-detector system. This hybrid opto-micro-electromechanical, coherent single-detector imaging system applies the latest developments in the nascent field of compressive sensing to the problem of computational imaging of wavefield intensity from a small number

  18. Flash Signal Processing and NAND/ReRAM SSD

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.

    The widespread use of NAND Flash memories in SSDs has unleashed new avenues of innovation for the enterprise and client computing. System-wide architectural changes are required to make full use of the advantages of SSDs in terms of performance, reliability and power. Signal processing technologies are becoming more and more popular to countermeasure all the parasitic effects of a Flash NAND array: the first part of this chapter deals with such techniques.

  19. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Naveh, Arad

    1992-01-01

    The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.

  20. Developments in signal processing and interpretation in laser tapping

    NASA Astrophysics Data System (ADS)

    Perton, M.; Neron, C.; Blouin, A.; Monchalin, J.-P.

    2013-01-01

    A novel technique, called laser-tapping, based on the thermoelastic excitation by laser like laser-ultrasonics has been previously introduced for inspecting honeycomb and foam core structures. If the top skin is delaminated or detached from the substrate, the detached layer is driven into vibration. The interpretation of the vibrations in terms of Lamb wave resonances is first discussed for a flat bottom hole configuration and then used to determine appropriate signal processing for samples such as honeycomb structures.

  1. Adaptive control technique for accelerators using digital signal processing

    SciTech Connect

    Eaton, L.; Jachim, S.; Natter, E.

    1987-01-01

    The use of present Digital Signal Processing (DSP) techniques can drastically reduce the residual rf amplitude and phase error in an accelerating rf cavity. Accelerator beam loading contributes greatly to this residual error, and the low-level rf field control loops cannot completely absorb the fast transient of the error. A feedforward technique using DSP is required to maintain the very stringent rf field amplitude and phase specifications. 7 refs.

  2. Intracellular Information Processing through Encoding and Decoding of Dynamic Signaling Features

    PubMed Central

    Makadia, Hirenkumar K.; Schwaber, James S.; Vadigepalli, Rajanikanth

    2015-01-01

    Cell signaling dynamics and transcriptional regulatory activities are variable within specific cell types responding to an identical stimulus. In addition to studying the network interactions, there is much interest in utilizing single cell scale data to elucidate the non-random aspects of the variability involved in cellular decision making. Previous studies have considered the information transfer between the signaling and transcriptional domains based on an instantaneous relationship between the molecular activities. These studies predict a limited binary on/off encoding mechanism which underestimates the complexity of biological information processing, and hence the utility of single cell resolution data. Here we pursue a novel strategy that reformulates the information transfer problem as involving dynamic features of signaling rather than molecular abundances. We pursue a computational approach to test if and how the transcriptional regulatory activity patterns can be informative of the temporal history of signaling. Our analysis reveals (1) the dynamic features of signaling that significantly alter transcriptional regulatory patterns (encoding), and (2) the temporal history of signaling that can be inferred from single cell scale snapshots of transcriptional activity (decoding). Immediate early gene expression patterns were informative of signaling peak retention kinetics, whereas transcription factor activity patterns were informative of activation and deactivation kinetics of signaling. Moreover, the information processing aspects varied across the network, with each component encoding a selective subset of the dynamic signaling features. We developed novel sensitivity and information transfer maps to unravel the dynamic multiplexing of signaling features at each of these network components. Unsupervised clustering of the maps revealed two groups that aligned with network motifs distinguished by transcriptional feedforward vs feedback interactions. Our new

  3. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    SciTech Connect

    OVERLY, TIMOTHY G.; PARK, GYUHAE; FARRAR, CHARLES R.

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  4. Digital signal processor and processing method for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  5. Signal processing of microbolometer infrared focal-plane arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Qian, Yunsheng; Chang, Benkang; Xing, Suxia; Sun, Lianjun

    2005-01-01

    A 320×240-uncooled-microbolometer-based signal processing circuit for infrared focal-plane arrays is presented, and the software designs of this circuit system are also discussed in details. This signal processing circuit comprises such devices as FPGA, D/A, A/D, SRAM, Flash, DSP, etc., among which, FPGA is the crucial part, which realizing the generation of drive signals for infrared focal-plane, nonuniformity correction, image enhancement and video composition. The device of DSP, mainly offering auxiliary functions, carries out communication with PC and loads data when power-up. The phase locked loops (PLL) is used to generate high-quality clocks with low phase dithering and multiple clocks are to used satisfy the demands of focal-plane arrays, A/D, D/A and FPGA. The alternate structure is used to read or write SRAM in order to avoid the contradiction between different modules. FIFO embedded in FPGA not only makes full use of the resources of FPGA but acts as the channel between different modules which have different-speed clocks. What's more, working conditions, working process, physical design and management of the circuit are discussed. In software designing, all the function modules realized by FPGA and DSP devices, which are mentioned in the previous part, are discussed explicitly. Particularly to the nonuniformity correction module, the pipeline structure is designed to improve the working frequency and the ability to realize more complex algorithm.

  6. Nonlinear fiber applications for ultrafast all-optical signal processing

    NASA Astrophysics Data System (ADS)

    Kravtsov, Konstantin

    In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.

  7. Cellular defense processes regulated by pathogen-elicited receptor signaling

    NASA Astrophysics Data System (ADS)

    Wu, Rongcong; Goldsipe, Arthur; Schauer, David B.; Lauffenburger, Douglas A.

    2011-06-01

    Vertebrates are constantly threatened by the invasion of microorganisms and have evolved systems of immunity to eliminate infectious pathogens in the body. Initial sensing of microbial agents is mediated by the recognition of pathogens by means of molecular structures expressed uniquely by microbes of a given type. So-called 'Toll-like receptors' are expressed on host epithelial barrier cells play an essential role in the host defense against microbial pathogens by inducing cell responses (e.g., proliferation, death, cytokine secretion) via activation of intracellular signaling networks. As these networks, comprising multiple interconnecting dynamic pathways, represent highly complex multi-variate "information processing" systems, the signaling activities particularly critical for governing the host cell responses are poorly understood and not easily ascertained by a priori theoretical notions. We have developed over the past half-decade a "data-driven" computational modeling approach, on a 'cue-signal-response' combined experiment/computation paradigm, to elucidate key multi-variate signaling relationships governing the cell responses. In an example presented here, we study how a canonical set of six kinase pathways combine to effect microbial agent-induced apoptotic death of a macrophage cell line. One modeling technique, partial least-squares regression, yielded the following key insights: {a} signal combinations most strongly correlated to apoptotic death are orthogonal to those most strongly correlated with release of inflammatory cytokines; {b} the ratio of two key pathway activities is the most powerful predictor of microbe-induced macrophage apoptotic death; {c} the most influential time-window of this signaling activity ratio is surprisingly fast: less than one hour after microbe stimulation.

  8. Power optimization in wearable biomedical systems: a signal processing perspective

    NASA Astrophysics Data System (ADS)

    Ghasemzadeh, Hassan

    2012-10-01

    Wearable monitoring systems have caught considerable attention recently due to their potential in many domains including smart health and well-being. These new biomedical monitoring systems aim to provide continuous patient monitoring and proactive care options. Realization of this vision requires research that addresses a number of challenges, in particular, regarding limited resources that the wearable sensor networks offer. This paper presents an overview of different strategies for prolonging system lifetimes through power optimization in such systems. Particular emphasis is given to enhancing processing and communication architectures with respect to the signal processing requirements of the system.

  9. Data processing of fundamental frequency data in telephonic signals

    NASA Astrophysics Data System (ADS)

    Masserano, G.

    1980-12-01

    Voice fundamental frequency data obtained using an average magnitude difference function are further processed to reduce the evaluation error, in particular the double pitch error. Three algorithms are described and compared. An experimental assessment of the proposed algorithms is presented given a digitized male voice signal sampled at 10 kHz. One of the algorithms which simply eliminates the anomalous values of the fundamental frequency is found to be the best suited for error reduction. The simplicity of this algorithm, which allows for fast data processing, is emphasized.

  10. Interactions between visceral afferent signaling and stimulus processing

    PubMed Central

    Critchley, Hugo D.; Garfinkel, Sarah N.

    2015-01-01

    Visceral afferent signals to the brain influence thoughts, feelings and behavior. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated) physiological arousal to emotional, social and motivational behaviors, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain's representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed. PMID:26379481

  11. Hybrid integrated optic modules for real-time signal processing

    NASA Technical Reports Server (NTRS)

    Tsai, C. S.

    1984-01-01

    The most recent progress on four relatively new hybrid integrated optic device modules in LiNbO3 waveguides and one in YIG/GGG waveguide that are currently being studied are discussed. The five hybrid modules include a time-integrating acoustooptic correlator, a channel waveguide acoustooptic frequency shifter/modulator, an electrooptic channel waveguide total internal reflection moculator/switch, an electrooptic analog-to-digital converter using a Fabry-Perot modulator array, and a noncollinear magnetooptic modulator using magnetostatic surface waves. All of these devices possess the desirable characteristics of very large bandwidth (GHz or higher), very small substrate size along the optical path (typically 1.5 cm or less), single-mode optical propagation, and low drive power requirement. The devices utilize either acoustooptic, electrooptic or magnetooptic effects in planar or channel waveguides and, therefore, act as efficient interface devices between a light wave and temporal signals. Major areas of application lie in wideband multichannel optical real-time signal processing and communications. Some of the specific applications include spectral analysis and correlation of radio frequency (RF) signals, fiber-optic sensing, optical computing and multiport switching/routing, and analog-to-digital conversion of wide RF signals.

  12. Analog signal processing for the Time Projection Chamber

    SciTech Connect

    Jared, R.C.; Landis, D.A.; Goulding, F.S.

    1981-10-01

    The Time Projection Chamber (TPC) is a large gas filled cylindrical detector designed to provide 3-D images of tracks radiating from the center of the detector where e/sup +/e/sup -/ collisions occur. Ionization along the tracks is drifted in an electric field to the end planes which are equipped with a large array of proportional wires and position pads (17,000 channels). The wire signals are used to derive radial data while the pad signals provide the azmuthal information. The axial dimension is determined using the drift time of the ionization. Preamplifiers mounted in the ends of the chamber feed the signals to remote amplifiers whose outputs drive Charge Coupled Devices (CCD). The CCDs are normally clocked at 10 MHz and hold a 45.5 ..mu..s history (445 CCD buckets) of analog drift information from the TPC. During readout the clock is changed to 20 KHz and 17,000 CCD outputs are digitized (9 bits) in parallel. The non-zero data is then transferred to buffer memories associated with the digitizers. This paper emphasizes the analog signal processing part of the system.

  13. Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing.

    PubMed

    Melnick, M; Jaskoll, T

    2000-01-01

    Signal processing is the sine qua non of embryogenesis. At its core, any single signal transduction pathway may be understood as classic Information Theory, adapted as an open system such that, because of networking, the "receiver" is presented with more information than was initially signaled by the "source". Over 40 years ago, Waddington presented his "Epigenetic Landscape" as a metaphor for the hierarchical nature of embryogenesis. Mathematically, Waddington's landscape may be modeled as a neural net. The "black box" of the neural net is an interacting network of signal transduction pathways (using hormones, growth factors, cytokines, neurotransmitters, and others) which inform the Boolean logic gates. An emerging theme in developmental biology is that defined sets of epigenetic circuits are used in multiple places, at multiple times, for similar and sometimes different purposes during organogenesis. As we show here, submandibular gland embryonic and fetal development is a splendid paradigm of these epigenetic circuits and their phenotypic outcomes, such as branching and lumen formation. PMID:12002815

  14. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  15. Dysphagia Screening: Contributions of Cervical Auscultation Signals and Modern Signal-Processing Techniques

    PubMed Central

    Dudik, Joshua M.; Coyle, James L.

    2015-01-01

    Cervical auscultation is the recording of sounds and vibrations caused by the human body from the throat during swallowing. While traditionally done by a trained clinician with a stethoscope, much work has been put towards developing more sensitive and clinically useful methods to characterize the data obtained with this technique. The eventual goal of the field is to improve the effectiveness of screening algorithms designed to predict the risk that swallowing disorders pose to individual patients’ health and safety. This paper provides an overview of these signal processing techniques and summarizes recent advances made with digital transducers in hopes of organizing the highly varied research on cervical auscultation. It investigates where on the body these transducers are placed in order to record a signal as well as the collection of analog and digital filtering techniques used to further improve the signal quality. It also presents the wide array of methods and features used to characterize these signals, ranging from simply counting the number of swallows that occur over a period of time to calculating various descriptive features in the time, frequency, and phase space domains. Finally, this paper presents the algorithms that have been used to classify this data into ‘normal’ and ‘abnormal’ categories. Both linear as well as non-linear techniques are presented in this regard. PMID:26213659

  16. Signal detection in FDA AERS database using Dirichlet process.

    PubMed

    Hu, Na; Huang, Lan; Tiwari, Ram C

    2015-08-30

    In the recent two decades, data mining methods for signal detection have been developed for drug safety surveillance, using large post-market safety data. Several of these methods assume that the number of reports for each drug-adverse event combination is a Poisson random variable with mean proportional to the unknown reporting rate of the drug-adverse event pair. Here, a Bayesian method based on the Poisson-Dirichlet process (DP) model is proposed for signal detection from large databases, such as the Food and Drug Administration's Adverse Event Reporting System (AERS) database. Instead of using a parametric distribution as a common prior for the reporting rates, as is the case with existing Bayesian or empirical Bayesian methods, a nonparametric prior, namely, the DP, is used. The precision parameter and the baseline distribution of the DP, which characterize the process, are modeled hierarchically. The performance of the Poisson-DP model is compared with some other models, through an intensive simulation study using a Bayesian model selection and frequentist performance characteristics such as type-I error, false discovery rate, sensitivity, and power. For illustration, the proposed model and its extension to address a large amount of zero counts are used to analyze statin drugs for signals using the 2006-2011 AERS data. PMID:25924820

  17. A new interpolation arithmetic based readout signals process method for infrared imaging system applications

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Yao, Suying; Zhao, Yiqiang

    2009-07-01

    A new readout signals process circuit for infrared focal plane array (IR FPA) applications is proposed. In the proposed structure the continuous-time current signals from the detector array are mirrored, amplified, integrated on the integration capacitors and changed to discrete analog voltage signals. Next, these voltage signals are amplified and modulated by a group of encoded signals from the column buses, then fed to a multiple-input analog adder to generate a single serial output data stream. The generated single serial data stream is transferred to the mitigate noise circuit and is converted to digital signals by the A/D converter. For very large format detector arrays applications the speed restriction of the time-multiplexing circuitry and the A/D converter will be released. Since no scan technique has been used, all the output signals from an entire row in the detector array have been readout simultaneously without loss of optical power, the scalability of the photon-signals, the readout efficiency and the accuracy of the imaging system will be improved. Theory analysis and experimental results show that the proposed idea is reasonable and efficient. The proposed readout method is a solid option for large format infrared detector arrays and highly integrated infrared imaging system applications. In addition, the proposed idea also can be used for other active and passive imaging readout integrated circuits.

  18. Decoding signal processing in thalamo-hippocampal circuitry: implications for theories of memory and spatial processing.

    PubMed

    Tsanov, Marian; O'Mara, Shane M

    2015-09-24

    A major tool in understanding how information is processed in the brain is the analysis of neuronal output at each hierarchical level through which neurophysiological signals are propagated. Since the experimental brain operation performed on Henry Gustav Molaison (known as patient H.M.) in 1953, the hippocampal formation has gained special attention, resulting in a very large number of studies investigating signals processed by the hippocampal formation. One of the main information streams to the hippocampal formation, vital for episodic memory formation, arises from thalamo-hippocampal projections, as there is extensive connectivity between these structures. This connectivity is sometimes overlooked by theories of memory formation by the brain, in favour of theories with a strong cortico-hippocampal flavour. In this review, we attempt to address some of the complexity of the signals processed within the thalamo-hippocampal circuitry. To understand the signals encoded by the anterior thalamic nuclei in particular, we review key findings from electrophysiological, anatomical, behavioural and computational studies. We include recent findings elucidating the integration of different signal modalities by single thalamic neurons; we focus in particular on the propagation of two prominent signals: head directionality and theta rhythm. We conclude that thalamo-hippocampal processing provides a centrally important, substantive, and dynamic input modulating and moderating hippocampal spatial and mnemonic processing. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25498107

  19. Time Reversal Signal Processing in Communications - A Feasibility Study

    SciTech Connect

    Meyer, A W; Candy, J V; Poggio, A J

    2002-01-30

    A typical communications channel is subjected to a variety of signal distortions, including multipath, that corrupt the information being transmitted and reduce the effective channel capacity. The mitigation of the multipath interference component is an ongoing concern for communication systems operating in complex environments such as might be experienced inside buildings, urban environments, and hilly or heavily wooded areas. Communications between mobile units and distributed sensors, so important to national security, are dependent upon flawless conveyance of information in complex environments. The reduction of this multipath corruption necessitates better channel equalization, i.e., the removal of channel distortion to extract the transmitted information. But, the current state of the art in channel equalization either requires a priori knowledge of the channel or the use of a known training sequence and adaptive filtering. If the ''assumed'' model within the equalization processor does not at least capture the dominant characteristics of the channel, then the received information may still be highly distorted and possibly useless. Also, the processing required for classical equalization is demanding in computational resources. To remedy this situation, many techniques have been investigated to replace classical equalization. Such a technique, the subject of this feasibility study, is Time Reversal Signal Processing (TRSP). Multipath is particularly insidious and a major factor in the deterioration of communication channels. Unlike most other characteristics that corrupt a communications channel, the detrimental effects of multipath cannot be overcome by merely increasing the transmitted power. Although the power in a signal diminishes as a function of the distance between the transmitter and receiver, multipath further degrades a signal by creating destructive interference that results in a loss of received power in a very localized area, a loss often

  20. Massively parallel spatial light modulation-based optical signal processing

    NASA Astrophysics Data System (ADS)

    Li, Yao

    1993-03-01

    A new optical parallel arithmetic processing scheme using a nonholographic optoelectronic content-addressable memory (CAM) was proposed. The design of a four-bit CAM-based optical carry look-ahead adder was studied. Compared with existing optoelectronic binary addition approaches, this nonholographic CAM Scheme offers a number of practical advantages, such as faster processing speed and ease of optical implementation and alignment. For an addition of numbers longer than four bits, by incorporating the previous stage's carry, a number of four-bit CLA's can be cascaded. Experimental results were also demonstrated. One paper to the Optics Letters was published.

  1. Gallium arsenide enhances digital signal processing in electronic warfare

    NASA Astrophysics Data System (ADS)

    Hoffman, B.; Apte, D.

    1985-07-01

    The higher electron mobility and velocity of GaAs digital signal processing IC devices for electronic warfare (EW) allow operation times that are several times faster than those of ICs based on silicon. Particular benefits are foreseen for the response time and broadband capability of ECM systems. Many data manipulation methods can be implemented in emitter-coupled logic (ECL) GaAs devices, and digital GaAs RF memories are noted to show great promise for improved ECM system performance while encompassing microwave frequency and chirp signal synthesis, repeater jamming, and multiple false target generation. EW digital frequency synthesizers are especially in need of GaAS IC technology, since bandwidth and resolution have been limited by ECL technology to about 250 MHz.

  2. A rapid signal processing technique to remove the effect of dispersion from guided wave signals.

    PubMed

    Wilcox, Paul D

    2003-04-01

    Guided acoustic and ultrasonic waves have been utilized in various manners for non-destructive evaluation and testing. If a guided wave mode is dispersive, a pulse of energy will spread out in space and time as it propagates. For a long-range guided wave inspection application, this constrains the choice of operating point to regions on the dispersion curves where dispersion effects are small. A signal processing technique is presented that enables this constraint on operating point to be relaxed. The technique makes use of a priori knowledge of the dispersion characteristics of a guided wave mode to map signals from the time to distance domains. In the mapping process, dispersed signals are compressed to their original shape. The theoretical basis of the technique is described and an efficient numerical implementation is presented. The robustness of the technique to inaccuracies in the dispersion data is also addressed. The application of the technique to experimental data is shown and the resulting improvement in spatial resolution is demonstrated. The implications of using dispersion compensation in practical systems are briefly discussed. PMID:12744398

  3. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    NASA Astrophysics Data System (ADS)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters

  4. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    PubMed Central

    Shi, Xiaohong; Botting, Catherine H.; Li, Ping; Niglas, Mark; Brennan, Benjamin; Shirran, Sally L.; Szemiel, Agnieszka M.; Elliott, Richard M.

    2016-01-01

    The M genome segment of Bunyamwera virus (BUNV)—the prototype of both the Bunyaviridae family and the Orthobunyavirus genus—encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SPNSm and NSm domain V as SPGc. Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SPGc) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17–312 or nearby residues; NSm, 332–477; and Gc, 478–1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies. PMID:27439867

  5. Approaches to Chemical and Biochemical Information and Signal Processing

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    2012-02-01

    We outline models and approaches for error control required to prevent buildup of noise when ``gates'' and other ``network elements'' based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information and signal processing. We also survey challenges and possible future research. [4pt] [1] Control of Noise in Chemical and Biochemical Information Processing, V. Privman, Israel J. Chem. 51, 118-131 (2010).[0pt] [2] Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic, V. Privman, J. Halamek, M. A. Arugula, D. Melnikov, V. Bocharova and E. Katz, J. Phys. Chem. B 114, 14103-14109 (2010).[0pt] [3] Towards Biosensing Strategies Based on Biochemical Logic Systems, E. Katz, V. Privman and J. Wang, in: Proc. Conf. ICQNM 2010 (IEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, California, 2010), pages 1-9.

  6. Coherent detection and digital signal processing for fiber optic communications

    NASA Astrophysics Data System (ADS)

    Ip, Ezra

    The drive towards higher spectral efficiency in optical fiber systems has generated renewed interest in coherent detection. We review different detection methods, including noncoherent, differentially coherent, and coherent detection, as well as hybrid detection methods. We compare the modulation methods that are enabled and their respective performances in a linear regime. An important system parameter is the number of degrees of freedom (DOF) utilized in transmission. Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency as it uses all four available DOF contained in the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Software based receivers benefit from the robustness of DSP, flexibility in design, and ease of adaptation to time-varying channels. Linear impairments, including chromatic dispersion (CD) and polarization-mode dispersion (PMD), can be compensated quasi-exactly using finite impulse response filters. In practical systems, sampling the received signal at 3/2 times the symbol rate is sufficient to enable an arbitrary amount of CD and PMD to be compensated for a sufficiently long equalizer whose tap length scales linearly with transmission distance. Depending on the transmitted constellation and the target bit error rate, the analog-to-digital converter (ADC) should have around 5 to 6 bits of resolution. Digital coherent receivers are naturally suited for the implementation of feedforward carrier recovery, which has superior linewidth tolerance than phase-locked loops, and does not suffer from feedback delay constraints. Differential bit encoding can be used to prevent catastrophic receiver failure due

  7. Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery

    NASA Astrophysics Data System (ADS)

    Si, Qian

    Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.

  8. Improved effectiveness of GPS RAIM through ridge regression signal processing

    NASA Technical Reports Server (NTRS)

    Kelly, Robert J.; Van Graas, Frank; Kuhl, Mark R.

    1989-01-01

    A measurement processing method has been developed which markedly improves the GPS Receiver Autonomous Integrity Monitoring (RAIM) software-based algorithm system's effectiveness in detecting satellite signal failures. Detection is via the consistency of a redundant set of pseudorange measurements. When five satellites are in view, five different subsolutions can be calculated; the integrity alarm is triggered on the basis of subsolution comparisons. Because a poor distribution of the satellites also causes RAIM subsolution scattering, a methodology for selecting the covariance matrix is presented which incorporates ridge regression into a Kalman filter.

  9. DSPSR: Digital Signal Processing Software for Pulsar Astronomy

    NASA Astrophysics Data System (ADS)

    van Straten, W.; Bailes, M.

    2010-10-01

    DSPSR, written primarily in C++, is an open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. The library implements an extensive range of modular algorithms for use in coherent dedispersion, filterbank formation, pulse folding, and other tasks. The software is installed and compiled using the standard GNU configure and make system, and is able to read astronomical data in 18 different file formats, including FITS, S2, CPSR, CPSR2, PuMa, PuMa2, WAPP, ASP, and Mark5.

  10. Photonics for microwave systems and ultra-wideband signal processing

    NASA Astrophysics Data System (ADS)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  11. A Random Walk into Optical Signal Processing and Integrated Optofluidics

    NASA Astrophysics Data System (ADS)

    Baylor, Martha-Elizabeth

    2013-04-01

    As a young child, I knew that I wanted to be a paleontologist. My parents, both artists, did their best to encourage me in my quest to dig for dinosaurs. However, decisions during my late high school and early college years serendipitously shifted my path so that I ended up pursuing a career in applied physics. In particular, my career path has been centered in optics with an emphasis on holography and signal processing. This talk will discuss my research in the areas of opto-electronic blind source separation and holographic photopolymers as well as the non-linear path that has gotten me to this point.

  12. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  13. Real-time fractal signal processing in the time domain

    NASA Astrophysics Data System (ADS)

    Hartmann, András; Mukli, Péter; Nagy, Zoltán; Kocsis, László; Hermán, Péter; Eke, András

    2013-01-01

    Fractal analysis has proven useful for the quantitative characterization of complex time series by scale-free statistical measures in various applications. The analysis has commonly been done offline with the signal being resident in memory in full length, and the processing carried out in several distinct passes. However, in many relevant applications, such as monitoring or forecasting, algorithms are needed to capture changes in the fractal measure real-time. Here we introduce real-time variants of the Detrended Fluctuation Analysis (DFA) and the closely related Signal Summation Conversion (SSC) methods, which are suitable to estimate the fractal exponent in one pass. Compared to offline algorithms, the precision is the same, the memory requirement is significantly lower, and the execution time depends on the same factors but with different rates. Our tests show that dynamic changes in the fractal parameter can be efficiently detected. We demonstrate the applicability of our real-time methods on signals of cerebral hemodynamics acquired during open-heart surgery.

  14. Signal transduction and information processing in mammalian taste buds

    PubMed Central

    2013-01-01

    The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation. PMID:17468883

  15. Social signal processing for studying parent–infant interaction

    PubMed Central

    Avril, Marie; Leclère, Chloë; Viaux, Sylvie; Michelet, Stéphane; Achard, Catherine; Missonnier, Sylvain; Keren, Miri; Cohen, David; Chetouani, Mohamed

    2014-01-01

    Studying early interactions is a core issue of infant development and psychopathology. Automatic social signal processing theoretically offers the possibility to extract and analyze communication by taking an integrative perspective, considering the multimodal nature and dynamics of behaviors (including synchrony). This paper proposes an explorative method to acquire and extract relevant social signals from a naturalistic early parent–infant interaction. An experimental setup is proposed based on both clinical and technical requirements. We extracted various cues from body postures and speech productions of partners using the IMI2S (Interaction, Multimodal Integration, and Social Signal) Framework. Preliminary clinical and computational results are reported for two dyads (one pathological in a situation of severe emotional neglect and one normal control) as an illustration of our cross-disciplinary protocol. The results from both clinical and computational analyzes highlight similar differences: the pathological dyad shows dyssynchronic interaction led by the infant whereas the control dyad shows synchronic interaction and a smooth interactive dialog. The results suggest that the current method might be promising for future studies. PMID:25540633

  16. Generalized net analyte signal standard addition as a novel method for simultaneous determination: application in spectrophotometric determination of some pesticides.

    PubMed

    Asadpour-Zeynali, Karim; Saeb, Elhameh; Vallipour, Javad; Bamorowat, Mehdi

    2014-01-01

    Simultaneous spectrophotometric determination of three neonicotinoid insecticides (acetamiprid, imidacloprid, and thiamethoxam) by a novel method named generalized net analyte signal standard addition method (GNASSAM) in some binary and ternary synthetic mixtures was investigated. For this purpose, standard addition was performed using a single standard solution consisting of a mixture of standards of all analytes. Savings in time and amount of used materials are some of the advantages of this method. All determinations showed appropriate applicability of this method with less than 5% error. This method may be applied for linearly dependent data in the presence of known interferents. The GNASSAM combines the advantages of both the generalized standard addition method and net analyte signal; therefore, it may be a proper alternative for some other multivariate methods. PMID:24672886

  17. TOPICAL REVIEW: A survey of signal processing algorithms in brain computer interfaces based on electrical brain signals

    NASA Astrophysics Data System (ADS)

    Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K.; Birch, Gary E.

    2007-06-01

    Brain computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?

  18. Model-Based Signal Processing: Correlation Detection With Synthetic Seismograms

    SciTech Connect

    Rodgers, A; Harris, D; Pasyanos, M; Blair, S; Matt, R

    2006-08-30

    Recent applications of correlation methods to seismological problems illustrate the power of coherent signal processing applied to seismic waveforms. Examples of these applications include detection of low amplitude signals buried in ambient noise and cross-correlation of sets of waveforms to form event clusters and accurately measure delay times for event relocation and/or earth structure. These methods rely on the exploitation of the similarity of individual waveforms and have been successfully applied to large sets of empirical observations. However, in cases with little or no empirical event data, such as aseismic regions or exotic event types, correlation methods with observed seismograms will not be possible due to the lack of previously observed similar waveforms. This study uses model-based signals computed for three-dimensional (3D) Earth models to form the basis for correlation detection. Synthetic seismograms are computed for fully 3D models estimated from the Markov Chain Monte-Carlo (MCMC) method. MCMC uses stochastic sampling to fit multiple seismological data sets. Rather than estimate a single ''optimal'' model, MCMC results in a suite of models that sample the model space and incorporates uncertainty through variability of the models. The variability reflects our ignorance of Earth structure, due to limited resolution, data and modeling errors, and produces variability in the seismic waveform response. Model-based signals are combined using a subspace method where the synthetic signals are decomposed into an orthogonal basis by singular-value decomposition (SVD) and the observed waveforms are represented with a linear combination of a sub-set of eigenvectors (signals) associated with the most significant eigenvalues. We have demonstrated the method by modeling long-period (80-10 seconds) regional seismograms for a moderate (M{approx}5) earthquake near the China-North Korea border. Synthetic seismograms are computed with the Spectral Element Method

  19. The Accuratre Signal Model and Imaging Processing in Geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng

    With the development of synthetic aperture radar (SAR) application, the disadvantage of low earth orbit (LEO) SAR becomes more and more apparent. The increase of orbit altitude can shorten the revisit time and enlarge the coverage area in single look, and then satisfy the application requirement. The concept of geosynchronous earth orbit (GEO) SAR system is firstly presented and deeply discussed by K.Tomiyasi and other researchers. A GEO SAR, with its fine temporal resolution, would overcome the limitations of current imaging systems, allowing dense interpretation of transient phenomena as GPS time-series analysis with a spatial density several orders of magnitude finer. Until now, the related literatures about GEO SAR are mainly focused in the system parameter design and application requirement. As for the signal characteristic, resolution calculation and imaging algorithms, it is nearly blank in the related literatures of GEO SAR. In the LEO SAR, the signal model analysis adopts the `Stop-and-Go' assumption in general, and this assumption can satisfy the imaging requirement in present advanced SAR system, such as TerraSAR, Radarsat2 and so on. However because of long propagation distance and non-negligible earth rotation, the `Stop-and-Go' assumption does not exist and will cause large propagation distance error, and then affect the image formation. Furthermore the long propagation distance will result in the long synthetic aperture time such as hundreds of seconds, therefore the linear trajectory model in LEO SAR imaging will fail in GEO imaging, and the new imaging model needs to be proposed for the GEO SAR imaging processing. In this paper, considering the relative motion between satellite and earth during signal propagation time, the accurate analysis method for propagation slant range is firstly presented. Furthermore, the difference between accurate analysis method and `Stop-and-Go' assumption is analytically obtained. Meanwhile based on the derived

  20. Cramer-Rao Bound for Gaussian Random Processes and Applications to Radar Processing of Atmospheric Signals

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean frequency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are presented. Approximate CRB's are derived using the Discrete Fourier Transform (DFT). These approximate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be approximated with integration. The performance of an approximate maximum likelihood estimator for mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral width.

  1. Large-Array Signal Processing for Deep-Space Applications

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Vilnrotter, V.; Satorius, E.; Ye, Z.; Fort, D.; Cheung, K.-M.

    2002-04-01

    This article develops the mathematical models needed to describe the key issues in using an array of antennas for receiving spacecraft signals for DSN applications. The detrimental effects of nearby interfering sources, such as other spacecraft transmissions or natural radio sources within the array's field of view, on signal-to noise ratio (SNR) are determined, atmospheric effects relevant to the arraying problem developed, and two classes of algorithms (multiple signal classification (MUSIC) plus beam forming, and an eigen-based solution) capable of phasing up the array with maximized SNR in the presence of realistic disturbances are evaluated. It is shown that, when convolutionally encoded binary-phase shift keying (BPSK) data modulation is employed on the spacecraft signal, previously developed data pre-processing techniques that partially reconstruct the carrier can be of great benefit to array performance, particularly when strong interfering sources are present. Since this article is concerned mainly with demonstrating the required capabilities for operation under realistic conditions, no attempt has been made to reduce algorithm complexity; the design and evaluation of less complex algorithms with similar capabilities will be addressed in a future article. The performances of the candidate algorithms discussed in this article have been evaluated in terms of the number of symbols needed to achieve a given level of combining loss for different numbers of array elements, and compared on this common basis. It is shown that even the best algorithm requires approximately 25,000 symbols to achieve a combining loss of less than 0.5 dB when 128 antenna elements are employed, but generally 50,000 or more symbols are needed. This is not a serious impediment to successful arraying with high data-rate transmission, but may be of some concern with missions exploring near the edge of our solar system or beyond, where lower data rates may be required.

  2. Affective Assessment of a Computer User through the Processing of the Pupil Diameter Signal

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Barreto, Armando; Adjouadi, Malek

    This study proposes to achieve the affective assessment of a computer user through the processing of the pupil diameter (PD) signal. An adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR (pupil size changes caused by light intensity variations) on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC, was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a Processed MPD (PMPD) signal, from which a classification feature, “PMPDmean”, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of “stress” states in the subject, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of “stress” and “relaxation” states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. Encouraging results in affective assessment based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the possibility of using PD monitoring to evaluate the evolving affective states of a computer user.

  3. Signal processing for passive detection and classification of underwater acoustic signals

    NASA Astrophysics Data System (ADS)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  4. Tunable photonic filters: a digital signal processing design approach.

    PubMed

    Binh, Le Nguyen

    2009-05-20

    Digital signal processing techniques are used for synthesizing tunable optical filters with variable bandwidth and centered reference frequency including the tunability of the low-pass, high-pass, bandpass, and bandstop optical filters. Potential applications of such filters are discussed, and the design techniques and properties of recursive digital filters are outlined. The basic filter structures, namely, the first-order all-pole optical filter (FOAPOF) and the first-order all-zero optical filter (FOAZOF), are described, and finally the design process of tunable optical filters and the designs of the second-order Butterworth low-pass, high-pass, bandpass, and bandstop tunable optical filters are presented. Indeed, we identify that the all-zero and all-pole networks are equivalent with well known principles of optics of interference and resonance, respectively. It is thus very straightforward to implement tunable optical filters, which is a unique feature. PMID:19458728

  5. Guest Editorial: Two-Dimensional Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Kooij, Theo; Ludman, Jacques E.; Stilwell, P. D., Jr.

    1982-10-01

    When some optical processing systems firms proposed to the Defense Advanced Research Project Agency (DARPA) and the U.S. Navy some years ago that they could beat the ILLIAC-IV-that venerable supercomputer, which until recently was the world's largest by at least a factor of 100, it sounded too good to be true. But they were right, and they did not even have to try hard. The problem was a two-dimensional (2-D) processing task of generating ambiguity surfaces to test whether two received signals came from a common origin, with unknown time and Doppler shifts. The ILLIAC, going all out as an in-line processor for the Acoustic Research Center near San Francisco, California, could just make a handful of such surfaces per second; the optical processors made hundreds, literally sucking their digital inputs dry.

  6. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  7. Vibrotactile identification of signal-processed sounds from environmental events.

    PubMed

    Ranjbar, Parivash; Stranneby, Dag; Borg, Erik

    2009-01-01

    This study compared three different signal-processing principles (eight basic algorithms)-transposing, modulating, and filtering-to find the principle(s)/algorithm(s) that resulted in the best tactile identification of environmental sounds. The subjects were 19 volunteers (9 female/10 male) who were between 18 and 50 years old and profoundly hearing impaired. We processed sounds produced by 45 representative environmental events with the different algorithms and presented them to subjects as tactile stimuli using a wide-band stationary vibrator. We compared eight algorithms based on the three principles (one unprocessed, as reference). The subjects identified the stimuli by choosing among 10 alternatives drawn from the 45 events. We found that algorithm and subject were significant factors affecting the results (repeated measures analysis of variance, p < 0.001). We also found large differences between individuals regarding which algorithm was best. The test-retest variability was small (mean +/- 95% confidence interval = 8 +/- 3 percentage units), and no correlation was noted between identification score and individual vibratory thresholds. One transposing algorithm and two modulating algorithms led to significantly better results than did the unprocessed signals (p < 0.05). Thus, the two principles of transposing and modulating were appropriate, whereas filtering was unsuccessful. In future work, the two transposing algorithms and the modulating algorithm will be used in tests with a portable vibrator for people with dual sensory impairment (hearing and vision). PMID:20157859

  8. Curvelets for signal processing in seismology: an exploration perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Hennenfent, G.

    2009-12-01

    The curvelet transform is a recent addition to the computational harmonic analysis toolbox. It expands an arbitrary 2-D signal as a series of weighted curvelets, much like, e.g., the Fourier or wavelet transform. Curvelets are localized and multiscale elements which are highly anisotropic at fine scales. They look like little band-limited plane waves, smooth along their main axis and oscillatory across. Curvelets provide a sparse representation—arguably the sparsest—for signals that are smooth except for discontinuities along smooth curves, e.g., natural images with edges or seismic wavefronts. This key property, combined with new insights from compressive sensing, lead to innovative applications in astronomy, medical imaging, and exploration seismology to name but a few. In this talk, we give a brief overview of the curvelet transform and its key properties. We discuss one of its discrete implementations, the fast discrete curvelet transform via wrapping, and our extension to nonequispaced data inputs. We conclude by a few examples of applications in seismology using curvelets.

  9. Technical options for processing additional light tight oil volumes within the United States

    EIA Publications

    2015-01-01

    This report examines technical options for processing additional LTO volumes within the United States. Domestic processing of additional LTO would enable an increase in petroleum product exports from the United States, already the world’s largest net exporter of petroleum products. Unlike crude oil, products are not subject to export limitations or licensing requirements. While this is one possible approach to absorbing higher domestic LTO production in the absence of a relaxation of current limitations on crude exports, domestic LTO would have to be priced at a level required to encourage additional LTO runs at existing refinery units, debottlenecking, or possible additions of processing capacity.

  10. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE. CHAPTER 10B. PLASTICS ADDITIVES

    EPA Science Inventory

    The research presents an analysis of the chemicals used as additives in the production and processing of plastics, their environmental release, and occupational exposure. It describes in detail each chemical additive used in the plastics industry. The plastics additives are prese...

  11. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  12. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response

  13. Ocean acoustic signal processing: A model-based approach

    SciTech Connect

    Candy, J.V. ); Sullivan, E.J. )

    1992-12-01

    A model-based approach is proposed to solve the ocean acoustic signal processing problem that is based on a state-space representation of the normal-mode propagation model. It is shown that this representation can be utilized to spatially propagate both modal (depth) and range functions given the basic parameters (wave numbers, etc.) developed from the solution of the associated boundary value problem. This model is then generalized to the stochastic case where an approximate Gauss--Markov model evolves. The Gauss--Markov representation, in principle, allows the inclusion of stochastic phenomena such as noise and modeling errors in a consistent manner. Based on this framework, investigations are made of model-based solutions to the signal enhancement, detection and related parameter estimation problems. In particular, a modal/pressure field processor is designed that allows {ital in} {ital situ} recursive estimation of the sound velocity profile. Finally, it is shown that the associated residual or so-called innovation sequence that ensues from the recursive nature of this formulation can be employed to monitor the model's fit to the data and also form the basis of a sequential detector.

  14. Dispersion-engineered multicore fibers for distributed radiofrequency signal processing.

    PubMed

    García, Sergi; Gasulla, Ivana

    2016-09-01

    We report a trench-assisted heterogeneous multicore fiber optimized in terms of higher-order dispersion and crosstalk for radiofrequency true time delay operation. The analysis of the influence of the core refractive index profile on the dispersion slope and effective index reveals a tradeoff between the behavior of the crosstalk against fiber curvatures and the linearity of the propagation group delay. We investigate the optimization of the multicore fiber in the framework of this tradeoff and present a design that features a group delay relative error below 5% for an optical wavelength range up to 100 nm and a crosstalk level below -80 dB for bending radii larger than 103 mm. The performance of the true time delay line is validated in the context of microwave signal filtering and optical beamforming for phased array antennas. This work opens the way towards the development of compact fiber-integrated solutions that enable the implementation of a variety of distributed signal processing functionalities that will be key in future fiber-wireless communications networks and systems. PMID:27607668

  15. Regulation of amyloid precursor protein processing by serotonin signaling.

    PubMed

    Pimenova, Anna A; Thathiah, Amantha; De Strooper, Bart; Tesseur, Ina

    2014-01-01

    Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation. PMID:24466315

  16. Ultrafast Optical Signal Processing Based Upon Space-Time Dualities

    NASA Astrophysics Data System (ADS)

    van Howe, James; Xu, Chris

    2006-07-01

    The last two decades have seen a wealth of optical instrumentation based upon the concepts of space-time duality. A historical overview of how this beautiful framework has been exploited to develop instruments for optical signal processing is presented. The power of this framework is then demonstrated by reviewing four devices in detail based upon space-time dualities that have been experimentally demonstrated: 1) a time-lens timing-jitter compensator for ultralong-haul dense-wavelength-division-multiplexed dispersion-managed soliton transmission, 2) a multiwavelength pulse generator using time-lens compression, 3) a programmable ultrafast optical delay line by use of a time-prism pair, and 4) an enhanced ultrafast optical delay line by use of soliton propagation between a time-prism pair.

  17. Signal processing of jet noise from flyover test data

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.; Wilson, Mark R.

    1993-01-01

    Narrow-band spectra characterizing jet noise are constructed from flyover acoustic measurements. Radar and c-band tracking systems provided the aircraft position histories which enabled directivity and smear angles from the aircraft to each microphone to be computed. These angles are based on source emission time and thus give some idea about the directivity of the radiated sound field due to jet noise. Simulated spectra are included in the paper to demonstrate spectral broadening due to smear angle. The acoustic data described in the study has application to community noise analysis, noise source characterization and validation of prediction models. Both broadband-shock noise and turbulent mixing noise are observed in the spectra. A detailed description of the signal processing procedures is provided.

  18. On adaptive robustness approach to Anti-Jam signal processing

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Y. S.; Poberezhskiy, G. Y.

    An effective approach to exploiting statistical differences between desired and jamming signals named adaptive robustness is proposed and analyzed in this paper. It combines conventional Bayesian, adaptive, and robust approaches that are complementary to each other. This combining strengthens the advantages and mitigates the drawbacks of the conventional approaches. Adaptive robustness is equally applicable to both jammers and their victim systems. The capabilities required for realization of adaptive robustness in jammers and victim systems are determined. The employment of a specific nonlinear robust algorithm for anti-jam (AJ) processing is described and analyzed. Its effectiveness in practical situations has been proven analytically and confirmed by simulation. Since adaptive robustness can be used by both sides in electronic warfare, it is more advantageous for the fastest and most intelligent side. Many results obtained and discussed in this paper are also applicable to commercial applications such as communications in unregulated or poorly regulated frequency ranges and systems with cognitive capabilities.

  19. Neurological Tremor: Sensors, Signal Processing and Emerging Applications

    PubMed Central

    Grimaldi, Giuliana; Manto, Mario

    2010-01-01

    Neurological tremor is the most common movement disorder, affecting more than 4% of elderly people. Tremor is a non linear and non stationary phenomenon, which is increasingly recognized. The issue of selection of sensors is central in the characterization of tremor. This paper reviews the state-of-the-art instrumentation and methods of signal processing for tremor occurring in humans. We describe the advantages and disadvantages of the most commonly used sensors, as well as the emerging wearable sensors being developed to assess tremor instantaneously. We discuss the current limitations and the future applications such as the integration of tremor sensors in BCIs (brain-computer interfaces) and the need for sensor fusion approaches for wearable solutions. PMID:22205874

  20. Very large scale integration (VLSI) architectures for video signal processing

    NASA Astrophysics Data System (ADS)

    Pirsch, Peter; Gehrke, Winfried

    1995-04-01

    The paper presents an overview on architectures for VLSI implementations of video compression schemes as specified by standardization committees of the ITU and ISO, focussing on programmable architectures. Programmable video signal processors are classified and specified as homogeneous and heterogeneous processor architectures. Architectures are presented for reported design examples for the literature. Heterogenous processors outperform homogeneous processors because of adaptation to the requirements of special subtasks by dedicated modules. The majority of heterogenous processors incorporate dedicated modules for high performance subtasks of high regularity as DCT and block matching. By normalization to a fictive 1.0 micron CMOS process typical linear relationships between silicon area and through-put rate have been determined for the different architectural styles. This relationship indicated a figure of merit for silicon efficiency.

  1. Digital Signal Processing for the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Weintroub, Jonathan

    2015-08-01

    A broad international collaboration is building the Event Horizon Telescope (EHT). The aim is to test Einstein’s theory of General Relativity in one of the very few places it could break down: the strong gravity regime right at the edge of a black hole. The EHT is an earth-size VLBI array operating at the shortest radio wavelengths, that has achieved unprecedented angular resolution of a few tens of μarcseconds. For nearby super massive black holes (SMBH) this size scale is comparable to the Schwarzschild Radius, and emission in the immediate neighborhood of the event horizon can be directly observed. We give an introduction to the science behind the CASPER-enabled EHT, and outline technical developments, with emphasis on the secret sauce of high speed signal processing.

  2. Nonlinear optical signal processing for high-speed, spectrally efficient fiber optic systems and networks

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and

  3. Digital signal processing techniques for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Goldfarb, Gilad

    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge

  4. Digital Signal Processing System for Active Noise Reduction

    NASA Astrophysics Data System (ADS)

    Edmonson, William W.; Tucker, Jerry

    2002-12-01

    different adaptive noise cancellation algorithms and provide an operational prototype to understand the behavior of the system under test. DSP software was required to interface the processor with the data converters using interrupt routines. The goal is to build a complete ANC system that can be placed on a flexible circuit with added memory circuitry that also contains the power supply, sensors and actuators. This work on the digital signal processing system for active noise reduction was completed in collaboration with another ASEE Fellow, Dr. Jerry Tucker from Virginia Commonwealth University, Richmond, VA.

  5. A nonlinear optoelectronic filter for electronic signal processing

    PubMed Central

    Loh, William; Yegnanarayanan, Siva; Ram, Rajeev J.; Juodawlkis, Paul W.

    2014-01-01

    The conversion of electrical signals into modulated optical waves and back into electrical signals provides the capacity for low-loss radio-frequency (RF) signal transfer over optical fiber. Here, we show that the unique properties of this microwave-photonic link also enable the manipulation of RF signals beyond what is possible in conventional systems. We achieve these capabilities by realizing a novel nonlinear filter, which acts to suppress a stronger RF signal in the presence of a weaker signal independent of their separation in frequency. Using this filter, we demonstrate a relative suppression of 56 dB for a stronger signal having a 1-GHz center frequency, uncovering the presence of otherwise undetectable weaker signals located as close as 3.5 Hz away. The capabilities of the optoelectronic filter break the conventional limits of signal detection, opening up new possibilities for radar and communication systems, and for the field of precision frequency metrology. PMID:24402418

  6. Signal processing using artificial neural network for BOTDA sensor system.

    PubMed

    Azad, Abul Kalam; Wang, Liang; Guo, Nan; Tam, Hwa-Yaw; Lu, Chao

    2016-03-21

    We experimentally demonstrate the use of artificial neural network (ANN) to process sensing signals obtained from Brillouin optical time domain analyzer (BOTDA). The distributed temperature information is extracted directly from the local Brillouin gain spectra (BGSs) along the fiber under test without the process of determination of Brillouin frequency shift (BFS) and hence conversion from BFS to temperature. Unlike our previous work for short sensing distance where ANN is trained by measured BGSs, here we employ ideal BGSs with different linewidths to train the ANN in order to take the linewidth variation due to different conditions from the training and testing phases into account, making it feasible for long distance sensing. Moreover, the performance of ANN is compared with other two techniques, Lorentzian curve fitting and cross-correlation method, and our results show that ANN has higher accuracy and larger tolerance to measurement error, especially at large frequency scanning step. We also show that the temperature extraction from BOTDA measurements employing ANN is significantly faster than the other two approaches. Hence ANN can be an excellent alternative tool to process BGSs measured by BOTDA and obtain temperature distribution along the fiber, especially when large frequency scanning step is adopted to significantly reduce the measurement time but without sacrifice of sensing accuracy. PMID:27136863

  7. REVIEW ARTICLE: Spectrophotometric applications of digital signal processing

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.

    2006-09-01

    Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.

  8. Attosecond metrology: from electron capture to future signal processing

    NASA Astrophysics Data System (ADS)

    Krausz, Ferenc; Stockman, Mark I.

    2014-03-01

    The accurate measurement of time lies at the heart of experimental science, and is relevant to everyday life. Extending chronoscopy to ever shorter timescales has been the key to gaining real-time insights into microscopic phenomena, ranging from vital biological processes to the dynamics underlying high technologies. The generation of isolated attosecond pulses in 2001 allowed the fastest of all motions outside the nucleus -- electron dynamics in atomic systems -- to be captured. Attosecond metrology has provided access to several hitherto immeasurably fast electron phenomena in atoms, molecules and solids. The fundamental importance of electron processes for the physical and life sciences, technology and medicine has rendered the young field of attosecond science one of the most dynamically expanding research fields of the new millennium. Here, we review the basic concepts underlying attosecond measurement and control techniques. Among their many potential applications, we focus on the exploration of the fundamental speed limit of electronic signal processing. This endeavour relies on ultimate-speed electron metrology, as provided by attosecond technology.

  9. Processing of simple and complex acoustic signals in a tonotopically organized ear

    PubMed Central

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-01-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727

  10. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB.

    PubMed

    Lüke, Iris; Handford, Jennifer I; Palmer, Tracy; Sargent, Frank

    2009-12-01

    The twin-arginine translocation (Tat) apparatus is a protein targeting system found in the cytoplasmic membranes of many prokaryotes. Substrate proteins of the Tat pathway are synthesised with signal peptides bearing SRRxFLK 'twin-arginine' amino acid motifs. All Tat signal peptides have a common tripartite structure comprising a polar N-terminal region, followed by a hydrophobic region of variable length and a polar C-terminal region. In Escherichia coli, Tat signal peptides are proteolytically cleaved after translocation. The signal peptide C-terminal regions contain conserved AxA motifs, which are possible recognition sequences for leader peptidase I (LepB). In this work, the role of LepB in Tat signal peptide processing was addressed directly. Deliberate repression of lepB expression prevented processing of all Tat substrates tested, including SufI, AmiC, and a TorA-23K reporter protein. In addition, electron microscopy revealed gross defects in cell architecture and membrane integrity following depletion of cellular LepB protein levels. PMID:19809807

  11. Processing of simple and complex acoustic signals in a tonotopically organized ear.

    PubMed

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-12-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727

  12. Quantifying process heterogeneity: Signal propagation in hydrological systems

    NASA Astrophysics Data System (ADS)

    Lischeid, G.; Merz, C.; Schindler, U.; Schulz, R.; Steidl, J.; Tauschke, R.

    2009-04-01

    Natural hydrological systems are characterized by heterogeneous structures. The typical length scale of the relevant structures is smaller than the resolution of area-covering methods that are available at the catchment-scale. On the other hand these structures are too large to be treated as random effects and are often related to hydrological behaviour in a non-linear way. Consequently, model results, risk assessments etc. are prone to substantial uncertainties. This is often addressed by random realizations of the structures based on given probability density functions and geostatistical properties, and then analysing the resulting effects on hydrological behaviour, e.g., discharge or groundwater table fluctuations, using process-based models. In this study an alternative approach was followed. Hydrological systems usually act as low-pass filters: An input signal (precipitation, groundwater recharge, tracer application, etc.) is damped and delayed during its passage through the system. This study aimed at characterizing the damping behaviour in a quantitative way. Large perturbations usually are transmitted at much higher velocities compared to small perturbations, thus hindering a spectrum analysis based approach. Instead, time series of soil water content, groundwater level and catchment runoff from the Uckermark region in North Germany were analysed using a principal component analysis. In all cases, the first component depicted the mean behaviour, and the second component explained a large fraction of the deviations from the mean behaviour. The loadings of the first two components could be used as an index of the mean damping behaviour for the given time period. Results of the soil water content data showed a linear increase of damping with depth at most sites. However, different sites differed substantially even for backfilled lysimeters that were considered to be homogeneous. There was no clear relationship between clay content and damping behaviour. The

  13. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment. PMID:26901714

  14. From Bursts to Back-Projection: Signal Processing Techniques for Earth and Planetary Observing Radars

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    Discusses: (1) JPL Radar Overview and Historical Perspective (2) Signal Processing Needs in Earth and Planetary Radars (3) Examples of Current Systems and techniques (4) Future Perspectives in signal processing for radar missions

  15. Special Issue on Signal Processing for Mechanical Systems in Honor of Professor Simon Braun

    NASA Astrophysics Data System (ADS)

    Fassois, Spilios D.

    2016-06-01

    This Special Issue is in honor of a pioneer of the area of Signal Processing for Mechanical Systems and, at the same time, Founding Editor of the Journal of Mechanical Systems and Signal Processing (MSSP), Professor Simon Braun.

  16. An information processing method for acoustic emission signal inspired from musical staff

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wu, Chunxian

    2016-01-01

    This study proposes a musical-staff-inspired signal processing method for standard description expressions for discrete signals and describing the integrated characteristics of acoustic emission (AE) signals. The method maps various AE signals with complex environments into the normalized musical space. Four new indexes are proposed to comprehensively describe the signal. Several key features, such as contour, amplitude, and signal changing rate, are quantitatively expressed in a normalized musical space. The processed information requires only a small storage space to maintain high fidelity. The method is illustrated by using experiments on sandstones and computed tomography (CT) scanning to determine its validity for AE signal processing.

  17. Optical hybrid analog-digital signal processing based on spike processing in neurons

    NASA Astrophysics Data System (ADS)

    Fok, Mable P.; Tian, Yue; Rosenbluth, David; Deng, Yanhua; Prucnal, Paul R.

    2011-09-01

    Spike processing is one kind of hybrid analog-digital signal processing, which has the efficiency of analog processing and the robustness to noise of digital processing. When instantiated with optics, a hybrid analog-digital processing primitive has the potential to be scalable, computationally powerful, and have high operation bandwidth. These devices open up a range of processing applications for which electronic processing is too slow. Our approach is based on a hybrid analog/digital computational primitive that elegantly implements the functionality of an integrate-and-fire neuron using a Ge-doped non-linear optical fiber and off-the-shelf semiconductor devices. In this paper, we introduce our photonic neuron architecture and demonstrate the feasibility of implementing simple photonic neuromorphic circuits, including the auditory localization algorithm of the barn owl, which is useful for LIDAR localization, and the crayfish tail-flip escape response.

  18. Psychophysics, fitting, and signal processing for combined hearing aid and cochlear implant stimulation.

    PubMed

    Francart, Tom; McDermott, Hugh J

    2013-01-01

    The addition of acoustic stimulation to electric stimulation via a cochlear implant has been shown to be advantageous for speech perception in noise, sound quality, music perception, and sound source localization. However, the signal processing and fitting procedures of current cochlear implants and hearing aids were developed independently, precluding several potential advantages of bimodal stimulation, such as improved sound source localization and binaural unmasking of speech in noise. While there is a large and increasing population of implantees who use a hearing aid, there are currently no generally accepted fitting methods for this configuration. It is not practical to fit current commercial devices to achieve optimal binaural loudness balance or optimal binaural cue transmission for arbitrary signals and levels. There are several promising experimental signal processing systems specifically designed for bimodal stimulation. In this article, basic psychophysical studies with electric acoustic stimulation are reviewed, along with the current state of the art in fitting, and experimental signal processing techniques for electric acoustic stimulation. PMID:24165299

  19. A High Performance Pocket-Size System for Evaluations in Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Rass, Uwe; Steeger, Gerhard H.

    2001-12-01

    Custom-made hardware is attractive for sophisticated signal processing in wearable electroacoustic devices, but has a high initial cost overhead. Thus, signal processing algorithms should be tested thoroughly in real application environments by potential end users prior to the hardware implementation. In addition, the algorithms should be easily alterable during this test phase. A wearable system which meets these requirements has been developed and built. The system is based on the high performance signal processor Motorola DSP56309. This device also includes high quality stereo analog-to-digital-(ADC)- and digital-to-analog-(DAC)-converters with 20 bit word length each. The available dynamic range exceeds 88 dB. The input and output gains can be adjusted by digitally controlled potentiometers. The housing of the unit is small enough to carry it in a pocket (dimensions 150 × 80 × 25 mm). Software tools have been developed to ease the development of new algorithms. A set of configurable Assembler code modules implements all hardware dependent software routines and gives easy access to the peripherals and interfaces. A comfortable fitting interface allows easy control of the signal processing unit from a PC, even by assistant personnel. The device has proven to be a helpful means for development and field evaluations of advanced new hearing aid algorithms, within interdisciplinary research projects. Now it is offered to the scientific community.

  20. Differential auditory signal processing in an animal model

    NASA Astrophysics Data System (ADS)

    Lim, Dukhwan; Kim, Chongsun; Chang, Sun O.

    2002-05-01

    Auditory evoked responses were collected in male zebra finches (Poephila guttata) to objectively determine differential frequency selectivity. First, the mating call of the animal was recorded and analyzed for its frequency components through the customized program. Then, auditory brainstem responses and cortical responses of each anesthetized animal were routinely recorded in response to tone bursts of 1-8 kHz derived from the corresponding mating call spectrum. From the results, most mating calls showed relatively consistent spectral structures. The upper limit of the spectrum was well under 10 kHz. The peak energy bands were concentrated in the region less than 5 kHz. The assessment of auditory brainstem responses and cortical evoked potentials showed differential selectivity with a series of characteristic scales. This system appears to be an excellent model to investigate complex sound processing and related language behaviors. These data could also be used in designing effective signal processing strategies in auditory rehabilitation devices such as hearing aids and cochlear implants. [Work supported by Brain Science & Engineering Program from Korean Ministry of Science and Technology.

  1. Clay content evaluation in soils through GPR signal processing

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Patriarca, Claudio; Slob, Evert; Benedetto, Andrea; Lambot, Sébastien

    2013-10-01

    The mechanical behavior of soils is partly affected by their clay content, which arises some important issues in many fields of employment, such as civil and environmental engineering, geology, and agriculture. This work focuses on pavement engineering, although the method applies to other fields of interest. Clay content in bearing courses of road pavement frequently causes damages and defects (e.g., cracks, deformations, and ruts). Therefore, the road safety and operability decreases, directly affecting the increase of expected accidents. In this study, different ground-penetrating radar (GPR) methods and techniques were used to non-destructively investigate the clay content in sub-asphalt compacted soils. Experimental layout provided the use of typical road materials, employed for road bearing courses construction. Three types of soils classified by the American Association of State Highway and Transportation Officials (AASHTO) as A1, A2, and A3 were used and adequately compacted in electrically and hydraulically isolated test boxes. Percentages of bentonite clay were gradually added, ranging from 2% to 25% by weight. Analyses were carried out for each clay content using two different GPR instruments. A pulse radar with ground-coupled antennae at 500 MHz centre frequency and a vector network analyzer spanning the 1-3 GHz frequency range were used. Signals were processed in both time and frequency domains, and the consistency of results was validated by the Rayleigh scattering method, the full-waveform inversion, and the signal picking techniques. Promising results were obtained for the detection of clay content affecting the bearing capacity of sub-asphalt layers.

  2. The effect of silane addition timing on mixing processability and properties of silica reinforced rubber compound

    NASA Astrophysics Data System (ADS)

    Jeong, Hee-Hoon; Jin, Hyun-Ho; Ha, Sung-Ho; Jang, Suk-Hee; Kang, Yong-Gu; Han, Min-Hyun

    2016-03-01

    A series of experiments were performed to determine an optimum balance between processability and performance of a highly loaded silica compound. The experiments evaluated 4 different silane injection times. All mixing related to silane addition was conducted with a scaled up "Tandem" mixer line. With exception to silane addition timing, almost all operating conditions were controlled between experimental features. It was found that when the silane addition was introduced earlier in the mixing cycle both the reaction was more complete and the bound rubber content was higher. But processability indicators such as sheet forming and Mooney plasticity were negatively impacted. On the other hand, as silane injection was delayed to later in the mixing process the filler dispersion and good sheet forming was improved. However both the bound rubber content and Silane reaction completion were decreased. With the changes in silane addition time, the processability and properties of a silica compound can be controlled.

  3. Process for improving moisture resistance of epoxy resins by addition of chromium ions

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Stoakley, D. M.; St.clair, T. L.; Singh, J. J. (Inventor)

    1985-01-01

    A process for improving the moisture resistance properties of epoxidized TGMDA and DGEBA resin system by chemically incorporating chromium ions is described. The addition of chromium ions is believed to prevent the absorption of water molecules.

  4. Design of a novel biomedical signal processing and analysis tool for functional neuroimaging.

    PubMed

    Kaçar, Sezgin; Sakoğlu, Ünal

    2016-03-01

    In this paper, a MATLAB-based graphical user interface (GUI) software tool for general biomedical signal processing and analysis of functional neuroimaging data is introduced. Specifically, electroencephalography (EEG) and electrocardiography (ECG) signals can be processed and analyzed by the developed tool, which incorporates commonly used temporal and frequency analysis methods. In addition to common methods, the tool also provides non-linear chaos analysis with Lyapunov exponents and entropies; multivariate analysis with principal and independent component analyses; and pattern classification with discriminant analysis. This tool can also be utilized for training in biomedical engineering education. This easy-to-use and easy-to-learn, intuitive tool is described in detail in this paper. PMID:26679001

  5. Neural Signaling of Food Healthiness Associated with Emotion Processing.

    PubMed

    Herwig, Uwe; Dhum, Matthias; Hittmeyer, Anna; Opialla, Sarah; Scherpiet, Sigrid; Keller, Carmen; Brühl, Annette B; Siegrist, Michael

    2016-01-01

    The ability to differentiate healthy from unhealthy foods is important in order to promote good health. Food, however, may have an emotional connotation, which could be inversely related to healthiness. The neurobiological background of differentiating healthy and unhealthy food and its relations to emotion processing are not yet well understood. We addressed the neural activations, particularly considering the single subject level, when one evaluates a food item to be of a higher, compared to a lower grade of healthiness with a particular view on emotion processing brain regions. Thirty-seven healthy subjects underwent functional magnetic resonance imaging while evaluating the healthiness of food presented as photographs with a subsequent rating on a visual analog scale. We compared individual evaluations of high and low healthiness of food items and also considered gender differences. We found increased activation when food was evaluated to be healthy in the left dorsolateral prefrontal cortex and precuneus in whole brain analyses. In ROI analyses, perceived and rated higher healthiness was associated with lower amygdala activity and higher ventral striatal and orbitofrontal cortex activity. Females exerted a higher activation in midbrain areas when rating food items as being healthy. Our results underline the close relationship between food and emotion processing, which makes sense considering evolutionary aspects. Actively evaluating and deciding whether food is healthy is accompanied by neural signaling associated with reward and self-relevance, which could promote salutary nutrition behavior. The involved brain regions may be amenable to mechanisms of emotion regulation in the context of psychotherapeutic regulation of food intake. PMID:26903859

  6. Neural Signaling of Food Healthiness Associated with Emotion Processing

    PubMed Central

    Herwig, Uwe; Dhum, Matthias; Hittmeyer, Anna; Opialla, Sarah; Scherpiet, Sigrid; Keller, Carmen; Brühl, Annette B.; Siegrist, Michael

    2016-01-01

    The ability to differentiate healthy from unhealthy foods is important in order to promote good health. Food, however, may have an emotional connotation, which could be inversely related to healthiness. The neurobiological background of differentiating healthy and unhealthy food and its relations to emotion processing are not yet well understood. We addressed the neural activations, particularly considering the single subject level, when one evaluates a food item to be of a higher, compared to a lower grade of healthiness with a particular view on emotion processing brain regions. Thirty-seven healthy subjects underwent functional magnetic resonance imaging while evaluating the healthiness of food presented as photographs with a subsequent rating on a visual analog scale. We compared individual evaluations of high and low healthiness of food items and also considered gender differences. We found increased activation when food was evaluated to be healthy in the left dorsolateral prefrontal cortex and precuneus in whole brain analyses. In ROI analyses, perceived and rated higher healthiness was associated with lower amygdala activity and higher ventral striatal and orbitofrontal cortex activity. Females exerted a higher activation in midbrain areas when rating food items as being healthy. Our results underline the close relationship between food and emotion processing, which makes sense considering evolutionary aspects. Actively evaluating and deciding whether food is healthy is accompanied by neural signaling associated with reward and self-relevance, which could promote salutary nutrition behavior. The involved brain regions may be amenable to mechanisms of emotion regulation in the context of psychotherapeutic regulation of food intake. PMID:26903859

  7. Integrated Optics for Planar imaging and Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Song, Qi

    Silicon photonics is a subject of growing interest with the potential of delivering planar electro-optical devices with chip scale integration. Silicon-on-insulator (SOI) technology has provided a marvelous platform for photonics industry because of its advantages in integration capability in CMOS circuit and countless nonlinearity applications in optical signal processing. This thesis is focused on the investigation of planar imaging techniques on SOI platform and potential applications in ultra-fast optical signal processing. In the first part, a general review and background introduction about integrated photonics circuit and planar imaging technique are provided. In chapter 2, planar imaging platform is realized by a silicon photodiode on SOI chip. Silicon photodiode on waveguide provides a high numerical aperture for an imaging transceiver pixel. An erbium doped Y2O3 particle is excited by 1550nm Laser and the fluorescent image is obtained with assistance of the scanning system. Fluorescence image is reconstructed by using image de-convolution technique. Under photovoltaic mode, we use an on-chip photodiode and an external PIN photodiode to realize similar resolution as 5μm. In chapter 3, a time stretching technique is developed to a spatial domain to realize a 2D imaging system as an ultrafast imaging tool. The system is evaluated based on theoretical calculation. The experimental results are shown for a verification of system capability to imaging a micron size particle or a finger print. Meanwhile, dynamic information for a moving object is also achieved by correlation algorithm. In chapter 4, the optical leaky wave antenna based on SOI waveguide has been utilized for imaging applications and extensive numerical studied has been conducted. and the theoretical explanation is supported by leaky wave theory. The highly directive radiation has been obtained from the broadside with 15.7 dB directivity and a 3dB beam width of ΔØ 3dB ≈ 1.65° in free space

  8. Additive Anti-Tumor Effects of Lovastatin and Everolimus In Vitro through Simultaneous Inhibition of Signaling Pathways

    PubMed Central

    Nölting, Svenja; Maurer, Julian; Spöttl, Gerald; Aristizabal Prada, Elke Tatjana; Reuther, Clemens; Young, Karen; Korbonits, Márta; Göke, Burkhard; Grossman, Ashley; Auernhammer, Christoph J.

    2015-01-01

    Background The mTORC1-inhibitor everolimus shows limited efficacy in treating patients with gastro-entero-pancreatic or pulmonary neuroendocrine tumors (NETs), and poor outcome in patients with malignant pheochromocytoma or hepatic carcinoma. We speculated that any effect may be enhanced by antogonising other signaling pathways. Methods Therefore, we tested the effect of lovastatin—known to inhibit both ERK and AKT signaling—and everolimus, separately and in combination, on cell viability and signaling pathways in human midgut (GOT), pancreatic (BON1), and pulmonary (H727) NET, hepatocellular carcinoma (HepG2, Huh7), and mouse pheochromocytoma (MPC, MTT) cell lines. Results Lovastatin and everolimus separately significantly reduced cell viability in H727, HepG2, Huh7, MPC and MTT cells at clinically relevant doses (P ≤ 0.05). However, high doses of lovastatin were necessary to affect GOT or BON1 cell viability. Clinically relevant doses of both drugs showed additive anti-tumor effects in H727, HepG2, Huh7, MPC and MTT cells (P ≤ 0.05), but not in BON1 or GOT cells. In all cell lines investigated, lovastatin inhibited EGFR and AKT signaling. Subsequently, combination treatment more strongly inhibited EGFR and AKT signaling than everolimus alone, or at least attenuated everolimus-induced EGFR or AKT activation. Vice versa, everolimus constantly decreased pp70S6K and combination treatment more strongly decreased pp70S6K than lovastatin alone, or attenuated lovastatin-induced p70S6K activation: in BON1 cells lovastatin-induced EGFR inhibition was least pronounced, possibly explaining the low efficacy and consequent absent additive effect. Conclusion In summary, clinically relevant doses of lovastatin and everolimus were effective separately and showed additive effects in 5 out of 7 cell lines. Our findings emphasize the importance of targeting several interacting signaling pathways simultaneously when attempting to attenuate tumor growth. However, the variable

  9. Hardware System for Real-Time EMG Signal Acquisition and Separation Processing during Electrical Stimulation.

    PubMed

    Hsueh, Ya-Hsin; Yin, Chieh; Chen, Yan-Hong

    2015-09-01

    The study aimed to develop a real-time electromyography (EMG) signal acquiring and processing device that can acquire signal during electrical stimulation. Since electrical stimulation output can affect EMG signal acquisition, to integrate the two elements into one system, EMG signal transmitting and processing method has to be modified. The whole system was designed in a user-friendly and flexible manner. For EMG signal processing, the system applied Altera Field Programmable Gate Array (FPGA) as the core to instantly process real-time hybrid EMG signal and output the isolated signal in a highly efficient way. The system used the power spectral density to evaluate the accuracy of signal processing, and the cross correlation showed that the delay of real-time processing was only 250 μs. PMID:26210898

  10. Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: the role of gastrointestinal satiation signal processing.

    PubMed

    Ong, Zhi Yi; Alhadeff, Amber L; Grill, Harvey J

    2015-05-01

    Central oxytocin (OT) administration reduces food intake and its effects are mediated, in part, by hindbrain oxytocin receptor (OT-R) signaling. The neural substrate and mechanisms mediating the intake inhibitory effects of hindbrain OT-R signaling are undefined. We examined the hypothesis that hindbrain OT-R-mediated feeding inhibition results from an interaction between medial nucleus tractus solitarius (mNTS) OT-R signaling and the processing of gastrointestinal (GI) satiation signals by neurons of the mNTS. Here, we demonstrated that mNTS or fourth ventricle (4V) microinjections of OT in rats reduced chow intake in a dose-dependent manner. To examine whether the intake suppressive effects of mNTS OT-R signaling is mediated by GI signal processing, rats were injected with OT to the 4V (1 μg) or mNTS (0.3 μg), followed by self-ingestion of a nutrient preload, where either treatment was designed to be without effect on chow intake. Results showed that the combination of mNTS OT-R signaling and GI signaling processing by preload ingestion reduced chow intake significantly and to a greater extent than either stimulus alone. Using enzyme immunoassay, endogenous OT content in mNTS-enriched dorsal vagal complex (DVC) in response to ingestion of nutrient preload was measured. Results revealed that preload ingestion significantly elevated endogenous DVC OT content. Taken together, these findings provide evidence that mNTS neurons are a site of action for hindbrain OT-R signaling in food intake control and that the intake inhibitory effects of hindbrain mNTS OT-R signaling are mediated by interactions with GI satiation signal processing by mNTS neurons. PMID:25740340

  11. Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: the role of gastrointestinal satiation signal processing

    PubMed Central

    Alhadeff, Amber L.; Grill, Harvey J.

    2015-01-01

    Central oxytocin (OT) administration reduces food intake and its effects are mediated, in part, by hindbrain oxytocin receptor (OT-R) signaling. The neural substrate and mechanisms mediating the intake inhibitory effects of hindbrain OT-R signaling are undefined. We examined the hypothesis that hindbrain OT-R-mediated feeding inhibition results from an interaction between medial nucleus tractus solitarius (mNTS) OT-R signaling and the processing of gastrointestinal (GI) satiation signals by neurons of the mNTS. Here, we demonstrated that mNTS or fourth ventricle (4V) microinjections of OT in rats reduced chow intake in a dose-dependent manner. To examine whether the intake suppressive effects of mNTS OT-R signaling is mediated by GI signal processing, rats were injected with OT to the 4V (1 μg) or mNTS (0.3 μg), followed by self-ingestion of a nutrient preload, where either treatment was designed to be without effect on chow intake. Results showed that the combination of mNTS OT-R signaling and GI signaling processing by preload ingestion reduced chow intake significantly and to a greater extent than either stimulus alone. Using enzyme immunoassay, endogenous OT content in mNTS-enriched dorsal vagal complex (DVC) in response to ingestion of nutrient preload was measured. Results revealed that preload ingestion significantly elevated endogenous DVC OT content. Taken together, these findings provide evidence that mNTS neurons are a site of action for hindbrain OT-R signaling in food intake control and that the intake inhibitory effects of hindbrain mNTS OT-R signaling are mediated by interactions with GI satiation signal processing by mNTS neurons. PMID:25740340

  12. Digital seismo-acoustic signal processing aboard a wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.

    2006-12-01

    We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes (www.moteiv.com). The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we

  13. Playback of beyond high definition video signal in holographic data storage system with wavefront compensation and parallel signal processing

    NASA Astrophysics Data System (ADS)

    Muroi, Tetsuhiko; Kinoshita, Nobuhiro; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi

    2014-09-01

    We have developed a holographic data storage system that can demonstrate real-time playback of beyond high definition video signals. In the proposed system, to increase the data-transfer rate of the reproduced data, we focused on improving the SNR of the reproduced data and on improving the signal processing speed, which the SNR of the reproduced data has a significant effect on. One of the factors that deteriorate the SNR is shrinkage in the medium. This shrinkage distorts recorded holograms and degrades the quality of the reproduced data. We investigated wavefront compensation as a means to improve the SNR of reproduced data degraded by hologram distortion and found that controlling the defocus component of the reference beam is effective. We have also been developing parallel signal processing to increase the data-transfer rate. We placed three GPUs in the signal processing unit: one for the reproduced data detection from the reconstructed image and two for the LDPC decoding for error correction of the reproduced data. The LDPC decoding required a lot more time than the data detection, so we designed a signal processing in which detected data in the GPU for the data detection were sent to the two GPUs for the LDPC decoding alternatively. We implemented wavefront compensation for the defocus component and developed parallel signal processing with three GPUs for our holographic data storage system. Using this system, we demonstrated real-time playback of beyond high definition video signals with 50 Mbps.

  14. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-18

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  15. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-01

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  16. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Bunya, George K.; Wallace, Robert L.

    1989-01-01

    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery.

  17. Signal Processing for a Lunar Array: Minimizing Power Consumption

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry; Simmons, Samuel

    2011-01-01

    Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)

  18. Integrated waveguide Bragg gratings for microwave photonics signal processing.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2013-10-21

    Integrated Microwave photonics (IMWP) signal processing using Photonic Integrated Circuits (PICs) has attracted a great deal of attention in recent years as an enabling technology for a number of functionalities not attainable by purely microwave solutions. In this context, integrated waveguide Bragg grating (WBG) devices constitute a particularly attractive approach thanks to their compactness and flexibility in producing arbitrarily defined amplitude and phase responses, by directly acting on coupling coefficient and perturbations of the grating profile. In this article, we review recent advances in the field of integrated WBGs applied to MWP, analyzing the advantages leveraged by an integrated realization. We provide a perspective on the exciting possibilities offered by the silicon photonics platform in the field of MWP, potentially enabling integration of highly-complex active and passive functionalities with high yield on a single chip, with a particular focus on the use of WBGs as basic building blocks for linear filtering operations. We demonstrate the versatility of WBG-based devices by proposing and experimentally demonstrating a novel, continuously-tunable, integrated true-time-delay (TTD) line based on a very simple dual phase-shifted WBG (DPS-WBG). PMID:24150355

  19. Cryogenic loss monitors with FPGA TDC signal processing

    SciTech Connect

    Warner, A.; Wu, J.; /Fermilab

    2011-09-01

    Radiation hard helium gas ionization chambers capable of operating in vacuum at temperatures ranging from 5K to 350K have been designed, fabricated and tested and will be used inside the cryostats at Fermilab's Superconducting Radiofrequency beam test facility. The chamber vessels are made of stainless steel and all materials used including seals are known to be radiation hard and suitable for operation at 5K. The chambers are designed to measure radiation up to 30 kRad/hr with sensitivity of approximately 1.9 pA/(Rad/hr). The signal current is measured with a recycling integrator current-to-frequency converter to achieve a required measurement capability for low current and a wide dynamic range. A novel scheme of using an FPGA-based time-to-digital converter (TDC) to measure time intervals between pulses output from the recycling integrator is employed to ensure a fast beam loss response along with a current measurement resolution better than 10-bit. This paper will describe the results obtained and highlight the processing techniques used.

  20. KATP channels process nucleotide signals in muscle thermogenic response

    PubMed Central

    Reyes, Santiago; Park, Sungjo; Terzic, Andre; Alekseev, Alexey E.

    2014-01-01

    Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K+ (KATP) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, KATP channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how KATP channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the KATP channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with KATP channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal KATP channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of KATP channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of KATP channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders. PMID:20925594

  1. Signal processing algorithms for staring single pixel hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Manolakis, Dimitris; Rossacci, Michael; O'Donnell, Erin; D'Amico, Francis M.

    2006-08-01

    Remote sensing of chemical warfare agents (CWA) with stand-off hyperspectral sensors has a wide range of civilian and military applications. These sensors exploit the spectral changes in the ambient photon flux produced thermal emission or absorption after passage through a region containing the CWA cloud. In this work we focus on (a) staring single-pixel sensors that sample their field of view at regular intervals of time to produce a time series of spectra and (b) scanning single or multiple pixel sensors that sample their FOV as they scan. The main objective of signal processing algorithms is to determine if and when a CWA enters the FOV of the sensor. We shall first develop and evaluate algorithms for staring sensors following two different approaches. First, we will assume that no threat information is available and we design an adaptive anomaly detection algorithm to detect a statistically-significant change in the observed spectrum. The algorithm processes the observed spectra sequentially-in-time, estimates adaptively the background, and checks whether the next spectrum differs significantly from the background based on the Mahalanobis distance or the distance from the background subspace. In the second approach, we will assume that we know the spectral signature of the CWA and develop sequential-in-time adaptive matched filter detectors. In both cases, we assume that the sensor starts its operation before the release of the CWA; otherwise, staring at a nearby CWA-free area is required for background estimation. Experimental evaluation and comparison of the proposed algorithms is accomplished using data from a long-wave infrared (LWIR) Fourier transform spectrometer.

  2. Signal Processor Development by Personnel of the JSC Signal Processing Section

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas

    1994-01-01

    The purpose of this paper is to describe systems and components of systems developed by personnel in the Signal Processing Section of the Tracking and Communications Division. The scope of this includes past developments which are in current use in NASA flight operations and future developments which are targeted for upcoming NASA applications. These projects specifically are: (1) NASA High Definition Television (HDTV) Project, (2) Video Codecs, (3) NASA Electronic Still Camera (ESC) Project, (4) Hercules Payload, (5) Ku-band Communications Adapter (KCA), (6) Windows Drivers for Satellite Interfacing to Commercial Equipment, and (7) Advanced Statistical Multiplexers. The methods used to determine what projects should be done in-house as opposed to which should not is based in NASA applications versus commercially available systems to meet those applications. If a commercial-off-the-shelf (COTS) component or system is available which meets the need, the first choice is to use COTS equipment. If it is not, and there is a NASA requirement, it is developed in-house. This results in technology which is being developed which otherwise was not available. Personnel involved in these projects have been contacted by many commercial companies interested in licensing or obtaining the NASA design.

  3. Receptor downregulation and desensitization enhance the information processing ability of signaling receptors

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.; Resat, Haluk

    2007-11-09

    The activation of cell surface receptors in addition to initiating signaling events also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (receptor downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of “adaptation” wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from “over-responding” to the ligand. Here we use the epidermal growth factor receptor (EGFR) and G-protein coupled receptors (GPCR) as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. We show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped oscillators. This analogy enables us to describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. We hypothesize that, in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization play a critical role in temporal information processing.

  4. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    PubMed Central

    Shankaran, Harish; Wiley, H Steven; Resat, Haluk

    2007-01-01

    Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR) and G-protein coupled receptors (GPCR) as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information processing. Furthermore

  5. LCD motion blur reduction: a signal processing approach.

    PubMed

    Har-Noy, Shay; Nguyen, Truong Q

    2008-02-01

    Liquid crystal displays (LCDs) have shown great promise in the consumer market for their use as both computer and television displays. Despite their many advantages, the inherent sample-and-hold nature of LCD image formation results in a phenomenon known as motion blur. In this work, we develop a method for motion blur reduction using the Richardson-Lucy deconvolution algorithm in concert with motion vector information from the scene. We further refine our approach by introducing a perceptual significance metric that allows us to weight the amount of processing performed on different regions in the image. In addition, we analyze the role of motion vector errors in the quality of our resulting image. Perceptual tests indicate that our algorithm reduces the amount of perceivable motion blur in LCDs. PMID:18270104

  6. Net analyte signal standard addition method for simultaneous determination of sulphadiazine and trimethoprim in bovine milk and veterinary medicines.

    PubMed

    Hajian, Reza; Mousavi, Esmat; Shams, Nafiseh

    2013-06-01

    Net analyte signal standard addition method has been used for the simultaneous determination of sulphadiazine and trimethoprim by spectrophotometry in some bovine milk and veterinary medicines. The method combines the advantages of standard addition method with the net analyte signal concept which enables the extraction of information concerning a certain analyte from spectra of multi-component mixtures. This method has some advantages such as the use of a full spectrum realisation, therefore it does not require calibration and prediction step and only a few measurements require for the determination. Cloud point extraction based on the phenomenon of solubilisation used for extraction of sulphadiazine and trimethoprim in bovine milk. It is based on the induction of micellar organised media by using Triton X-100 as an extraction solvent. At the optimum conditions, the norm of NAS vectors increased linearly with concentrations in the range of 1.0-150.0 μmolL(-1) for both sulphadiazine and trimethoprim. The limits of detection (LOD) for sulphadiazine and trimethoprim were 0.86 and 0.92 μmolL(-1), respectively. PMID:23411170

  7. Signal post processing in frequency domain OCT and OCM using a filter bank approach

    NASA Astrophysics Data System (ADS)

    Hofer, Bernd; Považay, Boris; Hermann, Boris; Unterhuber, Angelika; Matz, Gerald; Hlawatsch, Franz; Drexler, Wolfgang

    2007-02-01

    Current signal post processing in spectrally encoded frequency domain (FD) optical coherence microscopy (OCM) and optical coherence tomography (OCT) uses Fourier transforms in combination with non-uniform resampling strategies to map the k-space data acquired by the spectrometer to spatial domain signals which are necessary for tomogram generation. We propose to use a filter bank (FB) framework for the remapping process. With our new approach, the spectrometer is modeled as a critically sampled analysis FB, whose outputs are quantized subband signals that constitute the k-space spectroscopic data. The optimal procedure to map this data to the spatial domain is via a suitably designed synthesis FB which has low complexity. FB theory additionally states that 1) it is possible to find a synthesis FB such that the overall system has the perfect reconstruction (PR) property; 2) any processing on critically sampled subband signals (as done in current schemes) results in aliasing artifacts. These perspectives are evaluated both theoretically and experimentally. We determine the analysis FB corresponding to our FD-OCM system by using a tunable laser and show that for our grating-based spectrometer - employing a CCD-line camera - the non-uniform resampling together with FFT indeed causes aliasing terms and depth dependent signal attenuation. Furthermore, we compute a finite impulse response based synthesis FB and assess the desired PR property by means of layered samples. The resulting images exhibit higher resolution and improved SNR compared to the common FFT-based approach. The potential of the proposed FB approach opens a new perspective also for other spectroscopic applications.

  8. Multivariate classification of animal communication signals: a simulation-based comparison of alternative signal processing procedures using electric fishes.

    PubMed

    Crampton, William G R; Davis, Justin K; Lovejoy, Nathan R; Pensky, Marianna

    2008-01-01

    Evolutionary studies of communication can benefit from classification procedures that allow individual animals to be assigned to groups (e.g. species) on the basis of high-dimension data representing their signals. Prior to classification, signals are usually transformed by a signal processing procedure into structural features. Applications of these signal processing procedures to animal communication have been largely restricted to the manual or semi-automated identification of landmark features from graphical representations of signals. Nonetheless, theory predicts that automated time-frequency-based digital signal processing (DSP) procedures can represent signals more efficiently (using fewer features) than can landmark procedures or frequency-based DSP - allowing more accurate classification. Moreover, DSP procedures are objective in that they require little previous knowledge of signal diversity, and are relatively free from potentially ungrounded assumptions of cross-taxon homology. Using a model data set of electric organ discharge waveforms from five sympatric species of the electric fish Gymnotus, we adopted an exhaustive simulation approach to investigate the classificatory performance of different signal processing procedures. We considered a landmark procedure, a frequency-based DSP procedure (the fast Fourier transform), and two kinds of time-frequency-based DSP procedures (a short-time Fourier transform, and several implementations of the discrete wavelet transform -DWT). The features derived from each of these signal processing procedures were then subjected to dimension reduction procedures to separate those features which permit the most effective discrimination among groups of signalers. We considered four alternative dimension reduction methods. Finally, each combination of reduced data was submitted to classification by linear discriminant analysis. Our results support theoretical predictions that time-frequency DSP procedures (especially DWT

  9. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-02-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency ( Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ˜10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented.

  10. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging.

    PubMed

    Pursley, Randall H; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C; Pohida, Thomas J

    2006-02-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (L(f)) of 300MHz to facilitate in vivo studies. This relatively low frequency L(f), in conjunction with our approximately 10MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  11. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    PubMed Central

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  12. Signals of strong electronic correlation in ion scattering processes

    NASA Astrophysics Data System (ADS)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  13. Processing of the Liquid Xenon calorimeter's signals for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Yudin, Yu V.

    2014-09-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of nucleons production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs by 5 ns or later after beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with accuracy of about 3 ns. The LXe-calorimeter consists of 14 layers of ionization chambers with anode and cathode readout. The duration of charge collection to the anodes is about 4.5 mks, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that. Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. At the first stage, the signal arrival time is determined with an accuracy of 1-2 discretization periods, and initial values of parameters for subsequent fitting procedure are calculated. At the second stage, the signal arrival time is determined with the required accuracy by means of fitting of the signal waveform with a template waveform. To implement that, a special electronics has been developed which performs waveform digitization and On-Line measurement of signals' arrival times and amplitudes.

  14. Design and programming of systolic array cells for signal processing

    SciTech Connect

    Smith, R.A.W.

    1989-01-01

    This thesis presents a new methodology for the design, simulation, and programming of systolic arrays in which the algorithms and architecture are simultaneously optimized. The algorithms determine the initial architecture, and simulation is used to optimize the architecture. The simulator provides a register-transfer level model of a complete systolic array computation. To establish the validity of this design methodology two novel programmable systolic array cells were designed and programmed. The cells were targeted for applications in high-speed signal processing and associated matrix computations. A two-chip programmable systolic array cell using a 16-bit multiplier-accumulator chip and a semi-custom VLSI controller chip was designed and fabricated. A low chip count allows large arrays to be constructed, but the cell is flexible enough to be a building-block for either one- or two-dimensional systolic arrays. Another more flexible and powerful cell using a 32-bit floating-point processor and a second VLSI controller chip was also designed. It contains several architectural features that are unique in a systolic array cell: (1) each instruction is 32 bits, yet all resources can be updated every cycle, (2) two on-chip interchangeable memories are used, and (3) one input port can be used as either a global or local port. The key issues involved in programming the cells are analyzed in detail. A set of modules is developed which can be used to construct large programs in an effective manner. The utility of this programming approach is demonstrated with several important examples.

  15. Diffraction tomographic signal processing algorithms for tunnel detection

    SciTech Connect

    Witten, A.J.

    1993-08-01

    Signal processing algorithms have been developed for wave based imaging using diffraction tomography. The basis for this image reconstruction procedure is the generalized projection slice theorem (GPST) which, for homogeneous waves, is an analytic relationship between the spatial Fourier transform of the acquired data and the spatial Fourier transform of the spatial profile (object function) of the object being imaged. Imaging within geophysical diffraction tomography when only homogeneous waves are considered can then be accomplished by inversion of the GPST using standard numerical techniques. In an attenuating background medium or when eddy currents or static fields are considered, a generalized GPST can be derived that involves both real and complex spatial frequencies. In this case, direct Fourier inversion is not possible because of the presence of the complex frequencies. Although direct inversion and, hence, complete imaging is not possible for such cases, the generalized CPST`S can be used to analytically shift the location of data templates matched to specified targets and these templates can, in turn, be correlated with acquired data to detect and estimate the location of the specified targets. Since GPST`s are used directly in the detection problem, there is no need to numerically invert the intergal transform of the object function. For this reason, target detection can be accomplished in a computationally efficient manner independent of the type of measurement or background geologic conditions. A number of GPST`s are derived and the use of GPST`s for both imaging and detection of subsurface voids is demonstrated in several recent applications.

  16. Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications

    NASA Astrophysics Data System (ADS)

    Delfyett, Peter J.; Gee, Sangyoun; Choi, Myoung-Taek; Izadpanah, Hossein; Lee, Wangkuen; Ozharar, Sarper; Quinlan, Franklyn; Yilmaz, Tolga

    2006-07-01

    Modelocked semiconductor lasers are used to generate a set of phase-locked optical frequencies on a periodic grid. The periodic and phase coherent nature of the optical frequency combs makes it possible for the realization of high-performance optical and RF arbitrary-waveform synthesis. In addition, the resulting optical frequency components can be used for communication applications relying on direct detection, dense wavelength division multiplexing (WDM), coherent-detection WDM, optical time-division multiplexing, and optical code division multiple access. This paper highlights the recent results in the use of optical frequency combs generated from semiconductors for ultrawideband signal processing and communication applications.

  17. Just noticeable difference level estimation in real-time digital signal processing

    NASA Astrophysics Data System (ADS)

    Piotrowski, Zbigniew; Rudkowski, Wojciech

    2008-01-01

    Modern state-of-the art watermarking systems use precise algorithms for ensure perceptual transparency of the additional signal in the host signal presence. Various Human Auditory System (HAS) models are implemented but only few of them are computationally effective giving reliable acoustic masking effect. This paper presents efficient algorithm and its implementation for Just Noticeable Difference level estimation using HAS for data hiding application. Implementation is based on effective Johnston [1] HAS model and real-time processing using TMS 320C6713 DSK board. The results of implementation as well as subjective fidelity test using standard ITU-R BS 1116.1 are described and illustrated. Numerical results of DSP real-time implementation are compared with the Matlab off-line HAS computational model.

  18. A CCD/CMOS process for integrated image acquisition and early vision signal processing

    NASA Astrophysics Data System (ADS)

    Keast, Craig L.; Sodini, Charles G.

    The development of technology which integrates a four phase, buried-channel CCD in an existing 1.75 micron CMOS process is described. The four phase clock is employed in the integrated early vision system to minimize process complexity. Signal corruption is minimized and lateral fringing fields are enhanced by burying the channel. The CMOS process for CCD enhancement is described, which highlights a new double-poly process and the buried channel, and the integration is outlined. The functionality and transfer efficiency of the process enhancement were appraised by measuring CCD shift registers at 100 kHz. CMOS measurement results are presented, which include threshold voltages, poly-to-poly capacitor voltage and temperature coefficients, and dark current. A CCD/CMOS processor is described which combines smoothing and segmentation operations. The integration of the CCD and the CMOS processes is found to function due to the enhancement-compatible design of the CMOS process and the thorough employment of CCD module baseline process steps.

  19. Tunable Signal Processing through a Kinase Control Cycle: the IKK Signaling Node

    PubMed Central

    Behar, Marcelo; Hoffmann, Alexander

    2013-01-01

    The transcription factor NFκB, a key component of the immune system, shows intricate stimulus-specific temporal dynamics. Those dynamics are thought to play a role in controlling the physiological response to cytokines and pathogens. Biochemical evidence suggests that the NFκB inducing kinase, IKK, a signaling hub onto which many signaling pathways converge, is regulated via a regulatory cycle comprising a poised, an active, and an inactive state. We hypothesize that it operates as a modulator of signal dynamics, actively reshaping the signals generated at the receptor proximal level. Here we show that a regulatory cycle can function in at least three dynamical regimes, tunable by regulating a single kinetic parameter. In particular, the simplest three-state regulatory cycle can generate signals with two well-defined phases, each with distinct coding capabilities in terms of the information they can carry about the stimulus. We also demonstrate that such a kinase cycle can function as a signal categorizer classifying diverse incoming signals into outputs with a limited set of temporal activity profiles. Finally, we discuss the extension of the results to other regulatory motifs that could be understood in terms of the regimes of the three-state cycle. PMID:23823243

  20. Higgs boson production at hadron colliders: Signal and background processes

    SciTech Connect

    David Rainwater; Michael Spira; Dieter Zeppenfeld

    2004-01-12

    We review the theoretical status of signal and background calculations for Higgs boson production at hadron colliders. Particular emphasis is given to missing NLO results, which will play a crucial role for the Tevatron and the LHC.

  1. Roles of phosphotase 2A in nociceptive signal processing

    PubMed Central

    2013-01-01

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules. PMID:24010880

  2. Attitude Estimation Signal Processing: A First Report on Possible Algorithms and Their Utility

    NASA Technical Reports Server (NTRS)

    Riasati, Vahid R.

    1998-01-01

    In this brief effort, time has been of the essence. The data had to be acquired from APL/Lincoln Labs, stored, and sorted out to obtain the pertinent streams. This has been a significant part of this effort and hardware and software problems have been addressed with the appropriate solutions to accomplish this part of the task. Passed this, some basic and important algorithms are utilized to improve the performance of the attitude estimation systems. These algorithms are an essential part of the signal processing for the attitude estimation problem as they are utilized to reduce the amount of the additive/multiplicative noise that in general may or may not change its structure and probability density function, pdf, in time. These algorithms are not currently utilized in the processing of the data, at least, we are not aware of their use in this attitude estimation problem. Some of these algorithms, like the variable thresholding, are new conjectures, but one would expect that someone somewhere must have utilized this kind of scheme before. The variable thresholding idea is a straightforward scheme to use in case of a slowly varying pdf, or statistical moments of the unwanted random process. The algorithms here are kept simple but yet effective for processing the data and removing the unwanted noise. For the most part, these algorithms can be arranged so that their consecutive and orderly execution would complement the preceding algorithm and improve the overall performance of the signal processing chain.

  3. Measuring Postural Stability: Strategies For Signal Acquisition And Processing

    NASA Astrophysics Data System (ADS)

    Riedel, Susan A.; Harris, Gerald F.

    1987-01-01

    A balance platform was used to collect postural stability data from 60 children, approximately half of whom have been diagnosed with cerebral palsy. The data was examined with respect to its frequency content, resulting in an improved strategy for frequency estimation. With a reliable assessment of the frequency domain characteristics, the signal stationarity could then be examined. Significant differences in signal stationarity were observed when the epoch length was changed, as well as between the normal and cerebral palsy populations.

  4. Processing of noisy magnetotelluric data using digital filters and additional data selection criteria

    NASA Astrophysics Data System (ADS)

    Fontes, S. L.; Harinarayana, T.; Dawes, G. J. K.; Hutton, V. R. S.

    1988-10-01

    Although the magnetotelluric (MT) method is known to be effective and fast in probing the electrical conductivity structure of the Earth at crustal depths, the results are often degraded by industrial and cultural noise. To obtain reliable processed results for modelling, it is first necessary to extract or select the natural signals from the contaminated time series. Various noise-reduction techniques based on digital filters are discussed with special reference to persistent noise signals, e.g. from power lines, DC-operated railways and electrical fences. Both previously suggested techniques (delay-line and notch filtering) and two other procedures (maximum entropy extension and deconvolution filtering) are applied to both synthetic data and to field observations from southern Scotland and the Italian Alps. Better quality data sets and more geophysically acceptable Earth models are shown to result. Noise of a more intermittent nature has recently been observed in MT observations near the development site of the geothermal power station on Milos, Greece. Large highly coherent electromagnetic field signals were observed to coincide with the opening and closure of the valves on the test wells. In this case, meaningful apparent resistivity curves could be obtained from an undisturbed subset of the previously accepted data, which had been selected mainly on the basis of signal power. Delay-line filtering is shown to be superior to notch filtering in eliminating non-sinusoidal noise, while both the MEM extension and the window deconvolution techniques are found to be useful in spike removal. These studies illustrate that use of an automatic data selection procedure should only be undertaken with great care in areas where the cultural noise is high. In such cases, continuous time-domain monitoring of the MT signals is recommended. The appropriate techniques of noise reduction can then be applied.

  5. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  6. Signal simulation and signal processing for multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Neuhaus, Kai; Subhash, Hrebesh; Dsouza, Roshan; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2015-03-01

    The generation of a synthetic MR-OCT signal is presented and compared to a real acquired signal. Multiple reference optical coherence tomography (MR-OCT) is a novel time-domain interferometric system. The MR-OCT principle is adding a partial mirror to extend the axial scan range, which effectively extends the scan depth for imaging. The actuation of the scan mirror required for time-domain OCT, was demonstrated to operate with a low cost miniature voice coil, such as a speaker extracted from a smartphone or CD/DVD pick-up system. Building a compact and cost-effective optical imaging system will enable affordable medical diagnosis at low-resource setting applications. The partial mirror recirculates multiple reflections (orders) into the interferometric system and the increase of optical path delay does increase the beat frequency of the interference signal. The synthesis of such an interference signal using a numerical method is described in this manuscript.

  7. Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, D. I.; Hamlin, T.; Light, T. E.; Loveland, R. C.; Smith, D. A.; Suszcynsky, D. M.

    2012-12-01

    For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory (LANL) to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Arguably the richest satellite lightning database ever recorded is that from the Fast On-orbit Recording of Transient Events (FORTE) satellite, which returned at least five years of data from its two RF payloads after launch in 1997. While some classification work has been done previously on the LANL FORTE RF database, application of modern pattern recognition techniques may further lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Extracting classification features from RF signals typically relies on knowledge of the application domain in order to find feature vectors unique to a signal class and robust against background noise. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification performance

  8. An additive interaction between the NFκB and estrogen receptor signalling pathways in human endometrial epithelial cells

    PubMed Central

    King, A.E.; Collins, F.; Klonisch, T.; Sallenave, J.-M.; Critchley, H.O.D.; Saunders, P.T.K.

    2010-01-01

    BACKGROUND Human embryo implantation is regulated by estradiol (E2), progesterone and locally produced mediators including interleukin-1β (IL-1β). Interactions between the estrogen receptor (ER) and NF kappa B (NFκB) signalling pathways have been reported in other systems but have not been detailed in human endometrium. METHODS AND RESULTS Real-time PCR showed that mRNA for the p65 and p105 NFκB subunits is maximally expressed in endometrium from the putative implantation window. Both subunits are localized in the endometrial epithelium throughout the menstrual cycle. Reporter assays for estrogen response element (ERE) activity were used to examine functional interactions between ER and NFκB in telomerase immortalized endometrial epithelial cells (TERT-EEC). E2 and IL-1β treatment of TERT-EECs enhances ERE activity by a NFκB and ER dependent mechanism; this effect could be mediated by ERα or ERβ. E2 and IL-1β also positively interact to increase endogenous gene expression of prostaglandin E synthase and c-myc. This is a gene-dependent action as there is no additive effect on cyclin D1 or progesterone receptor expression. CONCLUSION In summary, we have established that NFκB signalling proteins are expressed in normal endometrium and report that IL-1β can enhance the actions of E2 in a cell line derived from healthy endometrium. This mechanism may allow IL-1β, possibly from the developing embryo, to modulate the function of the endometrial epithelium to promote successful implantation, for example by regulating prostaglandin production. Aberrations in the interaction between the ER and NFκB signalling pathways may have a negative impact on implantation contributing to pathologies such as early pregnancy loss and infertility. PMID:19955102

  9. The use of digital signal processors (DSPs) in real-time processing of multi-parametric bioelectronic signals.

    PubMed

    Ressler, Johann; Dirscherl, Andreas; Grothe, Helmut; Wolf, Bernhard

    2007-02-01

    In many cases of bioanalytical measurement, calculation of large amounts of data, analysis of complex signal waveforms or signal speed can overwhelm the performance of microcontrollers, analog electronic circuits or even PCs. One method to obtain results in real time is to apply a digital signal processor (DSP) for the analysis or processing of measurement data. In this paper we show how DSP-supported multiplying and accumulating (MAC) operations, such as time/frequency transformation, pattern recognition by correlation, convolution or filter algorithms, can optimize the processing of bioanalytical data. Discrete integral calculations are applied to the acquisition of impedance values as part of multi-parametric sensor chips, to pH monitoring using light-addressable potentiometric sensors (LAPS) and to the analysis of rapidly changing signal shapes, such as action potentials of cultured neuronal networks, as examples of DSP capability. PMID:17313351

  10. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    NASA Astrophysics Data System (ADS)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  11. Additive Effects of Retinoic Acid (RA) and Bone Morphogenetic Protein 4 (BMP-4) Apoptosis Signaling in Retinoblastoma Cell Lines

    PubMed Central

    Müller, Patrick; Doliva, Rebekka; Busch, Maike; Philippeit, Claudia; Stephan, Harald; Dünker, Nicole

    2015-01-01

    Retinoids have been shown to serve promising therapeutic agents for human cancers, e.g. the treatment of neuroblastoma. Synthetic retinoids, specific for particular retinoic acid (RA) receptors, are tested as new therapy strategies. In the present study, application of recombinant retinoic acid (RA) lowers retinoblastoma (RB) cell viability and induces apoptosis in RB cell lines. Combined treatment of RA and bone morphogenetic protein 4 (BMP-4) increases the pro-apoptotic effect of RA in the RB cells lines WERI-Rb1, Y-79, RB355, RBL-30 and RBL-15, indicating an additive effect. We could show that in WERI-Rb1 cells RA/BMP-4 mediated cell death is at least partially caspase-dependent, whereby RA and BMP-4 additively increased (i) Apaf-1 mRNA levels, (ii) caspase-9 cleavage activity and (iii) the number of activated, cleaved caspase-3 positive cells. Compared to single application of RA and BMP-4, combined RA/BMP-4 treatment significantly augments mRNA levels of the retinoic acid receptors (RARs) RARα and RARß and the retinoic X receptor (RXR) RXRγ suggesting an interaction in the induction of these RA receptor subtypes in WERI-Rb1 cells. Agonist studies revealed that both, RARs and RXRs are involved in RA/BMP-4 mediated apoptosis in WERI-Rb1 retinoblastoma cells. Employing specific RAR subtype antagonists and a RXRß and RXRγ knockdown, we proved that RA/BMP-4 apoptosis signaling in WERI-Rb1 cells requires the RA receptor subtypes RARα, RARß, RXRß and RXRγ. Deciphering signaling mechanisms underlying apoptosis induction of RA and BMP-4 in WERI-Rb1 cells, our study provides useful starting-points for future retinoid-based therapy strategies in retinoblastoma. PMID:26173116

  12. Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.; Hamlin, Timothy D.; Light, Tess E.; Suszcynsky, David M.

    2013-05-01

    For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lighting database, comprising of five years of data recorded from its two RF payloads. While some classification work has been done previously on the FORTE RF database, application of modern pattern recognition techniques may advance lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification scenarios and future development.

  13. The Role of Additional Processing Time and Lexical Constraint in Spoken Word Recognition

    ERIC Educational Resources Information Center

    LoCasto, Paul C.; Connine, Cynthia M.; Patterson, David

    2007-01-01

    Three phoneme monitoring experiments examined the manner in which additional processing time influences spoken word recognition. Experiment 1a introduced a version of the phoneme monitoring paradigm in which a silent interval is inserted prior to the word-final target phoneme. Phoneme monitoring reaction time decreased as the silent interval…

  14. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  15. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  16. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  17. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Advance declaration requirements for additionally planned production, processing, or consumption of Schedule 2 chemicals. 713.4 Section 713.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF...

  18. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  19. 25 CFR 1000.356 - May the trust evaluation process be used for additional reviews?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false May the trust evaluation process be used for additional reviews? 1000.356 Section 1000.356 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO...

  20. Contemporary ultrasonic signal processing approaches for nondestructive evaluation of multilayered structures

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Harvey, David M.

    2012-03-01

    Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.

  1. Spatial correlations, additivity, and fluctuations in conserved-mass transport processes

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Chatterjee, Sayani; Pradhan, Punyabrata

    2016-06-01

    We exactly calculate two-point spatial correlation functions in steady state in a broad class of conserved-mass transport processes, which are governed by chipping, diffusion, and coalescence of masses. We find that the spatial correlations are in general short-ranged and, consequently, on a large scale, these transport processes possess a remarkable thermodynamic structure in the steady state. That is, the processes have an equilibrium-like additivity property and, consequently, a fluctuation-response relation, which help us to obtain subsystem mass distributions in the limit of subsystem size large.

  2. Rapid Prototyping of High Performance Signal Processing Applications

    NASA Astrophysics Data System (ADS)

    Sane, Nimish

    Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high

  3. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2014-09-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

  4. Falling Person Detection Using Multi-Sensor Signal Processing

    NASA Astrophysics Data System (ADS)

    Toreyin, B. Ugur; Soyer, A. Birey; Onaran, Ibrahim; Cetin, E. Enis

    2007-12-01

    Falls are one of the most important problems for frail and elderly people living independently. Early detection of falls is vital to provide a safe and active lifestyle for elderly. Sound, passive infrared (PIR) and vibration sensors can be placed in a supportive home environment to provide information about daily activities of an elderly person. In this paper, signals produced by sound, PIR and vibration sensors are simultaneously analyzed to detect falls. Hidden Markov Models are trained for regular and unusual activities of an elderly person and a pet for each sensor signal. Decisions of HMMs are fused together to reach a final decision.

  5. Brillouin amplification and processing of the Rayleigh scattered signal.

    PubMed

    Mermelstein, David; Shacham, Eliashiv; Biton, Moran; Sternklar, Shmuel

    2015-07-15

    Brillouin amplification of Rayleigh scattering is demonstrated using two different configurations. In the first technique, the Rayleigh scattering and amplification occurs simultaneously in the same fiber. In the second technique, the amplification takes place in a second fiber. The differences between the two techniques are delineated. Using the second technique, we demonstrate single-sideband off-resonant Brillouin amplification of the Rayleigh signal. This technique is shown to enhance the SNR of a signal that is due to vibration-induced strain on the fiber. PMID:26176464

  6. [A telemetery system for neural signal acquiring and processing].

    PubMed

    Wang, Min; Song, Yongji; Suen, Jiantao; Zhao, Yiliang; Jia, Aibin; Zhu, Jianping

    2011-02-01

    Recording and extracting characteristic brain signals in freely moving animals is the basic and significant requirement in the study of brain-computer interface (BCI). To record animal's behaving and extract characteristic brain signals simultaneously could help understand the complex behavior of neural ensembles. Here, a system was established to record and analyse extracellular discharge in freely moving rats for the study of BCI. It comprised microelectrode and micro-driver assembly, analog front end (AFE), programmer system on chip (PSoC), wireless communication and the LabVIEW used as the platform for the graphic user interface. PMID:21485182

  7. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    PubMed Central

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing. PMID:26813252

  8. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    NASA Astrophysics Data System (ADS)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  9. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier.

    PubMed

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing. PMID:26813252

  10. Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; McAllister, Donald; Colijn, Hendrik; Mills, Michael; Farson, Dave; Nordin, Mark; Babu, Sudarsanam

    2014-09-01

    Simulative builds, typical of the tip-repair procedure, with matching compositions were deposited on an INCONEL 718 substrate using the laser additive manufacturing process. In the as-processed condition, these builds exhibit spatial heterogeneity in microstructure. Electron backscattering diffraction analyses showed highly misoriented grains in the top region of the builds compared to those of the lower region. Hardness maps indicated a 30 pct hardness increase in build regions close to the substrate over those of the top regions. Detailed multiscale characterizations, through scanning electron microscopy, electron backscattered diffraction imaging, high-resolution transmission electron microscopy, and ChemiSTEM, also showed microstructure heterogeneities within the builds in different length scales including interdendritic and interprecipitate regions. These multiscale heterogeneities were correlated to primary solidification, remelting, and solid-state precipitation kinetics of γ″ induced by solute segregation, as well as multiple heating and cooling cycles induced by the laser additive manufacturing process.

  11. Advanced study of video signal processing in low signal to noise environments

    NASA Technical Reports Server (NTRS)

    Carden, F.

    1973-01-01

    Conventional analytical techniques used to determine and optimize phase-lock loop (PLL) characteristics are most often based on a model which is valid only if the intermediate frequency (IF) filter bandwidth is large compared to the PLL bandwidth and the phase error is small. An improved model (called the quasi-linear model) is developed which takes into account small IF filter bandwidths and nonlinear effects associated with large phase errors. By comparison of theoretical and experimental results it is demonstrated that the quasi-linear model accurately predicts PLL characteristics. This is true even for small IF filter bandwidths and large phase errors where the conventional model is invalid. The theoretical and experimental results are used to draw conclusions concerning threshold, multiplier output variance, phase error variance, output signal-to-noise ratio, and signal distortion. The relationship between these characteristics and IF filter bandwidth, modulating signal spectrum, and rms deviation is also determined.

  12. Effects of different additives on the performance of spray dryer system during incineration process.

    PubMed

    Wey, M Y; Peng, C Y; Wu, H Y; Chiang, B C; Liu, Z S

    2002-06-01

    The spray dryer system was conventionally employed to remove the SOx, NOx, and HCl in the flue gas. However, the removal efficiency of acid gas in the practical incineration flue gas, which contains dust, heavy metals, and acid gas itself, was seldom mentioned in the literature. The alkaline sorbents possess large specific surface that was a main factor on the adsorption of heavy metals and acid gas. Therefore, the primary objective of this study was focused on the effect of different additives on the removal efficiency of acid gas and heavy metals (Cr, Cd and Pb). The mass and element size distribution of heavy metals in fly ash under different additives were also investigated. The results indicated that the removal efficiency of HCl in the spray dryer system was higher than 97.8%. The effects of additives on the removal efficiency of HCl, however, were undistinguished. In the desulfurization process, the highest removal efficiency was 71.3% when the additive of amorphous SiO2 was added in the spray dryer system. The removal efficiency was 66.0% with the additive of CaCl2 and 63.1% without any additives, respectively. It was also found that the spray dryer system could decrease the concentration of metal in fly ash but increase the amount of fly ash. In addition, amorphous SiO2 in the alkaline sorbent tended to increase the adsorption of heavy metal on reactant, because it could enhance the dispersion of alkaline sorbent. PMID:12118621

  13. Off-axis signal processing of cetacean biosonar

    NASA Astrophysics Data System (ADS)

    Zimmer, Walter M. X.

    2001-05-01

    Echolocation or biosonar plays a fundamental role for odontocetes to probe their environment, and their characteristics have been studied extensively for over 40 years. In summary, cetacean biosonar can be modeled as broadband transient-like signals radiating from a finite piston or aperture. The resulting sonar beam is directional, with a directivity index exceeding 25 dB for some species. The estimation of relevant sonar parameters is usually obtained from animals that are kept within a controlled and well-instrumented environment. This paper shows how measurements of opportunity from free-ranging odontocetes may be used to obtain their relevant biosonar parameters, in particular directivity index and source level. Frequently these measurements are made with a single hydrophone that is sufficiently deep so that surface-reflected echoes separate from the direct arrival of the echolocation clicks. Also, the received signal often fades in and out as the sonar beam of the scanning animal crosses the hydrophone. The presented technique exploits this scanning and the observation that broadband signals from a finite aperture will appear distorted when recorded off the acoustic axis, as the transfer function of the aperture modifies the spectrum of the transmitted signal.

  14. Wide-band array signal processing via spectral smoothing

    NASA Technical Reports Server (NTRS)

    Xu, Guanghan; Kailath, Thomas

    1989-01-01

    A novel algorithm for the estimation of direction-of-arrivals (DOA) of multiple wide-band sources via spectral smoothing is presented. The proposed algorithm does not require an initial DOA estimate or a specific signal model. The advantages of replacing the MUSIC search with an ESPRIT search are discussed.

  15. Signal processing for order 10 pm accuracy displacement metrology in real-world scientific applications

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Loya, Frank M.

    2004-01-01

    This paper describes heterodyne displacement metrology gauge signal processing methods that achieve satisfactory robustness against low signal strength and spurious signals, and good long-term stability. We have a proven displacement-measuring approach that is useful not only to space-optical projects at JPL, but also to the wider field of distance measurements.

  16. Comparison of Matching Pursuit Algorithm with Other Signal Processing Techniques for Computation of the Time-Frequency Power Spectrum of Brain Signals.

    PubMed

    Chandran K S, Subhash; Mishra, Ashutosh; Shirhatti, Vinay; Ray, Supratim

    2016-03-23

    Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided. PMID:27013668

  17. Comparison of Matching Pursuit Algorithm with Other Signal Processing Techniques for Computation of the Time-Frequency Power Spectrum of Brain Signals

    PubMed Central

    Chandran KS, Subhash; Mishra, Ashutosh; Shirhatti, Vinay

    2016-01-01

    Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided. PMID:27013668

  18. Multiscale simulation process and application to additives in porous composite battery electrodes

    NASA Astrophysics Data System (ADS)

    Wieser, Christian; Prill, Torben; Schladitz, Katja

    2015-03-01

    Structure-resolving simulation of porous materials in electrochemical cells such as fuel cells and lithium ion batteries allows for correlating electrical performance with material morphology. In lithium ion batteries characteristic length scales of active material particles and additives range several orders of magnitude. Hence, providing a computational mesh resolving all length scales is not reasonably feasible and requires alternative approaches. In the work presented here a virtual process to simulate lithium ion batteries by bridging the scales is introduced. Representative lithium ion battery electrode coatings comprised of μm-scale graphite particles as active material and a nm-scale carbon/polymeric binder mixture as an additive are imaged with synchrotron radiation computed tomography (SR-CT) and sequential focused ion beam/scanning electron microscopy (FIB/SEM), respectively. Applying novel image processing methodologies for the FIB/SEM images, data sets are binarized to provide a computational grid for calculating the effective mass transport properties of the electrolyte phase in the nanoporous additive. Afterwards, the homogenized additive is virtually added to the micropores of the binarized SR-CT data set representing the active particle structure, and the resulting electrode structure is assembled to a virtual half-cell for electrochemical microheterogeneous simulation. Preliminary battery performance simulations indicate non-negligible impact of the consideration of the additive.

  19. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex

    PubMed Central

    Ortega, Davi R.; Zhulin, Igor B.

    2016-01-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  20. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549