Science.gov

Sample records for additional small fields

  1. Small-Scale-Field Dynamo

    SciTech Connect

    Gruzinov, A.; Cowley, S.; Sudan, R. ||

    1996-11-01

    Generation of magnetic field energy, without mean field generation, is studied. Isotropic mirror-symmetric turbulence of a conducting fluid amplifies the energy of small-scale magnetic perturbations if the magnetic Reynolds number is high, and the dimensionality of space {ital d} satisfies 2.103{lt}{ital d}{lt}8.765. The result does not depend on the model of turbulence, incompressibility, and isotropy being the only requirements. {copyright} {ital 1996 The American Physical Society.}

  2. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  3. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  4. View looking west down northeast side of building. Small additions ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking west down northeast side of building. Small additions and control tower visible. - Naval Air Station North Island, Seaplane Hangars, Roe Street, North Island, San Diego, San Diego County, CA

  5. Gravity Field Characterization around Small Bodies

    NASA Astrophysics Data System (ADS)

    Takahashi, Yu

    A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with

  6. Constraints on small-field axion inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Saga, Ikumi

    2017-03-01

    We study general class of small-field axion inflations, which are the mixture of polynomial and sinusoidal functions suggested by the natural and axion monodromy inflations. The axion decay constants leading to the successful axion inflations are severely constrained in order not to spoil the big bang nucleosynthesis and overproduce the isocurvature perturbation originating from the QCD axion. We in turn find that the cosmologically favorable axion decay constants are typically of order the grand unification scale or the string scale, which is consistent with the prediction of closed-string axions.

  7. Last stand of single small field inflation

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Lehman, Landon; Martin, Adam; Downes, Sean

    2014-07-01

    By incorporating both the tensor-to-scalar ratio and the measured value of the spectral index, we set a bound on solo small field inflation of Δϕ/mPl≥1.00√r/0.1 . Unlike previous bounds which require monotonic ɛV, |ηV|<1, and 60 e-folds of inflation, the bound remains valid for nonmonotonic ɛV, |ηV|≳1, and for inflation which occurs only over the eight e-folds which have been observed on the cosmic microwave background. The negative value of the spectral index over the observed eight e-folds is what makes the bound strong; we illustrate this by surveying single field models and finding that for r ≳0.1 and eight e-folds of inflation, there is no simple potential which reproduces observed cosmic microwave background perturbations and remains sub-Planckian. Models that are sub-Planckian after eight e-folds must be patched together with a second epoch of inflation that fills out the remaining ˜50 e-folds. This second, post-cosmic microwave background epoch is characterized by extremely small ɛV and therefore an increasing scalar power spectrum. Using the fact that large power can overabundantly produce primordial black holes, we bound the maximum energy level of the second phase of inflation.

  8. Preheating after small-field inflation

    SciTech Connect

    Brax, Philippe; Mariadassou, Sophie

    2011-05-15

    Whereas preheating after chaotic and hybrid inflation models has been abundantly studied in the literature, preheating in small field inflation models, where the curvature of the inflaton potential is negative during inflation, remains less explored. In these models, a tachyonic instability at the end of inflation leads to a succession of exponentially large increases and decreases of the inflaton fluctuations as the inflaton condensate oscillates around the minimum of its potential. The net effect is a competition between low-momentum modes which grow and decrease significantly, and modes with higher momenta which grow less but also decrease less. We develop an analytical description of this process, which is analogous to the quantum mechanical problem of tunneling through a volcano-shaped potential. Depending on the parameters, preheating may be so efficient that it completes in less than one oscillation of the inflaton condensate. Preheating after small field inflation may also be followed by a long matter-dominated stage before the Universe thermalizes, depending on the energy scale of inflation and the details of the inflaton interactions. Finally, another feature of these models is that the spectrum of the inflaton fluctuations at the end of preheating may be peaked around the Hubble scale. In fact, because preheating starts when the second slow-roll parameter |{eta}| becomes of order unity while the first slow-roll parameter {epsilon} is still much smaller than 1, the Universe is still inflating during preheating and the modes amplified by the initial tachyonic instability leave the Hubble radius. This may lead to an abundant production of primordial black holes and gravitational waves with frequencies today which are naturally small enough to fall into the range accessible by high-sensitivity interferometric experiments.

  9. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  10. Additive CHARMM force field for naturally occurring modified ribonucleotides.

    PubMed

    Xu, You; Vanommeslaeghe, Kenno; Aleksandrov, Alexey; MacKerell, Alexander D; Nilsson, Lennart

    2016-04-15

    More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all-atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs.

  11. Additive CHARMM force field for naturally occurring modified ribonucleotides

    PubMed Central

    Xu, You; Vanommeslaeghe, Kenno; Aleksandrov, Alexey; MacKerell, Alexander D.

    2016-01-01

    More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26841080

  12. Are There Additional Benefits from Being in Small Classes for More than One Year?

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros; Li, Wei

    2012-01-01

    Evidence from Project STAR has suggested a considerable advantage of being in small classes in early grades. However, the extra benefits of additional years in small classes have not been discussed in detail. The present study examined the additional effects of being in small classes for more than 1 year. We find that once previous grade…

  13. Additional electric field in real trench MOS barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  14. Small field inflation and the spectral index

    SciTech Connect

    Bose, Milton; Dine, Michael; Monteux, Angelo; Haskins, Laurel Stephenson

    2014-01-27

    It is sometimes stated that n{sub s}=0.98 in hybrid inflation; sometimes that it predicts n{sub s}>1. A number of authors have consider aspects of Planck scale corrections and argued that they affect these predictions. Here we consider these systematically, describing the situations which can yield n{sub s}=0.96, and the extent to which this result requires additional tuning.

  15. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

    NASA Astrophysics Data System (ADS)

    Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.; Sampaio, J.; Vaz, C. A. F.; van Horne, N.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; Wohlhüter, P.; George, J.-M.; Weigand, M.; Raabe, J.; Cros, V.; Fert, A.

    2016-05-01

    Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii-Moriya interactions (DMIs), which reach a value close to 2 mJ m-2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future.

  16. Small field axion inflation with sub-Planckian decay constant

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.

    2016-10-10

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  17. Small field axion inflation with sub-Planckian decay constant

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.

    2016-10-01

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  18. Small-world network spectra in mean-field theory.

    PubMed

    Grabow, Carsten; Grosskinsky, Stefan; Timme, Marc

    2012-05-25

    Collective dynamics on small-world networks emerge in a broad range of systems with their spectra characterizing fundamental asymptotic features. Here we derive analytic mean-field predictions for the spectra of small-world models that systematically interpolate between regular and random topologies by varying their randomness. These theoretical predictions agree well with the actual spectra (obtained by numerical diagonalization) for undirected and directed networks and from fully regular to strongly random topologies. These results may provide analytical insights to empirically found features of dynamics on small-world networks from various research fields, including biology, physics, engineering, and social science.

  19. Dosimetry of small fields for Therac 20 electron beams.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1984-01-01

    The Therac 20 medical linear accelerator produces electron beams of 6, 9, 13, 17, and 20 MeV. We measured depth dose, isodose curves, and output factors for small electron fields using an ionization chamber, film, and thermoluminescent dosimeters. Tables and graphs were generated from these measurements for accurate treatment planning of various blocked and open fields.

  20. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  1. Irreversible Wash Aid Additive for Cesium Mitigation. Small-Scale Demonstration and Lessons Learned

    SciTech Connect

    Kaminski, Michael

    2015-01-01

    The Irreversible Wash Aid Additive process has been under development by the U.S. Environmental Protection Agency (EPA) and Argonne National Laboratory (Argonne). This process for radioactive cesium mitigation consists of a solution to wash down contaminated structures, roadways, and vehicles and a sequestering agent to bind the radionuclides from the wash water and render them environmentally immobile. The purpose of this process is to restore functionality to basic services and immediately reduce the consequences of a radiologically-contaminated urban environment. Research and development have resulted in a down-selection of technologies for integration and demonstration at the pilot-scale level as part of the Wide Area Recovery and Resiliency Program (WARRP) under the Department of Homeland Security and the Denver Urban Area Security Initiative. As part of developing the methods for performing a pilot-scale demonstration at the WARRP conference in Denver in 2012, Argonne conducted small-scale field experiments at Separmatic Systems. The main purpose of these experiments was to refine the wash water collection and separations systems and demonstrate key unit operations to help in planning for the large scale demonstration in Denver. Since the purpose of these tests was to demonstrate the operations of the system, we used no radioactive materials. After a brief set of experiments with the LAKOS unit to familiarize ourselves with its operation, two experiments were completed on two separate dates with the Separmatic systems.

  2. Practical considerations for electron beam small field size dosimetry

    SciTech Connect

    Sharma, Subhash C.; Johnson, Martin W.; Gossman, Michael S. . E-mail: GossmanMS@erlanger.org

    2005-06-30

    Special care of superficial lesions surrounding critical structures, such as an eye, may require tight margins. When this is the case, small megavoltage electron treatment fields and nonstandard treatment distances become necessary. When the field size is found to be less than the practical range of the electron beam, dosimetric measurements should be performed. This research includes data proving that very small electron fields can be employed for treatment with appropriate beam flatness and penumbra. This is accomplished by first coning down the incident beam to a small field size, then secondly by adding a single lead sheet to the patient's skin surface. The aperture of the sheet is required to be greater than 2 x 2 cm{sup 2} in size, and must be cut properly to adequately confine the treatment area.

  3. Livestock poisoning from oil field drilling fluids, muds and additives.

    PubMed

    Edwards, W C; Gregory, D G

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  4. Livestock poisoning from oil field drilling fluids, muds and additives

    SciTech Connect

    Edwards, W.C.; Gregory, D.G. )

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  5. A new probe for measuring small electric fields in plasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1991-01-01

    A dipolar double probe has been developed for in situ measurements of small electric fields in laboratory plasmas. The probe measures dc to ac electric fields (f values between 0 and 20 MHz) with high sensitivity (Emin about 10 microV/cm) and responds to both space charge electric fields and inductive electric fields. Using voltage-to-frequency conversion, the probe signal is obtained free of errors and loading effects by a transmission line. Various examples of useful applications for the new probe are presented, such as measurements of dc ambipolar fields, ac space-charge fields of ion acoustic waves, ac inductive fields of whistler waves, and mixed inductive and space-charge electric fields in current-carrying magnetoplasmas.

  6. The Use of Small Coolers in a Magnetic Field

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2007-07-25

    Small 4 K coolers are used to cool superconducting magnets.These coolers are usually used with high temperature suerconductor (HTS)leads. In most cases, magnet is shielded with iron or active shieldcoils. Thus the field at the cooler is low. There are instances when thecooler must be in a magnetic field. Gifford McMahon (GM) coolers or pulsetube coolers are commercially available to cool the magnets. This paperwill discuss how the two types of coolers are affected by the straymagnetic field. Strategies for using coolers on magnets that generatestray magnetic fields are discussed.

  7. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting.

    PubMed

    Perez, Louis A; Chou, Kang Wei; Love, John A; van der Poll, Thomas S; Smilgies, Detlef-M; Nguyen, Thuc-Quyen; Kramer, Edward J; Amassian, Aram; Bazan, Guillermo C

    2013-11-26

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM.

  8. Formation and evolution of small-scale solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Lamb, D. A.

    2008-06-01

    In this thesis I investigate the formation and evolution of small-scale magnetic fields on the surface of the Sun. I observe the magnetic field in quiet sun regions in an effort to further understand the baseline magnetic field that exists throughout the photosphere at all phases of the solar cycle. An automated feature tracking algorithm that I helped develop allows me to systematically analyze datasets containing over 10 5 evolving magnetic features. In 1.2"-resolution Michelson Doppler Imager (MDI) magnetograms, I find that 30% of features identified by our algorithm originate without other detectable flux within 2.2 Mm. These features having an apparent unipolar origin account for 94% of the flux newly detected by the algorithm. I infer from their ensemble average that these features are actually previously existing flux, coalesced by surface flows into concentrations large and strong enough to detect. Flux coalescence is at least as important as bipolar ephemeral region emergence for introducing detectable flux into the photosphere, underscoring the importance of small-scale fields to the overall photospheric flux budget. Using 0.3"-resolution magnetograms from the Narrowband Filter Imager (NFI) on the recently-launched Hinode spacecraft, I confirm that apparent unipolar emergence seen with MDI is indeed flux coalescence. I then demonstrate that apparent unipolar emergence seen in NFI magnetograms also corresponds to coalescence of previously existing weak field. The uncoalesced flux, detectable only in the ensemble average of hundreds of these events, accounts for 30-50% of the total flux within 3 Mm of the detected features. Finally, I study small-scale fields around intermediate-scale supergranular network concentrations. This is motivated by simulations and observations showing suppression of flux production by background magnetic fields at small and large scales. Within 12 Mm of the network concentrations, I find no evidence that the concentrations

  9. Modification of Mo-Si alloy microstructure by small additions of Zr.

    PubMed

    Mousa, M; Wanderka, N; Timpel, M; Singh, S; Krüger, M; Heilmaier, M; Banhart, J

    2011-05-01

    Molybdenum and its alloys are potential materials for high-temperature applications. However, molybdenum is susceptible to embrittlement because of oxygen segregation at the grain boundaries. In order to alleviate the embrittlement small amounts of zirconium were alloyed to a solid solution of Mo-1.5Si alloy. Two Mo-based alloys, namely Mo-1.5Si and Mo-1.5Si-1Zr, were investigated by the complementary high-resolution methods transmission electron microscopy and atom probe tomography. The Mo-1.5Si alloy shows a polycrystalline structure with two silicon-rich intermetallic phases Mo(5)Si(3) and Mo(3)Si located at the grain boundaries and within the grains. In addition, small clusters with up to 10 at% Si were found within the molybdenum solid solution. Addition of a small amount of zirconium to Mo-1.5Si leads to the formation of two intermetallic phases Mo(2)Zr and MoZr(2), which are located at the grain boundaries as well as within the interior of the grain. Transmission electron microscopy shows that small spherical Mo-Zr-rich precipitates (<10nm) decorate the grain boundaries. The stoichiometry of the small precipitates was identified as Mo(2)Zr by atom probe tomography. No Si-enriched small precipitates were detected in the Mo-1.5Si-1Zr alloy. It is concluded that the presence of zirconium hinders their formation.

  10. Electrically small, complementary electric-field-coupled resonator antennas

    NASA Astrophysics Data System (ADS)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka <1) composed of electric-field-coupled (ELC) and complementary electric-field-coupled (CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  11. 77 FR 56874 - Extension of Comment Period: Remedies for Small Copyright Claims: Additional Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... Copyright Office Extension of Comment Period: Remedies for Small Copyright Claims: Additional Comments AGENCY: Copyright Office, Library of Congress. ACTION: Extension of comment period. SUMMARY: The Copyright Office is extending the period of public comment in response to its August 23, 2012 Notice...

  12. Small field dosimetric characterization of a new 160-leaf MLC

    NASA Astrophysics Data System (ADS)

    Cranmer-Sargison, G.; Liu, P. Z. Y.; Weston, S.; Suchowerska, N.; Thwaites, D. I.

    2013-10-01

    The goal of this work was to perform a 6 MV small field characterization of the new Agility 160-leaf multi-leaf collimator (MLC) from Elekta. This included profile measurement analysis and central axis relative output measurements using various diode detectors and an air-core fiber optic scintillation dosimeter (FOD). Data was acquired at a depth of 10.0 cm for field sizes of 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5 cm. Three experimental data sets, comprised of five readings, were made for both the relative output and profile measurements. Average detector-specific output ratios (\\overline {OR} _{det}^{f_{clin} }) were calculated with respect to a field size of 3.0 cm and small field replacement correction factors (\\mathop k\

  13. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    SciTech Connect

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energy has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.

  14. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  15. PACKAGE PLANTS FOR SMALL SYSTEMS: A FIELD STUDY

    EPA Science Inventory

    A joint field study was conducted by AWWA and the Drinking Water Research Division of USEPA to evaluate existing small community systems that use package plant technology. Forty-eight package plant systems representing a geographic and technological cross section were evaluated t...

  16. Diamond field emitter array cathodes and possibilities for employing additive manufacturing for dielectric laser accelerating structures

    SciTech Connect

    Simakov, Evgenya Ivanovna; Andrews, Heather Lynn; Herman, Matthew Joseph; Hubbard, Kevin Mark; Weis, Eric

    2016-09-20

    These are slides for a presentation at Stanford University. The outline is as follows: Motivation: customers for compact accelerators, LANL's technologies for laser acceleration, DFEA cathodes, and additive manufacturing of micron-size structures. Among the stated conclusions are the following: preliminary study identified DFEA cathodes as promising sources for DLAs--high beam current and small emittance; additive manufacturing with Nanoscribe Professional GT can produce structures with the right scale features for a DLA operating at micron wavelengths (fabrication tolerances need to be studied, DLAs require new materials). Future plans include DLA experiment with a beam produced by the DFEA cathode with field emission, demonstration of photoemission from DFEAs, and new structures to print and test.

  17. Phase Segregation and Dynamics in Strongly Interacting Small Molecule Additive - Block Copolymer Surfactant Complexes

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Khalil, Ahmed; Henning Winter, H.; Watkins, James J.

    2012-02-01

    Rheology and Small Angle X-Ray Scattering (SAXS) were used to investigate order to disorder transitions (ODTs) and disorder to order transitions (DOTs) of poly(ethyleneoxide-b-propyleneoxide-b-ethyleneoxide) block copolymer surfactants mixed with hydrogen-bond-donating small molecule additives. A series of additives having a core benzene ring and systematic variation in the number of carboxylic or hydroxyl groups attached to the ring were of particular interest. Ordered cylindrical morphologies, confirmed using SAXS, were obtained only in a certain additive concentration region. ODTs were characterized by sudden changes in the linear viscoelastic properties in low frequency region upon increasing temperature. The locations of ODTs varied widely with hydrogen-bond-donating ability of the functional group and were found to be strongly dependent on the number of functional groups attached to the ring. For a given additive, the temperature at which ODT occur was strong function of the additive loading, whereas the linear viscoelastic properties of the ordered state were little changed upon varying additive concentration in ordered region. The location and dynamics of DOTs upon cooling were comparable to the ODTs upon heating. Studies using these model systems provide insight into the design of well-ordered hybrid materials.

  18. Comparison of inhomogeneity correction algorithms in small photon fields.

    PubMed

    Jones, Andrew O; Das, Indra J

    2005-03-01

    Algorithms such as convolution superposition, Batho, and equivalent pathlength which were originally developed and validated for conventional treatments under conditions of electronic equilibrium using relatively large fields greater than 5 x 5 cm2 are routinely employed for inhomogeneity corrections. Modern day treatments using intensity modulated radiation therapy employ small beamlets characterized by the resolution of the multileaf collimator. These beamlets, in general, do not provide electronic equilibrium even in a homogeneous medium, and these effects are exaggerated in media with inhomogenieties. Monte Carlo simulations are becoming a tool of choice in understanding the dosimetry of small photon fields as they encounter low density media. In this study, depth dose data from the Monte Carlo simulations are compared to the results of the convolution superposition, Batho, and equivalent pathlength algorithms. The central axis dose within the low-density inhomogeneity as calculated by Monte Carlo simulation and convolution superposition decreases for small field sizes whereas it increases using the Batho and equivalent pathlength algorithms. The dose perturbation factor (DPF) is defined as the ratio of dose to a point within the inhomogeneity to the same point in a homogeneous phantom. The dose correction factor is defined as the ratio of dose calculated by an algorithm at a point to the Monte Carlo derived dose at the same point, respectively. DPF is noted to be significant for small fields and low density for all algorithms. Comparisons of the algorithms with Monte Carlo simulations is reflected in the DCF, which is close to 1.0 for the convolution-superposition algorithm. The Batho and equivalent pathlength algorithms differ significantly from Monte Carlo simulation for most field sizes and densities. Convolution superposition shows better agreement with Monte Carlo data versus the Batho or equivalent pathlength corrections. As the field size increases the

  19. Oral contrast agents for small bowel MRI: comparison of different additives to optimize bowel distension.

    PubMed

    Ajaj, Waleed; Goehde, Susanne C; Schneemann, Hubert; Ruehm, Stefan G; Debatin, Jörg F; Lauenstein, Thomas C

    2004-03-01

    The purpose of this study was to compare two osmotic carbohydrate sugar alcohols (mannitol 2.5% and sorbitol 2.5%, 2.0%, and 1.5% watery solutions) in combination with 0.2% locust bean gum (LBG) for small bowel distension for MR imaging. Small bowel distension was quantified on coronal 2D TrueFISP images by measuring the diameters of 16 small bowel loops in each of 12 healthy subjects (age range 31-55 years). Additionally, the grade of small bowel distension was rated qualitatively. Patient acceptance concerning nausea, vomiting, flatulence, and diarrhea was noted for each solution, and all results were compared by a Wilcoxon test or t test, respectively. The ingestion of water combined with LBG and either 2.5% mannitol or 2.0% sorbitol showed the best distension of the small bowel. The lowest side effect rate was observed following ingestion of sorbitol in a concentration of 2.0 and 1.5%. Based on these data, we recommend a combination of LBG and 2% sorbitol use for optimal bowel distension and minimal side effects resulting in enhanced patient acceptance.

  20. High-field small animal magnetic resonance oncology studies

    NASA Astrophysics Data System (ADS)

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, chemical exchange saturation transfer imaging and hyperpolarized 13C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.

  1. Plastic-Syringe Induced Silicone Contamination in Organic Photvoltaic Fabrication: Implications for Small-Volume Additives

    SciTech Connect

    Carr, John A.; Nalwa, Kanwar S.; Mahadevapuram, Rakesh; Chen, Yuqing; Anderegg, James; Chaudhary, Sumit

    2012-05-15

    Herein, the implications of silicone contamination found in solution-processed conjugated polymer solar cells are explored. Similar to a previous work based on molecular cells, we find this contamination as a result of the use of plastic syringes during fabrication. However, in contrast to the molecular case, we find that glass-syringe fabricated devices give superior performance than plastic-syringe fabricated devices in poly(3-hexylthiophene)-based cells. We find that the unintentional silicone addition alters the solution’s wettability, which translates to a thinner, less absorbent film on spinning. With many groups studying the effects of small-volume additives, this work should be closely considered as many of these additives may also directly alter the solutions’ wettability, or the amount of silicone dissolved off the plastic syringes, or both. Thereby, film thickness, which generally is not reported in detail, can vary significantly from device to device.

  2. Plastic-syringe induced silicone contamination in organic photovoltaic fabrication: implications for small-volume additives.

    PubMed

    Carr, John A; Nalwa, Kanwar S; Mahadevapuram, Rakesh; Chen, Yuqing; Anderegg, James; Chaudhary, Sumit

    2012-06-27

    Herein, the implications of silicone contamination found in solution-processed conjugated polymer solar cells are explored. Similar to a previous work based on molecular cells, we find this contamination as a result of the use of plastic syringes during fabrication. However, in contrast to the molecular case, we find that glass-syringe fabricated devices give superior performance than plastic-syringe fabricated devices in poly(3-hexylthiophene)-based cells. We find that the unintentional silicone addition alters the solution's wettability, which translates to a thinner, less absorbent film on spinning. With many groups studying the effects of small-volume additives, this work should be closely considered as many of these additives may also directly alter the solutions' wettability, or the amount of silicone dissolved off the plastic syringes, or both. Thereby, film thickness, which generally is not reported in detail, can vary significantly from device to device.

  3. Cosmic microwave background observables of small field models of inflation

    SciTech Connect

    Ben-Dayan, Ido; Brustein, Ram E-mail: ramyb@bgu.ac.il

    2010-09-01

    We construct a class of single small field models of inflation that can predict, contrary to popular wisdom, an observable gravitational wave signal in the cosmic microwave background anisotropies. The spectral index, its running, the tensor to scalar ratio and the number of e-folds can cover all the parameter space currently allowed by cosmological observations. A unique feature of models in this class is their ability to predict a negative spectral index running in accordance with recent cosmic microwave background observations. We discuss the new class of models from an effective field theory perspective and show that if the dimensionless trilinear coupling is small, as required for consistency, then the observed spectral index running implies a high scale of inflation and hence an observable gravitational wave signal. All the models share a distinct prediction of higher power at smaller scales, making them easy targets for detection.

  4. Influence of small Pt additions on Al/sub 2/O/sub 3/ scale adherence

    SciTech Connect

    Allam, I.M.; Akuezue, H.C.; Whittle, D.P.

    1980-01-01

    The effects of small Pt additions (1 or 3 wt %) on the oxidation behavior of Co-10Cr-11Al and a similar alloy containing Hf have been studied. An intermetallic phase was present in the alloy containing Hf and Pt but not in that containing Pt alone. The size and distribution of the intermetallic was comparable to that of similar alloys containing oxide dispersions produced by a controlled internal oxidation treatment. As a consequence it promoted the formation of inwardly growing Al/sub 2/O/sub 3/ pegs that helped key the surface scale to the substrate and improve the scale-metal adhesion in both isothermal and cyclic oxidation tests. The improvement in overall oxidation resistance relative to an addition-free alloy was considerable, and similar to that of the best oxide dispersion-containing alloys.

  5. Morphology-Controlled High-Efficiency Small Molecule Organic Solar Cells without Additive Solvent Treatment

    PubMed Central

    Kim, Il Ku; Jo, Jun Hyung; Yun, Jung-Ho

    2016-01-01

    This paper focuses on nano-morphology-controlled small-molecule organic solar cells without solvent treatment for high power-conversion efficiencies (PCEs). The maximum high PCE reaches up to 7.22% with a bulk-heterojunction (BHJ) thickness of 320 nm. This high efficiency was obtained by eliminating solvent additives such as 1,8-diiodooctane (DIO) to find an alternative way to control the domain sizes in the BHJ layer. Furthermore, the generalized transfer matrix method (GTMM) analysis has been applied to confirm the effects of applying a different thickness of BHJs for organic solar cells from 100 to 320 nm, respectively. Finally, the study showed an alternative way to achieve high PCE organic solar cells without additive solvent treatments to control the morphology of the bulk-heterojunction.

  6. Small animal electric and magnetic field exposure systems. Final report

    SciTech Connect

    Patterson, R.C.; Dietrich, F.M.

    1993-10-01

    Laboratory evaluation of electric and magnetic fields (EMF) and cancer in animals requires exposure of relatively large numbers of animals, usually rats or mice, to 60-Hz fields under very well controlled conditions for periods of up to two years. This report describes two exposure systems, the first of which is based on modifications of an existing electric field exposure system to include magnetic field exposure capability. In this system, each module houses 576--768 mice, which can be exposed to electric field levels of up to 100 kV/m and magnetic field levels of up to 10 Gauss. When a module was operated at 10 Gauss, measured levels of noise and vibration fell substantially below the detection threshold for humans. Moreover, temperature rise in the coils did not exceed 12{degrees}C at the 10 Gauss level. Specifications and test results for the second system, which provides magnetic field exposure capability only, are similar, except that each module houses 624--780 mice. After installation of the second system at the West Los Angeles Veterans Medical Center in Los Angeles, California, additional results were obtained. This report provides a complete description of the engineering design, specifications, and test results for the completed systems.

  7. Physical electrostatics of small field emitter arrays/clusters

    NASA Astrophysics Data System (ADS)

    Forbes, Richard G.

    2016-08-01

    This paper aims to improve qualitative understanding of electrostatic influences on apex field enhancement factors (AFEFs) for small field emitter arrays/clusters. Using the "floating sphere at emitter-plate potential" (FSEPP) model, it re-examines the electrostatics and mathematics of three simple systems of identical post-like emitters. For the isolated emitter, various approaches are noted. An adequate approximation is to consider only the effects of sphere charges and (for significantly separated emitters) image charges. For the 2-emitter system, formulas are found for charge-transfer ("charge-blunting") effects and neighbor-field effects, for widely spaced and for "sufficiently closely spaced" emitters. Mutual charge-blunting is always the dominant effect, with a related (negative) fractional AFEF-change δtwo. For sufficiently small emitter spacing c, |δtwo| varies approximately as 1/c; for large spacing, |δtwo| decreases as 1/c3. In a 3-emitter equispaced linear array, differential charge-blunting and differential neighbor-field effects occur, but differential charge-blunting effects are dominant, and cause the "exposed" outer emitters to have higher AFEF (γ0) than the central emitter (γ1). Formulas are found for the exposure ratio Ξ = γ0/γ1, for large and for sufficiently small separations. The FSEPP model for an isolated emitter has accuracy around 30%. Line-charge models (LCMs) are an alternative, but an apparent difficulty with recent LCM implementations is identified. Better descriptions of array electrostatics may involve developing good fitting equations for AFEFs derived from accurate numerical solution of Laplace's equation, perhaps with equation form(s) guided qualitatively by FSEPP-model results. In existing fitting formulas, the AFEF-reduction decreases exponentially as c increases, which is different from the FSEPP-model formulas. This discrepancy needs to be investigated, using systematic Laplace-based simulations and appropriate results

  8. Rapid parameterization of small molecules using the Force Field Toolkit

    PubMed Central

    Mayne, Christopher G.; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C.

    2013-01-01

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics (MD) simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, e.g., GAFF and CGenFF, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, set up multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). PMID:24000174

  9. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  10. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  11. Microcalorimetry: Wide Temperature Range, High Field, Small Sample Measurements

    NASA Astrophysics Data System (ADS)

    Hellman, Frances

    2000-03-01

    We have used Si micromachining techniques to fabricate devices for measuring specific heat or other calorimetric signals from microgram-quantity samples over a temperature range from 1 to 900K in magnetic fields to date up to 8T. The devices are based on a relatively robust silicon nitride membrane with thin film heaters and thermometers. Different types of thermometers are used for different purposes and in different temperature ranges. These devices are particularly useful for thin film samples (typically 200-400 nm thick at present) deposited directly onto the membrane through a Si micromachined evaporation mask. They have also been used for small single crystal samples attached by conducting grease or solder, and for powder samples dissolved in a solvent and dropped onto devices. The measurement technique used (relaxation method) is particularly suited to high field measurements because the thermal conductance can be measured once in zero field and is field independent, while the time constant of the relaxation does not depend on thermometer calibration. Present development efforts include designs which show promise for time-resolved calorimetry measurements of biological samples in small amounts of water. Samples measured to date include amorphous magnetic thin films (a-TbFe2 and giant negative magnetoresistance a-Gd-Si alloys), empty and filled fullerenes (C_60, K_3C_60, C_82, La@C_82, C_84, and Sc_2@C_84), single crystal manganites (La_1-xSr_xMnO_3), antiferromagnetic multilayers (NiO/CoO, NiO/MgO, and CoO/MgO), and nanoparticle magnetic materials (CoO in a Ag matrix).

  12. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  13. SU-D-304-03: Small Field Proton Dosimetry Using MicroDiamond and Gafchromic Film

    SciTech Connect

    Andersen, A; Das, I; Coutinho, L

    2015-06-15

    Purpose: Certain dosimetric characteristics continue to make proton beam therapy an appealing modality for cancer treatment. The proton Bragg peak allows for conformal radiation dose delivery to the target while reducing dose to normal tissue and organs. As field sizes become very small the benefit of the Bragg peak is diminished due to loss of transverse equilibrium along the central beam axis. Furthermore, aperture scattering contributes additional dose along the central axis. These factors warrant the need for accurate small field dosimetry. In this study small field dosimetry was performed using two different methods. Methods: Small field dosimetry measurements were performed using a PTW microdiamond detector and Gafchromic EBT2 film for aperture sizes ranging from 0.5cm to 10cm and a proton range in water of 10cm to 27cm. The measurements were analyzed and then compared to each other and to reference dosimetry data acquired with a Markus chamber. Results: A decrease in normalized output is observed at small field sizes and at larger ranges in water using both measurement methods. Also, a large variation is observed between the output measurements by microdiamond and film at very small field sizes. At the smallest aperture, normalized output ranged from 0.16 to 0.72 and the percent difference between both measurement methods ranged from 36% to 70% depending on proton range. At field sizes above 5cm the film and microdiamond agree within 3%. Conclusion: Although both measurement methods exhibit a general decrease in output factor at small field sizes, dosimetric measurements for small fields using these two methods can vary significantly. Dosimetry under standard conditions is not sufficient to correctly model the dose distributions and outputs factors for small field sizes, additional small field measurements should be performed.

  14. One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao; Hong, Zirou; Li, Gang; Chen, Qi; Zhou, Huanping; Yang, Yang

    2015-01-01

    In the current study, the perovskite absorber (CH3NH3PbI3) is processed via one-step deposition employing the small molecule additive, BmPyPhB, which can be dissolved in dimethylformamide along with precursors. Here, 1,3-Bis[3,5-di(pyridin-3-yl)phenyl]benzene (BmPyPhB) functions as the morphology controller to introduce an intermediate phase during perovskite film growth, which allows well-defined and precrystallized domains formed before the annealing treatment. Furthermore, a chloroform solvent wash procedure is applied afterward to remove BmPyPhB from perovskite without damaging the predetermined morphology. Thus, postannealing as low as 100°C for 5 min can achieve the optimal power conversion efficiency of 8% in a planar-structured inverted solar cell.

  15. Separation and indirect detection of small-chain peptides using chromophoric mobile phase additives.

    PubMed

    Yuan, D X; Pietrzyk, D J

    1990-06-22

    Ruthenium(II) 1,10-phenanthroline, Ru(phen)3(2+), and ruthenium(II) 2,2'-bipyridyl, Ru(bipy)3(2+), salts were evaluated as mobile phase additives for the liquid chromatographic separation of small-chain peptides on a polystyrene-divinylbenzene copolymeric (Hamilton PRP-1) stationary phase. In a basic mobile phase peptides are anions, and retention, resolution and detection occur because of the interactions between the stationary phase, the RuII complex and the peptide anion. Since the RuII complex concentration changes in the analyte band relative to the background eluent RuII complex concentration, the peptide can be detected by indirect photometric detection using the wavelength where the RuII complex absorbs. Peptide analyte peaks may be positive or negative depending on the counter-anion and its concentration. Small-chain peptides that do not contain chromophoric side-chains are detected without derivatization at about 0.1 nmol injected at a 3:1 signal-to-noise ratio. Factors that affect retention, resolution and indirect photometric detection are the RuII complex, its mobile phase concentration, mobile phase pH and solvent composition, and the type and concentration of the mobile phase counter-anion and/or buffer anion.

  16. SU-E-T-432: Field Size Influence On the Electron and Photon Spectra Within Small MV Field Detectors

    SciTech Connect

    Benmakhlouf, H; Andreo, P

    2015-06-15

    Purpose: To investigate the influence of photon field size on the electron and photon fluence spectra in the active volume of small field detectors. Methods: The PENELOPE MC system based usercode PenEasy was used to calculate the material influence on the spectra by scoring the differential fluence in inserts of silicon, carbon, phosphorus and aluminium having 3 mm diameter and height. The spectra were then calculated inside the active volume of eleven detectors (ion chambers and solid-state detectors) whose geometry was simulated with great detail. The inserts/detectors were placed at 10 cm depth in a 30 cm x 30 cm x 30 cm water phantom and irradiated with 2.5 MeV photons and Varian Clinac 6 MV beams of small, medium and large size. Results: For all configurations, photon spectra in the scoring volume were similar to that in a small water volume except for additional characteristic x-ray peaks resulting from the material itself and from the materials surrounding the detectors (i.e. high-Z shielding the silicon). Electron fluence calculated in the inserts were up to 60% larger than in water; the difference increased with material density and decreasing field size. MC-calculated doses were compared to analytically determined collision kerma and restricted cema (cut-off=15keV). For the inserts, with large and medium fields K-col agreed with MC-dose, but K-col overestimated the dose for small fields due to lack of lateral CPE. For the detectors, up to 15% differences between K-col and the MC-dose were found. For all configurations the C-delta and MC-dose agreed within ±2%. Conclusion: The most relevant findings were that shielding affects substantially the photon spectra and material conditions the electron spectra, their field size dependence varying with the geometry configuration. These affect the values of factors entering into relative dosimetry.

  17. Radiation of nitrogen molecules in a dielectric barrier discharge with small additives of chlorine and bromine

    SciTech Connect

    Avtaeva, S. V.; Avdeev, S. M.; Sosnin, E. A.

    2010-08-15

    Spectral and energy characteristics of nitrogen molecule radiation in dielectric barrier discharges in Ar-N{sub 2}, Ar-N{sub 2}-Cl{sub 2}, and Ar-N{sub 2}-Br{sub 2} mixtures were investigated experimentally. Small additives of molecular chlorine or bromine to an Ar-N{sub 2} mixture are found to increase the radiation intensity of the second positive system of nitrogen. The conditions at which the radiation spectrum predominantly consists of vibronic bands of this system are determined. Using a numerical model of plasmachemical processes, it is shown that, at electron temperatures typical of gas discharges (2-4 eV), a minor additive of molecular chlorine to an Ar-N{sub 2} mixture leads to an increase in the concentrations of electrons, positive ions, and metastable argon atoms. In turn, collisional energy transfer from metastable argon atoms to nitrogen molecules results in the excitation of the N{sub 2}(C{sup 3{Pi}}{sub u}) state.

  18. Transport of sulfonamide antibiotics in small fields during monsoon season

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Huwe, B.; Kolb, A.; Tenhunen, J.

    2012-04-01

    Transport and fate of 3 sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) were studied in small agricultural land during monsoon period. The experiment has been conducted in 2 typical sandy loam potato fields of South Korea after application of the veterinary antibiotics and bromide. Precipitation was measured by AWS (Automatic Weather Station) near the fields during the whole monsoon season. Runoff generation was estimated by multislot divisors in combination with pressure sensor. Concentration of the target antibiotics and the conservative tracer in runoff, soil-water and soil was determined using HPLC-MS-MS and Br selected electrode. Transport simulation has been performed with Hydrus-2D program which can consider soil characteristics, climate condition, adsorption/desorption and degradation. Results from the measurements and modeling focus on the role of heavy rainfall, of related the ratio of runoff and infiltration in terms of the selected antibiotics distribution and fate. Bromide on topsoil was moved into soil as increasing rainfall loading. On the contrary, the sulfonamides were relatively retarded in upper soil layer owing to adsorption onto soil particles. Different patterns of runoff were observed, and slope and rain intensity was representative factor in this study. Distribution of target pharmaceuticals was strongly dependent on constitution of furrow and ridge in the agricultural fields. Modeling results positively matched with background studies that describe physico-chemical properties of the sulfonamides, interaction between soil and the antibiotic group, solute transport through vadose zone and runoff induction by storm events.

  19. Mass spectra in N=1 SQCD with additional colorless but flavored fields

    NASA Astrophysics Data System (ADS)

    Chernyak, Victor L.

    2017-01-01

    Considered is the N=1 supersymmetric QCD-like Φ -theory with SU(N_c) colors and 0< N_F<2N_c flavors of light quarks Q^i_a,{overline{Q}}^{ a}_j with equal small masses. In addition to quarks and gluons of the standard N=1 SQCD, it includes N^2_F colorless but flavored fields Φ ij, with the large mass parameter μ _{Φ } ≫ Λ _Q (Λ _Q is the scale factor of the gauge coupling), interacting with quarks through the Yukawa coupling in the superpotential. The mass spectra of this (direct) Φ -theory are first directly calculated in all vacua with the unbroken or spontaneously broken flavor symmetry U(N_F)→ U(n_1)× U(n_2) at 0fields Φ `turn back' and there appear two additional generations of light Φ -particles with small masses μ ^pole(Φ )≪ Λ _Q. Also considered is the X-theory which is the N=2 SQCD with SU(N_c) colors and 0< N_F<2N_c flavors of light quarks, broken down to N=1 by the large mass

  20. Detecting Small Changes and Additional Peptides in the Canine Parvovirus Capsid Structure▿

    PubMed Central

    Nelson, Christian D. S.; Minkkinen, Eveliina; Bergkvist, Magnus; Hoelzer, Karin; Fisher, Mathew; Bothner, Brian; Parrish, Colin R.

    2008-01-01

    Parvovirus capsids are assembled from multiple forms of a single protein and are quite stable structurally. However, in order to infect cells, conformational plasticity of the capsid is required and this likely involves the exposure of structures that are buried within the structural models. The presence of functional asymmetry in the otherwise icosahedral capsid has also been proposed. Here we examined the protein composition of canine parvovirus capsids and evaluated their structural variation and permeability by protease sensitivity, spectrofluorometry, and negative staining electron microscopy. Additional protein forms identified included an apparent smaller variant of the virus protein 1 (VP1) and a small proportion of a cleaved form of VP2. Only a small percentage of the proteins in intact capsids were cleaved by any of the proteases tested. The capsid susceptibility to proteolysis varied with temperature but new cleavages were not revealed. No global change in the capsid structure was observed by analysis of Trp fluorescence when capsids were heated between 40°C and 60°C. However, increased polarity of empty capsids was indicated by bis-ANS binding, something not seen for DNA-containing capsids. Removal of calcium with EGTA or exposure to pHs as low as 5.0 had little effect on the structure, but at pH 4.0 changes were revealed by proteinase K digestion. Exposure of viral DNA to the external environment started above 50°C. Some negative stains showed increased permeability of empty capsids at higher temperatures, but no effects were seen after EGTA treatment. PMID:18701590

  1. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.

    PubMed

    Harder, Edward; Damm, Wolfgang; Maple, Jon; Wu, Chuanjie; Reboul, Mark; Xiang, Jin Yu; Wang, Lingle; Lupyan, Dmitry; Dahlgren, Markus K; Knight, Jennifer L; Kaus, Joseph W; Cerutti, David S; Krilov, Goran; Jorgensen, William L; Abel, Robert; Friesner, Richard A

    2016-01-12

    The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.

  2. The dynamics of small molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Posthumus, J. H.

    2004-05-01

    In the past decade, the understanding of the dynamics of small molecules in intense laser fields has advanced enormously. At the same time, the technology of ultra-short pulsed lasers has equally progressed to such an extent that femtosecond lasers are now widely available. This review is written from an experimentalist's point of view and begins by discussing the value of this research and defining the meaning of the word 'intense'. It continues with describing the Ti : sapphire laser, including topics such as pulse compression, chirped pulse amplification, optical parametric amplification, laser-pulse diagnostics and the absolute phase. Further aspects include focusing, the focal volume effect and space charge. The discussion of physics begins with the Keldysh parameter and the three regimes of ionization, i.e. multi-photon, tunnelling and over-the-barrier. Direct-double ionization (non-sequential ionization), high-harmonic generation, above-threshold ionization and attosecond pulses are briefly mentioned. Subsequently, a theoretical calculation, which solves the time-dependent Schrödinger equation, is compared with an experimental result. The dynamics of H_{2}^{ + } in an intense laser field is interpreted in terms of bond-softening, vibrational trapping (bond-hardening), below-threshold dissociation and laser-induced alignment of the molecular axis. The final section discusses the modified Franck-Condon principle, enhanced ionization at critical distances and Coulomb explosion of diatomic and triatomic molecules.

  3. MO-D-BRD-02: In Memoriam of Bengt Bjarngard: SBRT II: Small Field Dosimetry - TG155

    SciTech Connect

    Das, I; Reft, C

    2014-06-15

    Specialized radiation treatment such as SRS/SRT. SBRT, IMRT, VMAT, Tomotherapy, CyberKnife and Gamma Knife use small fields or combination of small fields where dosimetry is challenging and uncertain due to non-equilibrium conditions such as longitudinal and lateral disequilibrium. Additionally the primary photon fluence is greatly affected by the obstruction of the source size by the jaws creating a large dose gradient across the field. Electronic equilibrium is a phenomenon associated with the range of secondary particles which depend on the beam energy, photon spectrum and the composition of the medium. Additionally, the finite size of detectors creates volume averaging and fluence perturbations especially in small fields. The IAEA/AAPM has provided a frame work for non-compliant reference dosimetry in small fields1. The AAPM TG-1552 has adopted this frame work to provide guidelines in relative dosimetry. This course provides the insight of TG-155 that defines small field, provides recommendations for suitable detectors and associated correction factors to convert reading to dose. Recommendations of a good working practice for relative dosimetry measurements (PDD, TMR, output factor, etc.) and dose calculations based on the new formulation is are elaborated. It also discusses beam modeling and dose calculations as a critical step in clinical utilization of small field radiotherapy. Small errors in beam data, approximations in dose algorithms, or misaligned of detectors and field settings can propagate into large errors in planned and delivered dose. The modeling and treatment planning aspects of small field dosimetry are reviewed with emphasis on the most critical parts for ensuring accurate and safe radiation therapy. Discussion on k(fmsr, fclin) for commercially available detectors are also provided.1 P. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjall, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich and S. Vatnitsky, “A new

  4. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    DOEpatents

    Rosocha, Louis A.; Ferreri, Vincent; Kim, Yongho

    2009-04-21

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  5. Small field detector correction factors: effects of the flattening filter for Elekta and Varian linear accelerators.

    PubMed

    Tyler, Madelaine K; Liu, Paul Z Y; Lee, Christopher; McKenzie, David R; Suchowerska, Natalka

    2016-05-08

    Flattening filter-free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization cham-bers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ± 0.9% across all field sizes measured. Solid-state detectors showed an increased dependence on the flattening filter of up to ± 1.6%. Measured diode response was within ± 1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ± 1.6% is accepted.

  6. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    PubMed

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  7. Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.

    PubMed

    Law, S L; Newman, J H; Ptak, F L

    1990-02-01

    A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.

  8. Addition of Digital Breast Tomosynthesis to Full-Field Digital Mammography in the Diagnostic Setting: Additional Value and Cancer Detectability

    PubMed Central

    Seo, Mirinae; Kim, Sun Ah; Kim, Won Hwa; Lim, Ji He; Lee, Su Hyun; Bae, Min Sun; Koo, Hye Ryoung; Cho, Nariya; Moon, Woo Kyung

    2016-01-01

    Purpose The purpose of this study was to assess the value of adding digital breast tomosynthesis (DBT) to full-field digital mammography (FFDM) in the diagnostic workup of breast cancer and to determine which lesion variables affect cancer detectability in the combined modality. Methods Between March and May 2012, paired FFDM and DBT images were obtained from 203 women as part of a diagnostic workup for breast cancer. Images from FFDM alone, DBT alone, and DBT combined with FFDM were reviewed in separate sessions by six blinded readers. Jackknife alternative free-response receiver operating characteristic (JAFROC) figure of merit (FOM), sensitivity, and specificity were compared between the modalities. Lesion characteristics affecting the cancer detection rate when using the combined modality were also analyzed. Results Among the 203 women, 126 women had a total of 129 malignancies and 77 women had total of 77 benign lesions. The overall JAFROC FOM of the combined modality was higher than that of FFDM alone (0.827 vs. 0.775, p<0.001) and that of DBT alone was higher than that of FFDM alone (0.807 vs. 0.775, p=0.027). The overall sensitivity of the combined modality was higher than that of FFDM alone (80.0% vs. 73.2%, p<0.001) and that of DBT alone was higher than that of FFDM alone (78.3% vs. 73.2%, p=0.007). Compared to FFDM alone, the combined modality detected an additional 48 cancers. Using the combined modality, the presence of masses or microcalcifications was significantly associated with the cancer detection rate (p<0.001). Conclusion The combination of DBT with FFDM results in a higher diagnostic yield than FFDM alone. Additionally, DBT alone performs better than FFDM alone. However, even when DBT is combined with FFDM, breast cancers with no discernible masses and those lacking calcifications are difficult to detect. PMID:28053633

  9. Limitations of analytical dose calculations for small field proton radiosurgery

    NASA Astrophysics Data System (ADS)

    Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A.; Paganetti, Harald; Schuemann, Jan

    2017-01-01

    The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range  +  1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to

  10. [Risk hidden in the small print? : Some food additives may trigger pseudoallergic reactions].

    PubMed

    Zuberbier, Torsten; Hengstenberg, Claudine

    2016-06-01

    Some food additives may trigger pseudoallergenic reactions. However, the prevalence of such an overreaction is - despite the increasing number of food additives - rather low in the general population. The most common triggers of pseudoallergic reactions to food are naturally occurring ingredients. However, symptoms in patients with chronic urticaria should improve significantly on a pseudoallergen-free diet. In addition, some studies indicate that certain food additives may also have an impact on the symptoms of patients with neurodermatitis and asthma.

  11. Solar Magnetic Carpet II: Coronal Interactions of Small-Scale Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.

    2012-05-01

    This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objectives are to study magnetic energy build-up, storage and dissipation as a result of emergence, cancellation, and flyby of these magnetic elements. In the future these interactions will be the basic building blocks of more complicated simulations involving hundreds of elements. Each interaction is simulated in the presence of an overlying uniform magnetic field, which lies at various orientations with respect to the evolving magnetic elements. For these three small-scale interactions, the free energy stored in the field at the end of the simulation ranges from 0.2 - 2.1×1026 ergs, whilst the total energy dissipated ranges from 1.3 - 6.3×1026 ergs. For all cases, a stronger overlying field results in higher energy storage and dissipation. For the cancellation and emergence simulations, motion perpendicular to the overlying field results in the highest values. For the flyby simulations, motion parallel to the overlying field gives the highest values. In all cases, the free energy built up is sufficient to explain small-scale phenomena such as X-ray bright points or nanoflares. In addition, if scaled for the correct number of magnetic elements for the volume considered, the energy continually dissipated provides a significant fraction of the quiet Sun coronal heating budget.

  12. Toward Additive-Free Small-Molecule Organic Solar Cells: Roles of the Donor Crystallization Pathway and Dynamics.

    PubMed

    Abdelsamie, Maged; Treat, Neil D; Zhao, Kui; McDowell, Caitlin; Burgers, Mark A; Li, Ruipeng; Smilgies, Detlef-M; Stingelin, Natalie; Bazan, Guillermo C; Amassian, Aram

    2015-12-02

    The ease with which small-molecule donors crystallize during solution processing is directly linked to the need for solvent additives. Donor molecules that get trapped in disordered (H1) or liquid crystalline (T1) mesophases require additive processing to promote crystallization, phase separation, and efficient light harvesting. A donor material (X2) that crystallizes directly from solution yields additive-free solar cells with an efficiency of 7.6%.

  13. Diamond field emitter array cathodes and possibilities of employing additive manufacturing for dielectric laser accelerating structures

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric

    2017-03-01

    Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.

  14. Additions to the reptile fauna of Paraguay with notes on a small herpetological collection from Amambay

    USGS Publications Warehouse

    McDiarmid, Roy W.; Foster, Mercedes S.

    1987-01-01

    Specimens in a small collections of reptiles and amphibians from Parque Nacional Cerro Cora, Departamento Amambay, Paraguay are reported. Included are the first records of Bachia bresslaui, Phrynops gibbus, and Ololygon fuscomarginata for that country. Brief notes on morphology, distribution, and natural history of species collected are included. The systematic status of Phrynops tuberculatus vanderhaegei is evaluated.

  15. Langevin simulation of scalar fields: Additive and multiplicative noises and lattice renormalization

    NASA Astrophysics Data System (ADS)

    Cassol-Seewald, N. C.; Farias, R. L. S.; Fraga, E. S.; Krein, G.; Ramos, Rudnei O.

    2012-08-01

    We consider the Langevin lattice dynamics for a spontaneously broken λϕ4 scalar field theory where both additive and multiplicative noise terms are incorporated. The lattice renormalization for the corresponding stochastic Ginzburg-Landau-Langevin and the subtleties related to the multiplicative noise are investigated.

  16. Additional Enhancement of Electric Field in Surface-Enhanced Raman Scattering due to Fresnel Mechanism

    NASA Astrophysics Data System (ADS)

    Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.

    2013-08-01

    Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for ``far-side'' excitation than ``near-side''. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface.

  17. Laboratory and Field Evaluation of Fluid-Loss Additive Systems Used in the Williston Basin

    SciTech Connect

    Woo, G.T.; Cramer, D.D.

    1984-05-01

    Many formations in the Williston Basin are naturally fractured limestones and dolomites. Naturally fractured reservoirs are typically the most difficult to maintain control of fracturing fluid leakoff. Treatments in the Mission Canyon, Midale and Ratcliffe formations of the Madison Group have had high fracturing fluid leakoffs. Polymer/inert solids mixtures, 100 mesh sand, silica flour and oil-soluble resins have been used in an attempt to control fluid loss. These additives have not consistently solved the problem of excessive fluid loss, and frequent screenouts, gel-outs or pressure-outs have resulted. A laboratory simulation of naturally fractured reservoir leakoff was employed to evaluate the efficiency of ten fluid loss additive systems. Tapered-slot fluid loss tests and proppant pack damage tests were performed using each additive system. Five fluid loss additive systems were identified which performed well in both tests. This paper also summarizes the results of a field evaluation of nine of the original ten fluid loss additive systems used in 70 wells in the Madison Group. Two fluid loss additive systems, a mixture of silica flour and 100 mesh sand, and a mixture of oil-soluble resin (nominal 250 mesh) and 100 mesh sand, performed well in the laboratory tests and had a high success rate in the field.

  18. Matching of additive and polarizable force fields for multiscale condensed phase simulations

    PubMed Central

    Baker, Christopher M.; Best, Robert B.

    2013-01-01

    Inclusion of electronic polarization effects is one of the key aspects in which the accuracy of current biomolecular force fields may be improved. The principal drawback of such approaches is the computational cost, which typically ranges from 3 – 10 times that of the equivalent additive model, and may be greater for more sophisticated treatments of polarization or other many-body effects. Here, we present a multiscale approach which may be used to enhance the sampling in simulations with polarizable models, by using the additive model as a tool to explore configuration space. We use a method based on information theory to determine the charges for an additive model that has optimal overlap with the polarizable one, and we demonstrate the feasibility of enhancing sampling via a hybrid replica exchange scheme for several model systems. An additional advantage is that, in the process, we obtain a systematic method for deriving charges for an additive model that will be the natural complement to its polarizable parent. The additive charges are found by an effective coarse-graining of the polarizable force field, rather than by ad hoc procedures. PMID:23997691

  19. TU-F-BRE-05: Experimental Determination of K Factor in Small Field Dosimetry

    SciTech Connect

    Das, I; Akino, Y; Francescon, P

    2014-06-15

    Purpose: Small-field dosimetry is challenging due to charged-particle disequilibrium, source occlusion and more importantly finite size of detectors. IAEA/AAPM has published approach to convert detector readings to dose by k factor. Manufacturers have been trying to provide various types of micro-detectors that could be used in small fields. However k factors depends on detector perturbations and are derived using Monte Carlo simulation. PTW has introduced a microDiamond for small-field dosimetry. An experimental approach is presented to derive the k factor for this detector. Methods: PTW microDiamond is a small volume detector with 1.1 mm radius and 1.0 micron thick synthetic diamond. Output factors were measured from 1×1cm2 to 12×12 cm2 on a Varian machine at various depths using various micro-detectors with published k factors. Dose is calculated as reading * K. Assuming k factor is accurate, output factor should be identical with every micro-detectors. Hence published k values (Francescon et al Med Phys 35, 504-513,2008) were used to covert readings and then output factors were computed. Based on the converged curve from other detectors, k factor for microDiamond was computed versus field size. Results: Traditional output factors as ratio of readings normalized to 10×10 cm2 differ significantly for micro-detectors for fields smaller than 3×3 cm2 which are now being used extensively. When readings are converted to dose, the output factor is independent of detector. Based on this method, k factor for microDiamond was estimated to be nearly constant 0.993±0.007 over varied field sizes. Conclusion: Our method provides a unique opportunity to determine the k factor for any unknown detector. It is shown that even though k factor depends on machine type due to focal spot, however for fields ≥1×1 cm2 this method provides accurate evaluation of k factor. Additionally microDiamond could be used with assumption that k factor is nearly unity.

  20. Effect of Ozone Addition on Combustion Efficiency of Hydrogen: Liquid-Oxygen Propellant in Small Rockets

    NASA Technical Reports Server (NTRS)

    Miller, Riley O.; Brown, Dwight D.

    1959-01-01

    An experimental study shows that 2 percent by weight ozone in oxygen has little effect on overall reactivity for a range of oxidant-fuel weight ratios from 1 to 6. This conclusion is based on characteristic-velocity measurements in 200-pound-thrust chambers at a pressure of 300 pounds per square inch absolute with low-efficiency injectors. The presence of 9 percent ozone in oxygen also did not affect performance in an efficient chamber. Explosions were encountered when equipment or procedure permitted ozone to concentrate locally. These experiments indicate that even small amounts of ozone in oxygen can cause operational problems.

  1. Dithienobenzodithiophene-Based Small Molecule Organic Solar Cells with over 7% Efficiency via Additive- and Thermal-Annealing-Free Processing.

    PubMed

    Song, Hyeng Gun; Kim, Yu Jin; Lee, Ji Sang; Kim, Yun-Hi; Park, Chan Eon; Kwon, Soon-Ki

    2016-12-21

    Here we introduce a novel small molecule based on dithienobenzodithiophene and rhodanine, DTBDT-Rho, developed to study the effect of the rhodanine substitutuent on small molecule bulk heterojunction (BHJ) solar cells. DTBDT-Rho possesses distinct crystalline characteristics, sufficient solubility in chlorinated solvents, and broad absorption properties. Therefore, solution-processed BHJ photovoltaic cells made with DTBDT-Rho:PC71BM blends showed an extremely high power conversion efficiency (PCE; 7.10%); notably, this PCE value was obtained without the use of additives or thermal treatments. To our knowledge, the PCE over 7% is a significantly powerful value among rhodanine-based small molecule BHJ solar cells without additives or thermal treatments.

  2. Investigation of mechanical properties of masterbatches and composites with small additions of CNTs

    NASA Astrophysics Data System (ADS)

    Burmistrov, I. N.; Yudintseva, T. I.; Ilinykh, I. A.; Khaydarov, B. B.; Mazov, I. N.; Anshin, S. M.; Kuznetsov, D. V.

    2016-01-01

    The present paper investigated physical and mechanical properties of the nanotube masterbatches and the polymer composites with low contents of carbon nanotubes (CNTs), which were obtained by diluting masterbatches. Ethylene-octene copolymer was used as the binder for the masterbatches, which provides the elasticity of the material at a content 20 wt% of CNT. Masterbatches were obtained with a 2-roller mixer, and their additive to polypropylene was carried out on a single screw injection molding machine. Strength properties of ethylene-octene copolymer increased when additing CNTs in an amount of 5-20 wt%. When the concentration of CNT in masterbatches is reduced to 0.01-0.1 wt% its strength characteristics increased up to 4-18%. The most effective strengthening of polypropylene was observed with the content of CNTs 0.1 wt%.

  3. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene.

    PubMed

    Khan, Umar; May, Peter; Porwal, Harshit; Nawaz, Khalid; Coleman, Jonathan N

    2013-02-01

    We have prepared composites of polyvinyl acetate (PVAc) reinforced with solution exfoliated graphene. We observe a 50% increase in stiffness and a 100% increase in tensile strength on addition of 0.1 vol % graphene compared to the pristine polymer. As PVAc is commonly used commercially as a glue, we have tested such composites as adhesives. The adhesive strength and toughness of the composites were up to 4 and 7 times higher, respectively, than the pristine polymer.

  4. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in

  5. Motion of small bodies in classical field theory

    SciTech Connect

    Gralla, Samuel E.

    2010-04-15

    I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.

  6. Effect of Mg or Ag addition on the evaporation field of Al.

    PubMed

    Aruga, Yasuhiro; Nako, Hidenori; Tsuneishi, Hidemasa; Hasegawa, Yuki; Tao, Hiroaki; Ichihara, Chikara; Serizawa, Ai

    2013-09-01

    It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys.

  7. The influence of small additions of diethylenetriamine on the detonation waves stability for nitromethane/acetone solution

    NASA Astrophysics Data System (ADS)

    Mochalova, V.; Utkin, A.

    2014-05-01

    Instability of detonation front in the nitromethane/acetone (NM/A) solution was observed in our previous work: at 10% of acetone the amplitude of heterogeneities was about 20 microns and at 20% of acetone this size was 50 microns. It is known that small additions of diethylenetriamine (DETA) considerably increase the initial rate of chemical reaction in detonation waves for NM. It was expected that DETA would influence the stability of detonation waves in the NM/A solution too. To investigate this phenomenon the laser interferometer VISAR was used for the recording of particle velocity profiles in detonation waves for NM/A. It was found that at the addition of 0.5% DETA to NM/A 90/10 the oscillations in the velocity profile decreased several times over. At the addition of 1% DETA the profile is smooth, i.e. the heterogeneities disappear and detonation wave becomes steady-state. In NM/A 80/20 at the addition of 5% DETA the heterogeneities size is reduced by the order. The increase of detonation wave velocity of NM/A grater than 1% was observed at small concentrations of DETA. Thus it was found that small additions of DETA to the NM/A solution with an unstable detonation front resulted not only in the decrease of heterogeneities size but in their disappearance and stabilization of detonation waves.

  8. Deterministic fractals: extracting additional information from small-angle scattering data.

    PubMed

    Cherny, A Yu; Anitas, E M; Osipov, V A; Kuklin, A I

    2011-09-01

    The small-angle scattering curves of deterministic mass fractals are studied and analyzed in momentum space. In the fractal region, the curve I(q)q(D) is found to be log-periodic with good accuracy, and the period is equal to the scaling factor of the fractal. Here, D and I(q) are the fractal dimension and the scattering intensity, respectively. The number of periods of this curve coincides with the number of fractal iterations. We show that the log-periodicity of I(q)q(D) in the momentum space is related to the log-periodicity of the quantity g(r)r(3-D) in the real space, where g(r) is the pair distribution function. The minima and maxima positions of the scattering intensity are estimated explicitly by relating them to the pair distance distribution in real space. It is shown that the minima and maxima are damped with increasing polydispersity of the fractal sets; however, they remain quite pronounced even at sufficiently large values of polydispersity. A generalized self-similar Vicsek fractal with controllable fractal dimension is introduced, and its scattering properties are studied to illustrate the above findings. In contrast with the usual methods, the present analysis allows us to obtain not only the fractal dimension and the edges of the fractal region, but also the fractal iteration number, the scaling factor, and the number of structural units from which the fractal is composed.

  9. The response of small SQUID pickup loops to magnetic fields

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Holland, Connor M.; Fung, Y.-K.-K.; Huber, Martin E.; Ketchen, Mark B.; Ralph, Daniel C.; Gibson, Gerald W., Jr.; Moler, Kathryn A.

    2016-12-01

    In the past, magnetic images acquired using scanning superconducting quantum interference device (SQUID) microscopy have been interpreted using simple models for the sensor point spread function. However, more complicated modeling is needed when the characteristic dimensions of the field sensitive areas in these sensors become comparable to the London penetration depth. In this paper we calculate the response of SQUIDs with deep sub-micron pickup loops to different sources of magnetic fields by solving coupled London’s and Maxwell’s equations using the full sensor geometry. Tests of these calculations using various field sources are in reasonable agreement with experiments. These calculations allow us to more accurately interpret sub-micron spatial resolution data obtained using scanning SQUID microscopy.

  10. Energy Efficiency in Small Server Rooms: Field Surveys and Findings

    SciTech Connect

    Cheung, Iris; Greenberg, Steve; Mahdavi, Roozbeh; Brown, Richard; Tschudi, William

    2014-08-11

    Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 small server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.

  11. Field support activity aerospace manpower transfer to small business enterprises

    NASA Technical Reports Server (NTRS)

    Green, M. K.

    1972-01-01

    This report reiterates the major findings of the original study on the utilization of unemployed aerospace professionals in small businesses, and also provides a definition of three programs which, as a result of this study and other research into this problem, offer great potential in providing for better utilization of the nation's technically trained personal and technology resources. Details of these three programs are provided along with a recommended plan of action for their implementation.

  12. Additional Enhancement of Electric Field in Surface-Enhanced Raman Scattering due to Fresnel Mechanism

    PubMed Central

    Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.

    2013-01-01

    Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for “far-side” excitation than “near-side”. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface. PMID:23903714

  13. Field evaluation of some bait additives against Indian crested porcupine (Hystrix indica) (Rodentia: Hystricidae).

    PubMed

    Mushtaq, Muhammad; Hussain, Iftikhar; Mian, Afsar; Munir, Shahid; Ahmed, Irfan; Khan, Abdul Aziz

    2013-09-01

    This research study evaluated the effect of different additives on the bait consumption by Indian crested porcupine, a serious forest and agricultural pest, under field conditions. Different additives (saccharin, common salt, bone meal, fish meal, peanut butter, egg yolk, egg shell powder, yeast powder, mineral oil and coconut oil) at 2 and 5% each were tested for their relative preference, using groundnut-maize (1:1) as basic bait. All the additives were tested under a no-choice test pattern. For control tests, no additive was mixed with the basic bait. Saccharin at 5% concentration significantly enhanced the consumption of bait over the basic bait, while 2% saccharin supplemented bait resulted in a non-significant bait consumption. All other additives did not enhance the consumption of the bait material; rather, these worked as repellents. However, the repellency was lowest with the common salt, followed by egg yolk, egg shell powder, bone meal, peanut butter, mineral oil, fish meal and yeast powder, while coconut remained the most repellent compound. The present study suggested that groundnut-maize (1:1) supplemented with 5% saccharin was the preferred bait combination, and can be used with different rodenticides for the management of Indian crested porcupine.

  14. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    SciTech Connect

    Gary Blythe; MariJon Owens

    2007-12-31

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved

  15. Design rules for rational control of polymer glass formation behavior and mechanical properties with small molecular additives

    NASA Astrophysics Data System (ADS)

    Mangalara, Jayachandra Hari; Simmons, David

    Small molecule additives have long been employed to tune polymers' glass formation, mechanical and transport properties. For example, plasticizers are commonly employed to suppress polymer Tg and soften the glassy state, while antiplasticizers, which stiffen the glassy state of a polymer while suppressing its Tg, are employed to enhance protein and tissue preservation in sugar glasses. Recent literature indicates that additives can have a wide range of possible effects, but all of these have not been clearly understood and well appreciated. Here we employ molecular dynamics simulations to establish design rules for the selection of small molecule additives with size, molecular stiffness, and interaction energy chosen to achieve targeted effects on polymer properties. We furthermore find that a given additive's effect on a polymer's Tg can be predicted from its Debye-Waller factor via a function previously found to describe nanoconfinement effects on the glass transition. These results emphasize the potential for a new generation of targeted molecular additives to contribute to more targeted rational design of polymers. We acknowledge the Keck Foundation and the Ohio Supercomputing Center for financial and computational support of this effort, respectively.

  16. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy

    PubMed Central

    Price, Liam D; Au, Stephanie; Chong, N Victor

    2015-01-01

    Purpose To compare diabetic retinopathy (DR) severity grading between Optomap ultrawide field scanning laser ophthalmoscope (UWFSLO) 200° images and an Early Treatment Diabetic Retinopathy Study (ETDRS) seven-standard field view. Methods Optomap UWFSLO images (total: 266) were retrospectively selected for evidence of DR from a database of eye clinic attendees. The Optomap UWFSLO images were graded for DR severity by two masked assessors. An ETDRS seven-field mask was overlaid on the Optomap UWFSLO images, and the DR grade was assessed for the region inside the mask. Any interassessor discrepancies were adjudicated by a senior retinal specialist. Kappa agreement levels were used for statistical analysis. Results Fifty images (19%) (P<0.001) were assigned a higher DR level in the Optomap UWFSLO view compared to the ETDRS seven-field view, which resulted in 40 images (15%) (P<0.001) receiving a higher DR severity grade. DR severity grades in the ETDRS seven-field view compared with the Optomap UWFSLO view were identical in 85% (226) of the images and within one severity level in 100% (266) of the images. Agreement between the two views was substantial: unweighted κ was 0.74±0.04 (95% confidence interval: 0.67–0.81) and weighted κ was 0.80±0.03 (95% confidence interval: 0.74–0.86). Conclusion Compared to the ETDRS seven-field view, a significant minority of patients are diagnosed with more severe DR when using the Optomap UWFSLO view. The clinical significance of additional peripheral lesions requires evaluation in future prospective studies using large cohorts. PMID:25848202

  17. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  18. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    NASA Astrophysics Data System (ADS)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  19. The force-field derivation and application of explosive/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2016-10-01

    The inter-molecular force-field across RDX/(paraffin, fluoropolymer) interfaces are derived from first-principles calculated energies under the GGA+vdW functional. Based on the force-field, the polycrystal structures of mixture explosives are obtained, and a set of thermodynamic properties are calculated, including the elastic constants, thermal expansion coefficient, heat capacity, isothermal curve and the Hugoniot curve. The results are in good agreement with the available experiments, and provide a reasonable prediction about the properties of plastic bonded explosives. We find that the thermal expansion coefficient of a multi-component explosive is not only determined by the properties of the components, but is also affected by the thermal stress at the explosive/additive interfaces.

  20. Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Gong, Xibing; Chou, Kevin

    2015-05-01

    In this study, the microstructure evolution in the powder-bed electron beam additive manufacturing (EBAM) process is studied using phase-field modeling. In essence, EBAM involves a rapid solidification process and the properties of a build partly depend on the solidification behavior as well as the microstructure of the build material. Thus, the prediction of microstructure evolution in EBAM is of importance for its process optimization. Phase-field modeling was applied to study the microstructure evolution and solute concentration of the Ti-6Al-4V alloy in the EBAM process. The effect of undercooling was investigated through the simulations; the greater the undercooling, the faster the dendrite grows. The microstructure simulations show multiple columnar-grain growths, comparable with experimental results for the tested range.

  1. Photon-assisted field emission from a Si tip at addition of an AC low voltage

    NASA Astrophysics Data System (ADS)

    Zaporozhchenko, A. V.; Chernov, S. V.; Odnodvorets, L. V.; Stetsenko, B. V.; Nepijko, S. A.; Elmers, H. J.; Schönhense, G.

    2015-07-01

    We investigated the field emission current from a p-type silicon tip with large resistivity of 4 × 103 Ω cm for light illumination with a photon energy of 1.3 eV and tip-anode voltages of 0.7-5.0 kV. Additional AC voltage with amplitude 30-60 V and frequency varying in the range of 10-107 Hz was applied to the tip which resulted in variations of emission current. We investigated the dependence of this phenomenon on the AC signal parameters, light intensity and temperature. The resonant-like frequency dependence of the emission current is because the tip acts as a driven plasmonic resonator. The results represent an important step forward for the development of high-frequency display systems based on electron field emission.

  2. Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity

    PubMed Central

    Rydeen, Ariel B.; Waxman, Joshua S.

    2016-01-01

    Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity. PMID:27893754

  3. Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity.

    PubMed

    Rydeen, Ariel B; Waxman, Joshua S

    2016-11-01

    Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity.

  4. Measurement of small mechanical vibrations of brain tissue exposed to extremely-low-frequency electric fields.

    PubMed

    Spiegel, R J; Ali, J S; Peoples, J F; Joines, W T

    1986-01-01

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmp-p can be achieved. The amplitude of the brain tissue vibrational response is constant for vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.

  5. Measurement of small mechanical vibrations of brain tissue exposed to extremely-low-frequency electric fields

    SciTech Connect

    Spiegel, R.J.; Ali, J.S.; Peoples, J.F.; Joines, W.T.

    1986-01-01

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phrase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmpp can be achieved. The amplitude of the brain tissue vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.

  6. ROLE OF SMALL OIL AND GAS FIELDS IN THE UNITED STATES.

    USGS Publications Warehouse

    Meyer, Richard F.; Fleming, Mary L.

    1985-01-01

    The actual economic size cutoff is a function of such factors as depth, water depth offshore, and accessibility to transportation infrastructure. Because of the constraint of resource availability, price is now the principal force driving drilling activity. The proportion of new-field wildcats to other exploratory wells has fallen in recent years, but success in new-field wildcats has risen to about 20%. However, only very small fields, less than 1 million BOE, are being found in large numbers. Through 1979, almost 93% of known gas fields and 94. 5% of known oil fields were small, yet they contain only 14. 5% of the ultimately recoverable gas and 12. 5% of the oil. However, small fields are less capital intensive than equivalent-capacity synthetic-fuel plants, they are extremely numerous, and they are relatively easy and inexpensive to find and put on production. Refs.

  7. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  8. Paradoxes of the influence of small Ni impurity additions in a NaCl crystal on the kinetics of its magnetoplasticity

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-01-01

    A comparative study of magnetoplasticity in two types of NaCl crystals differing in impurity content only by a small Ni addition (0.06 ppm) in one of them, NaCl(Ni), has been carried out. Two methods of sample magnetic exposure were used: in a constant field B = 0-0.6 T and in crossed fields in the EPR scheme—the Earth's field B Earth (50 μT) and a variable pumping field tilde B( ˜ 1 μ T) at frequencies ν 1 MHz. In the experiments in the EPR scheme, the change of the field orientation from tilde B bot B_{Earth} to . {tilde B} |B_{Earth} led to almost complete suppression of the effect in the NaCl(Ni) crystals and reduced only slightly (approximately by 20%) the height of the resonance peak of dislocation mean paths in the crystals without Ni, with the amplitude of the mean paths in NaCl(Ni) in the orientation tilde B bot B_{Earth} having been appreciably lower than that in NaCl. In contrast, upon exposure to a constant magnetic field, a more intense effect was observed in the crystal with Ni. The threshold pumping field amplitude tilde B, below which the effect is absent under resonance conditions, for the NaCl(Ni) crystals turned out to be a factor of 5 smaller than that for NaCl, while the thresholds of a constant magnetic field coincide for both types of crystals. All these differences are discussed in detail and interpreted.

  9. Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair

    DTIC Science & Technology

    2013-06-01

    ER D C/ G SL T R -1 3 -2 3 Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair G eo...default. ERDC/GSL TR-13-23 June 2013 Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair...repair (SuPR) kit the capability for in- place asphalt recycling. This type of repair has the potential for reducing not only logistics associated

  10. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    SciTech Connect

    Jedamzik, Karsten; Abel, Tom E-mail: tabel@slac.stanford.edu

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  11. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    SciTech Connect

    Peña-Jiménez, Salvador Gamboa-deBuen, Isabel; Lárraga-Gutiérrez, José Manuel E-mail: amanda.garcia.g@gmail.com; García-Garduño, Olivia Amanda E-mail: amanda.garcia.g@gmail.com

    2014-11-07

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (1×1×1 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurología y Neurocirugía (INNN). Thermoluminescent response as a function of dose was determined for doses in water between 0.5 and 3 Gy and two field sizes (2×2 cm2 and 10×10 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.

  12. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    NASA Astrophysics Data System (ADS)

    Peña-Jiménez, Salvador; Lárraga-Gutiérrez, José Manuel; García-Garduño, Olivia Amanda; Gamboa-deBuen, Isabel

    2014-11-01

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (1×1×1 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurología y Neurocirugía (INNN). Thermoluminescent response as a function of dose was determined for doses in water between 0.5 and 3 Gy and two field sizes (2×2 cm2 and 10×10 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.

  13. SU-E-T-431: Vertically-Oriented Farmer-Type Chamber for Small-Field Applications

    SciTech Connect

    Ahmad, M; Chu, A; Lincoln, H; Chen, Z; Deng, J; Nath, R

    2014-06-01

    Purpose: To introduce a non-conventional measurement setup using Farmer-type chambers to accommodate several situations of small-field dose measurements without compromising accuracy. The validation of this technique was demonstrated for photon small-field output measurements, and electron small-field percentage depth-dose (PDD) measurements. Methods: Initial chamber alignment was performed using the conventional (horizontally-oriented) chamber setup. A PDD was acquired for a 4×4 cm{sup 2} field size using this arrangement. This PDD was used as a positional reference for the vertically-oriented chamber (VOC) configuration. Next, a PDD was acquired for a 4×4 cm{sup 2} field size with the VOC. The PDD's were superimposed to find the effective shift of the VOC. Using the shifted VOC setup, photon small-field output factors were measured and compared to stereotactic diode output factor measurements. Additionally, electron smallfield PDD's were acquired using the VOC setup and results were compared to electron Monte Carlo (eMC) predictions in the Eclipse treatment planning system (TPS). Results: (1) For photon small-field output factors field-sizes 2×2 cm{sup 2} and larger, the difference between the VOC setup and SFD measurements were less than 0.8%. For field sizes less than 2×2 cm{sup 2} discrepancies ranged from 4.0 to 10.6%. (2) PDD's measured by VOC setup show better than 1.6% agreement as compared to eMC for all electron energies measured down to the 80% depth on the 2×2 cm{sup 2} PDD curve. Disagreement between the VOC setup measurement and eMC calculations for depths down to the 50% depth on the PDD curve is 3.6% or less. Conclusion: Using the VOC setup, it is possible to use a conventional farmer chamber for small field-size measurements down to 2×2 cm{sup 2} field size without sacrificing the accuracy of measurements.

  14. MMS Multipoint electric field observations of small-scale magnetic holes

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick D.; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnes, Werner; Gershman, Daniel; Giles, Barbara; Nakamura, Rumi; Stawarz, Julia; Holmes, Justin; Sturner, Andrew; Malaspina, David M.

    2016-06-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earth's magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (ρi). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E × B drift of electrons. Ions do not participate in the E × B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  15. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  16. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  17. Turbulence computations with 3-D small-scale additive turbulent decomposition and data-fitting using chaotic map combinations

    SciTech Connect

    Mukerji, Sudip

    1997-01-01

    Although the equations governing turbulent fluid flow, the Navier-Stokes (N.S.) equations, have been known for well over a century and there is a clear technological necessity in obtaining solutions to these equations, turbulence remains one of the principal unsolved problems in physics today. It is still not possible to make accurate quantitative predictions about turbulent flows without relying heavily on empirical data. In principle, it is possible to obtain turbulent solutions from a direct numerical simulation (DNS) of the N.-S. equations. The author first provides a brief introduction to the dynamics of turbulent flows. The N.-S. equations which govern fluid flow, are described thereafter. Then he gives a brief overview of DNS calculations and where they stand at present. He next introduces the two most popular approaches for doing turbulent computations currently in use, namely, the Reynolds averaging of the N.-S. equations (RANS) and large-eddy simulation (LES). Approximations, often ad hoc ones, are present in these methods because use is made of heuristic models for turbulence quantities (the Reynolds stresses) which are otherwise unknown. They then introduce a new computational method called additive turbulent decomposition (ATD), the small-scale version of which is the topic of this research. The rest of the thesis is organized as follows. In Chapter 2 he describes the ATD procedure in greater detail; how dependent variables are split and the decomposition into large- and small-scale sets of equations. In Chapter 3 the spectral projection of the small-scale momentum equations are derived in detail. In Chapter 4 results of the computations with the small-scale ATD equations are presented. In Chapter 5 he describes the data-fitting procedure which can be used to directly specify the parameters of a chaotic-map turbulence model.

  18. Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field.

    PubMed

    Mohamed, Noor Asidah; Bradshaw, Richard T; Essex, Jonathan W

    2016-12-15

    The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results are compared with experimental data and equivalent simulations performed with the GAFF pairwise-additive force field. Although AMOEBA results give mean errors close to "chemical accuracy," GAFF performs surprisingly well, with statistically significantly more accurate results than AMOEBA in some solvents. However, for both models, free energies calculated in chloroform show worst agreement to experiment and individual solutes are consistently poor performers, suggesting non-potential-specific errors also contribute to inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high quality experimental data across multiple solvents, particularly those of high dielectric constant. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  19. Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field

    PubMed Central

    Mohamed, Noor Asidah; Bradshaw, Richard T.

    2016-01-01

    The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results are compared with experimental data and equivalent simulations performed with the GAFF pairwise‐additive force field. Although AMOEBA results give mean errors close to “chemical accuracy,” GAFF performs surprisingly well, with statistically significantly more accurate results than AMOEBA in some solvents. However, for both models, free energies calculated in chloroform show worst agreement to experiment and individual solutes are consistently poor performers, suggesting non‐potential‐specific errors also contribute to inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high quality experimental data across multiple solvents, particularly those of high dielectric constant. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27757978

  20. Small-size controlled vacuum spark-gap in an external magnetic field

    SciTech Connect

    Asyunin, V. I. Davydov, S. G.; Dolgov, A. N. Pshenichnyi, A. A.; Yakubov, R. Kh.

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  1. Small-scale field tests of attract-and-kill stations for pest Tephritid fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field tests were conducted at UF-TREC, Homestead to test efficacy of wax-matrix bait stations and mass trapping for control of the Caribbean fruit fly in a 5 by 30 tree guava planting. Results of the study and the ability to document control using small-scale field tests will be discussed....

  2. The response of prototype plane-parallel ionization chambers in small megavoltage x-ray fields.

    PubMed

    McNiven, Andrea L; Mulligan, Matt; Kron, Tomas; Battista, Jerry J

    2006-11-01

    Accurate small-field dosimetry has become important with the use of multiple small fields in modern radiotherapy treatments such as IMRT and stereotactic radiosurgery. In this study, we investigate the response of a set of prototype plane-parallel ionization chambers, based upon the Exradin T11 chamber, with active volume diameters of 2, 4, 10, and 20 mm, exposed to 6 MV stereotactic radiotherapy x-ray fields. Our goal was to assess their usefulness for accurate small x-ray field dose measurements. The relative ionization response was measured in circular fields (0.5 to 4 cm diameter) as compared to a 10 x 10 cm2 reference field. A large discrepancy (approximately 40%) was found between the relative response in the smallest plane-parallel chamber and other small volume dosimeters (radiochromic film, micro-metal-oxide-semiconductor field-effect transistor and diode) used for comparison. Monte Carlo BEAMnrc simulations were used to simulate the experimental setup in order to investigate the cause of the under-response and to calculate appropriate correction factors that could be applied to experimental measurements. It was found that in small fields, the air cavity of these custom-made research chambers perturbed the secondary electron fluence profile significantly, resulting in decreased fluence within the active volume, which in turn produces a chamber under-response. It is demonstrated that a large correction to the p(fl) correction factor would be required to improve dosimetric accuracy in small fields, and that these factors could be derived using Monte Carlo simulations.

  3. Monte Carlo-based diode design for correction-less small field dosimetry.

    PubMed

    Charles, P H; Crowe, S B; Kairn, T; Knight, R T; Hill, B; Kenny, J; Langton, C M; Trapp, J V

    2013-07-07

    Due to their small collecting volume, diodes are commonly used in small field dosimetry. However, the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore, this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm. The metric D(w,Q)/D(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D(w,Q)/D(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D(w,Q)/D(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3, 1.15 and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip, respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k(f(clin),f(msr))(Q(clin),Q(msr)) was equal to unity to within statistical uncertainty (0.5%) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small

  4. Monte Carlo-based diode design for correction-less small field dosimetry

    NASA Astrophysics Data System (ADS)

    Charles, P. H.; Crowe, S. B.; Kairn, T.; Knight, R. T.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2013-07-01

    Due to their small collecting volume, diodes are commonly used in small field dosimetry. However, the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore, this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm. The metric \\frac{{D_{w,Q} }}{{D_{Det,Q} }} used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting \\frac{{D_{w,Q} }}{{D_{Det,Q} }} as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which \\frac{{D_{w,Q} }}{{D_{Det,Q} }} was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3, 1.15 and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip, respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_{Q_{clin} ,Q_{msr} }^{f_{clin} ,f_{msr} } was equal to unity to within statistical uncertainty (0.5%) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The

  5. A new formalism for reference dosimetry of small and nonstandard fields.

    PubMed

    Alfonso, R; Andreo, P; Capote, R; Huq, M Saiful; Kilby, W; Kjäll, P; Mackie, T R; Palmans, H; Rosser, K; Seuntjens, J; Ullrich, W; Vatnitsky, S

    2008-11-01

    The use of small fields in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fields that are composed of small fields such as for intensity modulated radiation therapy (IMRT). This has been facilitated by the increased availability of standard and add-on multileaf collimators and a variety of new treatment units. For these fields, dosimetric errors have become considerably larger than in conventional beams mostly due to two reasons; (i) the reference conditions recommended by conventional Codes of Practice (CoPs) cannot be established in some machines and (ii) the measurement of absorbed dose to water in composite fields is not standardized. In order to develop standardized recommendations for dosimetry procedures and detectors, an international working group on reference dosimetry of small and nonstandard fields has been established by the International Atomic Energy Agency (IAEA) in cooperation with the American Association of Physicists in Medicine (AAPM) Therapy Physics Committee. This paper outlines a new formalism for the dosimetry of small and composite fields with the intention to extend recommendations given in conventional CoPs for clinical reference dosimetry based on absorbed dose to water. This formalism introduces the concept of two new intermediate calibration fields: (i) a static machine-specific reference field for those modalities that cannot establish conventional reference conditions and (ii) a plan-class specific reference field closer to the patient-specific clinical fields thereby facilitating standardization of composite field dosimetry. Prior to progressing with developing a CoP or other form of recommendation, the members of this IAEA working group welcome comments from the international medical physics community on the formalism presented here.

  6. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array

    PubMed Central

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-01-01

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828

  7. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.

    PubMed

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-12-30

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.

  8. Decomposition of conifer tree bark under field conditions: effects of nitrogen and phosphorus additions

    NASA Astrophysics Data System (ADS)

    Lopes de Gerenyu, Valentin; Kurganova, Irina; Kapitsa, Ekaterina; Shorokhova, Ekaterina

    2016-04-01

    In forest ecosystems, the processes of decomposition of coarse woody debris (CWD) can contribute significantly to the emission component of carbon (C) cycle and thus accelerate the greenhouse effect and global climate change. A better understanding of decomposition of CWD is required to refine estimates of the C balance in forest ecosystems and improve biogeochemical models. These estimates will in turn contribute to assessing the role of forests in maintaining their long-term productivity and other ecosystems services. We examined the decomposition rate of coniferous bark with added nitrogen (N) and phosphorus (P) fertilizers in experiment under field conditions. The experiment was carried out in 2015 during 17 weeks in Moscow region (54o50'N, 37o36'E) under continental-temperate climatic conditions. The conifer tree bark mixture (ca. 70% of Norway spruce and 30% of Scots pine) was combined with soil and placed in piles of soil-bark substrate (SBS) with height of ca. 60 cm and surface area of ca. 3 m2. The dry mass ratio of bark to soil was 10:1. The experimental design included following treatments: (1) soil (Luvisols Haplic) without bark, (S), (2) pure SBS, (3) SBS with N addition in the amount of 1% of total dry bark mass (SBS-N), and (4) SBS with N and P addition in the amount of 1% of total dry bark mass for each element (SBS-NP). The decomposition rate expressed as CO2 emission flux, g C/m2/h was measured using closed chamber method 1-3 times per week from July to early November using LiCor 6400 (Nebraska, USA). During the experiment, we also controlled soil temperature at depths of 5, 20, 40, and 60 cm below surface of SBS using thermochrons iButton (DS1921G, USA). The pattern of CO2 emission rate from SBS depended strongly on fertilizing. The highest decomposition rates (DecR) of 2.8-5.6 g C/m2/h were observed in SBS-NP treatment during the first 6 weeks of experiment. The decay process of bark was less active in the treatment with only N addition. In this

  9. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    SciTech Connect

    Spackman, Peter R.; Karton, Amir

    2015-05-15

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.

  10. Evaluation of detectors for the small field measurements used for clinical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Markovic, Miljenko

    Advanced radiation therapy treatments with very small field sizes are complex. Increasingly higher doses delivered in single or few fractions are being commonly used for the treatments of the small target volume. Absolute or relative small field dosimetry is difficult due to radiation transport. Therefore it is very important to understand characteristics of the small field, detector selection as well as correction factors that have to be taken into account for the accurate measurements. Reducing uncertainty in relative dose measurement and modeling dose on treatment planning systems are factors contributing to the accuracy of the small field radiation treatments. Several challenges in small field dosimetry arise because of the lack of lateral charge particle equilibrium as well as the occlusion of the direct photon beam source and collimator settings. Presence of low-density media in irradiation geometry does complicate dosimetry even more. All those conditions are representing the challenge when it comes to dosimetric measurements. Size and construction are crucial when it comes to choice of the detector. Depending on beam energy, resolving the beam profile and penumbra for the small field sizes are a challenge and practically impossible with detectors commonly used in clinics. With decreasing field size and due to changes in particle spectrum, variations in radiological parameters have to be taken into account. To measure percent depth dose, tissue maximum ratios, tissue phantom ratios as well as output factors for the small field size experimental studies and Monte Carlo simulations have been conducted to determine appropriate detectors for the measurements. The primary goal of Specific Aim 1 was experimental quantification of the performance parameters for single detectors used for dosimetric verification of the small fields in radiotherapy. The proposed method and qualitative value for appropriate detectors selection defined by field size has been set. The

  11. Small-scale gradients of charged particles in the heliospheric magnetic field

    SciTech Connect

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  12. Feasibility of using PRESAGE® for relative 3D dosimetry of small proton fields

    PubMed Central

    Zhao, Li; Newton, Joseph; Oldham, Mark; Das, Indra J; Cheng, Chee-Wai; Adamovics, John

    2013-01-01

    Small field dosimetry is challenging due to the finite size of the conventional detectors that underestimate the dose distribution. With the fast development of the dynamic proton beam delivery system, it is essential to find a dosimeter which can be used for 3D dosimetry of small proton fields. We investigated the feasibility of using a proton formula PRESAGE® for 3D dosimetry of small fields in a uniform scanning proton beam delivery system with dose layer stacking technology. The relationship between optical density and the absorbed dose was found to be linear through small volume cuvette studies for both photon and proton irradiation. Two circular fields and three patient-specific fields were used for proton treatment planning calculation and beam delivery. The measured results were compared with the calculated results in the form of lateral dose profiles, depth dose, isodose plots and gamma index analysis. For the circular field study, lateral dose profile comparison showed that the relative PRESAGE® profile falls within ± 5% from the calculated profile for most of the spatial range. For unmodulated depth dose comparison, the agreement between the measured and calculated results was within 3% in the beam entrance region before the Bragg peak. However, at the Bragg peak, there was about 20% underestimation of the absorbed dose from PRESAGE®. For patient-specific field 3D dosimetry, most of the data points within the target volume passed gamma analysis for 3% relative dose difference and 3 mm distance to agreement criteria. Our results suggest that this proton formula PRESAGE® dosimeter has the potential for 3D dosimetry of small fields in proton therapy, but further investigation is needed to improve the dose under-response of the PRESAGE® in the Bragg peak region. PMID:23103526

  13. The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Sims, William Herbert; Casas, Joseph

    2015-01-01

    This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging SmallSat and CubeSat industry and to provide advances for NASA as described in the TAO5 Communication and Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A typical implementation of the SDR is to use a processor and write software to implement all the functions of filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, error correcting and other algorithms is too much for modern processors to get efficient use of the available bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining low power. These methods will implement digital radios with significant data rates in the X and Ka bands. Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in a 1/2 U sized telemetry system. Additionally, modern FPGAs have embedded processing systems, such as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR technologies.

  14. 76 FR 31823 - Technical Amendment to List of User Fee Airports: Addition of Dallas Love Field Municipal Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Airports: Addition of Dallas Love Field Municipal Airport, Dallas, TX AGENCY: U.S. Customs and Border... revising the list of user fee airports to reflect the recent user fee airport designation for Dallas Love... of user fee status for Dallas Love Field Municipal Airport. This document updates the list of...

  15. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    SciTech Connect

    Oborn, B. M.; Ge, Y.; Hardcastle, N.; Metcalfe, P. E.; Keall, P. J.

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  16. SU-E-T-299: Dosimetric Characterization of Small Field in Small Animal Irradiator with Radiochromic Films

    SciTech Connect

    Han, S; Kim, K; Jung, H; Ji, Y; Choi, S; Park, S

    2015-06-15

    Purpose: The small animal irradiator has been used with small animals to optimize new radiation therapy as preclinical studies. The small animal was irradiated by whole- or partial-body exposure. In this study, the dosimetric characterizations of small animal irradiator were carried out in small field using Radiochromic films Material & Methods: The study was performed in commercial animal irradiator (XRAD-320, Precision x-ray Inc, North Brantford) with Radiochromic films (EBT2, Ashland Inc, Covington). The calibration curve was generated between delivery dose and optical density (red channel) and the films were scanned by and Epson 1000XL scanner (Epson America Inc., Long Beach, CA).We evaluated dosimetric characterization of irradiator using various filter supported by manufacturer in 260 kV. The various filters were F1 (2.0mm Aluminum (HVL = about 1.0mm Cu) and F2 (0.75mm Tin + 0.25mm Copper + 1.5mm Aluminum (HVL = about 3.7mm Cu). According to collimator size (3, 5, 7, 10 mm, we calculated percentage depth dose (PDD) and the surface –source distance(SSD) was 17.3 cm considering dose rate. Results: The films were irradiated in 260 kV, 10mA and we increased exposure time 5sec. intervals from 5sec. to 120sec. The calibration curve of films was fitted with cubic function. The correlation between optical density and dose was Y=0.1405 X{sup 3}−2.916 X{sup 2}+25.566 x+2.238 (R{sup 2}=0.994). Based on the calibration curve, we calculated PDD in various filters depending on collimator size. When compared PDD of specific depth (3mm) considering animal size, the difference by collimator size was 4.50% in free filter and F1 was 1.53% and F2 was within 2.17%. Conclusion: We calculated PDD curve in small animal irradiator depending on the collimator size and the kind of filter using the radiochromic films. The various PDD curve was acquired and it was possible to irradiate various dose using these curve.

  17. Fabrication of thin films for a small alternating gradient field magnetometer for biomedical magnetic sensing applications

    NASA Astrophysics Data System (ADS)

    Jones, N. J.; McNerny, K. L.; Sokalski, V.; Diaz-Michelena, M.; Laughlin, D. E.; McHenry, M. E.

    2011-04-01

    Thin film alternating gradient field magnetometers (AGFM) have potential for measuring magnetic moments of minerals in extraterrestrial soil samples. AGFM sensors offer increased spatial resolution required to detect magnetic nanoparticles for biosensing applications. We have fabricated a patterned thin film with the properties necessary for use in a small AGFM system. Hexagonal-close-packed CoCrPt thin films of 20 and 500 nm were sputtered (nominal composition of Co66Cr15Pt19), showing a high magnetic moment and large out-of-plane anisotropy. The films showed a Δθ50 of better than 3° for the (002) CoCrPt peak for all films, which improves with thickness. The texture is partly due to the NiW and Ru underlayers. The films showed an out-of-plane easy axis, indicating a strong uniaxial anisotropy that exceeds the shape demagnetization energy. This is due to the addition of Cr, which decreases the magnetic moment of the films; magnetoelastic coupling and film stresses may also aid in achieving a perpendicular anisotropy. The first-order uniaxial anisotropy constants were calculated as a function of temperature, ranging from 3.7 × 106 ergs/cm3 at room temperature to 6.8 × 105 ergs/cm3 at 500 °C, and the T dependence agrees with Akulov's theory for uniaxial materials. The thickest film was etched with a checkerboard pattern to decrease the demagnetization effects, which are seen more influentially in the thicker films. This opened up the hysteresis loop, and decreased the amount of field necessary to overcome the thin film geometry.

  18. SU-E-T-358: Monte Carlo Dose Calculation of Small Field Electron Beams

    SciTech Connect

    Wu, Q; Rodrigues, A; Yin, F; Sawkey, D

    2014-06-01

    Purpose: Dynamic radiotherapy involving electron beams such as Dynamic Electron Arc Radiotherapy (DEAR) requires accurate dose modelling of small field sizes, similar to the requirement of IMRT field on the small photon field. The current commercial electron Monte Carlo algorithms such as eMC v11 in Eclipse were developed for standard field sizes and do not support the planning of dynamic therapy yet. The purpose of this study is to develop a method to accurately model small field electron beam dosimetry using Monte Carlo simulations. Methods: Comparison between eMC, phantom measurements (diode), and Monte Carlo (MC) simulations (BEAMnrc/DOSYZnrc) were performed for a Varian TrueBeam linac. MC simulations utilized Varian TrueBeam phase space files which had been validated in another study. Static single small field was assessed by comparing dose distributions in water for a 16 MeV beam for circular (2 cm diameter) and rectangular (1×10 cm{sup 2}) cut-out. MC was performed with a resolution of 2.5×2.5×2 mm{sup 2} and statistical uncertainty < 4%. The dose distribution was averaged over adjacent bins to improve precision. Depth dose and orthogonal profiles were evaluated. Results: Small field PDDs differ from those with standard cones. For both circular and rectangular cutouts, the difference in range R8 0-R1 0 is less than 2 mm and in dose within 2%. For the orthogonal profiles, field size and penumbra differences were within 1 mm at depth of maximum dose. The eMC displayed a distinctive “step” in the out-field dose profile in disagreement with both measurement and MC results and needs further investigation. Conclusion: MC was able to characterize the small field dosimetry with good agreement with the measurement data, and thus offers the opportunity for treatment planning of dynamic radiotherapy. Analyses for all other electron energies and cut-out sizes are under way and results will be included in the presentation.

  19. Characterisation of a high resolution small field of view portable gamma camera.

    PubMed

    Bugby, S L; Lees, J E; Bhatia, B S; Perkins, A C

    2014-05-01

    A handheld, high-resolution small field of view (SFOV) pinhole gamma camera has been characterised using a new set of protocols adapted from standards previously developed for large field of view (LFOV) systems. Parameters investigated include intrinsic and extrinsic spatial resolution, spatial linearity, uniformity, sensitivity, count rate capability and energy resolution. Camera characteristics are compared to some clinical LFOV gamma cameras and also to other SFOV cameras in development.

  20. Measurements of Output Factors For Small Photon Fields Up to 10 cm x 10 cm

    NASA Astrophysics Data System (ADS)

    Bacala, Angelina

    Field output factors (OF) for photon beams from a 6 MV medical accelerator were measured using five different detectors in a scanning water phantom. The measurements were taken for square field sizes of integral widths ranging from 1 cm to 10 cm for two reference source-to-surface distances (SSD) and depths in water. For the diode detectors, square field widths as small as 2.5 mm were also studied. The photon beams were collimated by using either the jaws or the multileaf collimators. Measured OFs are found to depend upon the field size, SSD, depth and also upon the type of beam collimation, size and type of detector used. For field sizes larger than 3 cm x 3 cm, the OF measurements agree to within 1% or less. The largest variation in OF occurs for jawsshaped field of size 1 cm x 1cm, where a difference of more than 18% is observed.

  1. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg-Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics

  2. Structure of small-scale magnetic fields in the kinematic dynamo theory.

    PubMed

    Schekochihin, Alexander; Cowley, Steven; Maron, Jason; Malyshkin, Leonid

    2002-01-01

    A weak fluctuating magnetic field embedded into a a turbulent conducting medium grows exponentially while its characteristic scale decays. In the interstellar medium and protogalactic plasmas, the magnetic Prandtl number is very large, so a broad spectrum of growing magnetic fluctuations is excited at small (subviscous) scales. The condition for the onset of nonlinear back reaction depends on the structure of the field lines. We study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines possess a folding structure, where most of the scale decrease is due to the field variation across itself (rapid transverse direction reversals), while the scale of the field variation along itself stays approximately constant. Specifically, we find that, though both the magnetic energy and the mean-square curvature of the field lines grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e., the curved field is relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature comparable to the characteristic wave number of the velocity field and a power tail extending to large values of curvature where it is eventually cut off by the resistive regularization. The regions of large curvature, therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corroborated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results also directly apply to the problem of statistical geometry of the material lines in a random flow.

  3. Studying the effects of stereo, head tracking, and field of regard on a small-scale spatial judgment task.

    PubMed

    Ragan, Eric D; Kopper, Regis; Schuchardt, Philip; Bowman, Doug A

    2013-05-01

    Spatial judgments are important for many real-world tasks in engineering and scientific visualization. While existing research provides evidence that higher levels of display and interaction fidelity in virtual reality systems offer advantages for spatial understanding, few investigations have focused on small-scale spatial judgments or employed experimental tasks similar to those used in real-world applications. After an earlier study that considered a broad analysis of various spatial understanding tasks, we present the results of a follow-up study focusing on small-scale spatial judgments. In this research, we independently controlled field of regard, stereoscopy, and head-tracked rendering to study their effects on the performance of a task involving precise spatial inspections of complex 3D structures. Measuring time and errors, we asked participants to distinguish between structural gaps and intersections between components of 3D models designed to be similar to real underground cave systems. The overall results suggest that the addition of the higher fidelity system features support performance improvements in making small-scale spatial judgments. Through analyses of the effects of individual system components, the experiment shows that participants made significantly fewer errors with either an increased field of regard or with the addition of head-tracked rendering. The results also indicate that participants performed significantly faster when the system provided the combination of stereo and head-tracked rendering.

  4. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  5. Soil and Nitrogen redistribution in a small Mediterranean cereal field: modelling predictions and field measurements

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel, , Dr.; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Palazón, M. Sc. Leticia; Navas, Ana, , Dr.

    2015-04-01

    Cultivation is one of the main factors triggering soil erosion and the loss of fertile soil accelerates and in some cases causes soil degradation and crop yield reduction. Patterns of erosion, delivery and deposition of soil particles appear to be closely linked to that of soil nutrients. In this study, we assess the rates of soil and nutrient (soil nitrogen) redistribution and budget in a rain-fed cereal experimental plot (0.65 ha; Ebro river basin, NE Spain) caused by water erosion. The study area has a mean slope of 7%, it is classed as a closed-hydrological unit due to the cutting-connectivity effect of the landscape linear elements (LLEs), it has only one outlet and runoff directly reach La Reina gully. Climate is continental Mediterranean with two humid periods (average annual rainfall depth of 556 mm). Rainfall events of high intensity happen in June, July, September and October, with average values of maximum rainfall intensity in 30 min higher than 4 mm h-1 and above 6 mm h-1 in October. Soils are classified as Haplic Calcisols with an average and maximum values of soil organic matter of 1.5% and 2.4% respectively, high carbonate contents (ca. 39%) and texture is silt loam. The field has been cultivated for more than 150 years and consequently the soil is thoroughly mixed in the plough layer (25-30 cm). The cereal field was last harvested in June 2007 and from that date onwards the field has remained fallow for research purposes. Before fallowing the field was managed with minimum tillage during 15 years. Vegetation clearance practices were implemented to prevent scrub growth and so the soil surface has remained almost bare since that date. A total of 222 topsoil (5 cm depth) samples were collected following a regular 5x5 metre grid. Soil nitrogen content (%) was determined by the dry combustion method using a Leco TruSpec carbon and nitrogen analyzer (LECO Corporation, St. Joseph, MI, USA). Soil nitrogen was detected by determining the NOx gas evolved

  6. A Field-Suitable, Semisolid Aerobic Enrichment Medium for Isolation of Campylobacter jejuni in Small Numbers

    PubMed Central

    Jeffrey, J. S.; Hunter, A.; Atwill, E. R.

    2000-01-01

    The objective of this study was to produce an economical, easy to prepare, field-suitable enrichment medium for detection of Campylobacter jejuni in small numbers. A semisolid aerobic enrichment medium was developed. Rates of recovery from inoculated medium, sterile swabs, and mixed cultures of C. jejuni and coliform bacteria were tested. PMID:10747165

  7. THE INTERACTION OF HABITAT FRAGMENTATION, PLANT, AND SMALL MAMMAL SUCCESSION IN AN OLD FIELD

    EPA Science Inventory

    We compared the density and spatial distribution of four small mammal species (Microtus ochrogaster, Peromyscus maniculatus, Sigmodon hispidus, and P. luecopus) along with general measures of an old field plant community across two successional phases (1984-1986 and 1994-1996) of...

  8. Precise calibration of CCD images with a small field of view. Application to observations of Phoebe

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Vienne, A.; Han, Y. B.; Li, Z. L.

    2004-09-01

    A precise astrometric calibration method is presented for a CCD image with a small field of view. Its detailed computational formulae are given, and its feasibility and accuracy are tested by the observations of both the star and Phoebe, the 9th satellite of Saturn. This new method can also be applicable to other planetary satellites, asteroids and optical counterparts of extragalactic radio sources.

  9. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    SciTech Connect

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  10. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    NASA Astrophysics Data System (ADS)

    Sasayama, Teruyoshi; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used.

  11. A robust procedure for verifying TomoTherapy Hi-Art™ source models for small fields

    NASA Astrophysics Data System (ADS)

    Hundertmark, B.; Sterpin, E.; Mackie, T.

    2011-06-01

    The dosimetric measurement and modeling of small radiation treatment fields (<2 × 2 cm2) are difficult to perform and prone to error. Measurements of small fields are often adversely influenced by the properties of the detectors used to make them. The dosimetric properties of small fields have been difficult to accurately model due to the effects of source occlusion caused by the collimating jaws. In this study, small longitudinal slice widths (SWs) of the TomoTherapy® Hi-Art® machine are characterized by performing dosimetric measurements topographically. By using a static gantry, opening the central 16 MLC leaves during the irradiations, and symmetrically scanning detectors 10 cm through each longitudinal SW, integral doses to a 'TomoTherapy equivalent' 10 × 10 cm2 area are topographically measured. To quantify the effects of source occlusion for TomoTherapy, a quantity referred to as the integral scanned dose to slice width ratio (D/SW) is introduced. (D/SW) ratios are measured for SWs ranging from 0.375 to 5 cm in size using ion chambers and a radiographic film. The measurements of the (D/SW) ratio are shown to be insensitive to the detectors used in this study. The (D/SW) ratios for TomoTherapy have values of unity in the range of SW sizes from 5 cm to approximately 2 cm. For SWs smaller than 2 cm in size, the source-occlusion effect substantially reduces the measured machine output and the value of the (D/SW) ratios. The topographic measurement method presented provides a way to directly evaluate the accuracy of the small-field source model parameters used in dose calculation algorithms. As an example, the electron source spot size of a Penelope Monte Carlo (MC) model of TomoTherapy was varied to match computed and measured (D/SW) ratios. It was shown that the MC results for small SW sizes were sensitive to that particular parameter.

  12. Controlling dispersion forces between small particles with artificially created random light fields.

    PubMed

    Brügger, Georges; Froufe-Pérez, Luis S; Scheffold, Frank; José Sáenz, Juan

    2015-06-22

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.

  13. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  14. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  15. Water-equivalent dosimeter array for small-field external beam radiotherapy

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc; Lacroix, Frederic; Roy, Rene; Beaulieu, Luc

    2007-05-15

    With the increasing complexity of dose patterns external beam radiotherapy, there is a great need for new types of dosimeters. We studied the first prototype of a new dosimeter array consisting of water-equivalent plastic scintillating fibers for dose measurement in external beam radiotherapy. We found that this array allows precise, rapid dose evaluation of small photon fields. Starting with a dosimeter system constructed with a single scintillating fiber coupled to a clear optical fiber and read using a charge coupled device camera, we looked at the dosimeter's spatial resolution under small radiation fields and angular dependence. Afterward, we analyzed the camera's light collection to determine the maximum array size that could be built. Finally, we developed a prototype made of ten scintillating fiber detectors to study the behavior and precision of this system in simple dosimetric situations. The scintillation detector showed no measurable angular dependence. Comparison of the scintillation detector and a small-volume ion chamber showed agreement except for 1x1 and 0.5x5.0 cm{sup 2} fields where the output factor measured by the scintillator was higher. The actual field of view of the camera could accept more than 4000 scintillating fiber detectors simultaneously. Evaluation of the dose profile and depth dose curve using a prototype with ten scintillating fiber detectors showed precise, rapid dose evaluation even with placement of more than 75 optical fibers in the field to simulate what would happen in a larger array. We concluded that this scintillating fiber dosimeter array is a valuable tool for dose measurement in external beam radiotherapy. It possesses the qualities necessary to evaluate small and irregular fields with various incident angles such as those encountered in intensity-modulated radiotherapy, radiosurgery, and tomotherapy.

  16. Near-field: a finite-difference time-dependent method for simulation of electrodynamics on small scales.

    PubMed

    Coomar, Arunima; Arntsen, Christopher; Lopata, Kenneth A; Pistinner, Shlomi; Neuhauser, Daniel

    2011-08-28

    We develop near-field (NF), a very efficient finite-difference time-dependent (FDTD) approach for simulating electromagnetic systems in the near-field regime. NF is essentially a time-dependent version of the quasistatic frequency-dependent Poisson algorithm. We assume that the electric field is longitudinal, and hence propagates only a set of time-dependent polarizations and currents. For near-field scales, the time step (dt) is much larger than in the usual Maxwell FDTD approach, as it is not related to the velocity of light; rather, it is determined by the rate of damping and plasma oscillations in the material, so dt = 2.5 a.u. was well converged in our simulations. The propagation in time is done via a leapfrog algorithm much like Yee's method, and only a single spatial convolution is needed per time step. In conjunction, we also develop a new and very accurate 8 and 9 Drude-oscillators fit to the permittivity of gold and silver, desired here because we use a large time step. We show that NF agrees with Mie-theory in the limit of small spheres and that it also accurately describes the evolution of the spectral shape as a function of the separation between two gold or silver spheres. The NF algorithm is especially efficient for systems with small scale dynamics and makes it very simple to introduce additional effects such as embedding.

  17. Acceptance test report: Field test of mixer pump for 241-AN-107 caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1997-05-16

    The field acceptance test of a 75 HP mixer pump (Hazleton serial number N-20801) installed in Tank 241-AN-107 was conducted from October 1995 thru February 1996. The objectives defined in the acceptance test were successfully met, with two exceptions recorded. The acceptance test encompassed field verification of mixer pump turntable rotation set-up and operation, verification that the pump instrumentation functions within established limits, facilitation of baseline data collection from the mixer pump mounted ultrasonic instrumentation, verification of mixer pump water flush system operation and validation of a procedure for its operation, and several brief test runs (bump) of the mixer pump.

  18. The effect of small field output factor measurements on IMRT dosimetry

    SciTech Connect

    Azimi, Rezvan; Alaei, Parham; Higgins, Patrick

    2012-08-15

    Purpose: To evaluate how changes in the measured small field output factors affect the doses in intensity-modulated treatment planning. Methods: IMRT plans were created using Philips Pinnacle treatment planning system. The plans were optimized to treat a cylindrical target 2 cm in diameter and 2 cm in length. Output factors for 2 Multiplication-Sign 2 and 3 Multiplication-Sign 3 cm{sup 2} field sizes were changed by {+-}5%, {+-}10%, and {+-}20% increments from the baseline measurements and entered into the planning system. The treatment units were recommissioned in the treatment planning system after each modification of the output factors and treatment plans were reoptimized. All plans were delivered to a solid water phantom and dose measurements were made using an ionization chamber. The percentage differences between measured and computed doses were calculated. An Elekta Synergy and a Varian 2300CD linear accelerator were separately evaluated. Results: For the Elekta unit, decreasing the output factors resulted in higher measured than computed doses by 0.8% for -5%, 3.6% for -10%, and 8.7% for -20% steps. Increasing the output factors resulted in lower doses by 2.9% for +5%, 5.4% for +10%, and 8.3% for +20% steps. For the Varian unit no changes were observed for either increased or decreased output factors. Conclusions: The measurement accuracy of small field output factors are of importance especially when the treatment plan consists of small segments as in IMRT. The method proposed here could be used to verify the accuracy of the measured small field output factors for certain linear accelerators as well as to test the beam model. The Pinnacle treatment planning system model uses output factors as a function of jaw setting. Consequently, plans using the Elekta unit, which conforms the jaws to the segments, are sensitive to small field measurement accuracy. On the other hand, for the Varian unit, jaws are fixed and segments are modeled as blocked fields hence

  19. Government regulation and public opposition create high additional costs for field trials with GM crops in Switzerland.

    PubMed

    Bernauer, Thomas; Tribaldos, Theresa; Luginbühl, Carolin; Winzeler, Michael

    2011-12-01

    Field trials with GM crops are not only plant science experiments. They are also social experiments concerning the implications of government imposed regulatory constraints and public opposition for scientific activity. We assess these implications by estimating additional costs due to government regulation and public opposition in a recent set of field trials in Switzerland. We find that for every Euro spent on research, an additional 78 cents were spent on security, an additional 31 cents on biosafety, and an additional 17 cents on government regulatory supervision. Hence the total additional spending due to government regulation and public opposition was around 1.26 Euros for every Euro spent on the research per se. These estimates are conservative; they do not include additional costs that are hard to monetize (e.g. stakeholder information and dialogue activities, involvement of various government agencies). We conclude that further field experiments with GM crops in Switzerland are unlikely unless protected sites are set up to reduce these additional costs.

  20. Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry.

    PubMed

    Jafari, S M; Alalawi, A I; Hussein, M; Alsaleh, W; Najem, M A; Hugtenburg, R P; Bradley, D A; Spyrou, N M; Clark, C H; Nisbet, A

    2014-11-21

    An investigation has been made of glass beads and optical fibres as novel dosimeters for small-field photon radiation therapy dosimetry. Commercially available glass beads of largest dimension 1.5 mm and GeO2-doped SiO2 optical fibres of 5 mm length and 120 µm diameter were characterized as thermoluminescence dosimeters. Results were compared against Monte-Carlo simulations with BEAMnrc/DOSXYZnrc, EBT3 Gafchromic film, and a high-resolution 2D-array of liquid-filled ionization chambers. Measurements included relative output factors and dose profiles for square-field sizes of 1, 2, 3, 4, and 10 cm. A customized Solid-Water® phantom was employed, and the beads and fibres were placed at defined positions along the longitudinal axis to allow accurate beam profile measurement. Output factors and the beam profile parameters were compared against those calculated by BEAMnrc/DOSXYZnrc. The output factors and field width measurements were found to be in agreement with reference measurements to within better than 3.5% for all field sizes down to 2 cm2 for both dosimetric systems, with the beads showing a discrepancy of no more than 2.8% for all field sizes. The results confirm the potential of the beads and fibres as thermoluminescent dosimeters for use in small photon radiation field sizes.

  1. Minimization of small bowel volume within treatment fields utilizing customized belly boards

    SciTech Connect

    Shanahan, T.G.; Mehta, M.P.; Bertelrud, K.L.; Buchler, D.A.; Frank, L.E.; Gehring, M.A.; Kubsad, S.S.; Utrie, P.C.; Kinsella, T.J. )

    1990-08-01

    Thirty consecutive patients with pelvic malignancies were evaluated prospectively for the impact of a novel bowel minimization device (belly board) on the volume of small bowel included within a four field pelvic radiation plan. A customized polyurethane and styrofoam bowel immobilization mold was created for each patient in the prone position. Using contrast enhanced CT scanning on a dedicated radiation treatment planning scanner, we imaged the location of the small intestine in the supine position and the prone position aided by the belly board. Custom in-house interactive image analysis software was developed to allow volumetric determination of small bowel within the treatment portals. The mean small bowel volume was reduced by 66% (299 cm3 to 102 cm3), comparing the standard supine position to the prone position assisted by the belly board. In 13 patients without prior pelvic surgery, the small bowel volume reduction was a more dramatic 74% (334 cm3 to 88 cm3). All patients were found to benefit from this prone belly board setup regardless of body habitus, weight, and age. Compliance with the set-up including use of bladder distension was excellent. All patients completed their pelvic radiotherapy without requiring a treatment break. Weight loss at completion averaged less than 5%. Seventy-six percent of patients experienced little or no diarrhea. This technique is comfortable, inexpensive, highly reproducible, and permits maximal bowel displacement from standard pelvic radiotherapy fields.

  2. Nanowire Metal-Oxide-Semiconductor Field-Effect Transistors with Small Subthreshold Swing Driven by Body-Bias Effect

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Katsuhiko; Fujiwara, Akira

    2012-08-01

    We demonstrate metal-oxide-semiconductor field-effect transistors (MOSFETs) with small subthreshold swing (SS). The MOSFETs have a nanowire channel and three gates. A parasitic bipolar transistor formed in a fully depleted silicon-on-insulator MOSFET applies body bias to the MOSFET's channel and thus reduces the SS. Additionally, triple-gate operation makes the drain voltage smaller and provides current characteristics with a high on/off ratio and small hysteresis. As a result, SSs of the n- and p-type MOSFETs reach 6.6 and 5.2 mV/dec, respectively, in the range of current of six orders of magnitude. These features promise MOSFETs with low power consumption.

  3. Performance of Encounternet Tags: Field Tests of Miniaturized Proximity Loggers for Use on Small Birds.

    PubMed

    Levin, Iris I; Zonana, David M; Burt, John M; Safran, Rebecca J

    2015-01-01

    Proximity logging is a new tool for understanding social behavior as it allows for accurate quantification of social networks. We report results from field calibration and deployment tests of miniaturized proximity tags (Encounternet), digital transceivers that log encounters between tagged individuals. We examined radio signal behavior in relation to tag attachment (tag, tag on bird, tag on saline-filled balloon) to understand how radio signal strength is affected by the tag mounting technique used for calibration tests. We investigated inter-tag and inter-receiver station variability, and in each calibration test we accounted for the effects of antennae orientation. Additionally, we used data from a live deployment on breeding barn swallows (Hirundo rustica erythrogaster) to analyze the quality of the logs, including reciprocal agreement in dyadic logs. We evaluated the impact (in terms of mass changes) of tag attachment on the birds. We were able to statistically distinguish between RSSI values associated with different close-proximity (<5 m) tag-tag distances regardless of antennae orientation. Inter-tag variability was low, but we did find significant inter-receiver station variability. Reciprocal agreement of dyadic logs was high and social networks were constructed from proximity tag logs based on two different RSSI thresholds. There was no evidence of significant mass loss in the time birds were wearing tags. We conclude that proximity loggers are accurate and effective for quantifying social behavior. However, because RSSI and distance cannot be perfectly resolved, data from proximity loggers are most appropriate for comparing networks based on specific RSSI thresholds. The Encounternet system is flexible and customizable, and tags are now light enough for use on small animals (<50 g).

  4. Monte Carlo simulation of small electron fields collimated by the integrated photon MLC

    NASA Astrophysics Data System (ADS)

    Mihaljevic, Josip; Soukup, Martin; Dohm, Oliver; Alber, Markus

    2011-02-01

    In this study, a Monte Carlo (MC)-based beam model for an ELEKTA linear accelerator was established. The beam model is based on the EGSnrc Monte Carlo code, whereby electron beams with nominal energies of 10, 12 and 15 MeV were considered. For collimation of the electron beam, only the integrated photon multi-leaf-collimators (MLCs) were used. No additional secondary or tertiary add-ons like applicators, cutouts or dedicated electron MLCs were included. The source parameters of the initial electron beam were derived semi-automatically from measurements of depth-dose curves and lateral profiles in a water phantom. A routine to determine the initial electron energy spectra was developed which fits a Gaussian spectrum to the most prominent features of depth-dose curves. The comparisons of calculated and measured depth-dose curves demonstrated agreement within 1%/1 mm. The source divergence angle of initial electrons was fitted to lateral dose profiles beyond the range of electrons, where the imparted dose is mainly due to bremsstrahlung produced in the scattering foils. For accurate modelling of narrow beam segments, the influence of air density on dose calculation was studied. The air density for simulations was adjusted to local values (433 m above sea level) and compared with the standard air supplied by the ICRU data set. The results indicate that the air density is an influential parameter for dose calculations. Furthermore, the default value of the BEAMnrc parameter 'skin depth' for the boundary crossing algorithm was found to be inadequate for the modelling of small electron fields. A higher value for this parameter eliminated discrepancies in too broad dose profiles and an increased dose along the central axis. The beam model was validated with measurements, whereby an agreement mostly within 3%/3 mm was found.

  5. Performance of Encounternet Tags: Field Tests of Miniaturized Proximity Loggers for Use on Small Birds

    PubMed Central

    Levin, Iris I.; Zonana, David M.; Burt, John M.; Safran, Rebecca J.

    2015-01-01

    Proximity logging is a new tool for understanding social behavior as it allows for accurate quantification of social networks. We report results from field calibration and deployment tests of miniaturized proximity tags (Encounternet), digital transceivers that log encounters between tagged individuals. We examined radio signal behavior in relation to tag attachment (tag, tag on bird, tag on saline-filled balloon) to understand how radio signal strength is affected by the tag mounting technique used for calibration tests. We investigated inter-tag and inter-receiver station variability, and in each calibration test we accounted for the effects of antennae orientation. Additionally, we used data from a live deployment on breeding barn swallows (Hirundo rustica erythrogaster) to analyze the quality of the logs, including reciprocal agreement in dyadic logs. We evaluated the impact (in terms of mass changes) of tag attachment on the birds. We were able to statistically distinguish between RSSI values associated with different close-proximity (<5m) tag-tag distances regardless of antennae orientation. Inter-tag variability was low, but we did find significant inter-receiver station variability. Reciprocal agreement of dyadic logs was high and social networks were constructed from proximity tag logs based on two different RSSI thresholds. There was no evidence of significant mass loss in the time birds were wearing tags. We conclude that proximity loggers are accurate and effective for quantifying social behavior. However, because RSSI and distance cannot be perfectly resolved, data from proximity loggers are most appropriate for comparing networks based on specific RSSI thresholds. The Encounternet system is flexible and customizable, and tags are now light enough for use on small animals (<50g). PMID:26348329

  6. Additional field verification of convective scaling for the lateral dispersion parameter

    SciTech Connect

    Sakiyama, S.K.; Davis, P.A.

    1988-07-01

    The results of a series of diffusion trials over the heterogeneous surface of the Canadian Precambrian Shield provide additional support for the convective scaling of the lateral dispersion parameter. The data indicate that under convective conditions, the lateral dispersion parameter can be scaled with the convective velocity scale and the mixing depth. 10 references.

  7. Calculation of multicenter electric field gradient integrals over Slater-type orbitals using unsymmetrical one-range addition theorems.

    PubMed

    Guseinov, Israfil I; Görgün, Nurşen Seçkin

    2011-06-01

    The electric field induced within a molecule by its electrons determines a whole series of important physical properties of the molecule. In particular, the values of the gradient of this field at the nuclei determine the interaction of their quadrupole moments with the electrons. Using unsymmetrical one-range addition theorems introduced by one of the authors, the sets of series expansion relations for multicenter electric field gradient integrals over Slater-type orbitals in terms of multicenter charge density expansion coefficients and two-center basic integrals are presented. The convergence of the series is tested by calculating concrete cases for different values of quantum numbers, parameters and locations of orbitals.

  8. Simulation of a small molecule analogue of a lithium ionomer in an external electric field

    SciTech Connect

    Waters, Sara M.; McCoy, John D. Brown, Jonathan R.; Frischknecht, Amalie L.

    2014-01-07

    We have investigated the ion dynamics in lithium-neutralized 2-pentylheptanoic acid, a small molecule analogue of a precise poly(ethylene-co-acrylic acid) lithium ionomer. Atomistic molecular dynamics simulations were performed in an external electric field. The electric field causes alignment of the ionic aggregates along the field direction. The energetic response of the system to an imposed oscillating electric field for a wide range of frequencies was tracked by monitoring the coulombic contribution to the energy. The susceptibility found in this manner is a component of the dielectric susceptibility typically measured experimentally. A dynamic transition is found and the frequency associated with this transition varies with temperature in an Arrhenius manner. The transition is observed to be associated with rearrangements of the ionic aggregates.

  9. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    PubMed

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La0.7Sr0.3MnO3 (LSMO) and Nd0.5Sr0.5MnO3, in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields.

  10. Small-animal dark-field radiography for pulmonary emphysema evaluation

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Meinel, Felix G.; Hellbach, Katharina; Bech, Martin; Velroyen, Astrid; Müller, Mark; Bamberg, Fabian; Nikolaou, Konstantin; Reiser, Maximilian F.; Yildirim, Ali Ã.-.; Eickelberg, Oliver; Pfeiffer, Franz

    2014-03-01

    Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide and emphysema is one of its main components. The disorder is characterized by irreversible destruction of the alveolar walls and enlargement of distal airspaces. Despite the severe changes in the lung tissue morphology, conventional chest radiographs have only a limited sensitivity for the detection of mild to moderate emphysema. X-ray dark-field is an imaging modality that can significantly increase the visibility of lung tissue on radiographic images. The dark-field signal is generated by coherent, small-angle scattering of x-rays on the air-tissue interfaces in the lung. Therefore, morphological changes in the lung can be clearly visualized on dark-field images. This is demonstrated by a preclinical study with a small-animal emphysema model. To generate a murine model of pulmonary emphysema, a female C57BL/6N mouse was treated with a single orotracheal application of porcine pancreatic elastase (80 U/kg body weight) dissolved in phosphate-buffered saline (PBS). Control mouse received PBS. The mice were imaged using a small-animal dark-field scanner. While conventional x-ray transmission radiography images revealed only subtle indirect signs of the pulmonary disorder, the difference between healthy and emphysematous lungs could be clearly directly visualized on the dark-field images. The dose applied to the animals is compatible with longitudinal studies. The imaging results correlate well with histology. The results of this study reveal the high potential of dark-field radiography for clinical lung imaging.

  11. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Ansell, Steve; Lindsay, Patricia E.; Jaffray, David A.

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16 mm at isocenter, with simulations suggesting this error could be reduced to 0.20 mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from 0.56+/- 0.05 mm (mean  ±  SD) to 0.05+/- 0.05 mm for an isotropic imaging voxel size of 0.1 mm.

  12. A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films

    SciTech Connect

    Hassani, Hossein; Nedaie, Hassan Ali; Zahmatkesh, Mohammad Hassan; Shirani, Kaveh

    2014-04-01

    The use of small field sizes is increasingly becoming important in radiotherapy particularly since the introduction of stereotactic radiosurgery and intensity-modulated radiation therapy techniques. The reliable measurement of delivered dose from such fields with conventional dosimeters, such as ionization chambers, is a challenging task. In this work, methacrylic and ascorbic acid in gelatin initiated by copper polymer gel dosimeters are employed to measure dose in 3 dimensions. Field sizes of 5 × 5 mm{sup 2}, 10 × 10 mm{sup 2}, 20 × 20 mm{sup 2}, and 30 × 30 mm{sup 2} are investigated for a 6-MV x-rays. The results show an agreement with Gafchromic film, with some variation in measured doses near the edge of the fields, where the film data decrease more rapidly than the other methods. Dose penumbra widths obtained with gel dosimeters and Gafchormic film were generally in agreement with each other. The results of this work indicate that polymer gel dosimetry could be invaluable for the quantification of the 3-dimensional dose distribution in small field size.

  13. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  14. Thiopeptin, a New Feed-Additive Antibiotic: Biological Studies and Field Trials

    PubMed Central

    Mine, K.; Miyairi, N.; Takano, N.; Mori, S.; Watanabe, N.

    1972-01-01

    Thiopeptin is a new antibiotic, produced by Streptomyces tateyamensis and developed solely for animal use as a feed additive. The antibiotic content in animal tissue and feed was assayed in terms of the antimicrobial activity against Mycoplasma laidlawii A. This antibiotic was found to be relatively nontoxic in rats and mice. In chickens, this antibiotic is excreted into feces within 48 hr of administration and is not absorbed in tissue. It is well tolerated in both broilers and swine and is highly stable in animal feed. Thiopeptin-supplemented feed contributes to the improvement of weight gain, feed efficiency in chickens and swine, and the egg performance in layers. Thus, thiopeptin, when used as a feed additive, is quite suitable for supplementing animal nutrition. PMID:4680812

  15. A scheme for assessing the performance characteristics of small field-of-view gamma cameras.

    PubMed

    Bhatia, B S; Bugby, S L; Lees, J E; Perkins, A C

    2015-02-01

    Existing protocols for assessing the performance characteristics of large field-of-view (LFOV) gamma cameras can be inappropriate and require modification for use with small field-of-view (SFOV) gamma camera systems. This communication proposes a generic scheme suitable for evaluating the performance characteristics of SFOV gamma cameras, based on modifications to the standard procedures of NEMA NU1-2007. Key differences in methodology between tests for LFOV and SFOV gamma cameras are highlighted along with the rationale for these changes. It is envisaged that this scheme will provide more appropriate methods for equipment characterisation, ensuring quality and consistency for all SFOV cameras.

  16. An Approach to the Classification of Potential Reserve Additions of Giant Oil Fields of the World

    USGS Publications Warehouse

    Klett, T.R.; Tennyson, M.E.

    2008-01-01

    This report contains slides and notes for slides for a presentation given to the Committee on Sustainable Energy and the Ad Hoc Group of Experts on Harmonization of Fossil Energy and Mineral Resources Terminology on 17 October 2007 in Geneva, Switzerland. The presentation describes the U.S. Geological Survey study to characterize and quantify petroleum-reserve additions, and the application of this study to help classify the quantities.

  17. Field Method for Detection of Metal Deactivator Additive in Jet Fuel

    DTIC Science & Technology

    2009-04-01

    sulphonic acid on the silica support. The SCX stationary phase is a silica gel with propylbenzenesulfonyl groups bound to the silica, Figure 6. S O O O...They can be grouped into three main categories based on the property of the additive they are detecting. The categories are the; a. Dispersant...was less prominent when lower concentrations of MDA were used. The elution properties of the copper and nickel MDA complexes was examined in a range

  18. The influence of polyvinylacetate additive in water on turbulent velocity field and drag reduction

    NASA Astrophysics Data System (ADS)

    Lodes, A.; Macho, V.

    1989-06-01

    The effect of polymer concentration on drag reduction was studied experimentally with diluted water solutions of polyvinylacetate in a 2.4 cm I. D. pipe. The instantaneous local velocities of the velocity fields were measured by a one-channel differential laser-Doppler anemometer DISA Mark II, with forward scattering. Concentrations of water-polyvinylacetate over the range from 10 to 2,000 ppm were used. The drag reduction coefficient is proportional to the concentration and hydrolysis degree of the saponificated polyvinylacetate (PVAC) employed. A mechanical degradation in the turbulent shear flow was not observed.

  19. Application of a radiophotoluminescent glass plate dosimeter for small field dosimetry.

    PubMed

    Aaki, Fujio; Ishidoya, Tatsuya; Ikegami, Tohru; Moribe, Nobuyuki; Yamashita, Yasuyuki

    2005-06-01

    We have recently developed a prototypical radiophotoluminescent glass plate dosimeter (GPD) system as a device for small field dosimetry. The purpose of this study is to examine the usefulness of the GPD system for small field dosimetry. The profiles measured with the GPD were evaluated by comparing them to those from Kodak X-Omat V and GAFCROMIC XR type R film dosimeters for 2, 5, 9, and 15 mm circular collimators created by a linear accelerator-based radiosurgery system. The GPD output factors were compared with those of various detectors including an ion chamber, a p-type silicon diode detector, a glass rod dosimeter (GRD), and a diamond detector. The results measured with the GPD were also confirmed by comparing them to those from Monte Carlo simulations. The accuracy of a simulated beam is validated by the excellent agreement between Monte Carlo calculated and measured central axis depth-dose curves for 9- and 15 mm circular collimators using 4- and 10 MV photon beams. The GPD profiles show almost the same full width at half maximum as those of film dosimeters and Monte Carlo simulations at 4- and 10 MV photon beams, but a little narrower penumbrae than the film dosimeters and Monte Carlo simulations. The output factors measured with the GPD are in good agreement with those from a diode detector, a diamond detector, and the GRD with a small active volume and Monte Carlo simulations, except for a very small 2 mm circular collimator. It was found that the GPD is a very useful detector for small field dosimetry.

  20. 34 CFR 350.55 - What are the additional considerations for selecting Field-Initiated Project applications for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What are the additional considerations for selecting Field-Initiated Project applications for funding? 350.55 Section 350.55 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION DISABILITY...

  1. 34 CFR 350.55 - What are the additional considerations for selecting Field-Initiated Project applications for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Field-Initiated Project applications for funding? 350.55 Section 350.55 Education Regulations of the..., DEPARTMENT OF EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM How Does the Secretary Make an Award? § 350.55 What are the additional considerations for selecting...

  2. Characterization of Hardening by Design Techniques on Commercial, Small Feature Sized Field-Programmable Gate Arrays

    DTIC Science & Technology

    2009-03-01

    AFIT/GE/ENG/09-43 CHARACTERIZATION OF HARDENING BY DESIGN TECHNIQUES ON COMMERCIAL, SMALL FEATURE SIZED FIELD-PROGRAMMABLE GATE ARRAYS THESIS...The purpose of which is to determine the radiation effects and characterize the improvements of various hardening by design techniques. The...Distributed RAM memory elements that are loaded both with ECC and non-error corrected data. The circuit is designed to check for errors in memory data, stuck

  3. Experimental Setup for Magnetic-Field Tests of Small-Size Light Sensors at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Nickle, Cameron

    2013-10-01

    In preparation for the Electron Ion Collider, small-size sensors, such as Silicon photo-multipliers (SiPM) and Multi-Channel Plate (MCP) photo-multipliers are being considered for use in a Detection of Internally Reflected Cherenkov Light (DIRC) detector. Since DIRC will be operated in the strong field of a magnetic spectrometer, the gain of the sensors must be evaluated in high magnetic fields. A dedicated test facility, which makes use of a solenoid magnet with magnetic fields of up to 4.7 T, is being developed at Jefferson Labs. This paper describes the configuration and operation of an entirely non-magnetic dark box that will house the sensors during the tests and allows the sensors to be rotated about two axes relative to the field. This paper also describes the development of a ROOT-based analysis method to extract the gain of SiPMs from raw Analog-to-Digital-Converter (ADC) spectra as a function of the intensity of the magnetic field and the sensor's relative to angle to the field. The dark box and analysis method was tested with Hamamatsu mulitpixel SiPMs and our results are consistent with previous measurements of the same sensors. The methodology developed in this work will be routinely used for the upcoming high-B field tests.

  4. Estimating Soil Moisture Distributions across Small Farm Fields with ALOS/PALSAR

    PubMed Central

    Oki, Kazuo

    2016-01-01

    The ALOS (advanced land observing satellite) has an active microwave sensor, PALSAR (phased array L-band synthetic aperture radar), which has a fine resolution of 6.5 m. Because of the fine resolution, PALSAR provides the possibility of estimating soil moisture distributions in small farmlands. Making such small-scale estimates has not been available with traditional satellite remote sensing techniques. In this study, the relationship between microwave backscattering coefficient (σ) measured with PALSAR and ground-based soil moisture was determined to investigate the performance of PALSAR for estimating soil moisture distribution in a small-scale farmland. On the ground at a cabbage field in Japan in 2008, the soil moisture distribution of multiple soil layers was measured using time domain reflectometry when the ALOS flew over the field. Soil moisture in the 0–20 cm soil layer showed the largest correlation coefficient with σ (r = 0.403). The σ values also showed a strong correlation with the ground surface coverage ratio by cabbage plants. Our results suggested that PALSAR could estimate soil moisture distribution of the 0–20 cm soil layer across a bare field and a crop coverage ratio when crops were planted. PMID:27529080

  5. Pairwise-additive force fields for selected aqueous monovalent ions from adaptive force matching

    PubMed Central

    Li, Jicun; Wang, Feng

    2015-01-01

    Simple non-polarizable potentials were developed for Na+, K+, Cl−, and Br− using the adaptive force matching (AFM) method with ab initio MP2 method as reference. Our MP2-AFM force field predicts the solvation free energies of the four salts formed by the ions with an error of no more than 5%. Other properties such as the ion-water radial distribution functions, first solvation shell water tilt angle distributions, ion diffusion constants, concentration dependent diffusion constant of water, and concentration dependent surface tension of the solutions were calculated with this potential. Very good agreement was achieved for these properties. In particular, the diffusion constants of the ions are within 6% of experimental measurements. The model predicts bromide to be enriched at the interface in the 1.6M KBr solution but predicts the ion to be repelled for the surface at lower concentration. PMID:26590540

  6. Testing the Addition of Topographic Features for Field Scale Infiltration Excess Water Quality Modeling in SWAT

    NASA Astrophysics Data System (ADS)

    Collick, A.; Easton, Z. M.; Kleinman, P. J. A.; Sommerlot, A.; White, M. J.; Harmel, D.; Fuka, D.

    2014-12-01

    Watershed planners and managers need reliable tools that can capture the spatial and temporal complexity of agricultural landscapes, and water quality models are increasingly relied upon to represent P loss from agricultural watersheds. While a significant amount of modeling work has attempted to incorporate factors controlling P loss (e.g. representing solubility, manure types, timing and application type), these models still typically require significant calibration and are thus difficult to apply meaningfully in areas without copious data with which to calibrate. This is partially because these models were never really intended as field scale tools, while we are trying to use them to define different hydrologic pathways, area weighted potential energy (slopes and saturated conductivities), and the resulting lag time of P in different transport states. The movement of water within the landscape as surface (or near-surface) storm runoff and interflow is driven by gravity, topography, contributing area and soil and landuse characteristics, which play roles in concentrating water flows. Soil surveys have played a key role in the development of pedology and spatially derived pedon soil maps have become valuable datasets for natural resource management. Unfortunately, the soil surveys, commonly available at ~1:20,000 scale, are not designed to provide the high-resolution models of the soil continuum required in field scale environmental modeling applications and site specific crop and water quality management. The goal of this project is to test a methodology designed initially for representing saturation excess hydrology in the SWAT model to incorporate topographic attributes, and resulting spatially explicit soil morphology, that are missing from standard SWAT model initializations.

  7. SU-E-T-323: Dosimetric Evaluation of Small Fields for SBRT Treatment

    SciTech Connect

    Gupta, R; Eldib, A; Wang, B; Ma, C; Li, J

    2015-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) is commonly employed to treat small targets for effective tumor control with radiation beams of small field sizes. The goal of this work was to evaluate dosimetrically a treatment planning system (TPS) by comparing the calculated dose for SBRT treatment with ion-chamber measurements. Methods: 3D images of a solid-water phantom with a pinpoint ion-chamber (0.015cm3) inside were acquired with a CT scanner. Active volume of the ion-chamber was delineated on CT images. Targets with a diameter of 1.5cm, 2cm, 3cm, 4cm and 5cm were drawn around the chamber. 3DCRT plans were generated for each target size with centrally opened 6MV beams and off-axis beams by changing the isocenter location, respectively, using a TPS with the Analytical Anisotropic Algorithm. A 21iX linear accelerator was employed for plan delivery. The measured and calculated doses were compared. To evaluate the dose calculations in heterogeneity for small fields SBRT treatment, similar plans were also generated and delivered on a heterogeneous thoracic phantom for 5 different size targets in the lung. Results: Dose comparisons between measurements and calculations showed 5.2%, 1.88%, 1.34%, 1.01% and 0.85% difference for SBRT plans with small central axis beams and 0.96%, 0.15%, 0.58%, 0.22% and 0.77% difference for plans with off-axis beams for five different size targets. For the thoracic phantom, the differences on dose between measurements and calculations are bigger, which are 8%, 5.9%, 4.5%, 3.9% and 4.5%, respectively. Conclusion: Dose verification for small fields used in the SBRT treatment has been performed based on ion-chamber measurements in both homogenous and heterogeneous phantoms. More than a 5% difference has been observed in the heterogeneous phantom, especially for very small fields. To meet the ICRU recommendation on a dose difference of no more than 5%, some corrections on the commissioning parameters of the TPS are needed.

  8. WE-G-BRD-05: Inline Magnetic Fields Enhance Tumor Dose for Small Lung Cancers

    SciTech Connect

    Oborn, B; Ge, Y; Hardcastle, N; Metcalfe, P; Keall, P

    2015-06-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: 9 clinical lung plans were recalculated using Monte Carlo methods and external inline (parallel to the beam direction) magnetic fields of 0.5 T, 1.0 T and 3 T were included. Three plans were 6MV 3D-CRT and six were 6MV IMRT. The GTV’s ranged from 0.8 cc to 73 cc, while the PTV ranged from 1 cc to 180 cc. Results: The inline magnetic field has a moderate impact in lung dose distributions by reducing the lateral scatter of secondary electrons and causing a small local dose increase. Superposition of multiple small beams acts to superimpose the small dose increases and can lead to significant dose enhancements, especially when the GTV is low density. Two plans with very small, low mean density GTV’s (<1 cc, ρ(mean)<0.35g/cc) showed uniform increases of 16% and 23% at 1 T throughout the PTV. Three plans with moderate mean density PTV’s (3–13 cc, ρ(mean)=0.58–0.67 g/cc) showed 6% mean dose enhancement at 1 T in the PTV, however not uniform throughout the GTV/PTV. Replanning would benefit these cases. The remaining 5 plans had large dense GTV’s (∼ 1 g/cc) and so only a minimal (<2%) enhancement was seen. In general the mean dose enhancement at 0.5 T was 60% less than 1 T, while 5–50% higher at 3 T. Conclusions: A paradigm shift in the efficacy of small lung tumor radiotherapy is predicted with future inline MRI-linac systems. This will be achieved by carefully taking advantage of the reduction of lateral electronic disequilibrium withing lung tissue that is induced naturally inside strong inline magnetic fields.

  9. The practical application of scintillation dosimetry in small-field photon-beam radiotherapy.

    PubMed

    Burke, Elisa; Poppinga, Daniela; Schönfeld, Andreas A; Harder, Dietrich; Poppe, Björn; Looe, Hui Khee

    2017-03-22

    Plastic scintillation detectors are a new instrument of stereotactic photon-beam dosimetry. The clinical application of the plastic scintillation detector Exradin W1 at the Siemens Artiste and Elekta Synergy accelerators is a matter of current interest. In order to reduce the measurement uncertainty, precautions have to be taken with regard to the geometrical arrangement of the scintillator, the light-guide fiber and the photodiode in the radiation field. To determine the "Cerenkov light ratio" CLR with a type A uncertainty below 1%, the Cerenkov calibration procedure for small-field measurements based on the two-channel spectral method was used. Output factors were correctly measured with the W1 for field sizes down to 0.5×0.5cm(2) with a type A uncertainty of 1.8%. Measurements of small field dose profiles and percentage depth dose curves were carried out with the W1 using automated water phantom profile scans, and a type A uncertainty for dose maxima of 1.4% was achieved. The agreement with a synthetic diamond detector (microDiamond, PTW Freiburg) and a plane parallel ionization chamber (Roos chamber, PTW Freiburg) in relative dose measurements was excellent. In oversight of all results, the suitability of the plastic scintillation detector Exradin W1 for clinical dosimetry under stereotactic conditions, in particular the tried and tested procedures for CLR determination, output factor measurement and automated dose profile scans in water phantoms, have been confirmed.

  10. Interband π plasmon of graphene: strong small-size and field-enhancement effects.

    PubMed

    Hu, Jinlian; Zeng, Haibo; Wang, Cong; Li, Zhigang; Kan, Caixia; Liu, Youwen

    2014-11-14

    The interband π plasmon of graphene has energy corresponding to the ultraviolet (UV) wave band, and hence is promising for UV nanophotonics and nanooptoelectronics. However, its special size effect and electric field-enhancement effect have not been well understood. Here, we have investigated the far-field optical extinction and near-field enhancement features of the interband π plasmon in a graphene nanodisk using discrete dipole approximation and finite-difference time-domain methods. Very interestingly, it has been found that the in-plane (transverse mode) optical extinction peak of monolayer graphene firstly significantly red shifts with increasing diameter, but then tends to a saturation value when the diameter is above 20 nm, showing a strong small-size-sensitive effect. Furthermore, the transverse mode optical extinction peak obviously blue shifts with increasing thickness when the thickness is relatively small. Significantly, the corresponding local electric field enhancement factor produced by the plasmon, which can be found to be as large as several tens, firstly increases with the increase of the size and then reaches a maximum value at only several nanometers in size. Such an ultrasmall-size-sensitive plasmon in the UV region endows graphene dots with new promising potential uses in ultrasmall photo-electric devices and nanoantennas, and in UV enhancers.

  11. Feasibility of lateral dose profile measurements in a small field using TLDs.

    PubMed

    Zhang, Bailin; Zhu, Jinhan; Li, Yinghui; Chen, Shaowen; Chen, Lixin; Liu, Xiaowei

    2015-02-07

    The purpose of this work was to study the feasibility of lateral dose profile measurements in a small field using thermoluminescent dosimeters (TLDs) and to evaluate the impact of the field size on the absorbed dose ratio factor fmd of LiF and Al2O3 TLDs. The Monte Carlo package BEAM/EGSNRC was used to simulate the lateral dose profile in solid water phantoms (RW3 slab phantom) with various field sizes beyond the build-up region for 6 MV x-rays, and a LiF : Mg, Cu, P (GR-200) dosimeter with dimensions of 0.1  ×  0.1  ×  0.1 cm(3) was used to measure the lateral dose profile under the same conditions as the Monte Carlo simulations. To enable comparisons between dosimeters, Gafchromic EBT3 films were used. The results indicate that (1) the measured results are in agreement with the simulated results within the uncertainty of the simulation; (2) the values of fmd for Al2O3 and LiF in a 1  ×  1 cm(2) field are 2.8% and 1.6% less, respectively, than those in a 10  ×  10 cm(2) field; and (3) within the 80% profile region, the dose differences between TLDs and solid water are less than 1%. In the 80-10% profile region, the TLD results are in agreement with the absorbed doses in the solid water within 1 mm. It is generally acceptable to ignore the impact of field size on the absorbed dose ratio factor fmd when the field sizes are larger than 1  ×  1 cm(2) for LiF and 2  ×  2 cm(2) for Al2O3. For 6 MV x-rays, the small GR-200 chip can be used to measure the relative lateral dose profiles of small fields.

  12. Comparison of small-field behavior in Mg B2 , Low- and high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Pan, Alexey V.; Dou, Shi X.

    2006-02-01

    Different types of superconductors have been investigated at small magnetic fields (Ba) over wide temperature (T) ranges at different Ba orientations. It has been shown that the temperature dependence of the characteristic field (B*) , separating the Ba -independent critical current density (Jc) plateau (single vortex pinning regime) and the region with Jc(Ba) (collective pinning), can be attributed either to the temperature dependence of the magnetic penetration depth for Nb-film and MgB2 bulk superconductors, or to thermally activated processes for Bi-based superconductors and YBa2Cu3O7-δ superconducting films. In both cases the vortex pinning influence appears to have a secondary role, affecting the effective vortex depinning radius. An exception in such B*(T) behavior is considered for Nb film when the magnetic field has its considerable component applied perpendicular to the main surface of the film.

  13. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    SciTech Connect

    Filipuzzi, M; Garrigo, E; Venencia, C; Germanier, A

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculate the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the

  14. Formation of a small impact structure discovered within the Agoudal meteorite strewn field, Morocco

    NASA Astrophysics Data System (ADS)

    Lorenz, C. A.; Ivanova, M. A.; Artemieva, N. A.; Sadilenko, D. A.; Chennaoui Aoudjehane, H.; Roschina, I. A.; Korochantsev, A. V.; Humayun, M.

    2015-01-01

    A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE-NW-oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3-4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10-30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.

  15. THE INITIAL MASS FUNCTION OF FIELD OB STARS IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Lamb, J. B.; Oey, M. S.; Graus, A. S.; Adams, F. C.; Segura-Cox, D. M.

    2013-02-15

    Some theories of star formation suggest massive stars may only form in clustered environments, which would create a deficit of massive stars in low-density environments. Observationally, Massey finds such a deficit in samples of the field population in the Small and Large Magellanic Clouds, with an initial mass function (IMF) slope of {Gamma}{sub IMF} {approx} 4. These IMF measurements represent some of the largest known deviations from the standard Salpeter IMF slope of {Gamma}{sub IMF} = 1.35. Here, we carry out a comprehensive investigation of the mass function above 20 M {sub Sun} for the entire field population of the Small Magellanic Cloud (SMC), based on data from the Runaways and Isolated O Type Star Spectroscopic Survey of the SMC (RIOTS4). This is a spatially complete census of the entire field OB star population of the SMC obtained with the IMACS multi-object spectrograph and MIKE echelle spectrograph on the Magellan telescopes. Based on Monte Carlo simulations of the evolved present-day mass function, we find the slope of the field IMF above 20 M {sub Sun} is {Gamma}{sub IMF} = 2.3 {+-} 0.4. We extend our IMF measurement to lower masses using BV photometry from the OGLE II survey. We use a statistical approach to generate a probability distribution for the mass of each star from the OGLE photometry, and we again find {Gamma}{sub IMF} = 2.3 {+-} 0.6 for stellar masses from 7 M {sub Sun} to 20 M {sub Sun }. The discovery and removal of ten runaways in our RIOTS4 sample steepens the field IMF slope to {Gamma}{sub IMF} = 2.8 {+-} 0.5. We discuss the possible effects of binarity and star formation history on our results, and conclude that the steep field massive star IMF is most likely a real effect.

  16. Modulation of chicken intestinal immune gene expression by small cationic peptides as feed additives during the first week posthatch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been investigating modulation strategies tailored around the selective stimulation of the host’s immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soi...

  17. A Comparative Kirkwood-Buff Study of Aqueous Methanol Solutions Modeled by the CHARMM Additive and Drude Polarizable Force Fields

    PubMed Central

    Lin, Bin; He, Xibing; MacKerell, Alexander D.

    2013-01-01

    A comparative study on aqueous methanol solutions modeled by the CHARMM additive and Drude polarizable force fields was carried out by employing Kirkwood-Buff analysis. It was shown that both models reproduced the experimental Kirkwood-Buff integrals and excess coordination numbers adequately well over the entire concentration range. The Drude model showed significant improvement over the additive model in solution densities, partial molar volumes, excess molar volumes, concentration-dependent diffusion constants, and dielectric constants. However, the additive model performed somewhat better than the Drude model in reproducing the activity derivative, excess molar Gibbs energy and excess molar enthalpy of mixing. This is due to the additive achieving a better balance among solute-solute, solute-solvent, and solvent-solvent interactions, indicating the potential for improvements in the Drude polarizable alcohol model. PMID:23947568

  18. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    SciTech Connect

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-12-15

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm

  19. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.

    PubMed

    McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J

    2015-11-01

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20 mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60 mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diode vs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the

  20. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.

    PubMed

    McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J

    2015-11-08

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the

  1. A RADIAL VELOCITY AND CALCIUM TRIPLET ABUNDANCE SURVEY OF FIELD SMALL MAGELLANIC CLOUD GIANTS

    SciTech Connect

    De Propris, Roberto; Rich, R. Michael; Mallery, Ryan C.; Howard, Christian D.

    2010-05-10

    We present the results of a pilot wide-field radial velocity and metal abundance survey of red giants in 10 fields in the Small Magellanic Cloud (SMC). The targets lie at projected distances of 0.9 and 1.9 kpc from the SMC center (m - M = 18.79) to the north, east, south, and west. Two more fields are to the east at distances of 3.9 and 5.1 kpc. In this last field, we find only a few to no SMC giants, suggesting that the edge of the SMC in this direction lies approximately at 6 kpc from its center. In all eastern fields, we observe a double peak in the radial velocities of stars, with a component at the classical SMC recession velocity of {approx}160 km s{sup -1} and a high-velocity component at about 200 km s{sup -1}, similar to observations in H I. In the most distant field (3.9 kpc), the low-velocity component is at 106 km s{sup -1}. The metal abundance distribution in all fields is broad and centered at about [Fe/H] {approx}-1.25, reaching to solar and possibly slightly supersolar values and down to [Fe/H] of about -2.5. In the two innermost (0.9 kpc) northern and southern fields, we observe a secondary peak at metallicities of about {approx}-0.6. This may be evidence of a second episode of star formation in the center, possibly triggered by the interactions that created the Stream and Bridge.

  2. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  3. Effects of solvent additive on “s-shaped” curves in solution-processed small molecule solar cells

    PubMed Central

    Chou, Shu-Hua; Huang, Ye

    2016-01-01

    A novel molecular chromophore, p-SIDT(FBTThCA8)2, is introduced as an electron-donor material for bulk heterojunction (BHJ) solar cells with broad absorption and near ideal energy levels for the use in combination with common acceptor materials. It is found that films cast from chlorobenzene yield devices with strongly s-shaped current–voltage curves, drastically limiting performance. We find that addition of the common solvent additive diiodooctane, in addition to facilitating crystallization, leads to improved vertical phase separation. This yields much better performing devices, with improved curve shape, demonstrating the importance of morphology control in BHJ devices and improving the understanding of the role of solvent additives. PMID:28144323

  4. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect

    Gary Blythe

    2007-05-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing

  5. Introducing a high gravity field to enhance infiltration of small molecules into polyelectrolyte multilayers.

    PubMed

    Liu, Xiaolin; Zhao, Kun; Jiang, Chao; Wang, Yue; Shao, Lei; Zhang, Yajun; Shi, Feng

    2015-07-28

    Loading functional small molecules into nano-thin films is fundamental to various research fields such as membrane separation, molecular imprinting, interfacial reaction, drug delivery etc. Currently, a general demand for enhancing the loading rate without affecting the film structures exists in most infiltration phenomena. To handle this issue, we have introduced a process intensification method of a high gravity technique, which is a versatile energy form of mechanical field well-established in industry, into the investigations on diffusion/infiltration at the molecular level. By taking a polyelectrolyte multilayer as a model thin film and a photo-reactive molecule, 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt (DAS), as a model small functional molecule, we have demonstrated remarkably accelerated adsorption/infiltration of DAS into a poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer by as high as 20-fold; meanwhile, both the film property of the multilayer and photoresponsive-crosslinking function of DAS were not disturbed. Furthermore, the infiltration of DAS and the surface morphology of the multilayer could be tuned based on their high dependence on the intensity of the high gravity field regarding different rotating speeds. The mechanism of the accelerated adsorption/infiltration under the high gravity field was interpreted by the increased turbulence of the diffusing layer with the thinned laminar boundary layer and the stepwise delivery of the local concentration gradient from the solution to the interior of the multilayer. The introduction of mechanical field provides a simple and versatile strategy to address the paradox of the contradictory loading amount and loading rate, and thus to promote applications of various membrane processes.

  6. Small grains: a key to high-field applications of granular Ba-122 superconductors?

    NASA Astrophysics Data System (ADS)

    Hecher, J.; Baumgartner, T.; Weiss, J. D.; Tarantini, C.; Yamamoto, A.; Jiang, J.; Hellstrom, E. E.; Larbalestier, D. C.; Eisterer, M.

    2016-02-01

    The grain boundaries (GBs) of high-temperature superconductors (HTSs) intrinsically limit the maximum achievable inter-grain current density ({J}{{c}}), when the misalignment between the crystallographic axes of adjacent grains exceeds a certain value. A prominent effect resulting from large-angle GBs is a hysteresis of {J}{{c}} between the increasing and decreasing field branches. Here, we investigate this feature for K- and Co-doped Ba-122 polycrystalline bulks with systematically varied grain size and find that the widely accepted explanation for this effect—the return field of the grains—fails. We use large-area scanning Hall-probe microscopy to distinguish {J}{{c}} from the intra-granular current density ({J}{{G}}) in order to clarify their interactions. Measurements on Ba-122 bulks reveal that a large {J}{{c}} results from a small {J}{{G}} as well as small grains. An extended version of the model proposed by Svistunov and D’yachenko is successfully applied to quantitatively evaluate this behavior. The excellent agreement between the model and experiments suggests that the GBs limit the macroscopic current in all of the samples and that the inter-grain coupling is governed by Josephson tunneling. The predictions of the model are promising in view of realizing high-field HTS magnets. Our main result is that the field dependence of the {J}{{c}} of an untextured wire can be significantly reduced by reducing the grain size, which results in much higher currents at high magnetic fields. This result is not limited to the investigated iron-based materials and is therefore of interest in the context of other HTS materials.

  7. Evaluation of beam modeling for small fields using a flattening filter-free beam.

    PubMed

    Kawahara, Daisuke; Ozawa, Shuichi; Nakashima, Takeo; Aita, Masamichi; Tsuda, Shintaro; Ochi, Yusuke; Okumura, Takuro; Masuda, Hirokazu; Ohno, Yoshimi; Murakami, Yuji; Nagata, Yasushi

    2017-03-01

    The characteristics of a flattening filter-free (FFF) beam are different from those of a beam with a flattening filter. For small-field dosimetry, the beam data needed by the radiation treatment planning system (RTPS) includes the percent depth dose (PDD), off-center ratio (OCR), and output factor (OPF) for field sizes down to 3 × 3 cm(2) to calculate the beam model. The purpose of this study was to evaluate the accuracy of calculations for the FFF beam by the Eclipse(™) treatment planning system for field sizes smaller than 3 × 3 cm(2) (2 × 2 and 1 × 1 cm(2)). We used 6X and 10X FFF beams by the Varian TrueBeam(™) to produce. The AAA and AXB algorithms of the Eclipse were used to compare the Monte Carlo (MC) calculation and the measurements from three dosimeters, a diode detector, a PinPoint dosimeter, and EBT3 film. The PDD curves and the penumbra width in the OCR calculated by the Eclipse, measured data, and those from the MC calculations were in good agreement to within ±2.8 % and ±0.6 mm, respectively. However, the difference in the OPF values between AAA and AXB for a field size of 1 × 1 cm(2) was 5.3 % for the 6X FFF beam and 7.6 % for the 10X FFF beam. Therefore, we have to confirm the small field data that is included for the RTPS commission procedures.

  8. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    NASA Astrophysics Data System (ADS)

    Shimizu, T.

    2015-10-01

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  9. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    SciTech Connect

    Shimizu, T.

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  10. Theory of small-scale density and electric field fluctuations in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.

    1992-01-01

    Recently, it has been reported that small-scale (lambda about 0.1-2 km) density irregularities occur during 100-Hz electric field bursts in the nightside ionosphere of Venus. This paper provides a detailed analysis of the lower-hybrid-drift instability as a mechanism to generate the observed irregularities. A fully electromagnetic theory is developed that is relevant to the finite beta plasma in Venus's ionosphere and includes collisional effects (e.g., electron-ion, electron-neutral, and ion-neutral collisions). The key features of the analysis that favor this instability are the following: (1) it is a flute mode and propagates orthogonal to the ambient magnetic field; (2) it is a relatively short wavelength mode and the Doppler-shifted frequency can be greater than about 100 Hz; (3) it can produce both electric field and density fluctuations, as well as magnetic field fluctuations in a finite beta plasma; and (4) it is most unstable in low-beta plasmas so that it is likely to occur in the low-density, high-magnetic-field ionospheric holes. These features are consistent with observational results.

  11. An Inverse MOOC Model: Small Virtual Field Geology Classes with Many Teachers (Invited)

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2013-12-01

    In the Massive Open Online Courses (MOOCs) mode of instruction, one or a small group of collaborating instructors lecture online to a large (often extremely large) number of students. We are experimenting with an inverse concept: an online classroom in which a small group of collaborating students are taught by dozens of collaborating instructors. This experiment is part of a new NSF TUES Type 3 project titled 'Google Earth for Onsite and Distance Education (GEODE).' Among the goals of the project are the development of an online course called the 'Grand Tour.' We are inviting dozens of colleagues to record virtual field trips (VFTs) and upload them to Google Earth. Students enrolled in the course will be assigned to a small group and tasked with a research project--for example to write a report on foreland thrust belts. They will select a small subset of available VFTs to follow and will be scaffolded by virtual specimens, emergent cross sections, analytical simulations (virtual tricorders), and a game style environment. Instant feedback based on auto-logging will enable adaptive learning. The design is suited to both onsite and distance education and will facilitate access to iconic geologic sites around the world to persons with mobility constraints. We invite input from the community to help guide the design phase of this project. Prototypes of the above-listed learning resources have already been developed and are freely available at http://www.DigitalPlanet.org.

  12. Temperature and Magnetic Field Dependence of Critical Current Density of YBCO with Varying Flux Pinning Additions (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    coverage corresponding to M phase 1 nm thickness was found to be necessary to increase compared to YBCO . The op- timal layer thickness for each M phase was...kept constant in this experiment: , Y211 0.8 nm , and [17]. Using the optimal M phase thickness, the YBCO layer was also systematically varied for...AFRL-RZ-WP-TP-2010-2083 TEMPERATURE AND MAGNETIC FIELD DEPENDENCE OF CRITICAL CURRENT DENSITY OF YBCO WITH VARYING FLUX PINNING ADDITIONS

  13. Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application.

    PubMed

    Leu, Christian; Singer, Heinz; Stamm, Christian; Müller, Stephan R; Schwarzenbach, René P

    2004-07-15

    Diffuse losses from agricultural fields are a major input source for herbicides in surface waters. In this and in a companion paper, we present the results of a comprehensive field study aimed at assessing the overall loss dynamics of three model herbicides (i.e., atrazine, dimethenamid, and metolachlor) from a small agricultural catchment (2.1 km2) and evaluating the relative contributions of various fields having different soil and topographical characteristics. An identical mixture of the three model herbicides as well as an additional pesticide for identification of a given field were applied within 12 h on 13 cornfields (total area approximately 12 ha), thus ensuring that the herbicides were exposed to identical meteorological conditions. After the simultaneous application, the concentrations of the compounds were monitored in the soils and at the outlets of three subcatchments containing between 4 and 5 cornfields each. Particular emphasis was placed on the two rain events that led to the major losses of the herbicides. The rank orders of herbicide dissipation in the soils and of the compound-specific mobilization into runoff were the same in all three subcatchments and were independent of the field characteristics. In contrast, the field properties caused the relative losses from two subcatchments to differ by up to a factor of 56 during the most important event, whereas compound-specific differences of the three neutral herbicides caused the losses to vary only by a factor of 2 during the same event. The enormous spatial variability was mainly caused by factors influencing the fraction of rain that was lost to surface water by fast transport mechanisms. Thus, the key factors determining the spatially variable herbicide losses were the permeability of the soils, the topography, and the location of subsurface drainage systems. These results illustrate the large potential to reduce herbicide losses by avoiding application on risk areas.

  14. Stable oscillation in spin torque oscillator excited by a small in-plane magnetic field

    SciTech Connect

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Ito, Takahiro; Utsumi, Yasuhiro

    2015-08-07

    Theoretical conditions to excite self-oscillation in a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are investigated by analytically solving the Landau-Lifshitz-Gilbert equation. The analytical relation between the current and oscillation frequency is derived. It is found that a large amplitude oscillation can be excited by applying a small field pointing to the direction anti-parallel to the magnetization of the pinned layer. The validity of the analytical results is confirmed by comparing with numerical simulation, showing good agreement especially in a low current region.

  15. Proposed design of SAMUS (small angle muon spectrometer) toroid and its magnetic field calculation

    SciTech Connect

    Yamada, R.

    1988-06-09

    Presently the D/null/ detector has three big toroidal magnets; one Central Toroid (CF) and two End Wall Toroids (EF). The EF toroids have central openings 72'' x 72''. Originally, this opening was meant for possible future end-plug calorimeters. Instead we are now designing Small Angle Muon Spectrometer (SAMUS) for the opening. The major component will be built at Serpukhov. The design of the toroid magnets and its magnetic field calculations is being done by exchanging information between Serpukhov and Fermilab. 2 refs., 4 figs., 1 tab.

  16. Interactive responses of grass litter decomposition to warming, nitrogen addition and detritivore access in a temperate old field.

    PubMed

    Moise, Eric R D; Henry, Hugh A L

    2014-12-01

    Plant litter decomposition has been studied extensively in the context of both climate warming and increased atmospheric N deposition. However, much of this research is based on microbial responses, despite the potential for detritivores to contribute substantially to litter breakdown. We measured litter mass-loss responses to the combined effects of warming, N addition and detritivore access in a grass-dominated old field. We concurrently assessed the roles of litter treatment origin vs. microenvironment (direct warming and N-addition effects) to elucidate the mechanisms through which these factors affect decomposition. After 6 weeks, mass loss increased in N-addition plots, and it increased with detritivore access in the absence of warming. After 1 year, warming, N addition, and detritivore access all increased litter mass loss, although the effects of N addition and warming were non-additive in the detritivore-access plots. For the litter-origin experiment, mass loss after 6 weeks increased in litter from N-addition plots and warmed plots, but unlike the overall decomposition response, the N-addition effect was enhanced by detritivore access. Conversely, for the microenvironment experiment, detritivore access only increased mass loss in unfertilized plots. After 1 year, detritivore access increased mass loss in the litter-origin and microenvironment experiments, but there were no warming or N-addition effects. Overall, our results provide support for a substantial role of detritivores in promoting litter mass loss in our system. Moreover, they reveal important interactions between litter origin, microclimate and detritivores in determining decomposition responses to global change.

  17. On the Problem-Size Effect in Small Additions: Can We Really Discard Any Counting-Based Account?

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Thevenot, Catherine

    2013-01-01

    The problem-size effect in simple additions, that is the increase in response times (RTs) and error rates with the size of the operands, is one of the most robust effects in cognitive arithmetic. Current accounts focus on factors that could affect speed of retrieval of the answers from long-term memory such as the occurrence of interference in a…

  18. 78 FR 59624 - Guidance for Industry #223: Small Entity Compliance Guide-Declaring Color Additives in Animal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    .... FDA issued the regulation in response to the Nutrition Labeling and Education Act of 1990 (the 1990... to the Communications Staff (HFV-12), Center for Veterinary Medicine, Food and Drug Administration... Additives'' (21 CFR 501.22(k)(1) and (2)) have been approved under OMB control number 0910-0721....

  19. Static field ionization rates for multi-electron atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Pramod Majety, Vinay; Scrinzi, Armin

    2015-12-01

    We present an application of the hybrid anti-symmetrized coupled channels approach to compute static field ionization rates for multi-electron atoms (He, Ne, Ar) and small molecules (H2, N2, CO). While inert gas atoms behave as effective single electron systems, molecules exhibit multi-electron effects in the form of core polarization. It is shown that at moderate field strengths, these effects can be modeled to about 10% accuracy using a few (5-6) channel ansatz. In the case of the CO molecule, description of core polarization is essential for the correct prediction of the maximum ionization direction and our converged results are in good agreement with the experimental measurements.

  20. Flow and temperature field measurements of thermal convection in a small vertical gap using liquid crystals

    NASA Astrophysics Data System (ADS)

    Heiland, Hans Georg; Wozniak, Günter; Wozniak, Klaus

    2007-07-01

    Thermal convection in a small vertical gap is studied experimentally applying digital particle image velocimetry/thermometry. This optical method enables the simultaneous measurement of two-dimensional flow and temperature fields in a liquid. The principle is based on seeding the liquid flow medium with thermochromic liquid crystal particles. The temperature is measured by the crystal particles which change their reflected colour as function of temperature. The flow velocity is measured by using the same particles as flow tracers. The investigation shall contribute to the understanding of the fluid mechanical behaviour of biological liquids within micro reactor systems. However, the problem is also of fundamental interest as far as heat and mass transfer is concerned. Measured temperature and flow velocity fields are presented and discussed.

  1. Relativistically corrected electric field gradients calculated with the normalized elimination of the small component formalism.

    PubMed

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-08-07

    Based on the analytic derivatives formalism for the spin-free normalized elimination of the small component method, a new computational scheme for the calculation of the electric field gradient at the atomic nuclei was developed and presented. The new computational scheme was tested by the calculation of the electric field gradient at the mercury nucleus in a series of Hg-containing inorganic and organometallic compounds. The benchmark calculations demonstrate that the new formalism is capable of reproducing experimental and theoretical reference data with high accuracy. The method developed can be routinely applied to the calculation of large and very large molecules and holds considerable promise for the interpretation of the experimental data of biologically relevant compounds containing heavy elements.

  2. Magnetic-field-dependent small-angle neutron scattering on random anisotropy ferromagnets

    NASA Astrophysics Data System (ADS)

    Michels, Andreas; Weissmüller, Jörg

    2008-06-01

    We report on the recently developed technique of magnetic-field-dependent small-angle neutron scattering (SANS), with attention to bulk ferromagnets exhibiting random magnetic anisotropy. In these materials, the various magnetic anisotropy fields (magnetocrystalline, magnetoelastic, and/or magnetostatic in origin) perturb the perfectly parallel spin alignment of the idealized ferromagnetic state. By varying the applied magnetic field, one can control one of the ordering terms which competes with the above-mentioned perturbing fields. Experiments which explore the ensuing reaction of the magnetization will therefore provide information not only on the field-dependent spin structure but, importantly, on the underlying magnetic interaction terms. This strategy, which underlies conventional studies of hysteresis loops in magnetometry, is here combined with magnetic SANS. While magnetometry generally records only a single scalar quantity, the integral magnetization, SANS provides access to a vastly richer data set, the Fourier spectrum of the response of the spin system as a function of the magnitude and orientation of the wave vector. The required data-analysis procedures have recently been established, and experiments on a number of magnetic materials, mostly nanocrystalline or nanocomposite metals, have been reported. Here, we summarize the theory of magnetic-field-dependent SANS along with the underlying description of random anisotropy magnets by micromagnetic theory. We review experiments which have explored the magnetic interaction parameters, the value of the exchange-stiffness constant as well as the Fourier components of the magnetic anisotropy field and of the magnetostatic stray field. A model-independent approach, based on the experimental autocorrelation function of the spin misalignment, provides access to the characteristic length of the spin misalignment. The field dependence of this quantity is in quantitative agreement with the predictions of

  3. Dosimetric effects on small-field beam-modeling for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Woong; Kim, Suzy; Kim, Jung-In; Wu, Hong-Gyun; Jung, Joo-Young; Kim, Min-Joo; Suh, Tae-Suk; Kim, Jin-Young; Kim, Jong Won

    2015-02-01

    The treatment planning of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) requires high accuracy of dosimetric data for small radiation fields. The dosimetric effects on the beam-modeling process of a treatment planning system (TPS) were investigated using different measured small-field data sets. We performed small-field dosimetry with three detectors: a CC13 ion chamber, a CC01 ion chamber, and an edge detector. Percentage depth doses (PDDs) and dose profiles for field sizes given by 3 × 3 cm2, 2 × 2 cm2, and 1 × 1 cm2 were obtained for 6 MV and 15 MV photon beams. Each measured data set was used as data input for a TPS, in which a beam-modeling process was implemented using the collapsed cone convolution (CCC) algorithm for dose calculation. The measured data were used to generate six beam-models based on each combination of detector type and photon energy, which were then used to calculate the corresponding PDDs and dose profiles for various depths and field sizes. Root mean square differences (RMSDs) between the calculated and the measured doses were evaluated for the PDDs and the dose profiles. The RMSDs of PDDs beyond the maximum dose depth were within an accuracy of 0.2-0.6%, being clinically acceptable. The RMSDs of the dose profiles corresponding to the CC13, the CC01, and the edge detector were 2.80%, 1.49%, and 1.46% for a beam energy of 6 MV and 2.34%, 1.15%, and 1.44% for a beam energy of 15 MV, respectively. The calculated results for the CC13 ion chamber showed the most discrepancy compared to the measured data, due to the relatively large sensitive volume of this detector. However, the calculated dose profiles for the detectors were not significantly different from another. The physical algorithm used in the beam-modeling process did not seem to be sensitive to blurred data measured with detectors with large sensitive volumes. Each beam-model was used to clinically evaluate lung and lymphatic node SBRT plans

  4. Field emission characteristics of a small number of carbon fiber emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim

    2016-09-01

    This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  5. Internal electric fields in small water clusters [(H2O)n; n = 2-6].

    PubMed

    Sen, Saumik; Boda, Manjusha; Venkat Lata, S; Naresh Patwari, G

    2016-06-22

    The electric field experienced by a water molecule within a water cluster depends on its position relative to the rest of the water molecules. The stabilization energies and the red-shifts in the donor O-H stretching vibrations in the water clusters increase with the cluster size concomitant with the increase in the electric field experienced by the donor O-H of a particular water molecule due to the hydrogen bonding network. The red-shifts in O-H stretching frequencies show a spread of about ±100 cm(-1) against the corresponding electric fields. Deviations from linearity were marked in the region of 100-160 MV cm(-1), which can be attributed to the strain in the hydrogen bonding network, especially for structures with DDAA and DDA motifs. The linear Stark effect holds up to 200 MV cm(-1) of internal electric field for the average red-shifts in the O-H stretching frequencies, with a Stark tuning rate of 2.4 cm(-1) (MV cm(-1))(-1), suggesting the validity of the classical model in small water clusters.

  6. Closing the superconducting gap in small Pb nanoislands with high magnetic fields

    NASA Astrophysics Data System (ADS)

    Rolf-Pissarczyk, Steffen; Burgess, Jacob A. J.; Yan, Shichao; Loth, Sebastian

    2016-12-01

    Superconducting properties change in confined geometries. Here we study the effects of strong confinement in nanosized Pb islands on Si(111) 7 ×7 . Small hexagonal islands with diameters less than 50 nm and a uniform height of seven atomic layers are formed by depositing Pb at low temperature and annealing at 300 K. We measure the tunneling spectra of individual Pb nanoislands using a low-temperature scanning tunneling microscope operated at 0.6 K and follow the narrowing of the superconducting gap as a function of magnetic field. We find the critical magnetic field, at which the superconducting gap vanishes, reaches several Tesla, which represents a greater than 50-fold enhancement compared to the bulk value. By independently measuring the size of the superconducting gap, and the critical magnetic field that quenches superconductivity for a range of nanoislands, we can correlate these two fundamental parameters and estimate the maximal achievable critical field for 7 ML Pb nanoislands to be 7 T.

  7. Small

    SciTech Connect

    Montoya, Joseph

    2013-07-18

    Representing the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CNEEC is to understand how nanostructuring can enhance efficiency for energy conversion and solve fundamental cross-cutting problems in advanced energy conversion and storage systems.

  8. Supersonic far-field boundary conditions for transonic small-disturbance theory

    NASA Technical Reports Server (NTRS)

    Gibbons, Michael D.; Batina, John T.

    1989-01-01

    Characteristic far-field boundary conditions for supersonic freestream flow have been developed and implemented within a transonic small-disturbance code. The boundary conditions have been implemented within the CAP-TSD code which has been developed recently for aeroelastic analysis of complete aircraft configurations. These boundary conditions improve the accuracy of the solutions for supersonic freestream applications. They also allow the extent of the grid to be much smaller, thus providing savings in the computational time required to obtain solutions. Comparisons are shown between surface pressures computed using large and small grid extents for the NACA 0012 airfoil and the F-5 wing at various Mach numbers and angles of attack. Both steady and unsteady results are presented and comparisons are made with Euler results and with experimental data to assess the accuracy of the new far-field boundary conditions. Comparisons of these results show that the supersonic boundary conditions allow a much smaller grid to be used without losing accuracy.

  9. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    PubMed

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  10. DNS of the Velocity and Temperature Fields in a Model of a Small Room

    NASA Astrophysics Data System (ADS)

    McLaughlin, John; Jia, Xinli; Ahmadi, Goodarz; Derksen, Jos

    2010-03-01

    This talk presents the results of a numerical study of the velocity and temperature fields in a model of a small room containing a seated mannequin. Results are also presented for the trajectories and ultimate fate of small particles that are introduced through the air inlet as well as particles that are entrained by the mannequin's thermal plume. The study was motivated by an experimental study performed at Syracuse University. In the experimental study, air entered the room through a floor vent and exited through a ceiling vent on the other side of the room. A mannequin was seated facing the floor vent. The mannequin could be electrically heated so that its surface temperature was 31C. The objective of the simulations was to obtain a more detailed understanding of the flow in the room. Of specific interest were the effects of the mannequin on the ultimate fates of small particles. The importance of the thermal plume around the mannequin was of particular interest since the thermal plume plays a role in transporting particles from near the floor to the breathing zone. The simulations were performed with a single phase version of a lattice Boltzmann method (LBM) that was originally developed for two-phase flows by Inamuro et al.

  11. Magnetic material in mean-field dynamos driven by small scale helical flows

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Stefani, F.; Gerbeth, G.

    2014-07-01

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-Kármán-sodium dynamo. For both examined flow configurations the consideration of magnetic material within the fluid flow causes a reduction of the critical magnetic Reynolds number of up to 25%. The development of the growth-rate in the limit of the largest achievable permeabilities suggests no further significant reduction for even larger values of the permeability. In order to study the dynamo behavior of systems that consist of tens of thousands of helical cells we resort to the mean-field dynamo theory (Krause and Rädler 1980 Mean-field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon)) in which the action of the small scale flow is parameterized in terms of an α- and β-effect. We compute the relevant elements of the α- and the β-tensor using the so called testfield method. We find a reasonable agreement between the fully resolved models and the corresponding mean-field models for wall or rod materials in the considered range 1\\leqslant {{\\mu }_{r}}\\leqslant 20. Our results may be used for the development of global large scale models with recirculation

  12. SU-E-T-297: Small Field Dosimetry for Superficial Lesions

    SciTech Connect

    Ying, J; Casto, B; Wang, S; Talyor, T; Wichman, A; Ku, L; Taylor, M

    2014-06-01

    Purpose: Kilo-voltage (kV) photons and low megavoltage (MeV) electrons are the most common options for treating small superficial lesions, but they present complex dosimetry. Using a tertiary lead shield may protect the surrounding critical structures. Our goal was to quantitatively evaluate the dosimetric impact resulting from applying tertiary shields on superficial lesions. Method: We directly compared the beam characteristics of 80 kV (0.8 mm Al) photon setup abutting the water phantom surface and 6 MeV electron setup at 100 cm SSD. Profiles and depth doses were acquired using a 3D scanning water tank and an ion chamber (active volume 0.01 cm{sup 3}). Beam profiles were scanned at Dmax. Three lead sheets (2 mm thickness) with 2.7, 2.2, and 1.6, cm diameter circular cutouts were fabricated and placed at the water surface for both photon and electron fields. Results: The penumbra (80% – 20%) of the open 4×4 cm{sup 2} electron insert was 10.7 mm, compared to an average of 7.2 mm with the tertiary cutouts. The penumbra of the open kV photon beam was 2.8 mm compared to an average of 1.8 mm with the tertiary cutouts. For field widths 2.7, 2.2, and 1.6 cm, the flatness of the electron beams was 16%, 17.3%, and 21%, respectively, and for the kV photon beams was 1.4%, 2.3%, 3.3%, respectively. The electron depth dose (PDD) shifted shallower and the photon PDD shifted deeper as the field size became smaller. Conclusion: The penumbra of small electron fields can be improved by adding tertiary lead shields. Both modalities are clinically feasible; however, kV photons still offer sharper penumbra and better flatness than that of 6 MeV electrons with tertiary shielding. Thus, kV photons may still be a superior option for small superficial lesions.

  13. SU-E-T-376: Evaluation of a New Stereotactic Diode for Small Field Dosimetry

    SciTech Connect

    Kralik, J; Kosterin, P; Mooij, R; Solberg, T

    2015-06-15

    Purpose: To evaluate the performance of a new stereotactic diode for dosimetry of small photon fields. Methods: A new stereotactic diode, consisting of an unshielded p-type silicon chip, and with improved radiation hardness energy dependence was recently developed (IBA Dosimetry, Schwarzenbruch, Germany). The diode has an active volume of 0.6 mm dia. x 0.02 mm thick. Two new diodes were evaluated, one which was pre-irradiated to 100kGy with 10 MeV electrons and another which received no prior irradiation. Sensitivity, stability, reproducibility, and linearity as a function of dose were assessed. Beam profiles and small field output factors were measured on a CyberKnife (CK) and compared with measurements using two commercially available diodes. Results: The new diodes exhibit linear behavior (within 0.6%) over a dose range 0.02 – 50 Gy; a commercially available device exhibits excursions of up to 4% over the same range. The sensitivity is 4.1 and 3.8 nC/Gy for the un-irradiated and pre-irradiated diodes, respectively. When irradiated with 150 Gy in dose increments of 5, 20 and 35 Gy, both new diodes provide a stable response within 0.5%. Output factors measured with the two new diodes are identical and compare favorably with other commercially available diodes and published data. Similarly, no differences in measured field size or penumbra were observed among the devices tested. Conclusion: The new diodes show excellent stability and sensitivity. The beam characterization in terms of output factors and beam profiles is consistent with that obtained with commercially available diodes.

  14. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect

    Gary Blythe; MariJon Owens

    2007-12-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management

  15. Semi-empirical equation of limiting current for cobalt electrodeposition in the presence of magnetic field and additive electrolyte

    NASA Astrophysics Data System (ADS)

    Sudibyo, Aziz, N.

    2016-02-01

    One of the available methods to solve a roughening in cobalt electrodeposition is magneto electrodeposition (MED) in the presence of additive electrolyte. Semi-empirical equation of limiting current under a magnetic field for cobalt MED in the presence of boric acid as an additive electrolyte was successfully developed. This semi empirical equation shows the effects of the electrode area (A), the concentration of the electro active species (C), the diffusion coefficient of the electro active species (D), the kinematic viscosity of the electrolyte (v), magnetic strength (B) and the number of electrons involved in the redox process (n). The presence of boric acid led to decrease in the limiting current, but the acid was found useful as a buffer to avoid the local pH rise caused by parallel hydrogen evolution reaction (HER).

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  17. Estimating Small-Body Gravity Field from Shape Model and Navigation Data

    NASA Technical Reports Server (NTRS)

    Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam

    2008-01-01

    This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.

  18. Comparison of computational modelling and field testing of a small wind turbine operating in unsteady flows

    NASA Astrophysics Data System (ADS)

    Bradney, D. R.; Evans, S. P.; Salles Pereira Da Costa, M.; Clausen, P. D.

    2016-09-01

    Small horizontal-axis wind turbines are likely to operate in a broad range of operating flow conditions, often in highly turbulent flow, due, in part, to their varied site placements. This paper compares the computational simulations of the performance of a 5 kW horizontal-axis wind turbine to detailed field measurements, with a particular focus on the impact of unsteady operating conditions on the drivetrain performance and generator output. Results indicate that the current Blade Element Momentum Theory based aerodynamic models under-predict the effect of high turbine yaw on the rotor torque, leading to a difference between predicted and measured shaft speed and power production. Furthermore, the results show discrepancies between the predicted instantaneous turbine yaw performance and measurements.

  19. Small estuarine fishes feed on large trematode cercariae: Lab and field investigations

    USGS Publications Warehouse

    Kaplan, A.T.; Rebhal, S.; Lafferty, K.D.; Kuris, A.M.

    2009-01-01

    In aquatic ecosystems, dense populations of snails can shed millions of digenean trematode cercariae every day. These short-lived, free-living larvae are rich in energy and present a potential resource for consumers. We investigated whether estuarine fishes eat cercariae shed by trematodes of the estuarine snail Cerithidea californica. In aquaria we presented cercariae from 10 native trematode species to 6 species of native estuarine fishes. Many of these fishes readily engorged on cercariae. To determine if fishes ate cercariae in the field, we collected the most common fish species, Fundulus parvipinnis (California killifish), from shallow water on rising tides when snails shed cercariae. Of 61 killifish, 3 had recognizable cercariae in their gut. Because cercariae are common in this estuary, they could be frequent sources of energy for small fishes. In turn, predation on cercariae by fishes (and other predators) could also reduce the transmission success of trematodes. ?? 2009 American Society of Parasitologists.

  20. Generalized mean-field theory for Ising spins in small world networks.

    PubMed

    Meilikhov, E Z; Farzetdinova, R M

    2005-04-01

    A generalization of mean-field theory for random systems is described. The results of that analytic model could be reconciled with the results of numerical calculations of the Curie temperature for a system of Ising spins in small world (SW) networks by introducing the effective interaction energy associated with long-range links which exceeds the real energy of spin interaction. Such a model describes qualitatively well the increasing Curie temperature T(C) with the growth of the long-range links fraction p in the two-dimensional SW system with fixed coordination number. On the basis of simple physical considerations, concentration dependences T(C)(p) are found for SW systems of different dimensions.

  1. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  2. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  3. SU-E-T-246: Detector Selection for Small Field Measurements, a Comparative Study

    SciTech Connect

    Sigler, M; Pavord, D; Irwin, J; Kriminski, S

    2015-06-15

    Purpose: To compare commercially available detectors for small field dosimetry. Methods: PTW (Freiburg, Germany) diode E, PTW microDiamond, and SunNuclear (Melbourne, FL) Edge detector were used to measure output factors, PDD, and profiles on a Varian iX linear accelerator (Varian Medical Systems, Palo Alto, CA) using 6MV and 18MV photon beams. The water tank was set to 100cm SSD. Centering profiles at 5cm and 20cm depth confirmed an offset <0.1mm. High resolution PDD (0.1mm) aligned the collecting volume at water surface. For setup and linearity verification, PDD and profiles were matched to annual measurements, which were performed with an A1SL ion chamber.Scans were taken for 6X and 18X, for 10cmx10cm, 10cmx2cm, 10cmx1cm, and 10cmx0.5cm fields. Profiles were measured at Dmax (6X=1.5cm, 18X=3.5cm), 5cm, 10cm, and 20cm depths. All fields used 10cmx10cm jaws with the MLC defining the field in the X-direction. PDDs used 2mm step size and 0.2s discrete collecting time. Profiles used 1mm step size and a 0.4s discrete collecting time. Results: The PTW diode E and Edge detector exhibit centering stability, but all detectors require vertical shifts from Vendor defined vertical alignment. Output factor measurements reveal good agreement between detectors. The Edge detector demonstrates the sharpest penumbra and the closest consistent match to ion chamber measurements in the out of field regions for 6MV (3.2%). Each detector provides comparable curve quality for PDDs, with a maximum difference across detectors giving a standard deviation of 0.6% at 30cm depth, 18X, and 10cmx0.5cm. Profiles match closely across all detectors, depths, energies, and field sizes. The microDiamond detector produces the largest penumbra width, largest deviation from ion chamber dose in the tail region for 6MV, and exhibits centering instability. Conclusion: Based on our findings, the Edge detector was chosen for stereotactic measurements. The PTW diode E is an acceptable alternative.

  4. Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

    NASA Astrophysics Data System (ADS)

    Mostafa, Sheikh Shanawaz; Sousa, L. Natércia; Ferreira, Nuno Fábio; Sousa, Ricardo M.; Santos, Joao; Wäny, Martin; Morgado-Dias, F.

    2017-01-01

    Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm×1 mm×1.65 mm is used. Due to the physical properties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.

  5. Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data

    NASA Astrophysics Data System (ADS)

    Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip

    2016-05-01

    One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.

  6. The influence of detector size relative to field size in small-field photon-beam dosimetry using synthetic diamond crystals as sensors

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-08-01

    The choice of a detector for small-field dosimetry remains a challenge due to the size/volume effect of detectors in small fields. Aimed at selecting a suitable crystal type and detector size for small-field dosimetry, this study investigates the relationship between detector and field size by analysing output factors (OFs) measured with a Diode E (reference detector), a Farmer chamber and synthetic diamond detectors of various types and sizes in the dosimetry of a 6 MV photon beam with small fields between 0.3×0.3 cm2 and 10×10 cm2. The examined diamond sensors included two HPHT samples (HP1 and HP2) and six polycrystalline CVD specimens of optical grade (OG) and detector grade (DG) qualities with sizes between 0.3 and 1.0 cm. Each diamond was encapsulated in a tissue-equivalent probe housing which can hold crystals of various dimensions up to 1.0×1.0×0.1 cm3 and has different exposure geometries ('edge-on' and 'flat-on') for impinging radiation. The HPHT samples were found to show an overall better performance compared to the CVD crystals with the 'edge-on' orientation being a preferred geometry for OF measurement especially for very small fields. For instance, down to a 0.4×0.4 cm2 field a maximum deviation of 1.9% was observed between the OFs measured with Diode E and HP2 in the 'edge-on' orientation compared to a 4.6% deviation in the 'flat-on' geometry. It was observed that for fields below 4×4 cm2, the dose deviation between the OFs measured with the detectors and Diode E increase with increasing detector size. It was estimated from an established relationship between the dose deviation and the ratio of detector size to field size for the detectors that the dose deviation probably due to the volume averaging effect would be >3% when the detector size is >3/4 of the field size. A sensitivity value of 223 nC Gy-1 mm-3 was determined in a 0.5×0.5 cm2 field with HP2 compared to a value of 159.2 nC Gy-1 mm-3 obtained with the diode. The results of this

  7. Small mammal use of native warm-season and non-native cool-season grass forage fields

    USGS Publications Warehouse

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  8. Alternating electric fields (tumor-treating fields therapy) can improve chemotherapy treatment efficacy in non-small cell lung cancer both in vitro and in vivo.

    PubMed

    Giladi, Moshe; Weinberg, Uri; Schneiderman, Rosa S; Porat, Yaara; Munster, Michal; Voloshin, Tali; Blatt, Roni; Cahal, Shay; Itzhaki, Aviran; Onn, Amir; Kirson, Eilon D; Palti, Yoram

    2014-10-01

    Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide. Common treatment modalities for NSCLC include surgery, radiotherapy, chemotherapy, and, in recent years, the clinical management paradigm has evolved with the advent of targeted therapies. Despite such advances, the impact of systemic therapies for advanced disease remains modest, and as such, the prognosis for patients with NSCLC remains poor. Standard modalities are not without their respective toxicities and there is a clear need to improve both efficacy and safety for current management approaches. Tumor-treating fields (TTFields) are low-intensity, intermediate-frequency alternating electric fields that disrupt proper spindle microtubule arrangement, thereby leading to mitotic arrest and ultimately to cell death. We evaluated the effects of combining TTFields with standard chemotherapeutic agents on several NSCLC cell lines, both in vitro and in vivo. Frequency titration curves demonstrated that the inhibitory effects of TTFields were maximal at 150 kHz for all NSCLC cell lines tested, and that the addition of TTFields to chemotherapy resulted in enhanced treatment efficacy across all cell lines. We investigated the response of Lewis lung carcinoma and KLN205 squamous cell carcinoma in mice treated with TTFields in combination with pemetrexed, cisplatin, or paclitaxel and compared these to the efficacy observed in mice exposed only to the single agents. Combining TTFields with these therapeutic agents enhanced treatment efficacy in comparison with the respective single agents and control groups in all animal models. Together, these findings suggest that combining TTFields therapy with chemotherapy may provide an additive efficacy benefit in the management of NSCLC.

  9. Ultraviolet and pulsed electric field treatments have additive effect on inactivation of E. coli in apple juice.

    PubMed

    Gachovska, T K; Kumar, S; Thippareddi, H; Subbiah, J; Williams, F

    2008-11-01

    Apple juice inoculated with Escherichia coli ATCC 23472 was processed continuously using either ultraviolet (UV), high-voltage pulsed electric field (PEF), or a combination of the PEF and UV treatment systems. Apple juice was pumped through either of the systems at 3 flow rates (8, 14, and 20 mL/min). E. coli was reduced by 3.46 log CFU/mL when exposed in a 50 cm length of UV treatment chamber at 8 mL/min (2.94 s treatment time with a product temperature increase of 13 degrees C). E. coli inactivation of 4.87 log CFU/mL was achieved with a peak electric field strength of 60 kV/cm and 11.3 pulses (average pulse width of 3.5 mus, product temperature increased to 52 degrees C). E. coli reductions resulting from a combination treatment of UV and PEF applied sequentially were evaluated. A maximum E. coli reduction of 5.35 log CFU/mL was achieved using PEF (electrical field strength of 60 kV/cm, specific energy of 162 J/mL, and 11.3 pulses) and UV treatments (length of 50 cm, treatment time of 2.94 s, and flow rate of 8 mL/min). An additive effect was observed for the combination treatments (PEF and UV), regardless of the order of treatment (P > 0.05). E. coli reductions of 5.35 and 5.30 log CFU/mL with PEF treatment (electrical field strength of 60 kV/cm, specific energy of 162 J/mL, and 11.3 pulses) followed by UV (length of 30 cm, treatment time of 1.8 s, and flow rate of 8 mL/min) and UV treatment followed by PEF (same treatment conditions), respectively. No synergistic effect was observed.

  10. Constraining the distribution of regolith deposits from the gravitational potential field on small asteroids

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Matsumoto, K.; Kimura, J.; Kitazato, K.

    2014-07-01

    The relationship between the global distribution of regolith deposits and the gravitational potential fields on small asteroids is investigated in this paper. It is expected that the global distribution of regolith deposits is controlled by the gravitational potential fields on small asteroids, because they are formed on low potential regions on a small asteroid by gravitational migration [1]. Regolith deposits would be formed on the polar regions of an oblate body with slow rotation, because gravitational potential is low on the polar regions. Smooth terrains found on the polar regions of asteroid Itokawa are representatives of this case [2, 3]. Oppositely, regolith deposits would be found on the equatorial region of a spherical body with fast rotation, where the latitudinal gradient of the centrifugal potential from the pole to the equator overcome the gravitational potential gradient. Equatorial bulges found on fast-rotating near-Earth asteroids with oblate shapes may have this kind of regolith deposit [4,5]. When two gradients are canceled by each other, an equipotential state over the whole surface of the body is achieved. The equilibrium rotation period is defined as the period at which the equipotential state is accomplished. In this case, local topographic features would affect the distribution of regolith deposits. We modeled the gravity potential on the spheroidal surface by considering a balance between the gravitational attraction and the centrifugal force. The figure represents equilibrium rotation periods for given axial ratios of spheroidal bodies and densities. Itokawa (density: 1950 kg/m^3, axial ratio: 2.5 for a/c and 1.2 for a/c) [3] is located above the equilibrium line of its rotation period 12.132 h, indicating that low potential regions and smooth terrains are formed on the polar region, whereas Bennu (density 1260 kg/m^3, axial ratio: 1.1) [6,7] is far below of its equilibrium line (P: 4.3 h), suggesting that its equatorial region has

  11. A comparison of small-field tissue phantom ratio data generation methods for an Elekta Agility 6 MV photon beam.

    PubMed

    Richmond, Neil; Brackenridge, Robert

    2014-01-01

    Tissue-phantom ratios (TPRs) are a common dosimetric quantity used to describe the change in dose with depth in tissue. These can be challenging and time consuming to measure. The conversion of percentage depth dose (PDD) data using standard formulae is widely employed as an alternative method in generating TPR. However, the applicability of these formulae for small fields has been questioned in the literature. Functional representation has also been proposed for small-field TPR production. This article compares measured TPR data for small 6 MV photon fields against that generated by conversion of PDD using standard formulae to assess the efficacy of the conversion data. By functionally fitting the measured TPR data for square fields greater than 4cm in length, the TPR curves for smaller fields are generated and compared with measurements. TPRs and PDDs were measured in a water tank for a range of square field sizes. The PDDs were converted to TPRs using standard formulae. TPRs for fields of 4 × 4cm(2) and larger were used to create functional fits. The parameterization coefficients were used to construct extrapolated TPR curves for 1 × 1 cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields. The TPR data generated using standard formulae were in excellent agreement with direct TPR measurements. The TPR data for 1 × 1-cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields created by extrapolation of the larger field functional fits gave inaccurate initial results. The corresponding mean differences for the 3 fields were 4.0%, 2.0%, and 0.9%. Generation of TPR data using a standard PDD-conversion methodology has been shown to give good agreement with our directly measured data for small fields. However, extrapolation of TPR data using the functional fit to fields of 4 × 4cm(2) or larger resulted in generation of TPR curves that did not compare well with the measured data.

  12. Increasing 14N NQR signal by 1H-14N level crossing with small magnetic fields.

    PubMed

    Thurber, Kent R; Sauer, Karen L; Buess, Michael L; Klug, Christopher A; Miller, Joel B

    2005-11-01

    NQR detection of materials, such as TNT, is hindered by the low signal-to-noise ratio at low NQR frequencies. Sweeping small (0-26 mT) magnetic fields to shift the (1)H NMR frequency relative to the (14)N NQR frequencies can provide a significant increase of the (14)N NQR signal-to-noise ratio. Three effects of (1)H-(14)N level crossing are demonstrated in diglycine hydrochloride and TNT. These effects are (1) transferring (1)H polarization to one or more of the (14)N transitions, including the use of an adiabatic flip of the (1)H polarization during the field sweep, (2) shortening the effective (14)N T(1) by the interaction of (1)H with the (14)N transitions, (3) "level transfer" effect where the third (14)N (spin 1) energy level or other (14)N sites with different NQR frequency are used as a reservoir of polarization which is transferred to the measured (14)N transition by the (1)H. The (14)N NQR signal-to-noise ratio can be increased by a factor of 2.5 for one (14)N site in diglycine hydrochloride (and 2.2 in TNT), even though the maximum (1)H frequency used in this work, 111 6 kHz, is only 30% larger than the measured (14)N frequencies (834 kHz for diglycine hydrochloride and 843 kHz for TNT).

  13. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  14. Greenhouse Gas Sensing Using Small Unmanned Aerial Systems - Field Experiment Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Christensen, L. E.; Brockers, R.; Thompson, D. R.

    2014-12-01

    Requirements for greenhouse gas point source detection and quantification often require high spatial resolution on the order of meters. These applications, which help close the gap in emissions estimate uncertainties, also demand sensing with high sensitivity and in a fashion that accounts for spatiotemporal variability on the order of seconds to minutes. Low-cost vertical takeoff and landing (VTOL) small unmanned aerial systems (sUAS) provide a means to detect and identify the location of point source gas emissions while offering ease of deployment and high maneuverability. Our current fielded gas sensing sUAS platforms are able to provide instantaneous in situ concentration measurements at locations within line of sight of the operator. Recent results from field experiments demonstrating methane detection and plume characterization will be discussed here, including performance assessment conducted via a controlled release experiment in 2013. The logical extension of sUAS gas concentration measurement is quantification of flux rate. We will discuss the preliminary strategy for quantitative flux determination, including intrinsic challenges and heritage from airborne science campaigns, associated with this point source flux quantification. This system approach forms the basis for intelligent autonomous quantitative characterization of gas plumes, which holds great value for applications in commercial, regulatory, and safety environments.

  15. Evaluating shock absorption behavior of small-sized systems under programmable electric field.

    PubMed

    Jagtap, Piyush; Kumar, Praveen

    2014-11-01

    A simple ball-drop impact tester is developed for studying the dynamic response of hierarchical, complex, small-sized systems and materials. The developed algorithm and set-up have provisions for applying programmable potential difference along the height of a test specimen during an impact loading; this enables us to conduct experiments on various materials and smart structures whose mechanical behavior is sensitive to electric field. The software-hardware system allows not only acquisition of dynamic force-time data at very fast sampling rate (up to 2 × 10(6) samples/s), but also application of a pre-set potential difference (up to ±10 V) across a test specimen for a duration determined by feedback from the force-time data. We illustrate the functioning of the set-up by studying the effect of electric field on the energy absorption capability of carbon nanotube foams of 5 × 5 × 1.2 mm(3) size under impact conditions.

  16. A small animal time-resolved optical tomography platform using wide-field excitation

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging

  17. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning.

    PubMed

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-21

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing

  18. Stormflow generation: A meta-analysis of field evidence from small, forested catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke K.; Woods, Ross A.

    2015-05-01

    Combinations of runoff characteristics are commonly used to represent distinct conceptual models of stormflow generation. In this study, three runoff characteristics: hydrograph response, time source of runoff water, and flow path are used to classify catchments. Published data from the scientific literature are used to provide evidence from small, forested catchments. Each catchment was assigned to one of the eight conceptual models, depending on the combination of quick/slow response, old/new water, and overland/subsurface flow. A standard procedure was developed to objectively diagnose the predominant conceptual model of stormflow generation for each catchment and assess its temporal and spatial support. The literature survey yielded 42 catchments, of which 30 catchments provide a complete set of qualitative runoff characteristics resulting in one of the eight conceptual models. The majority of these catchments classify as subsurface flow path dominated. No catchments were found for conceptual models representing combinations of quick response-new water-subsurface flow (SSF), slow-new-SSF, slow-old-overland flow (OF) nor new-slow-OF. Of the 30 qualitatively classified catchments, 24 provide a complete set of quantitative measures. In summary, the field support is strong for 19 subsurface-dominated catchments and is weak for 5 surface flow path dominated catchments (six catchments had insufficient quantitative data). Two alternative explanations exist for the imbalance of field support between the two flow path classes: (1) the selection of research catchments in past field studies was mainly to explain quick hydrograph response in subsurface dominated catchments; (2) catchments with prevailing subsurface flow paths are more common in nature. We conclude that the selection of research catchments needs to cover a wider variety of environmental conditions which should lead to a broader, and more widely applicable, spectrum of resulting conceptual models and process

  19. Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2016-06-01

    We calculate renormalized Higgs boson couplings with gauge bosons and fermions at the one-loop level in the model with an additional isospin singlet real scalar field. These coupling constants can deviate from the predictions in the standard model due to tree-level mixing effects and one-loop contributions of the extra neutral scalar boson. We investigate how they can be significant under the theoretical constraints from perturbative unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with the predictions in the Type I two Higgs doublet model, we numerically demonstrate how the singlet extension model can be distinguished and identified by using precision measurements of the Higgs boson couplings at future collider experiments.

  20. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  1. Measuring output factors of small fields formed by collimator jaws and multileaf collimator using plastic scintillation detectors

    SciTech Connect

    Klein, David M.; Tailor, Ramesh C.; Archambault, Louis; Wang, Lilie; Therriault-Proulx, Francois; Beddar, A. Sam

    2010-10-15

    Purpose: As the practice of using high-energy photon beams to create therapeutic radiation fields of subcentimeter dimensions (as in intensity-modulated radiotherapy or stereotactic radiosurgery) grows, so too does the need for accurate verification of beam output at these small fields in which standard practices of dose verification break down. This study investigates small-field output factors measured using a small plastic scintillation detector (PSD), as well as a 0.01 cm{sup 3} ionization chamber. Specifically, output factors were measured with both detectors using small fields that were defined by either the X-Y collimator jaws or the multileaf collimator (MLC). Methods: A PSD of 0.5 mm diameter and 2 mm length was irradiated with 6 and 18 MV linac beams. The PSD was positioned vertically at a source-to-axis distance of 100 cm, at 10 cm depth in a water phantom, and irradiated with fields ranging in size from 0.5x0.5 to 10x10 cm{sup 2}. The field sizes were defined either by the collimator jaws alone or by a MLC alone. The MLC fields were constructed in two ways: with the closed leaves (i.e., those leaves that were not opened to define the square field) meeting at either the field center line or at a 4 cm offset from the center line. Scintillation light was recorded using a CCD camera and an estimation of error in the median-filtered signals was made using the bootstrapping technique. Measurements were made using a CC01 ionization chamber under conditions identical to those used for the PSD. Results: Output factors measured by the PSD showed close agreement with those measured using the ionization chamber for field sizes of 2.0x2.0 cm{sup 2} and above. At smaller field sizes, the PSD obtained output factors as much as 15% higher than those found using the ionization chamber by 0.6x0.6 cm{sup 2} jaw-defined fields. Output factors measured with no offset of the closed MLC leaves were as much as 20% higher than those measured using a 4 cm leaf offset

  2. Monte Carlo modeling of converging small-field contrast-enhanced radiotherapy of prostate.

    PubMed

    Garnica-Garza, H M

    2013-09-01

    Radiation therapy using a kilovoltage X-ray source to irradiate a target previously loaded with a radiological contrast agent, contrast-enhanced radiotherapy (CERT), has been shown both theoretically and in a preliminary experimental study to represent a potential alternative to high-energy treatments. It has also been shown, however, to produce an integral dose that can be up to twice that resulting from a conventional megavoltage treatment. In this work, using a realistic patient model and Monte Carlo simulation, a CERT prostate treatment plan is designed that makes use of a plurality of small circular beams aimed at the target in such a way as to minimize the radiological trajectory to the target volume. Gold nanoparticles are assumed to be the contrast agent. Two cases are examined, one with a concentration level in the target of 10 mg-Au per gram of tissue and the second with a concentration of 3 mg-Au per gram of tissue in the target. A background concentration of 1 mg of contrast agent per gram of tissue was assumed everywhere else in both cases. The Cimmino feasibility algorithm was then used to find each beam weight in order to obtain the prescribed target dose, set at 72 Gy to 100% of the tumor volume. It is shown that the approach using the small circular fields, a radiosurgery treatment, produces treatment plans with excellent absorbed dose distributions while at the same time it reduces by up to 60% the non-tumor integral dose imparted to the irradiated subject. A brief discussion on the technology necessary to clinically implement this treatment modality is also presented.

  3. Field trial to determine the impact of providing additional care to litters on weaning weight of pigs

    PubMed Central

    Dewey, Catherine E.; Gomes, Tara; Richardson, Karen

    2008-01-01

    The purpose of this field trial was to determine if maximal care of pigs from birth until 16 d of age would result in a significant alteration in the survivorship and growth performance of the pigs compared with control pigs born in the same time period. Sows were randomly assigned to treatment group prior to farrowing. Control pigs received the standard, commercial farm care. In maximal care litters, pigs were dried off at farrowing, given a rubber mat in the creep area, and given electrolytes, chilled pigs were warmed and given colostrum or glucose, surgical instruments used for processing were dipped into an antiseptic between pigs, the castration wounds were sprayed with iodine, and sows were fed 3 times rather than twice a day. Pigs that received the maximal care weighed 170 g (+/− 80 g) more at 16 d of age than standard care pigs. Factors that reduced weight at 16 d included having a low birth weight, nursing a gilt or a parity 5–6 sow, nursing in a large litter, being clinically ill or being lame after 3 d of age, being cross-fostered and nursing an ill sow. In general, maximal care did not reduce mortality. Providing maximal care did improve weaning weights and enabled small birth weight pigs to reach 3.7 kg at 16 d of age. PMID:19086370

  4. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  5. Small field of view cone beam CT temporomandibular joint imaging dosimetry

    PubMed Central

    Lukat, T D; Wong, J C M; Lam, E W N

    2013-01-01

    Objectives: Cone beam CT (CBCT) is generally accepted as the imaging modality of choice for visualisation of the osseous structures of the temporomandibular joint (TMJ). The purpose of this study was to compare the radiation dose of a protocol for CBCT TMJ imaging using a large field of view Hitachi CB MercuRay™ unit (Hitachi Medical Systems, Tokyo, Japan) with an alternative approach that utilizes two CBCT acquisitions of the right and left TMJs using the Kodak 9000® 3D system (Carestream, Rochester, NY). Methods: 25 optically stimulated luminescence dosemeters were placed in various locations of an anthropomorphic RANDO® Man phantom (Alderson Research Laboratories, Stanford, CT). Dosimetric measurements were performed for each technique, and effective doses were calculated using the 2007 International Commission on Radiological Protection tissue weighting factor recommendations for all protocols. Results: The radiation effective dose for the CB MercuRay technique was 223.6 ± 1.1 μSv compared with 9.7 ± 0.1 μSv (child), 13.5 ± 0.9 μSv (adolescent/small adult) and 20.5 ± 1.3 μSv (adult) for the bilateral Kodak acquisitions. Conclusions: Acquisitions of individual right and left TMJ volumes using the Kodak 9000 3D CBCT imaging system resulted in a more than ten-fold reduction in the effective dose compared with the larger single field acquisition with the Hitachi CB MercuRay. This decrease is made even more significant when lower tube potential and tube current settings are used. PMID:24048693

  6. Variability in Small Hive Beetle (Coleoptera: Nitidulidae) Reproduction in Laboratory and Field Experiments.

    PubMed

    Meikle, William G; Holst, Niels; Cook, Steven C; Patt, Joseph M

    2015-06-01

    Experiments were conducted to examine how several key factors affect population growth of the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Laboratory experiments were conducted to examine effects of food quantity and temperature on reproduction of cohorts of young A. tumida adults (1:1 sex ratio) housed in experimental arenas. Daily numbers and total mass of larvae exiting arenas were highly variable within treatment. Either one or two cohorts of larvae were observed exiting the arenas. Food quantity, either 10 g or 20 g, did not significantly affect the number of larvae exiting arenas at 32°C, but did at 28°C; arenas provided 20 g food produced significantly more larvae than arenas provided 10 g. Temperature did not affect the total mass of larvae provided 10 g food, but did affect larval mass provided 20 g; beetles kept at 28°C produced more larval mass than at 32°C. Field experiments were conducted to examine A. tumida reproductive success in full strength bee colonies. Beetles were introduced into hives as egg-infested frames and as adults, and some bee colonies were artificially weakened through removal of sealed brood. Efforts were unsuccessful; no larvae were observed exiting from, or during the inspection of, any hives. Possible reasons for these results are discussed. The variability observed in A. tumida reproduction even in controlled laboratory conditions and the difficulty in causing beetle infestations in field experiments involving full colonies suggest that accurately forecasting the A. tumida severity in such colonies will be difficult.

  7. Development of SELENE small sub-satellites: Rstar and Vstar for lunar gravity field observation

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Minamino, H.; Namiki, N.; Hanada, H.; Kawano, N.; Takano, T.

    Two small sub-satellites Relay Satellite Rstar and VLBI Radio Satellite Vstar which are separated from SELENE Main Orbiter will execute four-way Doppler measurements and differential VLBI observation to make global mapping of the lunar gravity field These sub-satellites are requested to be simply structured light weighted and optimized for the selenodesy mission We have therefore adopted spin stabilization without thrusters to control orbits and attitudes which yield precise measurements of orbit perturbed by lunar gravity field We developed a low-mass type release mechanism which consists of two rings connected with 24 stretching bow springs Characteristic of the mechanism have been confirmed by the ground tests and displayed on orbit using Micro-Lab Sat We also develop four-way tracking system to track two fully moving links between lunar orbiters The transponder to receive a signal from the lunar satellite and to send a signal to an earth station has been designed by the concept of a broadband receiver instead of a PLL receiver By this concept a troublesome and difficult operation of carrier acquisition can be omitted on the last link of the four-way tracking Performances of the four-way signal acquiring process have been examined by the compatibility tests at the ground station which shows the enough performances to track two moving links between the lunar orbits Properties of the light weighted S-band patch antenna and S X-band dipole antenna have also been adjusted by ground tests The S X-band dipole antenna should have a beam wide

  8. Outpatient Management of Postbiopsy Pneumothorax with Small-Caliber Chest Tubes: Factors Affecting the Need for Prolonged Drainage and Additional Interventions

    SciTech Connect

    Gupta, Sanjay Hicks, Marshall E.; Wallace, Michael J.; Ahrar, Kamran; Madoff, David C.; Murthy, Ravi

    2008-03-15

    The aim of this study was to evaluate the efficacy of outpatient management of postbiopsy pneumothoraces with small-caliber chest tubes and to assess the factors that influence the need for prolonged drainage or additional interventions.We evaluated the medical records of patients who were treated with small-caliber chest tubes attached to Heimlich valves for pneumothoraces resulting from image-guided transthoracic needle biopsy to determine the hospital admission rates, the number of days the catheters were left in place, and the need for further interventions. We also evaluated the patient, lesion, and biopsy technique characteristics to determine their influence on the need for prolonged catheter drainage or additional interventions. Of the 191 patients included in our study, 178 (93.2%) were treated as outpatients. Ten patients (5.2%) were admitted for chest tube-related problems, either for underwater suction (n = 8) or for pain control (n = 2). No further interventions were required in 146 patients (76.4%), with successful removal of the chest tubes the day after the biopsy procedure. Prolonged catheter drainage (mean, 4.3 days) was required in 44 patients (23%). Nineteen patients (9.9%) underwent additional interventions for management of pneumothorax. Presence of emphysema was noted more frequently in patients who required additional interventions or prolonged chest tube drainage than in those who did not (51.1% vs. 24.7%; p = 0.001).We conclude that use of the Heimlich valve allows safe and successful outpatient treatment of most patients requiring chest tube placement for postbiopsy pneumothorax. Additional interventions or prolonged chest tube drainage are needed more frequently in patients with emphysema in the needle path.

  9. A Comparison of the Unpressurized Rover and Small Pressurized Rover During a Desert Field Evaluation

    NASA Technical Reports Server (NTRS)

    Litaker, Harry; Thompson, Shelby; Howard, Robert

    2009-01-01

    To effectively explore the lunar surface, astronauts will need a transportation vehicle which can traverse all types of terrain. Currently, the National Aeronautics and Space Administration s (NASA) is investigating two lunar rover configurations to meet such a requirement. Under the Lunar Electric Rover (LER) project, a comparison study between the unpressurized rover (UPR) and the small pressurized rover (SPR) was conducted at the Black Point Lava Flow in Arizona. The objective of the study was to obtain human-in-the-loop performance data on the vehicles with respect to human-machine interfaces, vehicle impacts on crew productivity, and scientific observations. Four male participants took part in four, one-day field tests using the exact same terrain and scientific sites for an accurate comparison between vehicle configurations. Subjective data was collected using several human factors performance measures. Results indicate either vehicle configuration was generally acceptable for a lunar mission; however, the SPR configuration was preferred over the UPR configuration primarily for the SPR s ability to cause less fatigue and enabling greater crew productivity.

  10. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    PubMed

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields.

  11. SU-E-T-506: Intercomparison Study On Small Field Output Factor Measurements

    SciTech Connect

    Talamonti, C; Casati, M; Compagnucci, A; Arilli, C; Greto, D; Marrazzo, L; Pallotta, S; Zani, M; Marinelli, M; Verona, G; Menichelli, D; Scotti, L

    2015-06-15

    Purpose In radiotherapy, uncertainties due to small field measurements (SFM) introduce systematic errors to the treatment process and the development of new dosimeters for quality assurance programs is a challenge. In this work we analyze the behavior of seven detectors measuring output factors of 6MV photon beam. Methods The dosimeters employed are: a single cristal diamond detector (SCCD) developed at the University of Rome Tor Vergata, a silicon diode developed within the project MAESTRO, a IBA Razor silicon diode, A1SL and A26 Exradin ion chambers, an EBT3 Gafchromic film and the Exradin W1 Scintillator.Diamond sensitive volume is a cylinder 2.2mm in diameter and 1μm thick. MAESTRO diode is 2×2mm2 active area. Razor sensitive volume is a cylinder 0.6 mm in diameter and 0.02 mm thick. A16 and A1Sl have a collecting volume of 0,015cc and 0,053cc. The W1 is an optical fiber with an active volume of 0.002cc. All measurements were performed in a water phantom, with detector positioned at the isocenter (SSD=90cm, d=10cm), MAESTRO diode being sandwiched in solid water to obtain an equivalent experimental setup. Results These measurements are challenging due to the absence of charged particle equilibrium conditions, detector size and positioning problems. They are in good agreement among each other, especially GAF, Razor, W1 and SCDD. Maximum deviations reported are related to the field 0.8×0.8cm2 for MAESTRO and chambers data with respect to EBT3: around 15% (A1SLvsEBT3), 16% (MAESTROvsEBT3). Razor and W1 show a deviation around 3% with respect to SCDD. Conclusion In this work measurements made with a variety of detectors are compared. These study show the possibility to choose different detectors for SFM and that smaller ion chambers are still not competitive with solid state detectors. Silicon, diamond and optical fiber dosimeters show a similar behavior with minor discrepancies for the smallest field.

  12. Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends

    NASA Astrophysics Data System (ADS)

    He, Zhengran; Li, Dawen; Hensley, Dale K.; Rondinone, Adam J.; Chen, Jihua

    2013-09-01

    Lateral and vertical phase separations play critical roles in the performance of the next-generation organic and hybrid electronic devices. A method is demonstrated here to switch between lateral and vertical phase separations in semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPSE pentacene)/polymer blend films by simply varying the alkyl length of the polyacrylate polymer component. The phase separation modes depend on intermolecular interactions between small molecule TIPSE pentancene and polymer additives. The blend film with a dominant vertical phase separation exhibits a significant enhancement in average mobility and performance consistency of organic thin-film transistors.

  13. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  14. Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators

    USGS Publications Warehouse

    Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.

    2003-01-01

    Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this

  15. 3D model of small-scale density cavities in the auroral magnetosphere with field-aligned current

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Misonova, V. G.; Savina, O. N.

    2016-09-01

    We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.

  16. The use of field methods to evaluate the toxicity of lead to plants at a small arms firing range

    SciTech Connect

    DeShields, B.R.; Meredith, R.W.; Griffin, D.; Laughlin, T.; Collins, W.

    1998-12-31

    The beach dunes at Fort Ord, California, were historically used as small arms firing ranges, resulting in the accumulation of spent bullets and varying concentrations of lead in soil. The form of the lead, and thus its bioavailability, is important in assessing associated ecological risks at firing ranges. Of particular interest at the beach firing ranges at Fort Ord are two species of buckwheat plants that provide habitat for an endangered butterfly. Initially, lead concentrations in soil and plant chaff were measured and root elongation bioassays were conducted. A linear correlation between lead in soil and lead in plant chaff was observed. However, the results of the bioassays were highly variable with no clear dose response pattern. Additional field studies were conducted to (1) further characterize lead concentrations in soil and plant tissue and (2) evaluate associations between soil lead concentrations and plant morphometric-variables. A relationship between soil and tissue lead concentrations was demonstrated. No significant associations between soil lead levels and plant health/condition were detected. Significant associations were observed between plant health/condition and factors other than lead.

  17. On the Monte Carlo simulation of small-field micro-diamond detectors for megavoltage photon dosimetry

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Palmans, Hugo; Marteinsdóttir, Maria; Benmakhlouf, Hamza; Carlsson-Tedgren, Åsa

    2016-01-01

    Monte Carlo (MC) calculated detector-specific output correction factors for small photon beam dosimetry are commonly used in clinical practice. The technique, with a geometry description based on manufacturer blueprints, offers certain advantages over experimentally determined values but is not free of weaknesses. Independent MC calculations of output correction factors for a PTW-60019 micro-diamond detector were made using the EGSnrc and PENELOPE systems. Compared with published experimental data the MC results showed substantial disagreement for the smallest field size simulated (5~\\text{mm}× 5 mm). To explain the difference between the two datasets, a detector was imaged with x rays searching for possible anomalies in the detector construction or details not included in the blueprints. A discrepancy between the dimension stated in the blueprints for the active detector area and that estimated from the electrical contact seen in the x-ray image was observed. Calculations were repeated using the estimate of a smaller volume, leading to results in excellent agreement with the experimental data. MC users should become aware of the potential differences between the design blueprints of a detector and its manufacturer production, as they may differ substantially. The constraint is applicable to the simulation of any detector type. Comparison with experimental data should be used to reveal geometrical inconsistencies and details not included in technical drawings, in addition to the well-known QA procedure of detector x-ray imaging.

  18. Effect of lung and target density on small-field dose coverage and PTV definition

    SciTech Connect

    Higgins, Patrick D. Ehler, Eric D.; Cho, Lawrence C.; Dusenbery, Kathryn E.

    2015-04-01

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy was delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.

  19. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.

  20. Seismic Absorption and Modulus Measurements in Porous Rocks in Lab and Field: Physical, Chemical, and Biological Effects of Fluids (Detecting a Biosurfactant Additive in a Field Irrigation Experiment)

    SciTech Connect

    Spetzler, Hartmut

    2006-05-01

    We have been exploring a new technology that is based on using low-frequency seismic attenuation data to monitor changes in fluid saturation conditions in two-fluid phase porous materials. The seismic attenuation mechanism is related to the loss of energy due to the hysteresis of resistance to meniscus movement (changes in surface tension, wettability) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). This technology has potential applications to monitoring changes in (1) leakage at buried waste sites, (2) contaminant remediation, and (3) flooding during enhanced petroleum recovery. We have concluded a three year field study at the Maricopa Agricultural Center site of the University of Arizona. Three sets of instruments were installed along an East-West line perpendicular to the 50m by 50m inigation site. Each set of instruments consisted of one three component seismometer and one tiltmeter. Microseisms and solid Earth-tides served as strain sources. The former have a power peak at a period of about 6 seconds and the tides have about two cycles per day. Installation of instruments commenced in late summer of 2002. The instruments operated nearly continuously until April 2005. During the fall of 2003 the site was irrigated with water and one year later with water containing 150 ppm of a biosurfactant additive. This biodegradable additive served to mimic a class of contaminants that change the surface tension of the inigation fluid. Tilt data clearly show tidal tilts superimposed on local tilts due to agricultural irrigation and field work. When the observed signals were correlated with site specific theoretical tilt signals we saw no anomalies for the water irrigation in 2003, but large anomalies on two stations for the surfactant irrigation in 2004. Occasional failures of seismometers as well as data acquisition systems contributed to less than continuous coverage. These data are noisier than the tilt data, but do also show possible

  1. Determinations of the correction factors for small fields in cylindrical ionization chambers based on measurement and numerical calculation

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Choi, Wonhoon; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino

    2015-07-01

    We investigated the volume averaging effect for air-filled cylindrical ionization chambers to determine the correction factors in a small photon field for a given chamber. We measured output factors with several cylindrical ionization chambers, and by using a mathematical method similar to deconvolution, we modeled the non-constant and inhomogeneous exposure function in the cavity of the chamber. The parameters in the exposure function and the correction factors were determined by solving a system of equations that we had developed by using the measured data and the geometry of the given chamber. The correction factors (CFs) were very similar to those obtained from Monte Carlo (MC) simulations. For example, the CFs in this study were found to be 1.116 for PTW31010 and 1.0225 for PTW31016 while the CFs obtained from MC simulations were reported as being approximately between 1.17 and 1.20 for PTW31010 and between 1.02 and 1.06 for PTW31016 in a 6-MV photon beam of 1 × 1 cm2. Furthermore, the method of deconvolution combined with the MC result for the chamber's response function showed a similar CF for PTW 30013, which was reported as 2.29 and 1.54 for a 1 × 1 cm2 and a 1.5 × 1.5 cm2 field size, respectively. The CFs from our method were similar, 2.42 and 1.54. In addition, we report CFs for PTW30013, PTW31010, PTW31016, IBA FC23-C, and IBA CC13. As a consequence, we suggest the use of our method to measure the correct output factor by using the fact that an inhomogeneous exposure causes a volume averaging effect in the cavity of air-filled cylindrical ionization chamber. The result obtained by using our method is very similar to that obtained from MC simulations. The method we developed can easily be applied in clinics.

  2. K- band integral field spectroscopy and optical spectroscopy of massive young stellar objects in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ward, J. L.; Oliveira, J. M.; van Loon, J. Th.; Sewiło, M.

    2017-01-01

    We present K-band integral field spectroscopic observations towards 17 massive young stellar objects (YSOs) in the low-metallicity Small Magellanic Cloud (SMC) and two YSO candidates in the compact H II regions N81 and N88 A (also in the SMC). These sources, originally identified using Spitzer photometry and/or spectroscopy, have been resolved into 29 K-band continuum sources. By comparing Brγ emission luminosities with those presented for a Galactic sample of massive YSOs, we find tentative evidence for increased accretion rates in the SMC. Around half of our targets exhibit emission-line (Brγ, He I and H2) morphologies that extend significantly beyond the continuum source and we have mapped both the emission morphologies and the radial velocity fields. This analysis also reveals evidence for the existence of ionized low-density regions in the centre outflows from massive YSOs. Additionally, we present an analysis of optical spectra towards a similar sample of massive YSOs in the SMC, revealing that the optical emission is photoexcited and originates near the outer edges of molecular clouds, and is therefore consistent with a high mean-free path of UV photons in the interstellar medium (ISM) of the SMC. Finally, we discuss the sample of YSOs in an evolutionary context incorporating the results of previous infrared and radio observations, as well as the near-infrared and optical observations presented in this work. Our spectroscopic analysis in both the K band and the optical regimes, combined with previously obtained infrared and radio data, exposes differences between properties of massive YSOs in our own Galaxy and the SMC, including tracers of accretion, discs and YSO-ISM interactions.

  3. Dynamical Tuning of the Initial Condition in Small Field Inflations - Can We Testify the CW Mechanism in the Universe

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi

    I explain the cosmological consequence of the particle physics models with the Coleman-Weinberg (CW) type potential. Such particle physics models generally predict the small field inflation (SFI), but the SFI requires a very unnatural fine-tuning of the initial condi- tion. In this talk, I reviewed our proposal1 to solve the fine-tuning problem dynamically by a trapping of the inflaton field due to the preheating before the SFI starts.

  4. Dogs are sensitive to small variations of the Earth’s magnetic field

    PubMed Central

    2013-01-01

    Introduction Several mammalian species spontaneously align their body axis with respect to the Earth’s magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics. Results Dogs preferred to excrete with the body being aligned along the North–South axis under calm MF conditions. This directional behavior was abolished under unstable MF. The best predictor of the behavioral switch was the rate of change in declination, i.e., polar orientation of the MF. Conclusions It is for the first time that (a) magnetic sensitivity was proved in dogs, (b) a measurable, predictable behavioral reaction upon natural MF fluctuations could be unambiguously proven in a mammal, and (c) high sensitivity to small changes in polarity, rather than in intensity, of MF was identified as biologically meaningful. Our findings open new horizons in magnetoreception research. Since the MF is calm in only about 20% of the daylight period, our findings might provide an explanation why many magnetoreception experiments were hardly replicable and why directional values of records in diverse observations are

  5. Determination of small field output factors in 6 and 10 MV flattening filter free photon beams using various detectors

    NASA Astrophysics Data System (ADS)

    Masanga, W.; Tangboonduangjit, P.; Khamfongkhruea, C.; Tannanonta, C.

    2016-03-01

    The study aimed to determine appropriate detectors for output factor measurement of small fields in 6 and 10 MV flattening filter free photon beams using five different detectors. Field sizes were varied between 0.6 × 0.6 and 4.0 × 4.0 cm2. An indirect method (daisy-chaining) was applied to normalize the output factors. For the smallest field size, the variations of output factors compared among the detectors were 13%. Exradin A16 had the lowest output factor and increasing in sequence with CC01, microDiamond, microLion and EDGE detectors, respectively, for both energies. The similarity between CC01 and microDiamond output factor values were within 1.6% and 1% for all field sizes of 6 and 10 MV FFF, respectively. EDGE and microLion presented the highest values while ExradinA16 gave lowest values. In conclusion, IBACC01, Exradin A16, microLion, microDiamond and EDGE detectors seem to be the detectors of choices for small field output factor measurement of FFF beams down to 1.6 × 1.6 cm2. However, we could not guarantee which detector is the most suitable for output factor measurement in small field less than 1.6 × 1.6 cm2 of FFF beams. Further studies are required to provide reference information for validation purposes.

  6. EXPLAINING THE COEXISTENCE OF LARGE-SCALE AND SMALL-SCALE MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    SciTech Connect

    Yadav, Rakesh K.; Poppenhaeger, Katja; Wolk, Scott J.; Christensen, Ulrich R.; Gastine, Thomas; Morin, Julien; Reiners, Ansgar

    2015-11-10

    Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.

  7. Control of hydrogen sulfide production in oil fields by managing microbial communities through nitrate or nitrite addition

    NASA Astrophysics Data System (ADS)

    Hubert, Casey R. J.

    Nitrate or nitrite injection into oil reservoirs during water flooding has the potential to control biological souring, the production of hydrogen sulfide (H2S) by sulfate-reducing bacteria (SRB). Souring control is essential because sulfide is toxic, sulfide precipitates can plug reservoir formations, souring lowers crude oil value, and SRB induce corrosion. Nitrate and nitrite can stimulate heterotrophic nitrate- or nitrite-reducing bacteria (hNRB) and nitrate- or nitrite-reducing, sulfide oxidizing bacteria (NRSOB). Nitrite also inhibits SRB activity by blocking the sulfate reduction pathway. Continuous up-flow packed-bed bioreactors were inoculated with produced water from the Coleville oil field to establish sulfide-producing biofilms similar to those found in sour reservoirs. Nitrate or nitrite addition to bioreactors indicated that the dose required for hNRB or NR-SOB to control souring depended on the concentration of oil organics. Either mechanism mediates the net removal of oil organics (lactate) with nitrate or nitrite, with lower doses of nitrate required due to its greater oxidative power. Microbial community analysis by reverse sample genome probing (RSGP) revealed that NR-SOB mediated sulfide removal at low nitrate or nitrite concentrations when lactate was still available to SRB and the redox potential was low. At high nitrate doses hNRB oxidized lactate directly, produced nitrite and maintained a high redox potential, thus excluding SRB activity. Facultatively chemolithotrophic Campylobacter sp. strains were isolated from the bioreactors and incorporated into RSGP analyses, revealing their dominance in both NR-SOB- and hNRB-containing communities. The metabolic flexibility of these strains may confer a competitive advantage over obligate chemolithotrophs like Thiomicrospira sp. strain CVO or hNRB that do not have NR-SOB activity like newly isolated Thauera sp. and Rhodobacter sp. strains. A single high dose of nitrite resulted in immediate

  8. Role of the density, density effect and mean excitation energy in solid-state detectors for small photon fields.

    PubMed

    Andreo, Pedro; Benmakhlouf, Hamza

    2017-02-21

    A number of recent publications on small photon beam dosimetry aim at contributing to the understanding of the response of solid-state detectors in small fields. Some of them assign the difference in response to the mass density, or to the electron density, of the sensitive detector material relative to that of water. This work analyses the role of the mass and electron density ([Formula: see text]), density effect (δ) and mean excitation energy (I-value) of some detector materials in a 6 MV photon beam of 0.5 cm radius, its rationale being that the response of a detector depends critically on the stopping-power ratio detector-to-water. The influence on the detector response of volume scaling by electron density, and of electron single and multiple scattering, is also investigated. Detector materials are water, diamond and silicon, and additional materials are included for consistency in the analysis. A detailed analysis on the ([Formula: see text]) dependence of stopping-power ratios shows that the density effect δ depends both on the electron density and on the I-value of the medium, but not on the mass density ρ alone as is usually assumed. This leads to a double dependence of stopping-power ratios on the I-value and questions the adequacy of a 'density perturbation factor' or of common interpretations of detector response in terms of ρ alone. Differences in response can be described in terms of the variation of stopping power ratios detector-to-water, mainly due to different I-values and to a lesser extent to different values of electron density. It is found that at low energies the trend of Monte Carlo-calculated electron fluence spectra inside the detector materials depends solely on their I-values. No dependence on mass density or density effect alone is observed at any energy. The trend of restricted-cema ratios to water (as a substitute of absorbed dose ratios) follows that of stopping-power ratios at 1 MeV, the most probable energy of differential

  9. Experimental evaluation of a multi-pinhole collimator for a small organ by using a small-field-of-view gamma camera

    NASA Astrophysics Data System (ADS)

    Bae, Jaekeon; Bae, Seungbin; Jung, Young-Jun; Lee, Kisung; Kim, Yongkwon; Joung, Jinhun; Kim, Kyeong Min; Kim, Hee-Joung

    2017-02-01

    The aim of this study is to design and evaluate a multi-pinhole (MP) collimator for a gamma imaging system that requires a high sensitivity, organ-specific, and small footprint. To ensure these requirements, we designed an eight-hole collimator that can be integrated into a small field-of-view gamma camera for imaging the thyroid or relatively sized organs. Each pinhole was designed to have a cylindrical shape with a 2-mm diameter. Experiments were performed with both a two-sphere phantom and a four-rod phantom. An image reconstruction based on the maximum likelihood expectation maximization with the distance-driven method was used for obtaining a 3-dimensional image. For improving the uniformity of the reconstruction image, we modeled the sensitivity of the cylindrical pinhole by calculating the area of the overlapped circle. The results show that the full width at half maximum values of the two-sphere phantom and the four-rod phantom were 7.56 mm (5-mm-diameter source) and 6.84 mm (5-mm-diameter rod), respectively. The scanning time can be reduced by up to 20 minutes in small-organ applications by using developed MP collimator. Thus, the results indicate that the proposed MP collimator is suitable for a fast scan time, as well as for organ-specific and small-footprint applications.

  10. Automated proximity sensing in small vertebrates: design of miniaturized sensor nodes and first field tests in bats.

    PubMed

    Ripperger, Simon; Josic, Darija; Hierold, Martin; Koelpin, Alexander; Weigel, Robert; Hartmann, Markus; Page, Rachel; Mayer, Frieder

    2016-04-01

    Social evolution has led to a stunning diversity of complex social behavior, in particular in vertebrate taxa. Thorough documentation of social interactions is crucial to study the causes and consequences of sociality in gregarious animals. Wireless digital transceivers represent a promising tool to revolutionize data collection for the study of social interactions in terms of the degree of automation, data quantity, and quality. Unfortunately, devices for automated proximity sensing via direct communication among animal-borne sensors are usually heavy and do not allow for the investigation of small animal species, which represent the majority of avian and mammalian taxa. We present a lightweight animal-borne sensor node that is built from commercially available components and uses a sophisticated scheme for energy-efficient communication, with high sampling rates at relatively low power consumption. We demonstrate the basic functionality of the sensor node under laboratory conditions and its applicability for the study of social interactions among free-ranging animals. The first field tests were performed on two species of bats in temperate and tropical ecosystems. At <2 g, this sensor node is light enough to observe a broad spectrum of taxa including small vertebrates. Given our specifications, the system was especially sensitive to changes in distance within the short range (up to a distance of 4 m between tags). High spatial resolution at short distances enables the evaluation of interactions among individuals at a fine scale and the investigation of close contacts. This technology opens new avenues of research, allowing detailed investigation of events associated with social contact, such as mating behavior, pathogen transmission, social learning, and resource sharing. Social behavior that is not easily observed becomes observable, for example, in animals living in burrows or in nocturnal animals. A switch from traditional methods to the application of

  11. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  12. Small parametric model of the precomputation of meteorological fields on the basis of complete equations and its energetic analogs

    NASA Technical Reports Server (NTRS)

    Borisenkov, Y. P.

    1974-01-01

    A small parametric, nonadiabatic model for precomputation of meteorological fields on the basis of complete equations, along with its energetic analogs is described. The model incorporates integral characteristics of the components of the wind speed and the analogous functions of the total fluxes of the ocean, and uses a Cartesian isobaric system of coordinates.

  13. Toward Effective and Compelling Instruction for High School eCommerce Students: Results from a Small Field Study

    ERIC Educational Resources Information Center

    Luterbach, Kenneth J.; Rodriguez, Diane; Love, Lakecia

    2012-01-01

    This paper describes an instructional development effort to create effective and compelling instruction for eCommerce students. Results from a small field study inform the development project. Four high school students in an eCommerce course completed the standalone tutorial developed to teach them how to create a web page in the HyperText Markup…

  14. Development of an optical imaging platform for functional imaging of small animals using wide-field excitation

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Intes, Xavier

    2010-01-01

    The design and characterization of a time-resolved functional imager using a wide-field excitation scheme for small animal imaging is described. The optimal operation parameters are established based on phantom studies. The performance of the platform for functional imaging and the simultaneous 3D reconstruction of absorption and scattering coefficients is investigated in vitro. PMID:21258454

  15. Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Cai, Boyuan; Jia, Baohua; Shi, Zhengrong; Gu, Min

    2013-03-01

    Near-field light concentration from plasmonic nanostructures was predicted to significantly improve solar cell conversion efficiency since the inception of plasmonic solar cells. However the challenge remains in designing effective nanostructures for useful near-field enhancement much exceeding the detrimental ohmic loss and light blockage losses in solar cells. We propose and demonstrate ultra-small (a few nanometers) gold nanoparticles integrated in amorphous silicon solar cells between the front electrode and the photoactive layer. Significant enhancements in both the photocurrent (14.1%) and fill factor (12.3%) have been achieved due to the strong plasmonic near-field concentration and the reduced contact resistance, respectively.

  16. Cadmium accumulation in herbivorous and carnivorous small mammals: meta-analysis of field data and validation of the bioaccumulation model Optimal Modeling for Ecotoxicological Applications.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Hamers, Timo; Wijnhoven, Sander; Hendriks, A Jan

    2007-07-01

    Environmental risk assessment procedures often use bioaccumulation as a criterion for hazard identification of a polluted location. Field studies regarding metal concentrations in food chains, however, have provided widely different information, because accumulation is shown to vary between the extremes of bioreduction and biomagnification. Bioaccumulation models provide insight regarding species-specific uptake and elimination kinetics of metals and assist in the interpretation of field data. Here, we use the bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) to estimate cadmium accumulation in herbivorous voles and carnivorous shrews. In addition to model validation, a meta-analysis of cadmium accumulation data is performed, because earlier studies generally have focused on relationships between cadmium concentrations in either specific tissues (kidney and liver) or whole-body concentrations and total soil levels. Additionally, we included the food-small mammal relationship. Our results show that cadmium whole-body concentrations are significantly related to cadmium levels in food items such as earthworms and plants. In addition, a significant relationship is found between cadmium accumulation in the liver and kidney of small mammals and total soil levels. Cadmium concentrations in shrews typically are an order of magnitude higher than metal levels in voles as a result of higher metal accumulation in earthworms compared to plants. Model predictions for both voles and shrews are in good agreement with field observations; deviations generally are within a factor of five. Small mammals prevent cadmium toxicity by binding this metal to metallothionein, which likely results in low elimination rates. Comparison with empirical elimination rates shows that rate constants of loss are accurately predicted assuming that cadmium is only released via growth dilution.

  17. A reverberation chamber for rodents' exposure to wideband radiofrequency electromagnetic fields with different small-scale fading distributions.

    PubMed

    Li, Congsheng; Yang, Lei; Lu, Bingsong; Xie, Yi; Wu, Tongning

    2016-01-01

    A reverberation chamber (RC) is realized for the rodents' in vivo exposure to electromagnetic fields (EMFs) with various small-scale fading characteristics. Its performance is evaluated to ensure the exposure experiments from 0.85 to 2.60 GHz. By different configurations, line-of-sight and non-line-of-sight exposures can be established. The measured electric field in the RC is analyzed to determine its statistical distribution. We accordingly reconstruct the EMF environment by numerical methods. Simulations are carried to compare the dosimetric variability due to different small-scale fading characteristics. It demonstrates that the surveyed fading distribution will not change the specific absorption rate in the rats. The possibility to reproduce the realistic multi-reflective EMF environment by adjusting the structures of the RC is discussed. It is the first reported in vivo exposure system aiming to provide the EMF exposure with different small-scale fading distributions.

  18. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements.

    PubMed

    Scott, Alison J D; Nahum, Alan E; Fenwick, John D

    2009-07-01

    The accuracy with which Monte Carlo models of photon beams generated by linear accelerators (linacs) can describe small-field dose distributions depends on the modeled width of the electron beam profile incident on the linac target. It is known that the electron focal spot width affects penumbra and cross-field profiles; here, the authors explore the extent to which source occlusion reduces linac output for smaller fields and larger spot sizes. A BEAMnrc Monte Carlo linac model has been used to investigate the variation in penumbra widths and small-field output factors with electron spot size. A formalism is developed separating head scatter factors into source occlusion and flattening filter factors. Differences between head scatter factors defined in terms of in-air energy fluence, collision kerma, and terma are explored using Monte Carlo calculations. Estimates of changes in kerma-based source occlusion and flattening filter factors with field size and focal spot width are obtained by calculating doses deposited in a narrow 2 mm wide virtual "milliphantom" geometry. The impact of focal spot size on phantom scatter is also explored. Modeled electron spot sizes of 0.4-0.7 mm FWHM generate acceptable matches to measured penumbra widths. However the 0.5 cm field output factor is quite sensitive to electron spot width, the measured output only being matched by calculations for a 0.7 mm spot width. Because the spectra of the unscattered primary (psi(pi)) and head-scattered (psi(sigma)) photon energy fluences differ, miniphantom-based collision kerma measurements do not scale precisely with total in-air energy fluence psi = (psi(pi) + psi(sigma) but with (psi(pi)+ 1.2psi(sigma)). For most field sizes, on-axis collision kerma is independent of the focal spot size; but for a 0.5 cm field size and 1.0 mm spot width, it is reduced by around 7% mostly due to source occlusion. The phantom scatter factor of the 0.5 cm field also shows some spot size dependence, decreasing by

  19. Small Water System Operations and Maintenance. A Field Study Training Program. Second Edition.

    ERIC Educational Resources Information Center

    Kerri, Kenneth D.; And Others

    Proper installation, inspection, operation, maintenance, repair and management of small water systems have a significant impact on the operation and maintenance cost and effectiveness of the systems. The objective of this manual is to provide small water system operators with the knowledge and skills required to operate and maintain these systems…

  20. Field computation for a neutrino detector magnet: the effect of small gaps in large bodies

    SciTech Connect

    Turner, L.R.

    1996-11-01

    The presence of small features such as thin gaps in a large magnetic object presents difficulties for numerical computation. The proposed MINOS neutrino detector displays just such a difficulty, small ({approx}1 mm) but unavoidable gaps in the large ({approx}8 m) iron of the magnets. This paper describes the process of obtaining adequate precision while modeling those gaps.

  1. Optimisation of output factor measurements using the Magic Plate 512 silicon dosimeter array in small megavoltage photon fields

    NASA Astrophysics Data System (ADS)

    Utitsarn, K.; Alrowaili, Z. A.; Stansook, N.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.

    2017-01-01

    We evaluate the impact of an air gap and optimization of this air gap for the MP512 silicon detector array when operated in dosimetry mode for small photon field measurements in solid water. We present output factor measurements for 6MV and 10 MV photon beams with the square field sizes ranging from 0.5 to 10 cm2. The size of the air gap above the MP512 detector was changed from 0.5, 1.0, 1.2, 2.0 and 2.6 mm. We compare the output factors measurements of the MP512 with EBT3 film and the MOSkin dosimeter. For the two photon energies investigated, we find that the output factor measured by the MP512 reduce with increasing air gap and reducing of field size. The reduction in output factor is most pronounced for the 0.5 and 1 cm2 field sizes. The air gap of 0.5 mm and 1.2 mm showed good agreement with the EBT3 film and MOSkin output factor for 6 and 10 MV photon fields, respectively. The negligible effect on dosimetry for the field sizes larger than 4x4 cm2 demonstrates that the electronic disequilibrium caused by small air gap only influences the dosimetry measurements for small fields. The study shows that the output factor reduction is enhanced by increasing of air gap and demonstrates that the optimal air gap for the MP512 at 6 and 10 MV photon fields is 0.5mm.

  2. Zero-field NMR of small-amplitude motions in a polycrystalline solid

    SciTech Connect

    Millar, J.M.; Thayer, A.M.; Zax, D.B.; Pines, A.

    1986-08-20

    The librational motions of the water molecules in polycrystalline barium chlorate monohydrate have been studied by using proton and deuterium zero-field NMR. In contrast to high-field NMR, subtle molecular motions produce readily observable changes in the zero-field spectrum. Computer simulations and application of a novel-pulsed zero-field technique confirm that the splitting observed in the zero-field spectrum of the hydrate results from the motionally induced asymmetry of the magnetic dipole-dipole coupling tensor.

  3. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    SciTech Connect

    Keenan, Brett D. Medvedev, Mikhail V.

    2015-11-15

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., “sub-Larmor scales.” Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  4. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Medvedev, Mikhail V.

    2015-11-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., "sub-Larmor scales." Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  5. Physical characteristics of LWRs and SCLWRs loaded by ({sup 233}U-Th-{sup 238}U) oxide fuel with small additions of {sup 231}Pa

    SciTech Connect

    Kulikov, E.G.; Shmelev, A.N.; Apse, V.A.; Kulikov, G.G.

    2007-07-01

    The paper investigates the possibility and attractiveness of using (U-Th) fuel in light-water reactors (LWRs) and in light-water reactors with super-critical coolant parameters (SCLWRs). It is proposed to dilute {sup 233}U with {sup 238}U to enhance the proliferation resistance of this fissionable isotope. If is noteworthy that she idea was put forward for the first time by she well known American physicist and participant of the Manhattan Project Dr. T. Taylor. Various fuel compositions are analyzed and compared on fuel breeding, achievable values of fuel burn-up and cross-sections of parasitic neutron absorption. It is also demonstrated that small {sup 231}Pa additions (several percent) into the fuel allows: to increase fuel burn-up, to achieve more negative temperature reactivity coefficient of coolant and to enhance nonproliferation of the fuel. (authors)

  6. Microstructural changes of globules in calcium-silicate-hydrate gels with and without additives determined by small-angle neutron and X-ray scattering.

    PubMed

    Chiang, Wei-Shan; Fratini, Emiliano; Ridi, Francesca; Lim, Sung-Hwan; Yeh, Yi-Qi; Baglioni, Piero; Choi, Sung-Min; Jeng, U-Ser; Chen, Sow-Hsin

    2013-05-15

    The microstructure of calcium-silicate-hydrate (C-S-H) gel, a major hydrated phase of Ordinary Portland Cement, with and without polycarboxylic ether (PCE) additives is investigated by combined analyses of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) data. The results show that these comb-shaped polymers tend to increase the size of the disk-like globules but have little influence on the thickness of the water and calcium silicate layers within the globules. As a result, the fractal packing of the globules becomes more open in the range of a few hundred nanometers, in the sense that the mass fractal dimension diminishes, since the PCE adsorption on the globules increases the repulsive force between and polydispersity of the C-S-H units. Moreover, scanning electron microscope (SEM) study of the synthesized C-S-H gels in the micrometer range shows that the PCEs depress the formation of fibrils while enhancing the foil-like morphology.

  7. SU-E-P-34: Dose Perturbation Caused by Sun Nuclear QED Diode When Used for Very Small Electron Fields

    SciTech Connect

    Klash, S; Steinman, J; Stanley, T

    2015-06-15

    Purpose: Diodes are utilized by radiotherapy departments to help verify that treatment fields are being delivered correctly to the patient. Some treatment fields utilize electron beams along with a cerrobend cutout to shape the beam to the area to be treated. Cerrobend cutouts can sometimes be very small < 2×2-cm2. Some published work has addressed diode perturbation for cutout sizes down to 1.5-cm, this work addresses the diode perturbation of the Sun Nuclear QEDTM diode for cutouts as small as 0.5-cm in diameter. Methods: Measurements were taken with an A16 Exradin micro-chamber in Solid Water to 100-cm SSD. Dmax was determined for each cutout using various amounts of Solid Water in 1–2 mm increments to account for the dmax shifting in small fields. The diode was placed on top of the solid water to 100-cm SSD in the center of the cutout. Measurements were taken with no diode for comparison. The cutouts ranged in diameter from 0.5-cm to 5.0-cm and included the open 6×6 insert. Measurements were made for energies 6, 9, 12, 15,&18 MeV. Results: For 6 MeV, the percent dose reduction from the diode in the cutout field compared to the field without the diode ranged from 35% to 25% as a function of cutout size. For higher energies, this percentage decreased and generally was 25% to 15%. It was observed that dmax shifts significantly upstream for very small cutouts (<2-cm diameter) to less than 1 cm for all energies. Conclusion: The presence of diodes in small electron fields is enough to cause significant dose perturbation to the target volume. It is recommended that diodes for very small electron fields be used sparingly or possibly with a dose correction per treatment fraction(s), if the total projected delivered dose is going to be significantly different from that prescribed by the physician.

  8. TU-CD-304-07: Intensity Modulated Electron Beam Therapy Employing Small Fields in Virtual Scanning Mode

    SciTech Connect

    Rodrigues, A; Yin, F; Wu, Q; Liang, B

    2015-06-15

    Purpose: Dynamic electron radiation therapies such as dynamic electron arc radiotherapy (DEAR) utilize small fields to provide target conformity and fluence modulation. The purpose of this study is to demonstrate the feasibility of virtual scanning mode using small fields. Methods: Monte Carlo simulations (EGSnrc/BEAMnrc/DOSXYZnrc) were performed using validated Varian TrueBeam phase space files for electron beam energies of 6, 9, 12, and 16 MeV and square/circular fields (1×1/1, 2×2/2, 3×3/3, 4×4/4, 5×5/5 cm{sup 2}/cm diameter). Resulting dose distributions (kernels) were used for subsequent calculations. The following analyses were performed: (1) Comparison of composite square fields and reference 10×10 cm{sup 2} dose distributions and (2) Scanning beam deliveries for square and circular fields realized as the convolution of kernels and scanning pattern. Preliminary beam weight and pattern optimization were also performed. Two linear scans of 10 cm with/without overlap were modeled. Comparison metrics included depth and orthogonal profiles at dmax. Results: (1) Composite fields regained reference depth dose profiles for most energies and fields within 5%. Smaller kernels and higher energies increased dose in the build-up and Bremsstrahlung region (30%, 16MeV and 1×1 cm{sup 2}), while reference dmax was maintained for all energies and composite fields. Smaller kernels (<2×2 cm{sup 2}) maintained penumbra and field size within 0.2 cm, and flatness within 2%. Deterioration of penumbra for larger kernels (5×5 cm{sup 2}) were observed. Balancing desirable dosimetry and efficiencies suggests that smaller kernels are used at edges and larger kernels in the center of the target. (2) Beam weight optimization improved cross-plane penumbra (0.2 cm) and increased the field size (0.4 cm) on average. In-plane penumbra and field size remained unchanged. Overlap depended on kernel size and optimal overlap resulted in flatness ±2%. Conclusion: Dynamic electron beam

  9. Small-scale electrodynamics of the cusp with northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Basinska, Ewa M.; Burke, William J.; Maynard, Nelson C.; Hughes, W. J.; Winningham, J. D.; Hanson, W. B.

    1992-01-01

    Possible low-altitude field signatures of merging occurring at high latitudes during a period of strong northward directed interplanetary magnetic field are reported. Large electric and magnetic field spikes detected at the poleward edge of the magnetosheathlike particle precipitation are interpreted as field signatures of the low-altitude footprint of such merging line locations. A train of phase-shifted, almost linearly polarized electric and magnetic field fluctuations was detected just equatorward of the large electromagnetic spike. It is argued that these may be due to either ion cyclotron waves excited by penetrating magnetosheath ions or transient oscillations in the frame of convecting plasma, brought about by the sudden change in the flow at the magnetospheric end of the field line.

  10. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    SciTech Connect

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila; Ucok, Ibrahim

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  11. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic Scintillation and Other Stereotactic Detectors

    SciTech Connect

    Pino, R; Therriault-Proulx, F; Wang, X; Yang, J; Beddar, S

    2014-06-01

    Purpose: To perform dose profile and output factor (OF) measurements with the Exradin W1 plastic scintillation detector (PSD) for small fields made by the high-definition multi-leaf collimator (MLC) on the TrueBeam STx system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for 6 MV photon beams. Methods: The Exradin W1 is a new small volume near-water equivalent and energy independent PSD manufactured by Standard Imaging, Inc. All measurements were performed in an IBA Blue Phantom water tank. Square MLC-shaped fields with sides ranging from 0.5 cm to 2 cm and jawshaped fields with sides ranging from 1 cm to 40 cm were measured using an SAD setup at 10 cm depth. Dose profile and percent depth dose (PDD) measurements were also taken under the same conditions for MLC fields 0.5×0.5 and 1×1 cm2 in size with jaws at 2×2cm2. The CC01 and W1 were vertically mounted. Results: OFs measured with the W1 for jaw only square fields were consistent with the ones measured with a Farmers PTW TN33013 ion chamber (1.8% maximum deviation). OF and penumbra measurement results are presented below. PDDs measured for all detectors are within 1.5% for the 0.5×0.5 cm2 and within 1% for the 1×1 cm2 MLC fields.Output factors:MLC size W1 CC01 EDGE0.5cm 0.555 0.541 0.5851.0cm 0.716 0.702 0.7331.5cm 0.779 0.761 0.7772.0cm 0.804 0.785 0.796Penumbras (mm):MLC size W1 CC01 EDGE0.5cm 2.7 2.9 2.51.0cm 3.0 3.4 2. Conclusion: OFs measured for small MLC fields were consistent with the ones measured with the other stereotactic detectors. Measured penumbras are consistent with detector size. The Exradin W1 PSD is an excellent choice for characterizing MLC-shaped small beam dosimetry used for stereotactic radiosurgery and body radiation therapy. Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: “Water-Equivalent Plastic Scintillation Detectors for Small Field

  12. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  13. Large-Scale Velocity Fields and Small-Scale Magnetic Fields During the Maximum of Solar Cycle 22

    DTIC Science & Technology

    1992-11-01

    abstract describing this process of filament formation is published in the Proceedings of IAU Colloquium 133 on Eruptive flares held in Iguazu Argentina...July 1991 and at the IAU Coloquium on Eruptive Flares in Iguazu , Argentina, August 1991. 17 3.4 THE ROLE OF CANCELLING MAGNETIC FIELDS IN THE BUILD-UP TO...Jackson, 2-6 August 1991, Iguazu , Argentina. 2. Invited Review Paper on ’The Formation of Prominences’ for Solar Physics, by S.F. Martin and C

  14. In dermographic urticaria H2 receptor antagonists have a small but therapeutically irrelevant additional effect compared with H1 antagonists alone.

    PubMed

    Sharpe, G R; Shuster, S

    1993-11-01

    Two studies of the additional effect of an H2 receptor antagonist when given in combination with an H1 antagonist were undertaken in dermographic urticaria. Using a randomized, double-blind, crossover design in 19 patients, a combination of cetirizine (10 mg at night) and ranitidine (150 mg twice daily) was compared with a combination of cetirizine (10 mg at night) and placebo. The addition of ranitidine did not produce any significant difference in linear analogue scores for weal, itch or sleep disturbance. There was a significant depression of the frictional force/wealing response curve with an increase in wealing threshold (P < 0.0001) following the addition of H2 blockade. The wealing threshold was 54.7 +/- 4.4 (mean +/- SEM) g/mm2 for the H1 antagonist alone, and 73.2 +/- 5.7 for the combination of H1 and H2 antagonists. In a second similar study involving nine different patients, comparing terfenadine (120 mg twice daily) with a combination of terfenadine and ranitidine (150 mg twice daily), the weal threshold was 59.8 +/- 6.6 for the H1 antagonist alone, and 73.0 +/- 6.4 for the combination of H1 and H2 antagonists. Thus, in dermographic urticaria, adding an H2 antagonist to treatment with a potent H1 antagonist gives a small, significant reduction in wealing response, but no symptomatic benefit. We conclude that involvement of the H2 receptor in this urticarial disease is minimal, and does not justify the use of H2 receptor antagonists.

  15. Detection of Vibrations in Metallic Structures Using Small Passive Magnetic Fields.

    DTIC Science & Technology

    1981-03-01

    strained solid. The resulting changes in magnetic field out- side the body can be detected by a sensing coil. iv) Barkhausen effect Ferromagnetic...field outside the solid which can be converted to voltage or audio signals ( Barkhausen , see e.g. [2 ]). Thus vibration induced strains could initiate

  16. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.

    PubMed

    Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y

    2016-05-28

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  17. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  18. Mathematical model of a novel small magnetorheological damper by using outer magnetic field

    NASA Astrophysics Data System (ADS)

    Huang, Liutian; Li, Junhui; Zhu, Wenhui

    2017-03-01

    In order to realize small loading and small damping, a mini Magneto-rheological fluid (MRF) damper is suggested by using new method of outer coils, and its physical model is established firstly. It was found that the landing force is only 1.74˜8N, the landing force is the third-order function with the current by polynomial fitting of the experimental data, which shows a force-current model. The results of force-displacement and force-velocity indicate that it has nonlinear hysteretic damping characteristics. Based on the new mini-mode principle and the damping characteristics, an improved nonlinear dynamics model is proposed, and its parameter expressions are obtained by parameter identification and regression fitting. Model curves fit well with experimental curves, and the improved model has fully demonstrated the dynamic characteristics of the mini-MRF damper. It will provide scientific method and physical model for the small MRF damper development.

  19. Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Nadeem, S.; Lee, Changhoon

    In the present article we have analyzed the Jeffrey fluid model for the peristaltic flow of chyme in the small intestine. We have formulated the problem using two non-periodic sinusoidal waves of different wavelengths propagating with same speed c along the outer wall of the tube. Governing equations for the problem under consideration have been simplified under the assumptions of long wavelength and low Reynolds number approximation (such assumptions are consistent since Re (Reynolds number) is very small and long wavelength approximation also exists in the small intestine). Exact solutions have been calculated for velocity and pressure rise. Physical behavior of different parameters of Jeffrey fluid has been presented graphically for velocity, pressure rise, pressure gradient and frictional forces. The trapping phenomenon is also discussed at the end of the article.

  20. Magnetic Field-Tuned Superconductor-Insulator Transition in One-Dimensional Arrays of Small Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Kuo, Watson; Chen, C. D.

    2003-03-01

    We have studied experimentally the magnetic field induced superconductor-insulator quantum phase transition in one-dimensional arrays of small Josephson junctions. It is found that the critical magnetic field that separates the two phases corresponds to the onset of Coulomb blockade of Cooper pairs tunneling in the current-voltage characteristics. The resistance data are analyzed in the context of the superfluid-insulator transition in one dimension. Combining results from Haviland et. al.,2 we construct an experimental phase diagram using Josepshon coupling-to-charging energy ratio(EJ/ECP) and dissipation strength.

  1. Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.

    1985-01-01

    A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.

  2. The effectiveness of the best linear unbiased prediction of beef sires using field data collected from small farms.

    PubMed

    Sasaki, Y

    1992-11-01

    Beef sire evaluation using BLUP was investigated under field conditions at small-scale farms. The 6,848 records on fattened Japanese Black cattle steers were obtained from 1981 through 1987. The average number of steers in the subclass of market-year-farm was 5.2. A sire-maternal grandsire mixed model with relationships was used to analyze the data to yield BLUP for the sire and maternal grandsire effects. The regression coefficients of the realized value of progeny on the predicted value calculated using BLUP procedures for daily gain, carcass weight, and marbling score were 1.027, 1.054, and .917, respectively (i.e., the regression almost equaled 1). Therefore, BLUP was shown to be very effective in predicting offspring performance, even using field records collected from small-scale farms.

  3. A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set.

    PubMed

    Horta, Bruno A C; Merz, Pascal T; Fuchs, Patrick F J; Dolenc, Jozica; Riniker, Sereina; Hünenberger, Philippe H

    2016-08-09

    This article reports on the calibration and validation of a new GROMOS-compatible parameter set 2016H66 for small organic molecules in the condensed phase. The calibration is based on 62 organic molecules spanning the chemical functions alcohol, ether, aldehyde, ketone, carboxylic acid, ester, amine, amide, thiol, sulfide, and disulfide, as well as aromatic compounds and nucleic-acid bases. For 57 organic compounds, the calibration targets are the experimental pure-liquid density ρliq and the vaporization enthalpy ΔHvap, as well as the hydration free energy ΔGwat and the solvation free energy ΔGche in cyclohexane, at atmospheric pressure and at (or close to) room temperature. The final root-mean-square deviations (RMSD) for these four quantities over the set of compounds are 32.4 kg m(-3), 3.5 kJ mol(-1), 4.1 kJ mol(-1), and 2.1 kJ mol(-1), respectively, and the corresponding average deviations (AVED) are 1.0 kg m(-3), 0.2 kJ mol(-1), 2.6 kJ mol(-1), and 1.0 kJ mol(-1), respectively. For the five nucleic-acid bases, the parametrization is performed by transferring the final 2016H66 parameters from analogous organic compounds followed by a slight readjustment of the charges to reproduce the experimental water-to-chloroform transfer free energies ΔGtrn. The final RMSD for this quantity over the five bases is 1.7 kJ mol(-1), and the corresponding AVED is 0.8 kJ mol(-1). As an initial validation of the 2016H66 set, seven additional thermodynamic, transport, and dielectric properties are calculated for the 57 organic compounds in the liquid phase. The agreement with experiment in terms of these additional properties is found to be reasonable, with significant deviations typically affecting either a specific chemical function or a specific molecule. This suggests that in most cases, a classical force-field description along with a careful parametrization against ρliq, ΔHvap, ΔGwat, and ΔGche results in a model that appropriately describes the liquid in terms of

  4. Contactless micromanipulation of small particles by an ultrasound field excited by a vibrating body

    NASA Astrophysics Data System (ADS)

    Haake, Albrecht; Dual, Jurg

    2005-05-01

    A method is presented to position and displace micron-sized particles of a diameter between 10 and 100 μm without contact to solid instruments. An ultrasound field is utilized for this purpose. It is excited in a fluid-filled gap between a harmonically vibrating body and a rigid plane surface of an arbitrary other body, e.g., an object slide or a wafer. In this ultrasound field a force field is established, which acts on the particles suspended in the fluid and moves them to certain positions. The advantage of the method is that it is possible to manipulate single particles or many particles in parallel on any surface, for example, on a structured wafer. Theoretical calculations of the force field and experimental results including three principles to displace particles with micrometer accuracy are shown. The method might be used for microassembly or cell manipulation and treatment. .

  5. Experiential Cross-Cultural Approaches in Multicultural Early Field Experiences in the Small Community.

    ERIC Educational Resources Information Center

    Mungo, Samuel J.

    Small communities seldom have the ethnic and racial diversity that can provide multicultural experiences for teacher trainees. Cross cultural training, an aspect of multicultural teacher education, provides experience in understanding the way a culture conditions ways of learning, behaving, and perceiving, and the ability to look at cultural…

  6. Field Testing of a Small Water Purification System for Non-PRASA Rural Communities

    EPA Science Inventory

    Small, rural communities typically do not have adequate water purification systems to sustain their life quality and residents are exposed to pathogens present in drinking water. In Puerto Rico (PR), approximately 4% of the population does not have access to drinking water provi...

  7. Workplace Education Efforts in Small Business: Learning from the Field. Final Report.

    ERIC Educational Resources Information Center

    Vencill, Mary P.; And Others

    A study identified and conducted onsite case studies of 18 different education programs conducted by small companies. Two-thirds of them were conducted by manufacturing companies; the remainder were in health services, construction, or transportation companies. Most of the programs served fewer than 25 workers and had been in operation for less…

  8. Sound Field Amplification: Effects on Managerial Time in Small Group Speech Therapy

    ERIC Educational Resources Information Center

    Meeks, Jeffrey Craig

    2011-01-01

    This study addresses the use of speech amplification devices in speech therapy sessions. The major factor addressed is the impact that speech amplification has upon the managerial time of speech-language pathologists who provide therapy in small group sessions. This study measured the change in the amount of time speech-language pathologists spent…

  9. Small Group Versus Individualized Instruction: A Field Test of Their Relative Effectiveness.

    ERIC Educational Resources Information Center

    DeVries, David L.; And Others

    The relative impact on students of small group instruction versus individualized instruction and the impact of intensive training consulting with teachers around an innovative instructional approach on subsequent use of that approach were investigated. A large-scale 10-week experiment involving 57 classes and 19 teachers in a 2 x 2…

  10. TOPICAL REVIEW: Advances in high-field superconducting composites by addition of artificial pinning centres to niobium-titanium

    NASA Astrophysics Data System (ADS)

    Cooley, L. D.; Motowidlo, L. R.

    1999-08-01

    Artificial pinning-centre (APC) niobium-titanium composites attain critical current density Jc values higher than 4000 A mm-2 at 5 T, 4.2 K, surpassing the barrier reached by the conventional Nb-Ti composite process. At 2 T APC composites achieve more than double the Jc of conventional composites, making them particularly well suited for low-field applications. On the other hand, APC composites are inferior to conventional composites at 8 T, due to weak high-field pinning and reduced upper critical field. This review discusses fabrication techniques, microstructural development and superconducting and flux-pinning properties of APC composites. Key elements and underlying issues for achieving higher Jc are identified and discussed in terms of the current state of the art.

  11. Living heart valve and small-diameter artery substitutes--an emerging field for intellectual property development.

    PubMed

    Mol, Anita; Rubbens, Mirjam P; Stekelenburg, Maria; Baaijens, Frank P T

    2008-01-01

    Cardiovascular diseases, such as heart valve dysfunction and coronary artery stenosis, are next to cancer the leading cause of death in the US. Treatments involve replacement of the heart valve or bypassing the obstructed coronary artery with a small-diameter vascular graft. The major limitation of currently used replacements is their inability to grow, adapt and repair in the patient. Considering the increasing age of the population and the subsequent increase in cardiovascular disease incidence, efforts to improve existing replacements and unraveling novel types of replacements are of paramount importance. Cardiovascular tissue engineering represents a rapid evolving field of research, providing living heart valve and small-diameter vascular substitutes with the ability to grow, adapt and repair after implantation. Various tissue engineering approaches are being employed, based on in vivo and/or in vitro tissue formation. This review provides an overview of the current heart valve and small-diameter vascular replacements and presents the status and future developments within the various tissue engineering approaches. The potential of tissue engineering for the development of living heart valve and small-diameter vascular substitutes is reflected in the numerous patents related to this emerging field of research.

  12. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    SciTech Connect

    Young, L; Yang, F

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber and EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.

  13. An empirical formula to obtain tissue-phantom ratios from percentage depth-dose curves for small fields

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Krauss, Rob

    2013-07-01

    For small photon fields, accurate values of a tissue-phantom ratio (TPR) are difficult to obtain either by direct measurement or by the conventional method of converting from measured percentage depth doses (%dd). This study aims to develop an empirical method to accurately obtain TPRs from %dd curves for small radiosurgery beams. The Monte Carlo simulation codes BEAMnrc/DOSXYZnrc were used to simulate the accelerator head and small, collimated fields including the circular cone accessory. The Monte Carlo directly calculated TPR values as a function of depth were compared with TPRs converted from %dd curves in a water phantom for field sizes ranging from 4 mm diameter to 10 × 10 cm2 fields. Direct measurements of TPRs were performed with the detector remaining fixed at a SAD of 100 cm and increasing the detector depth by adding water. The %dd curves were measured at 100 cm SSD in a 50 × 50 × 50 cm3 water tank. Using the Monte Carlo values, we developed an empirical formula to obtain TPRs from %dd and validated its accuracy. The conventional method of obtaining TPRs from %dd underestimate TPR by 3.4% and 0.6% at a depth 1.5 cm and overestimate TPR by 6.4% and 1.7% at a depth of 25 cm for 4 mm and 30 mm diameter circular fields, respectively. The empirical formula is derived from realistic Monte Carlo simulations using field sizes ranging from 4 to 30 mm and depth ranging from 1.5 to 25 cm. TPRs calculated using this function deviate from TPRs directly calculated from Monte Carlo by less than 0.5%. The accuracy of this empirical formula is validated against the directly measured TPRs in water. The developed empirical method has the potential to greatly simply the work in obtaining TPRs from measured %dd curves for small fields. By using this developed empirical formula the uncertainties between directly measured TPRs and converted TPRs from measured %dd curves are within 1%.

  14. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    SciTech Connect

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; Yeom, Min Sun; Eastman, Peter K.; Lemkul, Justin A.; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S.; Case, David A.; Brooks, Charles L.; MacKerell, Alexander D.; Klauda, Jeffery B.; Im, Wonpil

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  15. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    DOE PAGES

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; ...

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find themore » optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.« less

  16. Grain refinement in heavy rare earth element-free sintered Nd–Fe–B magnets by addition of a small amount of molybdenum

    SciTech Connect

    Kim, Jin Woo; Lee, Won Suk; Byun, Jong Min; Kim, Young Do; Kim, Se Hoon

    2015-05-07

    We employed a modified refractory-metal-addition method to achieve higher coercivity and remanence in heavy rare earth element (HREE)-free Nd–Fe–B sintered magnets. This process involved inducing the formation of a homogeneous secondary phase at the grain boundaries during sintering, making it possible to control the intergrain diffusion by adding small amounts of Mo, a refractory metal. To control the microstructure of the secondary phase effectively, a metal organic compound of the refractory metal was coated on the surfaces of the particles of an HREE-free Nd–Fe–B powder. The average grain size after this process was 5.60 μm, which was approximately 1.8 μm smaller than that of the HREE-free sintered Nd–Fe–B magnets (7.4 μm). The coercivity of the magnets prepared through this process could be increased from 11.88 kOe to 13.91 kOe without decreasing their remanence.

  17. Biological effects of 60-Hz electric fields on small and large laboratory animals

    SciTech Connect

    Phillips, R.D.

    1981-01-01

    Rats and mice were exposed to 60-Hz electric fields up to 330 kV/m for durations as long as four months. No significant effects were found in the following major areas: metabolic status and growth; organ and tissue morphology; brain morphology; cardiovascular function; serum chemistry; reproduction; prenatal growth and development; teratology; bone growth; peripheral nerve function; humoral and cell-mediated immunity; susceptibility to viral infection; cell and membrane function; illness/malaise; and cytogenetics. Statistically significant effects of electric field exposures were observed in the following areas: bone fracture repair; neonatal development; neuromuscular function; endocrinology; hematology; neurochemistry; urine volume and chemistry; sympathetic nervous system; behavior. It is likely that many of the effects observed are secondary to chronic stimulation of the animal by the field. Our research efforts have shifted to an in-depth investigation of nervous system functions, with emphasis in behavior, neurochemistry, neurophysiology, and dosimetry. Current and future research in these areas will focus on: relationship of effects to field strength and duration of exposure; recovery from observed effects; fundamental understanding of observed effects; fundamental understanding of interaction of field with animal (dosimetry); and biological significance of observed effects. (ERB)

  18. Role of the density, density effect and mean excitation energy in solid-state detectors for small photon fields

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Benmakhlouf, Hamza

    2017-02-01

    A number of recent publications on small photon beam dosimetry aim at contributing to the understanding of the response of solid-state detectors in small fields. Some of them assign the difference in response to the mass density, or to the electron density, of the sensitive detector material relative to that of water. This work analyses the role of the mass and electron density (ρ,{{n}\\text{e}} ), density effect (δ) and mean excitation energy (I-value) of some detector materials in a 6 MV photon beam of 0.5 cm radius, its rationale being that the response of a detector depends critically on the stopping-power ratio detector-to-water. The influence on the detector response of volume scaling by electron density, and of electron single and multiple scattering, is also investigated. Detector materials are water, diamond and silicon, and additional materials are included for consistency in the analysis. A detailed analysis on the (ρ,I,δ ) dependence of stopping-power ratios shows that the density effect δ depends both on the electron density and on the I-value of the medium, but not on the mass density ρ alone as is usually assumed. This leads to a double dependence of stopping-power ratios on the I-value and questions the adequacy of a ‘density perturbation factor’ or of common interpretations of detector response in terms of ρ alone. Differences in response can be described in terms of the variation of stopping power ratios detector-to-water, mainly due to different I-values and to a lesser extent to different values of electron density. It is found that at low energies the trend of Monte Carlo-calculated electron fluence spectra inside the detector materials depends solely on their I-values. No dependence on mass density or density effect alone is observed at any energy. The trend of restricted-cema ratios to water (as a substitute of absorbed dose ratios) follows that of stopping-power ratios at 1 MeV, the most probable energy of differential

  19. Notes from the Field: Four Multistate Outbreaks of Human Salmonella Infections Linked to Small Turtle Exposure - United States, 2015.

    PubMed

    Gambino-Shirley, Kelly; Stevenson, Lauren; Wargo, Katherine; Burnworth, Laura; Roberts, Jonathan; Garrett, Nancy; Van Duyne, Susan; McAllister, Gillian; Nichols, Megin

    2016-07-01

    In August 2015, the Food and Drug Administration (FDA) notified CDC of a consumer complaint involving Salmonella Sandiego infection in a child (the index patient), who had acquired a small turtle (shell length <4 inches [<10 cm]) at an Alabama flea market. The subsequent investigation, which included examining data from PulseNet, the national molecular subtyping network for foodborne disease surveillance, identified four multistate Salmonella outbreaks: two involving Salmonella Sandiego and two involving Salmonella Poona. These serotypes have been linked to small turtles in previous outbreaks (1,2). Although selling small turtles as pets in the United States has been banned since 1975 (3), illegal sales still occur at discount stores and flea markets and by street vendors. CDC investigated to determine the extent of the outbreaks and prevent additional infections.

  20. Effect of Steam Addition on the Flow Field and NOx Emissions for Jet-A in an Aircraft Combustor

    NASA Astrophysics Data System (ADS)

    Xue, Rui; Hu, Chunbo; Nikolaidis, Theoklis; Pilidis, Pericle

    2016-12-01

    The steam injection technology for aircraft engines is gaining rising importance because of the strong limitations imposed by the legislation for NOx reduction in airports. In order to investigate the impact of steam addition on combustion and NOx emissions, an integrated performance-CFD-chemical reactor network (CRN) methodology was developed. The CFD results showed steam addition reduced the high temperature size and the radical pool moved downstream. Then different post-processing techniques are employed and CRN is generated to predict NOx emissions. This network consists of 14 chemical reactor elements and the results were in close agreement with the ICAO databank. The established CRN model was then used for steam addition study and the results showed under air/steam mixture atmosphere, high steam content could push the NOx formation region to the post-flame zone and a large amount of the NOx emission could be reduced when the steam mass fraction is quite high.

  1. Laboratory and field evaluation of a combined fluid-loss-control additive and gel breaker for fracturing fluids

    SciTech Connect

    Cantu, L.A.; Boyd, P.A. )

    1990-08-01

    More than 200% increase in fracture conductivity and permeability was obtained when a new degradable fluid-loss-control additive was used in place of silica flour (SF) in 40-lbm crosslinked hydroxypropyl-guar (HPG) fracturing-fluid systems. The new additive, and organic acid particulate (OAP), slowly degraded into water-soluble monomeric units at temperatures {ge}150{degrees}F after fracture stimulation experiments. The high-acid-content degradation product then acted as an excellent HPG gel breaker and effectively cleaned the proppant packs. As a fluid-loss-control additive, the measured wall-building coefficients were as good as, or better than, those of SF in crosslinked-gel, linear-gel, and N{sub 2}-foam systems. This paper summarizes a 2-year study of the evaluation and application of this new product in fracturing-fluid systems.

  2. Relationships between Fluid Vorticity, Kinetic Helicity, and Magnetic Field on Small-scales (Quiet-Network) on the Sun

    NASA Astrophysics Data System (ADS)

    Sangeetha, C. R.; Rajaguru, S. P.

    2016-06-01

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  3. Classical chaos and the sensitivity of the acoustic field to small-scale ocean structure

    NASA Astrophysics Data System (ADS)

    Palmer, D. R.; Georges, T. M.; Jones, R. M.

    1991-04-01

    Ray theory is usually the basis of data inversion schemes for acoustic remote sensing of the ocean. Chaotic ray paths are expected to be present whenever the ocean environment possesses small-scale, range-dependent structure. We are studying the implications of their presence for data inversion schemes. Using numerical simulations we consider ray-path characteristics for acoustic remote sensing of the Florida Current. We find small-scale bathymetric structure results in chaotic ray paths and an exponential proliferation of eigenrays. As a result, for each feature in the time-of-arrival pattern, there is associated not a single eigenray but a group, thereby limiting the spatial resolution of a remote sensing system.

  4. The angular dependence of a two dimensional monolithic detector array for dosimetry in small radiation fields

    NASA Astrophysics Data System (ADS)

    Stansook, N.; Petasecca, M.; Utitsarn, K.; Newall, M.; Metcalfe, P.; Carolan, M.; Lerch, M.; Rosenfeld, A. B.

    2017-01-01

    The purpose of this study is to investigate the directional dependence of a two dimensional monolithic detector array (M512) under 6 MV photon irradiation and to evaluate the effect of field size on angular dependence. Square fields of sizes: 3x3 cm2 and 10x10 cm2 were measured at the iso-centre of a cylindrical phantom. Beam angles with incidences from 00- 1800 in increments of 150 were used to investigate the central pixel angular response of M512, normalized to the pixel response for normal (0°) beam incidence. The angular response of the detector was compared to the response of EBT3 radiochromic film in the identical geometric orientation. The maximum angular dependence was observed at the angle 90°±15° to be -18.62% and -17.70% for the field sizes 3x3 cm2 and 10x10 cm2, respectively. The angular dependence of M512 showed no significant difference between field sizes of 3x3 cm2 and 10x10 cm2 (p>0.05). The maximum dose difference measured by the central pixel of M512 and EBT3 for all angles are -20% for 3x3 cm2 field size and -18.58% for the 10x10 cm2 field. The diode array’s size and packaging effects the angular response of the detector. The angular correction factor is necessary to apply to increase accuracy in dosimetry for arc treatment delivery.

  5. Small-scale field evaluation of the monomolecular surface film 'Arosurf MSF' against Anopheles arabiensis Patton.

    PubMed

    Karanja, D M; Githeko, A K; Vulule, J M

    1994-04-01

    A field trial was conducted to test the insecticidal action of the monolayer surface film 'Arosurf MSF' applied by knapsack sprayers, against larvae and pupae of Anopheles arabiensis Patton in a rice irrigation scheme in Western Kenya. Larval and pupal densities and the number of emerging adults were determined by dipping and emergence cages respectively. Application of the monolayer by knapsack sprayers provided good coverage. There were high daily mortalities of the fourth instar larvae, with no adult emergence from 'Arosurf MSF' treated plots compared to lower fourth instar mortalities and continuous adult emergence from untreated control plots, indicating the potential of the monolayer for control of An. arabiensis mosquitoes in rice fields.

  6. Field flatteners fabricated with a rapid prototyper for K-edge subtraction imaging of small animals

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Zhang, Honglin; Bewer, Brian; Florin Gh. Popescu, Bogdan; Nichol, Helen; Chapman, Dean

    2008-04-01

    One of the difficulties in X-ray imaging is the need to record a wide dynamic range of intensities on the detector. For example, some rays may miss the object being imaged entirely while others may suffer many orders of magnitude attenuation in passing through. In K-edge subtraction (KES) [E. Rubenstein, et al., Trans. Am. Clin. Climatol. Assoc. 97 (1985) 27.] imaging subtle differences in transmission through an object about the absorption edge of an element are used to create an image of the projected density of that element. This is done by a logarithmic subtraction of images acquired with energies above and below the absorption edge. For KES, the detector must register this transmitted intensity range in a linear manner for the subtraction method to be successful. The range of intensities which may strike the detector has inspired the concept of a field flattener. A field flattener is a device placed in the beam path that attenuates the input monochromatic beam to equalize X-ray absorption due to differences in the density of soft and hard tissues of an object before it passes through the object and thus achieves a flattened image. This removes the need for a wide dynamic range linear detector and allows detectors with modest performance to be used successfully in KES applications. The field flattener improves the S/ N ratio since X-ray exposures can be increased up to detector saturation. However, a field flattener removes anatomical information from each raw image (above or below K-edge) that may provide useful landmarks. Using rapid prototyping technology, two sets of field flatteners were fabricated and used in a KES experiment. This paper describes the procedure to design and fabricate field flatteners based on animal images from X-ray computed tomography (CT). Analysis of experimental data and KES images of a rat head with and without the field flattener are also presented. The results show a promising improvement of S/ N ratio using a field flattener

  7. On the measurement of dose in-air for small radiation fields: choice of mini-phantom material.

    PubMed

    Hug, Benjamin; Warrener, Kirbie; Liu, Paul; Ralston, Anna; Suchowerska, Natalka; McKenzie, David; Ebert, Martin A

    2015-03-21

    The purpose of this work was to determine the effect of choice of mini-phantom material on the measurement and calculation of in-air output factors (Sc) in small fields. Monte Carlo simulations in conjunction with a theoretical determination of Sc were used to validate previously reported measurements. Options for alternative mini-phantom materials were compared. A 6 MV beam from a Varian Novalis linear accelerator operating in stereotactic (SRS) mode was modelled. Phase-space data were used to determine the theoretical value of Sc. To validate previously reported Sc measurements the data were used to model the fibre-optic detector and brass mini-phantom. The impact of mini-phantom material was investigated by comparing the energy spectra of electrons entering the detector volume as a function of field size, and comparing the simulated Sc-measurement to the theoretical calculation. In order to determine factors leading to changes in Sc with field size, the origins of particles in the beam as incident on the mini-phantom were determined. Sc values derived from simulated measurements using a brass mini-phantom on a fibre-optic detector agreed with the measured Sc to within 0.7%. For simulation of measurement for all other mini-phantom materials, Sc values agreed with the theoretically calculated values to within 0.6%. The dominant processes responsible for a decrease in Sc with field size is occlusion of the focal and primary collimator contributions, while the secondary scatter, from the flattening filter and cone collimators, has minimal effect. The secondary electron spectrum is affected by the choice of mini-phantom material, but is almost independent of field size. For cone-collimated small fields in the Novalis beam (<30 mm), the decrease in Sc with field size is primarily due to collimation of the focal radiation beam and scatter from the primary collimator. A fibre optic detector with either a brass, gold or lead mini-phantom with at least d

  8. Breakdown of Bragg-Gray behaviour for low-density detectors under electronic disequilibrium conditions in small megavoltage photon fields.

    PubMed

    Kumar, Sudhir; Fenwick, John D; Underwood, Tracy S A; Deshpande, Deepak D; Scott, Alison J D; Nahum, Alan E

    2015-10-21

    In small photon fields ionisation chambers can exhibit large deviations from Bragg-Gray behaviour; the EGSnrc Monte Carlo (MC) code system has been employed to investigate this 'Bragg-Gray breakdown'. The total electron (+positron) fluence in small water and air cavities in a water phantom has been computed for a full linac beam model as well as for a point source spectrum for 6 MV and 15 MV qualities for field sizes from 0.25  ×  0.25 cm(2) to 10  ×  10 cm(2). A water-to-air perturbation factor has been derived as the ratio of total electron (+positron) fluence, integrated over all energies, in a tiny water volume to that in a 'PinPoint 3D-chamber-like' air cavity; for the 0.25  ×  0.25 cm(2) field size the perturbation factors are 1.323 and 2.139 for 6 MV and 15 MV full linac geometries respectively. For the 15 MV full linac geometry for field sizes of 1  ×  1 cm(2) and smaller not only the absolute magnitude but also the 'shape' of the total electron fluence spectrum in the air cavity is significantly different to that in the water 'cavity'. The physics of this 'Bragg-Gray breakdown' is fully explained, making reference to the Fano theorem. For the 15 MV full linac geometry in the 0.25  ×  0.25 cm(2) field the directly computed MC dose ratio, water-to-air, differs by 5% from the product of the Spencer-Attix stopping-power ratio (SPR) and the perturbation factor; this 'difference' is explained by the difference in the shapes of the fluence spectra and is also formulated theoretically. We show that the dimensions of an air-cavity with a perturbation factor within 5% of unity would have to be impractically small in these highly non-equilibrium photon fields. In contrast the dose to water in a 0.25  ×  0.25 cm(2) field derived by multiplying the dose in the single-crystal diamond dosimeter (SCDDo) by the Spencer-Attix ratio is within 2.9% of the dose computed directly in the water voxel for full linac

  9. Health, 'small-worlds', fractals and complex networks: an emerging field.

    PubMed

    Mutch, W Alan; Lefevre, Gerald R

    2003-05-01

    The importance of 'small-worlds', fractals and complex networks to medicine are discussed. The interrelationship between the concepts is highlighted. 'Small-worlds'--where large populations are linked at the level of the individual have considerable importance for understanding disease transmission. Complex networks where linkages are based on the concept 'the rich get richer' are fundamental in the medical sciences--from enzymatic interactions at the subcellular level to social interactions such as sexual liaisons. Mathematically 'the rich get richer' can be modeled as a power law. Fractal architecture and time sequences can also be modeled by power laws and are ubiquitous in nature with many important examples in medicine. The potential of fractal life support--the return of physiological time sequences to devices such as mechanical ventilators and cardiopulmonary bypass pumps--is presented in the context of a failing complex network. Experimental work suggests that using fractal time sequences improves support of failing organs. Medicine, as a science has much to gain by embracing the interrelated concepts of 'small-worlds', fractals and complex networks. By so doing, medicine will move from the historical reductionist approach toward a more holistic one.

  10. The influence of small field sizes, penumbra, spot size and measurement depth on perturbation factors for microionization chambers

    NASA Astrophysics Data System (ADS)

    Crop, F.; Reynaert, N.; Pittomvils, G.; Paelinck, L.; DeWagter, C.; Vakaet, L.; Thierens, H.

    2009-05-01

    The purpose of this study was the investigation of perturbation factors for microionization chambers in small field dosimetry and the influence of penumbra for different spot sizes. To this purpose, correlated sampling was implemented in the EGSnrc Monte Carlo (MC) user code cavity: CScavity. CScavity was first benchmarked against results in the literature for an NE2571 chamber. An efficiency increase of 17 was attained for the calculation of a realistic chamber perturbation factor in a water phantom. Calculations have been performed for microionization chambers of type PinPoint 31006 and PinPoint 31016 in full BEAMnrc linac simulations. Investigating the physical backgrounds of the differences for these small field settings, perturbation factors have been split up into (1) central electrode perturbation, (2) wall perturbation, (3) air-to-water perturbation (chamber volume air-to-water) and (4) water volume perturbation (water chamber volume to 1 mm3 voxel). The influence of different spot sizes, position in penumbra, measuring depth and detector geometry on these perturbation factors has been investigated, in a 0.8 × 0.8 cm2 field setting. pcel for the PP31006 steel electrode shows a variation of up to 1% in the lateral position, but only 0.4% for the PP31016 with an Al electrode. The air-to-water perturbation in the optimal scanning direction for both profiles and depth is most influenced by the radiation field, and only to a small extent the chamber geometry. The PP31016 geometry (shorter, larger radius) requires less total perturbation within the central axis of the field, but results in slightly larger variations off axis in the optimal scanning direction. Smaller spot sizes (0.6 mm FWHM) and sharper penumbras, compared to larger spot sizes (2 mm FWHM), result in larger perturbation starting in the penumbra. The longer geometries of the PP31006/14/15 exhibit in the non-optimal scanning direction large variations in total perturbation (ptot 1.201(4) (0.6 mm

  11. A Longitudinal Field Study Comparing a Multiplicative and an Additive Model of Motivation and Ability. Technical Report No. 11.

    ERIC Educational Resources Information Center

    Barrett, Gerald V.; And Others

    The relative contribution of motivation to ability measures in predicting performance criteria of sales personnel from successive fiscal periods was investigated. In this context, the merits of a multiplicative and additive combination of motivation and ability measures were examined. The relationship between satisfaction and motivation and…

  12. Design and validation of field-scale anaerobic digesters treating dairy manure for small farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six field-scale (FS) digesters were designed, constructed, and tested using a plug-flow design used by millions of farmers in developing countries and reconfigured for a temperate climate. Digester efficiency was analyzed based on methane (CH4) production, volatile solids (VS) reduction, inoculum to...

  13. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  14. Shallow subsurface drip irrigation (S3DI) for small irregular-shaped fields in the southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field tests were conducted using S3DI on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) rotations to investigate yield potential and economic sustainability of this irrigation system. Drip tubing was installed in alternate row middles, strip tillage was used ...

  15. One Small Reversal for the Field, one Giant Leap for Mankind (Petrus Peregrinus Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre

    2010-05-01

    Despite complex factors governing the acquisition of their magnetization, sediments have allowed us to recover the evolution of the dipole field variations during the past 2 Ma. One dominant feature is the existence of multiple periods of very low field intensity associated with either excursions or reversals. It is reasonable to consider that similar characteristics of the field during the brief transitional and excursional periods emerge from the records of lava flows as well as from very fast deposited sea-sediments. They can be easily simulated by the dominance of a time varying non-dipole field emerging after a long and large decrease of the dipole. Similarities between excursions and reversals are reinforced by the fact that all detailed records of excursions exhibit virtual geomagnetic poles (VGPs) which reach the opposite polarity. In fact, it is impossible to reach the ratio of the number of reversed to intermediate VGPs present in the paleomagnetic records if excursions were not associated with a short period of reversed dipole field. Therefore, most if not all excursions should be regarded as two successive reversals bracketing an aborted polarity interval. A significant exemple is the Laschamp event which can be seen as the youngest excursion of the field immediately after the Mono Lake event which is not so clearly identified. The age of the Laschamp event is now well constrained by multiple datings that converge at 40 ka B.P. The Laschamp is also the best documented event from volcanic and sedimentary records obtained at distinct geographic locations. During this short period we know that the field reversed completely and remained extremely weak at the surface of the planet. No attention has been given so far to the puzzling synchronism between the geomagnetic excursion of Laschamp and the desmise of the Neanderthal population. The Laschamp has been the most dramatic event that was encountered by the Neanderthals over the past 300 thousand years of

  16. The correspondence between small-scale coronal structures and the evolving solar magnetic field

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Moses, J. D.

    1990-01-01

    Solar coronal bright points, first identified in soft X-rays as X-ray Bright Points (XBPs), are compact, short-lived and associated with small bipolar magnetic flux. Coordinated data obtained during recent X-ray sounding rocket flights on August 15 and December 11, 1987 are used to determine the correspondence of XBPs with time-series, ground-based observations of evolving bipolar magnetic structures, He-I dark points, and the network. The results are consistent with the view that coronal bright points are more likely to be associated with the annihilation of preexisting flux than with emerging flux.

  17. SU-E-T-746: The Use of Radiochromic Film Analyzed with Three Channel Dosimetry as a Secondary Patient-Specific QA Tool for Small SBRT Fields

    SciTech Connect

    Hadsell, M; Holcombe, C; Chin, E; Hsu, A

    2015-06-15

    Introduction: As diagnostic techniques become more sensitive and targeting methods grow in accuracy, target volumes continue to shrink and SBRT becomes more prevalent. Due to this fact, patient-specific QA must also enhance resolution and accuracy in order to verify dose delivery in these volumes. It has been suggested that when measuring small fields at least two separate detectors be used to verify delivered dose. Therefore, we have instituted a secondary patient QA verification for small (<3cm) SBRT fields using Gafchromic EBT2 film. Methods: Films were cross-calibrated using a Farmer chamber in plastic water at reference conditions as defined by TG-51. Films were scanned, and an RGB calibration curve was created according to best practices published by Ashland, Inc. Four SBRT cases were evaluated both with the Scandidos Delta4 and with EBT2 films sandwiched in plastic water. Raw values obtained from the film were converted to dose using an in-house algorithm employing all three color channels to increase accuracy and dosimetric range. Gamma and dose profile comparisons to Eclipse dose calculations were obtained using RIT and compared to values obtained with the Delta4. Results: Film gamma pass rates at 2% and 2mm were similar to those obtained with the Delta4. However, dose difference histograms showed better absolute dose agreement, with the average mean film dose agreeing with calculation to 0.3% and the Delta4 only agreeing to 3.1% across the cases. Additionally, films provided more resolution than the Delta4 and thus their dose profiles better succeeded in diagnosing dose calculation inaccuracies. Conclusion: We believe that the implementation of secondary patient QA using EBT2 film analyzed with all three color channels is an invaluable tool for evaluation of small SBRT fields. Furthermore, we have shown that this method can sometimes provide a more detailed and faithful reproduction of plan dose than the Delta4.

  18. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive.

    PubMed

    Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing

    2016-05-01

    Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene-conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions.

  19. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive

    PubMed Central

    Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing

    2016-01-01

    Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene–conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions. PMID:27386541

  20. Experimental determination of field factors ([Formula: see text]) for small radiotherapy beams using the daisy chain correction method.

    PubMed

    Lárraga-Gutiérrez, José Manuel

    2015-08-07

    Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%-with the exception of the IBA-PFD-for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated [Formula: see text] is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work.

  1. Iron biology, immunology, aging and obesity: four fields connected by the small peptide hormone, hepcidin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well-known that obesity and aging have a negative impact on iron status and immune response, but little is known about the additional impact that obesity may have on iron homeostasis and immunity in the elderly. This question is relevant given the rising numbers of elderly obese individuals a...

  2. Highly stable carbon nanotube field emitters on small metal tips against electrical arcing

    PubMed Central

    2013-01-01

    Carbon nanotube (CNT) field emitters that exhibit extremely high stability against high-voltage arcing have been demonstrated. The CNT emitters were fabricated on a sharp copper tip substrate that produces a high electric field. A metal mixture composed of silver, copper, and indium micro- and nanoparticles was used as a binder to attach CNTs to the substrate. Due to the strong adhesion of the metal mixture, CNTs were not detached from the substrate even after many intense arcing events. Through electrical conditioning of the as-prepared CNT emitters, vertically standing CNTs with almost the same heights were formed on the substrate surface and most of loosely bound impurities were removed from the substrate. Consequently, no arcing was observed during the normal operation of the CNT emitters and the emission current remained constant even after intentionally inducing arcing at current densities up to 70 mA/cm2. PMID:23953847

  3. Small polaron dynamics: A self-consistent nonlinear spin-field model

    NASA Astrophysics Data System (ADS)

    Feinberg, D.; Ranninger, J.

    1984-12-01

    The motion of an electron strongly and locally coupled to the lattice deformation is considered as a dynamical system. Our study is based on a model where the electron remains to two adjacent diatomic molecules vibrating around positions which evolve in time as the charge distribution of the electron gradually shifts from one of the molecules to the other one. This model is cast into an intuitively more accesible model of spin {1}/{2} in an external field plus a reaction field. Within a semiclassical approach this is a Hamiltonian system expressed with two sets of action-angle variables. We show how the regular trajectories (describing the cooperative mechanism between the charge transfer and rearrangement of the molecular positions) in this phase space gradually disappear and global stochasticity sets in as either the ratio of the electron hopping rate over the electron-lattice coupling constant or the total energy is varied.

  4. Feasibility, tolerability, and efficacy of the concurrent addition of erlotinib to thoracic radiotherapy in locally advanced unresectable non-small-cell lung cancer: a Phase II trial

    PubMed Central

    Martínez, Enrique; Martínez, Maite; Rico, Mikel; Hernández, Berta; Casas, Francesc; Viñolas, Nuria; Pérez-Casas, Ana; Dómine, Manuel; Mínguez, Julián

    2016-01-01

    Purpose Although many studies have confirmed the synergic effects of combining chemotherapy (CT) and radiotherapy (RT), clinical data evaluating safety and efficacy of erlotinib in combination with RT in locally advanced non-small-cell lung cancer (NSCLC) are limited. The aim of this study was to determine the feasibility, tolerability, and efficacy of the concurrent addition of erlotinib to the standard three-dimensional conformal thoracic RT in patients with unresectable or locally advanced NSCLC who are not candidates for receiving standard CT. Patients and methods Feasibility and tolerability, assessed by evaluating adverse events (AEs), and effectiveness, by calculating progression-free survival (PFS), overall survival (OS), cancer-specific survival (CSS), and objective response rate (ORR), were analyzed in 30 patients receiving RT alone and 60 receiving RT and erlotinib. Results Erlotinib with RT showed an extended CSS and a higher rate of complete responses compared with RT alone. No differences between groups were found regarding OS, PFS, and ORR. AEs were significantly higher in the combined treatment, which mainly included cutaneous toxicity, dyspnea, fatigue, hyporexia, diarrhea, and infection. Erlotinib did not increase the toxicity produced by RT. Conclusion The combination of erlotinib with RT produced, in our study, a scarce clinical benefit in the treatment of unresectable or locally advanced NSCLC, limited to complete responses and longer CSS rate compared with RT alone. Increased toxicity events were associated with combined therapy, which mainly included cutaneous toxicity. In our opinion, further studies in molecularly unselected lung cancer patients treated with EGFR TKIs and RT are not indicated. The use of biomarkers for the identification of patients that are most likely to benefit from this treatment is an essential next step in the research of this condition. PMID:27042098

  5. Electric fields associated with small-scale magnetic holes in the plasma sheet: Evidence for electron currents

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine A.; Ergun, Robert E.; Stawarz, Julia E.

    2016-06-01

    We report observations of magnetic holes (MHs) in the near-Earth (8 RE to 12 RE) plasma sheet that have physical sizes perpendicular to the magnetic field (B) on the order of the ion Larmor radius (ρi) and, more importantly, have current layers less than ρi in thickness. Small-scale MHs can have >90% depletion in |B| and are commonly associated with the braking of bursty bulk flow events. The generation of MHs is often attributed to magnetohydrodynamic (MHD) instabilities, which requires a size greater than ρi; the depletion in |B| is from an ion current consistent with a pressure gradient. Electric field (E) observations indicate a negative potential inside of small-scale MHs that creates an outward E at the boundary, which drives an E × B electron current in a thin layer. These observations indicate that a Hall electron current is primarily responsible for the depletion of |B| in small-scale magnetic holes, rather than the ion pressure gradient.

  6. Probable Cause of Interplanetary Field Enhancements: Destructive Collisions of Small Bodies

    NASA Astrophysics Data System (ADS)

    Lai, H.; Russell, C. T.; Delzanno, G. L.

    2011-12-01

    Interplanetary Field Enhancements (IFEs) appear as smoothly varying cusp-shaped enhancements in the interplanetary magnetic field with a strong central current sheet. They last minutes to many hours. IFEs were attributed to dust released by asteroids and comets because of their appearance in association with conjunctions with asteroid 2201 Oljato. To maintain their magnetic field structure while at rest in the solar wind frame, IFEs must have significant mass because they do not have a flux rope geometry. We use the pressure gradient force to estimate the IFE mass using Helios (0.3-1.0AU) and ACE (1AU) data. We find the magnetic pressure difference falls as R-2 approximately from 0.3AU to 1AU, keeping the mass almost constant. At 1AU, the most frequent IFE mass is 10^8 kg and the rate decreases with both increasing and decreasing mass. We believe IFEs arise in interactions between solar wind and charged nanoscale dust particles produced in collisions of interplanetary objects. This hypothesis explains the large velocity achieved by IFEs, the macroscale magnetic field disturbances and the large mass contained in IFEs. In this paper we will use observed meteoroid population and collision models to calculate the inferred occurrence rate at 1AU and estimate the mass released by these collisions. By estimating the size of the disturbance produced by the collisions, we can relate the collision rate to the event rate detected by a spacecraft. The estimated meteoroid collision rate is found to be consistent with the IFE occurrence rate within the same mass range.

  7. Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field

    DTIC Science & Technology

    2008-09-30

    gravity field (Sandwell and Smith, 1997), emphasizing roughness, over a portion of the Southeast Indian Ridge (yellow) corresponding to a change in...constrained by digital maps of paleo -spreading rate and direction (Meuller et al. 2008), and sediment thickness (Divens, NGDC webs site). Next, modifying...better than for wind-forced motions, important questions about the tidal energy cycle remain. 4 Figure 3. Paleo -ridge azimuths (D

  8. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  9. Small biphase wellhead plant for the Cerro Prieto Mexico geothermal field

    SciTech Connect

    Oropeza, A.; Hays, L.

    1996-12-31

    In a system of geothermal wells in a geothermal field, there are different production conditions of the flows, temperatures and pressures. At plants where the installed capacity requires the use of many wells, it is necessary to regulate the well`s pressure to ensure a stable condition for the turbines. Reducing the steam pressure on the wellhead is achieved by using an orifice plate (flash orifice). Use of an orifice plate results in a waste or loss of well pressure that could be utilized for production of electricity. The Cerro Prieto field, operated by the Comision Federal de Electricidad (CFE), has many wells operating at a very high pressure and producing a lot of water. Much of this pressure and water is not utilized in the production of electricity. With the purpose of taking advantage of this pressure CFE has evaluated a proposal by Biphase Energy Co. Biphase has designed and patented a turbine that works directly with the steam and water mixture coming from the wellhead, acting as a separator. Biphase has developed a model of its turbine and successfully operated it in Coso Hot Springs California. Knowing this CFE has signed an agreement with Biphase Energy Company to install and operate a biphasic turbine at the Cerro Prieto geothermal field located near Mexicali, Mexico.

  10. Scanning tunneling microscope design with a confocal small field permanent magnet.

    SciTech Connect

    Messina, P.; Pearson, J.; Vasserman, I.; Sasaki, S.; Moog, E.; Fradin, F.

    2008-09-01

    The field of ultra-sensitive measurements with scanning probes requires the design and construction of novel instruments. For example, the combination of radio frequency detection and scanning probe can be exploited to measure thermal properties and mechanical resonances at a very low scale. Very recent results by Komeda and Manassen (2008 Appl. Phys. Lett. 92 212506) on the detection of spin noise with the scanning tunneling microscopy (STM) have further expanded previous results reported by one of the authors of this manuscript (Messina et al 2007 J. Appl. Phys. 101 053916). In a previous publication, one of the authors used a new STM instrument (Messina et al J. Appl. Phys. 2007 101 053916 and Mannini et al 2007 Inorg. Chim. Acta 360 3837-42) to obtain the detection of electron spin noise (ESN) from individual paramagnetic adsorbates. The magnetic field homogeneity at the STM tip-sample region was limited. Furthermore, vacuum operation of the STM microscope was limited by the heat dissipation at the electromagnet and the radio frequency (RF) recovery electronics. We report here on a new STM head that incorporates a specially designed permanent magnet and in-built RF amplification system. The magnet provides both a better field homogeneity and freedom to operate the instrument in vacuum. The STM microscope is vacuum compatible, and vertical stability has been improved over the previous design (Messina et al 2007 J. Appl. Phys. 101 053916), despite the presence of a heat dissipative RF amplifier in the close vicinity of the STM tip.

  11. Small spatial scale field aligned currents in middle and low latitudes as observed by the CHAMP satellite and verification of their current circuit model

    NASA Astrophysics Data System (ADS)

    Nakanishi, K.; Iyemori, T.; Luhr, H.

    2013-12-01

    The magnetic field observation by the CHAMP satellite shows the global and frequent appearance of small scale (1-5 nT) magnetic fluctuations with period around a few tens seconds along the satellites. They have the following characteristics. 1. The signal is perpendicular to the geomagnetic main field, and the amplitude of the zonal component is larger than that of the meridional component. 2. Around the dip equator, as the latitude becomes lower, the period and amplitudes of the two components perpendicular to the main field respectively tend to become longer and smaller (to nearly zero on the dip equator). 3. The amplitude of the magnetic fluctuations on the dayside is larger than that on the night side by around one order in magnitude, which highly correlates to the electric conductivity of the ionospheric dynamo layer. 4. The amplitude shows symmetry about the magnetic dip equator which indicates a magnetic conjugacy to a certain extent. 5. The amplitude shows almost no dependence on the solar wind parameters such as the IMF cone angle nor the solar wind speed, which strongly suggests no association with the Pc3 micro pulsation. 6. The amplitude also shows almost no dependence on the geomagnetic activity. 7. The amplitude has a clear seasonal dependence with topographical characteristics. They can be interpreted as the spatial structure of small scale field-aligned currents generated by the ionospheric dynamo driven by atmospheric gravity waves propagating from the lower atmosphere. The mechanism is the following; first, the gravity waves generated by the lower atmospheric disturbance propagate to the ionosphere; the neutral winds oscillate, cause ionospheric dynamo and Pedersen and Hall currents flow; because the dynamo region is finite, the currents cause polarized electric fields; and the polarized electric fields propagate along the geomagnetic filed as Alfven waves accompanied by field-aligned currents, at the same time, the ionospheric currents divert to

  12. Highly enhanced in-field critical current density of MgB 2 superconductor by combined addition of burned rice husk and nano Ho 2O 3

    NASA Astrophysics Data System (ADS)

    Vinod, K.; Varghese, Neson; Sundaresan, A.; Syamaprasad, U.

    2010-04-01

    With the aim of improving flux pinning and in-field critical current density [ JC( H)], two physically and chemically different additives - burned rice husk (BRH) and nano Ho 2O 3 were introduced into in situ MgB 2 superconductor. The effects of the above two additives were studied individually and combinedly. Ho 2O 3 decomposed and reacted with B to form HoB 4, without any substitution. BRH caused considerable amount of C substitution at B site and formed Mg 2Si and Mg 2C 3 secondary phases. Addition of Ho 2O 3 improved the JC( H) only marginally, but BRH improved the JC( H) strongly. Combined addition of Ho 2O 3 with BRH was found to be much more effective than their solo addition for the enhancement of JC( H) of MgB 2.

  13. MAGNETIC FIELD PROPERTIES IN HIGH-MASS STAR FORMATION FROM LARGE TO SMALL SCALES: A STATISTICAL ANALYSIS FROM POLARIZATION DATA

    SciTech Connect

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.

    2010-09-20

    Polarization data from high-mass star formation regions (W51 e2/e8, Orion BN/KL) are used to derive statistical properties of the plane of sky projected magnetic field. Structure function and auto-correlation function are calculated for observations with various resolutions from the BIMA and SMA interferometers, covering a range in physical scales from {approx}70 mpc to {approx}2.1 mpc. Results for the magnetic field turbulent dispersion, its turbulent-to-mean field strength ratio, and the large-scale polarization angle correlation length are presented as a function of the physical scale at the star formation sites. Power-law scaling relations emerge for some of these physical quantities. The turbulent-to-mean field strength ratio is found to be close to constant over the sampled observing range, with a hint of a decrease toward smaller scales, indicating that the role of the magnetic field and turbulence is evolving with the physical scale. A statistical method is proposed to separate large- and small-scale correlations from an initial ensemble of polarization segments. This also leads to a definition of a turbulent polarization angle correlation length.

  14. Perceived Impacts of a Public Health Training Center Field Placement Program among Trainees: Findings from a Small Group Externship Experience.

    PubMed

    Johansson, Patrik; Grimm, Brandon; Abdel-Monem, Tarik; Hoffman, Stacey J; DeKraai, Mark; McMillan, Analisa

    2014-01-01

    There is heightened interest in identifying the impact of the federally funded Public Health Training Center (PHTC) program. Although evaluation studies have been conducted of public health training in general, evaluations of PHTC programs are rare. Field placement components are congressionally mandated requirements of PHTCs. Field placements are typically intensive, supervised externships for students to gain public health experience with local health departments or non-profit organizations. We have found no published evaluations of PHTC field placement components. This may be because of their small size and unique nature. We designed and evaluated a 200-h field placement program at an established PHTC. The evaluation included pre/post surveys measuring public health core competencies, and post-experience interviews. We found significant increases in three competency domains among trainees: policy development and program planning, communication skills, and community dimensions of practice. These outcomes contribute to evidence based on the efficacy of PHTC field placement programs, and underscore their role in public health training.

  15. Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1992-01-01

    The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.

  16. SU-C-304-03: Experimental Investigation On the Accuracy of Plastic Scintillation Dosimeters in Small Fields

    SciTech Connect

    Papaconstadopoulos, P; Archambault, L; Seuntjens, J

    2015-06-15

    Purpose: To investigate the accuracy of the Exradin W1 (SI) and of an “in-house” plastic scintillation dosimeter (CHUQ PSD) in small radiation fields. Methods: Output factor (OF) measurements with the W1 and CHUQ PSD were performed for field sizes of 0.5 x 0.5, 1 x 1 and 2 x 2 cm{sup 2}. Both detectors were placed parallel to the central axis (CAX) in water. The spectrum discrimination calibration method was performed in each set-up to account for the Cerenkov (CRV) signal created in the fiber. The OFs were compared to the expected field factors in water derived using i) Monte Carlo (MC) simulations of an accurate accelerator model and ii) microLion (PTW) and D1V diode (SI) OFs. MC-derived correction factors were applied to both the microLion and D1V OFs. For the CHUQ PSD the calibration was repeated in water (// CAX), solid water (perpendicular to CAX) and under a shielded configuration. The signal was collected using a spectrometer (wavelength range = 185–1100 nm). Spectral analysis was performed to evaluate potential changes of the spectral distributions under the various calibration set-up configurations. Results: The W1 OFs presented an over-response for the 0.5 x 0.5 cm{sup 2} in the range of 3 – 4.1% relative to the expected field factor. The CHUQ PSD presented an under-response in the range of 1.5 – 2.7%, without accounting for volume averaging. The CRV spectra under the various calibration procedures appeared similar to each other and only minor changes were observed to the respective OFs. Conclusion: The W1 and CHUQ PSD can be used in small fields down to a 1 x 1 cm{sup 2} field size. Discrepancies were encountered between the two detectors for the smallest field size of 0.5 x 0.5 cm{sup 2} with the CHUQ PSD exhibiting a closer agreement to the expected field factor. Funding sources: 1) Alexander S. Onassis Public Benefit Foundation in Greece and 2) CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering

  17. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    SciTech Connect

    Mathew, D; Tanny, S; Parsai, E; Sperling, N

    2015-06-15

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class

  18. The correspondence between small-scale coronal structures and the evolving solar magnetic field

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Moses, J. Daniel

    1989-01-01

    Solar coronal bright points, first identified in soft X-rays as X-ray Bright Points (XBPs), are compact, short lived and associated with small bipolar magnetic flux. Contradictory studies have suggested that XBPs are either a primary signature of the emerging flux spectrum of the quiet Sun, or that they are representative of the disappearance of pre-existing flux. Results are presented using coordinated data obtained during recent X-ray sounding rocket flights on 15 August and 11 December 1987 to determine the correspondence of XBPs with time-series, ground based observations of evolving bipolar magnetic structures, He-I dark points, and the network. The results are consistent with the view that coronal bright points are more likely to be associated with the annihilation of pre-existing flux than with emerging flux.

  19. Daily variation of pesticides in surface water of a small river flowing through paddy field area.

    PubMed

    Tanabe, Akiko; Kawata, Kuniaki

    2009-06-01

    The daily variations in the insecticides, i.e., buprofezin, etofenprox, fenitrothion, fenobucarb and pyridaphenthion, and fungicides, i.e., flutolanil, isoprothiolane, mepronil, pencycuron, phthalide and tricyclazole, were investigated in order to evaluate the short periodic variations in the pesticide concentrations of small river waters. The mean and maximum concentrations were 0.05 microg/L (pyridaphenthion)--1.2 microg/L (isoprothiolane) and 0.30 microg/L (pyridaphenthion)--13 microg/L (flutolanil), respectively. The concentration at 10:00 a.m. could be regarded as the representative daily concentration of the day. However, the concentration could markedly vary during the day or the day following the pesticide application. Therefore, the mean concentrations at 10 a.m., 2 p.m. and 6 p.m. were recommended as the best representative values of the day.

  20. Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig

    PubMed Central

    Christianson, G. Björn; Chait, Maria; de Cheveigné, Alain

    2014-01-01

    In animal models, single-neuron response properties such as stimulus-specific adaptation have been described as possible precursors to mismatch negativity, a human brain response to stimulus change. In the present study, we attempted to bridge the gap between human and animal studies by characterising responses to changes in the frequency of repeated tone series in the anesthetised guinea pig using small-animal magnetoencephalography (MEG). We showed that 1) auditory evoked fields (AEFs) qualitatively similar to those observed in human MEG studies can be detected noninvasively in rodents using small-animal MEG; 2) guinea pig AEF amplitudes reduce rapidly with tone repetition, and this AEF reduction is largely complete by the second tone in a repeated series; and 3) differences between responses to the first (deviant) and later (standard) tones after a frequency transition resemble those previously observed in awake humans using a similar stimulus paradigm. PMID:25231619

  1. Interactive effects of nitrogen addition, warming and invasion across organizational levels in an old-field plant community.

    PubMed

    Gornish, Elise S

    2014-10-08

    Response to global change is dependent on the level of biological organization (e.g. the ecologically relevant spatial scale) in which species are embedded. For example, individual responses can affect population-level responses, which, in turn, can affect community-level responses. Although relationships are known to exist among responses to global change across levels of biological organization, formal investigations of these relationships are still uncommon. I conducted an exploratory analysis to identify how nitrogen addition and warming by open top chambers might affect plants across spatial scales by estimating treatment effect size at the leaf level, the plant level and the community level. Moreover, I investigated if the presence of Pityopsis aspera, an experimentally introduced plant species, modified the relationship between spatial scale and effect size across treatments. I found that, overall, the spatial scale significantly contributes to differences in effect size, supporting previous work which suggests that mechanisms driving biotic response to global change are scale dependent. Interestingly, the relationship between spatial scale and effect size in both the absence and presence of experimental invasion is very similar for nitrogen addition and warming treatments. The presence of invasion, however, did not affect the relationship between spatial scale and effect size, suggesting that in this system, invasion may not exacerbate or attenuate climate change effects. This exercise highlights the value of moving beyond integration and scaling to the practice of directly testing for scale effects within single experiments.

  2. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.

  3. Field investigations of brucellosis in cattle and small ruminants in Syria, 1990-1996.

    PubMed

    Darwish, M; Benkirane, A

    2001-12-01

    The authors present the epidemiological status of brucellosis in cattle and small ruminants in Syria from 1990 to 1996, based on laboratory findings at the Brucellosis Centre, Damascus. Initial investigations using the Rose Bengal plate test, the complement fixation test and a miniaturised variant of the slow agglutination test were conducted throughout the country in 1990 and 1991, revealing an overall herd seroprevalence rate of 3.14% in cattle herds and 2.94% in small ruminant flocks. Although partially biased by previous vaccination of young female cattle with S19 vaccine, these figures indicate that brucellosis in cattle is widespread, particularly in the urban governorates (provinces) of Damascus, Aleppo and Suwaydah. Brucellosis seroprevalence in sheep and goats was relatively high in the governorates of Damascus, Aleppo and Dara'a. The results of a second series of investigations, performed between 1992 and 1996, show that herd seroprevalence in cattle decreased steadily from 17.48% in 1992, to 2.59% in 1996, in the Government-owned farms, while seroprevalence increased in the private sector during the same period. The difference may be explained by the restriction of brucellosis vaccination to public farms (although this was far from systematic), combined with partial application of a 'test-and-slaughter' policy. In sheep and goats, brucellosis seroprevalence fluctuated in the two sectors, but was higher in the private sector where husbandry is principally extensive. Bacteriological investigations led to the isolation of Brucella melitensis biovars 2 and 3 in sheep and B. abortus biovar 9 in cattle. Although no specific methodology was employed, particularly with regard to sampling, this study is significant as the first international report of the distribution of brucellosis in Syria. Further, well-structured studies are required, the results of which could be used to plan an appropriate national control programme for brucellosis.

  4. High precision film dosimetry with GAFCHROMIC films for quality assurance especially when using small fields.

    PubMed

    Mack, Andreas; Mack, Günther; Weltz, Dirk; Scheib, Stefan G; Böttcher, Heinz D; Seifert, Volker

    2003-09-01

    Treatment units for radiosurgery, brachytherapy, implementation of seeds, and IMRT generate small high dose regions together with steep dose gradients of up to 30%-50% per mm. Such devices are used to treat small complex-shaped lesions, often located close to critical structures, by superimposing several single high dose regions. In order to test and verify these treatment techniques, to perform quality assurance tasks and to simulate treatment conditions as well as to collect input data for treatment planning, a GAFCHROMIC film based dosimetry system for measuring two-dimensional (2-D) and three-dimensional (3-D) dose distributions was developed. The nearly tissue-equivalent radiochromic GAFCHROMIC film was used to measure dose distributions. A drum scanner was investigated and modified. The spectral emission of the light source and the filters together with the efficiency of the CCD filters for the red color were matched and balanced with the absorption spectra of the film. Models based on refined studies have been developed to characterize theoretically the physics of film exposure and to calibrate the film. Mathematical descriptions are given to calculate optical densities from spectral data. The effect of darkening has been investigated and is described with a mathematical model. The influence of the scan temperature has been observed and described. In order to cope with the problem of individual film inhomogeneities, a double irradiation technique is introduced and implemented that yields dose accuracies as good as 2%-3%. Special software routines have been implemented for evaluating and handling the film data.

  5. Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance

    PubMed Central

    Fan, Xiaolong; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng

    2015-01-01

    Based on the electric rotating magnetoresistance method, the shape anisotropy of a Co microstrip has been systematically investigated. We find that the shape anisotropy is dependent not only on the shape itself, but also on the magnetization distribution controlled by an applied magnetic field. Together with micro-magnetic simulations, we present a visualized picture of how non-uniform magnetization affects the values and polarities of the anisotropy constants and . From the perspective of potential appliantions, our results are useful in designing and understanding the performance of micro- and nano-scale patterned ferromagnetic units and the related device properties. PMID:26563520

  6. Volcanism inside Valles Marineris? A field of small pitted cones in Coprates Chasma

    NASA Astrophysics Data System (ADS)

    Broz, P.; Hauber, E.; Rossi, A. P.

    2014-04-01

    We present observations of a field of more than 100 pitted cones and mounds situated insight Coprates Chasma (part of Valles Marineris; Fig. 1), which bear many morphological and morphometrical similarities to terrestrial and martian scoria cones. If these cones are indeed volcanic in origin, they will significantly expand our knowledge about the morphometry of pyroclastic cones on Mars. A magmatic origin, which would necessarily post-date the opening of the main troughs, would contribute to our understanding of the volcano-tectonic evolution of Valles Marineris.

  7. A Field of Small Pitted Cones on the Floor of Coprates Chasma: Volcanism inside Valles Marineris

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Broz, P.; Rossi, A. P.; Michael, G.

    2015-10-01

    We present observations of a field of >100 pitted cones and mounds situated on the floor of Coprates Chasma (part of Valles Marineris (VM); Fig. 1), which display similarities to terrestrial and martian scoria cones. If these cones are indeed volcanic in origin, they will significantly expand our knowledge about the morphometry of pyroclastic cones on Mars. Moreover, a magmatic origin, which would necessarily post-date the opening of the main VM troughs, would contribute to our understanding of the volcano-tectonic evolution of VM.

  8. Small-scale features in the Earth's magnetic field observed by Magsat.

    USGS Publications Warehouse

    Cain, J.C.; Schmitz, D.R.; Muth, L.

    1984-01-01

    A spherical harmonic expansion to degree and order 29 is derived using a selected magnetically quiet sample of Magsat data. Global maps representing the contribution due to terms of the expansion above n = 13 at 400 km altitude are compared with previously published residual anomaly maps and shown to be similar, even in polar regions. An expansion with such a high degree and order displays all but the sharpest features seen by the satellite and gives a more consistent picture of the high-order field structure at a constant altitude than do component maps derived independently. -Authors

  9. Measurement error analysis in determination of small-body gravity fields

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Davis, D. R.; Heppenheimer, T. A.

    1974-01-01

    We consider analytically the use of existing instrumentation in determining asteroid gravity fields from orbiting spacecraft. Asteroids (Eros as an example) are modeled as homogeneous triaxial ellipsoids, with gravitational potential given by a sperical-harmonic expansion. Mass concentrations are modeled as point masses. The character of spacecraft orbits about asteroids is discussed, along with detectibility of gravitational coefficients and of mass concentrations. A Kalman-filtering treatment of the observation process, for Eros as example, shows that using DSN tracking and onboard gravity gradiometry, radar altimetry, and celestial angle measurements, a single orbit yields asteroid mass to 0.03% and coefficients C20 to C44 to 1% accuracies.

  10. Non-additive Empirical Force Fields for Short-Chain Linear Alcohols: Methanol to Butanol. Hydration Free Energetics and Kirkwood-Buff Analysis Using Charge Equilibration Models

    PubMed Central

    Zhong, Yang; Patel, Sandeep

    2010-01-01

    Building upon the nonadditive electrostatic force field for alcohols based on the CHARMM charge equilibration (CHEQ) formalism, we introduce atom-pair specific solute-solvent Lennard-Jones (LJ) parameters for alcohol-water interaction force fields targeting improved agreement with experimental hydration free energies of a series of small molecule linear alcohols as well as ab initio water-alcohol geometries and energetics. We consider short-chain, linear alcohols from methanol to butanol as they are canonical small-molecule organic model compounds to represent the hydroxyl chemical functionality for parameterizing biomolecular force fields for proteins. We discuss molecular dynamics simulations of dilute aqueous solutions of methanol and ethanol in TIP4P-FQ water, with particular discussion of solution densities, structure defined in radial distribution functions, electrostatic properties (dipole moment distributions), hydrogen bonding patterns of water, as well as a Kirkwood-Buff (KB) integral analysis. Calculation of the latter provides an assessment of how well classical force fields parameterized to at least semi-quantitatively match experimental hydration free energies capture the microscopic structures of dilute alcohol solutions; the latter translate into macroscopic thermodynamic properties through the application of KB analysis. We find that the CHEQ alcohol force fields of this work semi-quantitatively match experimental KB integrals for methanol and ethanol mole fractions of 0.1 and 0.2. The force field combination qualitatively captures the concentration dependence of the alcohol-alcohol and water-water KB integrals, but due to inadequacies in the representation of the microscopic structures in such systems (which cannot be parameterized in any systematic fashion), a priori quantitative description of alcohol-water KB integrals remains elusive. PMID:20687517

  11. Field-based generation and social validation managers and staff competencies for small community residences.

    PubMed

    Thousand, J S; Burchard, S N; Hasazi, J E

    1986-01-01

    Characteristics and competencies for four staff positions in community residences for individuals with mental retardation were identified utilizing multiple empirical and deductive methods with field-based practitioners and field-based experts. The more commonly used competency generation methods of expert opinion and job performance analysis generated a high degree of knowledge and skill-based competencies similar to course curricula. Competencies generated by incumbent practitioners through open-ended methods of personal structured interview and critical incident analysis were ones which related to personal style, interpersonal interaction, and humanistic orientation. Although seldom included in staff, paraprofessional, or professional training curricula, these latter competencies include those identified by Carl Rogers as essential for developing an effective helping relationship in a therapeutic situation (i.e., showing liking, interest, and respect for the clients; being able to communicate positive regard to the client). Of 21 core competency statements selected as prerequisites to employment for all four staff positions, the majority (17 of 21) represented interpersonal skills important to working with others, including responsiveness to resident needs, personal valuation of persons with mental retardation, and normalization principles.

  12. Giant enhancement of fluctuation in small biological systems under external fields

    NASA Astrophysics Data System (ADS)

    Hayashi, Kumiko; Hasegawa, Shin; Tsunoda, Satoshi P.

    2016-05-01

    The giant enhancement (GE) of fluctuation under an external field is a universal phenomenon predicted by the theoretical analysis given in (Reimann et al 2001 Phys. Rev. Lett.). Here, we propose the application of the theory of the GE of fluctuation to estimate the energy barrier of a biomolecule that exhibits its function subject to thermal noise. The rotary motor protein F1 was used as a model, which is a component of FoF1 adenosine triphosphate (ATP)-synthase. In the single-molecule experiment on F1, the diffusion coefficients of a rotary probe attached to F1, which characterised the fluctuation of the system, were measured under the influence of an electro-rotary field. These diffusion coefficients were then used to estimate a high-energy barrier of the rotary potential of F1 based on the theory of the GE of fluctuation. Furthermore, the ion channel protein channelrhodopsin (ChR) was used as another research model. The current fluctuations of ions moving through ChR were numerically investigated using a simulation model of the protein in the presence of an external voltage. The energy barrier for ion conduction is discussed based on the current fluctuations.

  13. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field

    SciTech Connect

    Klokkenburg, M.; Erne, B. H.; Petukhov, A. V.; Philipse, A. P.; Wiedenmann, A.

    2007-05-15

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe{sub 3}O{sub 4}) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg et al., Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids.

  14. Thermodynamic properties of hydrogen dissociation reaction from the small system method and reactive force field ReaxFF

    NASA Astrophysics Data System (ADS)

    Trinh, Thuat T.; Meling, Nora; Bedeaux, Dick; Kjelstrup, Signe

    2017-03-01

    We present thermodynamic properties of the H2 dissociation reaction by means of the Small System Method (SSM) using Reactive Force Field (ReaxFF) simulations. Thermodynamic correction factors, partial molar enthalpies and heat capacities of the reactant and product were obtained in the high temperature range; up to 30,000 K. The results obtained from the ReaxFF potential agree well with previous results obtained with a three body potential (TBP). This indicates that the popular reactive force field method can be combined well with the newly developed SSM in realistic simulations of chemical reactions. The approach may be useful in the study of heat and mass transport in combination with chemical reactions.

  15. An experimental and computational study of electrostatic fields arising during the pumping of powder into small metal and plastic containers

    SciTech Connect

    Lees, P.; McAllister, D.; Smith, J.R.

    1985-09-01

    Some experimental and computational results obtained during the study of the loading of small metal and plastic containers with electrostatically charged high-density polyethylene powder are described. The powder was charged by pneumatic transport along a polyethylene pipe, and loaded into the containers. The containers were enclosed in a Faraday cage, and the electrostatic field which built up was monitored using field mills; the mirror current to the metal container was also monitored. Measurements were taken with the metal container isolated from ground in one set of runs and earthed in another. Powder characteristics such as particle size distribution and charging tendency were also measured. A mathematical model of the experimental situation was set up, and the finite element method was used to solve the appropriate boundary value problem. Experimental and computational results are compared, and the efficacy of applying computational techniques to such problems is discussed.

  16. A small scale field trial with expanded polystyrene beads for mosquito control in septic tanks.

    PubMed

    Chang, M S; Lian, S; Jute, N

    1995-01-01

    A field trial of the use of expanded polystyrene beads (EPSB) to control the breeding of mosquito larvae in household septic tanks was conducted in Sarawak. One week after treatment, the breeding of Culex quinquefasciatus and Aedes albopictus was reduced by 100% and 68.7% respectively. For both species combined, a 57.25% reduction in the adult emergence rate was achieved. No adult was caught in the emergence trap one month after treatment. A reduction in mosquito biting rates was reported by 87.3% of respondents. All households regarded the EPSB treatment as effective. This study has reduced the relatively high infestation rate of A. albopictus in the septic tanks to 16-20%. The EPSB treatment is feasible and practical. Post-treatment assessment using adult emergence traps and the implications for the vector control programme of the local authority are discussed.

  17. A field evaluation of small-scale forest resource aerial photography

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Meyer, M.

    1977-01-01

    An earlier study under somewhat clinical laboratory conditions has suggested the possibility of using smaller scales of forest photography without serious information loss. The present paper subjects this idea to a rigorous field test by a number of experienced user-cooperators. Various combinations of summer black-and-white infrared and color infrared aerial photography at scales of 1:15,840, 1:24,000, 1:31,680, and 1:80,000 were taken over forested portions of Minnesota. Major conclusions are that 1:15,840 is the preferred working photo scale, and that instead of 1:15,840 a scale of 1:20,000 is considered an acceptable substitute.

  18. Forestry Impacts on Mercury Mobility, Methylation, and Bioaccumulation - A Field Experiment with Enriched Stable Mercury Isotope Additions

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Haynes, Kristine; Mazur, Maxwell; Fidler, Nathan; Eckley, Chris; Kolka, Randy; Eggert, Susan; Sebestyen, Stephen

    2013-04-01

    Forest harvesting has clear impacts on terrestrial hydrology at least over the short term. Similar biogeochemical impacts, such as augmented mercury fluxes or downstream impacts on ecosystems are not as clear, and recent studies have not demonstrated consistent or predictable impacts across systems. To gain a better process understanding of mercury cycling in upland forest-lowland peatland ecosystems, we undertook a field-scale experiment at a study site in northern Minnesota (USA) where shallow subsurface hillslope runoff flows into an adjacent peatland ecosystem. Starting in 2009, three upland forest plots (< 1 hectare each) were delineated and hydrometric infrastructure such as runoff trenches, snow lysimeters, soil moisture probes, shallow piezometers, and throughfall gauges were installed in each plot. We added 14.2 to 16.7 μg/m2 of enriched mercury-200 and mercury-204 (as dilute mercuric nitrate) in the spring of 2011 and 2012, respectively, to distinguish between contemporary and legacy mercury and to provide some insight into the duration of contemporary mercury mobility in impacted terrestrial ecosystems. During the late winter of 2012, one of the study plots was clearcut and approximately 80% of slash was removed. We clearcut a second plot without slash removal, and left the third plot as a control. Throughout the study, we have monitored (including isotopes): mercury in runoff, soil-air gaseous Hg fluxes, methylation potentials in the adjacent peatland, and bioaccumulation into invertebrates inhabiting the adjacent peatland. Early results mostly indicate that slash removal actually lessens the impacts of clearcutting on mercury mobility (although forest harvesting in general does have a significant impact) and that forestry operations at this scale have little to no impact on methylation or bioaccumulation in downstream peatlands. Thus far, the greatest impact of slash removal in forest harvested systems is an increase in mercury evasion, likely as a

  19. Collisions in Space: Observations of Disturbances in the Interplanetary Magnetic Field Caused by Destructive Collisions of Small Bodies

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.; Delzanno, G. L.; Jia, Y. D.

    2011-10-01

    Collisions between small interplanetary bodies can produce clouds of dust particles, which rapidly become charged in the solar wind plasma. A wide range of particle sizes will be produced and the smallest nanoscale particles can be accelerated to solar wind speed in minutes. Our multi-fluid MHD simulation with charged dust as one fluid shows a three-dimensional disturbance in the magnetic field with compression and draping in the flow direction and bending in the direction perpendicular to both the flow and unperturbed magnetic field, producing a current sheet orthogonal to the flow. The Lorentz force of this current balances the transverse momentum of the gyrating dust particles and the solar gravity force balances the magnetic pressure gradient force. Thus the magnetic gradient force is proportional to the mass of the picked up dust and allows us to weigh the dust cloud. The magnetic field behavior in the simulation results qualitatively resembles the phenomenon called an interplanetary field enhancement (IFE), which is featured by a cuspshaped magnetic field enhancement lasting from several minutes to hours, with a sharp discontinuity in at least one component of the magnetic field. The association between IFE appearance and dust production was first inferred from PVO data in the 1980s, but the IFE formation process has been unclear until now. In this paper, we will gather the statistics of IFEs and use the magnetic compression to weigh the mass of the dust cloud. We will also estimate the volume over which individual events may be sensed. Using this volume together with the IFE occurrence rate we can calculate the inferred collision rate. We find for the IFE with mass about 107 kg, this rate approximately agrees with the estimated rate of collision of interplanetary bodies which can produce dust within the same mass range.

  20. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    DOEpatents

    Humphries, David E.; Hong, Seok-Cheol; Cozzarelli, legal representative, Linda A.; Pollard, Martin J.; Cozzarelli, Nicholas R.

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  1. New technology for vitrification and field (microscope-free) warming and transfer of small ruminant embryos.

    PubMed

    Isachenko, Vladimir; Alabart, Jose Luis; Dattena, Maria; Nawroth, Frank; Cappai, Pietro; Isachenko, Eugenia; Cocero, Maria Jesus; Olivera, Julio; Roche, Alberto; Accardo, Carla; Krivokharchenko, Alexander; Folch, Jose

    2003-03-01

    This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.

  2. Runoff of small rocky headwater catchments: Field observations and hydrological modeling

    NASA Astrophysics Data System (ADS)

    Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.

    2016-10-01

    In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.

  3. Plasma-field Coupling at Small Length Scales in Solar Wind Near 1 AU

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; Desai, M. I.

    2016-10-01

    In collisionless plasmas such as the solar wind, the coupling between plasma constituents and the embedded magnetic field occurs on various temporal and spatial scales, and is primarily responsible for the transfer of energy between waves and particles. Recently, it was shown that the transfer of energy between solar wind plasma particles and waves is governed by a new and unique relationship: the ratio between the magnetosonic energy and the plasma frequency is constant, E ms/ω pl ˜ ℏ*. This paper examines the variability and substantial departure of this ratio from ℏ* observed at ˜1 au, which is caused by a dispersion of fast magnetosonic (FMS) waves. In contrast to the efficiently transferred energy in the fast solar wind, the lower efficiency of the slow solar wind can be caused by this dispersion, whose relation and characteristics are derived and studied. In summary, we show that (i) the ratio E ms/ω pl transitions continuously from the slow to the fast solar wind, tending toward the constant ℏ* (ii) the transition is more efficient for larger thermal, Alfvén, or FMS speeds; (iii) the fast solar wind is almost dispersionless, characterized by quasi-constant values of the FMS speed, while the slow wind is subject to dispersion that is less effective for larger wind or magnetosonic speeds; and (iv) the constant ℏ* is estimated with the best known precision, ℏ* ≈ (1.160 ± 0.083) × 10-22 Js.

  4. Small-Scale DNA Sample Preparation Method for Field PCR Detection of Microbial Cells and Spores in Soil

    PubMed Central

    Kuske, Cheryl R.; Banton, Kaysie L.; Adorada, Dante L.; Stark, Peter C.; Hill, Karen K.; Jackson, Paul J.

    1998-01-01

    Efficient, nonselective methods to obtain DNA from the environment are needed for rapid and thorough analysis of introduced microorganisms in environmental samples and for analysis of microbial community diversity in soil. A small-scale procedure to rapidly extract and purify DNA from soils was developed for in-the-field use. Amounts of DNA released from bacterial vegetative cells, bacterial endospores, and fungal conidia were compared by using hot-detergent treatment, freeze-thaw cycles, and bead mill homogenization. Combining a hot-detergent treatment with bead mill homogenization gave the highest DNA yields from all three microbial cell types and provided DNA from the broadest range of microbial groups in a natural soil community. Only the bead mill homogenization step was effective for DNA extraction from Bacillus globigii (B. subtilis subsp. niger) endospores or Fusarium moniliforme conidia. The hot-detergent–bead mill procedure was simplified and miniaturized. By using this procedure and small-scale, field-adapted purification and quantification procedures, DNA was prepared from four different soils seeded with Pseudomonas putida cells or B. globigii spores. In a New Mexico soil, seeded bacterial targets were detected with the same sensitivity as when assaying pure bacterial DNA (2 to 20 target gene copies in a PCR mixture). The detection limit of P. putida cells and B. globigii spores in different soils was affected by the amount of background DNA in the soil samples, the physical condition of the DNA, and the amount of DNA template used in the PCR. PMID:9647816

  5. Breakdown of Bragg-Gray behaviour for low-density detectors under electronic disequilibrium conditions in small megavoltage photon fields

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhir; Fenwick, John D.; Underwood, Tracy S. A.; Deshpande, Deepak D.; Scott, Alison J. D.; Nahum, Alan E.

    2015-10-01

    In small photon fields ionisation chambers can exhibit large deviations from Bragg-Gray behaviour; the EGSnrc Monte Carlo (MC) code system has been employed to investigate this ‘Bragg-Gray breakdown’. The total electron (+positron) fluence in small water and air cavities in a water phantom has been computed for a full linac beam model as well as for a point source spectrum for 6 MV and 15 MV qualities for field sizes from 0.25  ×  0.25 cm2 to 10  ×  10 cm2. A water-to-air perturbation factor has been derived as the ratio of total electron (+positron) fluence, integrated over all energies, in a tiny water volume to that in a ‘PinPoint 3D-chamber-like’ air cavity; for the 0.25  ×  0.25 cm2 field size the perturbation factors are 1.323 and 2.139 for 6 MV and 15 MV full linac geometries respectively. For the 15 MV full linac geometry for field sizes of 1  ×  1 cm2 and smaller not only the absolute magnitude but also the ‘shape’ of the total electron fluence spectrum in the air cavity is significantly different to that in the water ‘cavity’. The physics of this ‘Bragg-Gray breakdown’ is fully explained, making reference to the Fano theorem. For the 15 MV full linac geometry in the 0.25  ×  0.25 cm2 field the directly computed MC dose ratio, water-to-air, differs by 5% from the product of the Spencer-Attix stopping-power ratio (SPR) and the perturbation factor; this ‘difference’ is explained by the difference in the shapes of the fluence spectra and is also formulated theoretically. We show that the dimensions of an air-cavity with a perturbation factor within 5% of unity would have to be impractically small in these highly non-equilibrium photon fields. In contrast the dose to water in a 0.25  ×  0.25 cm2 field derived by multiplying the dose in the single-crystal diamond dosimeter (SCDDo) by the Spencer-Attix ratio is within 2.9% of the dose computed directly in the water voxel

  6. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes

    SciTech Connect

    Keller, Brian M.; Beachey, David J.; Pignol, Jean-Philippe

    2007-10-15

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator (2) to characterize the energy of this beam (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3x0.3 to 4.0x4.0 cm{sup 2}, varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal

  7. A Gaussian Random Field Approach for Merging Radar and Ground-Based Rainfall Data on Small Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Krebsbach, K.; Friederichs, P.

    2014-12-01

    aggregate and small scale measurements and the difference between gauge aggregate and derived small scale measurements. Then the spatial structure of the radar anomalies is used to simulate the gauge anomalies on the whole field. In the end we add the simulation to a combined estimator of the radar and gauge aggregates and obtain the small scale merging product.

  8. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes.

    PubMed

    Keller, Brian M; Beachey, David J; Pignol, Jean-Philippe

    2007-10-01

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator, (2) to characterize the energy of this beam, (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3 x 0.3 to 4.0 x 4.0 cm2, varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal

  9. TU-F-201-04: Applications in Small Fields and Proton Beams

    SciTech Connect

    Das, I.

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  10. Quasi-single helicity state by a small positive pulse of toroidal magnetic field in TPE-RX reversed field pinch experiment

    SciTech Connect

    Hirano, Y.; Koguchi, H.; Yambe, K.; Sakakita, H.; Kiyama, S.

    2006-12-15

    By applying a small positive pulse ({delta}B{sub ta}) in toroidal magnetic field, the quasi-single helicity (QSH) state can be obtained with a controllable and reproducible manner in a reversed-field pinch (RFP) experiment on the large RFP machine, TPE-RX [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. The QSH state in RFP is one of the states where the improved confinement can be observed, and is important for development toward the pure single helicity (SH) state. In the SH state, the dynamo-action for sustaining the RFP configuration will be driven by a single helical mode and its harmonics, and the anomalous plasma loss can be avoided which is caused by the multi-helicity dynamo action in ordinary RFPs. In the operating condition presented here, the reversal of toroidal magnetic field (B{sub ta}) is maintained at a shallow value ({approx}-1 mT) for a certain period ({approx}20 ms) after the setting up of the RFP configuration and then the positive {delta}B{sub ta} ((less-or-similar sign)5 mT magnitude and {approx}2 ms width) is applied to the B{sub ta}, which is usually negative during the sustaining phase of RFP. Just after applying the pulse, the m/n=1/6 mode (m and n being the poloidal and toroidal Fourier mode numbers, respectively) grows dominantly and the configuration goes into QSH state. This QSH state can be sustained for a long period (up to {approx}45 ms) almost until the end of discharge by applying a delayed reversal of B{sub ta} with appropriate timing and magnitude. The setting up of the QSH states shows a reproducibility of almost 100% with the same timing corresponding to the applied positive pulse. This observation can confirm the interpretation in the former report [Y. Hirano et al., Phys. Plasmas 12, 112501 (2005)], in which it is claimed that the QSH state is obtained when a small positive pulse in toroidal magnetic field spontaneously appears.

  11. A Feasibility Study of a Field-specific Weather Service for Small-scale Farms in a Topographically Complex Watershed

    NASA Astrophysics Data System (ADS)

    Kim, S. O.; Shim, K. M.; Shin, Y. S.; Yun, J. I.

    2015-12-01

    Adequate downscaling of synoptic forecasts is a prerequisite for improved agrometeorological service to rural areas in South Korea where complex terrain and small farms are common. Geospatial schemes based on topoclimatology were used to scale down the Korea Meteorological Administration (KMA) temperature forecasts to the local scale (~30 m) across a rural catchment. Local temperatures were estimated at 14 validation sites at 0600 and 1500 LST in 2013/2014 using these schemes and were compared with observations. A substantial reduction in the estimation error was found for both 0600 and 1500 temperatures compared with uncorrected KMA products. Improvement was most remarkable at low lying locations for the 0600 temperature and at the locations on west- and south-facing slopes for the 1500 temperature. Using the downscaled real-time temperature data, a pilot service has started to provide field-specific weather information tailored to meet the requirements of small-scale farms. For example, the service system makes a daily outlook on the phenology of crop species grown in a given field using the field-specific temperature data. When the temperature forecast is given for tomorrow morning, a frost risk index is calculated according to a known phenology-frost injury relationship. If the calculated index is higher than a pre-defined threshold, a warning is issued and delivered to the grower's cellular phone with relevant countermeasures to help protect crops against frost damage. The system was implemented for a topographically complex catchment of 350km2with diverse agricultural activities, and more than 400 volunteer farmers are participating in this pilot service to access user-specific weather information.

  12. Additional ECR heating of a radially inhomogeneous plasma via the absorption of satellite harmonics of the surface flute modes in a rippled magnetic field

    SciTech Connect

    Girka, V. O.; Girka, I. O.

    2006-12-15

    A theoretical study is made of the possibility of additional heating of a radially inhomogeneous plasma in confinement systems with a rippled magnetic field via the absorption of satellite harmonics of the surface flute modes with frequencies below the electron gyrofrequency in the local resonance region, {epsilon}{sub 1} (r{sub 1}) = [2{pi}c/({omega}L)]{sup 2}, where {epsilon}{sub 1} is the diagonal element of the plasma dielectric tensor in the hydrodynamic approximation, L is the period of a constant external rippled magnetic field, and the radical coordinate r{sub 1} determines the position of the local resonance. It is found that the high-frequency power absorbed near the local resonance is proportional to the square of the ripple amplitude of the external magnetic field. The mechanism proposed is shown to ensure the absorption of the energy of surface flute modes and, thereby, the heating of a radially inhomogeneous plasma.

  13. The Limit of Resolution and Detectability of the ArcCHECK QA Phantom in small field Volumetric Modulated Arc Therapy and Stereotactic Radiosurgery Quality Assurance

    NASA Astrophysics Data System (ADS)

    Gray, Tara

    Purpose: To determine the limit of detectability and resolution of the ArcCheck QA Phantom (Sun Nuclear, Inc.) for quality assurance of volumetric-modulated arc therapy and stereotactic radiosurgery procedures when used in small field sizes. Methods: Eight different square field sizes (0.6x0.6, 1x1, 2x2, 3x3, 5x5, 7x7, 10x10, 15x15 cm2) were measured on the ArcCheck QA phantom at three different gantry angles: 0, 90, and 270 degrees, using a 6 MV beam at its maximum dose rate of 600 MU/min and a dose computed from a 200 MU beam from the Varian Edge linear accelerator (Varian Medical Systems, Palo Alto, CA) at the University of Toledo Dana Cancer Center. Four different types of errors were introduced into quality-assurance analysis procedures. Measured square field sizes were compared against the same measured square field sizes with induced collimator and MLC errors. Induced collimator errors were defined by an expansion of the jaw-defined field size by 1 mm on all axes, a collimator shift of 1 mm on the X2 and Y2 axes, a table shift by 1 mm vertically and longitudinally at 270 and 90 degrees and a table shift of 1mm laterally and longitudinally for angles of 0 and 180 degrees. MLC induced errors included the addition of one and subsequently two opposing MLC leaves in the center of each square field. Dose distributions for the normal square fields and square fields with induced errors were imported into SNC patient software (Sun Nuclear Corporation, Melbourne, FL) in the form of DICOM RT dose files and measured dose distributions were compared between the normally measured square fields and fields containing induced errors. Percent pass rates were computed using gamma analysis criteria of 2 mm/2% with a threshold value of 20%. Point dose ratios were also analyzed for fields with induced MLC errors and output factors were calculated in order to determine the magnitude of the effect that these induced errors had on output measurements as compared with the ability of

  14. 43 CFR 3835.17 - What additional requirements must I fulfill to obtain a small miner waiver for my mining claims...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fulfill to obtain a small miner waiver for my mining claims or sites on National Park System lands? 3835... waiver for my mining claims or sites on National Park System lands? (a) Before performing assessment work on National Park System lands, you must submit and obtain the National Park Service (NPS)'s...

  15. 43 CFR 3835.17 - What additional requirements must I fulfill to obtain a small miner waiver for my mining claims...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fulfill to obtain a small miner waiver for my mining claims or sites on National Park System lands? 3835... waiver for my mining claims or sites on National Park System lands? (a) Before performing assessment work on National Park System lands, you must submit and obtain the National Park Service (NPS)'s...

  16. 43 CFR 3835.17 - What additional requirements must I fulfill to obtain a small miner waiver for my mining claims...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fulfill to obtain a small miner waiver for my mining claims or sites on National Park System lands? 3835... waiver for my mining claims or sites on National Park System lands? (a) Before performing assessment work on National Park System lands, you must submit and obtain the National Park Service (NPS)'s...

  17. 43 CFR 3835.17 - What additional requirements must I fulfill to obtain a small miner waiver for my mining claims...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fulfill to obtain a small miner waiver for my mining claims or sites on National Park System lands? 3835... waiver for my mining claims or sites on National Park System lands? (a) Before performing assessment work on National Park System lands, you must submit and obtain the National Park Service (NPS)'s...

  18. Repeated sprints, high-intensity interval training, small-sided games: theory and application to field sports.

    PubMed

    Hoffmann, James J; Reed, Jacob P; Leiting, Keith; Chiang, Chieh-Ying; Stone, Michael H

    2014-03-01

    Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.

  19. Study of the response of plastic scintillation detectors in small-field 6 MV photon beams by Monte Carlo simulations

    SciTech Connect

    Wang, Lilie L. W.; Beddar, Sam

    2011-03-15

    Purpose: To investigate the response of plastic scintillation detectors (PSDs) in a 6 MV photon beam of various field sizes using Monte Carlo simulations. Methods: Three PSDs were simulated: A BC-400 and a BCF-12, each attached to a plastic-core optical fiber, and a BC-400 attached to an air-core optical fiber. PSD response was calculated as the detector dose per unit water dose for field sizes ranging from 10x10 down to 0.5x0.5 cm{sup 2} for both perpendicular and parallel orientations of the detectors to an incident beam. Similar calculations were performed for a CC01 compact chamber. The off-axis dose profiles were calculated in the 0.5x0.5 cm{sup 2} photon beam and were compared to the dose profile calculated for the CC01 chamber and that calculated in water without any detector. The angular dependence of the PSDs' responses in a small photon beam was studied. Results: In the perpendicular orientation, the response of the BCF-12 PSD varied by only 0.5% as the field size decreased from 10x10 to 0.5x0.5 cm{sup 2}, while the response of BC-400 PSD attached to a plastic-core fiber varied by more than 3% at the smallest field size because of its longer sensitive region. In the parallel orientation, the response of both PSDs attached to a plastic-core fiber varied by less than 0.4% for the same range of field sizes. For the PSD attached to an air-core fiber, the response varied, at most, by 2% for both orientations. Conclusions: The responses of all the PSDs investigated in this work can have a variation of only 1%-2% irrespective of field size and orientation of the detector if the length of the sensitive region is not more than 2 mm long and the optical fiber stems are prevented from pointing directly to the incident source.

  20. Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations

    NASA Astrophysics Data System (ADS)

    Cerri, S. S.; Califano, F.

    2017-02-01

    The understanding of the fundamental properties of turbulence in collisionless plasmas, such as the solar wind, is a frontier problem in plasma physics. In particular, the occurrence of magnetic reconnection in turbulent plasmas and its interplay with a fully-developed turbulent state is still a matter of great debate. Here we investigate the properties of small-scale electromagnetic fluctuations and the role of fast magnetic reconnection in the development of a quasi-steady turbulent state by means of 2D-3V high-resolution Vlasov–Maxwell simulations. At the largest scales turbulence is fed by external random forcing. We show that large-scale turbulent motions establish a -5/3 spectrum at {k}\\perp {d}i< 1 and, at the same time, feed the formation of current sheets where magnetic reconnection occurs. As a result coherent magnetic structures are generated which, together with the rise of the associated small-scale non-ideal electric field, mediate the transition between the inertial and the subproton-scale spectrum. A mechanism that boosts the magnetic reconnection process is identified, making the generation of coherent structures rapid enough to be competitive with wave mode interactions and leading to the formation of a fully-developed turbulent spectrum across the so-called ion break.

  1. Simulating small-scale climate change effects-lessons from a short-term field manipulation experiment on grassland arthropods.

    PubMed

    Buchholz, Sascha; Rolfsmeyer, Dorothee; Schirmel, Jens

    2013-10-01

    Climate change is expected to cause major consequences on biodiversity. Understanding species-specific reactions, such as species shifts, species declines, and changes in population dynamics is a key issue to quantify large-scale impacts of climate change on biotic communities. As it is often impossible or at least impracticable to conduct large-scale experiments on biotic responses to climate change, studies at a smaller scale may be a useful alternative. In our study, we therefore tested responses of grassland arthropods (carabid beetles, spiders, grasshoppers) to simulated climate change in terms of species activity densities and diversity. We conducted a controlled field experiment by changing water and microclimatic conditions at a small scale (16 m(2) ). Roof constructions were used to increase drought-like conditions, whereas water supply was enhanced by irrigation. In all, 2 038 carabid beetles (36 species), 4 893 spiders (65 species), and 303 Orthoptera (4 species) were caught using pitfall traps from May to August, 2010. During our experiment, we created an artificial small-scale climate change; and statistics revealed that these changes had short-term effects on the total number of individuals and Simpson diversity of the studied arthropod groups. Moreover, our results showed that certain species might react very quickly to climate change in terms of activity densities, which in turn might influence diversity due to shifts in abundance patterns. Finally, we devised methodological improvements that may further enhance the validity of future studies.

  2. High-field Solution NMR Spectroscopy as a Tool for Assessing Protein Interactions with Small Molecule Ligands

    PubMed Central

    Skinner, Andria L.; Laurence, Jennifer S.

    2013-01-01

    The ability of a small molecule to bind and modify the activity of a protein target at a specific site greatly impacts the success of drugs in the pharmaceutical industry. One of the most important tools for evaluating these interactions has been high-field solution NMR because of its unique ability to examine even weak protein-drug interactions at high resolution. NMR can be used to evaluate the structural, thermodynamic and kinetic aspects of a binding reaction. The basis of NMR screening experiments is that binding causes a perturbation in the physical properties of both molecules. Unique properties of small and macromolecules allow selective detection of either the protein target or ligand, even in a mixture of compounds. This review outlines current methodologies for assessing protein-ligand interactions from the perspectives of the protein target and ligand and delineates the fundamental principles for understanding NMR approaches in drug research. Advances in instrumentation, pulse sequences, isotopic labeling strategies, and the development of competition experiments support the study of higher molecular weight protein targets, facilitate higher-throughput and expand the range of binding affinities that can be evaluated, enhancing the utility of NMR for identifying and characterizing potential therapeutics to druggable protein targets. PMID:18351634

  3. Two-level multi-pinhole collimator for SPECT imaging using a small-field-of-view gamma camera

    NASA Astrophysics Data System (ADS)

    Bae, Jaekeon; Bae, Seungbin; Lee, Soo-young; Lee, Kisung; Kim, Yongkwon; Joung, Jinhun; Kim, MinHo; Kim, Kyeong Min

    2017-01-01

    The aim of this study was to develop a high-throughput imaging method for single-photon emission computed tomography. We developed a target-oriented multi-pinhole collimator and limitedangle method for scanning small organs such as the thyroid. To maximize the resolution and the sensitivity of the collimator, we designed a two-level multi-pinhole collimator whose levels were optimized for concave body contours. One level had a center hole whereas the other had surrounding holes. The limited-angle scanning method was employed to obtain tomographic images by using the collimator located near the body contour of the target, and a corresponding image reconstruction algorithm was implemented. A small-field-of-view gamma camera was used to achieve a smaller footprint. The design of the collimator also considered the dimensions of used gamma camera. Evaluation studies were conducted using the Geant4 application for tomographic emission. The results showed the resolution of the proposed collimator to be more than twice that of the previously designed multi-pinhole collimator while maintaining the same efficiency. Given that the designed collimator can be changed by simply replacing the center hole, the suggested imaging method is suitable for studying not only the thyroid but also any organ whose diameter is less than 90 mm.

  4. DNA-based small molecules for hole charge injection and channel passivation in organic heptazole field effect transistors

    NASA Astrophysics Data System (ADS)

    Cho, Youngsuk; Lee, Junyeong; Lim, June Yeong; Yu, Sanghyuck; Yi, Yeonjin; Im, Seongil

    2017-02-01

    DNA-based small molecules of guanine, cytosine, thymine and adenine are adopted for the charge injection layer between the Au electrodes and organic semiconductor, heptazole (C26H16N2). The heptazole-channel organic field effect transistors (OFETs) with a DNA-based small molecule charge injection layer showed higher hole mobility (maximum 0.12 cm2 V-1 s-1) than that of a pristine device (0.09 cm2 V-1 s-1). We characterized the contact resistance of each device by a transfer length method (TLM) and found that the guanine layer among all DNA-based materials performs best as a hole injection layer leading to the lowest contact resistance. Since the guanine layer is also known to be a proper channel passivation layer coupled with a thin conformal Al2O3 layer protecting the channel from bias stress and ambient molecules, we could realize ultra-stable OFETs utilizing guanine/Au contact and guanine/Al2O3 bilayer on the organic channel.

  5. Identification of Bacteria Synthesizing Ribosomal RNA in Response to Uranium Addition During Biostimulation at the Rifle, CO Integrated Field Research Site.

    PubMed

    McGuinness, Lora R; Wilkins, Michael J; Williams, Kenneth H; Long, Philip E; Kerkhof, Lee J

    2015-01-01

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this study, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.

  6. Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

    SciTech Connect

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Boyanov, Maxim I.

    2015-09-18

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.

  7. Identification of Bacteria Synthesizing Ribosomal RNA in Response to Uranium Addition During Biostimulation at the Rifle, CO Integrated Field Research Site

    PubMed Central

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.

    2015-01-01

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this study, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites. PMID:26382047

  8. Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

    DOE PAGES

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; ...

    2015-09-18

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two activemore » bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.« less

  9. SU-E-T-163: Characterization of a Novel High Resolution 1D Silicon Monolithic Array for Small Field Commissioning and Quality Assurance

    SciTech Connect

    Bisello, F; McGlade, J; Wang, P; Kralik, J; Kosterin, P; Mooij, R; Solberg, T; Menichelli, D; Celi, J

    2015-06-15

    Purpose: To study the suitability of a novel 1D silicon monolithic array for dosimetry of small radiation fields and for QA of high dose gradient treatment modalities (IMRT and SBRT). Methods: A 1D array composed of 4 monolithic silicon modules of 64 mm length and 1 mm pixel pitch was developed by IBA Dosimetry. Measurements were carried out for 6MV and 15MV photons on two commercial different linacs (TrueBeam and Clinac iX, Varian Medical Systems, Palo Alto, CA) and for a CyberKnife G4 (Accuray Inc., Sunnyvale, CA). The 1D array was used to measure output factors (OF), profiles and off axis correction factors (OACF) for the Iris CyberKnife variable collimator (5–60 mm). In addition, dose profiles (at the isocenter plane) were measured for multiple IMRT and SBRT treatment plans and compared with those obtained using EDR2radiographic film (Carestream Health, Rochester NY), a commercial 2D diode array and with the dose distribution calculated using a commercial TPS (Eclipse, Varian Medical Systems, Palo Alto, CA). Results: Due to the small pixel pitch of the detector, IMRT and SBRT plan profiles deviate from film measurements by less than 2%. Similarly, the 1D array exhibits better performance than the 2D diode array due to the larger (7 mm) pitch of that device. Iris collimator OFs measured using the 1D silicon array are in good agreement with the commissioning values obtained using a commercial stereotactic diode as well as with published data. Maximum deviations are < 3% for the smallest field (5 and 7.5mm) and below 1% for all other dimensions. Conclusion: We have demonstrated good performances of the array for commissioning of small photon fields and in patient QA, compared with diodes and film typically used in these clinical applications. The technology compares favorably with existing commercial solutions The presenting author is founded by a Marie Curie Early Initial Training Network Fellowship of the European Communitys Seventh Framework Programme under

  10. Addition of a third field significantly increases dose to the brachial plexus for patients undergoing tangential whole-breast therapy after lumpectomy

    SciTech Connect

    Stanic, Sinisa; Mathai, Mathew; Mayadev, Jyoti S.; Do, Ly V.; Purdy, James A.; Chen, Allen M.

    2012-07-01

    Our goal was to evaluate brachial plexus (BP) dose with and without the use of supraclavicular (SCL) irradiation in patients undergoing breast-conserving therapy with whole-breast radiation therapy (RT) after lumpectomy. Using the standardized Radiation Therapy Oncology Group (RTOG)-endorsed guidelines delineation, we contoured the BP for 10 postlumpectomy breast cancer patients. The radiation dose to the whole breast was 50.4 Gy using tangential fields in 1.8-Gy fractions, followed by a conedown to the operative bed using electrons (10 Gy). The prescription dose to the SCL field was 50.4 Gy, delivered to 3-cm depth. The mean BP volume was 14.5 {+-} 1.5 cm{sup 3}. With tangential fields alone, the median mean dose to the BP was 0.57 Gy, the median maximum dose was 1.93 Gy, and the irradiated volume of the BP receiving 40, 45, and 50 Gy was 0%. When the third (SCL field) was added, the dose to the BP was significantly increased (P = .01): the median mean dose to the BP was 40.60 Gy, and the median maximum dose was 52.22 Gy. With 3-field RT, the median irradiated volume of the BP receiving 40, 45, and 50 Gy was 83.5%, 68.5%, and 24.6%, respectively. The addition of the SCL field significantly increases dose to the BP. The possibility of increasing the risk of BP morbidity should be considered in the context of clinical decision making.

  11. Influence of field size on the physiological and skill demands of small-sided games in junior and senior rugby league players.

    PubMed

    Gabbett, Tim J; Abernethy, Bruce; Jenkins, David G

    2012-02-01

    The purpose of this study was to investigate the effect of changes in field size on the physiological and skill demands of small-sided games in elite junior and senior rugby league players. Sixteen elite senior rugby league players ([mean ± SE] age, 23.6 ± 0.5 years) and 16 elite junior rugby league players ([mean ± SE] age, 17.3 ± 0.3 years) participated in this study. On day 1, 2 teams played an 8-minute small-sided game on a small field (10-m width × 40-m length), whereas the remaining 2 teams played the small-sided game on a larger sized field (40-m width × 70-m length). On day 2, the groups were crossed over. Movement was recorded by a global positioning system unit sampling at 5 Hz. Games were filmed to count the number of possessions and the number and quality of disposals. The games played on a larger field resulted in a greater (p < 0.05) total distance covered, and distances covered in moderate, high, and very-high velocity movement intensities. Senior players covered more distance at moderate, high, and very-high intensities, and less distance at low and very-low intensities during small-sided games than junior players. Although increasing field size had no significant influence (p > 0.05) over the duration of recovery periods for junior players, larger field size significantly reduced (p < 0.05) the amount of short-, moderate-, and long-duration recovery periods in senior players. No significant between-group differences (p > 0.05) were detected for games played on a small or large field for the number or quality of skill involvements. These results suggest that increases in field size serve to increase the physiological demands of small-sided games but have minimal influence over the volume or quality of skill executions in elite rugby league players.

  12. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  13. A Multidisciplinary Approach to Research in Small-Scale Societies: Studying Emotions and Facial Expressions in the Field

    PubMed Central

    Crivelli, Carlos; Jarillo, Sergio; Fridlund, Alan J.

    2016-01-01

    Although cognitive science was multidisciplinary from the start, an under-emphasis on anthropology has left the field with limited research in small scale, indigenous societies. Neglecting the anthropological perspective is risky, given that once-canonical cognitive science findings have often been shown to be artifacts of enculturation rather than cognitive universals. This imbalance has become more problematic as the increased use of Western theory-driven approaches, many of which assume human uniformity (“universality”), confronts the absence of a robust descriptive base that might provide clarifying or even contrary evidence. We highlight the need for remedies to such shortcomings by suggesting a two-fold methodological shift. First, studies conducted in indigenous societies can benefit by relying on multidisciplinary research groups to diminish ethnocentrism and enhance the quality of the data. Second, studies devised for Western societies can readily be adapted to the changing settings encountered in the field. Here, we provide examples, drawn from the areas of emotion and facial expressions, to illustrate potential solutions to recurrent problems in enhancing the quality of data collection, hypothesis testing, and the interpretation of results. PMID:27486420

  14. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields.

    PubMed

    Ploquin, N; Kertzscher, G; Vandervoort, E; Cygler, J E; Andersen, C E; Francescon, P

    2015-01-07

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, (S(c,p))(f(clin))(det), for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC(®) film (EBT and EBT2). Uncorrected (S(c,p))(f(clin))(det) were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield corrected field factors, Ω(f(clin),f(msr))(Q(clin),Q(msr)), following the terminology of a recent formalism introduced for small and composite field relative dosimetry. With corrections, the RL measured Ω(f(clin),f(msr))(Q(clin),Q(msr)) were 0.656  ±  0.002, 0.815  ±  0.002 and 0.865  ±  0.003 for the 5, 7.5 and 10 mm collimators, respectively. This was in good agreement with RADPOS corrected field factors of 0.650  ±  0.010, 0.816  ±  0.024 and 0.867  ±  0.010 for the 5, 7.5 and 10 mm collimators, respectively. Both RL and RADPOS total scatter factors agreed within approximately two standard deviations of the GAFCHROMIC film values (average of EBT and EBT2) of 0.640  ±  0.006, 0.806  ±  0.007 and 0.859  ±  0.09. Corrected total scatter factors for all dosimetry systems agreed within one standard deviation for collimator sizes 10-60 mm. Our study suggests that the microMOSFET/RADPOS and optical fibre-coupled RL dosimetry system are well suited for total scatter factor measurements over the entire range of field

  15. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    NASA Astrophysics Data System (ADS)

    Ploquin, N.; Kertzscher, G.; Vandervoort, E.; Cygler, J. E.; Andersen, C. E.; Francescon, P.

    2015-01-01

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, ≤ft({{S}c,p}\\right)\\text{det}{{f\\text{clin}}}, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC® film (EBT and EBT2). Uncorrected ≤ft({{S}c,p}\\right)\\text{det}{{f\\text{clin}}}, were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield corrected field factors, Ω {{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}}, following the terminology of a recent formalism introduced for small and composite field relative dosimetry. With corrections, the RL measured Ω {{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}}, were 0.656  ±  0.002, 0.815  ±  0.002 and 0.865  ±  0.003 for the 5, 7.5 and 10 mm collimators, respectively. This was in good agreement with RADPOS corrected field factors of 0.650  ±  0.010, 0.816  ±  0.024 and 0.867  ±  0.010 for the 5, 7.5 and 10 mm collimators, respectively. Both RL and RADPOS total scatter factors agreed within approximately two standard deviations of the GAFCHROMIC film values (average of EBT and EBT2) of 0.640  ±  0.006, 0.806  ±  0.007 and 0.859  ±  0.09. Corrected total scatter factors for all dosimetry systems agreed within one standard deviation for collimator sizes 10-60 mm. Our study suggests that the micro

  16. Operation Sun Beam, Shot Small Boy. Project Officer's report - Project 6. 9. Correlation of present and previous electric-field measurements

    SciTech Connect

    Reno; Fowles, H.M.

    1985-09-01

    On most previous nuclear detonations, signatures and quantitative measurements of the electric-field signals associated with the detonations was obtained at distances such that normal radiation field characteristics apply. On Small Boy, measurements were made from stations located much closer in, such as to be inside, on the boundary of and just outside the limits of the ionized sphere created by the nuclear burst. The electric-field characteristics in these regions were unknown. In the hope of providing continuity from the region of the unknown into the reasonably well-understood region of the radiation field, this project was requested to make the typical radiation-field type of measurement that had been made on previous detonations. This report covers the signature characteristics and quantitative measurements of the electric-field signal from Small Boy as seen from outside the immediate region of theoretical generating mechanism.

  17. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    SciTech Connect

    Butler, K.L.

    1985-09-01

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  18. Magnetic field, additive and structural effects on the decay kinetics of micellized triplet radical pairs. Role of diffusion, spin-orbit coupling and paramagnetic relaxation

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Kuzmin, V. A.

    1992-05-01

    The geminate recombination kinetics of the radical pairs produced by quenching of the triplet aromatic ketones or quinones by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium alkyl sulfates in the presence of additives (ethanol, NaCl, bromo- and iodobenzenes, paramagnetic species) has been examined using the laser flash technique. The recombination rates increase as the micellar size in decreased. Application of an external magnetic field (0.45 T) results in the retardation of geminate recombination up to 25 times. The magnetic field effect is quenched by internal or even external heavy atoms as well as by paramagnetic species, including 3O 2. The magnetic field dependences and attendant regularities are considered in terms of a simple kinetic scheme, in which the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms, as well as intersystem recombination due to the spin-orbit coupling in the contact states of a pair, are included as first-order processes. The corresponding kinetic parameters of the different pathways involved are also discussed.

  19. Crystallization of a complex between human CDK6 and a virus-encoded cyclin is critically dependent on the addition of small charged organic molecules

    SciTech Connect

    Schulze-Gahmne, Ursula; Kim, Sung-Hou

    2001-07-06

    Human CDK6 plays an important role in controlling entry into the eucaryotic cell cycle. An activated complex of human CDK6 with a viral cyclin from herpesvirus saimiri was purified to homogeneity and crystallized using polyethylene glycol 3350 as precipitant. Crystallization was critically dependent on a narrow range of Ca Acetate concentration and the presence of Sulfo-betaine 201 as additive. Crystals belong to the hexagonal space group P6122 or P6522 with unit cell parameters a = b = 70.14 Angstrom, c = 448.77 Angstrom, g = 120 degrees and diffract X-rays to at least 3.1 Angstrom resolution.

  20. Modification of the unsteady flow field predicted by transonic small distrubance equations using a Navier-Stokes solution of the steady flow field

    NASA Astrophysics Data System (ADS)

    Kinsey, Don Winston

    The first part of this report describes a numerical solution of the Navier-Stokes equations for flow over a thick supercritical airfoil with strong shock-induced separation on upper and lower surfaces. The separated flow region extends from the shock (approx 50 pct chord) to the trailing edge on both surfaces. The solution algorithm employed was an explicit predictor-corrector method. An algebraic turbulence model was used to describe the turbulent Reynolds stresses. The treatment of the eddy-viscosity behavior through the shock, in the separated regions over the airfoil and in the near wake was the critical step for a successful solution. Many approaches have been used to extend the useful range of 2-D, unsteady transonic small disturbances (TSD) procedures. The second part of the report describes another such procedure. Modifications to the TSD procedure, LTRAN2, that allow the procedure to determine the geometry corresponding to the prescibed pressure distribution from experimental data or as predicted by a Navier-Stokes solver are described. The new geometry accounts for compressible and viscous effects and is a much improved starting point for unsteady calculations. The TSD governing equations and boundary equations are reviewed, and then the modifications required for the inverse geometry definition are described. Results for three different airfoils (NACA 0012, NACA 64A010 and NLR 7301) are presented and discussed. A summary of the results, and recommendations for additional work are provided.

  1. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    PubMed Central

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant

  2. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images.

    PubMed

    Karimaghaloo, Zahra; Arnold, Douglas L; Arbel, Tal

    2016-01-01

    Detection and segmentation of large structures in an image or within a region of interest have received great attention in the medical image processing domains. However, the problem of small pathology detection and segmentation still remains an unresolved challenge due to the small size of these pathologies, their low contrast and variable position, shape and texture. In many contexts, early detection of these pathologies is critical in diagnosis and assessing the outcome of treatment. In this paper, we propose a probabilistic Adaptive Multi-level Conditional Random Fields (AMCRF) with the incorporation of higher order cliques for detecting and segmenting such pathologies. In the first level of our graphical model, a voxel-based CRF is used to identify candidate lesions. In the second level, in order to further remove falsely detected regions, a new CRF is developed that incorporates higher order textural features, which are invariant to rotation and local intensity distortions. At this level, higher order textures are considered together with the voxel-wise cliques to refine boundaries and is therefore adaptive. The proposed algorithm is tested in the context of detecting enhancing Multiple Sclerosis (MS) lesions in brain MRI, where the problem is further complicated as many of the enhancing voxels are associated with normal structures (i.e. blood vessels) or noise in the MRI. The algorithm is trained and tested on large multi-center clinical trials from Relapsing-Remitting MS patients. The effect of several different parameter learning and inference techniques is further investigated. When tested on 120 cases, the proposed method reaches a lesion detection rate of 90%, with very few false positive lesion counts on average, ranging from 0.17 for very small (3-5 voxels) to 0 for very large (50+ voxels) regions. The proposed model is further tested on a very large clinical trial containing 2770 scans where a high sensitivity of 91% with an average false positive

  3. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife{sup Registered-Sign} and linear accelerators equipped with microMLC and circular cones

    SciTech Connect

    Bassinet, C.; Huet, C.; Derreumaux, S.; Baumann, M.; Trompier, F.; Roch, P.; Clairand, I.; Brunet, G.; Gaudaire-Josset, S.; Chea, M.; Boisserie, G.

    2013-07-15

    Purpose: The use of small photon fields is now an established practice in stereotactic radiosurgery and radiotherapy. However, due to a lack of lateral electron equilibrium and high dose gradients, it is difficult to accurately measure the dosimetric quantities required for the commissioning of such systems. Moreover, there is still no metrological dosimetric reference for this kind of beam today. In this context, the first objective of this work was to determine and to compare small fields output factors (OF) measured with different types of active detectors and passive dosimeters for three types of facilities: a CyberKnife{sup Registered-Sign} system, a dedicated medical linear accelerator (Novalis) equipped with m3 microMLC and circular cones, and an adaptive medical linear accelerator (Clinac 2100) equipped with an additional m3 microMLC. The second one was to determine the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors introduced in a recently proposed small field dosimetry formalism for different active detectors.Methods: Small field sizes were defined either by microMLC down to 6 Multiplication-Sign 6 mm{sup 2} or by circular cones down to 4 mm in diameter. OF measurements were performed with several commercially available active detectors dedicated to measurements in small fields (high resolution diodes: IBA SFD, Sun Nuclear EDGE, PTW 60016, PTW 60017; ionizing chambers: PTW 31014 PinPoint chamber, PTW 31018 microLion liquid chamber, and PTW 60003 natural diamond). Two types of passive dosimeters were used: LiF microcubes and EBT2 radiochromic films.Results: Significant differences between the results obtained by several dosimetric systems were observed, particularly for the smallest field size for which the difference in the measured OF reaches more than 20%. For passive dosimeters, an excellent agreement was observed (better than 2%) between EBT2 and LiF microcubes

  4. Seismic source functions from free-field ground motions recorded on SPE: Implications for source models of small, shallow explosions

    NASA Astrophysics Data System (ADS)

    Rougier, Esteban; Patton, Howard J.

    2015-05-01

    Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.

  5. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches

    DOE PAGES

    Huang, Jing; Mei, Ye; König, Gerhard; ...

    2017-01-24

    Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less

  6. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    PubMed

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R(2) value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R(2) values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  7. Addition of thymidine to culture media for accurate examination of thymidine-dependent small-colony variants of methicillin-resistant Staphylococcus aureus: a pilot study.

    PubMed

    Horiuchi, Kazuki; Matsumoto, Takehisa; Ota, Yusuke; Kasuga, Eriko; Negishi, Tatsuya; Yaguchi, Tomomi; Sugano, Mitsutoshi; Honda, Takayuki

    2015-03-01

    Small-colony variants (SCVs) are slow-growing subpopulations of various auxotrophic bacterial strains. Thymidine-dependent SCVs (TD-SCVs) are unable to synthesize thymidine; hence, these variants fail to grow in a medium without thymidine. In this study, we used 10 TD-SCVs of Staphylococcus aureus, of which four strains possessed mecA. We compared the efficacy of a newly modified medium containing thymidine for the detection of TD-SCVs of methicillin-resistant S. aureus (MRSA) to the efficacy of routinely used laboratory media. We observed that none of the 10 TD-SCVs of S. aureus grew in Mueller-Hinton agar, and four TD-SCVs of MRSA failed to grow on all MRSA screening media, except for the ChromID™ MRSA medium. Laboratory tests conducted using medium with thymidine incorporated showed that thymidine did not affect the minimum inhibitory concentrations of oxacillin and cefoxitin for clinical isolates of S. aureus, and was able to detect MRSA, including TD-SCVs. These findings showed that thymidine-incorporated media are able to detect TD-SCVs of MRSA without altering the properties of other clinically isolated MRSA strains.

  8. Creep Resistance of ZrO2 Ceramic Improved by the Addition of a Small Amount of Er2O3

    NASA Technical Reports Server (NTRS)

    Martinez-Fernandez, Julian; Sayir, Ali; Farmer, Serene C.

    2003-01-01

    Zirconia (ZrO2) has great technological importance in structural, electrical, and chemical applications. It is the crucial component for state-of-the art thermal barrier coatings and an enabling component as a solid electrolyte for solid-oxide fuel cell systems. Pure ZrO2 is of limited use for industrial applications because of the phase transformations that occur. Upon the addition of stabilizers, cubic (c-ZrO2) and tetragonal (t-ZrO2) forms can be preserved. It is the stabilized and partially stabilized forms of zirconia that function as thermal barrier coatings, solid electrolytes, and oxygen sensors and that have numerous applications in the electrochemical industry. The cubic form of ZrO2 is typically stabilized through Y2O3 additions. However, Y2O3-stabilized zirconia is susceptible to deformation at high temperatures (greater than 900 C) because of the large number of slip systems and the high oxygen diffusion rates, which result in high creep rates at high temperatures. Successful use of ZrO2 at high temperatures requires that new dopant additives be found that will retain or enhance the desirable properties of cubic ZrO2 and yet produce a material with lower creep rates. At the NASA Glenn Research Center, erbium oxide (Er2O3) was identified as a promising dopant for improving the creep resistance of. ZrO2. The selection of Er2O3 was based on the strong interactions of point defects and dislocations. Single crystals of 5 mol% Er2O3- doped ZrO2 rods (4 mm in diameter) and monofilaments (200 to 300 mm in diameter and 30 cm long) were grown using the laser-heated float zone technique, and their creep behavior was measured as a function of temperature. The addition of 5 mol% Er2O3 to single-crystal ZrO2 improved its creep resistance at high temperatures by 2 to 3 orders of magnitude over state-of-the-art Y2O3-doped crystals. Detailed microstructural characterization of ZrO2-Er2O3 single crystals has identified new mechanisms for improving the creep resistance

  9. Increasing dose gradient and uniformity in small fields using modulation: Theory and prototypes for cone-based stereotactic radiosurgery

    SciTech Connect

    Bender, Edward T.

    2014-05-15

    Purpose: To investigate the theoretical limits to the tradeoff between dose gradient and uniformity when modulation is used in the context of cone based SRS, and to design a prototype collimation device that allows for steeper dose gradients and/or higher target uniformity as compared to a standard circular collimator. Methods: An inverse planning optimization is performed in the context of idealized phantom geometry to determine the ideal fluence pattern that best approximates a “rect function” dose distribution. Ideal fluence patterns were approximated in a prototype device and radiochromic film dosimetry was utilized to compare the prototype device to a standard circular collimator. Results: For choices of prescription isodose lines above approximately 50%, utilizing modulation allows for an improved tradeoff between dose gradient index and dose heterogeneity index. Compensators placed within the circular collimator can achieve the necessary modulation. Conclusions: Using modulation with features on a submillimeter distance scale, it is possible to increase the dose gradient and/or uniformity in small fields.

  10. Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effect Transistor Devices.

    PubMed

    Patil, Hemlata; Chang, Jingjing; Gupta, Akhil; Bilic, Ante; Wu, Jishan; Sonar, Prashant; Bhosale, Sheshanath V

    2015-09-18

    Two solution-processable small organic molecules, (E)-6,6'-bis(4-(diphenylamino)phenyl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S10) and (E)-6,6'-di(9H-carbazol-9-yl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S11) were successfully designed, synthesized and fully characterized. S10 and S11 are based on a donor-acceptor-donor structural motif and contain a common electron accepting moiety, isoindigo, along with different electron donating functionalities, triphenylamine and carbazole, respectively. Ultraviolet-visible absorption spectra revealed that the use of triphenylamine donor functionality resulted in an enhanced intramolecular charge transfer transition and reduction of optical band gap, when compared with its carbazole analogue. Both of these materials were designed to be donor semiconducting components, exerted excellent solubility in common organic solvents, showed excellent thermal stability, and their promising optoelectronic properties encouraged us to scrutinize charge-carrier mobilities using solution-processable organic field effect transistors. Hole mobilities of the order of 2.2 × 10(-4) cm²/Vs and 7.8 × 10(-3) cm²/Vs were measured using S10 and S11 as active materials, respectively.

  11. Detecting small gravity change in field measurement: simulations and experiments of the superconducting gravimeter—iGrav

    NASA Astrophysics Data System (ADS)

    Kao, Ricky; Kabirzadeh, Hojjat; Kim, Jeong Woo; Neumeyer, Juergen; Sideris, Michael G.

    2014-08-01

    In order to detect small gravity changes in field measurements, such as with CO2 storage, we designed simulations and experiments to validate the capabilities of the iGrav superconducting gravimeter. Qualified data processing was important to obtain the residual gravity from the iGrav's raw gravity signals, without the tidal components, atmosphere, polar motion and hydrological effects. Two simulations and four designed experiments are presented in this study. The first simulation detected the gravity change during CO2 injection. The residual gravity of CO2 leakage was targeted with the second simulation from the main storage reservoir to secondary space underground. The designed experiments monitored the situation of gravity anomalies in the iGrav's records. These tests focused on short-term gravity anomalies, such as gravity changes, step functions, repeat observations and gradient measurements from the iGrav, rather than on long-term tidal effects. The four laboratory experiments detected a decrease in gravity of -0.56 ± 0.15 µGal (10-8 m s-2) with a 92.8 kg weight on the top of the iGrav. A step function occurred in the gravity signals, when the tilt control was out of balance. We also used a professional camera dolly with a track to observe repeated horizontal movements and an electric lift table for controlled vertical movements to measure the average gradient of -2.67 ± 0.01 µGal cm-1.

  12. Effect of Adjuvant Magnetic Fields in Radiotherapy on Non-Small-Cell Lung Cancer Cells In Vitro

    PubMed Central

    Feng, Jianguo; Sheng, Huaying; Zhu, Chihong; Jiang, Hao; Ma, Shenglin

    2013-01-01

    Objectives. To explore sensitization and possible mechanisms of adjuvant magnetic fields (MFs) in radiotherapy (RT) of non-small-cell lung cancer. Methods. Human A549 lung adenocarcinoma cells were treated with MF, RT, and combined MF-RT. Colony-forming efficiency was calculated, cell cycle and apoptosis were measured, and changes in cell cycle- and apoptosis-related gene expression were measured by microarray. Results. A 0.5 T, 8 Hz stationary MF showed a duration-dependent inhibitory effect lasting for 1–4 hours. The MF-treated groups had significantly greater cell inhibition than did controls (P < 0.05). Surviving fractions and growth curves derived from colony-forming assay showed that the MF-only, RT-only, and MF-RT groups had inhibited cell growth; the MF-RT group showed a synergetic effect. Microarray of A549 cells exposed for 1 hour to MF showed that 19 cell cycle- and apoptosis-related genes had 2-fold upregulation and 40 genes had 2-fold downregulation. MF significantly arrested cells in G2 and M phases, apparently sensitizing the cells to RT. Conclusions. MF may inhibit A549 cells and can increase their sensitivity to RT, possibly by affecting cell cycle- and apoptosis-related signaling pathways. PMID:24224175

  13. Classification of small agricultural fields using combined Landsat-8 and RapidEye imagery: case study of northern Serbia

    NASA Astrophysics Data System (ADS)

    Crnojević, Vladimir; Lugonja, Predrag; Brkljač, Branko; Brunet, Borislav

    2014-01-01

    A pixel-based cropland classification study based on the fusion of data from satellite images with different resolutions is presented. It is based on a time series of multispectral images acquired at different resolutions by different imaging instruments, Landsat-8 and RapidEye. The proposed data fusion method capabilities are explored with the aim of overcoming the shortcomings of different instruments in the particular cropland classification scenario characterized by the very small size of crop fields over the chosen agricultural region situated in the plains of Vojvodina in northern Serbia. This paper proposes a data fusion method that is successfully utilized in combination with arobust random forest classifier in improving the overall classification performance, as well as in enabling application of satellite imagery with a coarser spatial resolution in the given specific cropland classification task. The developed method effectively exploits available data and provides an improvement over the existing pixel-based classification approaches through the combination of different data sources. Another contribution of this paper is the employment of crowdsourcing in the process of reference data collection via dedicated smartphone application.

  14. Small Field of View Scintimammography Gamma Camera Integrated to a Stereotactic Core Biopsy Digital X-ray System

    SciTech Connect

    Andrew Weisenberger; Fernando Barbosa; T. D. Green; R. Hoefer; Cynthia Keppel; Brian Kross; Stanislaw Majewski; Vladimir Popov; Randolph Wojcik

    2002-10-01

    A small field of view gamma camera has been developed for integration with a commercial stereotactic core biopsy system. The goal is to develop and implement a dual-modality imaging system utilizing scintimammography and digital radiography to evaluate the reliability of scintimammography in predicting the malignancy of suspected breast lesions from conventional X-ray mammography. The scintimammography gamma camera is a custom-built mini gamma camera with an active area of 5.3 cm /spl times/ 5.3 cm and is based on a 2 /spl times/ 2 array of Hamamatsu R7600-C8 position-sensitive photomultiplier tubes. The spatial resolution of the gamma camera at the collimator surface is < 4 mm full-width at half-maximum and a sensitivity of /spl sim/ 4000 Hz/mCi. The system is also capable of acquiring dynamic scintimammographic data to allow for dynamic uptake studies. Sample images of preliminary clinical results are presented to demonstrate the performance of the system.

  15. Where Millimeter Wave Spectra are Sensitive to Small Electric Fields: High Rydberg States of Xenon and Their Hyperfine Structures

    NASA Astrophysics Data System (ADS)

    Schäfer, Martin; Raunhardt, Matthias; Merkt, Frédéric

    2009-06-01

    In the range 0-45 cm^{-1} below the ionization limit, the separation between adjacent electronic states (Rydberg states with principal quantum number n>50) of atoms and molecules is smaller than 2 cm^{-1}. In order to resolve the fine or hyperfine structure of these states, it is necessary to combine high-resolution vacuum ultraviolet (VUV) laser radiation, which is required to access the Rydberg states from the ground state, with millimeter wave radiation. Such double-resonance experiments have been used to study the hyperfine structure of high Rydberg states of ^{83}Kr, H_2 or D_2. Millimeter wave transitions (240-350 GHz) between nℓ (52≤ n≤64, ℓ≤3) Rydberg states of different xenon isotopes were detected by pulsed field ionization followed by mass-selective detection of the cations. Because of the high polarizability of high-n Rydberg states (∝ n^7, ˜10^4 MHz cm^{2} V^{-2} for n≈ 50), it is necessary to reduce the electric stray fields to values of the order of mV/cm (or less) in order to minimize the (quadratic) Stark shift of the millimeter wave transitions. Some p and d Rydberg states of Xe are nearly degenerate and efficiently mixed by small stray fields, making it possible to observe transitions forbidden by the Δℓ=±1 selection rule or transitions exhibiting a linear Stark effect, which is typical for the degenerate high-ℓ Rydberg states. Multichannel quantum defect theory (MQDT) was used to analyze the millimeter wave data and to determine the hyperfine structures of the ^2P_{3/2} ground electronic states of ^{129}Xe^+ and ^{131}Xe^+. C. Fabre, P. Goy, S. Haroche, J. Phys. B: Atom. Mol. Phys. 10, L183-189 (1977). F. Merkt, A. Osterwalder, Int. Rev. Phys. Chem. 21, 385-403 (2002). M. Schäfer, M. Andrist, H. Schmutz, F. Lewen, G. Winnewisser, F. Merkt, J. Phys. B: At. Mol. Opt. Phys. 39, 831-845 (2006) M. Schäfer, F. Merkt, Phys. Rev. A, 74, 062506 (2006). A. Osterwalder, A. Wüest, F. Merkt, Ch. Jungen, J. Chem. Phys., 121, 11810

  16. SU-E-T-340: Dosimetry of a Small Field Electron Beam for Innovative Radiotherapy of Small Surface Or Internal Tumors

    SciTech Connect

    Reft, C; Lu, Z; Noonan, J

    2015-06-15

    Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beam shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.

  17. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives

    NASA Astrophysics Data System (ADS)

    Nikolka, Mark; Nasrallah, Iyad; Rose, Bradley; Ravva, Mahesh Kumar; Broch, Katharina; Sadhanala, Aditya; Harkin, David; Charmet, Jerome; Hurhangee, Michael; Brown, Adam; Illig, Steffen; Too, Patrick; Jongman, Jan; McCulloch, Iain; Bredas, Jean-Luc; Sirringhaus, Henning

    2016-12-01

    Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

  18. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives.

    PubMed

    Nikolka, Mark; Nasrallah, Iyad; Rose, Bradley; Ravva, Mahesh Kumar; Broch, Katharina; Sadhanala, Aditya; Harkin, David; Charmet, Jerome; Hurhangee, Michael; Brown, Adam; Illig, Steffen; Too, Patrick; Jongman, Jan; McCulloch, Iain; Bredas, Jean-Luc; Sirringhaus, Henning

    2017-03-01

    Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

  19. RECOVERY OF THE CANDIDATE PROTOPLANET HD 100546 b WITH GEMINI/NICI AND DETECTION OF ADDITIONAL (PLANET-INDUCED?) DISK STRUCTURE AT SMALL SEPARATIONS

    SciTech Connect

    Currie, Thayne; Kudo, Tomoyuki; Muto, Takayuki; Honda, Mitsuhiko; Brandt, Timothy D.; Grady, Carol; Fukagawa, Misato; Burrows, Adam; Janson, Markus; Kuzuhara, Masayuki; McElwain, Michael W.; Follette, Katherine; Hashimoto, Jun; Henning, Thomas; Kandori, Ryo; Kusakabe, Nobuhiko; Morino, Jun-ichi; Nishikawa, Jun; Kwon, Jungmi; Mede, Kyle; and others

    2014-12-01

    We report the first independent, second epoch (re-)detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover ''HD 100546 b'' with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to ≈12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0.''3. Standard hot-start models imply a mass of ≈15 M{sub J} . However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 M{sub J} ). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90° away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to ≈0.''45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.

  20. Reservoir analysis study: Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, Recommended additional reservoir engineering analysis

    SciTech Connect

    Not Available

    1988-07-01

    The basis for completion of the Phase III tasks above were the reports of Phases I and II and the associated backup material. The Phase II report was reviewed to identify the major uncertainties in all of the reserve assignments. In addition to the Proved, Probable and Possible reserves of Phase II, ''potential reserves'' or those associated with a greater degree of risk than the Possible reserves included in the Phase II report, were also identified based on the work performed by Bergeson through the Phase II reporting date. Thirty-three specific studies were identified to address the major Phase II reserve uncertainties or these potential reserves. These studies are listed in Table 1 and are grouped by the Elk Hills pool designation. The basis and need for each study are elaborated in the discussion which follows. Where possible, the need for the study was quantified by associating the study with a particular reserve estimate which would be clarified by the analysis. This reserve value was either the Probable or Possible reserves which were being studied, the potential reserves that were identified, or simply the uncertainty inherent in the proved reserves as identified in the study purpose. The costs associated with performing the study are also shown in Table 1 and were estimated based on Bergeson's knowledge of the Elk Hills reservoirs and data base following Phases I and II, as well as the company's experience in performing similar studies in other fields. The cost estimates are considered reasonable for general budgeting purposes, but may require refinement prior to actual initiation of these studies. This is particularly true for studies involving field testing to obtain additional log, core or test information as the cost of such items is not considered in this report. 51 figs., 46 tabs.

  1. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions. PMID:25751286

  2. Analysis of hyperbolic signatures from small discontinuities using an UWB ground-coupled radar: FDTD simulations and field experiments

    NASA Astrophysics Data System (ADS)

    Sagnard, Florence; Tebchrany, Elias; Baltazart, Vincent

    2013-04-01

    Ground penetrating radar (GPR) is a well-known non-destructive technique based on electromagnetic wave propagation that is able to detect by reflection or scattering of waves dielectric discontinuities in the underground. Our application is mainly concerned with civil engineering to perform supervision, inventory, and soil characterization. Because the air-coupled radar suffers from a significant reflection at the ground interface that reduces energy transfer of electromagnetic radiation in the sub-surface and penetration depth, we have developed an ultra-wide band (UWB) ground-coupled radar made of a pair of partially shielded compact planar bowtie slot antennas. As the antenna dimension (36*23 cm2) is close to the A4 sheet size, the maturity of the microstrip technology has allowed to design a particular geometry on the FR4 substrate (h=1.5 mm) which is able to operate at frequencies from 460 MHz to beyond 4 GHz in air. Contrary to a commercial GPR where details on antenna design are not available, it appears here possible to know and control the radiation characteristics and develop full-wave FDTD modeling that can represent field experiments for comparisons and analyses. The objective of this work is to improve, by means of a parametric study, the knowledge of physical phenomena involved in dielectric polarization when waves interact with buried discontinuities and particularly cracks, pipes, delaminations that can be distinguished by their shape, size, dielectric contrast with the surrounding medium, orientation relative to the electric field… Thus, we have first characterized by FDTD modeling and field measurements in a wet sand the radar link in two perpendicular polarizations (parallel and mirror) in the presence of a common soil (epsilon'=5.5, sigma=0.01 S/m) considering variable offsets. Afterwards, we have studied and analyzed the hyperbola signatures generated by the presence of buried canonical objects (pipes, strips) with several dielectric

  3. SU-E-T-757: TMRs Calculated From PDDs Versus the Direct Measurements for Small Field SRS Cones

    SciTech Connect

    Li, H; Zhong, H; Song, K; Qin, Y; Snyder, K; Gordon, J; Chetty, I; Wen, N

    2015-06-15

    Purpose: To investigate the variation of TMR for SRS cones obtained by TMR scanning, calculation from PDDs, and point measurements. The obtained TMRs were also compared to the representative data from the vendor. Methods: TMRs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac. TMR scanning was performed with a Sun Nuclear 3D scanner and Edge detector at 100 cm SDD. TMR point measurements were measured with a Wellhofer tank and Edge detector, at multiple depths from 0.5 to 20 cm and 100 cm SDD. PDDs for converting to TMR were scanned with a Wellhofer system and SFD detector. The formalism of converting PDD to TMR, given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring Scp and Sc of the cones (jaws set to 5×5 cm) using the Edge detector, and normalized to the 10×10 cm field. Results: Along the central axis beyond dmax, the RMS and maximum percent difference of TMRs obtained with different methods were as follows: (a) 1.3% (max=3.5%) for the calculated TMRs from PDDs versus direct scanning; (b) 1.2% (max=3.3%) for direct scanning versus point measurement; (c) 1.8% (max=5.1%) for the calculated versus point measurements; (d) 1.0% (max=3.6%) for direct scanning versus vendor data; (e) 1.6% (max=7.2%) for the calculated versus vendor data. Conclusion: The overall accuracy of TMRs calculated from PDDs was comparable with that of direct scanning. However, the uncertainty at depths greater than 20 cm, increased up to 5% when compared to point measurements. This issue must be considered when developing a beam model for small field SRS planning using cones.

  4. Analysis of small field percent depth dose and profiles: Comparison of measurements with various detectors and effects of detector orientation with different jaw settings

    PubMed Central

    Godson, Henry Finlay; Ravikumar, M.; Sathiyan, S.; Ganesh, K. M.; Ponmalar, Y. Retna; Varatharaj, C.

    2016-01-01

    The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (DS), depth of dose maximum (Dmax), percentage dose at 10 cm (D10), penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC) alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative DS(38.1%) with photon field diode in parallel orientation was higher than electron field diode (EFD) (27.9%) values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D10 depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields. PMID:27051165

  5. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  6. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    NASA Astrophysics Data System (ADS)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M.; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V.; Pardo-Montero, Juan

    2012-08-01

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.

  7. New method of collecting output factors for commissioning linear accelerators with special emphasis on small fields and Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Smith, Cindy D.

    Common methods for commissioning linear accelerators often neglect beam data for small fields. Examining the methods of beam data collection and modeling for commissioning linear accelerators revealed little to no discussion of the protocols for fields smaller than 4 cm x 4 cm. This leads to decreased confidence levels in the dose calculations and associated monitor units (MUs) for Intensity Modulated Radiation Therapy (IMRT). The parameters of commissioning the Novalis linear accelerator (linac) on the Eclipse Treatment Planning System (TPS) led to the study of challenges collecting data for very small fields. The focus of this thesis is the examination of the protocols for output factor collection and their impact on dose calculations by the TPS for IMRT treatment plans. Improving output factor collection methods, led to significant improvement in absolute dose calculations which correlated with the complexity of the plans.

  8. Horizontal flow fields in and around a small active region. The transition period between flux emergence and decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.

    2016-11-01

    Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims: Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods: The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Pérot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results: The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s-1 is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns

  9. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields - I. The kinematic phase

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2016-04-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Their observations in galaxies suggest strong magnetic fields already at high redshift as well as at present time. However, neither primordial magnetic fields nor battery processes can account for such high field strengths, which implies the presence of a dynamo process with rapid growth rates in high-redshift galaxies and subsequent maintenance against decay. We investigate the particular role played by feedback mechanisms in creating strong fluid turbulence, allowing for a magnetic dynamo to emerge. Performing magnetohydrodynamic simulations of isolated cooling gas haloes, we compare the magnetic field evolution for various initial field topologies and various stellar feedback mechanisms. We find that feedback can indeed drive strong gas turbulence and dynamo action. We see typical properties of Kolmogorov turbulence with a k-5/3 kinetic energy spectrum, as well as a small-scale dynamo, with a k3/2 magnetic energy spectrum predicted by Kazantsev dynamo theory. We also investigate simulations with a final quiescent phase. As turbulence decreases, the galactic fountain settles into a thin, rotationally supported disc. The magnetic field develops a large-scale well-ordered structure with even symmetry, which is in good agreement with magnetic field observations of nearby spirals. Our findings suggest that weak initial seed fields were first amplified by a small-scale dynamo during a violent feedback-dominated early phase in the galaxy formation history, followed by a more quiescent evolution, where the fields have slowly decayed or were maintained via large-scale dynamo action.

  10. Separation of silver nanoparticles by hollow fiber flow field-flow fractionation: Addition of tannic acid into carrier liquid as a modifier.

    PubMed

    Saenmuangchin, Rattaporn; Mettakoonpitak, Jaruwan; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2015-10-09

    A homemade hollow fiber flow-field fractionation (Hf-FlFFF) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was set-up for silver nanoparticles (AgNPs) separation by using polysulfone hollow fiber membrane (30,000 MW cutoff) as a separation channel. Tannic acid and citrate stabilized AgNPs were synthesized and introduced into Hf-FlFFF. The effects of carrier liquid and stabilizing agent on retention behavior of AgNPs were investigated. Different elution behaviors were observed as follows: with 0.02% (w/v) FL-70, all of AgNPs were eluted from Hf-FlFFF but differences in retention behaviors were observed for AgNPs with tannic acid and citrate stabilizing agents; and with 30mM TRIS buffer, only tannic acid stabilized AgNPs were eluted from Hf-FlFFF, whereas citrate stabilized AgNPs were not eluted. In this work, tannic acid addition into carrier liquid was proposed to modify the surface of AgNPs and the surface of the membrane, and thereby adjusting the retention behaviors of AgNPs. Various concentrations of tannic acid were added into FL-70 and TRIS buffer. With the use of 0.1mM tannic acid in 30mM TRIS buffer as the carrier liquid, retention behaviors of both tannic acid stabilized- and citrate stabilized-AgNPs were similar and with similar fractionation recovery.

  11. Geometric Comparisons of Selected Small Topographically Fresh Volcanoes in the Borealis and Elysium Planitia Volcanic Fields, Mars: Implications for Eruptive Styles

    NASA Technical Reports Server (NTRS)

    Taylor, K.; Sakimoto, S. E. H.; Mitchell, D.

    2002-01-01

    MOLA (Mars Orbiter Laser Altimeter) data from small, topographically fresh volcanoes from the Elysium and Borealis regions were gridded and analyzed using GMT (Generic Mapping Tools) programs. Results compare eruptive styles of the two regions, and draw conclusions about the different volcanic regions. Additional information is contained in the original extended abstract.

  12. Does the Addition of Involved Field Radiotherapy to High-Dose Chemotherapy and Stem Cell Transplantation Improve Outcomes for Patients With Relapsed/Refractory Hodgkin Lymphoma?

    SciTech Connect

    Kahn, Shannon; Flowers, Christopher; Xu Zhiheng; Esiashvili, Natia

    2011-09-01

    Purpose: To evaluate the value of adding involved field radiotherapy (IFRT) to patients with relapsed/refractory Hodgkin lymphoma (HL) undergoing high-dose chemotherapy (HDCT) and stem cell transplantation (SCT). Methods and Materials: Ninety-two patients with relapsed/refractory HL undergoing HDCT and SCT from 1995 to 2008 were analyzed in a case-control design. Forty-six HL patients treated with IFRT within 2 months of SCT were matched to 46 HL patients who did not receive IFRT based on age, stage at relapse, timing of relapse, histology, and year of SCT. All were evaluated for response, survival, and toxicity with a median followup of 63.5 months. Results: There was a trend for better disease control in patients receiving IFRT. Specifically, 10/46 IFRT patients (22%) relapsed/progressed after SCT compared with 17/46 control patients (37%). Of the failures after IFRT, 70% were inside the radiation field, all in sites of bulky disease. In patients with nonbulky disease, IFRT also resulted in significantly improved outcomes (failure rate 6% vs. 33%, respectively). When stratified by disease bulk, the use of IFRT was found to significantly improve DFS (p = 0.032), but did not affect OS. In addition, IFRT and nonbulky disease were found to be positive prognostic indicators for DFS with hazard ratios of 0.357 (p = 0.032) and 0.383 (p = 0.034), respectively. Grade IV/V toxicities were significantly higher in the IFRT vs. non-IFRT group (28% vs. 2%; p < 0.001), observed only in patients receiving a busulfan-based conditioning regimen. Conclusion: Patients with refractory or relapsed HL undergoing HDCT and SCT have a high risk of relapse in sites of prior disease involvement, especially in sites of bulky disease. The use of IFRT is associated with a lower risk of disease progression in these sites; however bulky disease sites are still difficult to control. Toxicity risk is significant, particularly when busulfan-based conditioning is combined with IFRT, and alternative

  13. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  14. Bias for the left visual field in rapid serial visual presentation: effects of additional salient cues suggest a critical role of attention.

    PubMed

    Śmigasiewicz, Kamila; Asanowicz, Dariusz; Westphal, Nicole; Verleger, Rolf

    2015-02-01

    Everyday experience suggests that people are equally aware of stimuli in both hemifields. However, when two streams of stimuli are rapidly presented left and right, the second target (T2) is better identified in the left hemifield than in the right hemifield. This left visual field (LVF) advantage may result from differences between hemifields in attracting attention. Therefore, we introduced a visual cue shortly before T2 onset to draw attention to one stream. Thus, to identify T2, attention was correctly positioned with valid cues but had to be redirected to the other stream with invalid ones. If the LVF advantage is caused by differences between hemifields in attracting attention, invalid cues should increase, and valid cues should reduce the LVF advantage as compared with neutral cues. This prediction was confirmed. ERP analysis revealed that cues evoked an early posterior negativity, confirming that attention was attracted by the cue. This negativity was earlier with cues in the LVF, which suggests that responses to salient events are faster in the right hemisphere than in the left hemisphere. Valid cues speeded up, and invalid cues delayed T2-evoked N2pc; in addition, valid cues enlarged T2-evoked P3. After N2pc, right-side T2 evoked more sustained contralateral negativity than left T2, least long-lasting after valid cues. Difficulties in identifying invalidly cued right T2 were reflected in prematurely ending P3 waveforms. Overall, these data provide evidence that the LVF advantage is because of different abilities of the hemispheres in shifting attention to relevant events in their contralateral hemifield.

  15. SU-E-T-134: Assessing the Capabilities of An MU Model for Fields as Small as 2cm in a Passively Scattered Proton Beam

    SciTech Connect

    Simpson, R; Ghebremedhin, A; Gordon, I; Patyal, B

    2015-06-15

    Purpose: To assess and expand the capabilities of the current MU model for a passively scattered proton beam. The expanded MU model can potentially be used to predict the dose/MU for fields smaller than 2cm in diameter and reduce time needed for physical calibrations. Methods: The current MU model accurately predicted the dose/MU for more than 800 fields when compared to physical patient calibrations. Three different ion chambers were used in a Plastic Water phantom for physical measurements: T1, PIN, and A-16. The original MU model predicted output for fields that were affected by the bolus gap factor (BGF) and nozzle extension factor (NEF). As the system was tested for smaller treatment fields, the mod wheel dependent field size factor (MWDFSF) had to be included to describe the changes observed in treatment fields smaller than 3cm. The expanded model used Clarkson integration to determine the appropriate value for each factor (field size factor (FSF), BGF, NEF, and MWDFSF), to accurately predict the dose/MU for fields smaller than 2.5cm in effective diameter. Results: The expanded MU model demonstrated agreement better than 2% for more than 800 physical calibrations that were tested. The minimum tested fields were 1.7cm effective diameter for 149MeV and 2.4cm effective diameter for 186MeV. The inclusion of Clarkson integration into the MU model enabled accurate prediction of the dose/MU for very small and irregularly shaped treatment fields. Conclusion: The MU model accurately predicted the dose/MU for a wide range of treatment fields used in the clinic. The original MU model has been refined using factors that were problematic to accurately predict the dose/MU: the BGF, NEF, and MWDFSF. The MU model has minimized the time for determining dose/MU and reduced the time needed for physical calibrations, improving the efficiency of the patient treatment process.

  16. Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Börjesson, G.; Kätterer, T.; Kirchmann, H.

    2012-04-01

    Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields

  17. Amplitudes of Pain-Related Evoked Potentials Are Useful to Detect Small Fiber Involvement in Painful Mixed Fiber Neuropathies in Addition to Quantitative Sensory Testing – An Electrophysiological Study

    PubMed Central

    Hansen, Niels; Kahn, Ann-Kathrin; Zeller, Daniel; Katsarava, Zaza; Sommer, Claudia; Üçeyler, Nurcan

    2015-01-01

    To investigate the usefulness of pain-related evoked potentials (PREP) elicited by electrical stimulation for the identification of small fiber involvement in patients with mixed fiber neuropathy (MFN). Eleven MFN patients with clinical signs of large fiber impairment and neuropathic pain and ten healthy controls underwent clinical and electrophysiological evaluation. Small fiber function, electrical conductivity and morphology were examined by quantitative sensory testing (QST), PREP, and skin punch biopsy. MFN was diagnosed following clinical and electrophysiological examination (chronic inflammatory demyelinating neuropathy: n = 6; vasculitic neuropathy: n = 3; chronic axonal ­neuropathy: n = 2). The majority of patients with MFN characterized their pain by descriptors that mainly represent C-fiber-mediated pain. In QST, patients displayed elevated cold, warm, mechanical, and vibration detection thresholds and cold pain thresholds indicative of MFN. PREP amplitudes in patients correlated with cold (p < 0.05) and warm detection thresholds (p < 0.05). Burning pain and the presence of par-/dysesthesias correlated negatively with PREP amplitudes (p < 0.05). PREP amplitudes correlating with cold and warm detection thresholds, burning pain, and par-/dysesthesias support employing PREP amplitudes as an additional tool in conjunction with QST for detecting small fiber impairment in patients with MFN. PMID:26696950

  18. Sensory characterisation and consumer acceptability of potassium chloride and sunflower oil addition in small-caliber non-acid fermented sausages with a reduced content of sodium chloride and fat.

    PubMed

    Mora-Gallego, Héctor; Guàrdia, Maria Dolors; Serra, Xavier; Gou, Pere; Arnau, Jacint

    2016-02-01

    The effect of the simultaneous reduction of fat proportion (from 20% to 10% and 7%) and added salt (from 2.5% to 1.5%) and the subsequent addition of 0.64% KCl and sunflower oil (1.5% and 3.0%) on the physicochemical, instrumental colour and texture, sensory properties and consumer acceptability of small caliber non-acid fermented sausages (fuet type) was studied. This simultaneous reduction of fat and salt increased weight loss, moisture, water activity (aw), redness, instrumental texture parameters (hardness, chewiness and cohesiveness), sensory attributes (darkness, hardness, elasticity) and the consumer acceptability. The subsequent addition of 0.64% KCl to the leanest batch decreased the aw and barely affected instrumental texture parameters and consumer acceptability. Subsequent sunflower oil addition decreased hardness, chewiness and cohesiveness and increased crumbliness and oil flavour which may decrease the consumer acceptability. The simultaneous reduction of fat and NaCl with the addition of 0.64% KCl was the preferred option by the consumers.

  19. WE-AB-BRB-02: Development of a Micro-Sized Dosimeter for Real-Time Dose Monitoring and Small Field Dosimetry

    SciTech Connect

    Volotskova, O; Jenkins, C; Fahimian, B; Xing, L

    2015-06-15

    Purpose: To investigate a miniature optical dosimeter for real-time, high-resolution dosimetry, and explore its potential applications for in vivo measurements and small field dosimetry. Methods: A micro-sized hemispherical (400 µm radius) scintillating detector was constructed from lanthanide activated phosphors doped with Europium (GOS:Eu) and encapsulated in a 17 gauge plastic catheter. A photon counting PMT and CCD-chip spectrometer were used to detect signals emitted from the detector. A single band-passing spectral approach (630nm) was implemented to discriminate the micro-phosphor optical signal from background signals (Cerenkov radiation) in the optical fiber. To test real-time monitoring capabilities, a 3D-printed phantom was used to detect an 192Ir HDR brachytherapy source at locations ranging from 1 to 4 cm radially and 12 cm along the travel axis of the HDR wire. To test the application of the micro-sized detector for small field dosimetry, the linearity of detector was characterized through irradiation of 6MV photon beam at dose-rates ranging from 100 to 600 MU, and the effect of field size was characterized through detections of beams ranging from 30×30 to 1×1 cm2 size. Results: With a 1 second integration time for the spectrometer, the recorded measurements indicated that the micro-sized detector allowed accurate detection of source position at distances of up to 6 cm along the axis of travel in water. EB measurements showed that the detected signal was linearly correlated with dose rate (R{sup 2} = 0.99). The crossbeam profile was determined with a step size of ∼500 µm. Conclusion: Miniaturization of optical dosimeters is shown to be possible through the construction of lanthanide activated doped phosphors detectors. The small size of the detector makes it amenable to a variety of applications, including real-time dose delivery verification during HDR brachytherapy and EB beam calibrations in small fields.

  20. Small field diode correction factors derived using an air core fibre optic scintillation dosimeter and EBT2 film.

    PubMed

    Ralston, Anna; Liu, Paul; Warrener, Kirbie; McKenzie, David; Suchowerska, Natalka

    2012-05-07

    There is no commercially available real-time dosimeter that can accurately measure output factors for field sizes down to 4 mm without the use of correction factors. Silicon diode detectors are commonly used but are not dosimetrically water equivalent, resulting in energy dependence and fluence perturbation. In contrast, plastic scintillators are nearly dosimetrically water equivalent. A fibre optic dosimeter (FOD) with a 0.8 mm(3) plastic scintillator coupled to an air core light guide was used to measure the output factors for Novalis/BrainLab stereotactic cones of diameter 4-30 mm and Novalis MLC fields of width 5-100 mm. The FOD data matched the output factors measured by a 0.125 cm(3) Semiflex ion chamber for the MLC fields above 30 mm and those measured with the EBT2 radiochromic film for the cones and MLC fields below 30 mm. Relative detector readings were obtained with four diode types (IBA SFD, EFD, PFD, PTW 60012) for the same fields. Empirical diode correction factors were determined by taking the ratio of FOD output factors to diode relative detector readings. The diodes were found to over-respond by 3%-16% for the smallest field. There was good agreement between different diodes of the same model number.