Science.gov

Sample records for additional soa sources

  1. Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Kinetics and SOA yields

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, Nicole K.; Hansel, Amie K.; Valsaraj, Kalliat T.; Anastasio, Cort

    2014-10-01

    Green leaf volatiles (GLVs) are a class of oxygenated hydrocarbons released from vegetation, especially during mechanical stress or damage. The potential for GLVs to form secondary organic aerosol (SOA) via aqueous-phase reactions is not known. Fog events over vegetation will lead to the uptake of GLVs into water droplets, followed by aqueous-phase reactions with photooxidants such as the hydroxyl radical (OH). In order to determine if the aqueous oxidation of GLVs by OH can be a significant source of secondary organic aerosol, we studied the partitioning and reaction of five GLVs: cis-3-hexen-1-ol, cis-3-hexenyl acetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol. For each GLV we measured the kinetics of aqueous oxidation by OH, and the corresponding SOA mass yield. The second-order rate constants for GLVs with OH were all near diffusion controlled, (5.4-8.6) × 109 M-1 s-1 at 298 K, and showed a small temperature dependence, with an average activation energy of 9.3 kJ mol-1 Aqueous-phase SOA mass yields ranged from 10 to 88%, although some of the smaller values were not statistically different from zero. Methyl jasmonate was the most effective aqueous-phase SOA precursor due to its larger Henry's law constant and high SOA mass yield (68 ± 8%). While we calculate that the aqueous-phase SOA formation from the five GLVs is a minor source of aqueous-phase SOA, the availability of other GLVs, other oxidants, and interfacial reactions suggest that GLVs overall might be a significant source of SOA via aqueous reactions.

  2. SOA Pragmatism

    NASA Astrophysics Data System (ADS)

    Shan, Tony C.

    This paper presents a pragmatic approach composed of Methodology, Automation, Patterns, and Strategy (MAPS), to effectively manage the architecture design practices and solution development lifecycle of information systems in a service-oriented paradigm. The key challenges in SOA are discussed, such as architecture complexity, evolving technologies, immature governance, fragmented specification efforts, and disparate visual notations. This comprehensive framework aims to provide a mature integration of appropriate knowledge and capabilities to filter the inessential from the essential. In the Methodology dimension, a hybrid method, SOA philosophy, and a methodical approach are the key components. The Automation dimension covers tools, service lifecycle, and COTS mapping. The prominent elements of the Patterns dimension are data caching patterns, reference model, and open source reference implementation. Finally, the Strategy dimension addresses the strategy metamodel, technology architecture planning, and strategy roadmapping. In addition, a 9-point list of SOA wisdom is articulated, which gives best-practice guidelines to adopt and implement SOA pragmatically in large organizations from a practitioner's perspeoctive.

  3. Sources, properties, aging, and anthropogenic influences on OA and SOA over the Southeast US and the Amazon during SOAS, DC3, SEAC4RS, and GoAmazon

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Campuzano Jost, P.; Hu, W.; Palm, B. B.; Thompson, S.; Krechmer, J.; Day, D. A.; Stark, H.; Peng, Z.; Ortega, A. M.; Isaacman, G. A.; Goldstein, A. H.; Holzinger, R.; de Sá, S. S.; Martin, S. T.; Alexander, M. L.; Guenther, A. B.; Canagaratna, M. R.; Massoli, P.; Kimmel, J.; Jayne, J. T.; Worsnop, D. R.; Brune, W. H.; Lee-Taylor, J. M.; Hodzic, A.; Madronich, S.; Offenberg, J. H.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.

    2014-12-01

    The SE US and the Amazon have large sources of biogenic VOCs and varying anthropogenic pollution impact, and often poor aerosol model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over these regions will be presented. SOA from IEPOX accounts for 14-17% of the OA on average over the SE US and extending up to 6 km. Higher IEPOX-SOA correlates with airmasses of high isoprene, IEPOX, sulfate, acidity, and lower NO. The IEPOX organosulfate accounts for ~10% of IEPOX-SOA over the SE US. The AMS ion C5H6O+ is shown to be a good marker of IEPOX-SOA, while total m/z 82 (as in ACSM) suffers larger interferences. The sinks of IEPOX-SOA via both OH oxidation and evaporation are slow. The low-volatility of IEPOX-SOA contrasts with the small semivolatile molecules that have so far been identified as its components, suggesting the importance of oligomerization. Urban SOA is estimated to account for 25% of the OA in the SE US using either the GEOS-Chem model or the measured 14C (using recent results that urban SOA (POA) is 30% (50%) non-fossil, mainly due to cooking emissions). An oxidation flow reactor (OFR) is used to investigate SOA formation by OH, O3, and NO3 in-situ. Largest SOA formation is always observed at night when monoterpenes (MT) are largest, and is underpredicted by SOA models that use MT as precursors but ignore partially-oxidized products. Closure results from models (VBS and GECKO-A) that account for the whole oxidation chain will be presented. The partitioning of organic acids is found to proceed rapidly in response to temperature changes, in contrast with recent reports of very slow equilibration. The agreement with absorptive partitioning theory is reasonable for most species, except small acids that may be formed by thermal decomposition during analysis. Partitioning data from four instruments is compared, with reasonable agreement in many cases including the rapid response

  4. Sources, Properties, Aging, and Anthropogenic Influences on OA and SOA over the Southeast US and the Amazon duing SOAS, DC3, SEAC4RS, and GoAmazon

    EPA Science Inventory

    The SE US and the Amazon have large sources of biogenic VOCs, varying anthropogenic pollution impacts, and often poor organic aerosol (OA) model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over ...

  5. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    NASA Astrophysics Data System (ADS)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  6. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  7. The Relative Importance of Aqueous-Phase and Gas-Phase Phenol Oxidation as Sources of SOA (Invited)

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Smith, J.

    2010-12-01

    The oxidation of phenols is a source of secondary organic aerosol (SOA) in the gas phase as well as in aqueous phases (e.g., cloud and fog drops and water-containing aerosol particles). The relative importance of the gas- and aqueous-phase pathways depends largely on three factors: (1) the partitioning of phenols between the gaseous and condensed phases, (2) the rates of reaction in each phase, and (3) the yields of SOA in each phase. Our goal in this work is to determine the relative importance of these two pathways as sources of SOA. Using previously published rate constants, as well as newly determined kinetics and SOA yield data in the aqueous phase, we find that in a cloudy atmosphere both aqueous- and gas-phase sinks are significant for phenols with high vapor pressures (e.g., phenol itself), but that aqueous-phase sinks can dominate for phenols with lower vapor pressures (e.g., phenols with multiple hydroxy or methoxy substituents). In regions with wood combustion (a major source of phenols), our calculations indicate that destruction of phenols within wood smoke particles is very important and that reaction with particulate triplet excited states is a major sink.

  8. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    SciTech Connect

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  9. SOA governance in healthcare organisations.

    PubMed

    Koumaditis, Konstantinos; Themistocleous, Marinos; Vassilakopoulos, Georgios

    2013-01-01

    Service Oriented Architecture (SOA) is increasingly adopted by many sectors, including healthcare. Due to the nature of healthcare systems there is a need to increase SOA adoption success rates as the non integrated nature of healthcare systems is responsible for medical errors that cause the loss of tens of thousands patients per year. Following our previous research [1] we propose that SOA governance is a critical success factor for SOA success in healthcare. Literature reports multiple SOA governance models that have limitations and they are confusing. In addition to this, there is a lack of healthcare specific SOA governance models. This highlights a literature void and thus the purpose of this paper is to proposed a healthcare specific SOA governance framework. PMID:23823423

  10. Source-apportionment and model evaluation: experiences with the EMEP SOA model

    NASA Astrophysics Data System (ADS)

    Simpson, D.; Yttri, K. E.

    2009-04-01

    The EMEP MSC-W chemical transport model (Simpson et al., 2003) has been successfully used for the prediction of photochemical oxidants and various inorganic aerosol components (sulphate, nitrate, ammonium) for many years. The model generally performs well for such species, as should be expected for compounds whose emission sources and chemistry are fairly well know. For carbonaceous particulate matter (PCM) however the model has been found to give very different results in different parts of Europe, with typically poor performance in southern Europe, but rather good results in Northern Europe (Simpson et al., 2007). Earlier comparison with the results of source-apportionment studies from the CARBOSOL project (Gelencser et al., 2007, Simpson et al., 2007) has shown that the poor performance in southern Europe can partly be ascribed to difficulties with emissions from residential wood-burning, and partly due to an underestimate of the secondary organic aerosol (SOA) component. Such difficulties are expected for organic aerosols, a subject where the basic science is only partially understood, and where new experimental results continually lead to revisions in existing ideas concerning sources and formation mechanisms (e.g. Hallquist et al., 2009). In such a situation, it is essential that model results are evaluated as thoroughly as possible, and that where possible the various components of organic aerosol can be evaluated separately. A number of source-apportionment (SA) studies have recently become available in Europe, in which data on elemental carbon (EC), organic carbon (OC), 14C, levoglucosan, and various markers of primary organic carbon (cellulose, sugars/sugar-alcohols) have allowed estimates of various sources of carbonaceous particulate matter (PCM). As well as CARBOSOL, these studies include various sites in Switzerland (e.g. Lanz et al., 2008, Szidat et al., 2006), data are available from Gothenburg in Sweden (Szidat et al., 2008) and from southern

  11. The Tao of SOA

    NASA Astrophysics Data System (ADS)

    Shan, Tony C.

    This paper describes a comprehensive framework aiming to facilitate the effective adoption and operationalization of SOA in large enterprise computing environments, which consists of the Strategy, Automation, Methodology, Patterns, Lifecycle, and Engineering (SAMPLE) aspects. The major pain points in SOA are analyzed, such as the increasing dynamics, growing integration, proliferation of techniques, more heterogeneous platforms, disparate visual notations, intricate processes, disjointed operating models, and fragmented activities of WS-* specifications. The overarching SAMPLE model is designed to provide a sophisticated integration of appropriate capabilities and knowledge to filter the inessential from the essential. In the Strategy aspect, a metamodel, technology architecture planning, and strategy roadmapping are presented. The Automation aspect deals with tools, service lifecycle, and COTS mapping. The Methodology aspect covers a hybrid method, SOA principles, and a methodical process. The prominent elements of the Patterns aspect include data caching patterns, a reference model, and open source reference implementation. The Lifecycle aspect contains a methodical means to mature IT systems: review, refactoring, reengineering, and rearchitecting (R4). Finally, the Engineering aspect evolves the traditional software engineering and systems engineering practices to the service engineering discipline. Moreover, a 10-point list of SOA guidance is introduced from a practitioner’s standpoint, which gives best-practice guidelines to adopt and execute SOA practically in big organizations.

  12. Sources of SOA gaseous precursors in contrasted urban environments: a focus on mono-aromatic compounds and intermediate volatility compounds

    NASA Astrophysics Data System (ADS)

    Salameh, Therese; Borbon, Agnès; Ait-Helal, Warda; Afif, Charbel; Sauvage, Stéphane; Locoge, Nadine; Bonneau, Stéphane; Sanchez, Olivier

    2016-04-01

    Among Volatile Organic Compounds (VOC), the mono-aromatic compounds so-called BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) and the intermediate volatility organic compounds (IVOC) with C>12 are two remarkable chemical families having high impact on health, as well as on the production of secondary pollutants like secondary organic aerosols (SOA) and ozone. However, the nature and relative importance of their sources and, consequently, their impact on SOA formation at urban scale is still under debate. On the one hand, BTEX observations in urban areas of northern mid-latitudes do not reconcile with emission inventories; the latter pointing to solvent use as the dominant source compared to traffic. Moreover, a recent study by Borbon et al. (2013) has shown an enrichment in the C7-C9 aromatic fraction in Paris atmosphere by a factor of 3 compared to other cities. Causes would be: (i) differences in gasoline composition, (ii) differences in vehicle fleet composition, and (iii) differences in solvent use related sources. On the other hand, many smog chamber studies have highlighted IVOCs as important SOA precursors over the last decade but their origin and importance in urban areas relative to other precursors like BTEX is still poorly addressed. Here we combined large VOC datasets to investigate sources of BTEX and IVOC in contrasted urban areas by source-receptor approaches and laboratory experiments. Ambient data include multi-site speciated ambient measurements of C2 to C17 VOCs (traffic, urban background, and tunnel) from air quality networks (ie. AIRPARIF in Paris) and intensive field campaigns (MEGAPOLI-Paris, TRANSEMED in Beirut and Istanbul, PHOTOPAQ in Brussels). Preliminary results for Paris suggest that traffic dominates BTEX concentrations while traffic and domestic heating for IVOC (>70%). In parallel, the detailed composition of the fuel liquid phase was determined at the laboratory for typical fuels distributed in Ile de France region (diesel, SP95

  13. AWIPS II+: An Open-Source SOA Solution Enabling Environmental Remote Sensing Integration, Analysis, and Decision Support

    NASA Astrophysics Data System (ADS)

    Ardanuy, P. E.; Hood, C. A.; Moran, S. G.; Ritchie, A. A.; Tarro, A. M.; Nappi, A. J.

    2008-12-01

    Our shared future demands a renewed focus on sound environment stewardship-on the GEOSS socioeconomic imperatives, as well as the interdisciplinary relationships interconnecting our environment, climate, ecosystems, energy, carbon, water-and national security. Data volumes are now measured in the many petabytes. An increasingly urgent and accelerated tempo of changing requirements and responsive solutions demands data exploitation, and transparent, seamless, effortless, bidirectional, and interdisciplinary interoperability across models and observations. There is today a robust working paradigm established with the Advanced Weather Interactive Processing System (AWIPS)-NOAA/NWS's information integration and fusion capability. This process model extends vertically, and seamlessly, from environmental sensing through the direct delivery of societal benefit. NWS, via AWIPS, is the primary source of weather forecast and warning information in the nation. AWIPS is the tested and proven "the nerve center of operations" at all 122 NWS Weather Forecast Offices and 13 River Forecast Centers. Raytheon, in partnership with NOAA, has now evolved AWIPS into an open-source 2nd generation capability to satisfy climate, ecosystems, weather, and water mission goals. Just as AWIPS II supports NOAA decision- making, it is at the same time a platform funded by Raytheon IRAD and Government investment that can be cost-effectively leveraged across all of the GEOSS and IEOS societal benefit areas. The core principles in the AWIPS II evolution to a service-oriented architecture (SOA) were to minimize coupling, increase cohesion, minimize size of code base, maximize simplicity, and incorporate a pull-style data flow. We focused on "ilities" to drive the new AWIPS architecture-our shared architecture framework vision included six elements: - Create a new, low-cost framework for hosting a full range of environmental services, including thick-client visualization via virtual Earth's and GIS

  14. SOA Measurements vs. Models: a Status Report

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; de Gouw, J. A.

    2009-12-01

    The advent of fast and more detailed organic aerosol (OA) and VOC measurements in the last decade has allowed clearer model-measurement comparisons for OA and secondary OA (SOA). Here we summarize the patterns emerging from studies to date.

  15. At least 8 studies have reported a large (x5-10) underestimation of SOA for polluted regions when using traditional models (those developed until ~2006) (Heald GRL05, Volkamer GRL06, Johnson ACP06, Kleinman ACP08, Matsui JGR09, Dzepina ACP09, Hodzic ACP09, Tsimpidi ACP09). This is especially obvious when models are evaluated with the ΔOA/ΔCO ratio.
  16. Close to pollution sources, discrepancies of an order-of-magnitude in SOA lead to smaller discrepancies (often x2-3) for total OA due to the presence of primary OA (de Gouw EST09). Such OA discrepancies have been repeatedly observed (e.g. Vutukuru JGR06, McKeen JGR07&09, Heald JGR07, Fast ACP09, Hodzic ACP09).
  17. The discrepancy is reduced when recently-updated yields for aromatics (Ng ACP07) and SOA from glyoxal (Volkamer GRL07) are used, and is eliminated when using SOA formation from S/IVOC (Robinson Sci07) although with an overprediction of SOA at long aging times (Dzepina ACP09; Hodzic ACP09b). It is not clear whether the urban discrepancy is removed for the right reasons.
  18. 4 evaluations of biogenic SOA formed in unpolluted regions find reasonable agreement between SOA from traditional models and field measurements (Tunved Sci06; Hodzic ACP09; Chen GRL09; Slowik ACPD09). One evaluation reports a significant underprediction (Capes ACP09), although the amount of precursor reacted was difficult to ascertain for that case. The difference with the systematic underprediction observed for anthropogenic SOA may be due to the lack of primary S/IVOC in biogenic emissions, or to other reasons (NOx, SO2, POA, etc.).
  19. Comparisons for biogenic SOA formed in polluted regions are more complex. Several studies have reported a lack of clear influence of biogenic VOCs in SOA

  20. SOA multiday growth: Model artifact or reality?

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J. M.; Madronich, S.; Aumont, B.; Hodzic, A.; Camredon, M.; Valorso, R.

    2013-12-01

    Simulations of SOA gas-particle partitioning with the explicit gas-phase chemical mechanism generator GECKO-A show significant SOA mass growth continuing for several days, even as the initial air parcel is diluted into the regional atmosphere. This result is a robust feature of our model and occurs with both anthropogenic and biogenic precursors. The growth originates from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase. This result implies that sources of aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over a wider region than previously imagined, and that SOA measurements near precursor sources may routinely underestimate this influence. It highlights the need to better understand the sink terms in the SOA budget.

  21. Chemical Composition of Gas-Phase Oxidation Products from Biogenic Sources in the Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Stark, H.; Massoli, P.; Thompson, S.; Yatavelli, L. R.; Mohr, C.; Brophy, P.; Murschell, T.; Hu, W.; Canagaratna, M.; Krechmer, J.; Junninen, H.; Hakala, J. P.; Day, D. A.; Campuzano Jost, P.; Palm, B. B.; Ortega, A. M.; Kimmel, J.; Cubison, M.; Lopez-Hilfiker, F.; Thornton, J. A.; Baumann, K.; Edgerton, E.; Farmer, D.; Jimenez, J. L.; Jayne, J. T.; Worsnop, D. R.

    2013-12-01

    Reduced species emitted to the atmosphere are chemically transformed by atmospheric oxidants. The measurement of the large number of resulting oxidized compounds is crucial to understand and quantify these transformation processes. We analyzed datasets from four high-resolution time-of-flight chemical ionization mass spectrometers (HRToF-CIMS) during the Southern Oxidant and Aerosol Study (SOAS) in June and July 2013 at the Alabama Supersite in the Southeast U.S. These datasets allow specification and quantification of the multiple gas-phase compounds produced by chemical oxidation. The mass spectrometers used different reagent ions, nitrate (NO3-), acetate (CH3COO-), and iodide (I-). In this study, we will present the chemical composition of isoprene and terpene oxidation products as measured by the different techniques. When comparing the concentration and composition at different conditions (e.g., time of day, NOx levels, aerosol loading, RH), differences in gas-phase composition provide indications of both the changes in chemical processing arising from the different conditions as well as different sensitivities of the reagent ions. We will discuss these differences in terms of bulk chemical parameters such as carbon oxidation state, carbon number and oxygen-to-carbon ratio.

  22. SOA Measurements vs. Models: A Status Report

    NASA Astrophysics Data System (ADS)

    Jimenez, Jose-Luis; de Gouw, Joost; Hodzic, Alma

    2010-05-01

    The advent of fast and chemically-resolved organic aerosol (OA) and VOC measurements in the last decade has allowed more detailed model-measurement comparisons for OA and secondary OA (SOA). Large model underpredictions have been reported for SOA at many locations, but this is not always the case. Here we summarize the patterns emerging from studies to date, focusing on studies that use highly time and/or chemically resolved OA measurements. The model-measurement comparisons exhibit clear patterns depending on the region of the atmosphere. • At least 8 studies have reported a large (x5-10) underestimation of SOA for polluted regions when using traditional models (those developed until ~2006) (Heald GRL05, Volkamer GRL06, Johnson ACP06, Kleinman ACP08, Matsui JGR09, Dzepina ACP09, Hodzic ACP09, Tsimpidi ACP09). This is especially obvious when models are evaluated with the ΔOA/ΔCO ratio. • Close to pollution sources, discrepancies of an order-of-magnitude in SOA lead to smaller discrepancies (often x2-3) for total OA due to the presence of primary OA (de Gouw EST09). Such OA discrepancies have been repeatedly observed (e.g. Vutukuru JGR06, McKeen JGR07&09, Heald JGR07, Fast ACP09, Hodzic ACP09). • The discrepancy is reduced when recently-updated yields for aromatics (Ng ACP07) and SOA from glyoxal (Volkamer GRL07) are used, and is eliminated when using SOA formation from S/IVOC (Robinson Sci07) although with an overprediction of SOA at long aging times (Dzepina ACP09; Hodzic ACP10), especially with the Grieshop (ACP09) update of the Robison mechanism (Hodzic10). It is not clear whether the urban discrepancy is removed for the right reasons. • 4 evaluations of biogenic SOA formed in unpolluted regions find reasonable agreement between SOA from traditional models and field measurements (Tunved Sci06; Hodzic ACP09; Chen GRL09; Slowik ACPD09). One evaluation reports a significant underprediction (Capes ACP09), although the amount of precursor reacted was

  23. Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Easter, Richard C.; Liu, Xiaohong; Zelenyuk, Alla; Singh, Balwinder; Zhang, Kai; Ma, Po-Lun; Chand, Duli; Ghan, Steven; Jimenez, Jose L.; Zhang, Qi; Fast, Jerome; Rasch, Philip J.; Tiitta, Petri

    2015-05-01

    Secondary organic aerosols (SOA) are large contributors to fine-particle loadings and radiative forcing but are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semivolatile versus nonvolatile SOA treatments (based on some of the latest experimental findings) and to investigate the effects of gas-phase fragmentation reactions. The new treatments also track SOA from biomass burning and biofuel, fossil fuel, and biogenic sources. For semivolatile SOA treatments, fragmentation reactions decrease the simulated annual global SOA burden from 7.5 Tg to 1.8 Tg. For the nonvolatile SOA treatment with fragmentation, the burden is 3.1 Tg. Larger differences between nonvolatile and semivolatile SOA (up to a factor of 5) exist in areas of continental outflow over the oceans. According to comparisons with observations from global surface Aerosol Mass Spectrometer measurements and the U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network measurements, the FragNVSOA treatment, which treats SOA as nonvolatile and includes gas-phase fragmentation reactions, agrees best at rural locations. Urban SOA is underpredicted, but this may be due to the coarse model resolution. All three revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the North American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is mainly due to the oxidation of SOA precursor gases from biomass burning, not included in standard CAM5, and long-range transport of biomass burning OA at high altitudes. The revised model configurations that include fragmentation (both semivolatile and nonvolatile SOA) show much better agreement with MODerate resolution Imaging Spectrometers (MODIS) aerosol optical depth data over regions dominated by biomass burning during the summer

  24. UNDERSTANDING REGIONAL OXIDATION CAPACITY BY COMPREHENSIVE OBSERVATIONS TO CONSTRAIN HYDROXYL RADICAL SOURCES AND SINKS DURING THE SOUTHERN OXIDANT AEROSOL STUDY (SOAS)

    EPA Science Inventory

    The proposed field measurements and data analysis will provide an important constraint to understand oxidation capacity in the Southeastern U.S. that determines SOA and photochemical ozone formation. Unexpectedly high levels of OH determining oxidation capacity have been co...

  25. 17 CFR 38.801 - Additional sources for compliance.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Additional sources for compliance. 38.801 Section 38.801 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DESIGNATED CONTRACT MARKETS Governance Fitness Standards § 38.801 Additional sources for...

  1. 17 CFR 38.258 - Additional sources for compliance.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Additional sources for compliance. 38.258 Section 38.258 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DESIGNATED CONTRACT MARKETS Prevention of Market Disruption § 38.258 Additional sources for...

  2. Global transformation and fate of SOA: Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions

    SciTech Connect

    Shrivastava, ManishKumar B.; Easter, Richard C.; Liu, Xiaohong; Zelenyuk, Alla; Singh, Balwinder; Zhang, Kai; Ma, Po-Lun; Chand, Duli; Ghan, Steven J.; Jiminez, J. L.; Zhang, Qibin; Fast, Jerome D.; Rasch, Philip J.; Tiitta, P.

    2015-05-16

    Secondary organic aerosols (SOA) are large contributors to fine particle loadings and radiative forcing, but are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semi-volatile versus non-volatile SOA treatments (based on some of the latest experimental findings) and also investigate the effects of gas-phase fragmentation reactions. For semi-volatile SOA treatments, fragmentation reactions decrease simulated SOA burden from 7.5 Tg to 1.8 Tg. For the non-volatile SOA treatment with fragmentation, the burden is 3.1 Tg. Larger differences between non-volatile and semi-volatile SOA (upto a factor of 5) correspond to continental outflow over the oceans. Compared to a global dataset of surface Aerosol Mass Spectrometer measurements and the US IMPROVE network measurements, the non-volatile SOA with fragmentation treatment (FragNVSOA) agrees best at rural locations. Urban SOA is under-predicted but this may be due to the coarse model resolution. All our three revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the N. American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is due to treating SOA precursor gases from biomass burning, and long-range transport of biomass burning OA at elevated levels. The revised model configuration that include fragmentation (both semi-volatile and non-volatile SOA) show much better agreement with MODIS AOD data over regions dominated by biomass burning during the summer, and predict biomass burning as the largest global source of OA followed by biogenic and anthropogenic sources. The non-volatile and semi-volatile configuration predict the direct radiative forcing of SOA as -0.5 W m-2 and -0.26 W m-2 respectively, at top of the atmosphere, which are higher than previously estimated by most models, but in reasonable

  3. SOAs for Scientific Applications: Experiences and Challenges

    PubMed Central

    Krishnan, Sriram; Bhatia, Karan

    2011-01-01

    Over the past several years, with the advent of the Open Grid Services Architecture (OGSA) (19) and the Web Services Resource Framework (WSRF) (25), Service-oriented Architectures (SOA) and Web service technologies have been embraced in the field of scientific and Grid computing. These new principles promise to help make scientific infrastructures simpler to use, more cost effective to implement, and easier to maintain. However, understanding how to leverage these developments to actually design and build a system remains more of an art than a science. In this paper, we present some positions learned through experience that provide guidance in leveraging SOA technologies to build scientific infrastructures. In addition, we present the technical challenges that need to be addressed in building an SOA, and as a case study, we present the SOA that we have designed for the National Biomedical Computation Resource (NBCR) (9) community. We discuss how we have addressed these technical challenges, and present the overall architecture, the individual software toolkits developed, the client interfaces, and the usage scenarios. We hope that our experiences prove to be useful in building similar infrastructures for other scientific applications. PMID:21308003

  4. SOAs for Scientific Applications: Experiences and Challenges.

    PubMed

    Krishnan, Sriram; Bhatia, Karan

    2009-04-01

    Over the past several years, with the advent of the Open Grid Services Architecture (OGSA) (19) and the Web Services Resource Framework (WSRF) (25), Service-oriented Architectures (SOA) and Web service technologies have been embraced in the field of scientific and Grid computing. These new principles promise to help make scientific infrastructures simpler to use, more cost effective to implement, and easier to maintain. However, understanding how to leverage these developments to actually design and build a system remains more of an art than a science. In this paper, we present some positions learned through experience that provide guidance in leveraging SOA technologies to build scientific infrastructures. In addition, we present the technical challenges that need to be addressed in building an SOA, and as a case study, we present the SOA that we have designed for the National Biomedical Computation Resource (NBCR) (9) community. We discuss how we have addressed these technical challenges, and present the overall architecture, the individual software toolkits developed, the client interfaces, and the usage scenarios. We hope that our experiences prove to be useful in building similar infrastructures for other scientific applications. PMID:21308003

  5. A synthesis theory for self-oscillating adaptive systems /SOAS/

    NASA Technical Reports Server (NTRS)

    Horowitz, I.; Smay, J.; Shapiro, A.

    1974-01-01

    A quantitative synthesis theory is presented for the Self-Oscillating Adaptive System (SOAS), whose nonlinear element has a static, odd character with hard saturation. The synthesis theory is based upon the quasilinear properties of the SOAS to forced inputs, which permits the extension of quantitative linear feedback theory to the SOAS. A reasonable definition of optimum design is shown to be the minimization of the limit cycle frequency. The great advantages of the SOAS is its zero sensitivity to pure gain changes. However, quasilinearity and control of the limit cycle amplitude at the system output, impose additional constraints which partially or completely cancel this advantage, depending on the numerical values of the design parameters. By means of narrow-band filtering, an additional factor is introduced which permits trade-off between filter complexity and limit cycle frequency minimization.

  6. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: SOA Yield and Chemical Composition

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Qi, Li; Kacarab, Mary; Cocker, David

    2016-04-01

    Aromatic hydrocarbons account for 20%-30% of urban atmospheric VOCs and are major contributors to anthropogenic secondary organic aerosol (SOA). However, prediction of SOA from aromatic hydrocarbons as a function of structure, NOx concentration, and OH radical levels remains elusive. Innovative SOA yield and chemical composition evaluation approaches are developed here to investigate SOA formation from aromatic hydrocarbons. SOA yield is redefined in this work by adjusting the molecular weight of all aromatic precursors to the molecular weight of benzene (Yield'= Yieldi×(MWi/MWBenzene); i: aromatic hydrocarbon precursor). Further, SOA elemental ratio is calculated on an aromatic ring basis rather than the classic mole basis. Unified and unique characteristics in SOA formed from aromatic hydrocarbons with different alkyl groups (varying in carbon number and location on aromatic ring) are explored by revisiting fifteen years of UC Riverside/CE-CERT environmental chamber data on 129 experiments from 17 aromatic precursors at urban region relevant low NOx conditions (HC:NO 11.1-171 ppbC:ppb). Traditionally, SOA mass yield of benzene is much greater than that of other aromatic species. However, when adjusting for molecular weight, a similar yield is found across the 17 different aromatic precursors. More importantly, four oxygens per aromatic ring are observed in the resulting SOA regardless of the alkyl substitutes attached to the ring, which majorly affect H/C ratio in SOA. Therefore, resulting SOA bulk composition from aromatic hydrocarbons can be predicted as C6+nH6+2nO4 (n: alkyl substitute carbon number). Further, the dominating role of the aromatic ring carbons is confirmed by studying the chemical composition of SOA formed from the photooxidation of an aromatic hydrocarbon with a 13C isotopically labeled alkyl carbon. Overall, this study unveils the similarity in SOA formation from aromatic hydrocarbons enhancing the understanding of SOA formation from

  7. Can Sesquiterpene SOA be good CCN?

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A. A.; Tang, X.

    2011-12-01

    Secondary organic aerosol (SOA) particles are formed via gaseous reactions in the atmosphere and have the potential to impact climate and the hydrological cycle through their ability to act as cloud condensation nuclei (CCN). Beta-caryophyllene is a biogenic sesquiterpene emission and is known to react quickly and form low volatility products in the particulate phase. Previous work shows that the hygroscopic material in Beta-caryophyllene SOA may be semivolatile, and the less volatile component less hygroscopic. The less volatile component has been shown to impact the droplet growth kinetics. In this study, we revisit experiments at the University of California, Riverside Bourns College of Engineering- Center for Environmental Research and Technology (CE-CERT) dual 90 m3 indoor smog chamber, in which much lower concentration can be achieved. A suite of gas phase and particle phase instrumentation characterizes the thermodynamic aerosol properties and CCN activity. Hygroscopicity, volatility, particle size, number, mass, and composition and gas phase concentration are measured with, Gas chromatography-mass spectrometry (GC-MS), Scanning Mobility Particle Sizer (SMPS), tandem differential mobility analyzer (TDMA), and High Resolution Aerosol Mass Spectrometry (HR-AMS). In addition to chemical measurements aerosol physical properties are also reported. Experiments are conducted at different conditions to characterize the effect of hydroxyl radical, light, addition of another hydrocarbon precursor (isoprene) on SOA formation and characteristics.

  8. SOA Production From Cloud Processing of Glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Perri, M. J.; Seitzinger, S. P.; Tan, Y.; Turpin, B. J.

    2007-12-01

    Recent studies suggest that aqueous cloud chemistry contributes to secondary organic aerosol (SOA) production. Gas phase primary precursors, such as ethene and isoprene, can oxidize in the interstitial spaces of clouds to form water-soluble species, including glycolaldehyde. These water-soluble products can partition into cloud droplets and undergo further oxidation (e.g., via hydroxyl radicals). If low-volatility products (e.g., oxalate) are formed, these products can remain in the particle phase following droplet evaporation, forming organic aerosol. Organic aerosol plays an important role in cloud microphysics, visibility, and human health, yet little is known about aqueous phase reaction pathways and products that contribute to SOA. The kinetics of aqueous phase glycolaldehyde oxidation were studied and products were identified. Hydroxyl radical was generated via continuous UV photolysis of hydrogen peroxide inside a glass photochemical vessel. The reaction of glycolaldehyde and hydroxyl radical was monitored in real-time via continuous electrospray ionization mass spectrometry (ESI-MS). Organic products (acids and aldehydes) formed and destroyed during the reaction were identified and quantified via negative and positive mode ionization. Based on ESI-MS data obtained, glycolaldehyde is oxidized via hydroxyl radical to glycolic acid, glyoxylic acid, and ultimately oxalic acid, as previously suggested. In addition, several unexpected higher molecular weight compounds were produced, and identification of these reaction products is currently underway. The results obtained from this study serve to validate and refine the aqueous SOA-producing pathway for glycolaldehyde in cloud chemistry models and can be used to increase the accuracy of SOA prediction in atmospheric air quality and climate models.

  9. Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere

    SciTech Connect

    Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan; Easter, Richard C.; Beranek, Josef; Zaveri, Rahul A.; Fast, Jerome D.

    2013-04-27

    Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwind of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.

  10. Radiative forcing of organic aerosol in the atmosphere and on snow: incorporation of SOA and brown carbon

    NASA Astrophysics Data System (ADS)

    Lin, G.; Flanner, M.; Penner, J. E.

    2013-12-01

    Organic aerosols (OA) play an important role in climate change through their radiative forcing. Secondary organic aerosol (SOA) contributes a large portion of total organic aerosol, especially in remote regions. Organic aerosol has been shown to be an important source of solar-light absorption. However, very few global model calculations of the radiative forcing due to organic aerosol include SOA or the light-absorbing part of OA (brown carbon). Here, we use a global chemical transport model with a detailed SOA formation mechanism to investigate the change in SOA between present day and pre-industrial conditions. We employ a radiative transfer model to assess the radiative forcing associated with the change in SOA. We also reassess the radiative forcing of total OA by considering previously neglected brown carbon. In addition to the OA in the atmosphere, we examine for the first time the radiative forcing of OA deposited in snow and sea-ice by using the NCAR Community Land Model 4 (CLM4) for the land snow simulation and the Community Ice CodE 4 (CICE) for the sea-ice simulation. Anthropogenic emissions of NOx, CO, sulfate, biomass burning and fossil fuel organic aerosol are shown to influence the formation rate of SOA substantially, causing it to increase by 35 Tg/yr (41%) since pre-industrial times. The increase of SOA results in a direct forcing ranging from -0.12 to -0.34 Wm-2 and a first indirect forcing in warm phase clouds ranging from -0.24 to -0.32 Wm-2, with the range due to different assumed size distributions for SOA and different refractive indices. The global burden of primary organic aerosol (POA) is estimated to increase by 0.53 Tg since pre-industrial times. Based on different refractive indices assumed for brown carbon, the increase of POA leads to a direct forcing varying from -0.07 to -0.12 Wm-2. The change in total OA exerts a direct radiative forcing ranging from -0.17 to -0.46 Wm-2. Atmospheric absorption from brown carbon ranges from +0.13 to

  11. SOA VOLATILITY EVOLUTION: FORMATION AND OXIDATION OVER THE LIFECYCLE OF PM2.5

    EPA Science Inventory

    Secondary Organic Aerosols are a major, possibly dominant, source of organic PM2.5 that remain enigmatic. Enormous progress has been made in the past 15 years regarding SOA formation, starting with recognition that most SOA products are semivolatile, continuing to a...

  12. How will SOA change in the future?

    NASA Astrophysics Data System (ADS)

    Lin, Guangxing; Penner, Joyce E.; Zhou, Cheng

    2016-02-01

    Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass is increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.

  13. Impact of NOx on secondary organic aerosol (SOA) formation from β-pinene photooxidation

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, Mehrnaz; Pullinen, Iida; Springer, Monika; Kleist, Einhard; Tillmann, Ralf; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Hastie, Donald R.; Wildt, Jürgen

    2016-04-01

    Secondary organic aerosols (SOA) generated from atmospheric oxidation of volatile organics contributes substantially to the global aerosol load. It has been shown that odd nitrogen (NOx) has a significant influence on the formation of this SOA. In this study, we investigated SOA formation from β-pinene photooxidation in the Jülich Plant Atmosphere Chamber (JPAC) under varying NOx conditions. At higher-NOx levels, the SOA yield was significantly suppressed by increasing the NOx concentration. However at lower-NOx levels the opposite trend, an increase in SOA with increasing NOx concentration, was observed. This increase was likely due to the increased OH concentration in the stirred flow reactor. By holding the OH concentration constant for all experiments we removed the potential effect of OH concentration on SOA mass growth. In this case increasing the NOx concentration only decreased the SOA yield. In addition, the impact of NOx on SOA formation was explored in the presence of ammonium sulfate seed aerosols. This suggested that SOA yield was only slightly suppressed under increasing NOx concentrations when seed aerosol was present.

  14. Effect of Vapor Pressure Scheme on Multiday Evolution of SOA in an Explicit Model

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Madronich, S.; Aumont, B.; Camredon, M.; Emmons, L. K.; Tyndall, G. S.; Valorso, R.

    2011-12-01

    Recent modeling of the evolution of Secondary Organic Aerosol (SOA) has led to the critically important prediction that SOA mass continues to increase for several days after emission of primary pollutants. This growth of organic aerosol in dispersing plumes originating from urban point sources has direct implications for regional aerosol radiative forcing. We investigate the robustness of predicted SOA mass growth downwind of Mexico City in the model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), by assessing its sensitivity to the choice of vapor pressure prediction scheme. We also explore the implications for multi-day SOA mass growth of glassification / solidification of SOA constituents during aging. Finally we use output from the MOZART-4 chemical transport model to evaluate our results in the regional and global context.

  15. Formation of Organic Tracers for Isoprene SOA under Acidic Conditions

    EPA Science Inventory

    The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...

  16. Two cascaded SOAs used as intensity modulators for adaptively modulated optical OFDM signals in optical access networks.

    PubMed

    Hamié, Ali; Hamzé, Mohamad; Taki, Haidar; Makouk, Layaly; Sharaiha, Ammar; Alaeddine, Ali; Al Housseini, Ali; Giacoumidis, Elias; Tang, J M

    2014-06-30

    Detailed theoretical and numerical investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals are undertaken, for the first time, in optical amplification and chromatic dispersion (CD) compensation free single mode fiber (SMF) intensity-modulated and direct-detection (IMDD) systems using two cascaded semiconductor optical amplifiers in a counterpropagating configuration as an intensity modulator (TC-SOA-CC-IM). A theoretical model describing the characteristics of this configuration is developed. Extensive performance comparisons are also made between the TC-SOA-CC and the single SOA intensity modulators. It is shown that, the TC-SOA-CC reaches its strongly saturated region using a lower input optical power much faster than the single SOA resulting in significantly reduced effective carrier lifetime and thus wide TC-SOA-CC bandwidths. It is shown that at low input optical power, we can increase the signal line rate almost 115% which will be more than twice the transmission performance offered by single SOA. In addition, the TC-SOA-CC-IM is capable of supporting signal line rates higher than corresponding to the SOA-IM by using 10dB lower input optical powers. For long transmission distance, the TC-SOA-CC-IM has much stronger CD compensation capability compared to the SOA-IM. In addition the use of TC-SOA-CC-IM is more effective regarding the capability to benefit from the CD compensation for shorter distances starting at 60km SMF, whilst for the SOA-IM starting at 90km. PMID:24977835

  17. Dependence of Isoprene SOA Yield on the Phase of Ammonium Sulfate Seed Particles

    NASA Astrophysics Data System (ADS)

    Wong, J. P. S.; Lee, A.; Abbatt, J.

    2014-12-01

    Current atmospheric models have difficulty predicting the mass of ambient organic bearing particles, suggesting unidentified formation mechanisms. As well, there is growing evidence that the partitioning of water-soluble organic gases to particle-phase liquid water and their subsequent condensed-phase reactions can form additional SOA to that formed by more traditional mechanisms. While previous studies have investigated the formation of isoprene SOA under a range of relative humidity (RH) conditions, the role of particle-phase liquid water in SOA formation remains unclear. The objective of this work is to investigate the effects of particle-phase liquid water on isoprene SOA yield. SOA was generated from the OH oxidation of isoprene at RH 75% in the presence of either effloresced (i.e. dry) or deliquesced (i.e. wet) ammonium sulfate (AS) particles. Results suggest that SOA yield is enhanced for wet AS seed particles. The effects of particle acidity on SOA formation will be presented as well. These experimental results demonstrate the importance of particle-phase liquid water on the uptake of volatile organic gases and their contributions to SOA formation.

  18. Percolation model with an additional source of disorder.

    PubMed

    Kundu, Sumanta; Manna, S S

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p. Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R_{1} and R_{2} of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R_{1}-R_{2} plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is p_{c}(sq), the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R∈{0,R_{0}} and a percolation transition is observed with R_{0} as the control variable, similar to the site occupation probability. PMID:27415234

  19. Percolation model with an additional source of disorder

    NASA Astrophysics Data System (ADS)

    Kundu, Sumanta; Manna, S. S.

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p . Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is pc(sq) , the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈{0 ,R0} and a percolation transition is observed with R0 as the control variable, similar to the site occupation probability.

  20. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  1. Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Sato, K.; Matsumi, Y.; Imamura, T.; Yamazaki, A.; Uchiyama, A.

    2012-06-01

    Recently, secondary organic aerosols (SOAs) generated from anthropogenic volatile organic compounds have been proposed as a possible source of lightabsorbing organic compounds "brown carbon" in the urban atmosphere. However, the atmospheric importance of these SOAs remains unclear due to limited information about their optical properties. In this study, the complex refractive index (RI, m=n - ki) values at 405, 532, and 781 nm of the SOAs generated during the photooxidation of toluene (toluene-SOAs) under a variety of initial nitrogen oxide (NOx= NO + NO2) conditions were examined by photoacoustic spectroscopy (PAS) and cavity ring down spectroscopy (CRDS). The complex RI values obtained in the present study and reported in the literature indicate that the k value, which represents the light absorption of the toluene-SOAs steeply increased to shorter wavelengths at <405 nm, while the n value gradually increased to shorter wavelengths from 781 to 355 nm. The k values at 405 nm were found to increase from 1.8 × 10-3 to 7.2 × 10-3 with increasing initial NOx concentration from 109 to 571 ppbv. The nitrate to organics ratio of the SOAs determined using a highresolution time-of-flight aerosol mass spectrometer (H-ToF-AMS) also increased with increasing initial NOx concentration. The RI values of the SOAs generated during the photooxidation of 1,3,5-trimethylbenzene in the presence of NOx (1,3,5-TMB-SOAs) were also determined to investigate the influence of the chemical structure of the precursor on the optical properties of the SOAs, and it was found that the light absorption of the 1,3,5-TMB-SOAs is negligible at all of the wavelengths investigated (405, 532, and 781 nm). These results can be reasonably explained by the hypothesis that nitro-aromatic compounds such as nitro-cresols are the major contributors to the light absorption of the toluene-SOAs. Using the obtained RI values, mass absorption cross sections of the toluene-SOAs at 405 and 532 nm were estimated to

  2. Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Sato, K.; Matsumi, Y.; Imamura, T.; Yamazaki, A.; Uchiyama, A.

    2013-01-01

    Recently, secondary organic aerosols (SOAs) generated from anthropogenic volatile organic compounds have been proposed as a possible source of light-absorbing organic compounds, "brown carbon," in the urban atmosphere. However, the atmospheric importance of these SOAs remains unclear due to limited information about their optical properties. In this study, the complex refractive index (RI, m = n-ki values at 405, 532, and 781 nm of the SOAs generated during the photooxidation of toluene (toluene-SOAs) under a variety of initial nitrogen oxide (NOx = NO + NO2) conditions were examined by photoacoustic spectroscopy (PAS) and cavity ring-down spectroscopy (CRDS). The complex RI-values obtained in the present study and reported in the literature indicate that the k-value, which represents the light absorption of the toluene-SOAs, increased to shorter wavelengths at <532 nm, and the n-value also increased to shorter wavelengths from 781 to 355 nm. The k-values at 405 nm were found to increase from 0.0018 to 0.0072 with increasing initial NOx concentration from 109 to 571 ppbv. The nitrate to organics ratio of the SOAs determined using a high-resolution time-of-flight aerosol mass spectrometer (H-ToF-AMS) also increased with increasing initial NOx concentration. The RI-values of the SOAs generated during the photooxidation of 1,3,5-trimethylbenzene in the presence of NOx (1,3,5-TMB-SOAs) were also determined to investigate the influence of the chemical structure of the precursor on the optical properties of the SOAs, and it was found that the light absorption of the 1,3,5-TMB-SOAs is negligible at all of the wavelengths investigated (405, 532, and 781 nm). These results can be reasonably explained by the hypothesis that nitroaromatic compounds, such as nitrocresols, are the major contributors to the light absorption of the toluene-SOAs. Using the obtained RI-values, mass absorption cross sections of the toluene-SOAs at 405 nm were estimated to be 0.08-0.52 m2g-1 under

  3. Characterization of Isoprene-Derived Secondary Organic Aerosol Formation at the Look Rock Site during the 2013 Southern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S.; Li, X.; Bairai, S. T.; Hicks, W.; Renfro, J.; Corrigan, A. L.; Guzman, J. M.; Russell, L. M.; Liu, Y.; McKinney, K. A.; Zhang, X.; Cappa, C. D.; Zimmermann, K.; Bertram, T. H.; Canagaratna, M. R.; Croteau, D.; Worsnop, D. R.; Jayne, J. T.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2013-12-01

    Although isoprene is considered as the single largest source of secondary organic aerosol (SOA), the exact manner in which it forms remains unclear. Improving our fundamental understanding of isoprene-derived SOA will be key to improving existing air quality models, especially in the southeastern U.S. where models currently underestimate observations. Reactive epoxides, which include methacrylic acid epoxide (MAE) and isomeric isoprene epoxydiols (IEPOX), produced from the oxidation of isoprene have recently been demonstrated to lead to SOA through heterogeneous chemistry. Anthropogenic pollutants (NOx and SO2) have been shown to enhance isoprene-derived epoxides as a source of SOA. One of the major aims during SOAS was to examine how anthropogenic pollutants impact isoprene SOA formation and its climate-relevant properties. To address this aim, we deployed both an Aerodyne aerosol chemical speciation monitor (ACSM) and a chemical ionization high-resolution time-of-flight mass spectrometer (CI-HR-TOFMS) at the Look Rock (LRK) site in the Great Smoky Mountains National Park, TN, from June 1 to July 15, 2013. In addition, high-volume PM2.5 samplers collected daily (8AM-7AM), day (8AM-7PM), and night (8PM-7AM) samples onto quartz filters. On days that LRK was forecasted to have high isoprene, SO4 (sulfate), and NOx levels, PM2.5 were collected more frequently (8AM-11AM, 12PM-3PM, 4PM-7PM, and 8PM-7AM). Filters were analyzed for known isoprene-derived SOA tracers (2-methyltetrols, 2-methylglyceric acid, C5-alkene triols, 3-methyltetrahydrofuran-3,4-diols, and organosulfates) by gas chromatography/mass spectrometry and ultra performance liquid chromatography coupled to diode array detection and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. The average non-refractory PM1 mass measured by the ACSM was 3.87 μg m-3, with organic, sulfate, ammonium, nitrate and chloride contributing 64.4%, 24.1%, 7.6%, 3.8%, and 0.1%, respectively

  4. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... Regional Offices. In addition, NRC Functional Organization Charts, NUREG-0325, contains...

  5. In situ Measurements of Gas- and Particle-Phase Organic Compounds: Insights for SOA Formation Mechanisms and Contributions of SOA to Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kreisberg, N. M.; Worton, D. R.; Isaacman, G. A.; Weber, R.; Liu, S.; Day, D. A.; Markovic, M. Z.; VandenBoer, T. C.; Russell, L. M.; Murphy, J. G.; Hering, S. V.; Goldstein, A. H.

    2011-12-01

    To investigate formation of secondary organic aerosol (SOA) and the contribution of SOA to organic aerosols, semi-volatile and intermediate-volatile organic compounds (SVOCs/IVOCs) in both gas and particle phases were measured using a modified Thermal Desorption Gas Chromatograph (TAG) instrument in Bakersfield, CA during the CALifornia at the NEXus between air quality and climate (CALNEX) campaign from 31 May through 27 June, 2010. More than 150 organic compounds were identified, spanning a wide range of volatility and functionality. Quantified compounds included organic tracers for primary and secondary organic sources, such as alkanes, PAHs, acids, hopanes and ketones. Hourly gas/particle partitioning was determined by a denuder difference method where the sample flow alternated every other sample through an active charcoal multi-channel denuder that efficiently removed gas-phase components. Gas/particle partitioning of three SOA tracers (phthalic acid, pinonaldehyde and 6, 10, 14-trimethyl-2-pentadecanone) was investigated to understand the formation mechanisms of SOA for different functional group classes in the ambient atmosphere. Comparison with Pankow gas/particle partitioning theory, observed particle-phase phthalic acid and pinonaldehyde, suggests formation by other mechanisms than gas-to-particle condensation. Source attribution is performed using Positive Matrix Factorization (PMF) analysis of speciated particle-phase TAG data along with total submicron organic aerosol (OA) measured by an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). SOA accounts for a major component of OA and the contribution of biogenic SOA to total SOA is comparable to anthropogenic SOA during nights.

  6. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  7. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  8. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  9. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  10. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Rubach, F.; Tillmann, R.; Wahner, A.; Wu, H.-C.; Mentel, Th. F.

    2013-03-01

    Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m-3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86-0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also

  11. Enhancing Trust in SOA Based Collaborative Environments

    NASA Astrophysics Data System (ADS)

    Boursas, Latifa; Bourimi, Mohamed; Hommel, Wolfgang; Kesdogan, Dogan

    Considering trust and privacy requirements for online and collaborative distance learning environments, this paper discusses potential extensions of SOA based applications to simultaneously support authentication and authorization services, and offering mutual trust to both learners and service providers. This study shows that the security mechanisms integrated in the SOA platform can be effectively extended and correlated with a trust model.

  12. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    NASA Astrophysics Data System (ADS)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  13. Aqueous SOA formation from radical oligomerization of methyl vinyl ketone (MVK) and methacrolein (MACR)

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clément, J.; Ervens, B.; Monod, A.

    2013-12-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25° C, under

  14. Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer

    NASA Astrophysics Data System (ADS)

    Lin, Jian; An, Junling; Qu, Yu; Chen, Yong; Li, Ying; Tang, Yujia; Wang, Feng; Xiang, Weiling

    2016-01-01

    Quantification of local and distant source contributions to particulate matter is a key issue to improving air quality in large urban areas, but few studies have focused on secondary organic aerosol (SOA) source contributions in a large area, especially in China. In this study, we extended the Comprehensive Air Quality Model with Extensions (CAMX) version 5.4, replacing the two-product approach by the volatility basis-set (VBS) approach, with updated SOA yields based on smog chamber studies. The modules related to the computationally efficient particulate source apportionment technology (PSAT) used in CAMX v5.4 were extended based on the volatility basis set (VBS) approach. The updated version of the CAMX model was then used to calculate the local and distant source contributions to SOA in Beijing for the first time. The results indicated that the VBS approach substantially improved hourly, daily, and monthly SOA simulations, compared with the two-product approach and the observations. In August 2007, the local source contributions to anthropogenic and biogenic SOA in Beijing were 23.8% and 16.6%, respectively; distant sources dominated for both anthropogenic and biogenic SOA in Beijing: Northern Hebei, Middle Hebei, Northeast China, Inner Mongolia, Shandong, and Tianjin (including Xianghe) contributed 5.1%-18.2% to anthropogenic SOA in Beijing; whereas, Inner Mongolia, Northern Hebei, and Northeast China contributed 12.2%, 18.6%, and 10.1%, respectively, to biogenic SOA in Beijing. Additionally, other areas outside China respectively contributed 5.3% and 10.8% to anthropogenic and biogenic SOA in Beijing: this could be related to strong summer monsoon.

  15. Multiphase, Multigeneration SOA Formation from Terpenes

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Zhang, J.; Tischuk, J. E.; Macsymiuk, C.

    2006-12-01

    Traditional representations of Secondary Organic Aerosol (SOA) formation typically focus on prompt products from the gas-phase reaction of a precursor with an oxidant. A well-studied example is that of terpenes, especially α-pinene, reacting with ozone. Typically, aerosol mass is measured as a function of the precursor consumed, and the mass fraction (yield) can be fit to an expression describing semi-volatile partitioning. Often an `Odum 2-product model' is used, with parameters fed directly into chemical transport models. Here we present chamber data for the reaction of ozone with limonene, which has 2 double bonds and thus 2 obvious generations of oxidation. We can represent the oxidation of limonene through two generations by using a volatility basis set, which describes the distribution of organic volatilities in the atmosphere over a range of 9 orders of magnitude. We represent the complete volatility distribution of oxidation products using the basis set, developing `volatility operators' for each step of the limonene oxidation. The conclusions are supported by data for ozonolysis of limonaketone as well as NMR analysis of SOA from limonene obtained in excess limonene vs excess ozone conditions. While ozone + terpene reactions make good laboratory models, a pressing question is how to constrain and represent multiple-generation oxidation of semivolatile vapors, which are mostly saturated. Given the enormous range of individual compounds comprising semivolatile organics, a condensed representation is essential. The volatility basis set and operators meet that need; we suggest preliminary gas-phase volatility operators for oxidation by OH radicals, depending on the O:C ratio of the organics. At low O:C, OH oxidation drives volatility downward, but as O:C approaches some limit (roughly 1), oxidation sharply increases volatility because the carbon backbone breaks, making light, volatile products. Operators are required for gas-phase, heterogeneous, and

  16. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    DOE PAGESBeta

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as amore » function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to  ∼  2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values

  17. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed

  18. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.

    2015-10-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed

  19. Present-day to 21st century projections of secondary organic aerosol (SOA) from a global climate-aerosol model with an explicit SOA formation scheme

    NASA Astrophysics Data System (ADS)

    Lin, G.; Penner, J. E.; Zhou, C.

    2014-12-01

    Secondary organic aerosol (SOA) has been shown to be an important component of non-refractory submicron aerosol in the atmosphere. The presence of SOA can influence the earth's radiative balance by contributing to the absorption and scattering of radiation and by altering the properties of clouds. Globally, a large fraction of SOA originates from biogenic volatile organic compounds (BVOCs), emissions of which depend on vegetation cover and climate. Temperature, CO2 concentration, and land use and land cover change have been shown to be major drivers of global isoprene emission changes in future climates. Additionally, the SOA concentration in the atmosphere not only depends on BVOC emissions, but is also controlled by anthropogenic emissions, temperature, precipitation and the oxidative capacity of the atmosphere. To project the change in SOA concentrations in the future requires a model that fully couples a BVOC emission model that represents these BVOC emission drivers, together with a sophisticated atmospheric model of SOA formation and properties. Recent studies have suggested that traditional parameterized SOA formation mechanisms that are tuned to fit smog chamber data do not fully account for the complexity and dynamics of real SOA system, calling into the question of the validity and completeness of previous SOA projections. In this study, we investigate the response of SOA mass to future physical climate change, to land cover and land use change, to changes in BVOCs emissions, and to changes in anthropogenic aerosol and gas species emissions for the year 2100, utilizing a global climate-aerosol model (CAM5-IMPACT): the NCAR Community Atmospheric Model (CAM5) coupled with a global aerosol model (IMPACT). The IMPACT model has sophisticated detailed process-based mechanisms describing aerosol microphysics and SOA formation through both gas phase and multiphase reactions. We perform sensitivity tests to isolate the relative roles of individual global change

  20. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, Alma; Kasibhatla, Prasad S.; Jo, Duseong S.; Cappa, Christopher D.; Jimenez, Jose L.; Madronich, Sasha; Park, Rokjin J.

    2016-06-01

    Recent laboratory studies suggest that secondary organic aerosol (SOA) formation rates are higher than assumed in current models. There is also evidence that SOA removal by dry and wet deposition occurs more efficiently than some current models suggest and that photolysis and heterogeneous oxidation may be important (but currently ignored) SOA sinks. Here, we have updated the global GEOS-Chem model to include this new information on formation (i.e., wall-corrected yields and emissions of semi-volatile and intermediate volatility organic compounds) and on removal processes (photolysis and heterogeneous oxidation). We compare simulated SOA from various model configurations against ground, aircraft and satellite measurements to assess the extent to which these improved representations of SOA formation and removal processes are consistent with observed characteristics of the SOA distribution. The updated model presents a more dynamic picture of the life cycle of atmospheric SOA, with production rates 3.9 times higher and sinks a factor of 3.6 more efficient than in the base model. In particular, the updated model predicts larger SOA concentrations in the boundary layer and lower concentrations in the upper troposphere, leading to better agreement with surface and aircraft measurements of organic aerosol compared to the base model. Our analysis thus suggests that the long-standing discrepancy in model predictions of the vertical SOA distribution can now be resolved, at least in part, by a stronger source and stronger sinks leading to a shorter lifetime. The predicted global SOA burden in the updated model is 0.88 Tg and the corresponding direct radiative effect at top of the atmosphere is -0.33 W m-2, which is comparable to recent model estimates constrained by observations. The updated model predicts a population-weighed global mean surface SOA concentration that is a factor of 2 higher than in the base model, suggesting the need for a reanalysis of the contribution of

  1. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Kasibhatla, P. S.; Jo, D. S.; Cappa, C.; Jimenez, J. L.; Madronich, S.; Park, R. J.

    2015-11-01

    Recent laboratory studies suggest that secondary organic aerosol (SOA) formation rates are higher than assumed in current models. There is also evidence that SOA removal by dry and wet deposition occurs more efficiently than some current models suggest, and that photolysis and heterogeneous oxidation may be important (but currently ignored) SOA sinks. Here, we have updated the global GEOS-Chem model to include this new information on formation (i.e. wall-corrected yields and emissions of semi-volatile and intermediate volatility organic compounds) and on removal processes (photolysis and heterogeneous oxidation). We compare simulated SOA from various model configurations against ground, aircraft and satellite measurements to assess the extent to which these improved representations of SOA formation and removal processes are consistent with observed characteristics of the SOA distribution. The updated model presents a more dynamic picture of the lifecycle of atmospheric SOA, with production rates 4 times higher and sinks a factor of 3.7 more efficient than in the base model. In particular, the updated model predicts larger SOA concentrations in the boundary layer and lower concentrations in the upper troposphere, leading to better agreement with surface and aircraft measurements of organic aerosol compared to the base model. Our analysis thus suggests that the long-standing discrepancy in model predictions of the vertical SOA distribution can now be resolved, at least in part, by a stronger source and stronger sinks leading to a shorter lifetime. The predicted global SOA burden in the updated model is 0.95 Tg and the corresponding direct radiative forcing at top of the atmosphere is -0.35 W m-2, which is comparable to recent model estimates constrained by observations. The updated model predicts a population-weighed global mean surface SOA concentration that is a factor of 2 higher than in the base model, suggesting the need for a reanalysis of the contribution of

  2. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-08-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (\\centerdot OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than \\centerdot OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  3. Symmetric 40-Gb/s TWDM-PON with 51-dB loss budget by using a single SOA as preamplifier, booster and format converter in ONU.

    PubMed

    Li, Zhengxuan; Yi, Lilin; Hu, Weisheng

    2014-10-01

    In this paper, we propose to use a semiconductor optical amplifier (SOA) in the optical network unit (ONU) to improve the loss budget in time and wavelength division multiplexed-passive optical network (TWDM-PON) systems. The SOA boosts the upstream signal to increase the output power of the electro-absorption modulated laser (EML) and simultaneously pre-amplifies the downstream signal for sensitivity improvement. The penalty caused by cross gain modulation (XGM) effect is negligible due to the low extinction ratio (ER) of upstream signal and the large wavelength difference between upstream and downstream links. In order to achieve a higher output power, the SOA is driven into its saturation region, where the self-phase modulation (SPM) effect converts the intensity into phase information and realizes on-off-keying (OOK) to phase-shifted-keying (PSK) format conversion. In this way, the pattern effect is eliminated, which releases the requirement of gain-clamping on SOA. To further improve the loss budget of upstream link, an Erbium doped fiber amplifier (EDFA) is used in the optical line terminal (OLT) to pre-amplify the received signal. For the downstream direction, directly modulated laser (DML) is used as the laser source. Taking advantage of its carrier-less characteristic, directly modulated signal shows high tolerance to fiber nonlinearity, which could support a downstream launch power as high as + 16 dBm per channel. In addition, the signal is pre-amplified by the SOA in ONU before being detected, so the sensitivity limitation for downstream link is also removed. As a result, a truly passive symmetric 40-Gb/s TWDM-PON was demonstrated, achieving a link loss budget of 51 dB. PMID:25322016

  4. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGESBeta

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified,more » including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  5. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    SciTech Connect

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; Anastasio, Cort N.; Laskin, Julia; Zhang, Qi

    2014-01-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), desorption electrospray ionization mass spectrometry (DESIMS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than •OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  6. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  7. 5 CFR 3601.103 - Additional exceptions for gifts from outside sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Additional exceptions for gifts from outside sources. 3601.103 Section 3601.103 Administrative Personnel DEPARTMENT OF DEFENSE SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE DEPARTMENT OF DEFENSE § 3601.103 Additional exceptions for gifts from outside sources. In addition...

  8. SOA Precursors: A Comparison of Semi-Volatile and Water Soluble Organic Gases During SOAS

    NASA Astrophysics Data System (ADS)

    Carlton, A. M. G.; Sareen, N.; Turpin, B. J.

    2014-12-01

    It is well-established that a major pathway for secondary organic aerosol (SOA) formation is via the partitioning of semi-volatile products of gas-phase photochemical reactions into preexisting organic particulate matter. Semi-volatile partitioning theory is widely used while modeling SOA. Despite its significance, parameterizations based solely on this formation pathway are unable to reproduce trends in SOA mass, particularly high atmospheric O/C ratios and enrichment of organic aerosol aloft. Recent studies have also highlighted the importance of formation of SOA through reactions of water-soluble organic gases (WSOG) in atmospheric waters (clouds, fogs, and wet aerosols). In order to understand the relative magnitude of potential precursors to SOA via both formation pathways, we modeled semi-volatile and WSOG concentrations during the Secondary Organic and Aerosol Study (SOAS) conducted in Brent, Alabama during June-July 2013. CMAQ 5.0.1 is used to predict mixing ratios of semi-volatile gases and WSOG over the continental US for a 10 day time period during SOAS. Our modeling results indicate that WSOG concentrations are an order of magnitude greater, on average, than the sum of semi-volatile gases. Interestingly, concentrations of semi-volatile gases increase aloft, unlike concentrations of WSOG. These results suggest that the potential for SOA formation from WSOG was high, and provide support for efforts to accurately model that multiphase chemistry in order to develop more effective air quality management strategies.

  9. Science Opportunity Analyzer (SOA) Version 8

    NASA Technical Reports Server (NTRS)

    Witoff, Robert J.; Polanskey, Carol A.; Aguinaldo, Anna Marie A.; Liu, Ning; Hofstadter, Mark D.

    2013-01-01

    SOA allows scientists to plan spacecraft observations. It facilitates the identification of geometrically interesting times in a spacecraft s orbit that a user can use to plan observations or instrument-driven spacecraft maneuvers. These observations can then be visualized multiple ways in both two- and three-dimensional views. When observations have been optimized within a spacecraft's flight rules, the resulting plans can be output for use by other JPL uplink tools. Now in its eighth major version, SOA improves on these capabilities in a modern and integrated fashion. SOA consists of five major functions: Opportunity Search, Visualization, Observation Design, Constraint Checking, and Data Output. Opportunity Search is a GUI-driven interface to existing search engines that can be used to identify times when a spacecraft is in a specific geometrical relationship with other bodies in the solar system. This function can be used for advanced mission planning as well as for making last-minute adjustments to mission sequences in response to trajectory modifications. Visualization is a key aspect of SOA. The user can view observation opportunities in either a 3D representation or as a 2D map projection. Observation Design allows the user to orient the spacecraft and visualize the projection of the instrument field of view for that orientation using the same views as Opportunity Search. Constraint Checking is provided to validate various geometrical and physical aspects of an observation design. The user has the ability to easily create custom rules or to use official project-generated flight rules. This capability may also allow scientists to easily assess the cost to science if flight rule changes occur. Data Output allows the user to compute ancillary data related to an observation or to a given position of the spacecraft along its trajectory. The data can be saved as a tab-delimited text file or viewed as a graph. SOA combines science planning functionality unique to

  10. soaPDB: a web application for searching the Protein Data Bank, organizing results, and receiving automatic email alerts.

    PubMed

    Lesburg, Charles A; Duca, José S

    2008-07-01

    soaPDB is a web application that allows generation and organization of saved PDB searches, and offers automatic email alerts. This tool is used from a web interface to store PDB searches and results in a backend relational database. Written using the Ruby on Rails open-source web framework, soaPDB is easy to deploy, maintain and customize. soaPDB is freely available upon request for local installation and is also available at http://soapdb.dyndns.org:3000. PMID:18487276

  11. Probing Molecular Associations of Field-Collected and Laboratory-Generated SOA with Nano-DESI High-Resolution Mass Spectrometry

    SciTech Connect

    O'Brien, Rachel E.; Nguyen, Tran B.; Laskin, Alexander; Laskin, Julia; Hayes, Patrick L.; Liu, Shang; Jimenez, Jose L.; Russell, Lynn M.; Nizkorodov, Sergey; Goldstein, Allen H.

    2013-01-30

    Aerosol samples from the 2010 CalNex field study in Bakersfield (BF) and Los Angeles (LA) were analyzed using positive mode nanospray-desorption electrospray ionization mass spectrometry (nano-DESI-MS). Secondary organic aerosol (SOA) produced in a photochemical chamber by photooxidation of diesel (DSL) fuel and isoprene (ISO) under humid, high-NOx conditions, was analyzed for comparison. Three groups of organic compounds with zero, one, or two nitrogen atoms in their molecular formulas (0N, 1N, 2N) were compared in detail. The composition of ambient SOA exhibited greater overlap with DSL than with ISO. The overlap of the chamber experiments with the BF data was relatively consistent throughout the day while the overlap with LA data increased significantly in the noon-6pm sample, consistent with the SOA plume arriving from downtown Los Angeles. BF samples were more oxidized, contained more organic nitrogen, and had more overlap with the chamber data compared to LA samples. The addition of gaseous ammonia (NH3) to the DSL experiment was necessary to generate many of the 2N compounds observed in BF. This analysis demonstrates that DSL and ISO were important sources but cannot account for all of the observed ambient compounds indicating that other sources of organics were also likely important.

  12. 36 CFR 1290.3 - Sources of assassination records and additional records and information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records and additional records and information. 1290.3 Section 1290.3 Parks, Forests, and Public Property... Sources of assassination records and additional records and information. Assassination records and additional records and information may be located at, or under the control of, without limitation:...

  13. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.

    PubMed

    Lee, Sang-Won; Song, Hyun-Woo; Jung, Moon-Youn; Kim, Seung-Hwan

    2011-10-24

    In this study, we demonstrated a wide tuning range wavelength-swept laser with a single semiconductor optical amplifier (SOA) at 1020 nm for ultrahigh resolution, Fourier-domain optical coherence tomography (UHR, FD-OCT). The wavelength-swept laser was constructed with an external line-cavity based on a Littman configuration. An optical wavelength selection filter consisted of a grating, a telescope, and a polygon scanner. Before constructing the optical wavelength selection filter, we observed that the optical power, the spectrum bandwidth, and the center wavelength of the SOA were affected by the temperature of the thermoelectric (TE) cooler in the SOA mount as well as the applied current. Therefore, to obtain a wide wavelength tuning range, we adjusted the temperature of the TE cooler in the SOA mount. When the temperature in the TE cooler was 9 °C, our swept source had a tuning range of 142 nm and a full-width at half-maximum (FWHM) of 121.5 nm at 18 kHz. The measured instantaneous spectral bandwidth (δλ) is 0.085 nm, which was measured by an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. This value corresponds to an imaging depth of 3.1 mm in air. Additionally, the averaged optical power of our swept source was 8.2 mW. In UHR, FD/SS-OCT using our swept laser, the measured axial resolution was 4.0 μm in air corresponding to 2.9 μm in tissue (n = 1.35). The sensitivity was measured to be 93.1 dB at a depth of 100 μm. Finally, we obtained retinal images (macular and optic disk) and a corneal image. PMID:22108975

  14. Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ambarish; Kawamura, Kimitaka; Ono, Kaori; Seki, Osamu; Fu, Pingqing; Matoba, Sumio; Shiraiwa, Takayuki

    2016-04-01

    Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with α-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C18:1) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with α-dicarbonyls and fatty acids (e.g., C18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere.

  15. Improving the representation of secondary organic aerosol (SOA) in the MOZART-4 global chemical transport model

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Barsanti, K. C.

    2012-12-01

    The secondary organic aerosol (SOA) module in the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) has been updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits, and by treating SOA formation from the following volatile organic compounds (VOCs): isoprene, propene and lumped alkenes. Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base-case and updated model versions. The base-case MOZART-4 predicted annual average SOA of 0.36 ± 0.50 μg m-3 in South America, 0.31 ± 0.38 μg m-3 in Indonesia, 0.09 ± 0.05 μg m-3 in the USA, and 0.12 ± 0.07 μg m-3 in Europe. Concentrations from the updated versions of the model showed a~marked increase in annual average SOA. Using the updated set of parameters alone (MZ4-v1) increased annual average SOA by ~8%, ~16%, ~56%, and ~108% from the base-case in South America, Indonesia, USA, and Europe, respectively. Treatment of additional parent VOCs (MZ4-v2) resulted in an even more dramatic increase of ~178-406% in annual average SOA for these regions over the base-case. The increases in predicted SOA concentrations further resulted in increases in corresponding SOA contributions to annual average total aerosol optical depth (AOD) by <1% for MZ4-v1 and ~1-6% for MZ4-v2. Estimated global SOA production was ~6.6 Tg yr-1 and ~19.1 Tg yr-1 with corresponding burdens of ~0.24 Tg and ~0.59 Tg using MZ4-v1 and MZ4-v2, respectively. The SOA budgets predicted in the current study fall well within reported ranges for similar modeling studies, 6.7 to 96 Tg yr-1, but are lower than recently reported observationally-constrained values, 50 to 380 Tg yr-1. With MZ4-v2, simulated SOA concentrations at the surface were also in reasonable agreement with comparable modeling studies and observations. Concentrations of estimated organic aerosol (OA

  16. Oligomerization as a potential mechanism for Secondary Organic Aerosol (SOA) formation in clouds

    NASA Astrophysics Data System (ADS)

    Yasmeen, F.; Sauret, N.; Claeys, M.; Maria, P. C.; Massi, L.

    2009-04-01

    Electrospray ionization - mass spectrometry (ESI-MS) has been used to investigate oligomer formation in dark chamber experiments designed to study the polymerization conditions of common atmospheric photooxidation products without photochemical action. Methylglyoxal has been selected as the monomer considering, it is a gas-phase product from the atmospheric oxidation of isoprene and terpenes (biogenic sources) as well as of aromatic compounds (anthropogenic sources). Aqueous-phase oligomer formation of methylglyoxal has been investigated in a simulated cloud matrix, under dark conditions in view of its short life time (~1.6 hrs). A mechanistic pathway for the growth of oligomers via aldol condensation under cloud conditions and in the absence of UV-light and the OH radical is proposed here for the first time. Soluble oligomers (n=1-12) formed in the course of acid-catalyzed aldol condensation have been detected and identified by positive and negative ion ESI-MS, while their relative abundance is estimated from the full-scan mass spectra. In particular, oligomer abundances and their adduct formation was considered with special emphasis on the structural elucidation of these oligomers and their corresponding adduct products. The oligomer series starts with a β-hydroxy ketone via aldol condensation and oligomers are formed by multiple addition of C3H4O2 units (72 Da) to the parent β-hydroxy ketone. MS2 ion trap experiments have been performed to structurally characterize the oligomers. Oligomers could form under conditions encountered in clouds even at micromolar concentrations and thus could significantly result in secondary organic aerosol (SOA) after cloud droplet evaporation. Therefore, it is proposed that oligomer formation does not only occur during droplet evaporation when the concentrations of products increase but could as well be an in-cloud process and substantially enhance in-cloud SOA yields.

  17. 5 CFR 3601.103 - Additional exceptions for gifts from outside sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gifts from outside sources. In addition to the gifts which come within the exceptions set forth in 5 CFR 2635.204, and subject to all provisions of 5 CFR 2635.201 through 2635.205, a DoD employee may accept gifts from outside sources otherwise prohibited by 5 CFR 2635.202(a) as follows: (a) Events sponsored...

  18. SOA Formation Potential of Emissions from Soil and Leaf Litter

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be

  19. SOAS: a free program to analyze electrochemical data and other one-dimensional signals.

    PubMed

    Fourmond, Vincent; Hoke, Kevin; Heering, Hendrik A; Baffert, Carole; Leroux, Fanny; Bertrand, Patrick; Léger, Christophe

    2009-09-01

    This paper describes an open source program called SOAS, which we developed with the aim of analysing one-dimensional signals. It offers a large set of commands for handling voltammetric and chronoamperometric data, including smoothing signals, differentiation, subtracting baselines, fitting current responses, measuring limiting currents, and searching for peak positions. Although emphasis is on the analysis of electrochemical signals, particularly protein film voltammetry data, SOAS may also prove useful for processing spectra. This free program is available by download from the Internet, and can be installed on computers running any flavor of Unix or Linux, most easily on MacOS X. PMID:19328046

  20. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3D model

    NASA Astrophysics Data System (ADS)

    Knote, C. J.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J. F.; Fast, J. D.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R. M.; Tyndall, G. S.; Washenfelder, R. A.; Waxman, E.; Zhang, Q.

    2013-12-01

    Formation of secondary organic aerosols (SOA) through multi-phase processing of glyoxal has been proposed recently as a relevant contributor to SOA mass. Glyoxal has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and aerosols. Both reversible and irreversible chemistry in the liquid-phase has been observed. A recent laboratory study indicates that the presence of salts in the liquid-phase strongly enhances the Henry';s law constant of glyoxal, allowing for much more effective multi-phase processing. In our work we investigate the contribution of glyoxal to SOA formation on the regional scale. We employ the regional chemistry transport model WRF-chem with MOZART gas-phase chemistry and MOSAIC aerosols, which we both extended to improve the description of glyoxal formation in the gas-phase, and its interactions with aerosols. The detailed description of aerosols in our setup allows us to compare very simple (uptake coefficient) parameterizations of SOA formation from glyoxal, as has been used in previous modeling studies, with much more detailed descriptions of the various pathways postulated based on laboratory studies. Measurements taken during the CARES and CalNex campaigns in California in summer 2010 allowed us to constrain the model, including the major direct precursors of glyoxal. Simulations at convection-permitting resolution over a 2 week period in June 2010 have been conducted to assess the effect of the different ways to parameterize SOA formation from glyoxal and investigate its regional variability. We find that depending on the parameterization used the contribution of glyoxal to SOA is between 1 and 15% in the LA basin during this period, and that simple parameterizations based on uptake coefficients derived from box model studies lead to higher contributions (15%) than parameterizations based on lab experiments (1%). A kinetic limitation found in experiments hinders substantial contribution

  1. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2014-06-01

    New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume

  2. Amines and Ammonia Measured in the Southeastern U.S. Forest during the 2013 SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.; You, Y.; Sierra-Hernández, M.; Baumann, K.; Fry, J.; Allen, H.; Draper, D. C.; Edgerton, E.

    2013-12-01

    Amines and ammonia play critical roles in new particle formation, via acid-base reactions at the initial stage of aerosol nucleation. Nitrogen base compounds are important for SOA formation, via formation of salts and condensation of amine photo-oxidation products; they also contribute to the formation of brown organic aerosols. Amines and ammonia can change the acidity and physical state of aerosols to further affect SOA yields. During the Southern Oxidant and Aerosol Study (SOAS) campaign in Centerville, Alabama from June 1 to July 15, 2013, amines and ammonia were simultaneously measured with a chemical ionization mass spectrometer (CIMS) by Kent State University [Yu and Lee, 2012: Environ. Chem. 9, 190-201]. The sensitivity of the CIMS was in the range of 5-10 Hz ion signals for 1 pptv of a base compound, which ultimately allows for the fast-time response detection (less than 1 minute) of ammonia and amines at the pptv level. Additionally, ammonia was also detected with another two independent methods, MARGA (Measuring AeRosols and Gases) by Reed College, and chemiluminescence by ARA. Ammonia concentrations measured by CIMS, MARGA and chemiluminescence were at the ppbv and sub-ppbv level. Over the 6 weeks of the SOAS field study, these three ammonia instruments consistently showed very similar time variations and agreed reasonably well. The CIMS also detected various C1 through C6 amines at the pptv and tens pptv level. Trimethylamine (C3 amine) and ammonia showed similar diurnal trends, temperature and wind direction dependences for most days, implying common natural emission sources of these two base compounds at this forest site. On the other hand, methylamine (C1) and dimethylamine (C2) were much lower than trimethylamine and they did not show clear diurnal variations and temperature dependences. During the brief episode of local biomass burning, concentrations of C3 through C6 amines and ammonia increased rapidly, while methylamine and dimethylamine were

  3. Impacts of aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK) on SOA formation: on the prevailing role of dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Renard, P.; Ervens, B.; Siekmann, F.; Vassalo, L.; Ravier, S.; Clement, J.; Monod, A.

    2012-12-01

    It is now recognized that the aqueous phase photochemistry of organic compounds in cloud droplets and deliquescent aerosol particles lead to the formation of oligomers and thus it might produce a substantial amount of atmospheric Secondary Organic Aerosol (SOA) with unique properties. However, the chemical mechanisms leading to these oligomers are still poorly understood, and consequently, their atmospheric impacts are difficult to assess. The goal of this study was to investigate the atmospheric impact of an aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK: one of the main reaction products of isoprene) on SOA formation. Aqueous phase photooxidation of MVK was investigated in a photoreactor using photolysis of H2O2 as OH radical generator. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature and highest MVK initial concentrations. A radical mechanism of polymerization is proposed to explain this oligomer formation. Furthermore, we quantified the total amount of carbon present in oligomers, and the initial radical branching ratios. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the multiphase system as compared to other aqueous phase as well as traditional SOA sources.

  4. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    DOE PAGESBeta

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-03-29

    efficiency for that model is estimated to be too low by about 7 ×. From source-apportioned model results, we found most of the CMAQ-VBS modeled POA at the Pasadena CalNex site was attributable to meat cooking emissions (48 %, consistent with a substantial fraction of cooking OA in the observations). This is compared to 18 % from gasoline vehicle emissions, 13 % from biomass burning (in the form of residential wood combustion), and 8 % from diesel vehicle emissions. All "other" inventoried emission sources (e.g., industrial, point, and area sources) comprised the final 13 %. The CMAQ-VBS semivolatile POA treatment underpredicted AMS hydrocarbon-like OA (HOA) + cooking-influenced OA (CIOA) at Pasadena by a factor of 1.8 compared to a factor of 1.4 overprediction of POA in CMAQ-AE6, but it did capture the AMS diurnal profile of HOA and CIOA well, with the exception of the midday peak. Overall, the CMAQ-VBS with its semivolatile treatment of POA, SOA from intermediate volatility organic compounds (IVOCs), and aging of SOA improves SOA model performance (though SOA formation efficiency is still 1.6–2 × too low). However, continued efforts are needed to better understand assumptions in the parameterization (e.g., SOA aging) and provide additional certainty to how best to apply existing emission inventories in a framework that treats POA as semivolatile, which currently degrades existing model performance at routine monitoring networks. Finally, the VBS and other approaches (e.g., AE6) require additional work to appropriately incorporate IVOC emissions and subsequent SOA formation.« less

  5. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    NASA Astrophysics Data System (ADS)

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-03-01

    estimated to be too low by about 7 × . From source-apportioned model results, we found most of the CMAQ-VBS modeled POA at the Pasadena CalNex site was attributable to meat cooking emissions (48 %, consistent with a substantial fraction of cooking OA in the observations). This is compared to 18 % from gasoline vehicle emissions, 13 % from biomass burning (in the form of residential wood combustion), and 8 % from diesel vehicle emissions. All "other" inventoried emission sources (e.g., industrial, point, and area sources) comprised the final 13 %. The CMAQ-VBS semivolatile POA treatment underpredicted AMS hydrocarbon-like OA (HOA) + cooking-influenced OA (CIOA) at Pasadena by a factor of 1.8 compared to a factor of 1.4 overprediction of POA in CMAQ-AE6, but it did capture the AMS diurnal profile of HOA and CIOA well, with the exception of the midday peak. Overall, the CMAQ-VBS with its semivolatile treatment of POA, SOA from intermediate volatility organic compounds (IVOCs), and aging of SOA improves SOA model performance (though SOA formation efficiency is still 1.6-2 × too low). However, continued efforts are needed to better understand assumptions in the parameterization (e.g., SOA aging) and provide additional certainty to how best to apply existing emission inventories in a framework that treats POA as semivolatile, which currently degrades existing model performance at routine monitoring networks. The VBS and other approaches (e.g., AE6) require additional work to appropriately incorporate IVOC emissions and subsequent SOA formation.

  6. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    DOE PAGESBeta

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-03-29

    efficiency for that model is estimated to be too low by about 7 × . From source-apportioned model results, we found most of the CMAQ-VBS modeled POA at the Pasadena CalNex site was attributable to meat cooking emissions (48 %, consistent with a substantial fraction of cooking OA in the observations). This is compared to 18 % from gasoline vehicle emissions, 13 % from biomass burning (in the form of residential wood combustion), and 8 % from diesel vehicle emissions. All "other" inventoried emission sources (e.g., industrial, point, and area sources) comprised the final 13 %. The CMAQ-VBS semivolatile POA treatment underpredicted AMS hydrocarbon-like OA (HOA) + cooking-influenced OA (CIOA) at Pasadena by a factor of 1.8 compared to a factor of 1.4 overprediction of POA in CMAQ-AE6, but it did capture the AMS diurnal profile of HOA and CIOA well, with the exception of the midday peak. Overall, the CMAQ-VBS with its semivolatile treatment of POA, SOA from intermediate volatility organic compounds (IVOCs), and aging of SOA improves SOA model performance (though SOA formation efficiency is still 1.6–2 ×  too low). However, continued efforts are needed to better understand assumptions in the parameterization (e.g., SOA aging) and provide additional certainty to how best to apply existing emission inventories in a framework that treats POA as semivolatile, which currently degrades existing model performance at routine monitoring networks. The VBS and other approaches (e.g., AE6) require additional work to appropriately incorporate IVOC emissions and subsequent SOA formation.« less

  7. Investigations of BVOC-SOA-cloud-climate feedbacks via interactive biogenic emissions using NorESM

    NASA Astrophysics Data System (ADS)

    Alterskjær, Kari; Egill Kristjansson, Jon; Grini, Alf; Iversen, Trond; Kirkevåg, Alf; Olivié, Dirk; Schulz, Michael; Seland, Øyvind

    2016-04-01

    Climate feedbacks represent a large source of uncertainty in future climate projections. One such feedback involves a change in emissions of biogenic volatile organic compounds (BVOCs) under global warming and a subsequent change in cloud radiative effects. Parts of the atmospheric BVOCs will oxidize in the atmosphere, which may reduce their volatility enough to form secondary organic aerosols (SOA). A changed SOA load will affect cloud radiative properties through aerosol-cloud interactions (ACI) and therefore act to reduce or enhance the temperature change resulting from greenhouse gases alone. In order to study this effect, a development version of the Norwegian Earth System Model (NorESM) has been extended to include explicit atmospheric particle nucleation and a treatment of SOA based on work by Risto Makkonen and collaborators. Biogenic sources of monoterpene and isoprene are interactively calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN), version 2.1, incorporated into the Community Land Model, version 4.5. Monoterpene and isoprene are oxidized by O3, OH and NO3 to form SOA with a yield of 15 % and 5 % respectively. It is assumed that 50 % of the product from monoterpene ozonolysis is of low enough volatility to nucleate new particles. The remaining oxidized BVOCs condensate onto preexisting particles. The model improvements include three new tracers to account for both SOA and the BVOCs. This allows for transport of both SOA and precursor gases, making it possible for SOA to form above the surface layer of the model. The new SOA treatment also changes the size distribution of most model aerosols due to condensation. Preliminary results from 6-year simulations with prescribed sea surface temperatures show that the present day emissions of both isoprene (435.9 Tg/yr) and monoterpenes (121.4 Tg/yr) are within the range found in other studies. The resulting SOA production is on the order of 77 Tg/yr, also within the range found by

  8. Aqueous Secondary Organic Aerosol (aqSOA) Formation By Radical Reactions: Model Studies Comparing the Role of OH Versus Organic Radicals

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Reed Harris, A.; Vaida, V.; Monod, A.

    2014-12-01

    Chemical reactions in the aqueous phase are thought to significantly contribute to ambient aerosol mass under specific conditions. Results from many laboratory studies suggest that these reactions are efficiently initiated by the OH radical and lead to high molecular weight compounds (oligomers). Recent laboratory experiments have shown that methyl vinyl ketone (MVK) can form oligomers in high yield in aqueous solutions similar to aerosol water. Additional experiments have shown that the direct photolysis of pyruvic acid can generate organic radicals that initiate similar oligomer products upon oxidation of MVK (Renard et al., submitted). Sources of the OH radical in the aerosol aqueous phase include the direct uptake from the gas phase, Fenton reactions and, to a smaller extent, direct photolyses of hydrogen peroxide and nitrate. Recent model studies imply that under many conditions, aqSOA formation might be oxidant-limited since these OH(aq) sources are not sufficient to provide a continuous OH supply. This limitation can be (partially) removed if additional radical sources in the multiphase system are considered. Exemplary, we include the direct photolysis of aqueous pyruvic acid as a proxy for possible other radical sources. Model results will be shown and consequences for aqSOA formation and processing under ambient conditions will be discussed.

  9. Recent progress on intensity and chirp compensation of EADFB laser realized by SOA integration

    NASA Astrophysics Data System (ADS)

    Kobayashi, W.; Fujiwara, N.; Hasebe, K.; Kanazawa, S.; Sanjoh, H.; Itoh, M.

    2016-04-01

    A novel approach is demonstrated for overcoming the trade-off relationship between the power consumption and transmission distance of an electro-absorption modulator integrated with a DFB laser (EADFB laser). We demonstrate that the monolithic integration of a short semiconductor optical amplifier (SOA) with an EADFB laser is effective in overcoming the limitation imposed by the Kramers-Kronig (K-K) relation of the EA modulator, which cannot be overcome with the conventional method of optimizing the MQW structure of the EA modulator. Our approach provides an EADFB laser with two advantages. One is that we can realize a higher optical output power with smaller power consumption than with a conventional EADFB laser by reducing the DFB laser injection current and allocating it to the SOA section. We design the SOA length based on this concept. The other advantage is the chirp compensation of the EA modulator with the SOA. To confirm the validity of this approach, we investigate the SOA length dependence on the basic characteristics. By using an EADFB laser integrated with a 50-μm-long SOA, we achieve a 2 dB increase in the modulated output power compared with a stand-alone EADFB laser with the same power consumption. We realize an extended transmission distance of 5 km at 40 Gbit/s, and a 1.55-μm-wavelength window, which is conventionally achieved for a 2-km SMF transmission with an EADFB laser. These results indicate that this approach is a promising way to realize a high-speed light source with low power consumption for future large capacity optical network systems.

  10. SOA approach to battle command: simulation interoperability

    NASA Astrophysics Data System (ADS)

    Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.

    2010-04-01

    NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.

  11. Application of Ion Mobility Mass Spectrometry for Detection and Identification of Oxidized Organic Species during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Canagaratna, M. R.; Krechmer, J.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results obtained with a chemical ionization ion mobility time-of-flight mass spectrometer (CI-IMS-TOF) that was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the Supersite in Centreville, AL. This two dimensional technique, which separates ions on the basis of their interactions with buffer gases before analysis by high-resolution time-of-flight mass spectrometry, allows for detailed separation and identification of isomeric and isobaric species. During SOAS the IMS-TOF was coupled to a chemical ionization source that utilized NO3- as the reagent ion. The NO3- reagent ion clusters with highly oxidized species and allows for a unique means of directly detecting particle phase precursors in the gas phase. Gas phase molecules corresponding to oxidized products of isoprene and terpenes were detected throughout the campaign with a time resolution of 5 minutes. Ion mobility separation and trends observed for several of these key species are discussed. In addition to ambient sampling, the CI-IMS-TOF was also operated behind a potential aerosol mass (PAM) flow reactor which exposed ambient air to high levels of OH radical. Ambient CI-IMS-TOF spectra obtained with and without the flow reactor are presented and compared with laboratory flow reactor spectra generated from isoprene and terpene precursors.

  12. Aqueous secondary organic aerosol (SOA) production from the oxidation of phenols by triplet excited state organics

    NASA Astrophysics Data System (ADS)

    Smith, J.; Yu, L.; Zhang, Q.; Anastasio, C.

    2011-12-01

    Recent literature has shown that atmospheric condensed-phase chemistry can play a significant role in the evolution of organic aerosols, including the formation of secondary organic aerosol (SOA). SOA formation from the oxidation of volatile organic compounds (VOCs) in the aqueous phase has largely focused on oxidations involving the hydroxyl radical and other oxidants, such as photochemically created triplet excited states, have not been fully investigated. Phenolic compounds are one of the primary carbon emission classes from biomass and wood combustion and have significant water solubility. Once in the aqueous phase, phenolic compounds can react with the triplet excited states of non-phenolic aromatic carbonyls (NPCs), particle-bound organics that are also emitted in large quantities from wood combustion. The oxidation of phenolic species in the condensed phase by triplet excited states can result in the production of SOA. A main goal of this study was to investigate bulk solution reaction kinetics under atmospherically relevant conditions in order to ascertain how these reactions can impact aqueous-phase SOA production. In our experiments, we studied the reactions of five phenols (phenol, guaiacol, syringol, catechol, and resorcinol) with the triplet state of 3,4-dimethoxybenzaldehyde (34-DMB) during simulated solar radiation. We have characterized the impacts of pH, ionic strength and reactant concentrations on the reaction behavior of this system. In addition, we analyzed the SOA formed using high-resolution aerosol mass spectrometry, ion chromatography, and liquid chromatography-mass spectrometry to infer the reaction mechanisms. Our evidence suggests that under atmospherically relevant conditions, triplet excited states can be the dominant oxidant of phenolics and contribute significantly to the total SOA budget.

  13. Measurements of in-situ SOA Formation Using an Oxidation Flow Reactor at GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; de Sá, S. S.; Campuzano Jost, P.; Day, D. A.; Hu, W.; Seco, R.; Park, J. H.; Guenther, A. B.; Kim, S.; Brito, J.; Wurm, F.; Artaxo, P.; Yee, L.; Isaacman-VanWertz, G. A.; Goldstein, A. H.; Souza, R. A. F. D.; Manzi, A. O.; Bustillos, J. O. V.; Tota, J.; Newburn, M. K.; Alexander, M. L. L.; Martin, S. T.; Brune, W. H.; Jimenez, J. L.

    2015-12-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in-situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). Oxidation of ambient air in the OFR led to significant and dynamic SOA formation. In general, more SOA was produced during the nighttime than daytime, and more in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 µg/m3 to greater than 10 µg/m3. O3 oxidation of ambient air also led to SOA formation, although much less than from OH oxidation. Preliminary PMF factor analysis showed that the less-oxidized OOA (LO-OOA) factor was produced at up to several days OH aging, while at longer ages the more-oxidized OOA (MO-OOA) factor was formed and LO-OOA was depleted. HOA, BBOA, and IEPOX-SOA factors were not formed in the reactor, just depleted at high ages (though at different rates). More detailed PMF results will be presented. Variations in the amount of SOA formation often, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR was ~10x larger than could be explained by aerosol yields of measured primary VOCs, suggesting that most SOA was formed from intermediate sources such as S/IVOCs (e.g., VOC oxidation products or evaporated POA), consistent with previous OFR field and lab studies. To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields were similar to published chamber yields.

  14. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  15. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  16. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    the scooter, respectively. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.

  17. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2013-10-01

    New pathways to form secondary organic aerosols (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and deliquesced aerosols where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include a detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aqueous-phase of aerosols. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. In all simulations the LA basin was found to be the hotspot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a simple uptake coefficient, as frequently employed in global modeling studies, leads to higher SOA contributions from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to be the main contributor to SOA mass compared to a volume process and reversible formation. We find that contribution of the latter is limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A kinetic limitation in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute >20% of glyoxal SOA mass, and the total mass formed (5.8% of total SOA in the LA

  18. HUMAN HEALTH DAMAGES FROM MOBILE SOURCE AIR POLLUTION: ADDITIONAL DELPHI DATA ANALYSIS. VOLUME II

    EPA Science Inventory

    The report contains the results of additional analyses of the data generated by a panel of medical experts for a study of Human Health Damages from Mobile Source Air Pollution (hereafter referred to as HHD) conducted by the California Air Resources Board in 1973-75 for the U.S. E...

  19. 5 CFR 3601.103 - Additional exceptions for gifts from outside sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sponsor in accordance with 5 CFR 2635.204(g)(5); and (3) The gift of free attendance meets the definition... gifts from outside sources. In addition to the gifts which come within the exceptions set forth in 5 CFR 2635.204, and subject to all provisions of 5 CFR 2635.201 through 2635.205, a DoD employee may...

  20. RAINFALL AND RUNOFF AS A SOURCE OF ORGANIC CARBON ADDITIONS TO BAYOU TEXAR, FLORIDA

    EPA Science Inventory

    Rainfall and Runoff as a Source of Organic Carbon Additions to Bayou Texar, Florida (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ERL,GB R852).

    T...

  1. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source.

    PubMed

    Yoshida, F; Yamamoto, T; Nakai, K; Zaboronok, A; Matsumura, A

    2015-12-01

    Because of its fast metabolism gadolinium as a commercial drug was not considered to be suitable for neutron capture therapy. We studied additive effect of gadolinium and boron co-administration using colony forming assay. As a result, the survival of tumor cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. Using gadolinium to increase the effect of BNCT instead of additional X-ray irradiation might be beneficial, as such combination complies with the short-time irradiation regimen at the accelerator-based neutron source. PMID:26242560

  2. Effects of additional HONO sources on visibility over the North China Plain

    NASA Astrophysics Data System (ADS)

    Li, Ying; An, Junling; Gultepe, Ismail

    2014-09-01

    The objective of the present study was to better understand the impacts of the additional sources of nitrous acid (HONO) on visibility, which is an aspect not considered in current air quality models. Simulations of HONO contributions to visibility over the North China Plain (NCP) during August 2007 using the fully coupled Weather Research and Forecasting/Chemistry (WRF/Chem) model were performed, including three additional HONO sources: (1) the reaction of photo-excited nitrogen dioxide (NO * 2) with water vapor; (2) the NO2 heterogeneous reaction on aerosol surfaces; and (3) HONO emissions. The model generally reproduced the spatial patterns and diurnal variations of visibility over the NCP well. When the additional HONO sources were included in the simulations, the visibility was occasionally decreased by 20%-30% (3-4 km) in local urban areas of the NCP. Monthly-mean concentrations of NO{3/-}, NH{4/+}, SO{4/2-} and PM2.5 were increased by 20%-52% (3-11 μg m-3), 10%-38%, 6%-10%, and 6%-11% (9-17 μg m-3), respectively; and in urban areas, monthly-mean accumulationmode number concentrations (AMNC) and surface concentrations of aerosols were enhanced by 15%-20% and 10%-20%, respectively. Overall, the results suggest that increases in concentrations of PM2.5, its hydrophilic components, and AMNC, are key factors for visibility degradation. A proposed conceptual model for the impacts of additional HONO sources on visibility also suggests that visibility estimation should consider the heterogeneous reaction on aerosol surfaces and the enhanced atmospheric oxidation capacity due to additional HONO sources, especially in areas with high mass concentrations of NO x and aerosols.

  3. Research and design of logistical information system based on SOA

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    2013-03-01

    Through the study on the existing logistics information systems and SOA technology, based on the current situation of enterprise logistics management and business features, this paper puts forward a SOA-based logistics system design program. This program is made in the WCF framework, with the combination of SOA and the actual characteristics of logistics enterprises, is simple to realize, easy to operate, and has strong expansion characteristic, therefore has high practical value.

  4. Services oriented architecture (SOA)-based persistent ISR simulation system

    NASA Astrophysics Data System (ADS)

    Chen, Genshe; Blasch, Erik; Shen, Dan; Chen, Huimin; Pham, Khanh

    2010-04-01

    In the modern networked battlefield, network centric warfare (NCW) scenarios need to interoperate between shared resources and data assets such as sensors, UAVs, satellites, ground vehicles, and command and control (C2/C4I) systems. By linking and fusing platform routing information, sensor exploitation results, and databases (e.g. Geospatial Information Systems [GIS]), the shared situation awareness and mission effectiveness will be improved. Within the information fusion community, various research efforts are looking at open standard approaches to composing the heterogeneous network components under one framework for future modeling and simulation applications. By utilizing the open source services oriented architecture (SOA) based sensor web services, and GIS visualization services, we propose a framework that ensures the fast prototyping of intelligence, surveillance, and reconnaissance (ISR) system simulations to determine an asset mix for a desired mission effectiveness, performance modeling for sensor management and prediction, and user testing of various scenarios.

  5. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-04-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making it the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from

  6. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore » the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA

  7. Secondary organic aerosol (SOA) derived from isoprene epoxydiols: Insights into formation, aging and distribution over the continental US from the DC3 and SEAC4RS campaigns

    NASA Astrophysics Data System (ADS)

    Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Hu, W.; Ortega, A. M.; Jimenez, J. L.; Liao, J.; Froyd, K. D.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; St Clair, J. M.; Crounse, J.; Wennberg, P. O.; Mikoviny, T.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.

    2014-12-01

    Isoprene-derived SOA formation has been studied extensively in the laboratory. However, it is still unclear to what extent isoprene contributes to the overall SOA burden over the southeastern US, an area with both strong isoprene emissions as well as large discrepancies between modeled and observed aerosol optical depth. For the low-NO isoprene oxidation pathway, the key gas-phase intermediate is believed to be isoprene epoxide (IEPOX), which can be incorporated into the aerosol phase by either sulfate ester formation (IEPOX sulfate) or direct hydrolysis. As first suggested by Robinson et al, the SOA formed by this mechanism (IEPOX-SOA) has a characteristic fragmentation pattern when analyzed by an Aerodyne Aerosol Mass Spectrometer (AMS) with enhanced relative abundances of the C5H6O+ ion (fC5H6O). Based on data from previous ground campaigns and chamber studies, we have developed a empirical method to quantify IEPOX-SOA and have applied it to the data from the DC3 and SEAC4RS aircraft campaigns that sampled the SE US during the Spring of 2012 and the Summer of 2013. We used Positive Matrix Factorization (PMF) to extract IEPOX-SOA factors that show good correlation with inside or downwind of high isoprene emitting areas and in general agree well with the IEPOX-SOA mass predicted by the empirical expression. According to this analysis, the empirical method performs well regardless of (at times very strong) BBOA or urban OA influences. On average 17% of SOA in the SE US boundary layer was IEPOX-SOA. Overall, the highest concentrations of IEPOX-SOA were typically found around 1-2 km AGL, several hours downwind of the isoprene source areas with high gas-phase IEPOX present. IEPOX-SOA was also detected up to altitudes of 6 km, with a clear trend towards more aged aerosol at altitude, likely a combination of chemical aging and physical airmass mixing. The unique instrument package aboard the NASA-DC8 allows us to examine the influence of multiple factors (aerosol

  8. SOA Aging and Oligomer Content and their Effect on the Volatility and Viscosity of SOA Particles Generated from Different Precursors

    NASA Astrophysics Data System (ADS)

    Wilson, J. M.; Zelenyuk, A.; Imre, D. G.; Beranek, J.

    2013-12-01

    Formation, properties, transformations and temporal evolution of secondary organic aerosol (SOA) particles strongly depend on particle phase and volatility. Our recent studies indicate that laboratory-generated alpha-pinene SOA particles are highly viscous semi-solids with viscosity characteristic of tars, and their evaporation rates are orders of magnitude slower than previously assumed. This is not surprising given that numerous studies provide evidence that SOA particles contain significant amounts of high molecular weight organic compounds (oligomers), which affect SOA phase and volatility. It is well known that oligomers can severely retard diffusion, mixing, and thus evaporation of smaller molecules. One of the most intriguing findings is that SOA fractional evaporation rates are nearly size independent. We begin by presenting our results of evaporation studies of particles composed of hexaethylene glycol (HEG), polyethylene glycols (PEGs) of different polymer chain length, and their mixtures. The data indicate that HEG particles exhibit the size-dependent evaporation expected for liquid droplets, while particles containing polymers with different chain lengths exhibit size-independent evaporation kinetics similar to those of SOA. We will then present the results of evaporation studies of SOA particles generated by oxidation of several different precursors, including alpha-pinene, isoprene, limonene, n-alkenes and cyclo-alkenes, from which we explore the relationship between SOA oligomer content and SOA volatility and viscosity. We, and others, also find that oligomer content in SOA increases with time, and with it we expect corresponding changes in viscosity and volatility. We will present the results of studies aimed at characterizing evaporation kinetics and the viscosity of SOA particles as a function of particle age. We will also present our findings on the effect of hydrophobic organics on SOA oligomer content, its volatility and viscosity.

  9. Addition Laws for Intensities of Radiation Emerging from Scattering Atmospheres Containing Energy Sources

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.; Kapanadze, N. G.

    2016-03-01

    A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.

  10. Observation Planning Made Simple with Science Opportunity Analyzer (SOA)

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.

    2004-01-01

    As NASA undertakes the exploration of the Moon and Mars as well as the rest of the Solar System while continuing to investigate Earth's oceans, winds, atmosphere, weather, etc., the ever-existing need to allow operations users to easily define their observations increases. Operation teams need to be able to determine the best time to perform an observation, as well as its duration and other parameters such as the observation target. In addition, operations teams need to be able to check the observation for validity against objectives and intent as well as spacecraft constraints such as turn rates and acceleration or pointing exclusion zones. Science Opportunity Analyzer (SOA), in development for the last six years, is a multi-mission toolset that has been built to meet those needs. The operations team can follow six simple steps and define his/her observation without having to know the complexities of orbital mechanics, coordinate transformations, or the spacecraft itself.

  11. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.

  12. Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation

    NASA Astrophysics Data System (ADS)

    Ait-Helal, W.; Borbon, A.; Sauvage, S.; de Gouw, J. A.; Colomb, A.; Gros, V.; Freutel, F.; Crippa, M.; Afif, C.; Baltensperger, U.; Beekmann, M.; Doussin, J.-F.; Durand-Jolibois, R.; Fronval, I.; Grand, N.; Leonardis, T.; Lopez, M.; Michoud, V.; Miet, K.; Perrier, S.; Prévôt, A. S. H.; Schneider, J.; Siour, G.; Zapf, P.; Locoge, N.

    2014-10-01

    Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January-February 2010, at the SIRTA observatory in suburban Paris. Measurements comprise primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scale, and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and suburban Paris were surprisingly low (2-963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and suburban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (< 5 ppt) compared to summer (13-27 ppt), which cannot be explained by the gas-particle partitioning theory. Higher concentrations of most oxygenated VOCs in winter (18-5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an integrated approach based on emission ratios and SOA yields, 38 % of the SOA measured at SIRTA is explained by the measured concentrations of I / VOCs, with a 2% contribution by C12-C16 n-alkane IVOCs. From the results of an alternative time-resolved approach, the average IVOC contribution to SOA formation is estimated to be 7%, which is half of the average contribution of the traditional aromatic compounds (15%). Both

  13. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.

    2015-10-01

    Volatile organic compound (VOC) species from vehicle exhausts and gas evaporation were investigated by chassis dynamometer and on-road measurements of nine gasoline vehicles, seven diesel vehicles, five motorcycles, and four gas evaporation samples. The secondary organic aerosol (SOA) mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were estimated based on the mixing ratio of measured C2-C12 VOC species and inferred carbon number distributions. High aromatic contents were measured in gasoline exhausts and contributed comparatively more SOA yield. A vehicular emission inventory was compiled based on a local survey of on-road traffic in Shanghai and real-world measurements of vehicle emission factors from previous studies in the cities of China. The inventory-based vehicular organic aerosol (OA) productions to total CO emissions were compared with the observed OA to CO concentrations (ΔOA / ΔCO) in the urban atmosphere. The results indicate that vehicles dominate the primary organic aerosol (POA) emissions and OA production, which contributed about 40 and 60 % of OA mass in the urban atmosphere of Shanghai. Diesel vehicles, which accounted for less than 20 % of vehicle kilometers of travel (VKT), contribute more than 90 % of vehicular POA emissions and 80-90 % of OA mass derived by vehicles in urban Shanghai. Gasoline exhaust could be an important source of SOA formation. Tightening the limit of aromatic content in gasoline fuel will be helpful to reduce its SOA contribution. Intermediate-volatile organic compounds (IVOCs) in vehicle exhausts greatly contribute to SOA formation in the urban atmosphere of China. However, more experiments need to be conducted to determine the contributions of IVOCs to OA pollution in China.

  14. SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Li; Kacarab, Mary; Tang, Ping; Cocker, David R.

    2016-04-01

    The SOA yield and chemical characteristics of SOA formation from naphthalene and two methyl substituted naphthalenes, 1-methylnaphthalene and 2-methylnaphthalene, were studied for high NOx, low NOx, and ultra-low NOx conditions. The SOA yields are high compared to previous studies for all three PAHs precursors: 1-methylnaphthalene > 2-methylnaphthalene ∼ naphthalene for all atmospheric conditions studied. The SOA yields range from 0.03 to 0.60 for naphthalene, 0.21-1.52 for 1-methylnaphthalene, and 0.34-0.55 for 2-methylnaphthalene under high NOx with HONO (initial PAH:NO ratio = 0.03-0.17) conditions. The SOA yield ranges from 0.04 to 0.31 for naphthalene, 0.14-0.72 for 1-methylnaphthalene, and 0.06-0.49 for 2-methylnaphthalene under low NOx (initial PAH:NO ratio = 0.54-2.20) conditions. SOA yields were substantially greater than 1.0 under H2O2 (ultra low NOx) and low NOx + H2O2 conditions for all three PAH precursors. The system reactivity influenced by OH radicals, NOx levels, initial PAH/NO ratios, NO2/NO ratios, and all impacted the SOA formation from the PAH precursors. Fractal-like SOA is observed for the methylnaphthalene isomers during high NOx photooxidation experiments, implying that researchers studying SOA formation from this precursor must carefully account for particle shape or effective density. A m/z 104 (C7H4O+,104.026) peak, consistent with SOA products phthalic acid from earlier studies, was observed as a potential marker of PAH oxidation during HR-ToF-AMS analysis.

  15. Characterization of ambient aerosols during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL with a high-resolution time-of-flight aerosol mass spectrometer Basak Karakurt Cevik1, Yu Jun Leong1, Carlos Hernandez1, Robert Griffin1 1 Rice University, CEE Department, 6100 Main St., Houston, TX 77005, USA

    NASA Astrophysics Data System (ADS)

    Karakurt Cevik, B.; Leong, Y.; Hernandez, C.; Griffin, R. J.

    2013-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a Brechtel Manufacturing, Inc. particle-into-liquid sampler (PILS) were deployed at a rural location in Centreville, AL, from 1 June to 15 July 2013 as a part of the Southern Oxidant and Aerosol Study (SOAS). PILS samples were analyzed with Dionex ion chromatographs. The data will allow us to characterize the temporal characteristics of the concentrations and size distributions of non-refractory (NR) chemical species in the ambient submicron particles. Preliminary analysis of the data indicates that the sub-micron particulate matter is highly dominated by organic matter with a relatively high state of oxidation and it is followed by smaller contributions from sulfate and ammonium. In order to investigate the processes and sources that lead to observed aerosol concentrations at the site, the time series will be analyzed in conjunction with additional trace gas, aerosol, and meteorological measurements. The region is known to have high biogenic volatile organic compounds (VOCs) emissions and many of these biogenic VOCs (BVOCs) are important secondary organic aerosol (SOA) precursors. Preliminary data from the HR-ToF-AMS indicates the importance of oxidized organic aerosol during SOAS. The study will also focus on the importance of the SOA in the total organic fraction and the effect of atmospheric processing on the chemical composition of the organic fraction.

  16. SOA approach for integration of departmental systems.

    PubMed

    Itälä, Timo; Ukkola, Jari; Virtanen, Aino; Mykkänen, Juha

    2008-01-01

    In this paper a unified method for integration of departmental systems into the main systems of a healthcare organization is described. The approach is based on combining Business Process Modeling (BPM) and Service Oriented Architecture (SOA) methods and technologies. A top-down approach is used for modeling the care process and supporting care services which in turn are decomposed down to such a level of granularity that they can be described and implemented as web services described with Web Services Description Language (WSDL) documents. Then a bottom-up approach is used for wrapping the existing departmental systems and their interfaces into web services using Enterprise Service Bus (ESB). Finally the orchestration of the services is described using executable Business Process Execution Language (BPEL) code. PMID:18487817

  17. VOC characteristics, emissions and contributions to SOA formation during hazy episodes

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Wu, Fangkun; Hu, Bo; Tang, Guiqian; Zhang, Junke; Wang, Yuesi

    2016-09-01

    Volatile organic compounds (VOC) are important precursors of secondary organic aerosols (SOA). The pollution processes in Beijing were investigated from 18th October to 6th November 2013 to study the characteristics, SOA formation potential and contributing factors of VOC during hazy episodes. The mean concentrations of VOC were 67.4 ± 33.3 μg m-3 on clear days and have 5-7-fold increase in polluted periods. VOC concentrations rapidly increased at a visibility range of 4-5 km with the rate of 25%/km in alkanes, alkenes and halocarbons and the rate of 45%/km in aromatics. Analysis of the mixing layer height (MLH); wind speed and ratios of benzene/toluene (B/T), ethylbenzene/m,p-xylene (E/X), and isopentane/n-pentane (i/n) under different visibility conditions revealed that the MLH and wind speed were the 2 major factors affecting the variability of VOC during clear days and that local emissions and photochemical reactions were main causes of VOC variation on polluted days. Combined with the fractional aerosol coefficient (FAC) method, the SOA formation potentials of alkanes, alkenes and aromatics were 0.3 ± 0.2 μg m-3, 1.1 ± 1.0 μg m-3 and 6.5 ± 6.4 μg m-3, respectively. As the visibility deteriorated, the SOA formation potential increased from 2.1 μg m-3 to 13.2 μg m-3, and the fraction of SOA-forming aromatics rapidly increased from 56.3% to 90.1%. Initial sources were resolved by a positive matrix factorization (PMF) model. Vehicle-related emissions were an important source of VOC at all visibility ranges, accounting for 23%-32%. As visibility declined, emissions from solvents and the chemical industry increased from 13.2% and 6.3% to 34.2% and 23.0%, respectively. Solvents had the greatest SOA formation ability, accounting for 52.5% on average on hazy days, followed by vehicle-related emissions (20.7%).

  18. Modeling SOA production from the oxidation of intermediate volatility alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-12-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.

  19. SOA Formation from Photooxidation of Individual PAHs and Mixtures

    NASA Astrophysics Data System (ADS)

    Chen, C. L.; Kacarab, M.; Tang, P.; Cocker, D. R., III

    2014-12-01

    Individual SOA experiments on PAHs such as naphthalene and methylnaphthalenes were conducted at the UCR CE-CERT environmental chamber. Measurements were made with a suite of instrumentation that includes HR-ToF-AMS, VTDMA, and APM-SMPS to comprehensively understand the chemical composition characteristics, volatility and density of particles. Our results indicated that the SOA yield from PAHs is large and the elemental and chemical composition analysis of HR-ToF-AMS revealed that oxygen-to-carbon ratio (O/C) increases with oxidation time and also suggested that the SOA from these three PAHs are mostly low volatility OOA. The density of aerosol formed from 1-methylnaphthalene photooxidation under high NOx condition was observed to decrease from 1.5 g/cm3 to 0.7 g/cm3 during the course of experiment. Transmission electron microscopy (TEM) of 1-methylnaphthalene SOA showed that the SOA coagulated after 5~6 hours photooxidation to form fractal-like particles. The sensitivity of SOA formation to varying HC mixtures is further explored. Serial mixtures of PAHs photooxidation experiments were conducted, including naphthalene, 1-methylnapthalene, 2-methylnaphtalene with m-xylene, and/or the surrogate mixture used to develop the Carter O3 reactivity scales. Preliminary results show that the SOA formation from m-xylene and naphthalene mixture photooxidation was found to be suppressed by m-xylene, and the volatility measured as volume remaining fraction (VRF) of the m-xylene and naphthalene mixture increases from 0.2 to 0.4, which indicates the volatility of mixture SOA is dominated by m-xylene SOA.

  20. Scientific Workflows Composition and Deployment on SOA Frameworks

    SciTech Connect

    Liu, Yan; Gorton, Ian; Wynne, Adam S.; Kulkarni, Anand V.

    2011-12-12

    Scientific workflows normally consist of multiple applications acquiring and transforming data, running data intensive analyses and visualizing the results for scientific discovery. To compose and deploy such scientific workflows, an SOA platform can provide integration of third-party components, services, and tools. In this paper, we present our application of Service-Oriented Architecture (SOA) to compose and deploy systems biology workflows. In developing this application, our solution uses MeDICi a middleware framework built on SOA platforms as an integration layer. We discuss our experience and lessons learnt about this solution that are generally applicable to scientific workflows in other domains.

  1. Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Morgan, W. T.; Darbyshire, E.; Flynn, M. J.; Williams, P. I.; Oram, D. E.; Artaxo, P.; Brito, J.; Lee, J. D.; Coe, H.

    2014-10-01

    Isoprene is a potentially highly significant but currently poorly quantified source of secondary organic aerosols (SOA). This is especially important in the tropics, where large rainforests act as significant sources of isoprene. Methylfuran, produced through thermal decomposition during analysis, has recently been suggested as a marker for isoprene SOA formation through the isoprene epoxydiol (IEPOX) route, which mostly occurs under low NOx conditions. This is manifested as a peak at m/z=82 in Aerodyne Aerosol Mass Spectrometer (AMS) data. Here we present a study of this marker measured during five flights over the Amazon rainforest on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft during the South American Biomass Burning Analysis (SAMBBA) campaign. Cases where this marker is and is not present are contrasted and linked to the presence of acidic seed particles, lower NOx concentrations and higher humidities. There are also data to suggest a role of organic nitrogen in the particulate composition. Furthermore, an inspection of the vertical trends of the marker indicates that concentrations are highest at the top of the boundary layer (possibly due to semivolatile repartitioning) and that upwards through the free troposphere, the mass spectral profile evolves towards that of low volatility oxygenated aerosol. These observations offer insights into the behaviour of IEPOX-derived SOA formation above the Amazon rainforest and the suitability of methylfuran as a marker for this process.

  2. Microspectroscopic Analysis of Anthropogenic- and Biogenic-Influenced Aerosol Particles during the SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Bondy, A. L.; Nhliziyo, M. V.; Bertman, S. B.; Pratt, K.; Shepson, P. B.

    2013-12-01

    During the summer, the southeastern United States experiences a cooling haze due to the interaction of anthropogenic and biogenic aerosol sources. An objective of the summer 2013 Southern Oxidant and Aerosol Study (SOAS) was to improve our understanding of how trace gases and aerosols are contributing to this relative cooling through light scattering and absorption. To improve understanding of biogenic-anthropogenic interactions through secondary organic aerosol (SOA) formation on primary aerosol cores requires detailed physicochemical characterization of the particles after uptake and processing. Our measurements focus on single particle analysis of aerosols in the accumulation mode (300-1000 nm) collected using a multi orifice uniform deposition impactor (MOUDI) at the Centreville, Alabama SEARCH site. Particles were characterized using an array of microscopic and spectroscopic techniques, including: scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and Raman microspectroscopy. These analyses provide detailed information on particle size, morphology, elemental composition, and functional groups. This information is combined with mapping capabilities to explore individual particle spatial patterns and how that impacts structural characteristics. The improved understanding will be used to explore how sources and processing (such as SOA coating of soot) change particle structure (i.e. core shell) and how the altered optical properties impact air quality/climate effects on a regional scale.

  3. A study of the effects of an additional sound source on RASS performance

    SciTech Connect

    Coulter, R.L.

    1998-12-31

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurements (ARM) Program continuously operates a nine panel 915 MHz wind profiler with Radio Acoustic Sounding System (RASS), measuring wind profiles for 50 minutes and virtual temperature profiles for the remaining 10 minutes during each hour. It is well recognized that one of the principal limits on RASS performance is high horizontal wind speed that moves the acoustic wave front sufficiently to prevent the microwave energy produced by the radar and scattered from the acoustic wave from being reflected back t the radar antenna. With this limitation in mind, the ARM program purchased an additional, portable acoustic source that could be mounted on a small trailer and placed in strategic locations to enhance the RASS performance (when it was not being used for spare parts). A test of the resulting improvement in RASS performance was performed during the period 1995--1997.

  4. Styrofoam Debris as a Source of Hazardous Additives for Marine Organisms.

    PubMed

    Jang, Mi; Shim, Won Joon; Han, Gi Myung; Rani, Manviri; Song, Young Kyoung; Hong, Sang Hee

    2016-05-17

    There is growing concern over plastic debris and their fragments as a carrier for hazardous substances in marine ecosystem. The present study was conducted to provide field evidence for the transfer of plastic-associated chemicals to marine organisms. Hexabromocyclododecanes (HBCDs), brominated flame retardants, were recently detected in expanded polystyrene (styrofoam) marine debris. We hypothesized that if styrofoam debris acts as a source of the additives in the marine environment, organisms inhabiting such debris might be directly influenced by them. Here we investigated the characteristics of HBCD accumulation by mussels inhabiting styrofoam. For comparison, mussels inhabiting different substrates, such as high-density polyethylene (HDPE), metal, and rock, were also studied. The high HBCD levels up to 5160 ng/g lipid weight and the γ-HBCD dominated isomeric profiles in mussels inhabiting styrofoam strongly supports the transfer of HBCDs from styrofoam substrate to mussels. Furthermore, microsized styrofoam particles were identified inside mussels, probably originating from their substrates. PMID:27100560

  5. Science Opportunity Analyzer (SOA): Not Just Another Pretty Face

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Streiiffert, Barbara; O'Reilly, Taifun

    2004-01-01

    This viewgraph presentation reviews the Science Opportunity Analyzer (SOA). For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for sequence generation. This means that scientist at other institutions has more responsibility to build the spacecraft sequence. Tools are required to support the sequence development. JPL tools required a complete configuration behind a firewall, and the tools that the user community had developed did not interface with the JPL tools. Therefore the SOA was created to bridge the gap between the remote scientists and the JPL operations teams. The presentation reviews the development of the SOA, and what was required of the system. The presentation reviews the functions that the SOA performed.

  6. To What Extent Can Biogenic SOA Be Controlled?

    EPA Science Inventory

    Anthropogenic pollution facilitates transformation of naturally emitted volatile organic compounds (VOCs) to the particle phase, enhancing the ambient concentrations of material commonly referred to as biogenic secondary organic aerosol (SOA). It is therefore conceivable that som...

  7. SOA FROM ISOPRENE OXIDATION PRODUCTS: MODEL SIMULATION OF CLOUD CHEMISTRY

    EPA Science Inventory

    Recent laboratory evidence supports the hypothesis that secondary organic aerosol (SOA) is formed in the atmosphere through aqueous-phase reactions in clouds. The results of batch photochemical reactions of glyoxal, methylglyoxal and hydrogen peroxide are presented. These labor...

  8. Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Sullivan, Amy P.; Hodas, Natasha; Turpin, Barbara J.; Skog, Kate; Keutsch, Frank N.; Gilardoni, Stefania; Paglione, Marco; Rinaldi, Matteo; Decesari, Stefano; Facchini, Maria Cristina; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Nemitz, Eiko; Twigg, Marsailidh M.; Collett, Jeffrey L., Jr.

    2016-07-01

    Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas phase. These products can remain in the particle phase after water evaporation, forming what is termed as aqueous secondary organic aerosol (aqSOA). However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near-real-time WSOC (water-soluble organic carbon), inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSOls-climate interaction Study) 2012 campaign in the Po Valley, Italy, to search for evidence of aqSOA. Our analysis focused on four periods: Period A on 19-21 June, Period B on 30 June and 1-2 July, Period C on 3-5 July, and Period D on 6-7 July to represent the first (Period A) and second (Periods B, C, and D) halves of the study. These periods were picked to cover varying levels of WSOC and aerosol liquid water. In addition, back trajectory analysis suggested all sites sampled similar air masses on a given day. The data collected during both periods were divided into times of increasing relative humidity (RH) and decreasing RH, with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.84), aerosol liquid water (R2 = 0.65), RH (R2 = 0.39), and aerosol nitrate (R2 = 0.66). Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA) factors, determined from application of positive matrix factorization analysis on the aerosol mass

  9. SOA Formation from Glyoxal in the Aerosol Aqueous Phase: A case study from Mexico City using an explicit laboratory-based model

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Dzepina, K.; Lee-Taylor, J.; Ervens, B.; Volkamer, R.

    2012-04-01

    Glyoxal is an important contributor to secondary organic aerosol (SOA) formation via aerosol aqueous phase processing. This work takes a glyoxal-SOA model parameterization based on laboratory data and applies the box model to ambient measurements. For the Mexico City Metropolitan Area (MCMA) case study on April 9, 2003 the aerosol uptake and processing of glyoxal in aerosol water is investigated, and found able to rationalize the previously observed gas phase glyoxal imbalance (Volkamer et al., 2007) for the first time based on laboratory data. Our aerosol size distribution resolving model is constrained with time resolved distributions of aerosol chemical composition, and supports a surface limited uptake mechanism of glyoxal in Mexico City. We compare the AMS-measured OOA to SOA predictions using our glyoxal model combined with background aerosol, traditional VOC precursor (e.g., aromatics) SOA, and three parameterizations for SOA formation from S/IVOC, i.e., based on (1) Robinson et al., 2007, (2) Grieshop et al., 2009, and (3) GECKO-A (Lee-Taylor et al., 2011), which account for the bulk of SOA mass, but give very different results for the O/C ratio of predicted SOA. This presents to our knowledge the first comparison of a molecular perspective of S/IVOC ageing with empirical parameterizations. We compare the mass weighted O/C ratio from these different SOA sources to AMS-measured O/C ratios, in an attempt to use the rapidly increasing O/C to test for closure, and advance our understanding of aerosol ageing in Mexico City.

  10. Characterizing the Amount and Chemistry of Biogenic SOA Formation from Pine Forest Air Using a Flow Reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Fry, J.; Zarzana, K. J.; Draper, D. C.; Brown, S. S.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Hodzic, A.; Dube, W. P.; Wagner, N. L.; Brune, W. H.; Jimenez, J. L.

    2013-12-01

    :C elemental ratios of the SOA mass added from 1-5 days exposure to each oxidant were approximately 0.54 and 1.56, respectively, consistent with known monoterpene-derived SOA constituents (e.g., pinic acid = C9H14O4). At higher OH exposures, the O:C of new SOA mass increased while the H:C decreased, and evidence of heterogeneous oxidation was observed. PTR-TOF-MS measurements of oxidized air showed that some compounds were depleted (e.g., monoterpenes) while some compounds were produced (e.g., acetaldehyde) due to oxidation. When applying laboratory yields measured with this reactor, assuming complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, and toluene), a simple model underpredicted the amount of SOA formed in the reactor in the field observations by a factor of ~6. This suggests one or more issues, including a large SOA source from oxygenated VOCs (e.g., monoterpene oxidation products) that were not included in our simple model, or from other VOCs not considered in the model, or limitations of the extrapolation of single precursor lab yields to multiple-precursor ambient air.

  11. OT2_jalcolea_2: Additional Hpoint observations of large post-AGB sources from HIFIStars

    NASA Astrophysics Data System (ADS)

    Alcolea, J.

    2011-09-01

    One of the most spectacular phases in the evolution of intermediate mass stars takes place at the end of their lives. At the end of the AGB, the central star dashes across the HR diagram from the red giant to the blue dwarf region. At the same time, the spherically symmetric and slowly expanding circumstellar envelopes around AGB stars become planetary nebulae (PNe), displaying a large variety of shapes and structures far more complex. This transformation takes place at the very end of the AGB, and it is due to the interaction of fast and bipolar molecular winds with the fossil AGB circumstellar envelope. The origin of these post-AGB winds is still unclear, but we know that the resulting two-wind interactions are only active during a very short period of time, ~ 100 yr, but still they are able to strongly modify the kinematics of the nebulae and re-shape them. To better understand these processes we must study the warm molecular gas component of early post-AGB sources, both pre-planetary nebulae (pPNe) and young PNe. Herschel/HIFI is very well suited at this, because its spectral coverage, high velocity resolution, and superb sensitivity. For these reasons, 10 pPNe and young PNe were included in the KPGT HIFISTARS, were a large number of spectral lines are observed in a moderate number of frequency setups, but just at the central point. In many cases this is simply enough, since most post-AGB sources in HIFIStars are compact. However there are three cases in which the non spherically symmetric structures seen in the warm gas are larger than the telescope beam: OH231.8+4.2, NGC7027 and NGC6302. Therefore we propose to perform some additional points in these three sources in a selected sample of HIFISTARS frequency setups, were we have detected strong lines of CO, H2O, NH3 and OH. These observations are crucial to understand the kinematics and interactions traced by these warm gas probes, and gain insight in the intricate problem of the post-AGB dynamics.

  12. Practical Experiences with Operational SOA infrastructure for Earth Observation: ECHO and Security

    NASA Astrophysics Data System (ADS)

    Burnett, M.

    2009-12-01

    The technical mechanisms for exchange of Earth Observation resources (data, services, clients, applications, etc.) are becoming mature. These mechanisms allow for new and innovative solutions to be assembled from components and services from a diverse group of sources. Standards, technologies and best practices are coalescing, allowing the Earth Observation community to more fully leverage web services, and the principles of a Service Oriented Architecture. NASA’s ECHO program provides a Service Oriented Architecture infrastructure. Through ECHO, users can discover and access over 110 million Earth Observation resources provided by NASA. ECHO has been operational for six years and the ECHO program has many practical experiences in fielding and operating SOA infrastructure for mission critical systems. This presentation will address the real impacts of providing operational SOA infrastructure for the Earth Observing community. There are significant impacts in the areas of performance, robustness, evolvability and usability. Of all of these important operational concerns, we will focus on the identification and mitigation of security risks in an operational SOA infrastructure environment.

  13. The CERN antiproton source: Controls aspects of the additional collector ring and fast sampling devices

    NASA Astrophysics Data System (ADS)

    Chohan, V.

    1990-08-01

    The upgrade of the CERN antiproton source, meant to gain an order of magnitude in antiproton flux, required the construction of an additional ring to complement the existing antiproton accumulator (AA) and an entire rebuild of the target zone. The AA also needed major modifications to handle the increased flux and perform purely as an accumulator, preceded by collection in the collector ring (AC). The upgrade, known as the ACOL (antiproton collector) project, was approved under strict time and budgetary constraints and the existing AA control system, based on the Proton Synchrotron (PS) Divisional norms of CAMAC and Norsk-Data computers, had to be extended in the light of this. The limited (9 months) installation period for the whole upgrade meant that substantial preparatory and planning activities had to be carried out during the normal running of the AA. Advantage was taken of the upgrade to improve and consolidate the AA. Some aspects of the control system related to this upgrade are discussed together with the integration of new applications and instrumentation. The overall machine installation and running-in was carried out within the defined milestones and the project has now achieved the physics design goals.

  14. Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Sullivan, A. P.; Hodas, N.; Turpin, B. J.; Skog, K.; Keutsch, F. N.; Gilardoni, S.; Paglione, M.; Rinaldi, M.; Decesari, S.; Facchini, M. C.; Poulain, L.; Herrmann, H.; Wiedensohler, A.; Nemitz, E.; Twigg, M. M.; Collett, J. L., Jr.

    2015-12-01

    Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas-phase. These products can remain in the particle phase after water evaporation forming what is termed as aqueous secondary organic aerosol (aqSOA). However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near real-time WSOC (water-soluble organic carbon), inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSols-climate interaction Study) 2012 campaign in the Po Valley, Italy to search for evidence of aqSOA. Our analysis focused on two specific periods: Period A on 19-21 June and Period B on 3-5 July to represent the first and second halves of the study, respectively. The large scale circulation was predominately from the west in both periods. Plus back trajectory analysis suggested all sites sampled similar air masses during both periods allowing for comparison of Periods A and B. The data collected during both periods were divided into times of increasing relative humidity (RH) and decreasing RH with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.86), aerosol liquid water (R2 = 0.69), RH (R2 = 0.45), and aerosol nitrate (R2 = 0.71). Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA) factors determined from application of positive matrix factorization analysis on the aerosol mass spectrometer observations of the submicron non

  15. Solar neutrinos and the influences of opacity, thermal instability, additional neutrino sources, and a central black hole on solar models

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Ezer, D.

    1972-01-01

    Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.

  16. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  17. Illuminating the Atmospheric Oxidation Mechanisms, SOA Formation Pathways and Radical Yields of the Monoterpene Myrcene

    NASA Astrophysics Data System (ADS)

    Wyche, Kevin; Carr, Timo; Monks, Paul; Ellis, Andrew; Alfarra, Rami; McFiggans, Gordon; Hamilton, Jacqueline; Ward, Martyn; Boss, William; Camredon, Marie

    2010-05-01

    Biogenic Volatile Organic Compounds (BVOCs) are ubiquitous in the global troposphere, being emitted primarily from terrestrial plant life in significant quantities. Indeed, it is estimated that the total annual emission rate of all (non-methane) BVOCs is roughly ten times that of all anthropogenic volatile organic compounds (Guenther et al., 1995). With the exception of methane, the most dominant species of BVOC, in terms of emission strength, reactivity and their impact upon the atmosphere, are terpenes. Terpenes are a subdivision of BVOCs, composed primarily of hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15) and diterpenes (C20). Under troposheric conditions terpenes react via complex and extensive gas phase oxidation pathways, have strong photochemical ozone creation potentials, constitute a significant radical source and are known to generate secondary organic aerosol (SOA) in high yields. At present there exists a certain lack of understanding regarding the oxidation mechanisms of certain terpenes and their role in SOA and radical formation. Consequently, as part of the NERC funded Aerosol Coupling in the Earth's System (ACES) and Total RAdical Production from the OZonolysis of alkenes (TRAPOZ) projects, a comprehensive series of simulation chamber experiments were conducted at the University of Manchester aerosol chamber facility, and at the EUropean PHOto REactor (EUPHORE) in order to investigate the gas phase degradation mechanisms, and SOA and radical formation potentials of a number of atmospherically significant terpenes. Both simulation chambers were highly instrumented during all experiments such that detailed and concomitant gas and aerosol phase measurements were made across a range of conditions. The work presented here describes the findings obtained from both photooxidation and ozonolysis experiments involving the common, but less well studied, aliphatic monoterpene, myrcene. The data presented include NOx and ozone measurements and

  18. SOA Security Aspects in Web-based Architectural Design

    NASA Astrophysics Data System (ADS)

    Shaikh, Asadullah; Ali, Shccraz; Memon, Nasrullah; Karampelas, Panagiotis

    Distributed web-based applications have been progressively increasing in number and scale over the past decades. There is an intensification of the need for security frameworks in the era of web-based applications when wc refer to distributed tclcmcdicinc interoperability architectures. In contrast. Service Oriented Architecture (SOA) is gaining popularity day by day when wc specially consider the web applications. SOA is playing a major role to maintain the security standards of distributed applications. This paper proposes a secure web-based architectural design by using the standards of SOA for distributed web application that maintains the interoperability and data integration through certain secure channels. Wc have created CRUD (Create, Read, Update, Delete) operations that has an implication on our own created web services and wc propose a secure architecture that is implemented on CRUD operations.

  19. Naphthalene SOA: redox activity and naphthoquinone gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.

    2013-10-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox-active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. These results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. Also, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.

  20. Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources.

    PubMed

    Jayanegara, Anuraga; Wina, Elizabeth; Takahashi, Junichi

    2014-10-01

    Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins

  1. Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

    PubMed Central

    Jayanegara, Anuraga; Wina, Elizabeth; Takahashi, Junichi

    2014-01-01

    Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins

  2. Volatile and intermediate-volatility organic compounds in sub-urban Paris: variability, origin and importance for SOA formation

    NASA Astrophysics Data System (ADS)

    Ait-Helal, W.; Borbon, A.; Sauvage, S.; de Gouw, J. A.; Colomb, A.; Gros, V.; Freutel, F.; Crippa, M.; Afif, C.; Baltensperger, U.; Beekmann, M.; Doussin, J.-F.; Durand-Jolibois, R.; Fronval, I.; Grand, N.; Leonardis, T.; Lopez, M.; Michoud, V.; Miet, K.; Perrier, S.; Prévôt, A. S. H.; Schneider, J.; Siour, G.; Zapf, P.; Locoge, N.

    2014-02-01

    Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January-February 2010, at the SIRTA observatory in sub-urban Paris. Measurements of primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including for the first time C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scales and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and sub-urban Paris were surprisingly low (2-963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and sub-urban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (< 5 ppt) compared to summer (13-27 ppt) in agreement with a gas-particle partitioning in favor of their transfer to the particle phase in winter. Higher concentrations of most oxygenated VOCs in winter (18-5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an approach based on emissions inferred from the I / VOC concentrations times the SOA formation yields', the so-called integrated approach conducted in this study, 46% of the SOA measured at SIRTA is explained by our measured concentrations of I / VOC, with 10% explained by only C12-C16 IVOCs. From results of an alternative time-resolved approach, the explained variability

  3. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... reporting rule on October 7, 2010, and it was not published until October 28, 2010, 75 FR 66434, three weeks... electronics, fluorinated GHG production, and electrical equipment use on April 12, 2009 (74 FR 16448) as part... October 30, 2009 (74 FR 56260). EPA deferred action on these source categories because EPA received...

  4. 75 FR 18651 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...EPA is revising and supplementing its initial proposed actions to require reporting of fluorinated greenhouse gas (fluorinated GHG) emissions from certain source categories. Specifically, EPA is revising and supplementing its initial proposal to require reporting of fluorinated GHG emissions from electronics manufacturing, production of fluorinated gases, and use of electrical transmission and......

  5. Soa genotype selectively affects mouse gustatory neural responses to sucrose octaacetate

    PubMed Central

    INOUE, MASASHI; LI, XIA; McCAUGHEY, STUART A.; BEAUCHAMP, GARY K.; BACHMANOV, ALEXANDER A.

    2013-01-01

    In mice, behavioral acceptance of the bitter compound sucrose octaacetate (SOA) depends on allelic variation of a single gene, Soa. The SW.B6-Soab congenic mouse strain has the genetic background of an “SOA taster” SWR/J strain and an Soa-containing donor chromosome fragment from an “SOA nontaster” C57BL/6J strain. Using microsatellite markers polymorphic between the two parental strains, we determined that the donor fragment spans 5–10 cM of distal chromosome 6. The SWR/J mice avoided SOA in two-bottle tests with water and had strong responses to SOA in two gustatory nerves, the chorda tympani (CT) and glossopharyngeal (GL). In contrast, the SW.B6-Soab mice were indifferent to SOA in two-bottle tests and had very weak responses to SOA in both of these nerves. The SWR/J and SW.B6-Soab mice did not differ in responses of either nerve to sucrose, NaCl, HCl, or the bitter-tasting stimuli quinine, denatonium, strychnine, 6-n-propylthiouracil, phenylthiocarbamide, and MgSO4. Thus the effect of the Soa genotype on SOA avoidance is mediated by peripheral taste responsiveness to SOA, involving taste receptor cells innervated by both the CT and GL nerves. PMID:11328963

  6. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  7. Food additives and environmental chemicals as sources of childhood behavior disorders

    SciTech Connect

    Weiss, B.

    1982-01-01

    The Feingold hypothesis postulates that many children who exhibit disturbed behavior improve on a diet devoid of certain food additives. Its validity has been examined on the basis of controlled trails. The total evidence, although not wholly consistent, nevertheless suggests that the hypothesis is, in principle, correct. Such a conclusion poses difficult problems and new issues for etiology, treatment, toxicology, and regulation.

  8. Preparing Students to Take SOA/CAS Exam FM/2

    ERIC Educational Resources Information Center

    Marchand, Richard J.

    2014-01-01

    This paper provides suggestions for preparing students to take the actuarial examination on financial mathematics, SOA/CAS Exam FM/2. It is based on current practices employed at Slippery Rock University, a small public liberal arts university. Detailed descriptions of our Theory of Interest course and subsequent Exam FM/2 prep course are provided…

  9. SOA from BVOCs in the Southeastern United States

    EPA Science Inventory

    Biogenic hydrocarbons contribute to organic aerosol in the southeast United States. In this work, we represent aerosol formation from the oxidation of isoprene and monoterpenes in CMAQ and compare to data from the Southeast Oxidants and Aerosol Study (SOAS). Sensitivity simulatio...

  10. EPA STAR Grants Contribution to the SOAS Campaign

    EPA Science Inventory

    This poster explains how EPA Science to Achieve Results (STAR) grantees contributed to the summer 2013 inter-agency Southeast Atmosphere Study (SAS), specifically the Southern Oxidant and Aerosol Study (SOAS). There is also a brief explanation of EPA scientist involvement in this...

  11. The STAR Grants Contribution to the SOAS Campaign

    EPA Science Inventory

    The Southern Oxidant and Aerosol Study (SOAS) is a community-led field campaign that was part of the Southeast Atmosphere Study (SAS). As one of the largest field studies in decades to characterize air quality in the Southeastern United States, SAS is a collaborative project invo...

  12. Common genetic variants, acting additively, are a major source of risk for autism

    PubMed Central

    2012-01-01

    Background Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions Our results, when viewed in the context of results from genome

  13. Size distribution studies in the SOA-particle formation during the ozonolysis of biogenic alkenes

    NASA Astrophysics Data System (ADS)

    Moortgat, G.; Bonn, B.; Winterhalter, R.

    2003-04-01

    It is established that secondary organic aerosols (SOA) are formed during the reaction of ozone with biogenic alkenes. Experiments of endocyclic (e.g. alpha-pinene, 3-carene) as well as exocyclic monoterpenes (e.g. beta-pinene, sabinene) with ozone have been performed with additional compounds such as water vapour, alcohols and carbonyl compounds, to examine their effect on the SOA particle size distribution in dependence of the alkene structure. This study was further used to describe the formation mechanism of nucleating species for both endo- and exocyclic terpene reactions. Experiments were performed in a spherical glass vessel of 570 L volume at atmospheric pressure. The particle size distribution was measured by a scanning mobility particle sizer, including a long DMA and an ultra-fine particle counter, with a time resolution of two minutes. Cyclohexane was present to prevent interfering reactions of the produced OH-radicals. The laboratory results seem to indicate that the homogeneous nucleation process during the ozonolysis of terpenes is controlled by the formation of large secondary ozonides and can be supressed by the addition of water vapour. These nucleating secondary ozonides are formed differently in endo-and exocyclic reactions: intramolecular in endocyclic and intermolecular in exocylic monoterpene ozonolyses. Such processes are known to be controlled by the stabilized Criegee Intermediates (CI), formed in the ozone reaction with biogenic terpenes. On the other hand, analysis of aerosol material from laboratory and some sparse field studies have identifed various multifunctional dicarboxylic, and keto-carboxylic acids (e.g. pinic and pinonic acid), whose current formation mechanism seems to involve excited CI. Due to their low volatility, these acids may act as nucleation precursors (new particle formation) or condense on preexisting particles (heterogeneous nucleation). The current dilemma, whether stabilized or excited CI are involved in the

  14. BREEDING PIERCE'S DISEASE RESISTANT TABLE AND RAISIN GRAPES AND THE DEVELOPMENT OF MARKERS FOR ADDITIONAL SOURCES OF RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifteen BC3 and two BC2 crosses between V. arizonica source of Pierce’s disease (PD) resistance and seedless table and raisin selections were made and produced 3,396 berries, 4,459 ovules and 1,840 embryos. Two additional seedless and two seeded crosses were made. Ten 2006 BC2 families (V. arizoni...

  15. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere

    NASA Technical Reports Server (NTRS)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; De Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.

    1994-01-01

    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  16. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.

    2015-03-01

    VOC species from vehicle exhaust and gas evaporation were investigated by chassis dynamometer and on-road measurements of 9 gasoline vehicles, 7 diesel vehicles, 5 motorcycles, and 4 gas evaporation samples. The SOA mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were calculated based on the mixing ratio of individual VOC species. The SOA mass yields of gasoline and motorcycle exhaust were similar to the results of the published smog chamber study with the exception of that of diesel exhaust was 20% lower than experimental data (Gordon et al., 2013, 2014a, b). This suggests the requirement for further research on SVOC or LVOC emissions. A vehicular emission inventory was compiled based on a local survey of vehicle mileage traveled and real-world measurements of vehicle emission factors. The inventory-based vehicular initial emission ratio of OA to CO was 15.6 μg m-3 ppmv-1. The OA production rate reached 22.3 and 42.7 μg m-3 ppmv-1 under high-NOx and low-NOx conditions, respectively. To determine the vehicular contribution to OA pollution, the inventory-based OA formation ratios for vehicles were calculated with a photochemical-age-based parameterization method and compared with the observation-based OA formation ratios in the urban atmosphere of Shanghai. The results indicated that VOC emissions from vehicle exhaust and gas evaporation only explained 15 and 22% of the total organic aerosols observed in summer and winter, respectively. SOA production only accounted for 25 and 18% of the total vehicular OA formation in summer and winter. VOC emissions from gasoline vehicles contribute 21-38% of vehicular OA formation after 6-24 h of photochemical aging. The results suggest that vehicle emissions are an important contributor to OA pollution in the urban atmosphere of Shanghai. However, a large number of OA mass in the atmosphere still cannot be explained in this study. SOA formation contributions from other sources (e.g. coal burning

  17. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols

    NASA Astrophysics Data System (ADS)

    Fu, Pingqing; Zhuang, Guoshun; Sun, Yele; Wang, Qiongzhen; Chen, Jing; Ren, Lujie; Yang, Fan; Wang, Zifa; Pan, Xiaole; Li, Xiangdong; Kawamura, Kimitaka

    2016-04-01

    Biogenic primary organic aerosols (POA) and secondary organic aerosols (SOA) are important organic constituents of atmospheric particulate matter (PM). In order to better understand the atmospheric abundances, molecular compositions and sources of the desert aerosols, biomass-burning tracers (e.g. levoglucosan), primary saccharides including fungal spore tracers, and SOA tracers from the oxidation of biogenic volatile organic compounds (e.g. isoprene, monoterpenes and sesquiterpene) have been studied in ambient aerosols from the Taklimakan desert, using gas chromatography-mass spectrometry. Results showed that the total concentrations of biomass-burning tracers at Hetian (177-359 ng m-3, mean 233 ng m-3 in PM2.5) in the south rim of the desert were much higher than those at Tazhong (1.9-8.8 ng m-3 in PM2.5 and 5.9-32 ng m-3 in TSP) in the central Taklimakan desert. Molecular markers of fungal spores were also detected in all the desert aerosols, highlighting the importance of primary bioaerosols in the Asian dust particles. A specific pattern of the dominance of 2-methylglyceric acid over 2-methyltetrols and C5-alkene triols was found in the Taklimakan desert aerosols, especially during the dust storm events, which is different from the 2-methyltetrols-dominated pattern in other ambient aerosols. Our results provide direct evidence on the biogenic POA and SOA tracers in the Taklimakan desert region, which help to better understand their impact on the aerosol chemistry in the down-wind regions.

  18. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, Andrea; Xie, Junfei; Zheng, Xunhua; Wang, Yuesi; Grote, Rüdiger; Block, Katja; Wildt, Jürgen; Mentel, Thomas; Kiendler-Scharr, Astrid; Hallquist, Mattias; Butterbach-Bahl, Klaus; Schnitzler, Jörg-Peter

    2016-03-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC emissions, and assessed the potential impact of BVOCs on secondary organic aerosol (SOA) formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids, and sesquiterpenes, constituted a significant fraction ( ˜ 40 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ˜ 4.8 × 109 g C year-1 in 2005 to ˜ 10.3 × 109 g C year-1 in 2010 due to the increase in urban greening, while at the same time the emission of anthropogenic VOCs (AVOCs) decreased by 24 %. Based on the BVOC emission assessment, we estimated the biological impact on SOA mass formation potential in Beijing. Constitutive and stress-induced BVOCs might produce similar amounts of secondary aerosol in Beijing. However, the main contributors of SOA-mass formations originated from anthropogenic sources (> 90 %). This study demonstrates the general importance to include sBVOCs when studying BVOC emissions. Although the main problems regarding air quality in Beijing still originate from anthropogenic activities, the present survey suggests that in urban plantation programs, the selection of low-emitting plant species has some potential beneficial effects on urban air quality.

  19. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3-0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.

  20. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGESBeta

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six differentmore » coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3–0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.« less

  1. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation

    PubMed Central

    Bárcena, Alicia; Muench, Marcus O.; Kapidzic, Mirhan; Gormley, Matthew; Goldfien, Gabriel A.; Fisher, Susan J.

    2012-01-01

    Background Hematopoietic stem cell (HSC) transplantation is an essential element of medical therapy, leading to cures of previously incurable disease for hematological and non-hematological pathologies. Many patients do not find matched donors in a timely manner, which has driven efforts to find alternative pools of transplantable HSCs. The use of umbilical cord blood (UCB) as a source of transplantable HSCs began more than two decades ago. However, the use of UCB as a reliable source of HSCs for transplantation still faces crucial challenges: the number of HSCs present in a unit of UCB is usually sufficient for younger children but not for adults and the persistent delayed engraftment often seen can result in high rates of infection and mortality. Study Design and Methods We propose a new approach to a solution of these problems: a potential increase of the limited number of UCB–HSCs available by harvesting HSCs contained in the placenta and the fetal chorionic membrane available at birth. Results We investigated the presence of hematopoietic progenitors/HSC in human placenta and chorion at different gestational ages. The characterization of these cells was performed by flow cytometry and immunolocalization and their functional status was investigated by transplanting them into immunodeficient mice. Conclusion HSCs are present in extraembryonic tissues and could be banked in conjunction to the UCB-HSCs. This novel approach could have a large impact on the field of HSC banking and more crucially, on the outcome of patients undergoing this treatment by greatly improving the use of life-saving hematopoietic transplants. PMID:22074633

  2. Impacts of Additional HONO Sources on Concentrations and Deposition of NOy in the Beijing-Tianjin-Hebei Region of China

    NASA Astrophysics Data System (ADS)

    Li, Ying; An, Junling; Kajino, Mizuo; Li, Jian; Qu, Yu

    2015-04-01

    Reactive nitrogen-containing compounds (NOy) are involved in many important chemical processes in the atmosphere, including aerosol formation as well as ozone (O3) production and destruction. As NOy deposition was increasing rapidly in China during 1980s ~ 2000s, great effort is urgently needed to reduce N deposition. HONO, an important component of NOy, is a significant precursor of the hydroxyl radical (OH) that drives the formation of O3 and fine particles (PM2.5). Nevertheless, the detailed formation mechanisms of HONO and strength of its sources remain unclear. Unknown HONO sources and their potential impacts on air quality have gained extensive interests but to our current knowledge, the impact of HONO sources on regional-scale deposition of NOy has not been quantified up to date. The goal of this work is to evaluate the effects of the additional HONO sources on concentrations and deposition of individual NOy species as well as the NOy budget in the northern Chinese regions being affected by heavy pollution. Simulations of HONO contributions over Beijing-Tianjin-Hebei region (BTH) during summer and winter periods of 2007 using the fully coupled Weather Research and Forecasting /Chemistry (WRF/Chem) model are performed by including three additional HONO sources: 1) the reaction of photo-excited nitrogen dioxide (NO2*) with water vapor, 2) NO2 heterogeneous reaction at the aerosol surfaces, and 3) HONO emissions. The model results show that the three additional HONO sources produce a 20%~40% (> 100%) increase in monthly-mean OH concentrations in many urban areas in August (February), leading to a 10%~40% (10%~100%) variation in monthly-mean concentrations of NOx, nitrate and PAN, a 5%~10% (10%~40%) increase in the total dry deposition of NOy, and an enhancement of 1.4 Gg N (1.5 Gg N) in the total of dry and wet deposition of NOy over this region in August (February). These results suggest that the additional HONO sources aggravate regional-scale acid deposition

  3. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  4. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  5. Secondary Organic Aerosol (SOA) Formation from Hydroxyl Radical Oxidation and Ozonolysis of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Kaminski, Martin; Schlag, Patrick; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Haeseler, Rolf; Kiendler-Scharr, Astrid; Rohrer, Franz; Tillmann, Ralf; Wang, Mingjin; Wegner, Robert; Wahner, Andreas; Mentel, Thomas

    2014-05-01

    that functionalization was dominant in the beginning of the reaction and fragmentation started to be dominant after that. Moreover, Aerosol Mass Spectrometer data shows that SOA from monoterpene OH oxidation follows a slope of shallower than -1 in the Van Krevelen diagram, indicative of an oxidation process of precursor without significant hydrogen loss. SOA from OH oxidation has a higher H/C than that from O3 oxidation. In ozonolysis, the process with significant hydrogen loss such as addition of carbonyl seems to play an important role in SOA formation. Reference: Ng, N. L. et al. Sci. & Tech. 40, 2283-2297, 10.1021/es052269u, 2006.

  6. Enhancement of Identifying Cancer Specialists through the Linkage of Medicare Claims to Additional Sources of Physician Specialty

    PubMed Central

    Pollack, Lori A; Adamache, Walter; Eheman, Christie R; Ryerson, A Blythe; Richardson, Lisa C

    2009-01-01

    Objective To examine the number of cancer specialists identified in three national datasets, the effect of combining these datasets, and the use of refinement rules to classify physicians as cancer specialists. Data Sources 1992–2003 linked Surveillance, Epidemiology, and End Results (SEER)-Medicare data and a cancer-free comparison population of Medicare beneficiaries, Unique Physician Identification Number (UPIN) Registry, and the American Medical Association (AMA) Masterfile. Study Design We compared differences in counts of cancer specialists identified in Medicare claims only with the number obtained by combining data sources and after using rules to refine specialty identification. Data Extraction We analyzed physician specialty variables provided on Medicare claims, along with the specialties obtained by linkage of unencrypted UPINs on Medicare claims to the UPIN Registry, the AMA Masterfile, and all sources combined. Principle Findings Medicare claims identified the fewest number of cancer specialists (n=11,721) compared with 19,753 who were identified when we combined all three datasets. The percentage increase identified by combining datasets varied by subspecialty (187 percent for surgical oncologists to 50 percent for radiation oncologists). Rules created to refine identification most affected the count of radiation oncologists. Conclusions Researchers should consider taking the additional effort and cost to refine classification by using additional data sources based on their study objectives. PMID:19207588

  7. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.

    2012-04-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  8. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J. G.; Kampf, C. J.; Timkovsky, J.; Noziere, B.; Praplan, A. P.; Pfaffenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A. S.; Baltensperger, U.; Volkamer, R.

    2011-12-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  9. A SOA-based high Q microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Li, Lipei; Wang, Fei; Yu, Yuan; Li, Xiang; Zhang, Xinliang; Huang, Dexiu

    2011-01-01

    We propose and experimentally demonstrate a novel all-optical microwave filter with high quality factor (Q). It is based on a recirculating delay line (RDL) loop in which a semiconductor optical amplifier (SOA) is followed by a tunable narrow-band optical filter and a 1x2 10:90 optical coupler. Converted signal used as a negative tap is generated through wavelength conversion employing the cross-gain modulation (XGM) of the amplified spontaneous emission (ASE) spectrum of the SOA. The converted signal can circulate in the RDL loop so that the proposed filter realizes a high Q factor response after photo-detection. The 1x2 10:90 coupler is employed to extract 10% optical power from the loop as output. A frequency response with a high Q factor of 543, a rejection ratio of 40 dB is experimentally demonstrated.

  10. A SOA-based high Q microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Li, Lipei; Wang, Fei; Yu, Yuan; Li, Xiang; Zhang, Xinliang; Huang, Dexiu

    2010-12-01

    We propose and experimentally demonstrate a novel all-optical microwave filter with high quality factor (Q). It is based on a recirculating delay line (RDL) loop in which a semiconductor optical amplifier (SOA) is followed by a tunable narrow-band optical filter and a 1x2 10:90 optical coupler. Converted signal used as a negative tap is generated through wavelength conversion employing the cross-gain modulation (XGM) of the amplified spontaneous emission (ASE) spectrum of the SOA. The converted signal can circulate in the RDL loop so that the proposed filter realizes a high Q factor response after photo-detection. The 1x2 10:90 coupler is employed to extract 10% optical power from the loop as output. A frequency response with a high Q factor of 543, a rejection ratio of 40 dB is experimentally demonstrated.

  11. Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Buchholz, A.; Kortner, B.; Schlag, P.; Rubach, F.; Fuchs, H.; Kiendler-Scharr, A.; Tillmann, R.; Wahner, A.; Watne, Å. K.; Hallquist, M.; Flores, J. M.; Rudich, Y.; Kristensen, K.; Hansen, A. M. K.; Glasius, M.; Kourtchev, I.; Kalberer, M.; Mentel, Th. F.

    2016-02-01

    Interaction of biogenic volatile organic compounds (VOCs) with Anthropogenic VOC (AVOC) affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively.

    We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, κCCN, did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA were comparable to that of (NH4)2SO4, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions.

    In contrast to CCN activity, the hygroscopicity parameter from a hygroscopic tandem differential mobility analyzer (HTDMA) measurement, κHTDMA, of ASOA was distinctively higher (0.09-0.10) than that of BSOA (0.03-0.06), which was attributed to the higher degree of oxidation of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding biogenic VOC (BVOC) to ASOA or vice versa (AVOC to BSOA) changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity.

    Closure analysis of CCN and HTDMA data showed κHTDMA was lower than κCCN by 30-70 %. Better closure was achieved for ASOA compared to BSOA. This

  12. Security Broker—A Complementary Tool for SOA Security

    NASA Astrophysics Data System (ADS)

    Kamatchi, R.; Rakshit, Atanu

    2011-09-01

    The Service Oriented Architecture along with web services is providing a new dimension to the world of reusability and resource sharing. The services developed by a creator can be used by any service consumers from anywhere despite of their platforms used. This open nature of the SOA architecture is also raising the issues of security at various levels of usage. This is paper is discussing on the implementation benefits of a service broker with the Service Oriented Architecture.

  13. Science Opportunity Analyzer (SOA): Science Planning Made Simple

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.

    2004-01-01

    .For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for developing their experiments. Remote scientists needed the ability to: a) Identify observation opportunities; b) Create accurate, detailed designs for their observations; c) Verify that their designs meet their objectives; d) Check their observations against project flight rules and constraints; e) Communicate their observations to other scientists. Many existing tools provide one or more of these functions, but Science Opportunity Analyzer (SOA) has been built to unify these tasks into a single application. Accurate: Utilizes JPL Navigation and Ancillary Information Facility (NAIF) SPICE* software tool kit - Provides high fidelity modeling. - Facilitates rapid adaptation to other flight projects. Portable: Available in Unix, Windows and Linux. Adaptable: Designed to be a multi-mission tool so it can be readily adapted to other flight projects. Implemented in Java, Java 3D and other innovative technologies. Conclusion: SOA is easy to use. It only requires 6 simple steps. SOA's ability to show the same accurate information in multiple ways (multiple visualization formats, data plots, listings and file output) is essential to meet the needs of a diverse, distributed science operations environment.

  14. Novel cloud and SOA-based framework for e-health monitoring using wireless biosensors.

    PubMed

    Benharref, Abdelghani; Serhani, Mohamed Adel

    2014-01-01

    Various and independent studies are showing that an exponential increase of chronic diseases (CDs) is exhausting governmental and private healthcare systems to an extent that some countries allocate half of their budget to healthcare systems. To benefit from the IT development, e-health monitoring and prevention approaches revealed to be among top promising solutions. In fact, well-implemented monitoring and prevention schemes have reported a decent reduction of CDs risk and have narrowed their effects, on both patients' health conditions and on government budget spent on healthcare. In this paper, we propose a framework to collect patients' data in real time, perform appropriate nonintrusive monitoring, and propose medical and/or life style engagements, whenever needed and appropriate. The framework, which relies on service-oriented architecture (SOA) and the Cloud, allows a seamless integration of different technologies, applications, and services. It also integrates mobile technologies to smoothly collect and communicate vital data from a patient's wearable biosensors while considering the mobile devices' limited capabilities and power drainage in addition to intermittent network disconnections. Then, data are stored in the Cloud and made available via SOA to allow easy access by physicians, paramedics, or any other authorized entity. A case study has been developed to evaluate the usability of the framework, and the preliminary results that have been analyzed are showing very promising results. PMID:24403403

  15. Reactive uptake of Isoprene-derived epoxydiols to submicron aerosol particles: implications for IEPOX lifetime and SOA formation

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; Gaston, C.; Riedel, T.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2014-12-01

    The reactive uptake of isoprene-derived epoxydiols (IEPOX) is thought to be a significant source of atmospheric secondary organic aerosol (SOA). However, the IEPOX reaction probability (γIEPOX) and its dependence upon particle composition remain poorly constrained. We report measurements of γIEPOX for trans-b-IEPOX, the predominant IEPOX isomer, on submicron particles as a function of composition, acidity, and relative humidity (RH). Particle acidity had the strongest effect. γIEPOX is more than 500 times larger on ammonium bisulfate (γ ~ 0.05) than on ammonium sulfate (γ ≤ 1 x 10-4). We could accurately predict γIEPOX using an acid-catalyzed, epoxide ring-opening mechanism and a high Henry's law coefficient (1.6 x 108 M/atm). Suppression of γIEPOX was observed in particles containing both ammonium bisulfate and polyethylene glycol (PEG-300), likely due to diffusion and solubility limitations within a PEG-300 coating, suggesting that IEPOX uptake could be self-limiting. Using the measured uptake kinetics, the predicted atmospheric lifetime of IEPOX is a few hours in the presence of highly acidic particles (pH < 0), but is greater than a day on less acidic particles (pH > 3). We connect these net reactive uptake measurements to chamber studies of the SOA yield from IEPOX multiphase chemistry and discuss the implications of these findings for modeling the anthropogenic influence upon SOA formation from isoprene.

  16. Putting VOC Measurements During SOAS 2013 in Context of Historical Observations: How Have VOC Emissions in the Alabama Region Changed Since the SOS 1990 Study?

    NASA Astrophysics Data System (ADS)

    Olson, K. F.; Koss, A.; De Gouw, J. A.; Goldstein, A. H.

    2013-12-01

    Volatile organic compounds (VOCs) play an important role in atmospheric photochemistry. They react with atmospheric oxidants to form ozone and secondary organic aerosols (SOA). VOCs are emitted from a variety of anthropogenic and biogenic sources. The Southeastern United States (SEUS) is heavily forested with high biogenic VOCs emissions. There are many anthropogenic air pollution sources in the region, including urban centers and power plants. This makes the SEUS an ideal location to study the chemistry of biogenic VOCs in the presence of anthropogenic emissions. The SEUS has hosted several large atmospheric chemistry field campaigns. The Southern Oxidant and Aerosol Study (SOAS) took place in a forested site near Centerville, AL from June 1st to July 15th, 2013. SOAS included a comprehensive suite of instruments measuring VOCs, oxidants, aerosol properties and meteorology. During the campaign, in-situ gas chromatography - mass spectrometry (GC-MS) was used to measure VOCs at the SOAS Centreville ground site. We put these VOC measurements in perspective of measurements from previous campaigns in the SEUS including the Southern Oxidant Study (SOS) campaign in the 1990s as well as measurements during June and July 1990 in a loblolly pine plantation in western Alabama as part of the Rural Oxidants in the Southern Environment program. We analyze how VOC levels vary within the region and how regional photochemistry has changed in recent decades.

  17. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source. PMID:26783836

  18. Local source impacts on primary and secondary aerosols in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.

    2016-04-01

    Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and

  19. Unspeciated Organic Emissions From Combustion Sources And Their Influence On The Secondary Organic Aerosol Budget In The United States

    NASA Astrophysics Data System (ADS)

    Jathar, S.; Gordon, T.; Hennigan, C. J.; Pye, H. O.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-12-01

    Combustion sources are a major source of organic emissions and therefore a potentially important source for secondary organic aerosol (SOA) formation in the atmosphere. Although speciated organic emissions from combustion sources are considered in models to form SOA, a large fraction of the organics are unspeciated. In this work, we analyze data from numerous smog chamber experiments, which photo-oxidized dilute emissions from different combustion sources (on-road gasoline vehicles, aircraft, on-road diesel vehicles, wood burning and open biomass burning), to determine the contribution that unspeciated emissions make to SOA formation. An SOA model based on speciated organics is able to explain, on average, 8-31% of the SOA measured in the experiments. We hypothesize that the remainder results from the gas-phase oxidation of unspeciated emissions, which account on average for 25-75% of the non-methane organic gas (NMOG) emissions. Using the SOA data, we develop, for the first time, source-specific parameterizations to model SOA from unspeciated emissions; all sources seem to have median SOA yields similar to large n-alkanes (C12+). To assess the influence of unspeciated emissions on SOA formation regionally, we use the parameterization to predict SOA production in the United States. Using emissions data collected during the smog chamber experiments and data available in literature, we build a gross inventory for unspeciated emissions in the United States. We discover that unspeciated organics might be included in the current generation of SOA models but misallocated in terms of its SOA potential. The top six combustion sources (on- and off-road gasoline, on- and off-road diesel, open biomass and wood burning) emit 2.61 Tg yr-1 of unspeciated emissions (20% of US anthropogenic VOC emissions from combustion sources) and are estimated to form a minimum of 0.68 Tg yr-1 of SOA; the estimate is a third of the biogenic SOA produced in the US. We predict that accounting for

  20. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    SciTech Connect

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-01-01

    factors are common to CMAQ-AE6, while the intrinsic SOA formation efficiency for that model is estimated to be too low by about 7 × .

    From source-apportioned model results, we found most of the CMAQ-VBS modeled POA at the Pasadena CalNex site was attributable to meat cooking emissions (48 %, consistent with a substantial fraction of cooking OA in the observations). This is compared to 18 % from gasoline vehicle emissions, 13 % from biomass burning (in the form of residential wood combustion), and 8 % from diesel vehicle emissions. All "other" inventoried emission sources (e.g., industrial, point, and area sources) comprised the final 13 %. The CMAQ-VBS semivolatile POA treatment underpredicted AMS hydrocarbon-like OA (HOA) + cooking-influenced OA (CIOA) at Pasadena by a factor of 1.8 compared to a factor of 1.4 overprediction of POA in CMAQ-AE6, but it did capture the AMS diurnal profile of HOA and CIOA well, with the exception of the midday peak.

    Overall, the CMAQ-VBS with its semivolatile treatment of POA, SOA from intermediate volatility organic compounds (IVOCs), and aging of SOA improves SOA model performance (though SOA formation efficiency is still 1.6–2 ×  too low). However, continued efforts are needed to better understand assumptions in the parameterization (e.g., SOA aging) and provide additional certainty to how best to apply existing emission inventories in a framework that treats POA as semivolatile, which currently degrades existing model performance at routine monitoring networks. The VBS and other approaches (e.g., AE6) require additional work to appropriately incorporate IVOC emissions and subsequent SOA formation.

  1. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS

    NASA Astrophysics Data System (ADS)

    Alier, M.; van Drooge, B. L.; Dall'Osto, M.; Querol, X.; Grimalt, J. O.; Tauler, R.

    2013-10-01

    This study investigates the contribution of potential sources to the submicron (PM1) organic aerosol (OA) simultaneously detected at an urban background (UB) and a road site (RS) in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September-October 2010). A total of 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by gas chromatography-mass spectrometry (GC-MS). The concentrations of the trace chemical compounds analyzed are herein presented and discussed. Additionally, OA source apportionment was performed by multivariate curve resolution-alternating least squares (MCR-ALS) and six OA components were identified at both sites: two were of primary anthropogenic OA origin and three of secondary OA origin, while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (urban primary organic aerosol, or POA Urban), mainly traffic emissions but also cigarette smoke, contributed 43% (1.5 μg OC m-3) and 18% (0.4 μg OC m-3) to OA at RS and UB, respectively. A secondary primary source - biomass burning (BBOA) - was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m-3), but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation (REG.). Three secondary organic aerosol (SOA) components (describing overall 60% of the variance) were observed in the urban ambient PM1. Products of isoprene oxidation (SOA ISO) - i.e. 2-methylglyceric acid, C5 alkene triols and 2-methyltetrols - showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m-3, or 16% and 7%, at UB and RS, respectively

  2. Experimental investigations of the swirling flow in the conical diffuser using flow-feedback control technique with additional energy source

    NASA Astrophysics Data System (ADS)

    Tǎnasǎ, C.; Bosioc, A. I.; Susan-Resiga, R. F.; Muntean, S.

    2012-11-01

    The previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water injection along to the axis mitigates the pressure fluctuations associated to the precessing vortex rope [1]. However, for swirling flows similar to Francis turbines operated at partial discharge, the water jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, it was introduced a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser [2]. This is called flow-feedback control technique (FFCT) and it was investigated experimentally in order to assess its capability [3]. The FFCT approach not requires additional energy to supply the jet. Consequently, the turbine efficiency is not diminished due to the volumetric losses injected even if around 10% of the main flow is used. However, the equivalent amplitude of the pressure pulsations associated to the vortex rope decreases with 30% if 10% jet discharge is applied [3]. Using 12% water jet discharge from upstream then the equivalent amplitude of the pressure pulsations is mitigated with 70% according to Bosioc et al. [4]. In our case, an extra 2% jet discharge is required in order to obtain similar results with FFCT. This extra discharge is provided using an additional energy source. Therefore, the paper presents experimental investigation performed with FFCT with additional energy source. The experimental results obtained with this technique are compared against FFCT and the swirling flow with vortex rope, respectively.

  3. Using SOA Patterns to promote understanding across disciplines

    NASA Astrophysics Data System (ADS)

    Patterson, A.

    2012-04-01

    The NETMAR consortium is building an open service network for marine environmental data by combining expertise from Ireland, France, the UK and Norway in disciplines such as Semantics, Software Engineering, UI Programming and Service Orchestration. Through the International Coastal Atlas Network, it engages user groups from Europe, Africa, Asia and the Americas. In doing so, it faces challenges in bringing these disciplines and groups together in a way that makes them greater than the sum of their parts. Service Oriented Architecture has been successfully applied in many cases to help build useful systems across organisational and geographic boundaries in order to expose diverse capabilities which can function together through a mutual exchange of value. This should make it ideally suited to a distributed decision making environment without centralised command and control. In theory, SOA should facilitate the building of global and complex infrastructures and the integration of information systems characterized by diverse protocols and interfaces,and with different data policies and security levels. The presentation will discuss a number of approaches used by NETMAR to bring the theory of SOA to bear in a useful way while maintaining the emphasis on keeping multi-disciplinary domain expertise as the primary driver of the project. It will discuss three approaches used: . Populating one or more standard reference models . Trade-off analysis based on business drivers and quality attributes . Documenting design reuse in the form of patterns. The three approaches will be compared in terms of how they succeed in bringing 'just enough' service architecture knowledge into the project. We discuss how the approaches can interact and complement each other. Finally, we present a number of SOA patterns identified as being relevant to NETMAR and explain why they are felt to be particularly effective in gaining consensus on how to build the NETMAR system of systems.

  4. Black Carbon Aging from SOA Coatings and Coagulation with Diesel BC Emissions during SAAS at the PNNL Environmental Chamber

    NASA Astrophysics Data System (ADS)

    Aiken, A. C.; Liu, S.; Dubey, M. K.; Zaveri, R. A.; Shilling, J. E.; Gourihar, K.; Pekour, M. S.; Subramanian, R.; Zelenyuk, A.; Wilson, J. M.; Mazzoleni, C.; China, S.; Sharma, N.

    2014-12-01

    Black carbon (BC) is considered to be potentially the 2nd most important global warming factor behind CO2 (Bond et al., 2013). Uncertainties exist due to BC morphology and mixing state on the extent of the warming that it causes, e.g. Cappa et al., 2012. Core-shell BC is expected to enhance absorption by up to a factor of 2, but has yet to be observed to this extent from ambient data. Experiments were conducted during the Soot Aerosol Aging Study (SAAS) Laboratory Campaign at Pactific Northwest National Laboratory's Environmental Chamber in the winter of 2013-2014 to investigate the relationship between coatings and enhancements from diesel emissions. Direct on-line measurements were made with the single particle soot photometer (SP2) from fresh and aged BC from coating and coagulation experiments with secondary organic aerosol (SOA) formed in the chamber. BC measurements are coupled with photoactoustic measurements spanning the visible region to probe BC enhancements when mixed with SOA. Here we focus on the enhancements at 781 nm, that are tracked throughout SOA growth on BC, as determined from SP2 coating thicknesses. Thermal denuder (TD) experiments are conducted and enhancements are calculated from two different methods that agree well with each other, confirming the observed results. BC measurements are also compared with co-located measurements from SPLAT-II and filter analysis using SEM and TEM. BC coagulated with SOA produces minimal absorption enhancement values, whereas coatings are observed to have significant enhancement values at 300 degrees C, e.g. 1.3 for thickly coated BC. BC particles were coagulated with SOA in the chamber since this morphology has been observed in wildfire emissions (Sedlacek et al., 2012). Since we did not observe appreciable enhancements for the coagulated BC, we expect that ambient emissions dominated by this particle type to have enhancements due to other sources, such as brown carbon (BrC) that is often co-emitted (Saleh et

  5. Acid-catalyzed Heterogeneous Reactions in SOA Formation

    NASA Astrophysics Data System (ADS)

    Ng, N.; Keywood, M.; Varutbangkul, V.; Gao, S.; Loewer, E.; Surratt, J.; Richard, F. C.; John, S. H.

    2003-12-01

    The importance of heterogeneous reactions in secondary organic aerosol (SOA) formation has recently excited a great deal of interest in the aerosol community. Jang and Kamens (2001) showed enhanced aerosol yield from aldehydes, which can be produced by atmospheric photochemical reactions, in the presence of acidic seed. They suggest that the carbonyl functional groups of the aldehydes further react in the aerosol phase via hydration, polymerization, and hemiacetal/acetal formation with alcohols at an accelerated rate in the presence of acid. Jang et al. (2003) demonstrated similar results using a flow reactor and Czoschke et al. (in press) qualitatively showed increased yields for isoprene and alpha-pinene ozonolysis in the presence of acidic seed. While these findings are intriguing and important, the conditions under which the experiments were carried out were atmospherically unrealistic. A series of SOA formation experiments have been carried out in the Caltech Indoor Chamber Facility, which is comprised of dual 28 m3 FEP Teflon chambers, with the flexibility to carry out both dark ozonolysis and photochemical OH oxidation reactions. Cycloheptene and alpha-pinene were oxidized in the presence of neutral seed under dry (<10% RH) and humid (50% RH) conditions and in the presence of acidic seed under humid (50% RH) conditions. The SOA yields for these experiments will be presented, and the extent of the influence of acid-catalyzed reactions on SOA yield will be discussed. Reference List 1. Cocker, D. R. III. and R. C. Flagan and J. H. Seinfeld, State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environmental Science and Technology, 35, 2594-2601, 2001. 2. Czoschke, N. M., M. Jang, and R. M. Kamens, Effect of acid seed on biogenic sceondary organic aerosol growth, Atmospheric Environment, In press. 3. Jang, M., S. Lee, and R. M. Kamens, Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor

  6. Sources and formation pathways of organic aerosol in a subtropical metropolis during summer

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lung, Candice Shi-Chun; Li, Nan; Chen, Wei-Nai; Fu, Tzung-May; Chang, Chih-Chung; Hwang, Gong-Do

    2015-09-01

    A field campaign combined with numerical simulations was designed to better understand the emission sources and formation processes of organic aerosols (OA) in a subtropical environment. The field campaign measured total and water soluble organic carbon (OC) in aerosol, as well as its precursor gases in the Taipei metropolis and a nearby rural forest during the summer of 2011. A regional air-quality model modified with an additional secondary organic aerosol (SOA) formation pathway was used to decipher the observed variations in OA, with focus on various formation pathways and the relative contributions from anthropogenic and biogenic sources. According to the simulations, biogenic sources contributed to 60% and 72% of total OA production at the NTU (urban) and HL (rural) sites. The simulated fractions of SOA in total OA were 67% and 79% near the surface of NTU and HL, respectively, and these fractions increased with height and reach over 90% at the 1-km altitude. Estimated from the simulation results, aqueous-phase dicarbonyl uptake was responsible of 51% of OA production in the urban area, while the primary emissions, reversible partitioning of semi-volatile oxidation products, oligomerization of semi-volatile SOA in the particulate phase and acid-enhanced oxidation contributed to 33%, 10%, 5% and 1% respectively; in the rural area, the percentages were 59%, 21%, 13%, 7% and 1%, respectively. Meteorological factors, including large-scale wind direction, local circulation and planetary boundary layer height, all have strong influences on the source contributions and diurnal variations of OA concentration.

  7. Volatility of Secondary Organic Aerosol (SOA) Formed from Photooxidation of Isoprene

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Kollman, M.; Xu, L.; Shilling, J. E.

    2012-12-01

    Isoprene is the most abundant non-methane hydrocarbon, so even a small aerosol yield may have a large effect on both local and global secondary organic aerosol (SOA) production. Previous studies have shown that isoprene SOA yields are higher under low-NOx conditions, and that volatility of isoprene SOA under low-NOx conditions is similar to a-pinene SOA. In this study, the volatility of SOA formed from the photooxidation of isoprene under different NOx conditions is investigated with a thermodenuder. Laboratory chamber experiments are performed under different NOx conditions at low RH (RH<5%) and without seed. H2O2 and HONO is used as OH precursor for low-NOx and high-NOx experiments, respectively. During each experiment, isoprene and selected gas-phase oxidation products are monitored with a Proton Transfer Reaction Mass Spectrometry (PTRMS).Particle-phase composition, mass, size distribution are measured with a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Scanning Mobility Particle Sizer (SMPS). The thermodenuder is upstream of the the HR-ToF-AMS and SMPS, modulating the aerosol composition with temperatures ranging from 30 to 200 oC. In general, the volatility of SOA decreases after peak SOA growth, indicating the formation of highly oxidized, low-volatility species with increased photochemical aging. The SOA yields obtained are in agreement with previous studies, with more SOA formed under low-NOx conditions. However, it is found that SOA formed under low-NOx conditions are more volatile. Preliminary results show that about 60% of low-NOx isoprene SOA and <40% of high-NOx isoprene SOA evaporates at 100 oC. Under high-NOx conditions, there is still 10% of aerosol mass remaining at 200 oC, suggesting that there are some very non-volatiles species in high-NOx isoprene SOA. The mass fraction of isoprene SOA remaining as a function of NOx and temperature will be presented. The mass spectra features of SOA at these conditions will also

  8. Experimental demonstration and devices optimization of NRZ-DPSK amplitude regeneration scheme based on SOAs.

    PubMed

    Cao, Tong; Chen, Liao; Yu, Yu; Zhang, Xinliang

    2014-12-29

    We propose and experimentally demonstrate a novel scheme which can simultaneously realize wavelength-preserving and phase-preserving amplitude noise compression of a 40 Gb/s distorted non-return-to-zero differential-phase-shift keying (NRZ-DPSK) signal. In the scheme, two semiconductor optical amplifiers (SOAs) are exploited. The first one (SOA1) is used to generate the inverted signal based on SOA's transient cross-phase modulation (T-XPM) effect and the second one (SOA2) to regenerate the distorted NRZ-DPSK signal using SOA's cross-gain compression (XGC) effect. In the experiment, the bit error ratio (BER) measurements show that power penalties of constructive and destructive demodulation at BER of 10-9 are -1.75 and -1.01 dB, respectively. As the nonlinear effects and the requirements of the two SOAs are completely different, quantum-well (QW) structures has been separately optimized. A complicated theoretical model by combining QW band structure calculation with SOA's dynamic model is exploited to optimize the SOAs, in which both interband effect (carrier density variation) and intraband effect (carrier temperature variation) are taken into account. Regarding SOA1, we choose the tensile strained QW structure and large optical confinement factor to enhance the T-XPM effect. Regarding SOA2, the compressively strained QW structure is selected to reduce the impact of excess phase noise induced by amplitude fluctuations. Exploiting the optimized QW SOAs, better amplitude regeneration performance is demonstrated successfully through numerical simulation. The proposed scheme is intrinsically stable comparing with the interferometer structure and can be integrated on a chip, making it a practical candidate for all-optical amplitude regeneration of high-speed NRZ-DPSK signal. PMID:25607178

  9. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-08-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  10. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-06-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  11. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Kroll, J. H.; Kwan, A. J.; McCabe, D. C.; Wennberg, P. O.; Sorooshian, A.; Murphy, S. M.; Dalleska, N. F.; Flagan, R. C.; Seinfeld, J. H.

    2007-10-01

    Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well) may be more efficient in polluted air.

  12. SOA YIELDS AND ORGANIC PRODUCT DISTRIBUTION FROM NATURAL HYDROCARBON/NOX IRRADIATIONS

    EPA Science Inventory

    Secondary organic aerosol (SOA) typically comprises one-quarter to one-third of the ambient aerosol mass in summertime urban atmospheres. In tropospheric environments, the main precursors of SOA come from aromatic and natural hydrocarbons. Recent work by various investigators...

  13. Wintertime Secondary Organic Aerosol (SOA) Formation from Oxidation of Volatile Organic Compounds (VOCs) Associated with Oil and Gas Extraction

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Soltis, J.; Field, R. A.; Bates, T. S.; Quinn, P.; De Gouw, J. A.; Veres, P. R.; Warneke, C.; Graus, M.; Gilman, J.; Lerner, B. M.; Koss, A.

    2013-12-01

    The Uintah Basin is located in a lightly populated area of Northeastern Utah near Dinosaur National Monument. Oil and gas extraction activities in the basin have dramatically increased in recent years due to the application of hydraulic fracturing. The Uintah Basin has experienced numerous high-ozone events during the past several winters with concentrations often exceeding 100 ppb. PM 2.5 monitoring by the city of Vernal, located at the edge of the basin, have shown wintertime concentrations in excess of the EPA 8-hour national standard, though the source and composition of particulates during these events is unclear. The Energy and Environment - Uintah Basin Winter Ozone Study (E&E UBWOS) was conducted during the winters of 2012 and 2013. During the study, intensive measurements of aerosol composition and speciated VOCs were made at a monitoring site near oil and gas extraction activities. Organic aerosol was found to be a major component of PM 2.5 and organic aerosol formation was highly correlated with the production of secondary VOC's. This correlation suggests that the organic aerosol is secondary in nature even though O:C ratios suggest a less oxidized aerosol than often observed in summertime SOA. The ozone levels and organic aerosol mass during 2012 were much lower than those observed in 2013. Calculations of the aerosol yield during both years will be presented along with an analysis of how well observed yields match predictions based on smog-chamber data. The potential for additional aerosol formation in the system will also be discussed.

  14. Measurements of Oxidized Organic Compounds during SOAS 2013 using nitrate ion chemical ionization coupled with High Resolution Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Stark, H.; Cnagaratna, M.; Junninen, H.; Hakala, J. P.; Mauldin, R.; Ehn, M.; Sipila, M.; Krechmer, J.; Kimmel, J.; Jimenez, J. L.; Jayne, J. T.; Worsnop, D. R.

    2013-12-01

    We present ambient measurements of gaseous organic compounds by means of a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometry (HR-ToF-CIMS) using nitrate ion (NO3-) chemistry. This technique allows to selectively detect oxidized gas-phase species, e.g., oxidized organic molecules and sulfuric acid via clustering with NO3- and its high order clusters. The capability of making such measurements is important because both sulfuric acid and organic gas molecules have a recognized key role in new particle formation (NPF) processes and likely have an important role in particulate phase chemistry and formation of secondary organic aerosols (SOA). The HR-ToF-CIMS was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the forest supersite in Centreville, AL, from June 1 to July 15, 2013. The main goal of the SOAS campaign was to investigate the composition and sources of SOA in the Southeast US, where emissions are mainly represented by biogenic volatile organic compounds (BVOC) emissions and in less extent by anthropogenic emissions (AVOC). During SOAS, the HR-ToF-CIMS detected a range of organic ions that based on previous literature could be identified as oxidation products of both isoprene and terpenes. The isoprene products were 5 to 10 times more abundant than the terpene products. The isoprene-related molecules showed a diurnal cycle with a day time peak, typically after 1500 local time, while the terpene products were higher at night (between 2000 and 0600 local time). These results are consistent with the diurnal trends of primary BVOC emissions from other co-located instruments. The ambient data are also compared to laboratory measurements where oxidized organic vapors are produced using a Potential Aerosol Mass (PAM) flow reactor by the OH oxidation of biogenic gas-phase precursors (isoprene, a-pinene) over multiple days of equivalent atmospheric exposure.

  15. Dual-facet coupling of SOA array on 4-μm silicon-on-insulator implementing a hybrid integrated SOA-MZI wavelength converter

    NASA Astrophysics Data System (ADS)

    Alexoudi, T.; Fitsios, D.; Kanellos, G. T.; Pleros, N.; Tekin, T.; Cherchi, M.; Ylinen, S.; Harjanne, M.; Kapulainen, M.; Aalto, T.

    2014-03-01

    Hybrid integration on Silicon-on-Insulator (SOI) has emerged as a practical solution for compact and high-performance Photonic Integrated Circuits (PICs). It aims at combining the cost-effectiveness and CMOS-compatibility benefits of the low-loss SOI waveguide platform with the versatile active optical functions that can be realized by III-V photonic materials. The utilization of SOI, as an integration board, with μm-scale dimensions allows for an excellent optical mode matching between silicon rib waveguides and active chips, allowing for minimal-loss coupling of the pre-fabricated IIIV components. While dual-facet coupling as well as III-V multi-element array bonding should be employed to enable enhanced active on-chip functions, so far only single side SOA bonding has been reported. In the present communication, we present a novel integration scheme that flip-chip bonds a 6-SOA array on 4-μm thick SOI technology by coupling both lateral SOA facets to the waveguides, and report on the experimental results of wavelength conversion operation of a dual-element Semiconductor Optical Amplifier - Mach Zehnder Interferometer (SOA-MZI) circuit. Thermocompression bonding was applied to integrate the pre-fabricated SOAs on SOI, with vertical and horizontal alignment performed successfully at both SOA facets. The demonstrated device has a footprint of 8.2mm x 0.3mm and experimental evaluation revealed a 12Gb/s wavelength conversion operation capability with only 0.8dB power penalty for the first SOA-MZI-on-SOI circuit and a 10Gb/s wavelength conversion operation capability with 2 dB power penalty for the second SOA-MZI circuit. Our experiments show how dual facet integration can significantly increase the level of optical functionalities achievable by flip-chip hybrid technology and pave the way for more advanced and more densely PICs.

  16. All-optical flip-flop based on coupled SOA-PSW

    NASA Astrophysics Data System (ADS)

    Wang, Lina; Wang, Yongjun; Wu, Chen; Wang, Fu

    2016-07-01

    The semiconductor optical amplifier (SOA) has obvious advantages in all-optical signal processing, because of the simple structure, strong non-linearity, and easy integration. A variety of all-optical signal processing functions, such as all-optical wavelength conversion, all-optical logic gates and all-optical sampling, can be completed by SOA. So the SOA has been widespread concerned in the field of all-optical signal processing. Recently, the polarization rotation effect of SOA is receiving considerable interest, and many researchers have launched numerous research work utilizing this effect. In this paper, a new all-optical flip-flop structure using polarization switch (PSW) based on polarization rotation effect of SOA is presented.

  17. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2015-08-01

    A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2 > 0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black

  18. Development of a Carbon Number Polarity Grid SOA Model with the use of Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Lee-Taylor, J.; Asher, W.; Hodzic, A.; Madronich, S.; Aumont, B.; Pankow, J. F.; Barsanti, K. C.

    2012-12-01

    A major weakness in current air quality and climate models is the ability to simulate secondary organic aerosol (SOA) levels and physiochemical properties accurately. A new approach to model SOA formation is the carbon number (nc) polarity grid (CNPG) framework. The CNPG framework makes use of a nc vs. polarity grid for representing relevant organic compounds and their time-dependent concentrations. The nc vs polarity grid is well suited for modeling SOA because nc together with some suitable measure of total molecular polarity provides the minimum yet sufficient formation for estimating the parameters required to calculate partitioning coefficients. Furthermore, CNPG allows consideration of the effects of variation in the activity coefficients of the partitioning compounds, variation in the mean molecular weight of the absorbing organic phase, water uptake, and the possibility of phase separation in the organic aerosol phase. In this work, we use the GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) chemistry mechanism to produce the chemical structures of SOA precursor oxidization products and their time-dependent concentrations. The SIMPOL group contribution method is used to calculate the enthalpy of vaporization ΔHvap for each product. The total molecular polarity is then calculated as ΔHvap,diff, the difference between each compound's ΔHvap and that of its carbon-number equivalent straight-chain hydrocarbon. The gas- and particle-phase concentrations of each compound are mapped onto the nc vs polarity grid as a function of time to evaluate the time evolution of SOA-relevant oxidation products and to help guide lumping strategies for reducing complexity. In addition to using ΔHvap,diff, use of other measures of polarity will also be explored. Initial SOA precursor studies include toluene (C7) + n-heptadecane (C17) and α-pinene, under atmospherically relevant conditions. Results will be discussed in the context of the

  19. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

    PubMed Central

    Gomez-Rosales, S.; de L. Angeles, M.

    2015-01-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water. PMID:25557817

  20. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-12-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  1. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGESBeta

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenatedmore » molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  2. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    NASA Astrophysics Data System (ADS)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  3. 77 FR 12226 - Sadex Corp.; Filing of Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Petition (Animal Use); Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed... regulations be amended to provide for the safe use of electron beam and x-ray sources for irradiation of... use of electron beam and x- ray sources for irradiation of poultry feed and poultry feed...

  4. All-optical SOA latch fail-safe alarm system

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2004-11-01

    Emergency alarm systems, for example, that switch off critical processes in process plant, are vulnerable to deliberate or accidental sabotage through coupling of electromagnetic pulses (EMP) to wires and/or from sparks due to broken wires. A proposed system significantly reduces vulnerability by using a fast all-optical latch in conjunction with an optical sensor and optical fibers. Sparks cannot be created on breaking an optical beam and electromagnetic field transients have negligible effect on optical signals. The optical latch uses optical semiconductor amplifiers (SOAs) configured to form a flip-flop. The flip-flop latches after the occurrence of an intrusion that may be as short as a few nanoseconds, much faster than most environmental changes occur. Detection of an emergency or any break in connections causes the light to drop, triggering the alarm. Computer simulation shows that the all-optical latch is fast and effective.

  5. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  6. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, ground site

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2015-03-01

    A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~9% (up to 26%) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~97% of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2>0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~25% (up to 47%) of the IEPOX-OA factor mass, which accounted for 32% of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO~0.03ppb), carbon monoxide (CO~116 ppb), and black carbon (BC~0

  7. Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III

    2016-02-01

    Substitution of methyl groups onto the aromatic ring determines the secondary organic aerosol (SOA) formation from the monocyclic aromatic hydrocarbon precursor (SOA yield and chemical composition). This study links the number of methyl groups on the aromatic ring to SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions (HC/NO > 10 ppbC : ppb). Monocyclic aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from monocyclic aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low-NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from monocyclic aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests that, as more methyl groups are attached on the aromatic ring, SOA products from these monocyclic aromatic hydrocarbons become less oxidized per mass/carbon on the basis of SOA yield or chemical composition.

  8. Aged Organic Aerosol in the Upper Troposphere: Aging of boundary layer aerosol during and after convective transport and in-situ SOA formation during DC3. (Invited)

    NASA Astrophysics Data System (ADS)

    Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Jimenez, J. L.; Hodzic, A.; Bela, M. M.; Barth, M. C.; Olson, J. R.; Crawford, J. H.; Brune, W. H.; Pollack, I. B.; Ryerson, T. B.; Blake, D. R.; Wisthaler, A.; Mikoviny, T.

    2013-12-01

    While aerosol scavenging in deep convection is efficient (comparable to soluble species like formaldehyde), significant transport of submicron aerosol was observed repeatedly during storms targeted in the course of the DC3 (Deep Convective Clouds and Chemistry ) campaign. The lofted aerosol was mostly organic, and even in fresh outflow was significantly more oxidized than the aerosol sampled in the source region of the convection. Organic aerosol (OA) sampled in both day-old outflow as well as in the background continental UT was in general significantly more oxidized than OA observed both in the fresh outflow, and in most lower tropospheric aerosol. This suggests either fast oxidative chemistry, and/or long residence times in the UT. Some of the potential factors contributing to this fast oxidation will be explored in this talk. A second source of UT OA was observed during several flights where gas-phase organics in the presence of NOx lead to the formation of secondary OA (SOA), including particulate organic nitrate. Most observations of this UT SOA during DC3 were made in fresh outflow. However, a unique opportunity to study the chemistry of this SOA formation in more detail with a box model presented itself in the flight on July 21st, 2012; here an initially near-particle-free UT airmass originating in the wake of a dissolving nighttime mesoscale convective system (MCS) was observed over several hours until new particle growth dominated by OA and particulate nitrate was measured.

  9. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  10. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs.

    PubMed

    Case, C L; Carlson, M S

    2002-07-01

    Three experiments were conducted to evaluate the effect of feeding pharmacological concentrations of zinc (Zn), from organic and inorganic sources, on growth performance, plasma and tissue Zn accumulation, and Zn excretion of nursery pigs. Blood from all pigs was collected for plasma Zn determination on d 14 in Exp. 1, d 7 and 28 in Exp. 2, and d 15 in Exp. 3. In Exp. 1, 2, and 3, 90, 100, and 15 crossbred (GenetiPorc USA, LLC, Morris, MN) pigs were weaned at 24+/-0.5, 18, and 17 d of age (6.45, 5.47, and 5.3 kg avg initial BW), respectively, and allotted to dietary treatment based on initial weight, sex, and litter. A Phase 1 nursery diet was fed as crumbles from d 0 to 14 in Exp. 1, 2, and 3, and a Phase 2 nursery diet was fed as pellets from d 15 to 28 in Exp. 1 and 2. The Phase 1 and Phase 2 basal diets were supplemented with 100 ppm Zn as ZnSO4. Both dietary phases contained the same five dietary treatments: 150 ppm additional Zn as zinc oxide (ZnO), 500 ppm added Zn as ZnO, 500 ppm added Zn as a Zn-amino acid complex (Availa-Zn 100), 500 ppm added Zn as a Zn-polysaccharide complex (SQM-Zn), and 3,000 ppm added Zn as ZnO. Overall in Exp. 1, pigs fed 500 ppm added Zn as SQM-Zn or 3,000 ppm added Zn as ZnO had greater ADG (P < 0.05) than pigs fed 150 ppm, 500 ppm added Zn as ZnO, or 500 ppm added Zn as Availa-Zn 100 (0.44 and 0.46 kg/d vs 0.35, 0.38, and 0.33 kg/d respectively). Overall in Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had greater (P < 0.05) ADG and ADFI than pigs fed any other dietary treatment. On d 14 of Exp. 1 and d 28 of Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had higher (P < 0.05) plasma Zn concentrations than pigs on any other treatment. In Exp. 3, fecal, urinary, and liver Zn concentrations were greatest (P < 0.05) in pigs fed 3,000 ppm added Zn as ZnO. On d 10 to 15 of Exp. 3, pigs fed 3,000 ppm added Zn as ZnO had the most negative Zn balance (P < 0.05) compared with pigs fed the other four dietary Zn treatments. In conclusion, feeding

  11. Probing Molecular Associations of Secondary Organic Aerosol (SOA) Samples from CalNex 2010 with Nano-DESI High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    O'Brien, R. E.; Nguyen, T. B.; Laskin, A.; Laskin, J.; Hayes, P. L.; Liu, S.; Jimenez, J. L.; Russell, L. M.; Nizkorodov, S.; Goldstein, A. H.

    2012-12-01

    This project focuses on analyzing the identities of molecules that comprise oligomers in size resolved aerosol fractions. Since oligomers are generally too large and polar to be measured by typical GC/MS analysis, soft ionization with high resolution mass spectrometry is used to extend the range of observable compounds. Samples collected during CalNex 2010 in Bakersfield and Los Angeles and secondary organic aerosol (SOA) produced in a photochemical chamber by photooxidation of diesel (DSL) fuel and isoprene (ISO) under humid, high-NOx conditions have been analyzed with nanospray desorption electrospray ionization (nano-DESI) and a high-resolution Orbitrap mass spectrometer. The nano-DESI is a soft ionization technique that allows molecular ions to be observed and the Orbitrap has sufficient resolution to determine the elemental composition of almost all species above the detection limit. A large fraction of SOA is made up of high molecular weight oligomers which are thought to form through acid catalyzed reactions of photo-chemically processed volatile organic compounds (VOC). The formation of oligomers is influenced by the VOCs available, the amount of atmospheric sulfate and nitrate, and the magnitude of photo-chemical processing, among other potential influences. We present the elemental composition of chemical species in size resolved SOA samples with six-hour time resolution, providing the first time resolved data set for the study of these oligomers in atmospheric samples. We present a comparison of the degree of overlap between the ambient and chamber experiments as a novel method to examine sources for this fraction of SOA. Possible formation pathways and sources of observed compounds are analyzed by comparison to other concurrent measurements at the site.

  12. High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Fisseha, R.; Putman, A. L.; Rahn, T. A.; Mazzoleni, L. R.

    2012-01-01

    The detailed molecular composition of secondary organic aerosols (SOA) from limonene ozonolysis was studied using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. High molecular weight (MW) compounds (m/z > 300) were found to constitute a significant number fraction of the identified SOA components. Double bond equivalents (DBE = the number of rings plus the number of double bonds) increased with MW. The O:C ratios and relative abundances of compounds decreased with increasing MW. The mass spectra of limonene contain 4 distinct clusters of negative ions: Group I (140 < m/z < 300), Group II (300 < m/z < 500), Group III (500 < m/z < 700) and Group IV (700 < m/z < 850). A number of CH2 and O homologous series of low MW SOA (Group 1) with carbon number 7-15 and oxygen number 3-9 were observed. Their occurrence can be explained with isomerization and elimination reactions of Criegee radicals, reactions between alkyl peroxy radicals, and scission of alkoxy radicals resulting from the Criegee radicals. Additionally, fragmentation analysis and observations of formaldehyde homologous series provide evidence for aerosol growth by the reactive uptake of generated gas-phase carbonyls in limonene ozonolysis. The decreasing O:C ratios between group of compounds indicated the importance of condensation (aldol and esterification) reaction pathways for high MW compound formation. However, the prominent DBE changes of 2 between the groups of compounds and selected fragmentation (MS/MS) analysis of Group II and Group III ions indicated a predominance of non-condensation (hydroperoxide, Criegee and hemi-acetal) reaction pathways. A reaction matrix created with the combination of low MW SOA, hydroperoxides, and Criegee radicals indicated higher frequencies for the hemi-acetal and condensation reaction pathways. Overall, the combined approach confirms the importance of non-condensation reaction pathways over condensation reaction pathways. Among

  13. Molecular-level Analysis of Size Resolved Secondary Organic Aerosol (SOA) Samples from CALNEX Bakersfield Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    O'Brien, R. E.; Laskin, A.; Laskin, J.; Weber, R.; Goldstein, A. H.

    2011-12-01

    This project focuses on analyzing the identities of molecules that comprise oligomers in size resolved aerosol fractions. Since oligomers are generally too large and polar to be measured by typical GC/MS analysis, soft ionization with high resolution mass spectrometry is used to extend the range of observable compounds. Samples collected with a microorifice uniform deposition impactor (MOUDI) during CALNEX Bakersfield in June 2010 have been analyzed with nanospray desorption electrospray ionization (nano-DESI) and an Orbitrap mass spectrometer. The nano-DESI is a soft ionization technique that allows molecular ions to be observed and the Orbitrap has sufficient resolution to determine the elemental composition of almost all species above the detection limit. A large fraction of SOA is made up of high molecular weight oligomers which are thought to form through acid catalyzed reactions of photo-chemically processed volatile organic compounds (VOC). The formation of oligomers must be influenced by the VOCs available, the amount of atmospheric sulfate and nitrate, and the magnitude of photo-chemical processing, among other potential influences. We present the elemental composition of chemical species in SOA in the 0.18 to 0.32 micron size range, providing the first multi-day data set for the study of these oligomers in atmospheric samples. Possible formation pathways and sources of observed compounds will be examined by comparison to other concurrent measurements at the site.

  14. A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON

    NASA Astrophysics Data System (ADS)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.

  15. AEROSOL OPTICAL PROPERTIES AND BIOGENIC SOA: EFFECT ON HYGROSCOPIC PROPERTIES AND LIGHT ABSORPTION

    EPA Science Inventory

    This study will provide a comprehensive characterization of optical properties of biogenic SOA and their sensitivity to anthropogenic influence. Several parameters critical for climate modeling, such as absorption cross-section, single scattering albedo and sensitivity to R...

  16. How important are glassy SOA ice nuclei for the formation of cirrus clouds?

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J. E.; Lin, G.; Liu, X.; Wang, M.

    2014-12-01

    Extremely low ice numbers (i.e. 5 - 100 / L) have been observed in the tropical troposphere layer (TTL) in a variety of field campaigns. Various mechanisms have been proposed to explain these low numbers, including the effect of glassy secondary organic aerosol acting as heterogeneous ice nuclei (IN). In this study, we explored these effects using the CAM5.3 model. SOA fields were provided by an offline version of the University of Michigan-IMPACT model, which has a detailed process-based mechanism that describes aerosol microphysics and SOA formation through both gas phase and multiphase reactions. The transition criterion of SOA to glassy heterogeneous IN follows the parameterization developed by Wang et al. 2012. With this parameterization, glassy SOA IN form mainly when the temperature (T) is lower than 210K. In the default CAM5.3 set-up in which only the fraction of Aitken mode sulfate aerosols with diameter larger than 100nm participate in the ice nucleation (Liu and Penner 2005 parameterization), glassy SOA IN are shown to decrease the ice number (Ni) by suppressing some of the homogeneous freezing at low temperatures thereby leading to an improved representation of the relationship between Ni and T compared to the observations summarized by Kramer et al. 2009. However, when we allow the total number of the Aitken mode sulfate particles to participate in homogeneous freezing, glassy SOA IN have only a small impact on the relationship between Ni and T. If the subgrid updraft velocity is decreased to 0.1 m/s (compared to 0.2 m/s in the default set-up), there is a large decrease of Ni, since homogeneous freezing is more easily suppressed by glassy SOA IN at these updrafts. We also present the effects of glassy SOA IN using an alternative ice nucleation scheme (Barahona and Nenes, 2009).

  17. An Adjustable Gain-Clamped Semiconductor Optical Amplifier (AGC-SOA)

    NASA Astrophysics Data System (ADS)

    Michie, C.; Kelly, A. E.; Armstrong, I.; Andonovic, I.; Tombling, C.

    2007-06-01

    The operation of a semiconductor optical amplifier (SOA)-ring laser-based subsystem, with the capability to provide adjustable gain-clamped operation, will be described, and preliminary characterization results will be presented. The device uses two SOAs in a ring-cavity topology: one to amplify the signal and the other to control the gain. This type of subsystem finds applications in packet-based dynamic systems where it may be used for power equalization and linear amplification.

  18. Ice Formation Potential of Laboratory Generated Biogenic and Anthropogenic-Biogenic SOA Particles

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Alpert, P. A.; Charnawskas, J. C.; Lambe, A. T.; Massoli, P.; Onasch, T. B.; Davidovits, P.; Worsnop, D. R.

    2014-12-01

    Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and may play an important role in cloud glaciation processes. We investigated several laboratory generated SOA particles systems for their initial water uptake and ice formation propensity as a function of temperature, T, relative humidity with respect to water, RH, relative humidity with respect to ice, RHice, and for different humidification rates, cRHice. This includes pure SOA particles formed from α-pinene, isoprene, and longifolene volatile organic compound precursors with and without the presence of sulfate seed particles as well as oxidized soot and soot-coated α-pinene and naphthalene SOA with varying O/C ratios and coating thicknesses. Micro-spectroscopic chemical imaging using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is used to characterize SOA, SOA-sulfate, SOA-soot particles generated in the Boston College potential aerosol mass (PAM) flow reactor in relation to their ice nucleation behavior. Water uptake is consistently observed on SOA particles at RH=75% and 95% for 262 and 228 K, respectively, followed by homogeneous ice nucleation applying atmospherically relevant cRHice=1 % min-1. When cRHice=25 % min-1, ice nucleation is delayed by about 30-40% RHice and cannot be explained by homogeneous ice nucleation. This implies diffusion limitation of water into these potentially glassy or semi-solid organic particles resulting in non-equilibrium between ambient RH and particle water activity. These data will aid in our understanding of the role of organic particle phase states in response to changes in T and RH which is crucial information for prediction of atmospheric ice nucleation.

  19. Novel anti-jamming technique for OCDMA network through FWM in SOA based wavelength converter

    NASA Astrophysics Data System (ADS)

    Jyoti, Vishav; Kaler, R. S.

    2013-06-01

    In this paper, we propose a novel anti-jamming technique for optical code division multiple access (OCDMA) network through four wave mixing (FWM) in semiconductor optical amplifier (SOA) based wavelength converter. OCDMA signal can be easily jammed with high power jamming signal. It is shown that wavelength conversion through four wave mixing in SOA has improved capability of jamming resistance. It is observed that jammer has no effect on OCDMA network even at high jamming powers by using the proposed technique.

  20. Research of marine sensor web based on SOA and EDA

    NASA Astrophysics Data System (ADS)

    Jiang, Yongguo; Dou, Jinfeng; Guo, Zhongwen; Hu, Keyong

    2015-04-01

    A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean `instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.

  1. Application of SOA (Service Oriented Architecture) in Early Warning Systems for Tsunamis and other Natural Hazards

    NASA Astrophysics Data System (ADS)

    Lendholt, Matthias; Hammitzsch, Martin; Wächter, Joachim

    2010-05-01

    The DEWS (Distant Early Warning System) [1] project, funded under the 6th Framework Programme of the European Union, has the target to create a new generation of interoperable early warning systems. Two major objectives have steered the development process: usage of free and open source software (FOSS) and compliance to the principles of a Service Oriented Architecture (SOA). The second objective was mainly driven by the superior ambition of the development of a generic early warning framework not only for tsunamis but also for other natural hazards. The development of a reference architecture enforced the clear separation between hazard-specific and generic functionality. Integration of sensor networks was realized with Open Geospatial Consortium (OGC) [2] Sensor Web Enablement (SWE) [3] services. Sensor types are relatively specific for different hazard types: while inundation sensors can be used both for tsunami and floodwater hazards, contamination meters requires a complete different semantic integration into the client application. Based on sensor measurements a simulation system supports the operator with forecasts to enable the dissemination of precise warning messages. The simulation integration was realized with the Web Processing Service (WPS) [4] but here again semantic integration is simulation specific and has to be realized inside the client application. In contrast the integration of Spatial Data Infrastructure (SDI) via Web Mapping Service (WMS) [5] and Web Feature Service (WFS) [6] to complete the situation report is independent from any hazard type and depends on the data availability and requirements of each warning centre. The downstream component - the message dissemination from the operator via information logistics to the dissemination channel endpoints - has been realized independently from any specific hazard type. Using the Common Alerting Protocol (CAP) [7] and Emergency Data Exchange Language (EDXL) [8] enables the re-usage for all kind

  2. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  3. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  4. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  5. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  6. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  7. Simulation of SOA formation and composition from oxidation of toluene and m-xylene in chamber experiments

    NASA Astrophysics Data System (ADS)

    Xu, J.; Liu, Y.; Nakao, S.; Cocker, D.; Griffin, R. J.

    2013-12-01

    Aromatic hydrocarbons contribute an important fraction of anthropogenic reactive volatile organic compounds (VOCs) in the urban atmosphere. Photo-oxidation of aromatic hydrocarbons leads to secondary organic products that have decreased volatilities or increased solubilities and can form secondary organic aerosol (SOA). Despite the crucial role of aromatic-derived SOA in deteriorating air quality and harming human health, its formation mechanism is not well understood and model simulation of SOA formation still remains difficult. The dependence of aromatic SOA formation on nitrogen oxides (NOx) is not captured fully by most SOA formation models. Most models predict SOA formation under high NOx levels well but underestimate SOA formation under low NOx levels more representative of the ambient atmosphere. Thus, it is crucial to investigate the NOx-dependent chemistry in aromatic photo-oxidation systems and correspondingly update SOA formation models. In this study, NOx-dependent mechanisms of toluene and m-xylene SOA formation are updated using the gas-phase Caltech Atmospheric Chemistry Mechanism (CACM) coupled to a gas/aerosol partitioning model. The updated models were optimized by comparing to eighteen University of California, Riverside United States Environmental Protection Agency (EPA) chamber experiment runs under both high and low NOx conditions. Correction factors for vapor pressures imply uncharacterized aerosol-phase association chemistry. Simulated SOA speciation implies the importance of ring-opening products in governing SOA formation (up to 40%~60% for both aromatics). The newly developed model can predict strong decreases of m-xylene SOA yield with increasing NOx. Speciation distributions under varied NOx levels implies that the well-known competition between RO2 + HO2 and RO2 + NO (RO2 = peroxide bicyclic radical) may not be the only factor influencing SOA formation. The reaction of aromatic peroxy radicals with NO competing with its self

  8. Influence of humidity, temperature, and radicals on the formation and thermal properties of secondary organic aerosol (SOA) from ozonolysis of β-pinene.

    PubMed

    Emanuelsson, Eva U; Watne, Ågot K; Lutz, Anna; Ljungström, Evert; Hallquist, Mattias

    2013-10-10

    The influence of water and radicals on SOAs produced by β-pinene ozonolysis was investigated at 298 and 288 K using a laminar flow reactor. A volatility tandem differential mobility analyzer (VTDMA) was used to measure the evaporation of the SOA, enabling the parametrization of its volatility properties. The parameters extracted included the temperature at which 50% of the aerosol had evaporated (T(VFR0.5)) and the slope factor (S(VFR)). An increase in S(VFR) indicates a broader distribution of vapor pressures for the aerosol constituents. Reducing the reaction temperature increased S(VFR) and decreased T(VFR0.5) under humid conditions but had less effect on T(VFR0.5) under dry conditions. In general, higher water concentrations gave lower T(VFR0.5) values, more negative S(VFR) values, and a reduction in total SOA production. The radical conditions were changed by introducing OH scavengers to generate systems with and without OH radicals and with different [HO2]/[RO2] ratios. The presence of a scavenger and lower [HO2]/[RO2] ratio reduced SOA production. Observed changes in S(VFR) values could be linked to the more complex chemistry that occurs in the absence of a scavenger and indicated that additional HO2 chemistry gives products with a wider range of vapor pressures. Updates to existing ozonolysis mechanisms with routes that describe the observed responses to water and radical conditions for monoterpenes with endocyclic and exocyclic double bonds are discussed. PMID:24001129

  9. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA)—Power plant studies: assessment of breathing pattern

    PubMed Central

    Diaz, Edgar A.; Lemos, Miriam; Coull, Brent; Long, Mark S.; Rohr, Annette C.; Ruiz, Pablo; Gupta, Tarun; Kang, Choong-Min; Godleski, John J.

    2013-01-01

    Our approach to study multi-pollutant aerosols isolates a single emissions source, evaluates the toxicity of primary and secondary particles derived from this source, and simulates chemical reactions that occur in the atmosphere after emission. Three U.S. coal-fired power plants utilizing different coals and with different emission controls were evaluated. Secondary organic aerosol (SOA) derived from α-pinene and/or ammonia was added in some experiments. Male Sprague-Dawley rats were exposed for 6 h to filtered air or different atmospheric mixtures. Scenarios studied at each plant included the following: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + SOA (POS); and oxidized and neutralized particles + SOA (PONS); additional control scenarios were also studied. Continuous respiratory data were obtained during exposures using whole body plethysmography chambers. Of the 12 respiratory outcomes assessed, each had statistically significant changes at some plant and with some of the 4 scenarios. The most robust outcomes were found with exposure to the PO scenario (increased respiratory frequency with decreases in inspiratory and expiratory time); and the PONS scenario (decreased peak expiratory flow and expiratory flow at 50%). PONS findings were most strongly associated with ammonium, neutralized sulfate, and elemental carbon (EC) in univariate analyses, but only with EC in multivariate analyses. Control scenario O (oxidized without primary particles) had similar changes to PO. Adjusted R2 analyses showed that scenario was a better predictor of respiratory responses than individual components, suggesting that the complex atmospheric mixture was responsible for respiratory effects. PMID:21639693

  10. Monoterpene SOA - Contribution of first-generation oxidation products to formation and chemical composition

    NASA Astrophysics Data System (ADS)

    Mutzel, Anke; Rodigast, Maria; Iinuma, Yoshiteru; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    Investigation of the consecutive reactions of first-generation terpene oxidation products provides insight into the formation of secondary organic aerosol (SOA). To this end, OH radical reactions with α-pinene, β-pinene, and limonene were examined along with the OH-oxidation of nopinone as a β-pinene oxidation product and pinonaldehyde and myrtenal as α-pinene oxidation products. The SOA yield of β-pinene (0.50) was much higher than that of α-pinene (0.35) and the limonene/OH system (0.30). This is opposite to the ozonolysis SOA yields described in the literature. The growth curve of SOA from β-pinene shows the contribution of secondary reactions, such as further reaction of nopinone. This contribution (17%) and the high SOA yield of nopinone (0.24) might lead to the high SOA formation potential observed for β-pinene. The majority of the C9 oxidation products observed from β-pinene can be attributed to the consecutive reaction of nopinone, whereas in the case of pinonaldehyde, only a few α-pinene oxidation products were identified. Nopinone contributes significantly to the formation of pinic acid (51%), homoterpenylic acid (74%), and 3-methyl-1,2,3-butane-tricarboxylic acid (MBTCA, 88%) during β-pinene oxidation. The oxidation of pinonaldehyde was expected to produce important SOA markers, but only negligible amounts were identified. This indicates that their formation by oxidation of α-pinene must proceed via different pathways from the further oxidation of pinonaldehyde. Only pinonic acid and MBTCA were found in considerable amounts and were formed in α-pinene oxidation with 57% yield, while that for the pinonaldehyde/OH reaction was 33%. The lack of important SOA marker compounds might cause the low SOA yield (0.07) observed for pinonaldehyde. Based on the low SOA yield, pinonaldehyde contributes only 4.5% to α-pinene SOA. Myrtenal was identified among the gas-phase products of α-pinene oxidation. A majority of α-pinene SOA marker compounds was

  11. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males

    PubMed Central

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2016-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males. PMID:26834549

  12. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males.

    PubMed

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2015-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males. PMID:26834549

  13. Global mechanistic model of SOA formation: effects of different chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, G.; Penner, J. E.; Sillman, S.; Taraborrelli, D.; Lelieveld, J.

    2011-09-01

    Recent experimental findings indicate that Secondary Organic Aerosol (SOA) represents an important and, under many circumstances, the major fraction of the organic aerosol burden. Here, we use a global 3-d model (IMPACT) to test the results of different mechanisms for the production of SOA. The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles. We also include the formation of non-evaporative SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols. A model simulation including these SOA formation mechanisms gives an annual global SOA production of 113.5 Tg. The global production of SOA is substantially decreased to 85.0 Tg yr-1 if the HOx regeneration mechanism proposed by Peeters et al. (2009) is used. Model predictions with and without this HOx regeneration scheme are compared with multiple surface observation datasets, namely: the Interagency Monitoring of Protected Visual Environments (IMPROVE) for the United States, the European Monitoring and Evaluation Programme (EMEP) as well as Aerosol Mass Spectrometry (AMS) data measured in both Northern Hemisphere and tropical forest regions. All model simulations realistically predict the organic carbon mass observed in the Northern Hemisphere, although they tend to overestimate the concentrations in tropical forest regions. This overestimate may result from an unrealistically high uptake rate of glyoxal and methylglyoxal on aqueous aerosols and in cloud drops. The modeled OC in the free troposphere is in agreement with measurements in the ITCT-2K4 aircraft campaign over the North America and in pollution layers in Asia during the INTEX-B campaign, although the model underestimates OC in the free troposphere during the ACE-Asia campaign off the coast of Japan.

  14. VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Hu, W. W.; Shao, M.; Wang, M.; Chen, W. T.; Lu, S. H.; Zeng, L. M.; Hu, M.

    2013-09-01

    Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated chemical losses of most VOC species during the Changdao campaign. A photochemical-age-based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory data, but determined emission ratios of oxygenated VOCs (OVOCs) are significantly higher than those from emission inventory data. The photochemical-age-based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of organic aerosol (OA) to CO is determined to be 14.9 μg m-3 ppm-1, and secondary organic aeorosols (SOA) are produced at an enhancement ratio of 18.8 μg m-3 ppm-1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m-3 ppm-1 CO) and low-NOx conditions (6.5 μg m-3 ppm-1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (> C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. The SOA formation potential of primary VOC emissions determined from field campaigns in Beijing and Pearl River Delta (PRD) is lower than the measured SOA levels reported in the two regions, indicating SOA formation is also beyond explainable by VOC oxidation in the two city clusters.

  15. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  16. Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source.

    PubMed

    Sassano, Carlos E N; Carvalho, João C M; Gioielli, Luiz A; Sato, Sunao; Torre, Paolo; Converti, Attilio

    2004-03-01

    The cyanobacterium Spirulina platensis was cultivated in bench-scale miniponds on bicarbonate/carbonate solutions using urea as nitrogen source. To minimize limitation and inhibition phenomena, urea was supplied semicontinuously using exponentially increasing feeding rates. The average growth rates obtained alternately varying the total mass of urea added per unit reactor volume (275 < mT < 725 mg/L) and the total feeding time (9 < tT < 15 d) clearly evidenced nitrogen limitation for mT< 500 mg/L and excess nitrogen inhibition above this threshold. The time behavior of the specific growth rate at variable urea feeding patterns allowed estimation of the time-dependent Gibbs energy dissipation for cell growth under the actual depletion conditions of fed-batch cultivations. Comparison of the yield of growth on Gibbs energy obtained using either urea or KNO3 pointed to the preference of S. platensis for the former nitrogen source, likely owing to more favorable bioenergetic conditions. PMID:15007182

  17. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States.

    PubMed

    Jathar, Shantanu H; Gordon, Timothy D; Hennigan, Christopher J; Pye, Havala O T; Pouliot, George; Adams, Peter J; Donahue, Neil M; Robinson, Allen L

    2014-07-22

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10-20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y(-1) of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations. PMID:25002466

  18. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    PubMed Central

    Jathar, Shantanu H.; Gordon, Timothy D.; Hennigan, Christopher J.; Pye, Havala O. T.; Pouliot, George; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.

    2014-01-01

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10–20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y−1 of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations. PMID:25002466

  19. Net-centric transformation to empower the war-fighter through enhanced enterprise data services: exploring the SOA approaches

    NASA Astrophysics Data System (ADS)

    Farroha, Deborah L.; Farroha, Bassam S.

    2009-05-01

    As DoD moves towards an Enterprise approach to IT, CIOs have been lauding SOA as the solution. It is clear that SOA addresses many challenges that face the DoD from information sharing to the fiscal issues of maintaining an IT infrastructure. As SOA is applied to more complex tasks and as we move IT out to the tactical edge there is an increased need to ensure access to the right information, in the right place at the right time. This paper explores the various methodologies of data services that are making SOA an accessible reality DoD.

  20. In situ time-resolved X-ray diffraction of tobermorite formation in autoclaved aerated concrete: Influence of silica source reactivity and Al addition

    SciTech Connect

    Matsui, Kunio; Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Sato, Masugu

    2011-05-15

    The hydrothermal formation of tobermorite during the processing of autoclaved aerated concrete was investigated by in situ X-ray diffraction (XRD) analysis. High-energy X-rays from a synchrotron radiation source in combination with a newly developed autoclave cell and a photon-counting pixel array detector were used. To investigate the effects of the silica source, reactive quartz from chert and less-reactive quartz from quartz sand were used as starting materials. The effect of Al addition on tobermorite formation was also studied. In all cases, C-S-H, hydroxylellestadite and katoite were clearly observed as intermediates. Acceleration of tobermorite formation by Al addition was clearly observed. However, Al addition did not affect the dissolution rate of quartz. Two pathways, via C-S-H and katoite, were also observed in the Al-containing system. These results suggest that the structure of initially formed C-S-H is important for the subsequent tobermorite formation reactions.

  1. Sources of lunar magnetic anomalies and their bulk directions of magnetization - Additional evidence from Apollo orbital data

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1982-01-01

    A relatively high-amplitude magnetic anomaly directly detected with the Apollo 15 subsatellite magnetometer and centered near the crater Gerasimovich on the southeastern lunar far side is found to correlate with the location of a conspicuous Reiner Gamma-type swirl marking visible on a Zond 8 photograph. Examinations of available direct and indirect orbital magnetics measurements demonstrate that most strong anomalies occur in areas where morphologically similar markings are concentrated. Even though photogeologic studies indicate an impact-related origin for the swirls, both the swirls and their associated strong anomalies tend to exist preferentially in or near areas that have been seismically modified. Modeling of improved vector magnetic anomaly maps is used to infer 28 independent bulk directions of magnetization for relatively strong and isolated lunar magnetic anomaly sources.

  2. Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source.

    PubMed

    Bhargava, Swapnil; Wenger, Kevin S; Rane, Kishore; Rising, Vanessa; Marten, Mark R

    2005-03-01

    For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors. PMID:15643626

  3. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    USGS Publications Warehouse

    Moseman-Valtierra, S.; Gonzalez, R.; Kroeger, K.D.; Tang, J.; Chao, W.C.; Crusius, J.; Bratton, J.; Green, A.; Shelton, J.

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m-2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged -33 ??mol N2O m-2 day-1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 ??mol N2O m-2 day-1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half the magnitude of typical

  4. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N 2O

    NASA Astrophysics Data System (ADS)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John; Green, Adrian; Shelton, James

    2011-08-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N 2O, CH 4, and CO 2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N 2O, CH 4 and respiratory CO 2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO 3 equivalent to 1.4 g N m -2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N 2O and CH 4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N 2O in July 2009 averaged -33 μmol N 2O m -2 day -1. However, within 1 h of nutrient additions, N 2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH 4 fluxes were not significantly affected. N 2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N 2O m -2 day -1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N 2O and CH 4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N 2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N 2O and CH 4 fluxes observed, exceeded half

  5. Development of wide band gap p- a-SiOxCy:H using additional trimethylboron as carbon source gas

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Won; Sichanugrist, Porponth; Janthong, Bancha; Khan, Muhammad Ajmal; Niikura, Chisato; Konagai, Makoto

    2016-07-01

    We report p-type a-SiOxCy:H thin films which were fabricated by introducing additional Trimethylboron (TMB, B(CH3)3) doping gas into conventional standard p-type a-SiOx:H films. The TMB addition into the condition of p-a-SiOx:H improved optical bandgap from 2.14 to 2.20 eV without deterioration of electrical conductivity, which is promising for p-type window layer of thin film solar cells. The suggested p-a-SiOxCy:H films were applied in amorphous silicon solar cells and we found an increase of quantum efficiency at short wavelength regions due to wide bandgap of the new p-layer, and thus efficiency improvement from 10.4 to 10.7% was demonstrated in a-Si:H solar cell by employing the p-a-SiOxCy:H film. In case of a-SiOx:H cell, high open circuit voltage of 1.01 V was confirmed by using the suggested the p-a-SiOxCy:H film as a window layer. This new p-layer can be highly promising as a wide bandgap window layer to improve the performance of thin film silicon solar cells. [Figure not available: see fulltext.

  6. Uncertainties in SOA Formation from the Photooxidation of α-pinene

    NASA Astrophysics Data System (ADS)

    McVay, R.; Zhang, X.; Aumont, B.; Valorso, R.; Camredon, M.; La, S.; Seinfeld, J.

    2015-12-01

    Explicit chemical models such as GECKO-A (the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) enable detailed modeling of gas-phase photooxidation and secondary organic aerosol (SOA) formation. Comparison between these explicit models and chamber experiments can provide insight into processes that are missing or unknown in these models. GECKO-A is used to model seven SOA formation experiments from α-pinene photooxidation conducted at varying seed particle concentrations with varying oxidation rates. We investigate various physical and chemical processes to evaluate the extent of agreement between the experiments and the model predictions. We examine the effect of vapor wall loss on SOA formation and how the importance of this effect changes at different oxidation rates. Proposed gas-phase autoxidation mechanisms are shown to significantly affect SOA predictions. The potential effects of particle-phase dimerization and condensed-phase photolysis are investigated. We demonstrate the extent to which SOA predictions in the α-pinene photooxidation system depend on uncertainties in the chemical mechanism.

  7. Photodegradation of SOA Prepared by Oxidation of d-Limonene by Ozone and NO3

    NASA Astrophysics Data System (ADS)

    Pan, X.; Xing, J.; Underwood, J. S.; Nizkorodov, S. A.

    2008-12-01

    Terpenes account for over 50% of biogenically emitted volatile organic compounds (VOC). Terpenes including limonene react with gas phase oxidants in the air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products spontaneously condense into particles. While in the atmosphere, SOA age via heterogeneous atmospheric chemistry, often with profound effects on the physical and chemical properties of the particles. The primary goal of this research is to study the photochemical aging of monoterpene-derived aerosol particles. SOA particles are generated in the lab by reacting limonene and oxidants including ozone and NO3 in a Teflon reaction chamber. The concentrations of limonene and oxidants were set to different levels in experiments. The particles are collected on filters and irradiated with light in the actinic region (>290 nm). The gas-phase photolysis products were studied using chemical ionization mass spectrometry (CIMS) in real time. The results show that the photodegradation of limonene SOA strongly depends on radiation wavelengths. SOA photodegradation mechanisms and their implications for photochemical aging of organic aerosols will be discussed.

  8. Dark and bright pulses in a SOA-Based fiber ring laser

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xinglin; Wang, Zhiqiang; Zhan, Li; Hu, Pan; Guo, Qian

    2016-02-01

    We demonstrate the dark pulse emission in a semiconductor optical amplifier (SOA)-Based fiber ring laser with net abnormal dispersion. By means of the polarization-dependent property of SOA, the laser is mode-locked by using nonlinear polarization rotation (NPR) technique. Stable bright pulses and dark pulses are observed through changing the current of the SOA and altering the polarization states. The dependence of both the polarization states and the current of SOA on the formation of dark pulses in the cavity have been carefully investigated, revealing that the output average power of the measured dark pulse is far greater than that of the bright pulse under the same current. Moreover, the evolution process from bright pulse to dark pulse has been studied, showing the role of the extinction ratio of PCs in the transition process. The polarization dependent and bistability properties of SOA and the extinction ratio of PCs are dominant for the dark pulses generation, giving a further evidence of the generation of dark pulses in different laser cavity.

  9. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others. PMID:24245475

  10. Selective hydrogenation of furan-containing condensation products as a source of biomass-derived diesel additives.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Bell, Alexis T

    2014-10-01

    In this study, we demonstrate that while the energy density and lubricity of the C15 and C16 products of furan condensation of biomass-derived aldehydes with 2-methylfuran are consistent with requirements for diesel, these products do not meet specifications for cetane number and pour point due to their aromatic furan rings. However, a novel class of products that fully meet or exceed most specifications for diesel can be produced by converting the furan rings in these compounds to cyclic ether moieties. Full hydrodeoxygenation of furan condensation products to alkanes would require 55-60% higher hydrogen demand, starting from biomass, compared to the products of furan ring saturation, providing an additional incentive to support the saturated products. We also report here on a tunable class of catalysts that contain Pd nanoparticles supported on ionic liquid-modified SiO2 that can achieve complete saturation of the furan rings in yields of 95% without opening these rings. PMID:25169952

  11. Insight into the numerical challenges of implementing 2-dimensional SOA models in atmospheric chemical transport models

    NASA Astrophysics Data System (ADS)

    Napier, W. J.; Ensberg, J. J.; Seinfeld, J. H.

    2014-10-01

    The new generation of secondary organic aerosol (SOA) models that represent gas- and particle-phase chemistry and thermodynamic partitioning using discrete two-dimensional grids (e.g. SOM, 2D-VBS) cannot be efficiently implemented into three-dimensional atmospheric chemical transport models (CTMs) due to the large number of bins (tracers) required. In this study, we introduce a novel mathematical framework, termed the Oxidation State/Volatility Moment Method, that is designed to address these computational burdens so as to allow the new generation of SOA models to be implemented into CTMs. This is accomplished by mapping the two-dimensional grids onto probability distributions that conserve carbon and oxygen mass. Assessment of the Moment Method strengths (speed, carbon and oxygen conservation) and weaknesses (numerical drift) provide valuable insight that can guide future development of SOA modules for atmospheric CTMs.

  12. Heterogeneous SOA yield from ozonolysis of monoterpenes in the presence of inorganic acid

    NASA Astrophysics Data System (ADS)

    Northcross, Amanda L.; Jang, Myoseon

    The secondary organic aerosol (SOA) yield of a series of montoerpenes was investigated to determine the relative amounts of organic mass, which can be attributed to mass produced by heterogeneous acid-catalyzed reactions. Five monoterpenes ( α-pinene, terpinolene, d-limonene, Δ2-carene, β-pinene) were studied using a 2 m 3 indoor Teflon chamber and SOA was created in the presence of both acidic and neutral inorganic seed aerosol. The relative humidity was varied to create differing acidic seed environments. The heterogeneous aerosol production was influenced by the seed mass concentration, the acidity of the inorganic seed aerosol, and also molecular structure of the monoterpene ozonolysis products. This study also can be incorporated with our previously presented model of the kinetic expression for SOA mass production from heterogeneous acid-catalyzed reactions.

  13. Masked priming by misspellings: Word frequency moderates the effects of SOA and prime-target similarity.

    PubMed

    Burt, Jennifer S

    2016-02-01

    University students made lexical decisions to eight- or nine-letter words preceded by masked primes that were the target, an unrelated word, or a typical misspelling of the target. At a stimulus onset asynchrony (SOA) of 47 ms, primes that were misspellings of the target produced a priming benefit for low-, medium-, and high-frequency words, even when the misspelled primes were changed to differ phonologically from their targets. At a longer SOA of 80 ms, misspelled primes facilitated lexical decisions only to medium- and low-frequency targets, and a phonological change attenuated the benefit for medium-frequency targets. The results indicate that orthographic similarity can be preserved over changes in letter position and word length, and that the priming effect of misspelled words at the shorter SOA is orthographically based. Orthographic-priming effects depend on the quality of the orthographic learning of the target word. PMID:26530310

  14. Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides

    NASA Astrophysics Data System (ADS)

    Lin, G.; Penner, J. E.; Sillman, S.; Taraborrelli, D.; Lelieveld, J.

    2012-05-01

    Recent experimental findings indicate that secondary organic aerosol (SOA) represents an important and, under many circumstances, the major fraction of the organic aerosol burden. Here, we use a global 3-D model (IMPACT) to test the results of different mechanisms for the production of SOA. The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles together with assumptions for the rate of formation of low-volatility oligomers. We also include the formation of low-volatility SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols. A model simulation including these SOA formation mechanisms gives an annual global SOA production of 120.5 Tg. The global production of SOA is decreased substantially to 90.8 Tg yr-1 if the HOx regeneration mechanism proposed by Peeters et al. (2009) is used. Model predictions with and without this HOx (OH and HO2 regeneration scheme are compared with multiple surface observation datasets, namely: the Interagency Monitoring of Protected Visual Environments (IMPROVE) for the United States, the European Monitoring and Evaluation Programme (EMEP), and aerosol mass spectrometry (AMS) data measured in both the Northern Hemisphere and tropical forest regions. All model simulations show reasonable agreement with the organic carbon mass observed in the IMPROVE network and the AMS dataset, however observations in Europe are significantly underestimated, which may be caused by an underestimation of primary organic aerosol emissions (POA) in winter and of emissions and/or SOA production in the summer. The modeled organic aerosol concentrations tend to be higher by roughly a factor of three when compared with measurements at three tropical forest sites. This overestimate suggests that more measurements and model studies are

  15. Global modeling of SOA: the use of different mechanisms for aqueous-phase formation

    NASA Astrophysics Data System (ADS)

    Lin, G.; Sillman, S.; Penner, J. E.; Ito, A.

    2014-06-01

    There is growing interest in the formation of secondary organic aerosol (SOA) through condensed aqueous-phase reactions. In this study, we use a global model (IMPACT) to investigate the potential formation of SOA in the aqueous phase. We compare results from several multiphase process schemes with detailed aqueous-phase reactions to schemes that use a first-order gas-to-particle formation rate based on uptake coefficients. The predicted net global SOA production rate in cloud water ranges from 13.1 Tg yr-1 to 46.8 Tg yr-1 while that in aerosol water ranges from -0.4 Tg yr-1 to 12.6 Tg yr-1. The predicted global burden of SOA formed in the aqueous phase ranges from 0.09 Tg to 0.51 Tg. A sensitivity test to investigate two representations of cloud water content from two global models shows that increasing cloud water by an average factor of 2.7 can increase the net SOA production rate in cloud water by a factor of 4 at low altitudes (below approximately 900 hPa). We also investigated the importance of including dissolved Fe chemistry in cloud water aqueous reactions. Adding these reactions increases the formation rate of aqueous-phase OH by a factor of 2.6 and decreases the amount of global aqueous SOA formed by 31%. None of the mechanisms discussed here is able to provide a best fit for all observations. Rather, the use of an uptake coefficient method for aerosol water and a multi-phase scheme for cloud water provides the best fit in the Northern Hemisphere and the use of multiphase process scheme for aerosol and cloud water provides the best fit in the tropics. The model with Fe chemistry underpredicts oxalate measurements in all regions. Finally, the comparison of oxygen-to-carbon (O / C) ratios estimated in the model with those estimated from measurements shows that the modeled SOA has a slightly higher O / C ratio than the observed SOA for all cases.

  16. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Hu, W. W.; Shao, M.; Wang, M.; Chen, W. T.; Lu, S. H.; Zeng, L. M.; Hu, M.

    2013-03-01

    Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs) are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 μg m-3 ppm-1 and SOA are produced at an enhancement ratio of 18.8 μg m-3 ppm-1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m-3 ppm-1 CO) and low-NOx condition (6.5 μg m-3 ppm-1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (>C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD), indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0-13.7 Tg yr-1, with a fraction of at least 2.7 Tg yr-1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.

  17. Experimental investigation of photonic microwave switching based on XGM in a SOA

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Huan; Pan, Shilong

    2016-08-01

    The photonic microwave switching performances based on the cross gain modulation (XGM) effect in a semiconductor optical amplifier (SOA) are experimentally investigated. The influences of the key parameters of the system, such as the optical power of the pump and probe signals, the SOA bias current and the modulation depth are experimentally studied and analyzed to optimize the system performance. Important performances of the linearity, the dynamic range and the polarization sensitivity of the photonic microwave switching system are analyzed and discussed. The channel uniformities are also investigated according to the requirements of the photonic microwave switching applications.

  18. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    NASA Astrophysics Data System (ADS)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  19. Absence of Biogenic New Particle Formation in the Southern U.S. during the 2013 SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Uin, J.; You, Y.; Sierra-Hernández, M.; Guenther, A. B.; Brune, W. H.; Misztal, P. K.; Baumann, K.; Isaacman, G. A.; Goldstein, A. H.; Edgerton, E.; Lee, S.

    2013-12-01

    One of the main goals of the Southern Oxidant and Aerosol Study (SOAS) field campaign was to investigate the SOA formation mechanisms in the biogenic environment under anthropogenic influences. The SOAS campaign took place in a mixed deciduous forest near Centerville, Alabama between June 1 and July 15, 2013. To study the biogenic new particle formation (NPF) mechanism, Kent State University deployed two chemical ionization mass spectrometers (CIMS) to measure concentrations of gas phase sulfuric acid, amines and ammonia; additionally, two TSI SMPSs and an Airmodus particle size magnifier (PSM) were used to together measure the ambient aerosol size distributions in the range from 1-800 nm. Data were continuously collected during the 6 weeks of the campaign period, but only two clear particle growth events were observed. During both events, concentrations of sulfuric acid were high. When there were no NPF events, sulfuric acid concentrations were sometimes high (even during the night) and there were also sufficient amounts of ammonia and amines in the gas phase. These key nucleation precursors together with low condensation sinks should have provided a reasonable condition for NPF. The PTR-TOFMS (by NCAR and UC-Berkley) measurements showed that the ratio of isoprene to monoterpene carbon concentrations was consistently higher than 1 during the campaign period. The laser induced fluorescence (LIF by Penn State) measured-OH concentrations were at the high e5 and low e6 molecules per cubic centimeter range, which should have been sufficient for BVOCs oxidation to lead to NPF. These results are consistent with a previous study in the Michigan forest [Kanawade et al., 2011: Isoprene suppression of new particle formation in a mixed deciduous forest, ACP, 11, 6013], which showed that biogenic NPF was suppressed by high emissions of isoprene without OH depletion. But the chemical mechanisms behind the absence of NPF in mixed forests need to be further investigated. The PSM

  20. Effect of SO2 concentration on SOA formation in a photorreactor from a mixture of anthropogenic hydrocarbons and HONO

    NASA Astrophysics Data System (ADS)

    García Vivanco, Marta; Santiago, Manuel; García Diego, Cristina; Borrás, Esther; Ródenas, Milagros; Martínez-Tarifa, Adela

    2010-05-01

    Sulfur dioxide (SO2) is an important urban atmospheric pollutant, mainly produced by the combustion of fossil fuels containing sulfur. In the atmosphere, SO2 can react with OH radicals to form sulfuric acid, which can condense to form acidic aerosol. Sulfuric acid particles act as an acid catalyst for some heterogeneous carbonyl reactions like hydration, polymerization or acetals formation, which may lead to a large increase on SOA mass. In order to evaluate the effect of the SO2 concentration on SOA formation, 3 experiments were performed during the campaign carried out by CIEMAT on the EUPHORE facility (CEAM, Valencia, Spain) during June- July 2008. The objective of the campaign was to evaluate the effect of different experimental conditions on SOA formation from the photooxidation of some anthropogenic and biogenic VOCs using HONO as oxidant. Experiment on 6/17/08 was selected as base case (no SO2 was introduced) and experiments 6/26/08 and 7/1/08 were selected as high SO2 (2600 ug/m3) and low SO2 (60 ug/m3) concentration experiments respectively. In the three experiments a mixture of toluene, 1,3,5-TMB (trimethylbenzene), o-xylene and octane was selected as the parent VOCs. Single and coupled to mass spectroscopy gas cromatography (GC and GC/MS), as well as high performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR) were used to measure the initial VOCs and oxidant concentrations decay and the formation of gas phase oxidation products through the experiments. Aerosol size distribution and concentration were measured with SMPS (scanning mobility particle sizer) and TEOM (tapered element oscillating monitor) respectively. In addition, analysis of the organic and inorganic aerosol content was also performed via filter sampling followed by GC/MS and ionic chromatography (for organic and inrganic content respectively). Comparing the filters collected in the three experiments, clearly the largest mass aerosol formation is observed

  1. High-resolution genetic mapping of the sucrose octaacetate taste aversion (Soa) locus on mouse Chromosome 6

    PubMed Central

    Bachmanov, Alexander A.; Li, Xia; Li, Shanru; Neira, Mauricio; Beauchamp, Gary K.; Azen, Edwin A.

    2013-01-01

    An acetylated sugar, sucrose octaacetate (SOA), tastes bitter to humans and has an aversive taste to at least some mice and other animals. In mice, taste aversion to SOA depends on allelic variation of a single locus, Soa. Three Soa alleles determine ‘taster’ (Soaa), ‘nontaster’ (Soab), and ‘demitaster’ (Soac) phenotypes of taste sensitivity to SOA. Although Soa has been mapped to distal Chromosome (Chr) 6, the limits of the Soa region have not been defined. In this study, mice from congenic strains SW.B6-Soab, B6.SW-Soaa, and C3.SW-Soaa/c and from an outbred CFW strain were genotyped with polymorphic markers on Chr 6. In the congenic strains, the limits of introgressed donor fragments were determined. In the outbred mice, linkage disequilibrium and haplotype analyses were conducted. Positions of the markers were further resolved by using radiation hybrid mapping. The results show that the Soa locus is contained in a ~1-cM (3.3–4.9 Mb) region including the Prp locus. PMID:11641717

  2. Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark Ozonolysis and Photo-Oxidation of Isoprene.

    PubMed

    Clark, Christopher H; Kacarab, Mary; Nakao, Shunsuke; Asa-Awuku, Akua; Sato, Kei; Cocker, David R

    2016-06-01

    Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided. PMID:27175613

  3. Towards mechanistic representations of SOA from BVOC + NO3 reactions

    EPA Science Inventory

    Monoterpene reaction with nitrate radicals is a significant source of organic aerosol in the southeast United States. This source of organic aerosol represents an anthropogenic control on biogenic organic aerosol since nitrate radicals result from NOx emissions and are generally ...

  4. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  5. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  6. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  7. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  8. Secondary Organic Aerosol (SOA) Formation From the NO3 Radical Oxidation of Alpha- pinene

    NASA Astrophysics Data System (ADS)

    Perraud, V.; Yu, Y.; Bruns, E.; Ezell, M. J.; Johnson, S. N.; Alexander, M.; Zelenyuk, A.; Imre, D.; Finlayson-Pitts, B. J.

    2008-12-01

    Terpenes such as alpha-pinene, emitted in large quantities from vegetation into the troposphere, are well known to react with O3, OH and NO3 radicals leading to the formation of secondary organic aerosol, SOA. While particle formation and growth from the NO3 reaction with alpha-pinene have been reported by a number of groups, as have the gas phase products of this reaction, little is known about the chemical composition of the particles. We report studies of the composition of particles formed in the NO3 - alpha- pinene reaction using two reactors, a flow tube and a static chamber. Nitrate radicals were generated in the flow tube by the reaction of NO2 with O3 and in the static chamber by the thermal decomposition of N2O5. Particle formation and growth was monitored using SMPS and APS. A variety of analytical techniques were applied to measure the chemical composition, including FTIR of particles collected on ZnSe impactor discs, and GC-MS, ESI-MS, APCI-MS, HPLC-MS and HPLC-UV of samples collected on quartz fiber filters. In addition, particle mass spectrometer techniques including AMS and SPLAT provided real-time analysis. A number of organic nitrates were observed in the particles, along with carbonyl compounds and organic acids. Gas phase products measured using DNPH coated-cartridges included pinonaldehyde, formaldehyde, acetaldehyde and acetone. Results of studies in which concentrations of the reactants were varied will be presented and possible mechanisms and the atmospheric implications will be discussed.

  9. SOA-Based Model for Value-Added ITS Services Delivery

    PubMed Central

    Herrera-Quintero, Luis Felipe; Maciá-Pérez, Francisco; Marcos-Jorquera, Diego; Gilart-Iglesias, Virgilio

    2014-01-01

    Integration is currently a key factor in intelligent transportation systems (ITS), especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT) based on the service-oriented architecture (SOA) paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT) into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RSUAAS), to the most abstract ITS services that will be offered to ITS users (value-added services). To validate our model, a functionality case study that included all of the components of our model was designed. PMID:25019101

  10. ORGANIC AEROSOL FORMATION IN THE HUMID, PHOTOCHEMICALLY-ACTIVE SOUTHEASTERN US: SOAS EXPERIMENTS AND SIMULATIONS

    EPA Science Inventory

    A better understanding of SOA formation, properties and behavior in the humid eastern U.S. including dependence on anthropogenic emissions (RFA Q #1, 2). More accurate air quality prediction enabling more accurate air quality management (EPA Goal #1). Scientific insights co...

  11. SOA Does Not Reveal the Absolute Time Course of Cognitive Processing in Fast Priming Experiments

    ERIC Educational Resources Information Center

    Tzur, Boaz; Frost, Ram

    2007-01-01

    Applying Bloch's law to visual word recognition research, both exposure duration of the prime and its luminance determine the prime's overall energy, and consequently determine the size of the priming effect. Nevertheless, experimenters using fast-priming paradigms traditionally focus only on the SOA between prime and target to reflect the…

  12. Ultrahigh-resolution FT-ICR mass spectrometry characterization of a-pinene ozonolysis SOA

    EPA Science Inventory

    Secondary organic aerosol (SOA) of α-pinene ozonolysis with and without hydroxyl radical scavenging hexane was characterized by ultrahigh-resolution. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Molecular formulas for more than 900 negative ions were i...

  13. Research of B2B e-Business Application and Development Technology Based on SOA

    NASA Astrophysics Data System (ADS)

    Xian, Li Liang

    Today, the B2B e-business systems in most enterprises usually have multiple heterogeneous and independent systems which are based on different platforms and operate in different functional departments. To deal with the increased services in future, an enterprise needs to expand its system continuously. This, however, will cause great inconvenience to the future system maintenance. To implement e-business successfully, a unified internal e-business integration environment must be established to integrate the internal system and thus realize a unified internal mechanism within the enterprise e-business system. The SOA (service-oriented architecture), however, can well meet the above requirements. The integration of SOA-based applications can reduce the dependency of different types of IT systems, reduce the cost of system maintenance and the complexity of the IT system operation, increase the flexibility of the system deployment, and at the same time exclude the barrier of service innovation. Research and application of SOA-based enterprise application systems has become a very important research project at present. Based on SOA, this document designs an enterprise e-business application model and realizes a flexible and expandable e-business platform.

  14. SOA-based model for value-added ITS services delivery.

    PubMed

    Herrera-Quintero, Luis Felipe; Maciá-Pérez, Francisco; Marcos-Jorquera, Diego; Gilart-Iglesias, Virgilio

    2014-01-01

    Integration is currently a key factor in intelligent transportation systems (ITS), especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT) based on the service-oriented architecture (SOA) paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT) into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RSUAAS), to the most abstract ITS services that will be offered to ITS users (value-added services). To validate our model, a functionality case study that included all of the components of our model was designed. PMID:25019101

  15. Service-Oriented Architecture (SOA) Instantiation within a Hard Real-Time, Deterministic Combat System Environment

    ERIC Educational Resources Information Center

    Moreland, James D., Jr

    2013-01-01

    This research investigates the instantiation of a Service-Oriented Architecture (SOA) within a hard real-time (stringent time constraints), deterministic (maximum predictability) combat system (CS) environment. There are numerous stakeholders across the U.S. Department of the Navy who are affected by this development, and therefore the system…

  16. High-Confidence Compositional Reliability Assessment of SOA-Based Systems Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Challagulla, Venkata U. B.; Bastani, Farokh B.; Yen, I.-Ling

    Service-oriented architecture (SOA) techniques are being increasingly used for developing critical applications, especially network-centric systems. While the SOA paradigm provides flexibility and agility to better respond to changing business requirements, the task of assessing the reliability of SOA-based systems is quite challenging. Deriving high confidence reliability estimates for mission-critical systems can require huge costs and time. SOAsystems/ applications are built by using either atomic or composite services as building blocks. These services are generally assumed to be realized with reuse and logical composition of components. One approach for assessing the reliability of SOA-based systems is to use AI reasoning techniques on dynamically collected failure data of each service and its components as one of the evidences together with results from random testing. Memory-Based Reasoning technique and Bayesian Belief Net-works are verified as the reasoning tools best suited to guide the prediction analysis. A framework constructed from the above approach identifies the least tested and “high usage” input subdomains of the service(s) and performs necessary remedial actions depending on the predicted results.

  17. Secondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, T. F.

    2014-05-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01-1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of

  18. Consideration of HOMs in α- and β-pinene SOA model

    NASA Astrophysics Data System (ADS)

    Gatzsche, Kathrin; Iinuma, Yoshiteru; Mutzel, Anke; Berndt, Torsten; Wolke, Ralf

    2016-04-01

    Secondary organic aerosol (SOA) is the major burden of the atmospheric organic particulate matter with 140 - 910 TgC yr‑1 (Hallquist et al., 2009). SOA particles are formed via the oxidation of volatile organic carbons (VOCs), where the volatility of the VOCs is lowered due to the increase in their functionalization as well as their binding ability. Therefore, gaseous compounds can either nucleate to form new particles or condense on existing particles. The framework of SOA formation under natural conditions is very complex, because there are a multitude of gas-phase precursors, atmospheric degradation processes and products after oxidation. A lacking understanding about chemical and physical processes associated with SOA formation makes modeling of SOA processes difficult, leading to discrepancy between measured and modeled global SOA burdens. The present study utilizes a parcel model SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model, Wolke et al., 2005) that couples a multiphase chemical model with a microphysical model. For SOA modeling a further development of SPACCIM was necessary. Therefore, two components are added (i) a gas-phase chemistry mechanism for the VOC oxidation and (ii) a partitioning approach for the gas-to-particle phase transfer. An aggregated gas-phase chemistry mechanism for α- and β-pinene was adapted from Chen and Griffin (2005). For the phase transfer an absorptive partitioning approach (Pankow, 1994) and a kinetic approach (Zaveri et al., 2014) are implemented. Whereby the kinetic approach serves some advantages. The organic aerosol can be resolved in different size sections, whereby the particle radius is involved in the partitioning equations. The phase state of the organic material and the reactivity of the organic compounds in the particle-phase directly influence the modeled SOA yields. Recently, highly oxidized multifunctional organic compounds (HOMs) were found in the gas phase from lab and field studies. They are

  19. Secondary Organic Aerosol (SOA) production from the Aqueous Reactions of Phenols and Triplet Aromatic Carbonyls

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sun, Y.; Lu, Y.; Zhang, Q.; Anastasio, C.

    2010-12-01

    The phenolic compounds guaiacol, syringol and phenol have recently been shown to produce secondary organic aerosol (SOA) at high yields in the aqueous phase upon exposure to simulated sunlight and hydroxyl radical. These phenols are significant products from wood combustion that can readily enter atmospheric waters, such as aqueous aerosol particles and cloud/fog droplets. Once in the aqueous phase, phenols can react with the triplet excited states of non-phenolic aromatic carbonyls (NPCs), particle-bound organics that are also emitted from wood combustion. In this study, we examined the aqueous-phase production of SOA from the reaction of phenolic compounds with triplet excited state organics. These aqueous phase reactions were tested by illuminating solutions containing a phenolic compound and NPC under simulated sunlight at various concentrations and pH values. The phenolic compound is consumed during these reactions, following a first-order decay that varies with phenol concentration, phenol identity, and pH. The non-volatile product mass formed in our illuminated solutions was determined gravimetrically and by analysis with High Resolution Time of Flight Aerosol Mass Spectrometry (HR-AMS). The SOA mass yield was determined as the mass of non-volatile product formed per mass of phenolic consumed during illumination. We also used HR-AMS to analyze for elemental composition, carbon oxidation state, and oligomers in the SOA produced. Our results to date indicate that phenols can be rapidly oxidized by triplet excited states under environmentally relevant conditions and that the accompanying SOA mass yields are very high.

  20. Effect of Ammonia on Glyoxal SOA in Inorganic Aqueous Seed Particles

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Volkamer, R. M.; Laskin, A.; Laskin, J.; Koenig, T. K.; Baltensperger, U.; Dommen, J.; Prevot, A. S.; Slowik, J.; Maxut, A.; Noziere, B.; Wang, S.; Yu, J.

    2014-12-01

    Glyoxal (C2H2O2) is a ubiquitous small molecule that is observed in the terrestrial biogenic, urban, marine and arctic atmosphere. It forms secondary organic aerosol (SOA) as a result of multiphase chemical reactions in water. The rate of these reactions is controlled by the effective Henry's law partitioning coefficient (Heff) which is enhanced in the presence of inorganic salts by up to 3 orders of magnitude (Kampf et al., 2013, ES&T). Aerosol particles are among the most concentrated salt solutions on Earth and the SOA formation rate in aerosol water is strongly modified by this 'salting-in' mechanism. We have studied the effect of gas-phase ammonia on the rate of SOA formation in real particles composed of different inorganic salts (sulfate, nitrate, chloride). A series of simulation chamber experiments were conducted at the Paul Scherrer Institut in Switzerland during Summer 2013. The SOA formation rate in experiments with added gas-phase ammonia (NH3) was found to be greatly accelerated compared to experiments without added NH3. Product analysis of particles included online HR-ToF-AMS and offline nano-DESI and LC-MS. We find that imidazole-like oligomer compounds dominate the observed products, rather than high-O/C oligomers containing solely C, H, and O. We further employed isotopically labelled di-substituted 13C glyoxal experiments in order to unambiguously link product formation to glyoxal (and separate it from chamber wall contamination). We present a molecular perspective on the reaction pathways and evaluate the effect of environmental parameters (RH, particle pH, seed chemical composition) on the formation of these imidazole-like oligomer compounds. The implications for SOA formation from photosensitized oxidation chemistry is discussed.

  1. The addition of strain in uniaxially strained transistors by both SiN contact etch stop layers and recessed SiGe sources and drains

    NASA Astrophysics Data System (ADS)

    Denneulin, Thibaud; Cooper, David; Hartmann, Jean-Michel; Rouviere, Jean-Luc

    2012-11-01

    SiN contact etch stop layers (CESL) and recessed SiGe sources/drains are two uniaxial strain techniques used to boost the charge carriers mobility in p-type metal oxide semiconductor field effect transistors (pMOSFETs). It has already been shown that the electrical performances of the devices can be increased by combining both of these techniques on the same transistor. However, there are few experimental investigations of their additivity from the strain point of view. Here, spatially resolved strain mapping was performed using dark-field electron holography (DFEH) on pMOSFETs transistors strained by SiN CESL and embedded SiGe sources/drains. The influence of both processes on the strain distribution has been investigated independently before the combination was tested. This study was first performed with non-silicided devices. The results indicated that in the channel region, the strain induced by the combination of both processes is equal to the sum of the individual components. Then, the same investigation was performed after Ni-silicidation of the devices. It was found that in spite of a slight reduction of the strain due to the silicidation, the strain additivity is approximately preserved. Finally, it was also shown that DFEH can be a useful technique to characterize the strain field around dislocations.

  2. Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate variability in the North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Pokhrel, A.; Kawamura, K.; Seki, O.; Ono, K.; Matoba, S.; Shiraiwa, T.

    2015-12-01

    180 m long ice core (ca. 343 years old) was drilled in the saddle of the Aurora Peak of Alaska, which is located southeast of Fairbanks (63.52°N; 146.54°W, elevation: 2,825 m). Samples were directly transported to the Institute of Low Temperature Science, Hokkaido University and have been analyzed for monoterpene- and isoprene-SOA tracers using gas chromatograph (GC; HP 6890) and mass spectrometry system (GC/MS; Agilent). Ice core collected from mountain glacier has not been explored for SOA yet. We found significantly high concentrations of these tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylrythritol), which show historical trends with good correlation with each other since 1665-2008. They show positive correlations with sugar compounds (e.g., mannitol, glucose, fructose, inositol, and sucrose), and anti-correlations with diacids (e.g., C9), w-oxocarboxylic (wC4-wC9), a-dicarbonyls and low molecular weight fatty acids (LFAs) (e.g., C18:1). LFAs show strong correlations with MSA- and nss-SO42- in the same ice core. These results suggest source regions of SOA tracers and ice core chemistry of Alaska. Concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) have increased in the ice core after the Great Pacific Climate Shift (late 1970's). They show positive correlations with a-dicarbonyls and LFAs (e.g., C18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the surface microlayer are recorded in the ice core. Photochemical oxidation processes for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations (e.g., North Pacific Index) and we can look at a whole range of environmental parameters in parallel with the robust reconstructed temperature changes in the Northern Hemisphere.

  3. On the chemical nature of the oxygenated organic aerosol: implication in the formation and aging of α-pinene SOA in a Mediterranean environment, Marseille

    NASA Astrophysics Data System (ADS)

    El Haddad, I.; D'Anna, B.; Temime-Roussel, B.; Nicolas, M.; Boreave, A.; Favez, O.; Voisin, D.; Sciare, J.; George, C.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2012-08-01

    Organic Aerosol (OA) measurements were conducted during summer 2008 at an urban background site, in Marseille, France's second city and the largest port in the Mediterranean, an urban industrialized environment known for its active photochemistry. PM2.5 was collected using high volume samplers and analyzed for elemental and organic carbon, major ions (NH4+, NO3- and SO42-), humic-like-substances, organic markers (i.e. primary tracers and α-pinene oxidation products), elemental composition and radiocarbon content (14C). The real-time chemical characterization of submicron particles was also achieved using a compact time of flight aerosol mass spectrometer. Positive matrix factorization conducted on the organic aerosol mass spectra matrix revealed four factors, including traffic emissions (hydrocarbon-like OA, HOA), industrial emissions, semi-volatile (SV-OOA) and low-volatile (LV-OOA) oxygenated organic aerosol (OOA) related to oxidation processes. The results obtained were in excellent agreement with chemical mass balance source apportionments conducted in conjunction with organic markers and elements. It appears that while primary emissions contributed only 22% to the total OA (of which 23% was associated with industrial processes), OOA constituted the overwhelming fraction. Radiocarbon measurements suggest that about 80% of this fraction was of non-fossil origin, assigned predominantly to biogenic secondary organic aerosol. Non-fossil carbon appears to especially dominate the LV-OOA fraction, an aged long-range-transported OOA, marginally affected by local anthropogenic SOA. We also examined the relation between OOA and α-pinene SOA obtained based on the levels of α-pinene oxidation products. α-pinene SOA showed good correlation with SV-OOA, suggesting that the compounds used for estimating α-pinene SOA appear to pertain mainly to the moderately oxidized fraction. In contrast, LV-OOA was found to be intimately related to HUmic LIke substances (HULIS

  4. Solid sampling determination of lithium and sodium additives in microsamples of yttrium oxyorthosilicate by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laczai, Nikoletta; Kovács, László; Péter, Ágnes; Bencs, László

    2016-03-01

    Solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS-HR-CS-GFAAS) methods were developed and studied for the fast and sensitive quantitation of Li and Na additives in microsamples of cerium-doped yttrium oxyorthosilicate (Y2SiO5:Ce) scintillator materials. The methods were optimized for solid samples by studying a set of GFAAS conditions (i.e., the sample mass, sensitivity of the analytical lines, and graphite furnace heating programs). Powdered samples in the mass range of 0.099-0.422 mg were dispensed onto graphite sample insertion boats, weighed and analyzed. Pyrolysis and atomization temperatures were optimized by the use of single-element standard solutions of Li and Na (acidified with 0.144 mol/L HNO3) at the Li I 610.353 nm and Na I 285.3013 nm analytical lines. For calibration purposes, the method of standard addition with Li and Na solutions was applied. The correlation coefficients (R values) of the calibration graphs were not worse than 0.9678. The limit of detection for oxyorthosilicate samples was 20 μg/g and 80 μg/g for Li and Na, respectively. The alkaline content of the solid samples were found to be in the range of 0.89 and 8.4 mg/g, respectively. The accuracy of the results was verified by means of analyzing certified reference samples, using methods of standard (solution) addition calibration.

  5. CONTRIBUTIONS OF TOLUENE AND Α -PINENE TO SOA FORMED IN AN IRRADIATED TOLUENE/Α-PINENE/NOX/AIR MIXTURE: COMPARISON OF RESULTS USING 14C CONTENT AND SOA ORGANIC TRACER METHODS

    EPA Science Inventory

    An organic tracer method, recently proposed for estimating individual contributions of toluene and α-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydro...

  6. Reflective SOA fiber cavity adaptive laser source for measuring dynamic strains

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Smart sensors based on Optical fiber Bragg gratings (FBGs) are suitable for structural health monitoring of dynamic strains in civil, aerospace, and mechanical structures. In these structures, dynamic strains with high frequencies reveal acoustic emissions cracking or impact loading. It is necessary to find a practical tool for monitoring such structural damages. In this work, we explore an intelligent system based on a reflective semiconductor optical amplifier (RSOA)- FBG composed as a fiber cavity for measuring dynamic strain in intelligent structures. The ASE light emitted from a RSOA laser and reflected by a FBG is amplified in the fiber cavity and coupled out by a 90:10 coupler, which is demodulated by a low frequency compensated Michelson interferometer using a proportional-integral-derivative (PID) controller and is monitored via a photodetector. As the wavelength of the FBG shifts due to dynamic strain, the wavelength of the optical output from the laser cavity shifts accordingly, which is demodulated by the Michelson Interferometer. Because the RSOA has a quick transition time, the RSOA- FBG fiber cavity shows an ability of high frequency response to the FBG reflective spectrum shift, with frequency response extending to megahertz.

  7. SOA Formation form the NO3 radicals Chemistry of Isoprene, Monoterpenes, Sesquiterpenes, Biogenic Oxygenated Compounds, and Aromatics

    NASA Astrophysics Data System (ADS)

    Kleindienst, T. E.; Jaoui, M.; Docherty, K.; Corse, E.; Offenberg, J. H.; Lewandowski, M.

    2011-12-01

    Volatile organic compounds (VOCs) are oxidized in the atmosphere primarily by hydroxyl radicals (OH) during daylight hours but also by nitrate radicals (NO3) during overnight, photochemically inactive periods. While reactions with OH have received considerable attention with regard to gas-phase reaction products and secondary organic aerosol (SOA) formation, less is known about the mechanisms and products resulting from nighttime NO3 reactions despite their potential for SOA formation. To date, there have been limited studies on the chemical characteristics of aerosol reaction products formed from VOCs oxidation with NO3, and few SOA reaction products have been identified. Nighttime reactions have nevertheless been incorporated into some air quality models despite the limited information available and substantial uncertainties which still exist. The National Exposure Research Laboratory of the U.S. Environmental Protection Agency recently undertook an integrated laboratory research effort to better understand the contribution of NO3 reactions to nighttime SOA formation. Isoprene, methacrolein, a-pinene, b-pinene, d-limonene, b-caryophyllene, farnesene, a-humulene, 2-methyl-3-buten-2-ol, toluene, m-xylene, and naphthalene were reacted with NO3 under a wide range of conditions in a series of separate photochemical reaction chamber experiments. These hydrocarbons are thought to contribute to ambient SOA formation. NO3 was formed through thermal decomposition of N2O5. The yield, physical characteristics, and composition of SOA formed in each experiment was analyzed by a suite of instruments including a scanning mobility particle sizer, a Sunset Labs semi continuous EC-OC monitor, a volatility differential mobility analyzer, a direct insertion probe-mass spectrometer, a high resolution time-of-flight aerosol mass spectrometer, and a gas-chromatography-mass spectrometer. To understand the relative contributions of nighttime versus daytime VOCs reactions, a similar

  8. DPSK receiver-sensitivity enhancement using an SOA in front of the receiver

    NASA Astrophysics Data System (ADS)

    Awad, Ehab

    2011-01-01

    A technique for DPSK receiver-sensitivity improvement is demonstrated using numerical simulations. It is based on reshaping and reamplifying of received 80 Gbit/s DPSK using an SOA before a one bit delay interferometer. The SOA re-amplifies data without adding amplitude or differential phase noise due to its gain-compression. The system is tested using 231-1 PRBS RZ-DPSK (NRZ-DPSK) loaded with both phase and amplitude noise. It shows 2dB (1.7dB) quality-factor improvement. The estimated BER by error-counting shows receiver-sensitivity improvement of (See manuscript)3dB in case of single-ended detection and (See manuscript)2dB ((See manuscript)2.5dB) in case of balanced-detection. This single-ended improvement is comparable to that of common DPSK balanced-detection technique.

  9. On the Risk Management and Auditing of SOA Based Business Processes

    NASA Astrophysics Data System (ADS)

    Orriens, Bart; Heuvel, Willem-Jan V./D.; Papazoglou, Mike

    SOA-enabled business processes stretch across many cooperating and coordinated systems, possibly crossing organizational boundaries, and technologies like XML and Web services are used for making system-to-system interactions commonplace. Business processes form the foundation for all organizations, and as such, are impacted by industry regulations. This requires organizations to review their business processes and ensure that they meet the compliance standards set forth in legislation. In this paper we sketch a SOA-based service risk management and auditing methodology including a compliance enforcement and verification system that assures verifiable business process compliance. This is done on the basis of a knowledge-based system that allows integration of internal control systems into business processes conform pre-defined compliance rules, monitor both the normal process behavior and those of the control systems during process execution, and log these behaviors to facilitate retrospective auditing.

  10. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    PubMed

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-01

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch. PMID:21164918

  11. All-optical tunable microwave interference suppression filter based on SOA

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Zhang, Xinliang; Zhou, Lina; Huang, Dexiu

    2008-12-01

    An all-optical filter structure for interference suppression of microwave signals is presented. The filter is based on a recirculating delay line (RDL) loop consisting of a semiconductor optical amplifier (SOA) followed by a tunable narrowband optical filter, and a fiber Bragg grating connected after the RDL loop. Negative tap is generated in wavelength conversion process based on cross-gain modulation of amplified spontaneous emission spectrum of the SOA. A narrow passband filter with negative coefficients and a broadband all-pass filter are synthesized to achieve a narrow notch filter with flat passband which can excise interference with minimal impact on the wanted signal over a wide microwave range. Experimental results show that measured and theoretical frequency responses agree well and the filter is tunable.

  12. All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.

    PubMed

    Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther

    2016-09-01

    We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion. PMID:27607638

  13. Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing.

    PubMed

    Nakahara, Tatsushi; Takahashi, Ryo

    2013-05-01

    We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity. PMID:23669927

  14. Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

    PubMed Central

    2012-01-01

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA. PMID:22849588

  15. Compared propagation characteristics of superluminal and slow light in SOA and EDFA based on rectangle signals

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Sun, Zhenchao; Mao, Yaya; Liu, Lanlan; Li, Qiang

    2015-10-01

    Based on the general mechanism of the coherent population oscillations (CPO) in the Semiconductor optical amplifiers (SOA) and Erbium doped fiber amplifiers (EDFA), the group time delay of rectangle signal propagating in the active media is deduced. Compared with the sinusoidal signal, the time delay difference between the fundamental harmonics (FHFD: fundamental harmonic fractional delay) is first investigated in detail for the rectangle signal which is more popularly used in the digital signal systems. The plenty of simulations based on the propagation equations and some experiments for the sinusoidal and rectangle signals are used to analyze the differences and evaluate the slow and superluminal light effects. Furthermore, the time delay/advance always takes place accompanying with the signal distortion, which is evaluated by the total harmonic distortion (THD). The distortion caused by the SOA is smaller than that by the EDFA. A factor Q which is defined to evaluate the trade-off between the FHFD and the THD, shows that higher input power or higher optical gain is better for optical signal processing and optical telecommunications, and the SOA is more suitable for the higher modulation frequency (>10 GHz).

  16. Surface-active and Light-absorbing Secondary Organic Aerosol (SOA) Material

    NASA Astrophysics Data System (ADS)

    McNeill, V. F.; Sareen, N.; Schwier, A. N.; Shapiro, E. L.

    2009-12-01

    We have observed the formation of light-absorbing, high-molecular-weight, and surface-active organics from methylgyloxal interacting with ammonium salts in aqueous aerosol mimics. Mixtures of methylglyoxal and glyoxal also form light-absorbing products and exhibit surface tension depression with a Langmuir-like dependence on initial methylglyoxal concentration. We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize the product species. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These observations have potentially significant implications for our understanding of the effects of SOA on climate, since a) SOA are typically treated as non-absorbing in climate models, and b) surface tension depression in aqueous aerosols by SOA material may result in increased cloud condensation nucleus (CCN) activity. Furthermore, surface film formation could affect aerosol heterogeneous chemistry. We will also discuss aerosol flow tube O3 oxidation experiments designed to determine the atmospheric lifetimes of the observed product compounds.

  17. A collaborative computer auditing system under SOA-based conceptual model

    NASA Astrophysics Data System (ADS)

    Cong, Qiushi; Huang, Zuoming; Hu, Jibing

    2013-03-01

    Some of the current challenges of computer auditing are the obstacles to retrieving, converting and translating data from different database schema. During the last few years, there are many data exchange standards under continuous development such as Extensible Business Reporting Language (XBRL). These XML document standards can be used for data exchange among companies, financial institutions, and audit firms. However, for many companies, it is still expensive and time-consuming to translate and provide XML messages with commercial application packages, because it is complicated and laborious to search and transform data from thousands of tables in the ERP databases. How to transfer transaction documents for supporting continuous auditing or real time auditing between audit firms and their client companies is a important topic. In this paper, a collaborative computer auditing system under SOA-based conceptual model is proposed. By utilizing the widely used XML document standards and existing data transformation applications developed by different companies and software venders, we can wrap these application as commercial web services that will be easy implemented under the forthcoming application environments: service-oriented architecture (SOA). Under the SOA environments, the multiagency mechanism will help the maturity and popularity of data assurance service over the Internet. By the wrapping of data transformation components with heterogeneous databases or platforms, it will create new component markets composed by many software vendors and assurance service companies to provide data assurance services for audit firms, regulators or third parties.

  18. Development of new parameterizations for SOA production from SVOC and IVOC oxidation

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Coll, Isabelle; Camredon, Marie; Aumont, Bernard; Siour, Guillaume

    2014-05-01

    Recent experimental studies have demonstrated the partially volatile pattern of primary organic aerosol (POA) that is actually associated with organic species of so-called intermediate volatility (IVOCs), and by semi-volatile (SVOCs) species. Indeed, 50% to 75% of the total emitted mass of POA may be present in the atmospheric gas phase in accordance with the thermodynamic properties of its components (Shrivastava et al., 2006). During the processing of the emission plume, this gaseous material will then undergo photochemical oxidation, enhancing the production of secondary organic aerosol (SOA) (Robinson et al., 2007; Hodzic et al., 2010; Lee-Taylor et al., 2011). Considering POA as non volatile in Chemistry Transport Models (CTMs) could thus lead to an underestimation of SOA and an overestimation of POA (Aksoyoglu et al., 2011) and bias the temporal formation of the organic aerosol (Kroll et al., 2007; Presto et al., 2012). However, very rare experimental data exist on the fate of these species and their aerosol yield, but all existing studies have shown a significant SOA production (Presto et al., 2009; Miracolo et al., 2010; Lambe et al., 2012). Our works aims at including and testing in the CHIMERE CTM new parameterizations of SOA formation from the oxidation of IVOCs and SVOCs, arising from explicit 0D-model experiments. Our approach is based on the works of Aumont et al., (2013) who used the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) to generate the explicit chemistry and gas-particle partitioning of superior alkanes and their oxidation products. Using this explicit scheme, Aumont et al., (2013) indeed produced 0D simulations of the oxidation of given SVOCs and IVOCs under different initial conditions of organic aerosol mass. We first focused on the chemistry of n-hexadecane. From the 0D-experiments, we tested the influence of the number of first generation surrogate species and the number of generation taken

  19. Experimental and theoretical investigation of semiconductor optical amplifier (SOA)-based all-optical wavelength converters

    NASA Astrophysics Data System (ADS)

    Dailey, James M.

    Use of fiber-optical networks has increased along with the growing demand for higher data throughputs. As data bandwidths increase, physical switching technologies must also scale accordingly. Optical-electrical-optical (OEO) switching technologies are widely utilized, where incoming optical signals are converted into and processed as electrical signals before conversion back into the optical domain. However, issues such as speed, cost, and power consumption have driven interest in the development of all-optical techniques, where data remains in the optical domain while being processed. Semiconductor optical amplifiers (SOAs) have shown great promise for realizing all-optical technologies. Our work begins with the experimental characterization of SOAs, and we discuss the use of a time-resolved spectroscopy technique. We present a detailed analysis clarifying measurement requirements, though we conclude that this simple technique provides insufficient resolution for characterizing high-speed optical systems. We discuss the measurement theory for spectrograms, which provide high signal-to-noise ratios, excellent temporal resolution, and are sensitive to phase dynamics. We apply the spectrogram measurement to the characterization of an SOA. We develop a system of rate equations for modeling SOA dynamics, beginning with a detailed density matrix analysis providing expressions for gain and chirp without invoking the linewidth-enhancement factor. In accordance with the measurement results, we include a carrier temperature rate calculation in order to capture ultrafast dynamics. The traveling wave partial differential equations are solved so that both forward and reverse propagating signals are accurately modeled, and the results show good agreement with the spectrogram measurement. We identify the free-carrier plasma and the asymmetrical broadening terms in the real and imaginary parts of the refractive index as driving factors in the relatively larger ultrafast response

  20. In-Situ Measurements of Aerosol Optical and Hygroscopic Properties at the Look Rock Site during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Guzman, J. M.; Russell, L. M.; Budisulistiorini, S.; Li, X.; Surratt, J. D.; Hicks, W.; Bairai, S. T.; Cappa, C. D.

    2013-12-01

    One of the main goals of the Southern Oxidant and Aerosol Study (SOAS) is to characterize the climate-relevant properties of aerosols over the southeastern United States at the interface of biogenic and anthropogenic emissions. As part of the SOAS campaign, the UCD cavity ringdown/photoacoustic spectrometer was deployed to make in-situ measurements of aerosol light extinction, absorption and sub-saturated hygroscopicity at the Look Rock site (LRK) in the Great Smoky Mountains National Park, TN from June 1 to July 15, 2013. The site is influenced by substantial biogenic emissions with varying impacts from anthropogenic pollutants, allowing for direct examination of the optical and hygroscopic properties of anthropogenic-influenced biogenic secondary organic aerosols (SOA). During the experiment period, the average dry aerosol extinction (Bext), absorption (Babs) coefficients and single scattering albedo (SSA) at 532 nm were 30.3 × 16.5 Mm-1, 1.12 × 0.78 Mm-1 and 0.96 × 0.06. The Babs at 532 nm was well correlated (r2 = 0.79) with the refractory black carbon (rBC) number concentration determined by a single particle soot spectrometer (SP2). The absorption by black carbon (BC), brown carbon (BrC) and the absorption enhancement due to the 'lensing' effect were quantified by comparing the Babs of ambient and thermo-denuded aerosols at 405 nm and 532 nm. The optical sub-saturated hygroscopic growth factor was derived from extinction and particle size distribution measurements at dry and elevated relative humidity. In addition, to explore the extent to which ammonia mediated chemistry leads to BrC formation, as suggested in recent laboratory studies(1,2), we performed an NH3 perturbation experiment in-situ for 1 week during the study, in which ambient aerosols were exposed to approximately 100 ppb NH3 with a residence time of ~ 3hr. The broader implications of these observational data at LRK will be discussed in the context of the concurrent gas and aerosol chemical

  1. Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in-vivo

    PubMed Central

    Primak, Andrew N.; Giraldo, Juan Carlos Ramirez; Eusemann, Christian D.; Schmidt, Bernhard; Kantor, B.; Fletcher, Joel G.; McCollough, Cynthia H.

    2010-01-01

    Purpose To investigate the effect on radiation dose and image quality of the use of additional spectral filtration for dual-energy CT (DECT) imaging using dual-source CT (DSCT). Materials and Methods A commercial DSCT scanner was modified by adding tin filtration to the high-kV tube, and radiation output and noise measured in water phantoms. Dose values for equivalent image noise were compared among DE-modes with and without tin filtration and single-energy (SE) mode. To evaluate DECT material discrimination, the material-specific DEratio for calcium and iodine were determined using images of anthropomorphic phantoms. Data were additionally acquired in 38 and 87 kg pigs, and noise for the linearly mixed and virtual non-contrast (VNC) images compared between DE-modes. Finally, abdominal DECT images from two patients of similar sizes undergoing clinically-indicated CT were compared. Results Adding tin filtration to the high-kV tube improved the DE contrast between iodine and calcium as much as 290%. Pig data showed that the tin filtration had no effect on noise in the DECT mixed images, but decreased noise by as much as 30% in the VNC images. Patient VNC-images acquired using 100/140 kV with added tin filtration had improved image quality compared to those generated with 80/140 kV without tin filtration. Conclusion Tin filtration of the high-kV tube of a DSCT scanner increases the ability of DECT to discriminate between calcium and iodine, without increasing dose relative to SECT. Furthermore, use of 100/140 kV tube potentials allows improved DECT imaging of large patients. PMID:20966323

  2. Effect of high-pressure/temperature (HP/T) treatments of in-package food on additive migration from conventional and bio-sourced materials.

    PubMed

    Mauricio-Iglesias, M; Jansana, S; Peyron, S; Gontard, N; Guillard, V

    2010-01-01

    Migration was assessed during and after two high-pressure/temperature (HP/T) treatments intended for a pasteurization (800 MPa for 5 min, from 20 to 40 degrees C) and a sterilization treatment (800 MPa for 5 min, from 90 to 115 degrees C) and were compared with conventional pasteurization and sterilization, respectively. The specific migration of actual packaging additives used as antioxidants and ultraviolet light absorbers (Irganox 1076, Uvitex OB) was investigated in a number of food-packaging systems combining one synthetic common packaging (LLDPE) and a bio-sourced one (PLA) in contact with the four food-simulating liquids defined by European Commission regulations. After standard HP/T processing, migration kinetics was followed during the service life of the packaging material using Fourier transform infrared spectrometer (FTIR) spectroscopy. LLDPE withstood the high-pressure sterilization, whereas it melted during the conventional sterilization. No difference was observed on migration from LLDPE for both treatments. In the case of PLA, migration of Uvitex OB was very low or not detectable for all the cases studied. PMID:19809898

  3. High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Fisseha, R.; Putman, A. L.; Rahn, T. A.; Mazzoleni, L. R.

    2012-06-01

    The detailed molecular composition of laboratory generated limonene ozonolysis secondary organic aerosol (SOA) was studied using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Approximately 1200 molecular formulas were identified in the SOA over the mass range of 140 to 850 Da. Four characteristic groups of high relative abundance species were observed; they indicate an array of accretion products that retain a large fraction of the limonene skeleton. The identified molecular formulas of each of the groups are related to one another by CH2, O and CH2O homologous series. The CH2 and O homologous series of the low molecular weight (MW) SOA (m/z < 300) are explained with a combination of functionalization and fragmentation of radical intermediates and reactive uptake of gas-phase carbonyls. They include isomerization and elimination reactions of Criegee radicals, reactions between alkyl peroxy radicals, and scission of alkoxy radicals resulting from the Criegee radicals. The presence of compounds with 10-15 carbon atoms in the first group (e.g. C11H18O6) provides evidence for SOA formation by the reactive uptake of gas-phase carbonyls during limonene ozonolysis. The high MW compounds (m/z > 300) were found to constitute a significant number fraction of the identified SOA components. The formation of high MW compounds was evaluated by molecular formula trends, fragmentation analysis of select high MW compounds and a comprehensive reaction matrix including the identified low MW SOA, hydroperoxides and Criegee radicals as building blocks. Although the formation of high MW SOA may occur via a variety of radical and non-radical reaction channels, the combined approach indicates a greater importance of the non-condensation reactions over aldol and ester condensation reaction channels. Among these hemi-acetal reactions appear to be most dominant followed by hydroperoxide and Criegee reaction channels.

  4. Applying SOA Concepts to Distributed Industrial Applications Using WCF Technology

    NASA Astrophysics Data System (ADS)

    Stopper, Markus; Gastermann, Bernd

    2010-10-01

    Software Development is subject to a constant process of change. In the meantime web services, access to remote services or distributed applications are already the standard. Simultaneously with their advancement demands on these techniques are rising significantly. Defined support for security issues, coordination of transactions and reliable communications are expected. Windows Communication Foundation (WCF)—as a part of Microsoft Corporation's .NET Framework—supports these requirements in line with wide range interoperability. WCF provides the development of distributed and interconnected software applications by means of a service-oriented programming model. This paper introduces a service-oriented communication concept based on WCF, which is specifically designed for industrial applications within a production environment using a central manufacturing information system (MIS) database. It introduces applied technologies and provides an overview of some important design aspects and base service sets of WCF. Additionally, this paper also shows a factual implementation of the presented service-oriented communication concept in the form of an industrial software application used in plastics industry.

  5. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWDER PLANT-DERIVED PM 2.5

    SciTech Connect

    Annette Rohr

    2006-08-31

    This report documents progress made on the subject project during the period of March 1, 2006 through August 31, 2006. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, data processing and analyses were completed for exposure and toxicological data collected during the field campaign at Plant 1, located in the Southeast. Toxicological results indicate some pulmonary, oxidative stress, and cardiovascular responses to certain exposure scenarios. Fieldwork at Plant 2, located in the Midwest, began on July 19, 2006. The following scenarios were completed: July 19-22: POS (oxidized + SOA); July 25-28: PONS (oxidized + neutralized + SOA); August 8-13: P (primary); August 14-15: POS; August 16-17: POS (MI rats); August 28-31: OS (oxidized + SOA, without primary particles); September 1-4: O (oxidized, no primary particles); and September 6-9: S (SOA, no primary particles). During the next reporting period, we will report complete exposure and toxicological results for Plant 2. Planning will begin for the mobile source component of the research (funded

  6. Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA): Application to Power Plant-Derived PM2.5

    SciTech Connect

    Annette Rohr

    2007-02-28

    This report documents progress made on the subject project during the period of September 1, 2007 through February 28, 2007. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 2, located in the Midwest. The following scenarios were completed: (1) July 19-22: POS (oxidized + SOA); (2) July 25-28: PONS (oxidized + neutralized + SOA); (3) August 8-13: P (primary); (4) August 14-15: POS; (5) August 16-17: POS (MI rats); (6) August 28-31: OS (oxidized + SOA, without primary particles); (7) September 1-4: O (oxidized, no primary particles); (8) September 6-9: S (SOA, no primary particles); and (9) September 19-22: PO (oxidized). Results indicated some biological effects with some scenarios. Also during this reporting period, the annual meeting of the TERESA Technical Advisory Committee was held at the Harvard School of Public Health in Boston. During the next reporting period, data analyses will continue for Plant 2 as well as for pooled data from all three plants. Manuscripts documenting the overall project findings will

  7. Terahertz Schottky Multiplier Sources

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.

    2007-01-01

    This viewgraph presentation reviews the multiplier source technologies and the status/Performance of THz multiplier sources. An example of a THz application is imaging radar. The presentation reviews areas of requirements for THz sources: (1) Figures of merit, (i.e., Frequency Terahertz for high resolution Bandwidth of at least 15 GHz for high range resolution Efficiency (i.e., minimize power supply requirements) (2) Output power: (i.e., Milliwatts below 800 GHz, 10s of microwatts above 1 THz, 1-2 microwatts near 2 THz (3) Mechanical--stability, compact, low mass (4) Environmental -- radiation, vibration, thermal. Several sources for 0.3 - 2 THz are reviewed: FIR lasers, quantum cascade lasers (QCL), backward-wave oscillator (BWO), and Multiplier sources. The current state of the art (SoA) is shown as Substrateless Technology. It also shows where the SoA is for devices beyond 1 THz. The presentation concludes by reviewing the options for future development, and 2 technology roadmaps

  8. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    SciTech Connect

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  9. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data.

    PubMed

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446

  10. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data

    PubMed Central

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446

  11. Sources of primary and secondary organic aerosol and their diurnal variations.

    PubMed

    Zheng, Mei; Zhao, Xiuying; Cheng, Yuan; Yan, Caiqing; Shi, Wenyan; Zhang, Xiaolu; Weber, Rodney J; Schauer, James J; Wang, Xinming; Edgerton, Eric S

    2014-01-15

    PM(2.5), as one of the criteria pollutants regulated in the U.S. and other countries due to its adverse health impacts, contains more than hundreds of organic pollutants with different sources and formation mechanisms. Daytime and nighttime PM2.5 samples from the August Mini-Intensive Gas and Aerosol Campaign (AMIGAS) in the southeastern U.S. were collected during summer 2008 at one urban site and one rural site, and were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and various individual organic compounds including some important tracers for carbonaceous aerosol sources by gas chromatography-mass spectrometry. Most samples exhibited higher daytime OC concentration, while higher nighttime OC was found in a few events at the urban site. Sources, formation mechanisms and composition of organic aerosol are complicated and results of this study showed that it exhibited distinct diurnal variations. With detailed organic tracer information, sources contributing to particulate OC were identified: higher nighttime OC concentration occurring in several occasions was mainly contributed by the increasing primary emissions at night, especially diesel exhaust and biomass burning; whereas sources responsible for higher daytime OC concentration included secondary organic aerosol (SOA) formation (e.g., cis-pinonic acid and non-biomass burning WSOC) together with traffic emissions especially gasoline engine exhaust. Primary tracers from combustion related sources such as EC, polycyclic aromatic hydrocarbons, and hopanes and steranes were significantly higher at the urban site with an urban to rural ratio between 5 and 8. However, this urban-rural difference for secondary components was less significant, indicating a relatively homogeneous distribution of SOA spatially. We found cholesterol concentrations, a typical tracer for meat cooking, were consistently higher at the rural site especially during the daytime, suggesting the likely

  12. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  13. The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance

    PubMed Central

    Forsberg, Simon K. G.; Andreatta, Matthew E.; Huang, Xin-Yuan; Danku, John; Salt, David E.; Carlborg, Örjan

    2015-01-01

    Genome-wide association (GWA) analyses have generally been used to detect individual loci contributing to the phenotypic diversity in a population by the effects of these loci on the trait mean. More rarely, loci have also been detected based on variance differences between genotypes. Several hypotheses have been proposed to explain the possible genetic mechanisms leading to such variance signals. However, little is known about what causes these signals, or whether this genetic variance-heterogeneity reflects mechanisms of importance in natural populations. Previously, we identified a variance-heterogeneity GWA (vGWA) signal for leaf molybdenum concentrations in Arabidopsis thaliana. Here, fine-mapping of this association reveals that the vGWA emerges from the effects of three independent genetic polymorphisms that all are in strong LD with the markers displaying the genetic variance-heterogeneity. By revealing the genetic architecture underlying this vGWA signal, we uncovered the molecular source of a significant amount of hidden additive genetic variation or “missing heritability”. Two of the three polymorphisms underlying the genetic variance-heterogeneity are promoter variants for Molybdate transporter 1 (MOT1), and the third a variant located ~25 kb downstream of this gene. A fourth independent association was also detected ~600 kb upstream of MOT1. Use of a T-DNA knockout allele highlights Copper Transporter 6; COPT6 (AT2G26975) as a strong candidate gene for this association. Our results show that an extended LD across a complex locus including multiple functional alleles can lead to a variance-heterogeneity between genotypes in natural populations. Further, they provide novel insights into the genetic regulation of ion homeostasis in A. thaliana, and empirically confirm that variance-heterogeneity based GWA methods are a valuable tool to detect novel associations of biological importance in natural populations. PMID:26599497

  14. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  15. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations. PMID:26158746

  16. On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in Central Europe

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusüß, C.; Herrmann, H.

    2013-12-01

    Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large dataset of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded representative for typical central-european continental conditions.

  17. On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusüß, C.; Herrmann, H.

    2014-04-01

    Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large data set of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation during intense radiation days in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded as representative for typical central European continental conditions.

  18. Create your own science planning tool in 3 days with SOA

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.; O'Reilly, Taifun

    2003-01-01

    Scientific discovery and advancement of knowledge has been, and continues to be, the goal for space missions at Jet Propulsion Laboratory. Scientist must plan their observation/experiments to get the maximum data return in order to make those discoveries. However, each mission has different science objectives, a different spacecraft and different instrument payloads, as well as, different routes to different destinations with different spacecraft restrictions and characteristics. In the current reduced cost environment, manageable cost for mission planning software is a must. Science Opportunity Analyzer (SOA), a planning tool for scientists and mission planners, utilizes a simple approach to reduce cost and promote reusability.

  19. Analysis of all-optical temporal integrator employing phased-shifted DFB-SOA.

    PubMed

    Jia, Xin-Hong; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li

    2014-11-17

    All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold. We find that the range of input pulse-width with lower integration error is highly sensitive to the injected optical power, due to gain saturation and induced detuning deviation mechanism. The initial frequency detuning should also be carefully chosen to suppress the integration deviation with ideal waveform output. PMID:25402095

  20. Source contributions to organic aerosol in the eastern United States

    NASA Astrophysics Data System (ADS)

    Lane, Timothy Edward

    Organic aerosols (OA) and elemental carbon (EC) are important components of atmospheric particulate matter (PM), potentially posing health hazards and contributing to global climate change. Secondary organic aerosol (SOA) is formed when condensable products from the oxidation of volatile organic compounds (VOCs) in the gas phase partition into the aerosol phase. Implementation of effective control strategies for organic PM2.5 (organic particles with diameters less than 2.5 mum) requires the quantification of the contribution of each source to the ambient OA and EC concentrations. The overall goal of this work is to determine which sources contribute the most to the organic aerosol concentrations across the eastern US. First, a source-resolved model is developed to predict the contribution of eight different sources to primary organic aerosol concentrations. Primary organic aerosol (OA) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. The results of the source-resolved model are compared to the results of chemical mass balance (CMB) models for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for several of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OA and EC are discussed along with problems in the current emission inventory for certain sources. Next, the importance of isoprene as a source of SOA is determined using PMCAMx to predict the isoprene SOA concentration across the eastern US. Isoprene, the most abundant non-methane hydrocarbon

  1. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2006-03-31

    This report documents progress made on the subject project during the period of September 1, 2005 through February 28, 2006. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, data processing and analyses were completed for exposure and toxicological data collected during the field campaign at Plant 1, located in the Southeast. To recap from the previous progress report, Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + SOA--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Mass concentrations in exposure atmospheres ranged from 13.9 {micro}g/m{sup 3} for the primary particle scenario (P) to 385 {micro}g/m{sup 3} for one of the oxidized emissions + SOA

  2. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  3. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-04-01

    The functional group composition of various organic aerosols (OA) is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups) and precursor ion (nitro groups) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular) to 13.5% (o-xylene photo-oxidation) of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass spectra of all

  4. Phase, Viscosity, Morphology, and Room Temperature Evaporation Rates of SOA Particles Generated from Different Precursors, at Low and High Relative Humidities, and their Interaction with Hydrophobic Organics

    NASA Astrophysics Data System (ADS)

    Wilson, J. M.; Zelenyuk, A.; Imre, D. G.; Beranek, J.; Abramson, E.; Shrivastava, M.

    2012-12-01

    Formation, properties, transformations, and temporal evolution of secondary organic aerosol (SOA) particles strongly depend on particle phase. Semi-volatile molecules that comprise SOA particles were assumed to form a low viscosity solution that maintains equilibrium with the evolving gas phase by rapid evaporation condensation. However, studies by our group indicate that laboratory-generated alpha-pinene SOA particles and ambient SOA characterized in a recent field campaign are in a semi-solid, highly viscous phase, and their evaporation rates are orders of magnitude slower than predicted. We present the results of recent studies in which we have extended our work to include SOA particles generated by oxidation of a number of precursors including limonene, n-alkenes, cyclo-alkenes and isoprene. The resulting particles are characterized by their phase, morphology and room temperature evaporation rates. We conclude that, while the detailed properties of SOA particles depend of their precursor, all studied SOA particles are highly viscous semi-solids that exhibit very slow evaporation rates. Given that atmospheric relative humidity (RH) can change particle phase, it is important to investigate the effect of RH on the phase and evaporation kinetics of SOA particles. To this end SOA particles were generated at low and high (~90%) RH, and their evaporation kinetics and phase were characterized as a function of RH. In the ambient atmosphere SOA particles form in the presence of a mixture of different organic compounds, which are present at or below their equilibrium vapor pressure, and thus have been ignored. However, our data show that these compounds can adsorb to the surface of particles during SOA formation, becoming trapped in the highly viscous SOA, and affect particle properties. We examine the interaction between SOA particles and different hydrophobic organics representing typical anthropogenic emissions by making SOA in the presence of the vapors of these

  5. Modeling SOA formation from alkanes and alkenes in chamber experiments: effect of gas/wall partitioning of organic vapors.

    NASA Astrophysics Data System (ADS)

    Stéphanie La, Yuyi; Camredon, Marie; Ziemann, Paul; Ouzebidour, Farida; Valorso, Richard; Madronich, Sasha; Lee-Taylor, Julia; Hodzic, Alma; Aumont, Bernard

    2014-05-01

    Oxidation products of Intermediate Volatility Organic Compounds (IVOC) are expected to be the major precursors of secondary organic aerosols (SOA). Laboratory experiments were conducted this last decade in the Riverside APRC chamber to study IVOC oxidative mechanisms and SOA formation processes for a large set of linear, branched and cyclic aliphatic hydrocarbons (Ziemann, 2011). This dataset are used here to assess the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) (Aumont et al., 2005). The simulated SOA yields agree with the general trends observed in the chamber experiments. They are (i) increasing with the increasing carbon number; (ii) decreasing with increasing methyl branch number; and (iii) increasing for cyclic compounds compared to their corresponding linear analogues. However, simulated SOA yields are systematically overestimated regardless of the precursors, suggesting missing processes in the model. In this study, we assess whether gas-to-wall partitioning of organic vapors can explain these model/observation mismatches (Matsunaga and Ziemann, 2010). First results show that GECKO-A outputs better match the observations when wall uptake of organic vapors is taken into account. Effects of gas/wall partitioning on SOA yields and composition will be presented. Preliminary results suggest that wall uptake is a major process influencing SOA production in the Teflon chambers. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos.Chem.Phys., 5, 2497-2517 (2005). P. J. Ziemann: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes, Int. Rev.Phys.Chem., 30:2, 161-195 (2011). Matsunaga, A., Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film

  6. Phase state and humidity-induced phase transition studies of SOA particles from biogenic and anthropogenic precursors

    NASA Astrophysics Data System (ADS)

    Saukko, E.; Lambe, A. T.; Massoli, P.; Koop, T.; Wright, J. P.; Croasdale, D. R.; Pedernera, D. A.; Onasch, T. B.; Laaksonen, A.; Davidovits, P.; Worsnop, D. R.; Virtanen, A.

    2012-04-01

    There is mounting evidence showing that tropospheric secondary organic aerosol (SOA) may exist in a phase state other than liquid, namely semi-solid or solid amorphous. The solid or semi-solid, high viscosity material may have significantly higher lifetime in an oxidizing atmosphere than low viscosity liquid due to mass transfer limitations in the particle bulk. In this work we report a systematic study of the phase state of SOA particles produced by photo-oxidation of several volatile organic compound (VOC) precursors in a potential aerosol mass (PAM) flow tube reactor. The phase state of the particles was studied by their bounce behaviour upon impaction on a polished steel plate in a low pressure impactor. The SOA oxidation level (O/C) was determined by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) The phase state for several types of SOA from different surrogate anthropogenic and biogenic precursors, produced at a wide range of oxidation conditions, were studied at a range of relative humidities. We report the solid or semi-solid phase state of SOA produced from cyclic and terpene precursors used in the study up to at least 50 % relative humidity. Furthermore, adding sulfur dioxide into the reaction chamber yielded liquefied particles, while particles formed from oxidation of pure organic precursor were solid or semi-solid. For a long-chain alkane precursor a liquid-like SOA at low oxidation level was produced, but upon increasing the oxidation level, the formed particles became more solid. While the bounce behaviour of the particles had no single explaining factor for all experiments, the precursor molar mass was seen to correlate with more solid phase at higher humidities in cases with cyclic or terpene precursor.

  7. A Novel PTR-ToF-MS Inlet System for On-line Chemical Analysis of SOA

    NASA Astrophysics Data System (ADS)

    Eichler, Philipp; Müller, Markus; D'Anna, Barbara; Wisthaler, Armin

    2014-05-01

    Secondary organic aerosol (SOA) is formed from biogenic and anthropogenic precursors in the atmosphere. Because of its impact on human health and the environment there is a strong interest in understanding the chemistry of SOA formation and transformation. Its volatility, chemical complexity and reactivity and low ambient concentrations challenge the chemical analysis of SOA. Here we present a novel analytical setup for on-line measurements of SOA under ambient conditions by chemical ionization mass spectrometry. The method overcomes current limitations in the chemical analysis of SOA by combining on-line enrichment of the particle concentration and on-line mass spectrometric detection using soft chemical ionization. On-line sampling allows for highly time-resolved analysis of organic aerosol compounds and avoids potential sampling artifacts from sample pre-collection and pretreatment. The deployment of a soft ionization method minimizes the fragmentation of fragile organic aerosol compounds in the mass spectrometer. A proton-transfer-reaction time-of-flight mass-spectrometer (PTR-ToF-MS) is combined with a three-stage aerosol inlet system consisting of an activated carbon monolith denuder, an aerodynamic lens (ADL) and a thermodesorption unit. The denuder strips off gas-phase organic compounds and the ADL enriches the particle concentration in the sample flow. Ultimately, organic aerosol compounds are volatilized at 120 °C in the thermodesorption unit before being introduced into the PTR-ToF-MS system for chemical analysis. The ADL is designed to increase the particle concentration in the sample flow by a factor of up to 50 for particles in the size range between 50 and 1000 nm. This novel enrichment step enables the real-time in situ analysis of SOA at sub µg/m³-levels by PTR-ToF-MS. This work is funded through the PIMMS ITN, which is supported by the European Commission's 7th Framework Programme under grant agreement number 287382.

  8. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  9. All-optical clock recovery CSRZ-format data at 40Gbit/s using SOA-based ring laser

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin

    2008-11-01

    The paper firstly demonstrates a theoretical investigation of clock recovery from carrier-suppressed return-to-zero (CSRZ) modulation format data at 40Gbit/s by using SOA-based ring laser. And a completely numerical analysis about the clock characteristics at 40Gbit/s is done, which is an effective guide for experiment and necessary to optimize the system performance. Meanwhile, simulation results show high-quality clock recovery from 27-1 PRBS CSRZ data at 40Gbit/s can be achieved by using higher power assist CW light into a SOA-based ring laser.

  10. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; Simoes de Sa, S.; Fry, J.; Ayres, B. R.; Draper, D. C.; Ortega, A. M.; Kiendler-Scharr, A.; Panujoka, A.; Virtanen, A.; Miettinen, P.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, L. R.; Stark, H.; Worsnop, D. R.; Lechner, M.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2013-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area (Centreville Supersite) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 flow reactors (potential aerosol mass, PAM) were used to expose ambient air to oxidants and their output was analyzed by state-of-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a High-Resolution Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and for the first time, two different High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS), and an SMPS. Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, O3 and NO3) to investigate SOA formation and aging. The OH exposure was estimated by 3 different methods (empirical parameterization, carbon monoxide consumption, and chemical box model). Effective OH exposures up to 7e12 molec cm-3 s were achieved, which is equivalent to over a month of aging in the atmosphere. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ambient OA by ≈ 30%, indicating shifting contributions of functionalization vs. fragmentation, which is similar to previous results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than the ambient OA. More SOA is typically formed during nighttime when terpenes are higher and lower during daytime when isoprene is higher. SOA formation is also observed after exposure of ambient air to O3 or NO3, although the amount and oxidation was lower than for OH exposure. Formation of organic nitrates in the NO3 reaction will be discussed. High SOA formation (above 40 μg m-3) and a large number of CIMS ions, indicating many different

  11. Theoretical Study of SOA-Based Wavelength Conversion with NRZ and RZ Format at 40 Gb/s

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Ji; Zhang, Xin-Liang; Fu, Song-Nian; Shum, Ping; Huang, De-Xiu

    2007-04-01

    We theoretically discuss 40 Gb/s semiconductor optical amplifier (SOA)-based wavelength conversion (WC) using a detuning optical bandpass filter based on ultrafast dynamic characteristics of SOA. Both the inverted and non-inverted WCs are obtained by shifting the filter central wavelength with respect to the probe wavelength when input data signal is in return-to-zero (RZ) format. However, we can obtain format conversion from nonreturn-to-zero (NRZ) to pseudo-return-to-zero (PRZ) and inverted WC when the input signal is in NRZ format.

  12. Virtual Workshop Environment (VWE): A Taxonomy and Service Oriented Architecture (SOA) Framework for Modularized Virtual Learning Environments (VLE)--Applying the Learning Object Concept to the VLE

    ERIC Educational Resources Information Center

    Paulsson, Fredrik; Naeve, Ambjorn

    2006-01-01

    Based on existing Learning Object taxonomies, this article suggests an alternative Learning Object taxonomy, combined with a general Service Oriented Architecture (SOA) framework, aiming to transfer the modularized concept of Learning Objects to modularized Virtual Learning Environments. The taxonomy and SOA-framework exposes a need for a clearer…

  13. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  14. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2005-09-30

    This report documents progress made on the subject project during the period of March 1, 2005 through August 31, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 1, located in the Southeast. Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + secondary organic aerosol (SOA)--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Stage I assessment endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. Stage II assessments included continuous ECG monitoring via implanted telemeters

  15. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  16. Ozone reactivity of biogenic volatile organic compound (BVOC) emissions during the Southeast Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Park, J.; Guenther, A. B.; Helmig, D.

    2013-12-01

    Recent studies on atmospheric chemistry in the forest environment showed that the total reactivity by biogenic volatile organic compound (BVOC) emission is still not well understood. During summer 2013, an intensive field campaign (Southeast Oxidant and Aerosol Study - SOAS) took place in Alabama, U.S.A. In this study, an ozone reactivity measurement system (ORMS) was deployed for the direct determination of the reactivity of foliage emissions. The ORMS is a newly developed measurement approach, in which a known amount of ozone is added to the ozone-free air sample stream, with the ORMS measuring ozone concentration difference between before and after a glass flask flow tube reaction vessel (2-3 minutes of residence time). Emissions were also collected onto adsorbent cartridges to investigate the discrepancy between total ozone reactivity observation and reactivity calculated from identified BVOC. Leaf and canopy level experiments were conducted by deploying branch enclosures on the three dominant tree species at the site (i.e. liquidambar, white oak, loblolly pine) and by sampling ambient air above the forest canopy. For the branch enclosure experiments, BVOC emissions were sampled from a 70 L Teflon bag enclosure, purged with air scrubbed for ozone, nitrogen oxides. Each branch experiment was performed for 3-5 days to collect at least two full diurnal cycle data. In addition, BVOCs were sampled using glass tube cartridges for 2 hours during daytime and 3 - 4 hours at night. During the last week of campaign, the inlet for the ORMS was installed on the top of scaffolding tower (~30m height). The ozone loss in the reactor showed distinct diurnal cycle for all three tree species investigated, and ozone reactivity followed patterns of temperature and light intensity.

  17. Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2 ol (MBO) in the Atmosphere

    EPA Science Inventory

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was exa...

  18. Tailoring the time delay of optical pulse/sequence employing cascaded SOA and band-pass filter

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Mao, Yaya; Shang, Chao; Gao, Kaiqiang; Li, Qiang

    2016-06-01

    A tunable time delay for a 100-ps pulse is achieved via a SOA cascaded band-pass filter, which can be tailored by tuning the filter or changing the SOA injection current. For a single pulse, when the pulse propagates through the cascaded system, a delay of 99.6 ps and an advance of 42.6 ps can be achieved by altering the SOA injection current at two different wavelengths located in the red band and blue band of the filter, respectively. The corresponding tunable delay range is 165 ps, and the maximum delay-bandwidth product (DBP) is 1.65. For an optical sequence, to our knowledge, it is the first time that the time delay is tailored over 145.6 ps corresponding to a DBP of 1.46 by tuning the wavelength from 1556.075 to 1556.955 nm, and 45.2 ps (95.6 ps) advance (delay) by tuning the injection current from 100 to 500 mA at 1556.155 nm (1556.955 nm). The dependence of the time delay on the injection current and filtering configuration has been discussed based on plenty of experiments data. Based on SOA's fast switching, this device can be used for signal synchronization and bit-by-bit signal processing in a communication system.

  19. A Framework for Safe Composition of Heterogeneous SOA Services in a Pervasive Computing Environment with Resource Constraints

    ERIC Educational Resources Information Center

    Reyes Alamo, Jose M.

    2010-01-01

    The Service Oriented Computing (SOC) paradigm, defines services as software artifacts whose implementations are separated from their specifications. Application developers rely on services to simplify the design, reduce the development time and cost. Within the SOC paradigm, different Service Oriented Architectures (SOAs) have been developed.…

  20. Is dry deposition of semi-volatile organic gases a significant loss of secondary organic aerosols (SOA)?

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C. J.; Lee-Taylor, J. M.; Madronich, S.

    2013-12-01

    Dry deposition removal of semi-volatile organic compounds from the atmosphere and its impact on organic aerosol mass is currently under-explored and not well represented in chemistry-climate models, especially for the many complex partly oxidized organics involved in particle formation. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of gas-phase organics on SOA concentrations downwind of an urban area (Mexico City), as well as over a pine forest. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, light aromatics, isoprene and monoterpenes. We show that dry deposition of oxidized gases is not an efficient sink for anthropogenic SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. The effect on biogenic SOA is however significantly larger. We discuss reasons for these differences, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase. In the absence of this condensation, ~50% of the regionally produced mass downwind of Mexico City would have been dry-deposited. However, because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. We use the explicit GECKO-A model to build an empirical parameterization for use in 3D models. Removal (dry and wet) of organic vapors depends on their solubility, and required Henry's law solubility coefficients were estimated for

  1. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, R. L.; Jang, M.

    2015-11-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+]) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of the photooxidation products and the sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (8 groups) and aerosol phase reactivity (6 groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid catalyzed reactions, and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx. The model is validated using isoprene photooxidation experiments performed in the dual, outdoor UF APHOR chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total OM formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC, and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H+] but is dynamically related to all three parameters. For VOC / NOx > 10, with increasing NOx both experimental and

  2. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H

  3. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  4. SOA formation from the photooxidation of α-pinene: systematic exploration of the simulation of chamber data

    NASA Astrophysics Data System (ADS)

    McVay, Renee C.; Zhang, Xuan; Aumont, Bernard; Valorso, Richard; Camredon, Marie; La, Yuyi S.; Wennberg, Paul O.; Seinfeld, John H.

    2016-03-01

    Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-Pinene photooxidation is a well-studied system experimentally, for which detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-NO α-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concentrations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH levels yield the same secondary organic aerosol (SOA) growth, whereas GECKO-A predicts greater SOA growth under high OH levels. SOA formation in the chamber is a result of a competition among the rates of gas-phase oxidation to low-volatility products, wall deposition of these products, and condensation into the aerosol phase. Various processes - such as photolysis of condensed-phase products, particle-phase dimerization, and peroxy radical autoxidation - are explored to rationalize the observations. In order to explain the observed similar SOA growth at different OH levels, we conclude that vapor wall loss in the Caltech chamber is likely of order 10-5 s-1, consistent with previous experimental measurements in that chamber. We find that GECKO-A tends to overpredict the contribution to SOA of later-generation oxidation products under high-OH conditions. Moreover, we propose that autoxidation may alternatively resolve some or all of the measurement-model discrepancy, but this hypothesis cannot be confirmed until more explicit mechanisms are established for α-pinene autoxidation. The key role of the interplay among oxidation rate, product volatility, and vapor-wall deposition in chamber experiments is

  5. SOA formation from the photooxidation of α-pinene: systematic exploration of the simulation of chamber data

    NASA Astrophysics Data System (ADS)

    McVay, R. C.; Zhang, X.; Aumont, B.; Valorso, R.; Camredon, M.; La, Y. S.; Wennberg, P. O.; Seinfeld, J. H.

    2015-11-01

    Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-pinene photooxidation is a well-studied system experimentally, for which detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-NO α-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concentrations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH levels yield the same SOA growth, whereas GECKO-A predicts greater SOA growth under high OH levels. SOA formation in the chamber is a result of a competition among the rates of gas-phase oxidation to low volatility products, wall deposition of these products, and condensation into the aerosol phase. Various processes, such as photolysis of condensed-phase products, particle-phase dimerization, and peroxy radical autoxidation, are explored to rationalize the observations. In order to explain the observed similar SOA growth under different OH levels, we conclude that vapor wall loss in the Caltech chamber is likely of order 10-5 s-1, consistent with previous experimental measurements in that chamber. We find that GECKO-A tends to overpredict the contribution to SOA of later-generation oxidation products under high OH conditions. The key role of the interplay among oxidation rate, product volatility, and vapor-wall deposition in chamber experiments is illustrated.

  6. A comparison of secondary organic aerosol (SOA) yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-05-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW >400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0% yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the VOC precursor, is essential in predicting nighttime aerosol production.

  7. Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J.

    2011-12-01

    Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal

  8. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  9. Proximity-based access control for context-sensitive information provision in SOA-based systems

    NASA Astrophysics Data System (ADS)

    Rajappan, Gowri; Wang, Xiaofei; Grant, Robert; Paulini, Matthew

    2014-06-01

    Service Oriented Architecture (SOA) has enabled open-architecture integration of applications within an enterprise. For net-centric Command and Control (C2), this elucidates information sharing between applications and users, a critical requirement for mission success. The Information Technology (IT) access control schemes, which arbitrate who gets access to what information, do not yet have the contextual knowledge to dynamically allow this information sharing to happen dynamically. The access control might prevent legitimate users from accessing information relevant to the current mission context, since this context may be very different from the context for which the access privileges were configured. We evaluate a pair of data relevance measures - proximity and risk - and use these as the basis of dynamic access control. Proximity is a measure of the strength of connection between the user and the resource. However, proximity is not sufficient, since some data might have a negative impact, if leaked, which far outweighs importance to the subject's mission. For this, we use a risk measure to quantify the downside of data compromise. Given these contextual measures of proximity and risk, we investigate extending Attribute-Based Access Control (ABAC), which is used by the Department of Defense, and Role-Based Access Control (RBAC), which is widely used in the civilian market, so that these standards-based access control models are given contextual knowledge to enable dynamic information sharing. Furthermore, we consider the use of such a contextual access control scheme in a SOA-based environment, in particular for net-centric C2.

  10. Breeding Pierce’s disease resistant table and raisin grapes and the development of markers for additional sources of resistance 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-two seedless x seedless crosses to develop additional BC2 and BC3 V. arizonica and BC1 SEUS BD5-117 families were made in 2008. Powdery mildew resistance was included in five of these crosses. These crosses produced 5,148 berries, 8,824 ovules and 1,861 embryos. Nine seeded BC1 crosses bas...

  11. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  12. EFFECT OF VITAMIN C ADDITION TO GROUND BEEF FROM GRASS-FED OR GRAIN-FED SOURCES ON COLOR AND LIPID STABILITY, AND PREDICTION OF FATTY ACID COMPOSITION BY NEAR INFRARED REFLECTANCE ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of postmortem vitamin C addition (VITC) versus no VITC (CONTROL) to ground beef from grass-fed (GRASS) or grain-fed (GRAIN) sources on color and lipid stability during 8 d of illuminated display at 4°C. The use of near infrared reflectance (NIR) spectro...

  13. Developing broadband sources for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, L. R.; Kashyap, R.; Azaña, J.; Maciejko, R.; Matei, R.; Baron, J.; Nemova, G.; Chauve, J.; Bojor, L.; Beitel, D.; Saqqa, S.; Singh, K.

    2006-09-01

    Optical coherence tomography (OCT) is an emerging medical diagnostic technology for noninvasive in situ and in vivo cross-sectional morphological imaging of transparent or nontransparent biological tissues and materials on a micrometer scale. The technique uses low coherence interferometry to extract the intensity of the reflected signal as a function of penetration depth in the sample and is analogous to ultrasound except that much shorter wavelength infrared radiation is used rather than sound waves. Among the key enabling technologies for OCT systems are high-power, broadband optical sources (BBS). Such sources are required to provide large dynamic range and sensitivity, as well as very high axial resolution. In this paper, we present our ongoing work on developing BBS based on the amplified spontaneous emission (ASE) from semiconductor optical amplifiers (SOAs) and erbium-doped fiber amplifiers (EDFAs). We target sources spanning the S, C, and L bands, with milliwatts of output power and smoothly shaped output spectra. In terms of shaping the output spectra, we consider different designs of gain flattening filters based on side-tapped fiber Bragg gratings (FBGs) as well as specially apodized FBGs operating in transmission. In terms of the source development, we have developed strained multiple-quantum well SOAs and hybrid SOA-EDFA structures. In the hybrid structures, we have also investigated the possibility of exploiting the unused ASE from the SOA as a secondary input to the L-band EDFA. We have also explored techniques such as double-passing to enhance efficiency as well as gain-clamping to provide some inherent spectral flattening.

  14. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; de Sá, S. S.; Ayres, B. R.; Draper, D.; Fry, J.; Ortega, A. M.; Kiendler-Scharr, A.; Pajunoja, A.; Virtanen, A.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, R. L. N.; Stark, H.; Worsnop, D. R.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and Two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including isoprene derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.A major field campaign (Southern Oxidant and Aerosol

  15. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  16. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  17. Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition

    PubMed Central

    Kennedy, Martin J.; Hedin, Lars O.; Derry, Louis A.

    2002-01-01

    An experimental tracer addition of 84Sr to an unpolluted temperate forest site in southern Chile, as well as the natural variation of 87Sr/86Sr within plants and soils, indicates that mechanisms in shallow soil organic horizons are of key importance for retaining and recycling atmospheric cation inputs at scales of decades or less. The dominant tree species Nothofagus nitida feeds nearly exclusively (>90%) on cations of atmospheric origin, despite strong variations in tree size and location in the forest landscape. Our results illustrate that (i) unpolluted temperate forests can become nutritionally decoupled from deeper weathering processes, virtually functioning as atmospherically fed ecosystems, and (ii) base cation turnover times are considerably more rapid than previously recognized in the plant available pool of soil. These results challenge the prevalent paradigm that plants largely feed on rock-derived cations and have important implications for understanding sensitivity of forests to air pollution. PMID:12119394

  18. Superconducting Properties of MgB2 with Addition of Other AlB2-type Diborides and Carbon Sources, Prepared Using High Energy Ball Milling and HIP

    NASA Astrophysics Data System (ADS)

    Rodrigues, Durval; Silva, Lucas B. S. da; Metzner, Vivian C. V.; Hellstrom, Eric E.

    In the present work it is described the production of MgB2 samples by using the mixture of MgB2 with other diborides, (TaB2, VB2, and AlB2) which have the same C32 hexagonal structure as the MgB2, and simultaneous addition with the diborides and SiC, that contribute with C, to replace B in the crystalline structure of the matrix. As an important result, the critical current density (Jc) was improved at low magnetic fields when just the diborides are added. However, when SiC is added simultaneously with the diborides, the result is the improvement of Jc at high fields. The critical temperature (Tc) was maintained high.

  19. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  20. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-01

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %. PMID:24665070

  1. Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN

    NASA Astrophysics Data System (ADS)

    Tang, X.; Cocker, D. R., III; Asa-Awuku, A.

    2012-09-01

    Secondary organic aerosol (SOA) was formed in an environmental reaction chamber from the ozonolysis of β-caryophyllene (β-C) at low concentrations (5 ppb or 20 ppb). Experimental parameters were varied to characterize the effects of hydroxyl radicals, light and the presence of lower molecular weight terpene precursor (isoprene) for β-C SOA formation and cloud condensation nuclei (CCN) characteristics. Changes in β-C SOA chemicophysical properties (e.g., density, volatility, oxidation state) were explored with online techniques to improve our predictive understanding of β-C CCN activity. In the absence of OH scavenger, light intensity had negligible impacts on SOA oxidation state and CCN activity. In contrast, when OH reaction was effectively suppressed (> 11 ppm scavenger), SOA showed a much lower CCN activity and slightly less oxygenated state consistent with previously reported values. Though there is significant oxidized material present (O / C > 0.25), no linear correlation existed between the mass ratio ion fragment 44 in the bulk organic mass (f44) and O / C for the β-C-O3 system. No direct correlations were observed with other aerosol bulk ion fragment fraction (fx) and κ as well. A mixture of β-C and lower molecular weight terpenes (isoprene) consumed more ozone and formed SOA with distinct characteristics dependent on isoprene amounts. The addition of isoprene also improved the CCN predictive capabilities with bulk aerosol chemical information. The β-C SOA CCN activity reported here is much higher than previous studies (κ < 0.1) that use higher precursor concentration in smaller environmental chambers; similar results were only achieved with significant use of OH scavenger. Results show that aerosol formed from a mixture of low and high molecular weight terpene ozonolysis can be hygroscopic and can contribute to the global biogenic SOA CCN budget.

  2. Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN

    NASA Astrophysics Data System (ADS)

    Tang, X.; Cocker, D. R., III; Asa-Awuku, A.

    2012-04-01

    Secondary organic aerosol (SOA) was formed in an environmental reaction chamber from the ozonolysis of β-caryophyllene (β-C) at very low concentrations (5 ppb or 20 ppb) near ambient conditions. Experimental parameters were varied to characterize the effects of hydroxyl radicals, light and the presence of lower molecular weight terpene precursor (isoprene) for β-C SOA formation and Cloud Condensation Nuclei (CCN) characteristics. Changes in β-C SOA chemicophysical properties (e.g. density, volatility, oxidation state) were explored with online techniques to improve our predictive understanding of β-C CCN activity. In the absence of OH scavenger, light intensity had negligible impacts on SOA oxidation state and CCN activity. In contrast, when OH reaction was effectively suppressed (>11ppm scavenger), SOA showed a much lower CCN activity and slightly less oxygenated state consistent with previously reported values. Though there is significant oxidized material present (O/C>0.25), no linear correlation existed between the mass ratio ion fragment 44 in the bulk organic mass (f44) and O/C for the β-C-O3 system. No direct correlations were observed with other aerosol bulk ion fragment fraction (fx) and κ as well. A mixture of β-C and lower molecular weight terpenes (isoprene) consumed more ozone and formed SOA with distinct characteristics dependent on isoprene amounts. The addition of isoprene also improved the CCN predictive capabilities with bulk aerosol chemical information. The β-C SOA CCN activity reported here is much higher than previous studies (κ>0.1) that use higher precursor concentration in smaller environmental chambers; similar results were only achieved with significant use of OH scavenger. Results show that aerosol formed from a mixture of low and high molecular weight terpene ozonolysis can be hygroscopic and can contribute to the global biogenic SOA CCN budget.

  3. Potential biofuel additive from renewable sources--Kinetic study of formation of butyl acetate by heterogeneously catalyzed transesterification of ethyl acetate with butanol.

    PubMed

    Ali, Sami H; Al-Rashed, Osama; Azeez, Fadhel A; Merchant, Sabiha Q

    2011-11-01

    Butyl acetate holds great potential as a sustainable biofuel additive. Heterogeneously catalyzed transesterification of biobutanol and bioethylacetate can produce butyl acetate. This route is eco-friendly and offers several advantages over the commonly used Fischer Esterification. The Amberlite IR 120- and Amberlyst 15-catalyzed transesterification is studied in a batch reactor over a range of catalyst loading (6-12 wt.%), alcohol to ester feed ratio (1:3 to 3:1), and temperature (303.15-333.15K). A butanol mole fraction of 0.2 in the feed is found to be optimum. Amberlite IR 120 promotes faster kinetics under these conditions. The transesterifications studied are slightly exothermic. The moles of solvent sorbed per gram of catalyst decreases (ethanol>butanol>ethyl acetate>butyl acetate) with decrease in solubility parameter. The dual site models, the Langmuir Hinshelwood and Popken models, are the most successful in correlating the kinetics over Amberlite IR 120 and Amberlyst 15, respectively. PMID:21908187

  4. Online Measurements of Highly Oxidized Organics in the Gas and Particle phase during SOAS and SENEX

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F.; Lee, B. H.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Thornton, J. A.

    2014-12-01

    We present measurements of a large suite of gas and particle phase organic compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington and with airborne HR-ToF-CIMS measurements. The FIGAERO instrument was deployed on the Jülich Plant Atmosphere Chamber to study α-pinene oxidation, and subsequently at the SMEAR II forest station in Hyytiälä, Finland and the SOAS ground site, in Brent Alabama. During the Southern Atmosphere Study, a gas-phase only version of the HR-ToF-CIMS was deployed on the NOAA WP-3 aircraft as part of SENEX. We focus here on highly oxygenated organic compounds derived from monoterpene oxidation detected both aloft during SENEX and at the ground-based site during SOAS. In both chamber and the atmosphere, many highly oxidized, low volatility compounds were observed in the gas and particles and many of the same compositions detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition such as O/C ratios, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. The detailed structure in the thermograms reveals a significant contribution from large molecular weight organics and/or oligomers in both chamber and ambient aerosol samples. Approximately 50% of the measured organics in the particle phase are associated with compounds having effective vapour pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. We discuss the implications of these findings for measurements of gas-particle partitioning and for evaluating the contribution of monoterpene oxidation to organic aerosol formation and growth. We also use the aircraft measurements and a

  5. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    SciTech Connect

    Shilling, John E.; Zaveri, Rahul A.; Fast, Jerome D.; Kleinman, Lawrence I.; Alexander, M. L.; Canagaratna, Manjula R.; Fortner, Edward; Hubbe, John M.; Jayne, John T.; Sedlacek, Art; Setyan, Ari; Springston, S.; Worsnop, Douglas R.; Zhang, Qi

    2013-02-21

    The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.9 μg/m3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg/m3 and ΔOA/ΔCO ratios of 35 - 44 μg/m3ppmv. When biogenic and anthropogenic emissions mix, OA levels are dramatically enhanced with median OA concentrations of 11.4 μg/m3 and ΔOA/ΔCO ratios of 77 - 157 μg/m3ppmv. Taken together, our observations show that production of OA is enhanced when anthropogenic emissions from Sacramento mix with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the mechanistic explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust

  6. High speed all-optical PRBS generation using binary phase shift keyed signal based on QD-SOA

    NASA Astrophysics Data System (ADS)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2014-09-01

    A scheme to generate return-to-zero on-off keying (RZ-OOK) high speed all-optical pseudo random bit sequence (PRBS) using binary phase shift keyed (BPSK) signal based on quantum-dot semiconductor optical amplifiers (QD-SOA) has been designed and studied. The PRBS is generated by a linear feedback shift register (LFSR) composed of all-optical logic XOR and AND gates. The XOR gate is composed of a pair of QD SOA Mach-Zehnder interferometers, which can generate BSPK signal to realize all-optical logic XOR gate. Results show that this scheme can mitigate the patterning effects and increase the operation speed to ~250Gb/s.

  7. Polarization insensitive all-optical up-conversion for ROF systems based on parallel pump FWM in a SOA.

    PubMed

    Lu, Jia; Dong, Ze; Cao, Zizheng; Chen, Lin; Wen, Shuangchun; Yu, Jianguo

    2009-04-27

    We have proposed and experimentally investigated polarization insensitive all-optical up-conversion for ROF system based on FWM in a semiconductor optical amplifier (SOA). The parallel pump is generated based on odd-order optical sidebands and carrier suppression using an external intensity modulator and a cascaded optical filter. Therefore, the two pumps are always parallel and phase locked, which makes system polarization insensitive. After FWM in a SOA and optical filtering, similar to single sideband (SSB) 40 GHz optical millimeter-wave is generated only using 10 GHz RF as local oscillator (LO). The receiver sensitivity at a BER of 10(-9) for the up-converted signals is -28.4 dBm. The power penalty for the up-converted downstream signals is smaller than 1 dBm after 20 km SSMF-28 transmission. PMID:19399069

  8. Influence of dry deposition of semi-volatile organic compounds (VOC) on secondary organic aerosol (SOA) formation in the Mexico City plume

    NASA Astrophysics Data System (ADS)

    Hodzic, Alma; Madronich, Sasha; Aumont, Bernard; Lee-Taylor, Julia; Karl, Thomas

    2013-04-01

    The dry deposition removal of organic compounds from the atmosphere and its impact on organic aerosol mass is currently unexplored and unaccounted for in chemistry-climate models. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on other important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of VOCs on SOA concentrations downwind of Mexico City. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, and light aromatics. The results suggest that 90% of SOA produced in Mexico City originates from the oxidation and partitioning of long-chain (C>12) alkanes, while the regionally exported SOA is almost equally produced from long-chain alkanes and from shorter alkanes and light aromatics. We show that dry deposition of oxidized gases is not an efficient sink for SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. We discuss reasons for this limited influence, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase, and because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. In the absence of this condensation, ~50% of the regionally produced mass would have been dry-deposited.

  9. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  10. NGSI student activities in open source information analysis in support of the training program of the U.S. DOE laboratories for the entry into force of the additional protocol

    SciTech Connect

    Sandoval, M Analisa; Uribe, Eva C; Sandoval, Marisa N; Boyer, Brian D; Stevens, Rebecca S

    2009-01-01

    In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describes how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.

  11. Discovery of a Plains Caldera Complex and Extinct Lava Lake in Arabia Terra, Mars: Implications for the Discovery of Additional Highland Volcanic Source Regions

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob; Michalski, Joseph

    2012-01-01

    Several irregularly shaped topographic depressions occur near the dichotomy boundary in northern Arabia Terra, Mars. The geomorphology of these features suggests that they formed by collapse, opposed to meteor impact. At least one depression (approx.55 by 85 km) displays geologic features indicating a complex, multi-stage collapse history. Features within and around the collapse structure indicate volcanic processes. The complex occurs within Hesperian ridged plains of likely volcanic origin and displays no crater rim or evidence for ejecta. Instead the depression consists of a series of circumferential graben and down-dropped blocks which also display upper surfaces similar to ridged plain lavas. Large blocks within the depression are tilted towards the crater center, and display graben that appear to have originally been linked with circumferential graben outside of the complex related to earlier collapse events. A nearly 700 m high mound exists along a graben within the complex that might be a vent. The deepest depression displays two sets of nearly continuous terraces, which we interpret as high-stands of a drained lava lake. These features appear similar to the black ledge described during the Kilauea Iki eruption in 1959. A lacustrine origin for the terraces seems unlikely because of the paucity of channels found in or around the depression that could be linked to aqueous surface processes. In addition, there is no obvious evidence for lacustrine sediments within the basin. Together with the presence of significant faulting that is indicative of collapse we conclude that this crater complex represents a large caldera formed in the Late Noachian to Early Hesperian. Other linear and irregular depressions in the region also might be linked to ancient volcanism. If that hypothesis is correct, it suggests that northern Arabia Terra could contain a large, previously unrecognized highland igneous province. Evacuation of magma via explosive and effusive activity

  12. Effects of different fibre sources and fat addition on cholesterol and cholesterol-related lipids in blood serum, bile and body tissues of growing pigs.

    PubMed

    Kreuzer, M; Hanneken, H; Wittmann, M; Gerdemann, M M; Machmuller, A

    2002-04-01

    Knowledge is limited on the efficacy of hindgut-fermentable dietary fibre to reduce blood, bile and body tissue cholesterol levels. In three experiments with growing pigs the effects of different kinds and levels of bacterially fermentable fibre (BFS) on cholesterol metabolism were examined. Various diets calculated to have similar contents of metabolizable energy were supplied for complete fattening periods. In the first experiment, a stepwise increase from 12 to 20% BFS was performed by supplementing diets with fermentable fibre from sugar beet pulp (modelling hemicelluloses and pectin). Beet pulp, rye bran (modelling cellulose) and citrus pulp (pectin) were offered either independently or in a mixture in the second experiment. These diets were opposed to rations characterized in carbohydrate type by starch either mostly non-resistant (cassava) or partly resistant (maize) to small intestinal digestion. The third experiment was planned to explore the interactions of BFS from citrus pulp with fat either through additional coconut oil/palm kernel oil blend or full-fat soybeans. In all experiments the increase of the BFS content was associated with a constant (cellulose) or decreasing (hemicelluloses, pectin) dietary proportion of non-digestible fibre. In experiment 1 an inverse dose-response relationship between BFS content and cholesterol in blood serum and adipose tissue as well as bile acid concentration in bile was noted while muscle cholesterol did not respond. In experiment 2 the ingredients characterized by cellulose and hemicelluloses/pectin reduced cholesterol-related traits relative to the low-BFS-high-starch controls whereas, except in adipose tissue cholesterol content, the pectinous ingredient had the opposite effect. However, the changes in serum cholesterol mainly affected HDL and not LDL cholesterol. Adipose tissue cholesterol also was slightly lower with partly resistant starch compared to non-resistant starch in the diet. Experiment 3 showed that

  13. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas-wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  14. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2015-09-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.

  15. Probing the Morphology and Diffusivity of Mixed SOA/Squalane Particles Using Size-resolved Composition and Single-particle Measurements.

    NASA Astrophysics Data System (ADS)

    Robinson, E. S.; Saleh, R.; Donahue, N. M.

    2014-12-01

    We present an analysis of the formation and evaporation of mixed-particles comprised of squalane and SOA. First, we use a two-population smog chamber experiment to test the phase-behavior between isotopically-labeled squalane (D62-squalane) and SOA (from α-pinene + O3). Next, we present mixed-particle experiments where one particle type (squalane or SOA) was prepared first to serve as surface area for condensation of the other material, forming the mixed particles. The mixed particles were then subjected to a heating ramp from 22 to 44 ◦C in the chamber. From these experiments, we were able to determine that: 1) squalane and SOA phase separate; 2) the vast majority of squalane is able to evaporate from the mixed particles on the same timescale regardless of the order of preparation; 3) almost all of the SOA mass is comprised of material less volatile than squalane; 4) AMS collection efficiency in these mixed-particle systems varies widely but systematically the course of these experiments where particle phase is dynamic, and can be parameterized as a function of the mass fraction of squalane; and 5) the evaporation profile of squalane can be used to estimate the diffusion coefficient (Dorg) of squalane through SOA.

  16. The Effect of Bark Borer Herbivory on BVOC Emissions in Boreal Forests and Implications for SOA Formation

    NASA Astrophysics Data System (ADS)

    Faiola, Celia; Joutsensaari, Jorma; Holopainen, Jarmo; Yli-Juuti, Taina; Kokkola, Harri; Blande, James; Guenther, Alex; Virtanen, Annele

    2015-04-01

    Herbivore outbreaks are expected to increase as a result of climate change. These outbreaks can have significant effects on the emissions of biogenic volatile organic compound (BVOC) from vegetation, which contribute to the formation of secondary organic aerosol (SOA). We have synthesized the published results investigating changes to BVOC emissions from herbivory by the pine weevil, Hylobius abietis--a bark borer herbivore. Previous lab experiments have shown that bark borer herbivory on Scots pine trees increases monoterpene emissions 4-fold and sesquiterpene emissions 7-fold. Norway spruce exhibits a similar response. The BVOCs most impacted were linalool, beta-phellandrene, limonene, alpha-pinene, beta-pinene, myrcene, and sesquiterpenes like beta-farnesene, beta-bourbonene, and longifolene. The quantitative results from these studies were used to estimate potential impacts of bark borer herbivory on BVOC emissions at a regional scale using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). MEGAN was run under baseline and herbivore outbreak conditions for a typical boreal forest environment in spring. Emissions output from MEGAN was used to run a microphysical box model to estimate the SOA formation potential under baseline and outbreak conditions. This estimate could provide us with an upper limit to the potential impact of bark borer outbreaks on SOA formation in a boreal forest.

  17. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    PubMed

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-01

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation. PMID:21164914

  18. Archaeological implications of the geology and chronology of the Soa basin, Flores, Indonesia

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Paul B.; Morwood, Mike; Hobbs, Douglas; Aziz Suminto, Fachroel; Situmorang, Mangatas; Raza, Asaf; Maas, Roland

    2001-07-01

    The timing of arrival of early hominids in Southeast Asia has major implications for models of hominid evolution. The majority of evidence for the earliest appearance of hominids in the region has previously come from Java in western Indonesia. Much of this evidence remains controversial owing to a poor understanding of the stratigraphic and chronologic relationships of the depositional units from which the material was derived. Before artifacts may be placed into their proper archaeological context, the geologic history of archaeological sites must be thoroughly understood, and deposits containing artifacts must be properly dated. An extensive investigation has been undertaken on the island of Flores, in eastern Indonesia, to determine the depositional and chronological history of stratigraphic units within the Soa basin; many of the units are associated with stone artifacts attributed to Homo erectus. Zircon fission-track dates of tuffaceous deposits within this lacustrine basin now provide the most reliable data concerning the true time of arrival of Homo erectus into Southeast Asia and indicate that these early hominids must have successfully begun colonizing eastern Indonesia by ca. 840 ka.

  19. An LDMOS with large SOA and low specific on-resistance

    NASA Astrophysics Data System (ADS)

    Wenfang, Du; Xinjiang, Lyu; Xingbi, Chen

    2016-05-01

    An LDMOS with nearly rectangular-shape safe operation area (SOA) and low specific on-resistance is proposed. By utilizing a split gate, an electron accumulation layer is formed near the surface of the n-drift region to improve current conduction capability during on-state operation. As a result, the specific on-resistance can be lowered down to 74.7 mΩ·cm2 for a 600 V device from simulation. Furthermore, under high-voltage and high-current conditions, electrons and holes flow as majority carriers in the n-drift region and p-type split gate, respectively. Due to charge compensation occurring between holes and electrons, the local electric field is reduced and impact ionization is weakened in the proposed device. Therefore, a higher on-state breakdown voltage at large VGS is obtained and snap-back is suppressed as well. Project supported in part by the National Natural Science Foundation of China (No. 51237001).

  20. Simultaneous measurements of vibration, temperature, and humidity using a SOA-based fiber Bragg grating laser

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Fang, Nian; Ding, Fuxin; Huang, Zhaoming

    2010-12-01

    A novel SOA-based, dual-wavelength, FBG laser sensor system for simultaneously measuring vibration, temperature and humidity is demonstrated. The sensor interrogations are completed with a wavelength matching method by adjusting temperatures of two TECs to control wavelengths of two reference FBGs matching with those of two sensor FBGs. Two corresponding TEC control signals are used as detection outputs for temperature and humidity measurements. Some experimental results on simultaneous measurements of vibration, temperature of the sensor system with a FBG vibration/temperature senor and a 10-layer polyimide coating FBG humidity sensor are presented. The fundamental system performances in respects of the frequency response of system in vibration measurements and the tracing of the Bragg wavelength of sensor FBG through a TEC temperature control method were also demonstrated. The experimental results verified that the proposed FBG laser sensor system has a desired detection performance. This sensor system can be used in many industrial measurement fields, particularly in the electrical power industry for condition monitoring of power generators as well as high-voltage power transformers.

  1. Bringing Agility to Business Process Management: Rules Deployment in an SOA

    NASA Astrophysics Data System (ADS)

    El Kharbili, Marwane; Keil, Tobias

    Business process management (BPM) has emerged as paradigm for integrating business strategies and enterprise architecture (EA). In this context, BPM implementation on top of web-service-based service oriented architectures is an accepted approach as shown by great amount of literature. One concern in this regard is how-to make BPs reactive to change. Our approach to the problem is the integration of business rule management (BRM) and BPM by allowing modeling of decisions hard-coded in BPs as separate business rules (BRs). These BRs become EA assets and need to be exploited when executing BPs. We motivate why BPM needs agility and discuss what requirements on BPM this poses. This paper presents prototyping work conducted at a BP modeling and analysis vendor which weeks to showcase how using business rule management (BRM) as a mean for modeling decisions can help achieve a much sought-after agility to BPM. This prototype relies on the integrated modeling of business rules (BRs) and BPs, and rule deployment as web services part of an SOA.

  2. Using ESB and BPEL for Evolving Healthcare Systems Towards Pervasive, Grid-Enabled SOA

    NASA Astrophysics Data System (ADS)

    Koufi, V.; Malamateniou, F.; Papakonstantinou, D.; Vassilacopoulos, G.

    Healthcare organizations often face the challenge of integrating diverse and geographically disparate information technology systems to respond to changing requirements and to exploit the capabilities of modern technologies. Hence, systems evolution, through modification and extension of the existing information technology infrastructure, becomes a necessity. Moreover, the availability of these systems at the point of care when needed is a vital issue for the quality of healthcare provided to patients. This chapter takes a process perspective of healthcare delivery within and across organizational boundaries and presents a disciplined approach for evolving healthcare systems towards a pervasive, grid-enabled service-oriented architecture using the enterprise system bus middleware technology for resolving integration issues, the business process execution language for supporting collaboration requirements and grid middleware technology for both addressing common SOA scalability requirements and complementing existing system functionality. In such an environment, appropriate security mechanisms must ensure authorized access to integrated healthcare services and data. To this end, a security framework addressing security aspects such as authorization and access control is also presented.

  3. A SOA-Based Solution to Monitor Vaccination Coverage Among HIV-Infected Patients in Liguria.

    PubMed

    Giannini, Barbara; Gazzarata, Roberta; Sticchi, Laura; Giacomini, Mauro

    2016-01-01

    Vaccination in HIV-infected patients constitutes an essential tool in the prevention of the most common infectious diseases. The Ligurian Vaccination in HIV Program is a proposed vaccination schedule specifically dedicated to this risk group. Selective strategies are proposed within this program, employing ICT (Information and Communication) tools to identify this susceptible target group, to monitor immunization coverage over time and to manage failures and defaulting. The proposal is to connect an immunization registry system to an existing regional platform that allows clinical data re-use among several medical structures, to completely manage the vaccination process. This architecture will adopt a Service Oriented Architecture (SOA) approach and standard HSSP (Health Services Specification Program) interfaces to support interoperability. According to the presented solution, vaccination administration information retrieved from the immunization registry will be structured according to the specifications within the immunization section of the HL7 (Health Level 7) CCD (Continuity of Care Document) document. Immunization coverage will be evaluated through the continuous monitoring of serology and antibody titers gathered from the hospital LIS (Laboratory Information System) structured into a HL7 Version 3 (v3) Clinical Document Architecture Release 2 (CDA R2). PMID:27577397

  4. Primary sources and secondary formation of organic aerosols in Beijing, China.

    PubMed

    Guo, Song; Hu, Min; Guo, Qingfeng; Zhang, Xin; Zheng, Mei; Zheng, Jun; Chang, Chih Chung; Schauer, James J; Zhang, Renyi

    2012-09-18

    Ambient aerosol samples were collected at an urban site and an upwind rural site of Beijing during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. Contributions of primary particles and secondary organic aerosols (SOA) were estimated by chemical mass balance (CMB) modeling and tracer-yield method. The apportioned primary and secondary sources explain 73.8% ± 9.7% and 79.6% ± 10.1% of the measured OC at the urban and rural sites, respectively. Secondary organic carbon (SOC) contributes to 32.5 ± 15.9% of the organic carbon (OC) at the urban site, with 17.4 ± 7.6% from toluene, 9.7 ± 5.4% from isoprene, 5.1 ± 2.0% from α-pinene, and 2.3 ± 1.7% from β-caryophyllene. At the rural site, the secondary sources are responsible for 38.4 ± 14.4% of the OC, with the contributions of 17.3 ± 6.9%, 13.9 ± 9.1%, 5.6 ± 1.9%, and 1.7 ± 1.0% from toluene, isoprene, α-pinene, and β-caryophyllene, respectively. Compared with other regions in the world, SOA in Beijing is less aged, but the concentrations are much higher; between the sites, SOA is more aged and affected by regional transport at the urban site. The high SOA loading in Beijing is probably attributed to the high regional SOC background (~2 μg m(-3)). The toluene SOC concentration is high and comparable at the two sites, implying that some anthropogenic components, at least toluene SOA, are widespread in Beijing and represents a major factor in affecting the regional air quality. The aerosol gaseous precursor concentrations and temperature correlate well with SOA, both affecting SOA formation. The significant SOA enhancement with increasing water uptake and acidification indicates that the aqueous-phase reactions are largely responsible SOA formation in Beijing. PMID:22486583

  5. Additive usage levels.

    PubMed

    Langlais, R

    1996-01-01

    With the adoption of the European Parliament and Council Directives on sweeteners, colours and miscellaneous additives the Commission is now embarking on the project of coordinating the activities of the European Union Member States in the collection of the data that are to make up the report on food additive intake requested by the European Parliament. This presentation looks at the inventory of available sources on additive use levels and concludes that for the time being national legislation is still the best source of information considering that the directives have yet to be transposed into national legislation. Furthermore, this presentation covers the correlation of the food categories as found in the additives directives with those used by national consumption surveys and finds that in a number of instances this correlation still leaves a lot to be desired. The intake of additives via food ingestion and the intake of substances which are chemically identical to additives but which occur naturally in fruits and vegetables is found in a number of cases to be higher than the intake of additives added during the manufacture of foodstuffs. While the difficulties are recognized in contributing to the compilation of food additive intake data, industry as a whole, i.e. the food manufacturing and food additive manufacturing industries, are confident that in a concerted effort, use data on food additives by industry can be made available. Lastly, the paper points out that with the transportation of the additives directives into national legislation and the time by which the food industry will be able to make use of the new food legislative environment several years will still go by; food additives use data by the food industry will thus have to be reviewed at the beginning of the next century. PMID:8792135

  6. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA

  7. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  8. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NASA Astrophysics Data System (ADS)

    Janssen, R. H. H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L. N.; Kabat, P.; Jimenez, J. L.; Farmer, D. K.; van Heerwaarden, C. C.; Mammarella, I.

    2012-08-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment) must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA) concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA) in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  9. Oil Sands Operations in Alberta, Canada: A large source of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A. L.; Drollette, B.; Gordon, M.; Lee, P.; Liu, P.; Leithead, A.; Moussa, S.; Wang, D.; O'Brien, J.; Mittermeier, R. L.; Brook, J.; Lu, G.; Staebler, R. M.; Han, Y.; Tokarek, T. W.; Osthoff, H. D.; Makar, P.; Zhang, J.; Plata, D.; Gentner, D. R.

    2015-12-01

    Little is known of the reaction products of emissions to the atmosphere from extraction of oil from unconventional sources in the oil sands (OS) region of Alberta, Canada. This study examines these reaction products, and in particular, the extent to which they form secondary organic aerosol (SOA), which can significantly contribute to regional particulate matter formation. An aircraft measurement campaign was conducted over the Athabasca oil sands region between August 13 and September 7, 2013. A broad suite of measurements were made during 22 flights, including organic aerosol mass and composition with a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and organic aerosol gas-phase precursors by Proton Transfer Reaction (PTR) and off-line gas chromatography mass spectrometry. Large concentrations of organic aerosol were measured downwind of the OS region, which we show to be entirely secondary in nature. Laboratory experiments demonstrated that bitumen (the mined product) contains semi-volatile vapours in the C12-C18 range that will be emitted at ambient temperatures. When oxidized, these vapours form SOA with highly similar HR-ToF-AMS spectra to the SOA measured in the flights. Box modelling of the OS plume evolution indicated that the measured levels of traditional volatile organic compounds (VOCs) are not capable of accounting for the amount of SOA formed in OS plumes. This discrepancy is only reconciled in the model by including bitumen vapours along with their oxidation and condensation into the model. The concentration of bitumen vapours required to produce SOA matching observations is similar to that of traditional VOC precursors of SOA. It was further estimated that the cumulative SOA mass formation approximately 100 km downwind of the OS during these flights, and under these meteorological conditions was up to 82 tonnes/day. The combination of airborne measurements, laboratory experiments and box modelling indicated that semi

  10. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2014-05-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photooxidation of dilute exhaust from a fleet of gasoline and diesel motor vehicles and two gas-turbine engines. In experiments where POA was present in the chamber at the onset of photooxidation, positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A 2-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol for gasoline vehicles, diesel vehicles, and one of the gas-turbine engines. Experiments with the second gas-turbine engine required a 3-factor PMF solution with a POA factor and two SOA factors. Results from the PMF analysis were compared to the residual method for determining SOA and POA mass concentrations. The residual method apportioned a larger fraction of the organic aerosol mass as POA because it assumes that all mass at m / z 57 is associated with POA. The POA mass spectrum for the gasoline and diesel vehicles exhibited high abundances of the CnH2n+1 series of ions (m / z 43, 57, etc.) and was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient data sets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. POA mass spectra for the gas-turbine engines are enriched in the CnH2n-1 series of ions (m / z 41, 55, etc.), consistent with the composition of the lubricating oil used in these engines. The SOA formed from the three sources exhibits high abundances of m / z 44 and 43, indicative of mild oxidation. The SOA mass spectra are consistent with less-oxidized ambient SV-OOA (semivolatile oxygenated organic aerosols) and fall within the triangular region of f44 versus f43 defined by ambient measurements. However there is poor absolute agreement between the experimentally derived SOA mass

  11. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2012-07-01

    An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China) was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable C isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  12. Source apportionment of airborne particulate matter using inorganic and organic species as tracers

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Xia, Xiaoyan; Rattigan, Oliver V.; Chalupa, David C.; Utell, Mark J.

    2012-08-01

    Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solution was found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of them was necessary to resolve SOA and wood combustion factors in urban areas.

  13. Source apportionment of organic aerosol across Houston, TX during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Clark, A. E.; Ortiz, S. M.; Usenko, S.; Sheesley, R. J.

    2015-12-01

    As part of the ground-based sampling efforts during DISCOVER-AQ's Houston month-long campaign in September 2013, atmospheric particulate matter (PM) samples were collected at four sites: Moody Tower (urban), Manvel Croix (southern suburb), Conroe (northern suburb), and La Porte (urban industrial). The Houston metropolitan area, especially the Houston Ship Channel, is a densely industrialized urban city with large concentrations of petroleum refining, petrochemical manufacturing, and heavy traffic during peak hours. Due to these and other emission sources, the area is heavily impacted by ambient PM. This study will be looking at fine PM (diameter less than 2.5µm, PM2.5) from all four sites. PM2.5fraction is relevant for understanding fate and transport of organic contaminants and is widely known to negatively impact human health. Chemical analysis including radiocarbon (14C) and organic tracer measurements (polycyclic aromatic hydrocarbons, alkanes, hopanes, steranes, and levoglucosan) were used for source apportionment. The 14C measurements constrained CMB results to estimate both primary and secondary contributions to total organic carbon (TOC). Results indicate that Moody Tower had consistent primary motor vehicle exhaust contribution (18-27%) and a fossil secondary organic aerosol (SOA) contribution from 5-33% depending on atmospheric conditions. Conroe had a lower contribution of motor vehicle exhaust (5-10%) and similarly variable fraction of fossil SOA (4-25%). Manvel Croix had an interim motor vehicle contribution (9-15%) with a variable fossil SOA (5-30%). For contemporary OC, there was minimal contribution of wood smoke during examined weeks (0-9%) but larger contributor of biogenic SOA ranging from 40-75% at Moody Tower, 56-81% at Manvel Croix and 60-79% at Conroe. Overall, the motor vehicle contribution was consistent at each site during the analysis week, biogenic SOA was consistently high, while fossil SOA showed the most variability.

  14. OH Reactivity and Potential SOA Yields from Volatile Organic Compounds and Other Trace Gases Measured in Controlled Laboratory Biomass Burns

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Warneke, C.; Kuster, W. C.; Goldan, P. D.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2010-12-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire Sciences Laboratory in Missoula, Montana. An on-line GC-MS provided highly speciated VOC measurements of alkenes, alkanes, oxygenates, aromatics, biogenics, and nitrogen-containing compounds during the flaming or smoldering phases of replicate burns. The speciated GC-MS “grab” samples were integrated with fast-response gas-phase measurements (e.g., PTR-MS, PTR-IT-MS, NI-PT-CIMS, and FTIR) in order to determine VOC emission ratios and the fraction of identified vs. unidentifiable mass detected by PTR-MS. Emission ratios were used to calculate OH reactivity, which is a measure of potential ozone formation, as well as potential secondary organic aerosol (SOA) yields from the various fuel types. Small oxygenated VOCs had the highest emission ratios of the compounds observed. Alkenes dominated the VOC OH reactivity, which occasionally exceeded 1000 s-1. Calculated SOA yields from known precursors were dominated by aromatic VOCs, such as toluene, naphthalene (C10H8), and 1,3-benzenediol (C6H6O2, resorcinol). The contribution of several compounds not typically reported in ambient air measurements, such as substituted furans (C4H4O), pyrroles (C4H5N), and unsaturated C9 aromatics (C9H10), on OH reactivity and SOA yields will be discussed.

  15. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    PubMed

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. PMID:26655791

  16. Secondary Organic Aerosol (SOA) formation from the β-pinene + NO3 system: effect of humidity and peroxy radical fate

    NASA Astrophysics Data System (ADS)

    Boyd, C. M.; Sanchez, J.; Xu, L.; Eugene, A. J.; Nah, T.; Tuet, W. Y.; Guzman, M. I.; Ng, N. L.

    2015-01-01

    The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber facility (GTEC). Aerosol yields are determined for experiments performed under both dry (RH < 2%) and humid (RH = 50% and RH = 70%) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231 and 245 amu) are detected by chemical ionization mass spectrometry and their formation mechanisms are proposed. The ions at m/z 30 (NO+) and m/z 46 (NO2+) contribute about 11% to the total organics signal in the typical aerosol mass spectrum, with NO+ : NO2+ ratio ranging from 6 to 9 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1-216.1 μg m-3), the aerosol mass yield is calculated to be 27.0-104.1%. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45-74% of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10% of the organic nitrates formed from the β-pinene + NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3-4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the

  17. Evaluation of New and Proposed Organic Aerosol Sources and Mechanisms using the Aerosol Modeling Testbed. MILAGRO, CARES, CalNex, BEACHON, and GVAX

    SciTech Connect

    Hodzic, Alma; Jimenez, Jose L.

    2015-04-09

    This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particular (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.

  18. 80Gbits/s DPSK receiver-sensitivity improvement using balanced gain-compression and amplification inside an SOA balanced-receiver

    NASA Astrophysics Data System (ADS)

    Awad, Ehab S.

    2010-10-01

    A novel technique for 2R-regeneration (re-shaping and re-amplification) of received RZ or NRZ 80 Gbit/s DPSK data is demonstrated using numerical simulations. The technique is based on using a single SOA balanced-receiver for balanced gain-compression and balanced amplification of demodulated DPSK (OOK) data. The utilized SOA is polarization-insensitive with 100 ps recovery time, and the tested data is 2 23-1 PRBS long. The balanced configuration of co-propagating orthogonally-polarized and complementary OOK streams inside SOA introduce a negligible pattern-dependence at system output. The receiver has been tested by wide-range of input random phase and amplitude-noise showing a remarkable improvement in data quality-factor. The BER demonstrates a receiver-sensitivity improvement by more than 4 dB in both cases of single-ended and balanced-detected signals.

  19. All-optical 40 Gbit/s data format conversion between RZ and NRZ using a fiber delay interferometer and a single SOA

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, Enming; Yu, Yu; Zhang, Yin

    2011-12-01

    We demonstrated experimentally 40 Gbit/s all-optical format conversions between return-to-zero (RZ) and nonreturn-to- zero (NRZ) using a fiber delay interferometer (FDI) and a single semiconductor optical amplifier (SOA). Firstly, 40 Gbit/s data format conversion from RZ to NRZ is realized using a FDI with temperature control and an optical bandpass filter (BPF). Then, 40 Gbit/s data format conversion from NRZ to RZ is implemented, using four-wave mixing (FWM) effect of SOA, by injecting synchronously NRZ signal and clock pulses into a single SOA. Presented method has some distinct advantages including multi-channel parallel processing, easy integration, convenient tuning, good stability, and so on, which has potential to be used in future optical networks that could combine wavelength division multiplexing (WDM) and optical time domain multiplexing (OTDM) transmission techniques.

  20. Design of 10Gbps optical encoder/decoder structure for FE-OCDMA system using SOA and opto-VLSI processors.

    PubMed

    Aljada, Muhsen; Hwang, Seow; Alameh, Kamal

    2008-01-21

    In this paper we propose and experimentally demonstrate a reconfigurable 10Gbps frequency-encoded (1D) encoder/decoder structure for optical code division multiple access (OCDMA). The encoder is constructed using a single semiconductor optical amplifier (SOA) and 1D reflective Opto-VLSI processor. The SOA generates broadband amplified spontaneous emission that is dynamically sliced using digital phase holograms loaded onto the Opto-VLSI processor to generate 1D codewords. The selected wavelengths are injected back into the same SOA for amplifications. The decoder is constructed using single Opto-VLSI processor only. The encoded signal can successfully be retrieved at the decoder side only when the digital phase holograms of the encoder and the decoder are matched. The system performance is measured in terms of the auto-correlation and cross-correlation functions as well as the eye diagram. PMID:18542143

  1. Submicron aerosol organic functional groups, ions, and water content at the Centreville SEARCH site (Alabama), during SOAS campaign

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Ergin, G.; Modini, R. L.; Takahama, S.

    2013-12-01

    The SOAS campaign was conducted from June 1 to July 15 of 2013 in order to understand the relationship between biogenic and anthropogenic emissions in the South East US1,2. In this study, the organic and inorganic composition of submicron aerosol in the Centreville SEARCH site was measured by Fourier Transform Infrared Spectroscopy (FTIR) and the Ambient Ion Monitor (AIM; URG Corporation), whereas the aerosol water content was measured with a Dry Ambient Aerosol Size Spectrometer (DAASS)3. Organic functional group analysis was performed on PM1 aerosol selected by cyclone and collected on teflon filters with a time resolution of 4-12 hours, using one inlet heated to 50 °C and the other operated either at ambient temperature or 70 °C 4. The AIM measured both condensed and gas phase composition with a time resolution of 1 hour, providing partitioning behavior of inorganic species such as NH3/NH4+, HNO3/NO3-. These measurements collectively permit calculation of pure-component vapor pressures of candidate organic compounds and activity coefficients of interacting components in the condensed phase, using models such as SIMPOL.15, E-AIM6, and AIOMFAC7. From these results, the water content of the aerosol is predicted, and a comparison between modeled and measured partitioning of inorganic compounds and water vapor are discussed, in addition to organic aerosol volatility prediction based on functional group analysis. [1]- Goldstein, A.H., et al., Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(22), 8835-8840. [2]- Carlton, A.G., Turpin, B.J., 2013. Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmospheric Chemistry and Physics Discussions 13, 12743-12770. [3]- Khlystov, A., Stanier, C.O., Takahama, S., Pandis, S.N., 2005. Water content of ambient

  2. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE PAGESBeta

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  3. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets

    NASA Astrophysics Data System (ADS)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2016-07-01

    Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

  4. Investigation of data-format-transparent multiwavelength all-optical clock recovery using a single FP-SOA

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Xinliang; Xu, Enming

    2011-10-01

    Multiwavelength clock recovery (CR) is desired to perform all-optical parallel processing, which has potential application in optical communication systems that use WDM technology. Fabry-Pérot semiconductor optical amplifier (FP-SOA) can perform the similar filter function as passive FP filter, and can simultaneously provide gain for oscillation pulses in the cavity; it is essentially an active filter. We experimentally demonstrated simultaneous multiwavelength all-optical CR from input 36.47-Gb/s pseudo-return-zero (PRZ) data and non-return-zero (NRZ) data using a single multi-quantum-well (MQW) FP-SOA with facets reflectivity of 30%. The presented multiwavelength CR scheme is also suitable for PSK signals. Dual-channel CR from input two channels 36.47-Gb/s 2 23-1 NRZ-DPSK data located at different wavelength is experimentally demonstrated. This scheme is transparent for data formats, which is very important for next generation optical networks.

  5. Understanding Isoprene Photo-oxidation from Continuous-Flow Chamber Experiments: Unexpectedly High SOA Yields and New Insights into Isoprene Oxidation Pathways

    NASA Astrophysics Data System (ADS)

    Liu, J.; D'Ambro, E.; Lee, B. H.; Zaveri, R. A.; Thornton, J. A.; Shilling, J.

    2014-12-01

    Secondary organic aerosol (SOA) accounts for a substantial fraction of tropospheric aerosol and has significant impacts on climate and human health. Results from the CARES (Carbonaceous Aerosol and Radiative Effects Study) field mission suggested that isoprene oxidation moderated by anthropogenic emissions plays a dominant role in SOA formation, but current literature isoprene yields and oxidation mechanisms are unable to explain the CARES observations. In this study, we conducted a series of continuous-flow chamber experiments to investigate the yield and chemical composition of SOA formed from isoprene photo-oxidation as a function of NOx concentration. Under low-NOx (< 1ppbv) conditions, we measure SOA mass yields that are significantly larger than previously reported, reaching up to 20%, and the yields are strongly dependent on H2O2 concentrations. The higher yields are likely a result of differences between batch mode and continuous-flow experiments and the photochemical fate of the ISOPOOH intermediate under the high HO2 conditions of the chamber experiments. Online analysis of the SOA using the University of Washington FIGAERO HR-ToF-CIMS instrument shows that a C5H12O6 compound can explain a significant fraction of the mass measured by the AMS. We tentatively identify this compound as a dihydroxy dihydroperoxide produced from the oxidation of ISOPOOH. To our knowledge, we believe this represents the most direct confirmation that such dihydroperoxides form during isoprene oxidation and contribute to SOA. A van Krevelen analysis of HR-AMS data is consistent with hydroperoxide species forming the majority of the SOA. As progressively more NO was added to the system, yields initially increase to a maximum at an NO:isoprene ratio of ~1, and then rapidly decrease, to 3.6% at an NO:isoprene ratio of 4. As NO concentrations increased, alkyl nitrates accounts for an increasing portion of the SOA mass, though hydroperoxides remain significant. These observations of

  6. Examining the Effects of Anthropogenic Emissions on Isoprene-Derived Secondary Organic Aerosol Formation During the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, Ground Site

    EPA Science Inventory

    A suite of offline and real-time gas- and particle-phase measurements was deployed atLook Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formatio...

  7. Screening of additives in plastics with high resolution time-of-flight mass spectrometry and different ionization sources: direct probe injection (DIP)-APCI, LC-APCI, and LC-ion booster ESI.

    PubMed

    Ballesteros-Gómez, Ana; Jonkers, Tim; Covaci, Adrian; de Boer, Jacob

    2016-04-01

    Plastics are complex mixtures consisting of a polymer and additives with different physico-chemical properties. We developed a broad screening method to elucidate the nature of compounds present in plastics used in electrical/electronic equipment commonly found at homes (e.g., electrical adaptors, computer casings, heaters). The analysis was done by (a) solvent extraction followed by liquid chromatography coupled to high accuracy/resolution time-of-flight mass spectrometry (TOFMS) with different ionization sources or (b) direct analysis of the solid by ambient mass spectrometry high accuracy/resolution TOFMS. The different ionization methods showed different selectivity and sensitivity for the different compound classes and were complementary. A variety of antioxidants, phthalates, UV filters, and flame retardants were found in most samples. Furthermore, some recently reported impurities or degradation products derived from flame retardants were identified, such as hydroxylated triphenyl phosphate and tetrabromobisphenol A monoglycidyl ether. PMID:26758596

  8. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-08-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-Ŕ respectively) and precursor ion (nitro groups, R-NO2) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  9. Effect of protein source and protease addition on performance, blood metabolites and nutrient digestibility of turkeys fed on low-protein diets from 28 to 55 d post hatch.

    PubMed

    Shahir, M H; Rahimi, R; Taheri, H R; Heidariniya, A; Baradaran, N; Asadi Kermani, Z

    2016-06-01

    The objective of this study was to investigate the effect of a monocomponent protease and dietary inclusion of canola meal (CM) and poultry by-product meal (PBM) on growth performance, carcass characteristics and blood metabolites of turkeys fed on low crude protein (CP) diets from 28 to 55 d post hatch. Experimental treatments included control, maize-soybean meal diet including 258.3 g/kg CP; negative control 1 (NC1), maize-soybean meal diet with reduced CP (232.4 g/kg); NC2, control diet (CP, 258.3 g/kg) including CM (80 g/kg) and PBM (80 g/kg); NC3, maize-soybean meal diet with reduced CP (232.4 g/kg) including CM (80 g/kg) and PBM (80 g/kg). Also, the NC1 + P and NC3 + P diets were created by addition of protease enzyme (30 000 units/kg of diet) to the NC1 and NC3 diets, respectively. The NC3 group had lower body weight gain (BWG) compared to those fed on the control diet, and no improvement with enzyme addition (NC3 + P) was achieved. The protease addition to the NC1 diet (NC1 + P) improved BWG to the level of the control diet. The NC1 group had higher feed conversion ratio (FCR) compared to the control and NC3 + P, but protease addition to the NC1 diet improved FCR. Protease addition to the low CP diets resulted in higher nitrogen (N) retention than in the control and NC2 groups. Also, the NC1 + P and NC3 + P diets increased apparent ileal digestibility (AID) of CP compared to the control group. It was concluded that addition of CM (up to 80 g/kg) and PBM (up to 80 g/kg) to turkey diets had no negative effect on growth performance from 28 to 55 d of age. The NC1 + P group achieved the BWG of the control group which was partially due to increases in N retention and AID of CP, but the NC3 + P group failed to recover the growth losses. This difference implies that the efficacy of the protease may depend upon the protein source in the ration. PMID:27074290

  10. Branching ratios between the abstraction and addition channels in the reactions of OH radicals with monoterpenes

    NASA Astrophysics Data System (ADS)

    Rio, C.; Loison, J. C.; Caralp, F.; Flaud, P. M.; Villenave, E.

    2009-04-01

    Secondary Organic Aerosol (SOA) formation in the atmosphere is described as a mass transfer of volatile organic compound oxidation products with low vapour pressures in particular phases. Among the different aerosol components, the SOA represent an important fraction, but, the fundamental processes governing their physics and chemistry in the atmosphere are poorly understood. So it is important to characterize and understand the mechanisms of their formation. It is well-known that atmospheric oxidation of monoterpenes is an important process in tropospheric SOA formation. Consequently, the identification and quantification of reaction products from the oxidation of monoterpenes in the gas phase have been receiving great attention over the past years. However, the atmospheric degradation leads to the formation of a plethora of reaction products and proceeds through a very complex mechanism that is still not fully characterised. In our study, we have focused on SOA formation from OH + monoterpene reactions and more precisely on the primary oxidation steps of γ-terpinene and d-limonene by OH radicals. Indeed, the primary reaction of monoterpenes with hydroxyl radicals can in principle occur by two reaction pathways: OH-addition and H-abstraction. In this work, we have determined branching ratios of these reactions. Although there seems to be a consensus in the literature that OH-monoterpene reactions proceed almost exclusively by addition, several measurements have shown that in some case H-abstraction can represent up to 30% of the total reaction rate constant. Therefore it is necessary to determine this branching ratio in order to know, in particular, the main peroxy radicals formed and propose a mechanism for the gas phase oxidation of terpene by hydroxyl radicals. (γ-terpinene + OH) and (d-limonene + OH) reactions have been studied i) at atmospheric pressure, using laser photolysis coupled with UV absorption radical detection, and ii) at low pressure, using

  11. Insights on Sources, Growth, and Phase Partitioning of Atmospheric Particles from Hourly Measurements of Organic Marker Compounds

    NASA Astrophysics Data System (ADS)

    Williams, B.; Goldstein, A.; Kreisberg, N.; Hering, S.; Docherty, K.; Jimenez, J.; Shields, L.; Qin, X.; Prather, K.; Ziemann, P.

    2007-12-01

    Atmospheric aerosols have adverse affects on human health and have direct and indirect affects on the global radiation balance. In order to implement particle concentration control strategies, we must first understand particle origins. Atmospheric aerosols have both primary sources such as combustion processes and secondary sources such as photochemically driven gas to particle phase partitioning. By monitoring changes in the molecular composition of the organic fraction of atmospheric aerosols, these various sources can be differentiated. Thermal desorption Aerosol Gas chromatography (TAG) is a new in-situ instrument capable of identifying and quantifying organic aerosol chemical composition with one hour time resolution. TAG is fully automated, offering around the clock measurements to determine diurnal, weekly, and seasonal patterns in organic aerosol composition, hence, determining aerosol sources and transformation processes. We report results from ambient measurements made in Southern California during the summer and fall of 2005 as part of the Study of Organic Aerosol at Riverside (SOAR). We use hourly measurements of over 300 individual organic compounds to define both primary and secondary particle sources. The particle sources defined include primary anthropogenic sources such as vehicle emissions, meat cooking, biomass burning, pesticide use, herbicide use, along with primary biogenic sources such as plant emissions and plant waxes. We also explore secondary particle sources (i.e. SOA) formed as a result of the oxidation of biogenic and anthropogenic precursor gases. Comparisons are made between TAG-defined sources and aerosol sources defined using Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) and Aerosol Mass Spectrometer (AMS) data. In addition to source apportionment results, we present seasonal changes in ambient phase partitioning of organic compounds as a function of carbon number for multiple compound classes.

  12. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2013-08-01

    To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU) and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m-3 and 64.3 ± 36.2 μg m-3 (average ± standard deviation, below as the same) at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance) model and secondary organic aerosol (SOA) tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC) at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  13. SOA Formation from the Atmospheric Oxidation of 2-Methyl-3-Buten-2-ol and Its Implications for PM2.5

    EPA Science Inventory

    The formation of secondary organic aerosol (SOA) generated by irradiating 2-methyl-3-buten-2-01 (MBO) in the presence and/or absence of NOx H2O2, and/or SO2 was examined. Experiments were conducted. in smog chambers operated either in dyna....

  14. Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid - a mass spectrometric study of SOA aging

    NASA Astrophysics Data System (ADS)

    Müller, L.; Reinnig, M.-C.; Naumann, K. H.; Saathoff, H.; Mentel, T. F.; Donahue, N. M.; Hoffmann, T.

    2012-02-01

    This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a very low volatile α-pinene SOA product and a tracer compound for terpene SOA, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.

  15. The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides

    EPA Science Inventory

    Laboratory smog chamber experiments have been carried out to investigate secondary organic aerosol (SOA)formation from the photooxidation of naphthalene and its methyl analogs, 1- and 2-methylnaphthalene (1-MN and 2- MN, respectively). Laboratory smog chamber irradiations were co...

  16. The attentional blink is not affected by backward masking of T2, T2-mask SOA, or level of T2 impoverishment.

    PubMed

    Jannati, Ali; Spalek, Thomas M; Lagroix, Hayley E P; Di Lollo, Vincent

    2012-02-01

    Identification of the second of two targets (T2) is impaired when presented shortly after the first (T1). This attentional blink (AB) is thought to arise from a delay in T2 processing during which T2 is vulnerable to masking. Conventional studies have measured T2 accuracy which is constrained by the 100% ceiling. We avoided this problem by using a dynamic threshold-tracking procedure that is inherently free from ceiling constraints. In two experiments we examined how AB magnitude is affected by three masking-related factors: (a) presence/absence of T2 mask, (b) T2-mask stimulus onset asynchrony (SOA), and (c) level of T2 impoverishment (signal-to-noise ratio [SNR]). In Experiment 1, overall accuracy decreased with T2-mask SOA. The magnitude of the AB, however, was invariant with SOA and with mask presence/absence. Experiment 2 further showed that the AB was invariant with T2 SNR. The relationship among mask presence/absence, SOA, and T2 SNR and the AB is encompassed in a qualitative model. PMID:22060143

  17. ProcessGene-Connect: SOA Integration between Business Process Models and Enactment Transactions of Enterprise Software Systems

    NASA Astrophysics Data System (ADS)

    Wasser, Avi; Lincoln, Maya

    In recent years, both practitioners and applied researchers have become increasingly interested in methods for integrating business process models and enterprise software systems through the deployment of enabling middleware. Integrative BPM research has been mainly focusing on the conversion of workflow notations into enacted application procedures, and less effort has been invested in enhancing the connectivity between design level, non-workflow business process models and related enactment systems such as: ERP, SCM and CRM. This type of integration is useful at several stages of an IT system lifecycle, from design and implementation through change management, upgrades and rollout. The paper presents an integration method that utilizes SOA for connecting business process models with corresponding enterprise software systems. The method is then demonstrated through an Oracle E-Business Suite procurement process and its ERP transactions.

  18. A SOA broker solution for standard discovery and access services: the GI-cat framework

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico

    2010-05-01

    GI-cat ideal users are data providers or service providers within the geoscience community. The former have their data already available through an access service (e.g. an OGC Web Service) and would have it published through a standard catalog service, in a seamless way. The latter would develop a catalog broker and let users query and access different geospatial resources through one or more standard interfaces and Application Profiles (AP) (e.g. OGC CSW ISO AP, CSW ebRIM/EO AP, etc.). GI-cat actually implements a broker components (i.e. a middleware service) which carries out distribution and mediation functionalities among "well-adopted" catalog interfaces and data access protocols. GI-cat also publishes different discovery interfaces: the OGC CSW ISO and ebRIM Application Profiles (the latter coming with support for the EO and CIM extension packages) and two different OpenSearch interfaces developed in order to explore Web 2.0 possibilities. An extended interface is also available to exploit all available GI-cat features, such as interruptible incremental queries and queries feedback. Interoperability tests performed in the context of different projects have also pointed out the importance to enforce compatibility with existing and wide-spread tools of the open source community (e.g. GeoNetwork and Deegree catalogs), which was then achieved. Based on a service-oriented framework of modular components, GI-cat can effectively be customized and tailored to support different deployment scenarios. In addition to the distribution functionality an harvesting approach has been lately experimented, allowing the user to switch between a distributed and a local search giving thus more possibilities to support different deployment scenarios. A configurator tool is available in order to enable an effective high level configuration of the broker service. A specific geobrowser was also naturally developed, for demonstrating the advanced GI-cat functionalities. This client

  19. Assessment of the GECKO-A Modeling Tool and Simplified 3D Model Parameterizations for SOA Formation

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Hodzic, A.; La, S.; Camredon, M.; Lannuque, V.; Lee-Taylor, J. M.; Madronich, S.

    2014-12-01

    Explicit chemical mechanisms aim to embody the current knowledge of the transformations occurring in the atmosphere during the oxidation of organic matter. These explicit mechanisms are therefore useful tools to explore the fate of organic matter during its tropospheric oxidation and examine how these chemical processes shape the composition and properties of the gaseous and the condensed phases. Furthermore, explicit mechanisms provide powerful benchmarks to design and assess simplified parameterizations to be included 3D model. Nevertheless, the explicit mechanism describing the oxidation of hydrocarbons with backbones larger than few carbon atoms involves millions of secondary organic compounds, far exceeding the size of chemical mechanisms that can be written manually. Data processing tools can however be designed to overcome these difficulties and automatically generate consistent and comprehensive chemical mechanisms on a systematic basis. The Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) has been developed for the automatic writing of explicit chemical schemes of organic species and their partitioning between the gas and condensed phases. GECKO-A can be viewed as an expert system that mimics the steps by which chemists might develop chemical schemes. GECKO-A generates chemical schemes according to a prescribed protocol assigning reaction pathways and kinetics data on the basis of experimental data and structure-activity relationships. In its current version, GECKO-A can generate the full atmospheric oxidation scheme for most linear, branched and cyclic precursors, including alkanes and alkenes up to C25. Assessments of the GECKO-A modeling tool based on chamber SOA observations will be presented. GECKO-A was recently used to design a parameterization for SOA formation based on a Volatility Basis Set (VBS) approach. First results will be presented.

  20. Source apportioning of primary and secondary organic carbon in summer PM2.5 in Hong Kong using positive matrix factorization of secondary and primary organic tracer data

    NASA Astrophysics Data System (ADS)

    Hu, Di; Bian, Qijing; Lau, Alexis K. H.; Yu, Jian Zhen

    2010-08-01

    The major inorganic constituents and organic tracer compounds in PM2.5 were used in positive matrix factorization (PMF) and chemical mass balance (CMB) models to apportion the primary and secondary source contributions to organic carbon (OC) in Hong Kong during the summer of 2006. Secondary organic aerosol (SOA) tracers of several biogenic and anthropogenic hydrocarbons were included in the PMF analysis. Their inclusion allowed the identification of two components of SOA among seven factors resolved by PMF. One SOA component was mainly associated with secondary sulfate and nitrate. The other SOA component, characterized by biogenic SOA tracers and mixed with biomass burning and vegetative detritus particles, was biomass burning-induced SOA. Secondary OC (SOC) apportioned by PMF (SOCPMF) was on average 6.84 μgC m-3 (65% of PM2.5 OC) on high pollution days under influence of significant regional transport (i.e., regional days) and 0.70 μgC m-3 (25% of PM2.5 OC) on days under the influence of mainly local emissions (i.e., local days). The biomass burning-induced SOA accounted for 20% of the total SOA on the regional days, underlining the importance of biomass burning aerosol source in this region. The average uncertainty for the SOCPMF estimates was ˜20% on the regional days and ˜120% on the local days. SOCPMF was compared with SOC determined by CMB (SOCCMB, i.e., unapportioned OC by CMB analysis) and a tracer-based method (SOCTBM) that apportioned SOC contributions by four hydrocarbon precursors including isoprene, monoterpenes, β-caryophyllene, and toluene. The three estimates of SOC closely tracked with each other among individual samples. The SOCCMB and SOCPMF estimates on the majority of the regional days differed from each other by less than 25%. Good correlations between contributions of SOC and individual primary OC sources apportioned by PMF and CMB further added to the credence to the PMF-derived estimation of secondary and primary OC source

  1. Health effects of carbon-containing particulate matter: focus on sources and recent research program results.

    PubMed

    Rohr, Annette; McDonald, Jacob

    2016-02-01

    Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue. PMID:26635181

  2. Observing BVOC Emissions, Oxidation, Deposition, and Interactions with Anthropogenic Pollutants to Form SOA in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; Isaacman, G. A.; Misztal, P. K.; Yee, L.; Olson, K. F.; Moss, J.; Kreisberg, N. M.; Hering, S. V.; Park, J. H.; Kaser, L.; Seco, R.; Guenther, A. B.; Su, L.; Mak, J. E.; Holzinger, R.; Hu, W.; Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Jimenez, J. L.; Koss, A.; De Gouw, J. A.

    2014-12-01

    Our overarching goals in the SOAS 2013 campaign were to 1) quantify biogenic VOC emission and VOC deposition to understand the processes controlling these bi-directional exchanges, 2) observe a broad suite of primary VOC and their oxidation products in the field and in controlled laboratory experiments, and 3) investigate their fate to understand how anthropogenic pollution alters oxidation pathways and secondary organic aerosol (SOA) formation. We pursued these goals through measurement of atmospheric organics ranging from very volatile (using in-situ GC-MS and proton transfer reaction time-of-flight MS, PTR-ToF-MS) to semi-volatile gas and particle phase compounds (using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph, SV-TAG). Measured concentrations and fluxes of VOCs at the top of the SEARCH tower were coordinated with concentration gradients and fluxes at the AABC flux tower site, and vertical profiles using the Long-EZ aircraft to provide equivalent observations across sites. These results are informed through measurements using the same instrument during the FIXIT controlled laboratory oxidation study at CalTech that investigated oxidation pathways of BVOC with varying levels of anthropogenic pollutants. Measurements by SV-TAG of particle-phase and total gas-plus-particle-phase compounds at the SEARCH tower provide hourly quantification of semi-volatile compounds, including the oxidation products of measured VOCs. Derivatization of hydroxyl groups prior to GC analysis allows analysis of highly oxidized chemicals, including most known tracers. Methyl tetrols, an oxidation product of isoprene, had a significant day-time gas-phase component, and their abundance was strongly correlated with particle-phase sulfate, indicative of anthropogenic influence on the formation or partitioning processes. Similar observations of pinic acid (monterpene oxidation product) and many other BVOC oxidation products were made in both the gas and particle phases

  3. 10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser

    NASA Astrophysics Data System (ADS)

    Tang, W. W.; Fok, M.; Shu, Chester

    2006-03-01

    Widely-tunable picosecond pulses have been generated from a harmonically mode-locked semiconductor optical amplifier (SOA) ring laser with a center wavelength spanning from 1491 to 1588 nm. An intra-cavity birefringence loop mirror filter is used to define a 1.6 nm comb that governs the wavelength spacing of the tunable output pulses. The filter also serves to control the spectral gain profile of the laser cavity and thus extends the tuning range. By exploiting the spectral shift of the SOA gain with different amount of optical feedback, the output can be obtained over a wid wavelength range. Applying mode-locking together with the dispersion tuning approach, 10 GHz picosecond pulses have been successfully generated over a tuning range of 97 nm.

  4. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  5. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; Baker, K. R.; Hayes, P. L.; Jimenez, J. L.; Koo, B.; Pye, H. O. T.

    2015-10-01

    Community Multiscale Air Quality (CMAQ) model simulations utilizing the volatility basis set (VBS) treatment for organic aerosols (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of organic aerosol (OA) in southern California. CMAQ-VBS (OA lumped by volatility, semivolatile POA) underpredicted total organic carbon (OC) at CSN (-25.5 % Normalized Median Bias (NMdnB)) and IMPROVE (-63.9 % NMdnB) locations and total OC was underpredicted to a greater degree compared to the CMAQ-AE6 (9.9 and -55.7 % NMdnB, respectively; semi-explicit OA treatment, SOA lumped by parent hydrocarbon, nonvolatile POA). However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA indicated that CMAQ-VBS better represented the diurnal profile and the primary/secondary split of OA. CMAQ-VBS secondary organic aerosol (SOA) underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate of SOA) concentration by a factor of 5.2 (4.7 μg m-3 measured vs. 0.9 μg m-3 modeled), a considerable improvement to CMAQ-AE6 SOA predictions, which were approximately 24× lower than the average AMS OOA concentration. We use two new methods, based on species ratios and on a simplified SOA parameterization from the observations, to apportion the SOA underprediction for CMAQ-VBS to too slow photochemical oxidation (estimated as 1.5× lower than observed at Pasadena using - log (NOx: NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2× for Pasadena), and too low emissions or too high dispersion for the Pasadena site (estimated to be 1.6 to 2.3× too low/high). The first and third factors will be similar for CMAQ-AE6, while the intrinsic SOA formation

  6. Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid - a mass spectrometric study of SOA aging

    NASA Astrophysics Data System (ADS)

    Müller, L.; Reinnig, M. C.; Naumann, K. H.; Saathoff, H.; Mentel, T. F.; Donahue, N. M.; Hoffmann, T.

    2011-07-01

    This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known and very low volatile α-pinene SOA product, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.

  7. Evaluation of CMAQ parameterizations for SOA formation from the photooxidation of α-pinene and limonene against smog chamber data

    NASA Astrophysics Data System (ADS)

    Santiago, Manuel; Vivanco, Marta G.; Stein, Ariel F.

    2012-09-01

    A set of experiments carried out at the EUPHORE smog chamber have been simulated using a simplified version of the Community Multiscale Air Qualtity model version 4.7 (CMAQv4.7). First, the terpene parameterizations included in the model have been tested against the experimental data, showing a general overprediction of the aerosol mass formed. Experimental differences between the experiments presented here and those from which the model parameters were obtained, such as the NO:NO2 ratio and the type of OH-initiator seem to be the reason of the overprediction observed. In the second part of the work, new parameterizations have been calculated for the two different set of conditions defined: CALTECH conditions, based on the experiments by Griffin et al. (1999) and Hoffmann et al. (1997) (low NO:NO2 ratio and propene as OH-inititator) and EUPHORE conditions, based on the experiments of this work (high NO:NO2 ratio and HONO as OH-initiator). We have estimated increases of 11% and 82% in the stoichiometric coefficients αi of the surrogate semivolatile products when the conditions change from EUPHORE to CALTECH conditions. Finally, the parameterizations are tested against an independent set of experiments published by Li et al. (2007). Results indicate that the parameters derived for the EUPHORE conditions simulate well experiments carried out under similar conditions. However, the parameters tend to overpredict SOA formation under high NOx conditions.

  8. All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.

    PubMed

    Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In

    2016-09-01

    An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3. PMID:27607637

  9. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).

  10. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  11. High-power single-wavelength SOA-based fiber-ring laser with an optical modulator

    NASA Astrophysics Data System (ADS)

    Ooi, H. C.; Ahmad, H.; Sulaiman, A. H.; Thambiratnam, K.; Harun, S. W.

    2008-11-01

    A semiconductor optical amplifier (SOA) fiber-ring laser (SOAFRL) utilizing a fiber-Bragg grating (FBG) and lithium niobate (LiNbO3) modulator is demonstrated. The laser operates at a wavelength of 1547.64 nm, which is equal to the Bragg wavelength in the saturation region. By removing the LiNbO3 modulator in the ring, the laser shows a single-wavelength output, which has a lower peak power. The experimental results show that when reaching the saturation level, the system with the LiNbO3 modulator shows a higher saturation current and peak power compared to that of the system without the modulator. The effect of varying the modulation frequency on the laser output power is investigated. By incorporating the LiNbO3 modulator in the laser cavity, the side-mode suppression ratio (SMSR) of the laser is significantly improved and a higher peak power can be obtained at a higher current.

  12. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  13. Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation.

    PubMed

    Cheng, Q; Wonfor, A; Wei, J L; Penty, R V; White, I H

    2014-03-15

    We report the first experimental demonstration of a monolithically integrated hybrid dilated 2×2 modular optical switch using Mach-Zehnder modulators as low-loss 1×2 switching elements and short semiconductor optical amplifiers to provide additional extinction and gain. An excellent 40 dB cross-talk/extinction ratio is recorded with data-modulated signal-to-noise ratios of up to 44 dB in a 0.1 nm bandwidth. A switching time of 3 ns is demonstrated. Bit error rate studies show extremely low subsystem penalties of less than 0.1 dB, and studies indicate that, by using this hybrid switch building block, an 8×8 port switch could be achieved with 14 dB input power dynamic range for subsystem penalties of less than 0.5 dB. PMID:24690810

  14. A standardized SOA for clinical data interchange in a cardiac telemonitoring environment.

    PubMed

    Gazzarata, Roberta; Vergari, Fabio; Cinotti, Tullio Salmon; Giacomini, Mauro

    2014-11-01

    Care of chronic cardiac patients requires information interchange between patients' homes, clinical environments, and the electronic health record. Standards are emerging to support clinical information collection, exchange and management and to overcome information fragmentation and actors delocalization. Heterogeneity of information sources at patients' homes calls for open solutions to collect and accommodate multidomain information, including environmental data. Based on the experience gained in a European Research Program, this paper presents an integrated and open approach for clinical data interchange in cardiac telemonitoring applications. This interchange is supported by the use of standards following the indications provided by the national authorities of the countries involved. Taking into account the requirements provided by the medical staff involved in the project, the authors designed and implemented a prototypal middleware, based on a service-oriented architecture approach, to give a structured and robust tool to congestive heart failure patients for their personalized telemonitoring. The middleware is represented by a health record management service, whose interface is compliant to the healthcare services specification project Retrieve, Locate and Update Service standard (Level 0), which allows communication between the agents involved through the exchange of Clinical Document Architecture Release 2 documents. Three performance tests were carried out and showed that the prototype completely fulfilled all requirements indicated by the medical staff; however, certain aspects, such as authentication, security and scalability, should be deeply analyzed within a future engineering phase. PMID:25014978

  15. S+C+L broadband source based on semiconductor optical amplifiers and erbium-doped fiber for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carrion, L.; Beitel, D.; Lee, K. L.; Jain, A.; Chen, L. R.; Maciejko, R.; Nirmalathas, A.

    2007-06-01

    Broadband sources (BBSs) are commonly used in a wide range of applications in optical communication systems and biophotonics. They are particularly useful tools for Optical Coherence Tomography (OCT), which is a biomedical imaging technique that uses low-coherence light sources. In order to obtain high image quality, we have developed a novel, spectrally-flat S+C+L band source with > 120 nm bandwidth and more than 4 mW output power based on two cascaded semiconductor optical amplifiers (SOA) mixed with an Erbium-doped fiber (EDF) amplifier. Bandwidth and output power improvements are achieved by modifying the former configuration and mixing the EDF with the first SOA before amplification in the second SOA. This configuration results in bandwidth and output power enhancements of up to 146 nm and 8 mW, respectively. The source was then tested in an OCT system. It gives a 10 μm FWHM, low sidelobe OCT autocorrelation trace. Images and OCT autocorrelation traces were compared for the two aforementioned (which two; you mentioned one?) configurations. Images of miscellaneous samples made with the BBS show an image aspect and sharpness that is comparable with more expensive sources such as Ti:Sapphire lasers.

  16. Gas-particle partitioning of organic acids during the Southern Oxidant and Aerosol Study (SOAS): measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, R.; Stark, H.; Kimmel, J.; Krechmer, J.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. A. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2014-12-01

    Gas-Particle partitioning measurements of organic acids were carried out during the Southern Oxidant and Aerosol Study (SOAS, June-July 2013) at the Centerville, AL Supersite in the Southeast US, a region with significant isoprene and terpene emissions. Organic acid measurements were made with a Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS) with a Filter Inlet for Gases and AEROsols (FIGAERO) and acetate (CH3COO-) as the reagent ion. We investigate both individual species and bulk organic acids and partitioning to organic and water phases in the aerosol. Measured partitioning is compared to data from three other instruments that can also quantify gas-particle partitioning with high time resolution: another HRToF-CIMS using iodide (I-) as the reagent ion to ionize acids and other highly oxidized compounds, a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG), and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS The partitioning measurements for three of the instruments are generally consistent, with results in the same range for most species and following similar temporal trends and diurnal cycles. The TD-PTRMS measures on average ½ the partitioning to the particle phase of the acetate CIMS. Both the measurements and the model of partitioning to the organic phase respond quickly to temperature, and the model agrees with the measured partitioning within the error of the measurement for multiple compounds, although many compounds do not match the modeled partitioning, especially at lower m/z. This discrepancy may be due to thermal decomposition of larger molecules into smaller ones when heated.

  17. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2005-03-31

    This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures to oxidized

  18. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China during 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-08-01

    The megacity of Beijing has experienced frequent severe fine particle pollution during the last decade. Although the sources and formation mechanisms of aerosol particles have been extensively investigated on the basis of ground measurements, real-time characterization of aerosol particle composition and sources above the urban canopy in Beijing is rare. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) composition at 260 m at the 325 m Beijing Meteorological Tower (BMT) from 10 October to 12 November 2014, by using an aerosol chemical speciation monitor (ACSM) along with synchronous measurements of size-resolved NR-PM1 composition at near ground level using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The NR-PM1 composition above the urban canopy was dominated by organics (46 %), followed by nitrate (27 %) and sulfate (13 %). The high contribution of nitrate and high NO3-/SO42- mass ratios illustrate an important role of nitrate in particulate matter (PM) pollution during the study period. The organic aerosol (OA) was mainly composed by secondary OA (SOA), accounting for 61 % on an average. Different from that measured at the ground site, primary OA (POA) correlated moderately with SOA, likely suggesting a high contribution from regional transport above the urban canopy. The Asia-Pacific Economic Cooperation (APEC) summit with strict emission controls provides a unique opportunity to study the impacts of emission controls on aerosol chemistry. All aerosol species were shown to have significant decreases of 40-80 % during APEC from those measured before APEC, suggesting that emission controls over regional scales substantially reduced PM levels. However, the bulk aerosol composition was relatively similar before and during APEC as a result of synergetic controls of aerosol precursors such as SO2, NOx, and volatile organic compounds (VOCs). In addition to emission controls, the routine

  19. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-11-01

    The megacity of Beijing has experienced frequent severe fine particle pollution during the last decade. Although the sources and formation mechanisms of aerosol particles have been extensively investigated on the basis of ground measurements, real-time characterization of aerosol particle composition and sources above the urban canopy in Beijing is rare. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) composition at 260 m at the Beijing 325 m meteorological tower (BMT) from 10 October to 12 November 2014, by using an aerosol chemical speciation monitor (ACSM) along with synchronous measurements of size-resolved NR-PM1 composition near ground level using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The NR-PM1 composition above the urban canopy was dominated by organics (46 %), followed by nitrate (27 %) and sulfate (13 %). The high contribution of nitrate and high NO3- / SO42- mass ratios illustrates an important role of nitrate in particulate matter (PM) pollution during the study period. The organic aerosol (OA) was mainly composed of secondary OA (SOA), accounting for 61 % on an average. Different from that measured at the ground site, primary OA (POA) correlated moderately with SOA, likely suggesting a high contribution from regional transport above the urban canopy. The Asia-Pacific Economic Cooperation (APEC) summit with strict emission controls provides a unique opportunity to study the impacts of emission controls on aerosol chemistry. All aerosol species were shown to have significant decreases of 40-80 % during APEC from those measured before APEC, suggesting that emission controls over regional scales substantially reduced PM levels. However, the bulk aerosol composition was relatively similar before and during APEC as a result of synergetic controls of aerosol precursors. In addition to emission controls, the routine circulations of mountain-valley breezes were also found to play

  20. Short ring cavity swept source based on a highly reflective chirped FBG

    NASA Astrophysics Data System (ADS)

    Stancu, Radu-Florin; Podoleanu, Adrian

    2015-09-01

    An optical akinetic swept source (AKSS) at 1060 nm, comprising a 5 m length fiber ring cavity, a semiconductor optical amplifier (SOA) as gain medium, and a 98% reflective chirped fiber Bragg grating as a dispersive element, is described. Active mode-locking was achieved by directly modulating the current of the SOA with sinusoidal signal of frequency equal to 10 times and 20 times the cavity resonance frequency. In the static regime, linewidths as narrow as 60 pm and a tuning bandwidth of 30 nm were achieved, while a 2 mW output power, without any optical booster, was measured dynamically at a sweep speed of 100 kHz. The axial range of the AKSS was evaluated by scanning through the channeled spectrum of a Mach-Zehnder interferometer.

  1. Akinetic swept source with adjustable coherence length for SS-OCT

    NASA Astrophysics Data System (ADS)

    Stancu, Radu F.; Jackson, David A.; Podoleanu, Adrian G.

    2015-03-01

    An electronically controlled optical swept source (SS) at 1550 nm using mode locking in a dispersive ring cavity is described. Active mode-locking was achieved by directly modulating the current of a semiconductor optical amplifier (SOA) used as a gain medium. In the static regime, parameters such as linewidth, tuning bandwidth and contrast were measured, while the axial range was determined dynamically. Two types of fiber, dispersion compensation and single mode, are employed in the laser ring cavity. It is demonstrated that the relative lengths of the two types of fiber have little effect on the linewidth, while more control on the linewidth is obtained via the frequency of the signal driving the SOA. Linewidths less than 60 pm and over 1 nm were measured in the static regime while driving the SOA at 50 - 500 MHz. The narrowest linewidths were achieved where the proportion of dispersion compensation fiber in the cavity is 80- 90% of the total length. The optical source is developed to respond to the demands of OCT applications in general as well as address the need for low cost tunable lasers for configurations where a large tuning bandwidths and long coherence length might not be necessary.

  2. Molecular distributions and isotopic compositions of marine aerosols over the western North Atlantic: Dicarboxylic acids, ketoacids, α-dicarbonyls (glyoxal and methylglyoxal), fatty acids, sugars, and SOA tracers

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosols were collected over the western North Atlantic from off the coast of Boston to Bermuda during the WACS (Western Atlantic Climate Study) cruise of R/V Ronald H. Brown in August 2012 using a high volume air sampler and pre-combusted quartz fiber filters. Aerosol filter samples (n=5) were analyzed for OC/EC, major inorganic ions, low molecular weight dicarboxylic acids and various secondary organic aerosol (SOA) tracers using carbon analyzer, ion chromatograph, GC/FID and GC/MS, respectively. Homologous series (C2-C12) of dicarboxylic acids (31-335 ng m-3) were detected with a predominance of oxalic acid. Total carbon and nitrogen and their stable isotope ratios were determined as well as stable carbon isotopic compositions of individual diacids using IRMS. Diacids were found to be the most abundant compound class followed by monoterpene-SOA tracers > isoprene-SOA tracers > sugar compounds > ketoacids > fatty alcohols > fatty acids > α-dicarbonyls > aromatic acids > n-alkanes. The concentrations of these compounds were higher in the coastal site and decreased in the open ocean. However, diacids stayed relatively high even in the remote ocean. Interestingly, contributions of oxalic acid to total aerosol carbon increased from the coast (2.3%) to the remote ocean (5.6%) during long-range atmospheric transport. Stable carbon isotopic composition of oxalic acid increased from the coast (-17.5‰) to open ocean (-12.4‰), suggesting that photochemical aging of organic aerosols occurred during the atmospheric transport over the ocean. Stable carbon isotope ratios of bulk aerosol carbon also increased from the coast near Boston to the open ocean near Bermuda.

  3. Physico-chemical characterization of SOA derived from catechol and guaiacol - a model substance for the aromatic fraction of atmospheric HULIS

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Krüger, H.-U.; Grothe, H.; Schmitt-Kopplin, P.; Whitmore, K.; Zetzsch, C.

    2011-01-01

    Secondary organic aerosol (SOA) was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for HUmic-LIke Substances (HULIS). Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of several carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS) determined O/C-ratios between 0.3 and 1 and observed m/z ratios between 200 and 450 to be most abundant. Temperature-programmed-pyrolysis mass spectroscopy (TPP-MS) identified carboxylic acids and lactones/esters as major functional groups. Particle sizing using a condensation-nucleus-counter and differential-mobility-particle-sizer (CNC/DMPS) monitored the formation of small particles during the SOA formation process. Particle imaging, using field-emission-gun scanning electron microscopy (FEG-SEM), showed spherical particles, forming clusters and chains. We conclude that catechol and guaiacol are appropriate precursors for studies of the processing of aromatic SOA with atmospheric HULIS properties on the laboratory scale.

  4. Wired/wireless access integrated RoF-PON with scalable generation of multi-frequency MMWs enabled by polarization multiplexed FWM in SOA.

    PubMed

    Xiang, Yu; Chen, Chen; Zhang, Chongfu; Qiu, Kun

    2013-01-14

    In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme. PMID:23389014

  5. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects. PMID:24772784

  6. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  7. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect

    Pearson, Jr., John F.

    1981-02-13

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  8. Insights into the molecular level composition, sources, and formation mechanisms of dissolved organic matter in aerosols and precipitation

    NASA Astrophysics Data System (ADS)

    Altieri, Katye Elisabeth

    Atmospheric aerosols scatter and absorb light influencing the global radiation budget and climate, and are associated with adverse effects on human health. Precipitation is an important removal mechanism for atmospheric dissolved organic matter (DOM), and a potentially important input for receiving ecosystems. However, the sources, formation, and composition of atmospheric DOM in aerosols and precipitation are not well understood. This dissertation investigates the composition and formation mechanisms of secondary organic aerosol (SOA) formed through cloud processing reactions, elucidates the composition and sources of DOM in rainwater, and provides links connecting the two. Photochemical batch aqueous-phase reactions of organics with both biogenic and anthropogenic sources (i.e., methylglyoxal, pyruvic acid) and OH radical were performed to simulate cloud processing. The composition of products formed through cloud processing experiments and rainwater collected in New Jersey, USA was investigated using a combination of electrospray ionization mass spectrometry techniques, including ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry. This dissertation has resulted in the first evidence that oligomers form through cloud processing reactions, the first detailed chemical mechanism of aqueous phase oligomerization, the first identification of oligomers, organosulfates, and nitrooxy organosulfates in precipitation, and the first molecular level chemical characterization of organic nitrogen in precipitation. The formation of oligomers in SOA helps to explain the presence of large multifunctional compounds and humic like substances (HULIS) that dominate particulate organic mass. Oligomers have low vapor pressures and remain in the