Sample records for additional soil samples

  1. 77 FR 67777 - National Oil and Hazardous Substance Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... subsequent soil samples showed levels of metals at or below generic residential criteria or background values... 1994- 1996 and additional sampling between 1998 and 2007. Area A--Site Entrance: Soil boring samples... verification samples. Additional soil samples were collected from the same location as the previous collection...

  2. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.

    PubMed

    Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.

  3. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  4. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  5. CO2 efflux from soil under influence of cadmium and glucose

    NASA Astrophysics Data System (ADS)

    Gilmullina, Aliia; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Soil is the largest pool of organic carbon. Any anthropogenic activity may change the soil organic carbon stock resulting in the atmospheric carbon concentration increase. Organic wastes and sewage sludge are often used for soil fertilization. These amendments often contain not only organic compounds stimulating soil microflora but also toxic compounds e.g. metals inhibiting them. The question about the influence of such amendments on soil carbon stock still remains open. The aim of this study was to evaluate individual glucose and cadmium (Cd) additions and their combined effects on carbon mineralization and microbial community structure in forest soil sampled from different depths (0-20 cm, 20-40 cm and 40-60 cm). We incubated soil samples for 14 days after the addition of: glucose (10000 mg kg-1), Cd (300 mg kg-1) and their mixture. CO2 efflux was measured by CO2 trapping in NaOH, at the 3rd, 7th and 14th days of incubation DNA was extracted from soil samples for assessment of microbial community structure via real-time PCR and Illumina sequencing. Glucose addition induced the increase of soil respiration and fungal-bacterial ratio. However, bacterial alpha-biodiversity decreased as glucose addition caused the dominance of Proteobacteria (0-20 cm, 20-40 cm and 40-60 cm), Actinobacteria (20-40 cm) and Acidobacteria (40-60 cm) phyla. Single Cd addition did not have any effect on parameters studied. In case of simultaneous addition of glucose and Cd, soil respiration and microbial community structure mainly depended more on glucose amendment as compared with metal.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Wade C.

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the United Nuclear Corporation (UNC) Naval Products site on three separate occasions during the months of October and November 2011. The purpose of these visits was to conduct confirmatory surveys of soils associated with the Argyle Street sewer line that was being removed. Soil samples were collected from six different, judgmentally determined locations in the Argyle Street sewer trench. In addition to the six soil samples collected by ORISE, four replicate soil samples were collected by Cabrera Services, Inc. (CSI) for analysis by the ORISE laboratory. Replicate samples S0010 andmore » S0011 were final status survey (FSS) bias samples; S0012 was an FSS systematic sample; and S0015 was a waste characterization sample. Six soil samples were also collected for background determination. Uranium-235 and uranium-238 concentrations were determined via gamma spectroscopy; the spectra were also reviewed for other identifiable photopeaks. Radionuclide concentrations for these soil samples are provided. In addition to the replicate samples and the samples collected by ORISE, CSI submitted three soil samples for inter-laboratory comparison analyses. One sample was from the background reference area, one was from waste characterization efforts (material inside the sewer line), and one was a FSS sample. The inter-laboratory comparison analyses results between ORISE and CSI were in agreement, except for one sample collected in the reference area. Smear results For Argyle Street sewer pipes are tabulated.« less

  7. Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)

    DOE Data Explorer

    Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1986-01-01

    This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.

  8. Effects of Palm Kernel Shell Ash on Lime-Stabilized Lateritic Soil

    NASA Astrophysics Data System (ADS)

    Nnochiri, Emeka Segun; Ogundipe, Olumide M.; Oluwatuyi, Opeyemi E.

    2017-09-01

    The research investigated the effects of palm kernel shell ash (PKSA) on lime-stabilized lateritic soil. Preliminary tests were performed on three soil samples, i.e., L1, L2 and L3 for identification; the results showed that L1 was A-7-6, L2 was A-7-6, and L3 was A-7-6. The optimum amount of lime for each of the soil samples was achieved. The optimum amount for L1 was 10%, for L2, 8% and for L3, 10%; at these values they recorded the lowest plasticity indexes. The further addition of PKSA was performed by varying the amount of PKSA and lime added to each of the soil samples. The addition of 4% PKSA+ 6% lime, the addition of 4% PKSA + 4% lime, and the addition of 4% PKSA + 6% lime increased the California Bearing Ratio (CBR) to the highest values for L1, L2 and L3 from 8.20%. It was concluded that PKSA can be a suitable complement for lime stabilization in lateritic soil.

  9. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    NASA Astrophysics Data System (ADS)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  10. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed in a microcosm system under a constant temperature of 10°C. The water-saturated soil columns will be drained via suction plates at the bottom of the columns by stepwise increase of the suction. The head space of the soil columns will be permanently flushed with moistened synthetic air and CO2 concentrations will be measured via online gas chromatography. First results will be presented.

  11. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons

    PubMed Central

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and might be a useful agent to stimulate bioremediation of hydrocarbons in contaminated soils. PMID:24659987

  12. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons.

    PubMed

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and might be a useful agent to stimulate bioremediation of hydrocarbons in contaminated soils.

  13. Applicability and limitations of enzyme addition assays for the characterisation of soil organic phosphorus across a range of soil types

    NASA Astrophysics Data System (ADS)

    Jarosch, Klaus; Doolette, Ashlea; Smernik, Ronald; Frossard, Emmanuel; Bünemann, Else K.

    2014-05-01

    Solution 31P NMR spectroscopy is a powerful tool for the characterisation and quantification of organic P classes in soil. Potential limitations are due to costs, equipment accessibility and the requirement of relatively large amounts of sample. A recent alternative approach for the quantification of specific organic P classes is the use of substrate-specific phosphohydrolase enzymes which cleave the inorganic orthophosphate from the organic moiety. The released orthophosphate is detectable by colorimetry. Conclusions about the hydrolysed class of organic P can be made based on the comparison of inorganic P concentrations in enzymatically treated and untreated samples. The aim of this study was to test the applicability of enzyme addition assays for the characterisation of organic P classes on a) NaOH-EDTA extracts, b) soil:water filtrates (0.2 μm) and c) soil:water suspensions. The organic P classes in NaOH-EDTA extracts were also determined by 31P NMR spectroscopy, enabling a comparison between methods. Ten topsoil samples from four continents (five cambisols, two ferralsols, two luvisols and one lixisol) with varying total P content (83 - 1,1560 mg kg-1), pHH2O (4.2 - 8.0) and land management (grassland or cropped land) were analysed. Four different classes of organic P were determined by the enzyme addition assay: 1) monoester like-P (by an acid phosphatase known to hydrolyse simple monoesters, pyrophosphate and ATP), 2) DNA-like P (by a nuclease in combination with an acid phosphatase), 3) inositol phosphate-like P (by a phytase known to hydrolyse all monoester like-P plus myo-inositol hexakisphosphate and scyllo-inositol hexakisphosphate) and 4) enzyme stable-P (enzymatically not hydrolysed organic P forms). In the ten topsoil samples, NaOH-EDTA-extractable organic P ranged from 6 - 1,115 mg P kg-1 soil. Of this, 33 - 92 % was enzyme labile, with inositol phosphate-like P being the largest organic P class in most soils (15 - 51%), followed by monoester-like P (10 - 47%) and DNA-like P (0 - 15%). The four soil organic P classes detected by either 31P NMR spectroscopy or enzyme addition assays were well correlated with each other (R2 0.93 - 0.99). In soil:water filtrates, 0.1 - 4.1 mg enzyme-labile P kg-1 soil were detected, which consisted mainly of inositol phosphate-like P. In some soils, a low absolute amount of water-soluble organic P hindered a more detailed characterisation. In soil:water suspensions, enzyme-labile organic P ranged from 4.3 - 12.6 mg P kg-1 soil. However, the enzyme addition assay was only applicable on three soils, since in the other soils i) added enzymes were partly inhibited in soil:water suspensions and ii) the hydrolysis of organic P classes by soil intrinsic enzymes could not be accounted for. In conclusion, enzyme addition assays appear to be a promising approach for a rapid determination of four main soil organic P classes in NaOH-EDTA extracts. Especially the small amount of required sample size (< 1ml) and the relatively simple instrumentation facilitate a rapid and cheap analysis on these extracts. Application of this method is also possible on soil:water filtrates, but low amounts of organic P may hinder detailed analysis. Key words: soil organic phosphorus characterisation, enzyme addition assays, 31P NMR spectroscopy, soil suspensions, soil filtrate

  14. Dust emissions of organic soils observed in the field and laboratory

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third. In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples < 8 mm diameter of each organic soil were rotated in a 50 cm long tube and the dust generated was observed with the GRIMM during a 20 minute run. Comparisons of the field dust emission rates with the laboratory results will be presented.

  15. Evaluation of a modified QuEChERS extraction of multiple classes of pesticides from a rice paddy soil by LC-APCI-MS/MS.

    PubMed

    Caldas, Sergiane S; Bolzan, Cátia M; Cerqueira, Maristela B; Tomasini, Débora; Furlong, Eliana B; Fagundes, Carlos; Primel, Ednei G

    2011-11-23

    A new method for the determination of clomazone, fipronil, tebuconazole, propiconazole, and azoxystrobin in samples of rice paddy soil is presented. The extraction of the pesticides from soil samples was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Some extraction conditions such as salt addition, sample acidification, use of buffer, and cleanup step were evaluated. The optimized method dealt with a single extraction of the compounds under study with acidified acetonitrile, followed by the addition of MgSO(4) and NaCl prior to the final determination by liquid chromatography-atmospheric chemical pressure ionization-tandem mass spectrometry. Validation studies were carried out in soil samples. Recoveries of the spiked samples ranged between 70.3 and 120% with relative standard deviation lower than 18.2%. The limits of quantification were between 10 and 50 μg kg(-1). The method was applied to the analysis of real samples of soils where rice is cultivated.

  16. Microbial effects on two tropical soils amended with different types of biochar

    NASA Astrophysics Data System (ADS)

    Paz, Jorge; Méndez, Ana; Fun, Shenglei; Gascó, Gabriel

    2013-04-01

    There is an increasing interest in using biochar as soil amendment due to its potential to reduce greenhouse gas emissions from soils and to mitigate heavy metal pollution. In addition, sometimes biochar has been found to increase soil productivity due to its favourable effect on soil aggregation and water holding capacity. However, results obtained can differ greatly depending on the type of biochar utilised. On the other hand, the response of the microbial community to biochar addition is not so well understood. In our experiment we have sampled two soils, differing in their fertility status. A greenhouse pot experiment was established to see the effect of adding four different biochars, differing on their feedstock (Miscanthus, sewage sludge, paper mill waste and pinewood). Additionally, half of the samples excluded soil earthworms, while the other half had 3 individuals of the earthworm Pontoscolex corethrurus. Pots, containing 400 g of soil, were planted with proso millet. Assessed parameters included millet height, soil microbial biomass and soil enzymatic activity related to different biogeochemical cycles (invertase, B-glucosaminidase, B-glucosidase, urease, phosphomonoesterase, arylsulphatase) The effects of biochar on soil biological properties depended on the type of feedstock used for biochar production and pre-existent soil parameters such as soil fertility status. Earthworm presence generally had a positive effect on soil microbial properties.

  17. Effect of soil pH and organic matter on the adsorption and desorption of pentachlorophenol.

    PubMed

    Chien, Shui-Wen Chang; Chen, Shou-Hung; Li, Chi-Jui

    2018-02-01

    Various properties of soil affect the partition of organic contaminants within, and conversely, the properties of the organic contaminants also directly affect their partition behavior in soil. Therefore, understanding the effects of various properties of soil on the partition of organic contaminants favors subsequent assessment and provides soil remediation methods for policymakers. This study selected pentachlorophenol (PCP), a common hydrophobic ionizable organic compound in contaminated sites worldwide, as the target contaminant. The effects of pH, organic matter, and the combination of both, on PCP adsorption/desorption behavior in soil were investigated. Phosphoric acid and potassium hydroxide were used as buffer solutions to modify the soil pH by the batch and column extraction methods. A common retail organic fertilizer and fulvic acid were selected as additives to manipulate the soil organic content. Modifying the pH of the soil samples revealed that acidic soil exhibited a greater PCP adsorption rate than alkaline soil. The amount of PCP desorption increased regardless of pH of the in situ contaminated soil. The adsorption of PCP increased with increasing amount of organic additive. However, addition of fulvic acid yielded different results compared to the addition of organic fertilizer. Specifically, the organic fertilizer could not compete with the in situ contaminated soil in PCP adsorption, whereas fulvic acids increased the PCP dissolution to facilitate adsorbing contaminant adsorption. The combined effect of pH modification and organic matter addition provides additional PCP adsorption sites; therefore, adding the organic fertilizer to decrease the soil pH elevated the PCP adsorption rates of the laterite, alluvial, and in situ contaminated soil samples. The study results revealed that both pH and organic matter content are crucial to PCP adsorption/desorption in soil. Therefore, the effects of soil pH and organic matter should be considered in facilitating PCP treatment for soil remediation.

  18. The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China

    PubMed Central

    Ma, Lin-Na; Lü, Xiao-Tao; Liu, Yang; Guo, Ji-Xun; Zhang, Nan-Yi; Yang, Jian-Qin; Wang, Ren-Zhong

    2011-01-01

    Background Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood. Methodology/Principal Findings A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland. Conclusions/Significance Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem. PMID:22096609

  19. Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China.

    PubMed

    Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui

    2018-01-01

    Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.

  20. Soil-Transmitted Helminth Eggs Are Present in Soil at Multiple Locations within Households in Rural Kenya.

    PubMed

    Steinbaum, Lauren; Njenga, Sammy M; Kihara, Jimmy; Boehm, Alexandria B; Davis, Jennifer; Null, Clair; Pickering, Amy J

    2016-01-01

    Almost one-quarter of the world's population is infected with soil-transmitted helminths (STH). We conducted a study to determine the prevalence and location of STH-Ascaris, Trichuris, and hookworm spp.-egg contamination in soil within rural household plots in Kenya. Field staff collected soil samples from July to September 2014 from the house entrance and the latrine entrance of households in Kakamega County; additional spatial sampling was conducted at a subset of households (N = 22 samples from 3 households). We analyzed soil samples using a modified version of the US Environmental Protection Agency (EPA) method for enumerating Ascaris in biosolids. We found 26.8% of households had one or more species of STH eggs present in the soil in at least one household location (n = 18 out of 67 households), and Ascaris was the most commonly detected STH (19.4%, n = 13 out of 67 households). Prevalence of STH eggs in soil was equally likely at the house entrance (19.4%, N = 67) as at the latrine entrance (11.3%, N = 62) (p = 0.41). We also detected STH eggs at bathing and food preparation areas in the three houses revisited for additional spatial sampling, indicating STH exposure can occur at multiple sites within a household plot, not just near the latrine. The highest concentration of eggs in one house occurred in the child's play area. Our findings suggest interventions to limit child exposure to household soil could complement other STH control strategies.

  1. Viscoelastic Properties of Soil with Different Ammonium Nitrate Addition

    NASA Astrophysics Data System (ADS)

    Kawecka-Radomska, M.; Tomczyńska-Mleko, M.; Muszyńskic, S.; Wesołowska-Trojanowska, M.; Mleko, S.

    2017-12-01

    Four different soils samples were taken from not cultivated recreational places. Particle-size distribution and pH (in water and in 1 M KCl) of the soil samples were measured. Soil samples were saturated with deionized water and solution of ammonium nitrate with the concentration of 5, 50 or 500 mM for 3 days. The samples were analyzed using dynamic oscillatory rheometer by frequency and strain sweeps. Soil samples were similar to physical gels, as they presented rheological properties between those of a concentrated biopolymer and a true gel. 50 mM concentration of the salt was enough to make changes in the elasticity of the soils. Small concentration of the fertilizer caused weakening of the soil samples structure. Higher concentration of ammonium nitrate caused the increase in the moduli crossover strain value. For the loam sample taken from a playground, with the highest content of the particles <0.002 mm (clay aluminosilicates), the lowest value of strain was observed at the moduli intersection. Lower strain value was necessary for the sliding shear effect of soil A sample effecting transgression to the "flowing" state. Strain sweep moduli crossover point can be used as a determinant of the rheological properties of soil.

  2. Mobility of arsenic and its compounds in soil and soil solution: the effect of soil pretreatment and extraction methods.

    PubMed

    Száková, J; Tlustos, P; Goessler, W; Frková, Z; Najmanová, J

    2009-12-30

    The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of arsenic and its compounds was tested. In the first part, five extraction procedures were compared with following order of extractable arsenic portions: 2M HNO(3)>0.43 M CH(3)COOH>or=0.05 M EDTA>or=Mehlich III (0.2M CH(3)COOH+0.25 M NH(4)NO(3)+0.013 M HNO(3)+0.015 M NH(4)F+0.001 M EDTA) extraction>water). Additionally, two methods of soil solution sampling were compared, centrifugation of saturated soil and the use of suction cups. The results showed that different sample pretreatments including soil solution sampling could lead to different absolute values of mobile arsenic content in soils. However, the interpretation of the data can lead to similar conclusions as apparent from the comparison of the soil solution sampling methods (r=0.79). For determination of arsenic compounds mild extraction procedures (0.05 M (NH(4))(2)SO(4), 0.01 M CaCl(2), and water) and soil solution sampling using suction cups were compared. Regarding the real soil conditions the extraction of fresh samples and/or in situ collection of soil solution are preferred among the sample pretreatments and/or soil extraction procedures. However, chemical stabilization of the solutions should be allowed and included in the analytical procedures for determination of individual arsenic compounds.

  3. The significance of visitors' pressure for soil status in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Zhevelev, Helena; Sarah, Pariente; Oz, Atar

    2010-05-01

    A park is one of the most important elements of sustainable development and optimization of the urban environment. The equilibrium within the complex of natural and anthropogenic factors defines the status of a park's ecosystem. The seasonal dynamics and spatial variations of soil properties in areas under differing levels of visitors' pressure were studied in a park in Tel-Aviv. Soil was sampled twice a year, in wet (March) and dry (July) seasons, from three types of areas, subjected to differing levels of visitors' pressure: high, low and none (control). In each type of area samples were taken from two depths (0-2 cm and 5-10 cm), at 14-39 points. In total, 268 soil samples were taken. Before the soil sampling, penetration depth was determined at each point. In addition, the numbers of barbecue fires in each of the three areas were counted. Gravimetric soil moisture, organic matter, pH, electrical conductivity, and soluble ions were measured in 1:1 water extraction. Penetration depth and electrical conductivity, and organic matter, sodium, potassium and chlorite contents differed under differing levels of visitors' pressure, whereas soil moisture, pH and calcium content exhibited only minor differences. Soil moisture, electrical conductivity, and magnesium and chlorite contents exhibited strong seasonal changes, whereas the organic matter, potassium and pH levels were unaffected by seasonal dynamics. Calcium, organic matter, magnesium and chlorite contents, and electrical conductivity were significantly affected by the depth of soil sampling, whereas pH was not so affected. The seasonal changes in soil properties in the area subjected to high visitors' pressure were higher than in the one under low visitors' pressure. In most cases, visitors' pressure led to increases in variance and coefficient of variation. Different soil properties were differently affected by visitors' pressure, seasonal dynamics and soil depth. The surface of the soil was more sensitive to both seasonal dynamics and visitors' pressure, than the deeper layer. Visitors' pressure increased seasonal changes in the studied soil properties, and also increased the spatial heterogeneity of the soil. The differences in organic matter, electrical conductivity and soluble ions among the areas under differing visitors' pressure are attributed to anthropogenic additions, which accompanied the recreational activities in the urban parks: remnants of barbecue fires and meals, and excreta of urban animals. Addition of urban dust, enriched in CaCO3, minimized the effect of visitors' pressure on soil calcium content. All the above anthropogenic additions enhance the differentiation in soil layers. The notable effect of visitors' pressure on variations in soil properties highlighted its high significance for urban parks.

  4. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition

    PubMed Central

    He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  5. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding slaked lime (10 g soil + 0.5 Ca(OH)2), where the concentration of Pb in the extract decreased to 0.2-8.3%. Adding dolomite (10 g soil + 0.3 g dolomite) achieved a reduction of Pb concentration to 0.4-9.1%. The addition of fermentation residue (10 g soil sample + 2 g FR) caused the concentration of Pb to decrease to 4.6-15.6%. Zinc The best reduction of Zn concentration in the extract was obtained by adding dolomite (10 g soil + 0.5 g dolomite). The concentration of Cu in the leachate decreased to 0.3-29.4%. Similar properties were obtained by adding fermentation residue (10 g soil + 2 g FR), when the Zn concentration decreased to 1.0-24.3%. The waste product of biogas plants can be used for stabilising the bonds of some toxic metals in soils while making use of its fertilising properties to improve soil quality. The research was conducted with the support of the project entitled "Postdoc contracts at MENDELU technical and ekonomical research" (CZ.1.07/2.3.00/30.0031).

  6. Response of Partially Saturated Non-cohesive Soils

    NASA Astrophysics Data System (ADS)

    Świdziński, Waldemar; Mierczyński, Jacek; Mikos, Agata

    2017-12-01

    This paper analyses and discusses experimental results of undrained triaxial tests. The tests were performed on non-cohesive partially saturated soil samples subjected to monotonic and cyclic loading. The tests were aimed at determining the influence of saturation degree on soil's undrained response (shear strength, excess pore pressure generation). The saturation of samples was monitored by checking Skempton's parameter B. Additionally, seismic P-wave velocity measurements were carried out on samples characterized by various degrees of saturation. The tests clearly showed that liquefaction may also take place in non-cohesive soils that are not fully saturated and that the liquefaction potential of such soils strongly depends on the B parameter.

  7. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI).

    PubMed

    Lara, Paloma; Morett, Enrique; Juárez, Katy

    2017-11-01

    Stimulation of microbial reduction of Cr(VI) to the less toxic and less soluble Cr(III) through electron donor addition has been regarded as a promising approach for the remediation of chromium-contaminated soil and groundwater sites. However, each site presents different challenges; local physicochemical characteristics and indigenous microbial communities influence the effectiveness of the biostimulation processes. Here, we show microcosm assays stimulation of microbial reduction of Cr(VI) in highly alkaline and saline soil samples from a long-term contaminated site in Guanajuato, Mexico. Acetate was effective promoting anaerobic microbial reduction of 15 mM of Cr(VI) in 25 days accompanied by an increase in pH from 9 to 10. Our analyses showed the presence of Halomonas, Herbaspirillum, Nesterenkonia/Arthrobacter, and Bacillus species in the soil sample collected. Moreover, from biostimulated soil samples, it was possible to isolate Halomonas spp. strains able to grow at 32 mM of Cr(VI). Additionally, we found that polluted groundwater has bacterial species different to those found in soil samples with the ability to resist and reduce chromate using acetate and yeast extract as electron donors.

  8. Anthropic changes to the biotic factor of soil formation from forests to managed grasslands along summits of the western Pyrenees Mountains, France

    NASA Astrophysics Data System (ADS)

    Leigh, David; Gragson, Theodore

    2017-04-01

    Mounting evidence indicates that highland pastures of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, as early as during the late Neolithic and Bronze age by human actions including use of fire. We observe pronounced differences between soil profiles of ancient pastures and old-growth forests in otherwise similar landscape positions. In order to test physical and chemical differences, we collected paired samples of forest versus grassland soils at four separate hillslope sites where there was a clear boundary between the two vegetation types. Animal trails were excluded from sampling. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples (7.6 cm diameter) from the upper 7.6 cm of the mineral soil within each vegetation type, and the A horizon thickness was recorded at each core hole site. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. In addition, we measured the magnetic susceptibility of the mineral soil surface on two transects crossing the vegetation boundary. Core samples have been measured for bulk density, pH, plant-available nutrients, and organic matter; and tests for total carbon and nitrogen, amorphous silica, charcoal, and other forms of black carbon are ongoing. Preliminary results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, have lower soil bulk densities, have much finer and stronger structural development of soil aggregates. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we have validated with saturated hydraulic conductivity tests. Pedogenically, the pastured soils indicate that melanization processes have been much more pronounced than in the forested soils. Distinct changes in soil materials result from conversion to pasture. Significantly more black carbon (including macro-charcoal) appears to be present in the pastured soils, indicating that it plays an important role in melanization, in addition to long-term sequestration of carbon. Pastured soils contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Pastures register significantly higher soil magnetic susceptibility than forests, presumably from past use of fire. In essence, anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our current research involves radiocarbon and chronostratigraphy to establish rates of this anthropisation of the biotic factor.

  9. Peat Soil Stabilization using Lime and Cement

    NASA Astrophysics Data System (ADS)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  10. Soil-Transmitted Helminth Eggs Are Present in Soil at Multiple Locations within Households in Rural Kenya

    PubMed Central

    Steinbaum, Lauren; Njenga, Sammy M.; Kihara, Jimmy; Boehm, Alexandria B.; Davis, Jennifer; Null, Clair; Pickering, Amy J.

    2016-01-01

    Almost one-quarter of the world’s population is infected with soil-transmitted helminths (STH). We conducted a study to determine the prevalence and location of STH—Ascaris, Trichuris, and hookworm spp.—egg contamination in soil within rural household plots in Kenya. Field staff collected soil samples from July to September 2014 from the house entrance and the latrine entrance of households in Kakamega County; additional spatial sampling was conducted at a subset of households (N = 22 samples from 3 households). We analyzed soil samples using a modified version of the US Environmental Protection Agency (EPA) method for enumerating Ascaris in biosolids. We found 26.8% of households had one or more species of STH eggs present in the soil in at least one household location (n = 18 out of 67 households), and Ascaris was the most commonly detected STH (19.4%, n = 13 out of 67 households). Prevalence of STH eggs in soil was equally likely at the house entrance (19.4%, N = 67) as at the latrine entrance (11.3%, N = 62) (p = 0.41). We also detected STH eggs at bathing and food preparation areas in the three houses revisited for additional spatial sampling, indicating STH exposure can occur at multiple sites within a household plot, not just near the latrine. The highest concentration of eggs in one house occurred in the child’s play area. Our findings suggest interventions to limit child exposure to household soil could complement other STH control strategies. PMID:27341102

  11. Rapid Method of Determining Factors Limiting Bacterial Growth in Soil

    PubMed Central

    Aldén, L.; Demoling, F.; Bååth, E.

    2001-01-01

    A technique to determine which nutrients limit bacterial growth in soil was developed. The method was based on measuring the thymidine incorporation rate of bacteria after the addition of C, N, and P in different combinations to soil samples. First, the thymidine incorporation method was tested in two different soils: an agricultural soil and a forest humus soil. Carbon (as glucose) was found to be the limiting substance for bacterial growth in both of these soils. The effect of adding different amounts of nutrients was studied, and tests were performed to determine whether the additions affected the soil pH and subsequent bacterial activity. The incubation time required to detect bacterial growth after adding substrate to the soil was also evaluated. Second, the method was used in experiments in which three different size fractions of straw (1 to 2, 0.25 to 1, and <0.25 mm) were mixed into the agricultural soil in order to induce N limitation for bacterial growth. When the straw fraction was small enough (<0.25 mm), N became the limiting nutrient for bacterial growth after about 3 weeks. After the addition of the larger straw fractions (1 to 2 and 0.25 to 1 mm), the soil bacteria were C limited throughout the incubation period (10 weeks), although an increase in the thymidine incorporation rate after the addition of C and N together compared with adding them separately was seen in the sample containing the size fraction from 0.25 to 1 mm. Third, soils from high-pH, limestone-rich areas were examined. P limitation was observed in one of these soils, while tendencies toward P limitation were seen in some of the other soils. PMID:11282640

  12. Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.

    2017-01-01

    Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.

  13. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    NASA Astrophysics Data System (ADS)

    Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.

    2012-09-01

    Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the Stråsan experimental forest (Norway spruce) in Central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity, but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n=6) and tension lysimeters were installed in the underlying B horizon (n=4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B-horizon leachates, the N1 treatment approximately doubled leachate concentration of DOC and DON. DON returned to control levels but DOC remained elevated in B-horizon leachates in N2 plots 19 yr after termination of N addition. Increased aromaticity of the sampled DOM in mineral B horizon in both the ongoing and terminated N treatment indicated that old SOM in the mineral soil was a source of the increased DOC.

  14. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    PubMed

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-02

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  15. Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Mellon, Mike T.; Ming, Douglas W.; Morris, Richard V.; Noble, Sarah K.; Sullivan, Robert J.; Taylor, Lawrence A.; Beaty, David W.

    2014-01-01

    The Mars Sample Return (MSR) End-to-End International Science Analysis Group (E2E-iSAG [1]) established scientific objectives associ-ated with Mars returned-sample science that require the return and investigation of one or more soil samples. Soil is defined here as loose, unconsolidated materials with no implication for the presence or absence of or-ganic components. The proposed Mars 2020 (M-2020) rover is likely to collect and cache soil in addition to rock samples [2], which could be followed by future sample retrieval and return missions. Here we discuss key scientific consid-erations for sampling and caching soil samples on the proposed M-2020 rover, as well as the state in which samples would need to be preserved when received by analysts on Earth. We are seeking feedback on these draft plans as input to mission requirement formulation. A related planning exercise on rocks is reported in an accompanying abstract [3].

  16. Remediation of soil contaminated with dioxins by subcritical water extraction.

    PubMed

    Hashimoto, Shunji; Watanabe, Kiyohiko; Nose, Kazutoshi; Morita, Masatoshi

    2004-01-01

    The effectiveness of subcritical water extraction (SCWE) was examined for removing dioxins from contaminated soil. Most dioxins in the soil sample were reduced at 300 degrees C or more, but decreased dioxin concentrations were also observed at 150 degrees C. After 4 h of extraction, 99.4%, 94.5% and 60% of PCDDs were removed from samples at 350, 300 and 150 degrees C, respectively. It was also determined that degradation of dioxins had occurred, since the sum of dioxins in the soil plus water extracts after the experiments had considerably decreased. This study revealed that pressurizing is not essential for the removal of dioxins. Reduction was complete within 30 min at 350 degrees C; however, it took a much longer time at lower temperatures. The results of addition experiments in which OCDDs were added to different types of soil samples have shown that dechlorination is one of the major reaction pathways. After addition of OCDD to soil samples, experiments were carried out to examine in detail the degradation pathways of PCDDs. The removal rates and congener profiles varied among soil types. Although it was previously assumed that removal rates and congener profiles depended on the chemical components in soil, nonparametric statistical analysis revealed no significant relationship between the rate of reduction and elements present in the soil. It was confirmed from isomer patterns that dechlorination of the 2,3,7,8-positions in PCDDs takes place somewhat faster than for the 1,4,6,9-positions.

  17. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    NASA Astrophysics Data System (ADS)

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.

    2016-05-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.

  18. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  19. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  20. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  1. Carbon turnover in topsoil and subsoil: The microbial response to root litter additions and different environmental conditions in a reciprocal soil translocation experiment

    NASA Astrophysics Data System (ADS)

    Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen

    2017-04-01

    At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples with root addition had generally higher microbial abundances than those with no root addition. Here, especially fungi benefited from the additional carbon source with highly increased abundances in all incorporation depths. Also the altered environmental conditions in the different incorporation depths significantly influenced the different microbial groups. The steepest decrease with depth was detected in fungal abundance, while bacteria were less affected and increased in relative abundance in soil samples incorporated into subsoil layers. The highest seasonal variability in microbial abundance, however, was determined in 5 cm incorporation depth demonstrating the higher amplitude in micro-climatic and micro-environmental conditions in this near-surface soil habitat. In summary, this experiment demonstrated that carbon quality and quantity are the main factors restricting fungal abundance in deeper soil layers, while bacterial decomposer communities are adapted to a wider range of habitat conditions.

  2. The effectiveness of municipal sewage sludge application on the stabilization of Pb, Zn, and Cd in a soil contaminated from mining activities.

    PubMed

    Xenidis, A; Stouraiti, C; Moirou, A

    2001-01-01

    The effectiveness of municipal sewage sludge for the stabilisation of Pb, Zn and Cd in a heavily contaminated soil was evaluated by performing pot experiments on soil-sludge mixtures. The soil sample originated from the Montevecchio mining district, Sardinia, Italy, and presented high Pb, Zn and Cd content, as well as US EPA TCLP solubility values for Pb and Cd, which exceeded the respective regulatory limits. Sewage sludge application increased the soil pH. Stabilisation experiments showed that 10% w/w sewage sludge addition effectively reduced Pb and Cd solubilities below the TCLP regulatory limits. At the same addition rate, the EDTA extractable fraction of Pb, Zn, Cd in the treated soil was reduced by 12, 47 and 50% respectively compared with the untreated sample. The five-stage sequential extraction procedure applied on the untreated and treated soil samples, showed a remarkable shift of the metals towards more stable forms. The reducible fractions of Zn and Cd and the residual fraction of Pb were increased by 12, 20 and 18% respectively, while a corresponding decrease in the mobile fractions (exchangeable and carbonate) occurred which accounted for 14, 23 and 25% respectively.

  3. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  4. Characterization of polycyclic aromatic hydrocarbons in soil close to secondary copper and aluminum smelters.

    PubMed

    Hu, Jicheng; Wu, Jing; Zha, Xiaoshuo; Yang, Chen; Hua, Ying; Wang, Ying; Jin, Jun

    2017-04-01

    A total of 35 surface soil samples around two secondary copper smelters and one secondary aluminum smelter were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The concentrations of PAHs were highest when the soil sample sites were closest to the secondary copper smelters. And, a level gradient of PAHs was observed in soil samples according to the distance from two secondary copper smelters, respectively. The results suggested that PAH concentrations in surrounding soils may be influenced by secondary copper smelters investigated, whereas no such gradient was observed in soils around the secondary aluminum smelter. Further analysis revealed that PAH patterns in soil samples also showed some difference between secondary copper and aluminum smelter, which may be attributed to the difference in their fuel and smelting process. PAH patterns and diagnostic ratios indicated that biomass burning may be also an important source of PAHs in the surrounding soil in addition to the emissions from the plants investigated.

  5. Effect of organic amendments on quality indexes in an italian agricultural soil

    NASA Astrophysics Data System (ADS)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils was stored at 4 °C for biological analyses. On soil samples, organic C, dehydrogenase phosphatase, beta-glucosidase and urease activities as well as microbial biomass C and fungal mycelium were assayed. Results showed that sterilization treatments (solarization+calcium cyanamide) depressed almost all the enzymatic activities studied. By contrast their values were enhanced by the addition of compost combined with Rigen and/or straw. During the time the dehydrogenase activity strongly fell whereas slightly decreases occurred for the activity of phosphatase, beta-glucosidase and urease. Accordingly, a decrease in organic C content was measured. Conversely, arylsulphatase showed an activity increase at the second and third sampling. Microbial biomass C was improved by compost or compost + Rigen addition, in accordance with organic C trend. Normalizing the microbial biomass to the organic C content (microbial quotient) only in one plot a higher and significant value was obtained. Conversely the fungal growth was not influenced by amendment practices, rather in the time it was significantly depressed. Data showed an ameliorant effect of organic amendments, especially when compost was combined with other ones, on chemical, biological and biochemical properties of studied soils. Further investigations related also to crop production should however be carried out to achieve a clearer and comprehensive picture of the relationships between soil quality and soil management practices.

  6. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  7. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprisedmore » the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.« less

  8. Bacterial diversity in the rhizosphere of cucumbers grown in soils covering a wide range of cucumber cropping histories and environmental conditions.

    PubMed

    Tian, Yongqiang; Gao, Lihong

    2014-11-01

    Rhizosphere microorganisms in soils are important for plant growth. However, the importance of rhizosphere microorganisms is still underestimated since many microorganisms associated with plant roots cannot be cultured and since the microbial diversity in the rhizosphere can be influenced by several factors, such as the cropping history, biogeography, and agricultural practice. Here, we characterized the rhizosphere bacterial diversity of cucumber plants grown in soils covering a wide range of cucumber cropping histories and environmental conditions by using pyrosequencing of bacterial 16S rRNA genes. We also tested the effects of compost addition and/or bacterial inoculation on the bacterial diversity in the rhizosphere. We identified an average of approximately 8,883 reads per sample, corresponding to around 4,993 molecular operational taxonomic units per sample. The Proteobacteria was the most abundant phylum in almost all soils. The abundances of the phyla Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, and Verrucomicrobia varied among the samples, and together with Proteobacteria, these phyla were the six most abundant phyla in almost all analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Flavobacterium, Ohtaekwangia, Opitutus, Gp6, Steroidobacter, and Acidovorax. Overall, compost and microbial amendments increased shoot biomass when compared to untreated soils. However, compost addition decreased the bacterial α-diversity in most soils (but for three soils compost increased diversity), and no statistical effect of microbial amendment on the bacterial α-diversity was found. Moreover, soil amendments did not significantly influence the bacterial β-diversity. Soil organic content appeared more important than compost and microbial amendments in shaping the structure of bacterial communities in the rhizosphere of cucumber.

  9. Influence of the individual or combined application of biochar and slurry on soil macro-aggregate formation under varying moisture conditions

    NASA Astrophysics Data System (ADS)

    Kaiser, Michael; Grunwald, Dennis; Koch, Heinz-Josef; Rauber, Rolf; Ludwig, Bernard

    2017-04-01

    The formation of aggregates is of large importance for the structure and the storage of organic matter (OM) in soil. Although positive effects of organic soil additives on the formation of macro-aggregates (> 250 µm) have been reported, the influence of biochar especially applied in combination with other organic amendments remains unclear. Furthermore, studies on the effect of varying soil moisture conditions in form of drying-rewetting cycles on soil aggregate dynamics in the presence of biochar are almost missing. The objectives of this study were to analyze the effects of biochar and slurry applied to the soil individually or in combination on the formation of macro-aggregates under constant and under varying moisture conditions. We sampled four silty loam soils, carefully crushed the soil macro-aggregates, and incubated the soil at 15 °C for 60 days with the following additions: (i) none (control), (ii) biochar (12 % of dry soil mass), (iii) slurry (150 kg N ha-1), (iv) biochar (6 %) + slurry (75 kg N ha-1), (v) biochar (12 %) + slurry (75 kg N ha-1), (vi) biochar (6 %) + slurry (150 kg N ha-1) and (vii) biochar (12 %) + slurry (150 kg N ha-1). The samples were further subdivided into two groups that were incubated under conditions of constant soil moisture and of three drying-rewetting cycles. The CO2 fluxes were continuously measured during the incubation period and the samples were analyzed for microbial biomass C, macro-aggregate yields and macro-aggregate-associated C after finishing the experiment. We found the application of biochar to result in lower macro-aggregate yields with or without slurry compared to the control or the individual slurry application. In contrast, similar or higher C contents in the macro-aggregate fraction of the biochar treatments as compared to the control or slurry treatments were found indicating an occlusion of biochar in macro-aggregates. Due to the sorption characteristics of biochar, we assume the aggregate formation to be partially abiotic with direct interactions between biochar, (adsorbed) slurry, and the mineral phase of the soil. Therefore, in the presence of slurry, a prolonged period of microbial processing does not seem to be necessary to render the biochar suitable to form aggregates. Drying and rewetting of the samples resulted in significantly lower aggregate yields especially for the biochar/slurry mixtures. The drying of slurry as thought to be the most important macro-aggregate binding agent in these treatments might irreversibly disrupt large amounts of the macro-aggregates formed. Additionally, the general lower microbial biomass C and CO2 emissions for the samples experiencing drying-rewetting cycles compared to the constantly moist soils point toward less microbial activity under varying moisture conditions. This might have led to less microbial derived aggregate binding agents contributing to the lower aggregate yields found for the samples from the drying-rewetting treatments. Beside the amount and type of binding agents derived from organic soil additives, the formation and stability of soil macro-aggregate seem also to be controlled by climatically controlled soil moisture conditions.

  10. Analysis of organophosphate hydraulic fluids in U.S. Air force base soils

    PubMed

    David; Seiber

    1999-04-01

    Tri-aryl and tri-alkyl organophosphates (TAPs) have been used extensively as flame-retardant hydraulic fluids and fluid additives in commercial and military aircraft. Up to 80% of the consumption of these fluids has been estimated to be lost to unrecovered leakage. Tri-aryl phosphate components of these fluids are resistant to volatilization and solubilization in water, thus, their primary environmental fate pathway is sorption to soils. Environmental audits of military air bases generally do not include quantification of these compounds in soils. We have determined the presence and extent of TAP contamination in soil samples from several U.S. Air Force bases. Soils were collected, extracted, and analyzed using GC/FPD and GC/MS. Tricresyl phosphate was the most frequently found TAP in soil, ranging from 0.02 to 130 ppm. Other TAPs in soils included triphenyl phosphate and isopropylated triphenyl phosphate. Observations are made regarding the distribution, typical concentrations, persistence, and need for further testing of TAPs in soils at military installations. Additionally, GC and mass spectral data for these TAPs are presented, along with methods for their extraction, sample clean-up, and quantification.

  11. Content and distribution of arsenic, bismuth, lithium and selenium in mineral and synthetic fertilizers and their contribution to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senesi, N.; Polemio, M.; Lorusso, L.

    1979-01-01

    Concentrations of arsenic, bismuth, lithium and selenium were determined by atomic absorption spectrophotometry in 32 samples of commercial fertilizers from various manufacturers and distributors. Arsenic and lithium were detected in all investigated samples, bismuth in 50% of samples and selenium only in two samples. Arsenic content ranged from 2 to 321 ppM; lithium varied from 5 to 0.1 ppM; bismuth was always lower than 0.5 ppM; selenium was detectable at the levels of 10 and 13 ppM. Fertilizers made from rock phosphates contained trace element amounts generally higher than those derived from rock carbonates, synthetic nitrogen fertilizers and potassium sulphate.more » Additions of trace elements from fertilizers applied at common rates to cultivated soils are tabulated and discussed on the basis of the natural soil reserves and toxicity levels for plants. Whereas applications of bismuth resulted always very low to influence the usual soil content and plant uptakes and selenium was only rarely present in fertilizers, lithium and moreover arsenic additions by fertilizers could influence the trace element status in soil, overcoming occasionally the toxicity levels for more sensitive crops.« less

  12. Geotechnical soil characterization of intact Quaternary deposits forming the March 22, 2014 SR-530 (Oso) landslide, Snohomish County, Washington

    USGS Publications Warehouse

    Riemer, Michael F.; Collins, Brian D.; Badger, Thomas C.; Toth, Csilla; Yu, Yat Chun

    2015-01-01

    This report provides a description of the methods used to obtain and test the intact soil stratigraphy behind the headscarp of the March 22 landslide. Detailed geotechnical index testing results are presented for 24 soil samples representing the stratigraphy at 19 different depths along a 650 ft (198 m) soil profile. The results include (1) the soil's in situ water content and unit weight (where applicable); (2) specific gravity of soil solids; and (3) each sample's grain-size distribution, critical limits for fine-grain water content states (that is, the Atterberg limits), and official Unified Soil Classification System (USCS) designation. In addition, preliminary stratigraphy and geotechnical relations within and between soil units are presented.

  13. Soil Geochemical Data for the Wyoming Landscape Conservation Initiative Study Area

    USGS Publications Warehouse

    Smith, David B.; Ellefsen, Karl J.

    2010-01-01

    In 2008, soil samples were collected at 139 sites throughout the Wyoming Landscape Conservation Initiative study area in southwest Wyoming. These samples, representing a density of 1 site per 440 square kilometers, were collected from a depth of 0-5 cm and analyzed for a suite of more than 40 major and trace elements following a near-total multi-acid extraction. In addition, soil pH, electrical conductivity, total nitrogen, total and organic carbon, and sodium adsorption ratio were determined. The resulting data set provides a baseline for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used, and makes available all the soil geochemical data generated in the study.

  14. Soil Pore Characteristics, an Underappreciated Regulatory Factor in GHGs Emission and C Stabilization

    NASA Astrophysics Data System (ADS)

    Toosi, E. R.; Yu, J.; Doane, T. A.; Guber, A.; Rivers, M. L.; Marsh, T. L.; Ali, K.; Kravchenko, A. N.

    2015-12-01

    Enduring challenges in understanding soil organic matter (SOM) stability and emission of greenhouse gases (GHGs) from soil stem from complexities of soil processes, many of which occur at micro-scales. The goal of this study is to evaluate the interactive effects soil pore characteristics, soil moisture levels, inherent SOM levels and properties, and substrate quality, on GHGs emission, and accelerated decomposition of native SOM following addition of fresh substrate i.e. priming. Our core hypothesis is that soil pore characteristics play a major role as a mediator in (i) the decomposition of organic matter regardless of its source (i.e. litter vs. native SOM) or substrate quality, as well as in (ii) GHGs emissions. Samples with prevalence of small (<10 μm) vs. large (>30 μm) pores were prepared from soils with similar properties but under long-term contrasting management. The samples were incubated (110 d) at low and optimum soil moisture conditions after addition of high quality (13C-soybean) and low quality (13C-corn) substrate. Headspace gas was analyzed for 13C-CO2 and GHGs on a regularly basis (day 1, 3, 7, 14, 24, 36, 48, 60, 72, 90, and 110). Selected samples were scanned at the early stage of decomposition (7, 14, 24 d) at 2-6 μm resolutions using X-ray computed μ tomography in order to: (1) quantify soil pore characteristics; (2) visualize and quantify distribution of soil moisture within samples of different pore characteristics; and (3) to visualize and measure losses of decomposing plant residue. Initial findings indicate that, consistent with our hypotheses, pore characteristics influenced GHGs emission, and intensity and pattern of plant residue decomposition. The importance of pores was highly pronounced in presence of added plant residue where greater N2O emission occurred in samples with dominant large pores, in contrast to CO2. Further findings will be discussed upon completion of the study and analysis of the results.

  15. Effects of elevated atmospherical CO2 concentration and nitrogen fertilisation on priming effects in soils

    NASA Astrophysics Data System (ADS)

    Ohm, H.; Marschner, B.

    2009-04-01

    It is expected that the biomass production and thus the input of organic carbon to the soil will increase in response to elevated CO¬2 concentrations in the atmosphere. It remains unclear whether this will lead to a long term increased carbon pool, because only little is known about the stability of the additional carbon inputs. The soil samples were taken on an agricultural field at the experimental farm of the Federal Agricultural Research Centre (FAL) in Braunschweig, Germany. A Free-Air Carbon-dioxide Enrichment (FACE) system was installed here in May 2000. It consists of rings with 20 m diameter. Two rings were operated with CO2 enriched air (550 ppm), another two rings received ambient air (370 ppm). One half of each ring received the full amount of nitrogen fertiliser, the remainder received only half of this N-amount. The soil samples were taken after 6 years of operation and were incubated with 14C-labeled fructose and alanine for 21 days. Furthermore, combined additions with the respective substrate and ammonium nitrate or ammonium nitrate alone were conducted. The microbial biomass was determined after 2 and 21 days. In the untreated controls the SOC mineralisation amounted to 0.59 to 0.68%. The addition of fructose, fructose+NH4NO3, alanine and alanine+NH4NO3 to the different soil samples increased SOC mineralization and thus caused priming effects of different extents. For NH4NO3 no priming effects occurred. The addition of fructose induced positive priming effects in all samples. The lowest priming effect was observed in the sample ambient CO2+50% N (+50%), either with fructose alone or in combination with NH4NO3. The addition of alanine caused similar priming effects in the ambient CO2+100% N and the elevated CO2+100% N samples (+92.4 and +95.6%, respectively). Again, the lowest priming effect was observed in the sample ambient CO2+50% N. The microbial biomass showed a clear increase in the substrate treated samples compared to the controls. The addition of NH4NO3 did not change the amount of Cmic. The results show, that in no treatment SOC degradation was N-limited, but always limited by easily available energy substrates. On the other hand, N-fertilization had a stronger effect on the microbial response to alanine addition than the CO2-level. Only with low N-fertilization, soils under elevated CO2 are more substrate limited than under elevated CO2, indicating that biomass C-inputs are of different quality.

  16. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    PubMed

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil

  17. [Restoration of microbial ammonia oxidizers in air-dried forest soils upon wetting].

    PubMed

    Zhou, Xue; Huang, Rong; Song, Ge; Pan, Xianzhang; Jia, Zhongjun

    2014-11-04

    This study was aimed to investigate the abundance and community shift of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in air-dried forest soils in response to water addition, to explore the applicability of air-dried soil for microbial ecology study, and to elucidate whether AOA within the marine group 1. 1a dominate ammonia oxidizers communities in the acidic forest soils in China. Soil samples were collected from 10 forest sites of the China Ecosystem Research Network (CERN) and kept under air-drying conditions in 2010. In 2013 the air-dried soil samples were adjusted to 60% of soil maximum water holding capacity for a 28-day incubation at 28 degrees C in darkness. DGGE fingerprinting, clone library construction, pyrosequencing and quantitative PCR of amoA genes were performed to assess community change of ammonia oxidizers in air-dried and re-wetted soils. After incubation for 28 days, the abundance of bacteria and archaea increased significantly, up to 3,230 and 568 times, respectively. AOA increased significantly in 8 samples, and AOB increased significantly in 5 of 10 samples. However, pyrosequencing of amoA genes reveals insignificant changes in composition of AOA and AOB communities. Phylogenetic analysis of amoA genes indicates that archaeal ammonia oxidizers were predominated by AOA within the soil group 1. 1b lineage, while the Nitrosospira-like AOB dominate bacteria ammonia oxidizer communities. There was a significantly positive correlation between AOA/AOB ratio and total nitrogen (r2 = 0.54, P < 0.05), implying that soil ammonia oxidation might be dominated by AOA in association with ammonium released from soil mineralization. Phylogenetic analysis suggest that AOA members within the soil group 1. 1b lineage were not restricted to non-acidic soils as previously thought. The abundance rather than composition of AOA and AOB changed in response to water addition. This indicates that air-dried soil could be of help for microbial biogeography study.

  18. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of rhizosphere and the favorable soil moisture conditions under tree canopy on soil microbial activities. TOC, BR and MB-C values were considerably lower in soil depth of 10-40cm compared with 0-10 cm in both irrigated and rainfed soil parcels. Moreover BR and MB-C was higher in irrigated soil parcels compared with rainfed ones suggesting that the periodic irrigation significantly enhances the soil microbial activity. There were no considerable differences in TOC. For this the TOC and potential activity of microbial community can contribute in the soil nutrient and irrigation management guidelines in order to exploit the utilization of productive soils in the region under studied.

  19. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  20. Phytoforensics—Using trees to find contamination

    USGS Publications Warehouse

    Wilson, Jordan L.

    2017-09-28

    The water we drink, air we breathe, and soil we come into contact with have the potential to adversely affect our health because of contaminants in the environment. Environmental samples can characterize the extent of potential contamination, but traditional methods for collecting water, air, and soil samples below the ground (for example, well drilling or direct-push soil sampling) are expensive and time consuming. Trees are closely connected to the subsurface and sampling tree trunks can indicate subsurface pollutants, a process called phytoforensics. Scientists at the Missouri Water Science Center were among the first to use phytoforensics to screen sites for contamination before using traditional sampling methods, to guide additional sampling, and to show the large cost savings associated with tree sampling compared to traditional methods. 

  1. Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study.

    PubMed

    Sun, Xiangyu; Ma, Tingting; Yu, Jing; Huang, Weidong; Fang, Yulin; Zhan, Jicheng

    2018-02-15

    The copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China, were investigated. The results showed that the copper pollution status in vineyard soils, grapes and wines in the investigated area in China is under control, with only 4 surface soil (0-20cm) samples over maximum residue limits (MRL) and no grape or wine samples over MRL. Different vineyards, grape varieties, vine ages, and training systems all significantly influenced the copper contents in the vineyard soils, grape and wines. Additionally, the copper levels in the vineyard soils, grapes and wines all had some correlation. In wine samples, the copper contents ranged from 0.52 to 663μg/L, which is only approximately one percent the level found in grapes and one ten-thousandth that found in soils. Of the wine samples, red wines showed a significantly higher copper content than white wines, while in the red/white grape and soil samples, no significant differences were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Re-Os Isotope Systematics in Lunar Soils and Breccias

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A; Wasserburg, G. J.

    2002-01-01

    Lunar soil and breccia samples show a narrow range in 187Os/188Os, in the range for H-chondrites and unfractionated irons. All samples show enrichments in 187Re/188Os, possibly reflecting loss of Os, associated with the terminal lunar cataclysm. Additional information is contained in the original extended abstract.

  3. 77 FR 50044 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ..., the USACE conducted additional subsurface soil sampling at four VPs in May and June 2003. Following... excavated. Post excavation sampling indicated all cleanup levels for these soils had been met. After five... license for radioactive materials was terminated by the NRC following Site decommissioning and the Site...

  4. Effects of nitrogen enrichment on soil organic matter in tropical forests with different ambient nutrient status

    NASA Astrophysics Data System (ADS)

    Vaughan, E.; Cusack, D. F.; McDowell, W. H.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) enrichment is a widespread and increasingly important human influence on ecosystems globally, with implications for net primary production and biogeochemical processes. Previous research has shown that N enrichment can alter soil carbon (C) cycling, although the direction and magnitude of the changes are not consistent across studies, and may change with time. Inconsistent responses to N additions may be due to differences in ambient nutrient status, and/or variable responses of plant C inputs and microbial decomposition. Although plant production in the tropics is not often limited by N, soil processes may respond differently to N enrichment. Our study uses a 15-year N addition experiment at two different tropical forest sites in the Luquillo Long-Term Ecological Research project site in Puerto Rico to address long-term changes in soil C pools due to fertilization. The two forests differ in elevation and ambient nutrient status. Soil sampling three and five years post-fertilization showed increased soil C concentrations under fertilization, driven by increases in mineral-associated C (Cusack et al. 2011). However, the longer-term trends at these sites are unknown. To this end, soil samples were collected following fifteen years of fertilization. Soils were sampled from 0-10 cm and 10-20 cm. Bulk soil C and N concentrations will be measured and compared to samples collected before fertilization (2002) and three years post fertilization (2005). We are using density fractionation to isolate different soil organic matter pools into a free light, occluded light, and dense, mineral associated fraction. These pools represent different mechanisms of soil organic matter stabilization, and provide more detailed insight into changes in bulk soil C. These data will provide insight into the effects of N enrichment on tropical forest soils, and how those effects may change through time with a unique long-term data set.

  5. Phytolith aided paleoenvironmental studies from the Dutch Neolithic

    NASA Astrophysics Data System (ADS)

    Persaits, Gergő; Gulyás, Sándor; Náfrádi, Katalin; Sümegi, Pál; Szalontai, Csaba

    2015-11-01

    There is increasing evidence for crop cultivation at sites of the Neolithic Swifterbant culture from ca. 4300 B.C. onwards. Presence of cereal fields at the Swifterbant S2, S3 and S4 sites has been corroborated from micro morphological studies of soil samples. Swifterbant sites with evidence for cultivated plants are still scarce though and only emerging, and have produced very low numbers of charred cereals only. The major aim of our work was to elucidate the environmental background of the Dutch Neolithic site Swifterbant S4 based on the investigation of phytolith remains retrieved from soil samples. In addition to find evidence for crop cultivation independently from other studies. Samples were taken at 1 cm intervals vertically from the soil section at the central profile of site S4. Additional samples were taken from pocket-like structures and adjacent horizons above and below. Pig coprolites yielded an astonishing phytolith assemblage which was compared to that of the soil samples. A pig tooth also yielded evaluable material via detailed investigation using SEM. The evaluation of phytolith assemblages retrieved from the soil horizons plus those ending up in the droppings of pigs feasting in the area enabled to draw a relatively reliable environmental picture of the area. All these refer to the presence of a Neolithic horticulture (cereal cultivation) under balanced micro-climatic conditions as a result of the vicinity of the nearby floodplain. These findings corroborate those of previous soil micro-morphological studies.

  6. Process and apparatus for obtaining samples of liquid and gas from soil

    DOEpatents

    Rossabi, J.; May, C.P.; Pemberton, B.E.; Shinn, J.; Sprague, K.

    1999-03-30

    An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus. 8 figs.

  7. Process and apparatus for obtaining samples of liquid and gas from soil

    DOEpatents

    Rossabi, Joseph; May, Christopher P.; Pemberton, Bradley E.; Shinn, Jim; Sprague, Keith

    1999-01-01

    An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus.

  8. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils.

    PubMed

    Lawrence, Gregory B; Fernandez, Ivan J; Hazlett, Paul W; Bailey, Scott W; Ross, Donald S; Villars, Thomas R; Quintana, Angelica; Ouimet, Rock; McHale, Michael R; Johnson, Chris E; Briggs, Russell D; Colter, Robert A; Siemion, Jason; Bartlett, Olivia L; Vargas, Olga; Antidormi, Michael R; Koppers, Mary M

    2016-11-25

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  9. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils

    PubMed Central

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael R.; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael R.; Koppers, Mary M.

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise. PMID:27911419

  10. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    USGS Publications Warehouse

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  11. Effects of phosphorus fertilizer and lime on the As, Cr, Pb, and V content of soils and plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodroad, L.L.; Caldwell, A.C.

    1979-10-01

    The occurrence in fertilizer material of small quantities of chemical elements not essential to plants suggests that the soil may become contaminated with these elements due to the use of fertilizers. Two experimental sites: a Nicollet clay loam fertilized with 0, 1111, 2222, 4444, and 8888 kg/ha of concentrated superphosphate (CSP) and 20.2 metric tons of lime, and a Port Byron silt loam fertilized for 19 years with 99, 73, 82, and 352 kg/ha annually of CSP, calcium metaphosphate, phosphoric acid, and southern rock phosphate, respectively, were sampled to determine if significant amounts of arsenic (As), chromium (Cr), lead (Pb),more » or vanadium (V) had been added from the use of these fertilizer materials. There was no indication of increased As, Cr, Pb, or V from the addition of P fertilizers to either the Nicollet or Port Byron soils. The addition of lime increased the Cr content of the Nicollet soil by approximately 3 ppM, but there was no increase in As, Pb, or V. There was no increase in As, Cr, Pb, or V from addition of CSP in soil samples from below the Ap horizon to a depth of 47.5 cm. Soil samples from a representative Nicollet soil suggest that higher As, Cr, Pb, and V concentrations in the A and B horizons are due to leaching of CaCO/sub 3/ into the C horizon. Corn (Zea mays L.) plant growth and grain yields were similar for all CSP and lime treatments. The results of this study indicate that the use of P fertilizers at the rates presently applied would not add substantially to the natural levels of As, Cr, Pb, and V in the soil.« less

  12. Transfer of Metals in Food Chain: An Example with Copper and Lettuce

    NASA Astrophysics Data System (ADS)

    Vincevica-Gaile, Zane; Klavins, Maris

    2012-12-01

    Present study investigated the possible transfer of metals in the food chain (from soil to edible plants). The experiment was done with lettuce Lactuca sativa grown in different types of soil contaminated with copper (Cu2+) in various concentrations, with or without addition of humic substances. The highest content of copper was detected in lettuce samples grown in soils with lower levels of organic matter, thus indicating the importance of soil organics in metal transfer routes and accumulation rates in plants. It was found that copper accumulation in lettuce grown in contaminated soils can be significantly reduced by the addition of humic substances.

  13. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    DTIC Science & Technology

    2014-02-01

    moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and

  14. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    NASA Astrophysics Data System (ADS)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and heterotrophs bacteria.

  15. Lead (II) removal from natural soils by enhanced electrokinetic remediation.

    PubMed

    Altin, Ahmet; Degirmenci, Mustafa

    2005-01-20

    Electrokinetic remediation is a very effective method to remove metal from fine-grained soils having low adsorption and buffering capacity. However, remediation of soil having high alkali and adsorption capacity via the electrokinetic method is a very difficult process. Therefore, enhancement techniques are required for use in these soil types. In this study, the effect of the presence of minerals having high alkali and cation exchange capacity in natural soil polluted with lead (II) was investigated by means of the efficiency of electrokinetic remediation method. Natural soil samples containing clinoptilolite, gypsum and calcite minerals were used in experimental studies. Moreover, a sample containing kaolinite minerals was studied to compare with the results obtained from other samples. Best results for soils bearing alkali and high sorption capacity minerals were obtained upon addition of 3 mol AcH and application of 20 V constant potential after a remediation period of 220 h. In these test conditions, lead (II) removal efficiencies for these samples varied between 60% and 70% up to 0.55 normalized distance. Under the same conditions, removal efficiencies in kaolinite sample varied between 50% and 95% up to 0.9 normalized distance.

  16. The influence of compost addition on the water repellency of brownfield soils

    NASA Astrophysics Data System (ADS)

    Whelan, Amii; Kechavarzi, Cedric; Sakrabani, Ruben; Coulon, Frederic; Simmons, Robert; Wu, Guozhong

    2010-05-01

    Compost application to brownfield sites, which can facilitate the stabilisation and remediation of contaminants whilst providing adequate conditions for plant growth, is seen as an opportunity to divert biodegradable wastes from landfill and put degraded land back into productive use. However, although compost application is thought to improve soil hydraulic functioning, there is a lack of information on the impact of large amounts of compost on soil water repellency. Water repellency in soils is attributed to the accumulation of hydrophobic organic compounds released as root exudates, fungal and microbial by-products and decomposition of organic matter. It has also been shown that brownfield soils contaminated with petroleum-derived organic contaminants can exhibit strong water repellency, preventing the rapid infiltration of water and leading potentially to surface run off and erosion of contaminated soil. However, hydrophobic organic contaminants are known to become sequestrated by partitioning into organic matter or diffusing into nano- and micropores, making them less available over time (ageing). The effect of large amounts of organic matter addition through compost application on the water repellency of soils contaminated with petroleum-derived organic contaminants requires further investigation. We characterised the influence of compost addition on water repellency in the laboratory by measuring the Water Drop Penetration Time (WDPT), sorptivity and water repellency index through infiltration experiments on soil samples amended with two composts made with contrasting feedstocks (green waste and predominantly meat waste). The treatments consisted of a sandy loam, a clay loam and a sandy loam contaminated with diesel fuel and aged for 3 years, which were amended with the two composts at a rate equivalent to 750t/ha. In addition core samples collected from a brownfield site, amended with compost at three different rates (250, 500 and 750t/ha) in 2007, were also tested. The results show that the water repellency of air dried samples is significantly higher in samples amended with composts and increases with increasing organic matter content. The WDPT suggests that compost, when dry, is hydrophobic. Diesel contamination leads to a decrease in sorptivity compared to uncontaminated controls and wettability is not re-established following the addition of compost. Finally, the increase in compost volume (i.e. application rate) in the field samples leads to an increase in water repellency. The infiltration tests, carried out using a miniature tension infiltrometer, also illustrate different effects of hydrophobicity on infiltration, with some samples demonstrating reduced infiltration and low sorptivity but others showing no infiltration at all until the breakdown of repellency at later times. This investigation is currently being complemented by a study of the influence of hydrophobic organic contaminant sequestration with time (i.e. ageing), estimated by measuring the changes in the available fraction of polycyclic aromatic hydrocarbons (PAHs), on the water repellency of compost amended brownfield soils.

  17. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    PubMed

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  18. Nitrous oxide emission reduction in temperate biochar-amended soils

    NASA Astrophysics Data System (ADS)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  19. Effect of soil and a nonionic surfactant on BTE-oX and MTBE biodegradation kinetics.

    PubMed

    Acuna-Askar, K; Gracia-Lozano, M V; Villarreal-Chiu, J F; Marmolejo, J G; Garza-Gonzalez, M T; Chavez-Gomez, B

    2005-01-01

    The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of 905 mg/L VSS of BTEX-acclimated biomass was evaluated. Effects of soil and Tergitol NP-10 in aqueous samples on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. MTBE biodegradation followed a first-order one-phase kinetic model in all samples, whereas benzene, toluene and ethylbenzene biodegradation followed a first-order two-phase kinetic model in all samples. O-xylene biodegradation followed a first-order two-phase kinetic model in the presence of biomass only. Interestingly, o-xylene biodegradation was able to switch to a first-order one-phase kinetic model when either soil or soil and Tergitol NP-10 were added. The presence of soil in aqueous samples retarded benzene, toluene and ethylbenzene removal rates. O-xylene and MTBE removal rates were enhanced by soil. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged 77-99.8% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged 50.1-65.3% and 9.9-43.0%, respectively.

  20. Investigating the Relationship Between Soil Water Mobility and Stable Isotope Composition with Implications for the Ecohydrologic Separation Hypothesis

    NASA Astrophysics Data System (ADS)

    Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.

    2017-12-01

    The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.

  1. An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil.

    PubMed

    Ma, Fujun; Wu, Bin; Zhang, Qian; Cui, Deshan; Liu, Qingbing; Peng, Changsheng; Li, Fasheng; Gu, Qingbao

    2018-02-15

    Stabilization/solidification (S/S) has been successfully employed in many superfund sites contaminated with organic materials. However, this method's long-term effectiveness has not been fully evaluated and the increase in soil volume following treatment is unfavorable to follow-up disposal. The present study developed a novel method for the S/S of PAHs-contaminated soil with the facilitation of sulfonated oil (SO). Adding SO significantly improved the unconfined compressive strength (UCS) values of Portland cement and activated carbon (PC-AC) treated soil samples, and the UCS values of the soil sample treated with 0.02% of SO were up to 2.3 times higher than without SO addition. When the soil was treated with PC-AC-SO, the PAHs leaching concentrations were 14%-25% of that in leachates of the control soil, and high molecular weight PAHs including benzo(a)pyrene were rarely leached. Freeze/thaw durability tests reveal that the leachability of PAHs was not influenced by freeze-thaw cycles. The UCS values of PC-AC-SO treated soil samples were 2.2-3.4 times greater than those of PC-AC treated soil samples after 12 freeze-thaw cycles. The PC-AC-SO treated soils resist disintegration better when compared to the PC-AC treated soils. The SEM micrographs reveal that the soils' compactness was significantly improved when treated with SO. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.

    PubMed

    Vaxevanidou, K; Christou, C; Kremmydas, G F; Georgakopoulos, D G; Papassiopi, N

    2015-03-01

    In this study two different treatment options were investigated for the release of arsenic from a contaminated soil sample. The first option was based on the "bioaugmentation" principle and involved addition of a pure Fe(III)-reducing culture, i.e. Desulfuromonas palmitatis. The second option consisted in the "biostimulation" of indigenous bacteria and involved simple addition of nutrients. Due to the strong association of As with soil ferric oxides, the reductive dissolution of soil oxides by D. palmitatis lead to 45 % arsenic release in solution (2.15 mM). When only nutrients were supplied to the soil, the same amounts of Fe and As were dissolved with slower rates and most aqueous As was found to be in the trivalent state, indicating the presence of arsenate reducing species. The arsenate reducing microorganisms were enriched with successive cultures, using Na2HAsO4 as electron acceptor. The phylogenetic analysis revealed that the enriched microbial consortium contained Desulfosporosinus species, which are known arsenate reducers.

  3. Influence of nano-material on the expansive and shrinkage soil behavior

    NASA Astrophysics Data System (ADS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-10-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content ( w opt) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  4. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    PubMed

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Corey

    This funding represents a small sub-award related the larger project titled: A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed. The goal of the sub-award was to facilitate the characterization of carbon and radiocarbon data collected from the East River watershed outside Gothic, Colorado USA. During the period of funding from 8/1/15 until 7/31/17, we sampled 40 soil profiles and collected ~325 soil samples. This funding supported the collection, processing, and elemental analysis of each of these samples. In addition, the funding allowed for the further density separation of a subset of soil resulting inmore » 60 measurements of 13C and 14C of bulk soil and density separates. Funding also supported installation of temperature and moisture data sensors arrays, soil gas wells, and soil water lysimeters. From this infrastructure, a steady stream data including soil gas, water, and physical information have been generated to support the larger research project.« less

  6. Effect of Exogenous Phytase Addition on Soil Phosphatase Activities: a Fluorescence Spectroscopy Study.

    PubMed

    Yang, Xiao-zhu; Chen, Zhen-hua; Zhang, Yu-lan; Chen, Li-jun

    2015-05-01

    The utilization of organic phosphorus (P) has directly or indirectly improved after exogenous phytase was added to soil. However, the mechanism by which exogenous phytase affected the soil phosphatases (phosphomonoesterase and phosphodiesterase) activities was not clear. The present work was aimed to study red soil, brown soil and cinnamon soil phosphomonoesterase (acid and alkaline) (AcP and AlP) and phosphodiesterase (PD) activities responding to the addition of exogenous phytase (1 g phytase/50 g air dry soil sample) based on the measurements performed via a fluorescence detection method combined with 96 microplates using a TECAN Infinite 200 Multi-Mode Microplate Reader. The results indicated that the acid phosphomonoesterase activity was significantly enhanced in red soil (p≤0. 01), while it was significantly reduced in cinnamon soil; alkaline phosphomonoesterase activity was significantly enhanced in cinnamon soil (p≤ 0. 01), while it was significantly reduced in red soil; phosphodiesterase activity was increased in three soils but it was significantly increased in brown soil (p≤0. 01) after the addition of exogenous phytase. The activities still remained strong after eight days in different soils, which indicated that exogenous phytase addition could be enhance soil phosphatases activities effectively. This effect was not only related to soil properties, such as pH and phosphorus forms, but might also be related to the excreted enzyme amount of the stimulating microorganism. Using fluorescence spectroscopy to study exogenous phytase addition influence on soil phosphatase activities was the first time at home and abroad. Compared with the conventional spectrophotometric method, the fluorescence microplate method is an accurate, fast and simple to use method to determine the relationships among the soil phosphatases activities.

  7. Addition of Rubber to soil damages the functional diversity of soil.

    PubMed

    Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun

    2017-07-01

    Rubber is a polymer of isoprene, consisting mainly of cis-1,4-polyisoprene units. The unmanageable production and its irresponsible disposal pose severe threats to environmental ecology. Therefore, the current study focuses extensively on the ill-effects of Rubber disposal on soil microbial functional diversity as it reflects the health of ecosystem by acting as a key component in ecosystem productivity. To investigate the effect of Rubber on soil microbial functional diversity, soil samples were collected from landfill sites and three different soil microcosms (Rubber treated, untreated, and sterile soil) were prepared. The soil enzymatic activity was determined by fluorescein diacetate hydrolysis followed by the determination of the microbial metabolic potential and functional diversity by average well color development and Shannon-Weaver index (H), respectively. BiOLOG ECO plates were used for determining the microbial functional diversity of the soil microcosms. Higher heterotrophic microbial count as well as higher soil microbial activity was observed in Rubber untreated soil than Rubber treated soil microcosm. The result indicated that the addition of Rubber to soil reduced soil heterotrophic microbial count and soil microbial activity considerably. Similarly, soil microbial metabolic potential as well as microbial functional diversity of soil had been decreased by the addition of Rubber gloves in it. Variation in soil microbial metabolic spectrum between Rubber treated and untreated microcosm was confirmed by multivariate analysis. Collectively, all the results demonstrated that the addition of Rubber to soil reduced the soil microbial functional diversity considerably. Therefore, it is necessary for the commission of serious steps regarding Rubber disposal and protection of the environment from serious environmental issues.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Distler, T. M.; Wong, C. M.

    Runoff-water samples for the first, third, and fourth quarters of 1975 were analyzed for pesticide residues at LLL and independently by the LFE Environmental Analysis Laboratories. For the compounds analyzed, upper limits to possible contamination were placed conservatively at the low parts-per-billion level. In addition, soil samples were also analyzed. Future work will continue to include quarterly sampling and will be broadened in scope to include quantitative analysis of a larger number of compounds. A study of recovery efficiency is planned. Because of the high backgrounds on soil samples together with the uncertainties introduced by the cleanup procedures, there ismore » little hope of evaluating the distribution of a complex mixture of pesticides among the aqueous and solid phases in a drainage sample. No further sampling of soil from the streambed is therefore contemplated.« less

  9. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    NASA Astrophysics Data System (ADS)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  10. Nutrient and Rainfall Additions Shift Phylogenetically Estimated Traits of Soil Microbial Communities.

    PubMed

    Gravuer, Kelly; Eskelinen, Anu

    2017-01-01

    Microbial traits related to ecological responses and functions could provide a common currency facilitating synthesis and prediction; however, such traits are difficult to measure directly for all taxa in environmental samples. Past efforts to estimate trait values based on phylogenetic relationships have not always distinguished between traits with high and low phylogenetic conservatism, limiting reliability, especially in poorly known environments, such as soil. Using updated reference trees and phylogenetic relationships, we estimated two phylogenetically conserved traits hypothesized to be ecologically important from DNA sequences of the 16S rRNA gene from soil bacterial and archaeal communities. We sampled these communities from an environmental change experiment in California grassland applying factorial addition of late-season precipitation and soil nutrients to multiple soil types for 3 years prior to sampling. Estimated traits were rRNA gene copy number, which contributes to how rapidly a microbe can respond to an increase in resources and may be related to its maximum growth rate, and genome size, which suggests the breadth of environmental and substrate conditions in which a microbe can thrive. Nutrient addition increased community-weighted mean estimated rRNA gene copy number and marginally increased estimated genome size, whereas precipitation addition decreased these community means for both estimated traits. The effects of both treatments on both traits were associated with soil properties, such as ammonium, available phosphorus, and pH. Estimated trait responses within several phyla were opposite to the community mean response, indicating that microbial responses, although largely consistent among soil types, were not uniform across the tree of life. Our results show that phylogenetic estimation of microbial traits can provide insight into how microbial ecological strategies interact with environmental changes. The method could easily be applied to any of the thousands of existing 16S rRNA sequence data sets and offers potential to improve our understanding of how microbial communities mediate ecosystem function responses to global changes.

  11. Phosphatase activity in Antarctica soil samples as a biosignature of extant life

    NASA Astrophysics Data System (ADS)

    Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

    Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with Tris-HCl buffer (pH 9.0), where the activity was measured fluorometrically with 4-methylumbelliferyl phosphate (pH 8.0) as a substance. The soil of Site 8 (near a penguin rookery) showed almost the same level of ACP and ALP activities as usual surface soil sampled in YNU campus, while the soil of Sites 1-7 showed much less activities. ALP in the extract from the soil of Site 8 was characterized. It showed the maximal at 338 K, while ALP from the campus soil showed the maximal at 358 K. Gel filtration chromatography showed that the ALP activity was found only in the fraction whose molecular weights were over 60000. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes, which had lower optimum temperature than those in usual environments, are present in Antarctica soil. It was suggested that phosphatases are good bio-signatures for extant life in extreme environments.

  12. Immobilization of uranium in contaminated soil by natural apatite addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa

    2007-07-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uraniummore » determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)« less

  13. Detection of soil microorganism in situ by combined gas chromatography mass spectrometry

    NASA Technical Reports Server (NTRS)

    Alexander, M.; Duxbury, J. M.; Francis, A. J.; Adamson, J.

    1972-01-01

    Experimental tests were made to determine whether analysis of volatile metabolic products, formed in situ, is a viable procedure for an extraterrestrial life detection system. Laboratory experiments, carried out under anaerobic conditions with addition of carbon source, extended to include a variety of soils and additional substrates. In situ experiments were conducted without amendment using a vacuum sampling system.

  14. Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites.

    PubMed

    dela Cruz, Albert Leo N; Cook, Robert L; Dellinger, Barry; Lomnicki, Slawomir M; Donnelly, Kirby C; Kelley, Matthew A; Cosgriff, David

    2014-01-01

    We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ~30×, ~12×, and ~2× higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0 G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment.

  15. Similarity index between irrigation water and soil saturation extract in the experimental field of Yachay University, Ecuador

    NASA Astrophysics Data System (ADS)

    Carrera-Villacrés, D. V.; Sánchez-Gómez, V. P.; Portilla-Bravo, O. A.; Bolaños-Guerrón, D. R.

    2017-08-01

    Soil monitoring is a job that demands a lot of time and money. therefore, measuring the same parameters in the water becomes simple because it can be done in situ. The objective of this work was to find a similarity index for the validation of mathematical correlation models based on physicochemical parameters to verify if there is a balance between irrigation water and soil saturation extract in the experimental field Yachay that is known as the city of knowledge that is located in Imbabura province, Ecuador, for which, the sampling of water was carried out in two representative periods (dry and rainy). Sampling of 10 soil profiles was also performed, covering the total area; these samples were obtained results of Electrical Conductivity (EC), pH and total dissolved salts (TDS). With correlation models between soils and water, it is possible to predict concentrations of elements in the irrigation water. It was concluded that there is a balance between soil and water, so that the salts present in the soil are highly soluble, in addition, there is a high probability that the elements in the irrigation water are in the soil. In sample water, the same concentrations were found in the soil, at their saturation point, and very close to the field capacity.

  16. Assessment of Environmentally Persistent Free Radicals in Soils and Sediments from Three Superfund Sites

    PubMed Central

    dela Cruz, Albert Leo N.; Cook, Robert L.; Dellinger, Barry; Lomnicki, Slawomir M.; Donnelly, Kirby C.; Kelley, Matthew A.; Cosgriff, David

    2014-01-01

    We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ~30x, ~12x, and ~2x higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment. PMID:24244947

  17. Heavy metals and hydrocarbons contents in soils of urban areas of Yamal autonomous region (Russia)

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Abakumov, Evgeny; Shamilishvili, George

    2016-04-01

    This investigation is devoted to evaluation of heavy metals and hydrocarbons contents in soils of different functional localities within the Yamalo-Nenets autonomous region (YaNAR, North-Western Siberia, Russia). Geo-accumulation indices Igeo (Müller 1988) were calculated in order to assess soil contamination levels with heavy metals (Cu, Pb, Cd, Zn, Ni, As, Hg) in the studied settlements: Harsaim, Aksarka, Labytnangy, Harp and Salekhard. The degree of soil pollution was assessed according to seven contamination classes (Förstner et al. 1990) in order of increasing numerical value of the index. Cd's regional soil background concentrations of the Yamal peninsula (Moskovchenko 2010), Hg's Earth crust clarke (Greenwood & Earnshaw 2008) and concentrations of the rest trace elements in natural sandy soil from the Beliy island, YaNAR (Tomashunas & Abakumov, 2014) were used in calculations. In general terms, obtained Igeo values in all samples were under or slightly above the 0 level, indicating low to moderate pollution of the studied soils. However, considerable Igeo values of Zn, Pb and Ni were revealed in several samples, suggesting different soil pollution levels, namely: Zn Igeo in Harsaim soil sample of 2.22 - moderate polluted to highly polluted soil; Pb Igeo in Aksarka soil sample of 4.04 - highly polluted to extremely polluted soil; Ni Igeo in Harp soil sample of 4.34 - highly polluted to extremely polluted soil. Soil contamination level was additionally evaluated, comparing with the maximal permissible concentrations (MPCs) of the trace elements in soil (SANPIN 4266-87), established by the national legislation. Almost all samples exceeded the MPC for As in soils (2 mg•kg-1). Concentrations of Ni in several soil samples taken in Harp were 19 times higher than recommended level (20 mg•kg-1). Moderate excess of Zn, Pb and Cu MPCs was also noted. Data obtained will be used in further environmental researches and environmental management purposes in this key oil and gas exploration region. This study was supported by Russian president's grant for Young Doctors of Science № MD 3615-2015-4.

  18. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.

    PubMed

    Bento, Fatima M; Camargo, Flávio A O; Okeke, Benedict C; Frankenberger, William T

    2005-06-01

    Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.

  19. Differences in soil quality between organic and conventional farming over a maize crop season

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Veiga, Adelcia; Puga, João; Kikuchi, Ryunosuke; Ferreira, António

    2017-04-01

    Land degradation in agricultural areas is a major concern. The large number of mechanical interventions and the amount of inputs used to assure high crop productivity, such as fertilizers and pesticides, have negative impacts on soil quality and threaten crop productivity and environmental sustainability. Organic farming is an alternative agriculture system, based on organic fertilizers, biological pest control and crop rotation, in order to mitigate soil degradation. Maize is the third most important cereal worldwide, with 2008 million tons produced in 2013 (IGN, 2016). In Portugal, 120000 ha of arable land is devoted to maize production, leading to annual yields of about 930000 ton (INE, 2015). This study investigates soil quality differences in maize farms under organic and conventional systems. The study was carried out in Coimbra Agrarian Technical School (ESAC), in central region of Portugal. ESAC campus comprises maize fields managed under conventional farming - Vagem Grande (32 ha), and organic fields - Caldeirão (12 ha), distancing 2.8 km. Vagem Grande has been intensively used for grain maize production for more than 20 years, whereas Caldeirão was converted to organic farming in 2008, and is being used to select regional maize varieties. The region has a Mediterranean climate. The maize fields have Eutric Fluvisols, with gentle slopes (<3%). In order to assess soil quality, three plots per farm were installed in May 2006, immediately after sowing, and monitored until October 2016, before harvesting, in order to cover all the crop season. Each plot comprises 5 plant lines (˜4 m width) with 20 m length. In order to assure the comparison between both farms, the same maize variety was used (Pigarro) in both fields, with the same compass. Soil samples were collected immediately after sowing. In Vagem Grande distinct soil samples were taken: (i) within plant lines, and (ii) between plant lines, since mineral fertilizers were spread over the field before sowing, and addition fertilizer was applied together with seeds, in plant lines. In Caldeirão, since fertilization was not performed due to weather constrains, soil samples were collected randomly within the plots. Additional soil samples were collected before harvest, in plant lines and between plant lines, in both farms. Surface (0-15 cm) and subsurface (15-30 cm) soil samples were taken. Soil samples were used for texture, pH, organic carbon, Kjeldhal nitrogen, nitrates, ammonia nitrogen, plant available phosphorus and potassium, and exchangeable cations (Ca2+, Mg2+, K+, Na+) analyses. Additional soil samples were also collected with soil ring samplers (137 cm3) for bulk density analyses after sowing. Surface water infiltration was also measured with tension infiltrometer (membrane of 20cm), using different tensions (0 cm, -3cm, -6 cm e -15cm). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number and diversity of earthworms were also measured at the surface (0-20cm), through extraction, and at the subsurface (>20cm), using mustard solution.

  20. Radium-228 as an indicator of thorium-232 presence in a soil in Pernambuco, Brazil.

    PubMed

    Santos Júnior, J A; Amaral, R S; Silva, C M; Menezes, R S C; Bezerra, J D

    2009-06-01

    Radiometric measurements were taken in a small area of Pernambuco, Brazil, with the objective of monitoring the radium of the soil. For this, 78 soil samples were collected. The gamma analyses of the samples were carried out using HPGe. The values obtained for the (226)Ra varied from 14 to 367 Bqkg(-1) and for the (228)Ra from 73 to 429 Bqkg(-1). The ratio (228)Ra/(226)Ra varied from 1.0 to 7.0. Therefore, it is an indicator of an additional radioactivity source in this soil, maybe (232)Th, which will be further investigated in future studies.

  1. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China.

    PubMed

    Ouyang, Xuejun; Zhou, Guoyi; Huang, Zhongliang; Zhou, Cunyu; Li, Jiong; Shi, Junhui; Zhang, Deqiang

    2008-01-01

    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Guangdong Province, China). The soils were incubated at 25 degrees C for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4(+)-N and NO3(-)-N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in CBMF and PMF may also retard soil organic C mineralization.

  2. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  3. Exposure of school children to polycyclic aromatic hydrocarbons, heavy metals and radionuclides in the urban soil of Kragujevac city, Central Serbia.

    PubMed

    Stajic, J M; Milenkovic, B; Pucarevic, M; Stojic, N; Vasiljevic, I; Nikezic, D

    2016-03-01

    The concentrations of radionuclides, polycyclic aromatic hydrocarbons (PAHs) and heavy metals were measured in soil samples collected from school backyards and playgrounds in Kragujevac, one of the largest cities of Central Serbia. The activity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs were determined using the HPGe semiconductor detector. The average values were 34.6, 44.7, 428.9 and 45.1 Bq kg(-1), respectively. The correlation between the activity concentrations of (226)Ra in the soil samples and the results of the previous measurement of (222)Rn concentrations in the indoor air was examined. The absorbed dose rates, the annual effective doses and excess lifetime cancer risk were also estimated. The activity concentrations of (226)Ra and (232)Th have shown normal distribution. The collected soil samples were analysed for PAHs by HPLC. All analysed soil samples contained PAHs, and their total amounts (for 15 measured compounds) were found to be between 0.038 and 3.136 mg kg(-1) of absolutely dry soil (a.d.s). In addition the concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the fourteen soil samples collected from the playgrounds of kindergartens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Soil and leaf litter metaproteomics—a brief guideline from sampling to understanding

    PubMed Central

    Keiblinger, Katharina M.; Fuchs, Stephan; Zechmeister-Boltenstern, Sophie; Riedel, Katharina

    2016-01-01

    The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation, extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such methods should be employed within a holistic experimental approach considering relevant aboveground and belowground ecosystem parameters. PMID:27549116

  5. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.

  6. Microdialysis of Soil P: A means to mimic root uptake?

    NASA Astrophysics Data System (ADS)

    Schack-Kirschner, Helmer; Demand, Dominic; Lang, Friederike

    2017-04-01

    Standard procedures to assess P availability in soils are based on batch experiments with various extractants. However, in most soils P nutrition is less limited by bulk stocks but by slow diffusion of phosphate through the soil solution. More comparable to the root's approach is to strip phosphate locally from the solid phase by lowering the soil-solution concentration, which can be achieved by establishing an infinite diffusional sink, such as DGT. An alternative diffusive sampling technique is microdialysis (MD), well established in pharmacokinetics. Briefly, this method uses miniaturized flow-through probes where the perfusate gets in diffusive contact to the external solution by a semipermeable membrane. Important aspects of P supply to roots resemble MD sampling. This is not only the mostly diffusive transport, but also an elongated capillary tube-like geometry of absorption. The diameter of typical commercial MD probes is around 500μm. One additional inherent feature of microdialysis is the possibility to release low-molecular substances from the perfusate by diffusion into the matrix, such as carboxylates. However, microdialysis has yet not been used for P in soils. We tested microdialysis in topsoils of an acid beech forest, of an unfertilized grassland and of a fertilized crop site. Three perfusates have been used: 1 mM KNO3, electrolyte + 0.1 mM citric acid, and electrolyte + 1 mM citric acid. We observed rates of uptake into the probes in a range between 1.5*10-15 and 6.7*10-14 mol s-1cm-1 in case of no citrate addition. Surprisingly, these uptake rates were mostly independent of the bulk stocks. Citrate addition increased P yields only in the higher concentration but not in the forest soil. The order of magnitude of MD uptake rates from the soil samples matched root-length related uptake rates from other studies. The micro-radial citrate release in MD reflects the processes controlling phosphate mobilization in the rhizosphere better than measurements based on "flooding" of soil samples with citric acid in batch experiments. Important challenges in MD with phosphate are small volumes of dialysate with extremely low concentrations and a high variability of results due to soil heterogeneity and between-probe variability. We conclude that MD is a promising tool to complement existing P-analytical procedures, especially when spatial aspects or the release of mobilizing substances are in focus.

  7. Lead stabilization by phosphate amendments in soil impacted by paint residue.

    PubMed

    Schwab, A P; Lewis, K; Banks, M K

    2006-01-01

    The addition of phosphate was evaluated for contaminant stabilization in soils impacted by lead paint residue. Soils sampled from 15 highway bridge sites in Indiana were screened based on residual lead concentrations from paint contamination. Two appropriate bridge sites were identified in Tippecanoe County, Indiana. Soluble phosphate was added to the soil at a mole ratio of 3:1 P:Pb. The efficacy of phosphate treatment was evaluated by a physiologically based extraction test (PBET), uptake of lead by sunflowers, and leaching of lead from soil columns. Sunflowers were established on both field sites, and the mean Pb concentration in the above-ground biomass indicated that the rate of uptake was similar to plants growing in uncontaminated soil. The second bioavailability assessment was the physiologically based extraction test, designed to evaluate heavy metal availability during ingestion. After 1 year at both sites, the addition of phosphate significantly reduced the concentrations of lead extracted by PBET, indicating that the lead in the amended soils had lower bioavailability than in the unamended soils. In the column study, the contaminated soil produced the highest mass of leached Pb, and the addition of P reduced the mass of Pb in the leachate to similar levels found in the uncontaminated soil. Overall, the addition of soluble phosphate to these soils appears to be an effective approach for immobilizing Pb and reducing the associated bio-accessibility.

  8. Impacts of road salts on leaching behavior of lead contaminated soil.

    PubMed

    Wu, Jingjing; Kim, Hwidong

    2017-02-15

    Research was conducted to explore the effects of road salts on lead leaching from lead contaminated soil samples that were collected in an old residence area in Erie, PA. The synthetic precipitate leaching procedure (SPLP) test was employed to evaluate lead leaching from one of the lead contaminated soils in the presence of various levels of road salts (5%, 10%, 20%, 30% and 40%). The results of the leaching test showed that lead leaching dramatically increased as the road salt content increased as a result of the formation of lead-chloride complexes, but different lead leaching patterns were observed in the presence of NaCl- and CaCl 2 -based road salts at a high content of road salts (>20%). Additional leaching tests that include 30% road salts and different soil samples showed a variety of leaching patterns by soil samples. The sequential extraction of each soil sample showed that a high fraction of organic matter bound lead was associated with lead contamination. The higher the fraction of organic matter bound lead contained in soil, the greater the effects of calcium on reducing lead leaching, observations showed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Investigation of the Influence of Selected Soil and Plant Properties from Sakarya, Turkey, on the Bioavailability of Trace Elements by Applying an In Vitro Digestion Model.

    PubMed

    Altundag, Huseyin; Albayrak, Sinem; Dundar, Mustafa S; Tuzen, Mustafa; Soylak, Mustafa

    2015-11-01

    The main aim of this study was an investigation of the influence of selected soil and plant properties on the bioaccessibility of trace elements and hence their potential impacts on human health in urban environments. Two artificial digestion models were used to determine trace element levels passing from soil and plants to man for bioavailability study. Soil and plant samples were collected from various regions of the province of Sakarya, Turkey. Digestive process is started by addition of soil and plant samples to an artificial digestion model based on human physiology. Bioavailability % values are obtained from the ratio of the amount of element passing to human digestion to element content of soil and plants. According to bioavailability % results, element levels passing from soil samples to human digestion were B = Cr = Cu = Fe = Pb = Li < Al < Ni < Co < Ba < Mn < Sr < Cd < Na < Zn < Tl, while element levels passing from plant samples to human digestion were Cu = Fe = Ni = Pb = Tl = Na = Li < Co < Al < Sr < Ba < Mn < Cd < Cr < Zn < B. It was checked whether the results obtained reached harmful levels to human health by examining the literature.

  10. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    NASA Astrophysics Data System (ADS)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  11. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  13. Visible-near infrared spectroscopy as a tool to improve mapping of soil properties

    NASA Astrophysics Data System (ADS)

    Evgrafova, Alevtina; Kühnel, Anna; Bogner, Christina; Haase, Ina; Shibistova, Olga; Guggenberger, Georg; Tananaev, Nikita; Sauheitl, Leopold; Spielvogel, Sandra

    2017-04-01

    Spectroscopic measurements, which are non-destructive, precise and rapid, can be used to predict soil properties and help estimate the spatial variability of soil properties at the pedon scale. These estimations are required for quantifying soil properties with higher precision, identifying the changes in soil properties and ecosystem response to climate change as well as increasing the estimation accuracy of soil-related models. Our objectives were to (i) predict soil properties for nested samples (n = 296) using the laboratory-based visible-near infrared (vis-NIR) spectra of air-dried (<2 mm) soil samples and values of measured soil properties for gridded samples (n = 174) as calibration and validation sets; (ii) estimate the precision and predictive accuracy of an empirical spectral model using (a) our own spectral library and (b) the global spectral library; (iii) support the global spectral library with obtained vis-NIR spectral data on permafrost-affected soils. The soil samples were collected from three permafrost-affected soil profiles underlain by permafrost at various depths between 23 cm to 57.5 cm below the surface (Cryosols) and one soil profile with no presence of permafrost within the upper 100 cm layer (Cambisol) in order to characterize the spatial distribution and variability of soil properties. The gridded soil samples (n = 174) were collected using an 80 cm wide grid with a mesh size of 10 cm on both axes. In addition, 300 nested soil samples were collected using a grid of 12 cm by 12 cm (25 samples per grid) from a hole of 1 cm in a diameter with a distance from the next sample of 1 cm. Due to a small amount of available soil material (< 1.5 g), 296 nested soil samples were analyzed only using vis-NIR spectroscopy. The air-dried mineral gridded soil samples (n = 174) were sieved through a 2-mm sieve and ground with an agate mortar prior to the elemental analysis. The soil organic carbon and total nitrogen concentrations (in %) were determined using a dry combustion method on the Vario EL cube analyzer (Elementar Analysensysteme GmbH, Germany). Inorganic C was removed from the mineral soil samples with pH values higher than 7 prior to the elemental analysis using the volatilization method (HCl, 6 hours). The pH of soil samples was measured in 0.01 M CaCl2 using a 1:2 soil:solution ratio. However, for soil sample with a high in organic matter content, a 1:10 ratio was applied. We also measured oxalate and dithionite extracted iron, aluminum and manganese oxides and hydroxides using inductively coupled plasma optical emission spectroscopy (Varian Vista MPX ICP-OES, Agilent Technologies, USA). We predicted the above-mentioned soil properties for all nested samples using partial least squares regression, which was performed using R program. We can conclude that vis-NIR spectroscopy can be used effectively in order to describe, estimate and further map the spatial patterns of soil properties using geostatistical methods. This research could also help to improve the global soil spectral library taking into account that only few previous applications of vis-NIR spectroscopy were conducted on permafrost-affected soils of Northern Siberia. Keywords: Visible-near infrared spectroscopy, vis-NIR, permafrost-affected soils, Siberia, partial least squares regression.

  14. Don't soil your chances with solar energy: Experiments of natural dust accumulation on solar modules and the effect on light transmission

    NASA Astrophysics Data System (ADS)

    Boyle, Liza

    Dust accumulation, or soiling, on solar energy harvesting systems can cause significant losses that reduce the power output of the system, increase pay-back time of the system, and reduce confidence in solar energy overall. Developing a method of estimating soiling losses could greatly improve estimates of solar energy system outputs, greatly improve operation and maintenance of solar systems, and improve siting of solar energy systems. This dissertation aims to develop a soiling model by collecting ambient soiling data as well as other environmental data and fitting a model to these data. In general a process-level approach is taken to estimating soiling. First a comparison is made between mass of deposited particulates and transmission loss. Transmission loss is the reduction in light that a solar system would see due to soiling, and mass accumulation represents the level of soiling in the system. This experiment is first conducted at two sites in the Front Range of Colorado and then expanded to three additional sites. Second mass accumulation is examined as a function of airborne particulate matter (PM) concentrations, airborne size distributions, and meteorological data. In depth analysis of this process step is done at the first two sites in Colorado, and a more general analysis is done at the three additional sites. This step is identified as less understood step, but with results still allowing for a general soiling model to be developed. Third these two process steps are combined, and spatial variability of these steps are examined. The three additional sites (an additional site in the Front Range of Colorado, a site in Albuquerque New Mexico, and a site in Cocoa Florida) represent a much more spatially and climatically diverse set of locations than the original two sites and provide a much broader sample space in which to develop the combined soiling model. Finally a few additional parameters, precipitation, micro-meteorology, and some sampling artifacts, are cursorily examined. This is to provide a broader context for these results and to help future researchers in understanding the strengths and weaknesses of this dissertation and the results presented within.

  15. Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants.

    PubMed

    Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia

    2018-05-01

    Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.

  16. A method suitable for DNA extraction from humus-rich soil.

    PubMed

    Miao, Tianjin; Gao, Song; Jiang, Shengwei; Kan, Guoshi; Liu, Pengju; Wu, Xianming; An, Yingfeng; Yao, Shuo

    2014-11-01

    A rapid and convenient method for extracting DNA from soil is presented. Soil DNA is extracted by direct cell lysis in the presence of EDTA, SDS, phenol, chloroform and isoamyl alcohol (3-methyl-1-butanol) followed by precipitation with 2-propanol. The extracted DNA is purified by modified DNA purification kit and DNA gel extraction kit. With this method, DNA extracted from humus-rich dark brown forest soil was free from humic substances and, therefore, could be used for efficient PCR amplification and restriction digestion. In contrast, DNA sample extracted with the traditional CTAB-based method had lower yield and purity, and no DNA could be extracted from the same soil sample with a commonly-used commercial soil DNA isolation kit. In addition, this method is time-saving and convenient, providing an efficient choice especially for DNA extraction from humus-rich soils.

  17. Experimental study on microstructure characters of foamed lightweight soil

    NASA Astrophysics Data System (ADS)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  18. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany

  19. Enzymatic activities in a semiarid soil amended with different soil treatment: Soil quality improvement

    NASA Astrophysics Data System (ADS)

    Hueso González, Paloma; Elbl, Jakub; Dvořáčková, Helena; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2017-04-01

    The use of soil quality indicators may be an effective approach to assess the positive effect of the organic amendment as good restoration methods. Relying on the natural fertility of the soil, the most commonly chemical and physical parameters used to evaluate soil quality are depend to the soil biological parameters. The measurement of soil basal respiration and the mineralization of organic matter are commonly accepted as a key indicator for measuring changes to soil quality. Thus, the simultaneous measurement of various enzymes seems to be useful to evaluate soil biochemical activity and related processes. In this line, Dehydrogenase activity is widely used in evaluating the metabolic activity of soil microorganisms and to evaluate the effects caused by the addition of organic amendments. Variations in phosphatase activity, apart from indicating changes in the quantity and quality of soil phosphorated substrates, are also good indicators of soil biological status. This study assesses the effect of five soil amendments as restoration techniques for semiarid Mediterrenean ecosystems. The goal is to interpret the status of biological and chemical parameters in each treatment as soil quality indicators in degraded forests. The main objectives were to: i) analyze the effect of various organic amendments on the enzimatic activity of soil; ii) analyze the effect of the amendments on soil respiration; iii) assess the effect of these parameters on the soil chemical properties which are indicative of soil healthy; and iv) evaluated form the land management point of view which amendment could result a effective method to restore Mediterranean degraded areas. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and; control (without amendment). Five years after the amendment addition, soil from the 12 plots was sampled. Three samples were collected from each plot (36 soil samples in total) from the soil surface, e.g. 0-10 cm, in which most soil transformations occur. Soil indicators analyzed were: i) EC; ii) pH; iii) soil organic C (SOC); iv)total Nitrogen (N); v) Carbon of microbial biomass; vi) Dehydrogenase activity; Phosphatase activity and; vii) basal respiration. According to our results, the straw mulch, pinus mulch and sewage sludge treatments helped to maintain the SOC and N at high levels, five years after the amendment addition and comparing to the control. A similar trend has been registered for the dehydrogenase activity, phosphatase activity and basal respiration. Conversely, regarding to control, when the soils were amended with polymers or manure, no significant differences in soil chemical and biological properties were found. In conclusion, from a land management standpoint, the use of pinus mulch, straw mulch and sewage sludge have been proved as a significant method to increase soil quality on Mediterranean semiarid degraded forests.

  20. Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping.

    NASA Astrophysics Data System (ADS)

    Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia

    2017-04-01

    Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental attributes. When working within the same spatial resolution for covariates, however only modifying the desired number of sampling points produced, the change of point location portrayed a strong geospatial relationship when using continuous data. Access to agricultural fields and adjacent land uses is often "pinned" as the greatest deterrent to performing soil sampling for both soil survey and soil attribute validation work. The lack of access can be a result of poor road access and/or difficult geographical conditions to navigate for field work individuals. This seems a simple yet continuous issue to overcome for the scientific community and in particular, soils professionals. The ability to assist with the ease of access to sampling points will be in the future a contribution to the Latin Hypercube Sampling (LHS) approach. By removing all locations in the initial instance from the DEM, the LHS model can be restricted to locations only with access from the adjacent road or trail. To further the approach, a road network geospatial dataset can be included within spatial Geographic Information Systems (GIS) applications to access already produced points using a shortest-distance network method.

  1. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    NASA Astrophysics Data System (ADS)

    Camenzind, Tessa; Papathanasiou, Helena; Foerster, Antje; Dietrich, Karla; Hertel, Dietrich; Homeier, Juergen; Oelmann, Yvonne; Olsson, Pål Axel; Suárez, Juan; Rillig, Matthias

    2015-12-01

    Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF) hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm) (WSA) and the soil mean weight diameter (MWD) was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  2. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.

    PubMed

    Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F

    2013-02-05

    Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.

  3. Genotypic Diversity of Escherichia coli in the Water and Soil of Tropical Watersheds in Hawaii ▿

    PubMed Central

    Goto, Dustin K.; Yan, Tao

    2011-01-01

    High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring. PMID:21515724

  4. The Aqueous Chemistry of the Soils at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Kounaves, S. P.; Hecht, M. H.; Quinn, R.; West, S. J.; Young, S. M.; Clark, B. C.; Ming, D. W.; Boynton, W. V.; Gospodinova, K.; Kapit, J.; Deflores, L. P.; Smith, P. H.; Team, A

    2008-12-01

    The MECA Wet Chemistry Laboratory (WCL) analyses on the Phoenix Mars Lander have provided the first direct evidence of the soluble ionic components of the Martian soil. The analyses were performed on samples acquired from the surface (Rosy Red) and at the soil/ice interface approximately 4-5 cm under the surface (Sorceress). Even though the samples are from a rather unique site because of the high polar latitude and the polygon-patterned ground, they present a picture of a geochemical environment different from some previously hypothesized. Addition of 25mL of a water/calibrant solution to approximately 1cc of each of the soil samples resulted in the detection of a variety of ionic species, increased solution conductivity, and a slightly alkaline pH. The major constituent cations identified and quantified to date include Na+, K+, Mg2+, and Ca2+, while the anions included Cl- and ClO4-. Sulfate analysis was performed using a Ba2+ titration method. Even though carbonate and bicarbonate were not directly measured, their presence and quantification is supported by the alkaline pH of the solution, its buffering capacity after the addition of an acid, common ion effects, conductivity, and the modeled equilibrium species distribution of the system. The species distribution resulting from the modeling and consideration of additional interactions; dissolution, precipitation, ion exchange, ads/desorption, charge balance, the behavior over the several hours of monitoring, provided constraints for carbonate speciation and concentration and was used to formulate and test soil simulants. Results from the Thermal and Evolved Gas Analyzer (TEGA) also support the presence of a significant amount of calcite in the soil.

  5. Biogenic NO emission from a spruce forest soil in the Fichtelgebirge (Germany) under the influence of different understorey vegetation cover

    NASA Astrophysics Data System (ADS)

    Bargsten, A.; Andreae, M. O.; Meixner, F. X.

    2009-04-01

    Within the framework of the EGER project (ExchanGE processes in mountainous Regions) soil samples have been taken from the spruce forest site "Weidenbrunnen" (Fichtelgebirge, Germany) in September 2008 to determine the NO exchange in the laboratory and for a series of soil analyses. The soil was sampled below different understorey vegetation covers: young Norway spruce, moss/litter, blueberries and grass. We investigated the net NO release rate from corresponding organic layers as well as from the A horizon of respective soils. Additionally we measured pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, the thickness of the organic layer and the quality of the organic matter. Net NO release rates (as well as the NO production and NO consumption rates) from the soil samples were determined by a fully automated laboratory incubation & fumigation system. Purified dry air passed five dynamic incubation chambers, four containing water saturated soil samples and one reference chamber. By this procedure, the soil samples dried out slowly (within 2-6 days), covering the full range of soil moisture (0-300% gravimetric soil moisture). To quantify NO production and NO consumption rates separately, soil samples were fumigated with zero-air (approx. 0 ppb NO) and air of 133 ppb NO. The chambers were placed in a thermostatted cabinet for incubation at 10 an 20˚ C. NO and H2O concentrations at the outlet of the five dynamic chambers were measured sequentially by chemiluminescence and IR-absorption based analyzers, switching corresponding valves every two minutes. Net NO release rates were determined from the NO concentration difference between soil containing and reference chambers. Corresponding measurements of H2O mixing ratio yielded the evaporation loss of the soil samples, which (referenced to the gravimetric soil water content before and after the incubation experiment) provided the individual soil moisture contents of each soil samples during the incubation experiment. Our contribution focus net NO release rates, NO production and NO consumption rates of spruce forest soils sampled under different understorey vegetation covers. Generally, organic layers show significant higher NO production and NO consumption rates than the soils from the corresponding A horizons. Soils under the understorey vegetation cover "moos/litter" revealed the lowest NO production and NO consumption rates. Net NO release rates, NO production and NO consumption rates of soil samples obtained below the four different under- storey vegetation covers will be discussed in terms of pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, thickness of organic layer, as well as quality of the organic matter.

  6. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China.

    PubMed

    Zhou, Jing; Jiang, Xin; Wei, Dan; Zhao, Baisuo; Ma, Mingchao; Chen, Sanfeng; Cao, Fengming; Shen, Delong; Guan, Dawei; Li, Jun

    2017-06-12

    Long-term use of inorganic nitrogen (N) fertilization has greatly influenced the bacterial community in black soil of northeast China. It is unclear how N affects the bacterial community in two successive crop seasons in the same field for this soil type. We sampled soils from a long-term fertilizer experimental field in Harbin city with three N gradients. We applied sequencing and quantitative PCR targeting at the 16S rRNA gene to examine shifts in bacterial communities and test consistent shifts and driving-factors bacterial responses to elevated N additions. N addition decreased soil pH and bacterial 16S rDNA copy numbers, and increased soil N and crop yield. N addition consistently decreased bacterial diversity and altered bacterial community composition, by increasing the relative abundance of Proteobacteria, and decreasing that of Acidobacteria and Nitrospirae in both seasons. Consistent changes in the abundant classes and genera, and the structure of the bacterial communities across both seasons were observed. Our results suggest that increases in N inputs had consistent effects on the richness, diversity and composition of soil bacterial communities across the crop seasons in two continuous years, and the N addition and the subsequent edaphic changes were important factors in shaping bacterial community structures.

  7. Mercury conversion processes in Amazon soils evaluated by thermodesorption analysis.

    PubMed

    do Valle, Cláudia M; Santana, Genilson P; Windmöller, Cláudia C

    2006-12-01

    This paper reports on the speciation study and the Hg redox behavior in Amazon soils not influenced by gold mining and collected near Manaus, AM, Brazil. The samples were incubated by adding Hg(0) and HgCl(2) to dry soil. Solid phase Hg speciation analysis was carried out using a Hg thermodesorption technique with the aim of distinguishing elemental Hg(0) from Hg(II) binding forms. In the first case, we observed the conversion of Hg(0) to Hg(II) binding forms in the range of 28-68% and a correlation between the percent of oxidation and OM content. Samples incubated with Hg(II) showed the formation of Hg(I) and/or Hg(0) in the range of 19-69%. The lowest values corresponded to the samples with the lowest clay contents. The kinetics of conversion of Hg(0) as well as HgCl(2) were roughly fitted to the two first order reactions, a fast one and a slow one. It was not possible to evaluate differences between sampling sites and types of soils, but the mean half-life of the first order reaction obtained by the addition of Hg(II) was slower (t(1/2)=365d) than the one obtained by the addition of Hg(0) (t(1/2)=148d). Previous studies have shown the predominance of organically bound Hg in these samples. Thus, the kinetic difference between Hg oxidation and reduction in combination with the efficient retention processes by OM may explain the high background values found in Amazon soils.

  8. Comparison of procedures for correction of matrix interferences in the analysis of soils by ICP-OES with CCD detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, D.A.; Sun, F.; Littlejohn, D.

    1995-12-31

    ICP-OES is a useful technique for multi-element analysis of soils. However, as a number of elements are present in relatively high concentrations, matrix interferences can occur and examples have been widely reported. The availability of CCD detectors has increased the opportunities for rapid multi-element, multi-wave-length determination of elemental concentrations in soils and other environmental samples. As the composition of soils from industrial sites can vary considerably, especially when taken from different pit horizons, procedures are required to assess the extent of interferences and correct the effects, on a simultaneous multi-element basis. In single element analysis, plasma operating conditions can sometimesmore » be varied to minimize or even remove multiplicative interferences. In simultaneous multi-element analysis, the scope for this approach may be limited, depending on the spectrochemical characteristics of the emitting analyte species. Matrix matching, by addition of major sample components to the analyte calibrant solutions, can be used to minimize inaccuracies. However, there are also limitations to this procedure, when the sample composition varies significantly. Multiplicative interference effects can also be assessed by a {open_quotes}single standard addition{close_quotes} of each analyte to the sample solution and the information obtained may be used to correct the analyte concentrations determined directly. Each of these approaches has been evaluated to ascertain the best procedure for multi-element analysis of industrial soils by ICP-OES with CCD detection at multiple wavelengths. Standard reference materials and field samples have been analyzed to illustrate the efficacy of each procedure.« less

  9. Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frothingham, David; Barker, Michelle; Buechi, Steve

    2013-07-01

    Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recoverymore » and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil volume estimate and the associated contingency costs. (authors)« less

  10. Effects of combined lime and fly ash stabilization on the elastic moduli of montmorillonitic soils : final report.

    DOT National Transportation Integrated Search

    1988-04-01

    A laboratory study using bentonite to simulate the montmorillonite component of soils common to Louisiana was undertaken to evaluate the effects of combined lime and fly ash additions on stabilization reactions. Samples containing bentonite (75 weigh...

  11. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region.

    PubMed

    Baskan, Oguz; Kosker, Yakup; Erpul, Gunay

    2013-12-01

    Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.

  12. Thermal and Evolved Gas Analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru (Pampas de la Joya): Implications for the Phoenix Mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; McKay, Chris

    TEGA is one of several instruments on board of the Phoenix Lander that will perform differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high-temperature furnace and a mass spectrometer that will be use to analyze samples delivered to instrument via a robotic arm. The samples will be heated at a programmed ramp rate up to 1000° C and the power required for heating will be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process will be analyzed with the evolved-gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolizer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the thermal and evolved gas properties of six types of hyperarid soils from the Pampas de La Joya southern Peru, a possible analog to Mars, which has been previously enriched with microorganisms (Salmonella thypimurium, Micrococcus luteus, and Candida albicans) to investigate the effect of soil matrix over TEGA response. Between 20 to 40 mg of soil pre-treated to 500° C for 24 hours to remove traces of organics, was mixed with or without 5mg biomass lyophilized (dry weight). Additionally 20 mg of each one microorganism were analyzed. The samples were placed in the pyrolizer that reached 1200° C at 1 hour. The volatiles released were transferred to the MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 40-350m/z. As expected, there were significant differences in the evolved gas behaviors for microorganism samples with or without a soil matrix under similar heating conditions. In addition, samples belonging to the most arid environments had significant differences compared with less arid soils. Organic C in the form of CO2 (ion 44 m/z) for microorganisms evolved between 326±19.5° C showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were found too. Interestingly, the release of CO2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it is subjected to temperature. Samples of soil pre-treated show CO2 evolved up to 650° C suggesting thermal decomposition of carbonates. Finally in hyperarid soils, ion 44 began its release to 330±30° C while the less arid soils to 245±45° C. These results indicate that some organics (mixed with soils) are oxidized to CO2, and that carbonates present in hyperarid soils also decompose into CO2. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown. Key words: Thermal analysis, TEGA, Atacama desert, La Joya desert, hyperarid soils.

  13. Evaluation of soil carbon pools after the addition of prunings in subtropical orchards placed in terraces

    NASA Astrophysics Data System (ADS)

    Márquez San Emeterio, Layla; Martín Reyes, Marino Pedro; Ortiz Bernad, Irene; Fernández Ondoño, Emilia; Sierra Aragón, Manuel

    2017-04-01

    The amount of carbon that can be stored in a soil depends on many factors, such as the type of soil, the chemical composition of plant rests and the climate, and is also highly affected by land use and soil management. Agricultural ecosystems are proved to absorb a large amount of CO2 from the atmosphere through several sustainable management practices. In addition, organic materials such as leaves, grass, prunings, etc., comprise a significant type of agricultural practices as a result of waste recycling. The aim of this research was to evaluate the effects of the addition of different organic prunings on the potential for carbon sequestration in agricultural soils placed in terraces. Three subtropical orchards were sampled in Almuñécar (Granada, S Spain): mango (Mangifera indica L.), avocado (Persea americana Mill.) and cherimoya (Annonacherimola Mill.). The predominant climate is Subtropical Mediterranean and the soil is an Eutric Anthrosol. The experimental design consisted in the application of prunings from avocado, cherimoya and mango trees, placed on the surface soil underneath their correspondent trees, as well as garden prunings from the green areas surrounding the town center on the surface soils under the three orchard trees. Control experiences without the addition of prunings were also evaluated. These experiences were followed for three years. Soil samples were taken at4 cm depth. They were dried for 3-4 days and then sieved (<2 mm).Total soil organic C, water-soluble soil organic C, mineral-associated organic C and non-oxidable C were analyzed and expressed as carbon pools (Mg C ha-1for total soil organic C, or Kg C ha-1for the others). The results showed an increase of all organic carbon pools in all pruning treatments compared to the control experiences. Differences in total organic carbon pool were statistically significant between soils under avocado prunings and their control soil, and between soils under garden prunings with cherimoya and their control soil. Regarding the water-soluble soil organic carbon, low differences were shown. Differences in mineral-associated and non-oxidable organic carbon fractions were also statistically significant between soils under avocado prunings and their control soil, and between soils under garden prunings with cherimoya and their control soil. No significant differences in any organic carbon pool were founded for the soils under mango. The climate in this area enhances mineralization processes of organic matter. Thus, both in mango soils under mango and garden prunings the organic carbon does not significantly increase compared to the control soil. In avocado soils under avocado prunings humification of organic matter predominates, probably due to differences in the biochemical structure of the prunings. Finally, organic carbon contents in soils under garden prunings compared to their respective control soils only increase in cherimoya orchard. Our findings suggest that the addition of prunings and other organic debris may be a very useful practice for increasing the content of organic matter within the surface soil layer. Acknowledgements Authors thank the financial support of this work to the Spanish Ministry of Economy and Competitiveness (Project CGL-2013-46665-R) and the European Regional Development Fund (ERDF).

  14. Detection of explosives in soils

    DOEpatents

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  15. BTE-OX biodegradation kinetics with MTBE through bioaugmentation.

    PubMed

    Acuna-Askar, K; Villarreal-Chiu, J F; Gracia-Lozano, M V; Garza-Gonzalez, M T; Chavez-Gomez, B; Rodriguez-Sanchez, I P; Barrera-Saldana, H A

    2004-01-01

    The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of bioaugmented bacterial populations as high as 880 mg/L VSS was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. Benzene and o-xylene biodegradation followed a first-order one-phase kinetic model, whereas toluene and ethylbenzene biodegradation was well described by a first-order two-phase kinetic model in all samples. MTBE followed a zero-order removal kinetic model in all samples. The presence of soil in aqueous samples retarded BTE-oX removal rates, with the highest negative effect on o-xylene. The presence of soil enhanced MTBE removal rate. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged from 95.4-99.7% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged from 55.9-90.1% and 15.6-30.1%, respectively.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B.B.; Ripp, J.; Sims, R.C.

    The Electric Power Research Institute (EPRI) is studying the environmental impact of preservatives associated with in-service utility poles. As part of this endeavor, two EPRI contractors, META Environmental, Inc. (META) and Atlantic Environmental Services, Inc. (Atlantic), have collected soil samples from around wood utility poles nationwide, for various chemical and physical analyses. This report covers the results for 107 pole sites in the US. These pole sites included a range of preservative types, soil types, wood types, pole sizes, and in-service ages. The poles in this study were preserved with one of two types of preservative: pentachlorophenol (PCP) or creosote.more » Approximately 40 to 50 soil samples were collected from each wood pole site in this study. The soil samples collected from the pole sites were analyzed for chlorinated phenols and total petroleum hydrocarbons (TPH) if the pole was preserved with PCP, or for polycyclic aromatic hydrocarbons (PAHs) if the pole was preserved with creosote. The soil samples were also analyzed for physical/chemical parameters, such as pH, total organic carbon (TOC), and cationic exchange capacity (CEC). Additional samples were used in studies to determine biological degradation rates, and soil-water distribution and retardation coefficients of PCP in site soils. Methods of analysis followed standard EPA and ASTM methods, with some modifications in the chemical analyses to enable the efficient processing of many samples with sufficiently low detection limits for this study. All chemical, physical, and site-specific data were stored in a relational computer database.« less

  17. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    NASA Astrophysics Data System (ADS)

    Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.

    2013-03-01

    Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.

  18. Effects of Substrate Addition on Soil Respiratory Carbon Release Under Long-Term Warming and Clipping in a Tallgrass Prairie

    PubMed Central

    Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong

    2014-01-01

    Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change. PMID:25490701

  19. Effects of substrate addition on soil respiratory carbon release under long-term warming and clipping in a tallgrass prairie.

    PubMed

    Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong

    2014-01-01

    Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change.

  20. Changes in microbial structure and functional communities at different soil depths during 13C labelled root litter degradation

    NASA Astrophysics Data System (ADS)

    Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia

    2014-05-01

    Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community development which was soil horizon specific and its effects on soil microbial activity may impact on nutrient cycling.

  1. DNA-based detection of the fungal pathogen Geomyces destructans in soil from bat hibernacula

    USGS Publications Warehouse

    Lindner, Daniel L.; Gargas, Andrea; Lorch, Jeffrey M.; Banik, Mark T.; Glaeser, Jessie; Kunz, Thomas H.; Blehert, David S.

    2011-01-01

    White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples.

  2. Spatial distribution and enteroparasite contamination in peridomiciliar soil and water in the Apucaraninha Indigenous Land, southern Brazil.

    PubMed

    da Silva, Joseane Balan; Piva, Camila; Falavigna-Guilherme, Ana Lúcia; Rossoni, Diogo Francisco; de Ornelas Toledo, Max Jean

    2016-04-01

    The prevalence and distribution of soil and water samples contaminated with enteroparasites of humans and animals with zoonotic potential (EHAZP) in Apucaraninha Indigenous Land (AIL), southern Brazil, was evaluated. An environmental survey was conducted to evaluate the presence of parasitic forms in peridomiciliary soil and associated variables. Soil samples were collected from 40/293 domiciles (10 domiciles per season), from November 2010 to June 2011, and evaluated by modified methods of Faust et al. and Lutz. Analyses of water from seven consumption sites were also performed. The overall prevalence of soil samples contaminated by EHAZP was 23.8 %. The most prevalent parasitic forms were cyst of Entamoeba spp. and eggs of Ascaris spp. The highest prevalence of contaminated soil samples was observed in winter (31 %). The probability map obtained with geostatistical analyses showed an average of 47 % soil contamination at a distance of approximately 140 m. The parasitological analysis of water did not detect Giardia spp. or Cryptosporidium spp. and showed that all collection points were within the standards of the Brazilian law. However, the microbiological analysis showed the presence of Escherichia coli in 6/7 sampled points. Despite the low level of contamination by EHAZP in peridomiciliar soil and the absence of pathogenic protozoa in water, the AIL soil and water (due to the presence of fecal coliforms) are potential sources of infection for the population, indicating the need for improvements in sanitation and water treatment, in addition periodic treatment of the population with antiparasitic.

  3. Soil analyses for 1,3-dichloropropene (1,3-DCP), sodium n-methyldithiocarbamate (metam-sodium), and their degradation products near Fort Hall Idaho, September 1999 through March 2000

    USGS Publications Warehouse

    Parliman, D.J.

    2001-01-01

    Between September 1999 and March 2000, soil samples from the Fort Hall, Idaho, area were analyzed for two soil fumigants, 1,3-dichloropropene (1,3-DCP) and sodium n-methyldithiocarbamate (metam-sodium), and their degradation products. Ground water is the only source of drinking water at Fort Hall, and the purpose of the investigation was to determine potential risk of ground-water contamination from persistence and movement of these pesticides in cropland soils. 1,3-DCP, metam-sodium, or their degradation products were detected in 42 of 104 soil samples. The samples were collected from 1-, 2-, and 3-foot depths in multiple backhoe trenches during four sampling events—before pesticide application in September; after application in October; before soil freeze in December; and after soil thaw in March. In most cases, concentrations of the pesticide compounds were at or near their laboratory minimum reporting limits. U.S. Environmental Protection Agency Method 5035 was used as the guideline for soil sample preparation and analyses, and either sodium bisulfate (NaHSO4), an acidic preservative, or pesticide-free water was added to samples prior to analyses. Addition of NaHSO4 to the samples resulted in a greater number of compound detections, but pesticide-free water was added to most samples to avoid the strong reactions of soil carbonate minerals with the NaHSO4. As a result, nondetection of compounds in samples containing pesticide-free water did not necessarily indicate that the compounds were absent. Detections of these compounds were inconsistent among trenches with similar soil characteristics and histories of soil fumigant use. Compounds were detected at different depths and different trench locations during each sampling event. Overall results of this study showed that the original compounds or their degradation products can persist in soil 6 months or more after their application and are present to at least 3 feet below land surface in some areas. A few of the soil analyses results were unexpected. Degradation products of metam-sodium were detected in samples from croplands with a history of 1,3-DCP applications only, and were not detected in samples from croplands with a history of metam-sodium applications. Although 1,2-dibromoethane (EDB) has not been used in the area for many years, EDB was detected in a few soil samples. The presence of EDB in soil could be caused by irrigation of croplands with EDBcontaminated ground water. Analyses of these soil samples resulted in many unanswered questions, and further studies are needed. One potential study to determine vertical extent of pesticide compound migration in sediments, for example, would include analysis of one or more columns of soil and sediments (land surface to ground water, about 35 to 50 feet below land surface) in areas with known soil contamination. Another study would expand the scope of soil contamination to include broader types of cropland conditions and compound analyses.

  4. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1974-01-01

    The effect of storage of dry heat treated Teflon ribbons under nitrogen gas followed by high vacuum on the recovery of hardy organisms from the ribbons was studied. A similar experiment was performed on spore crops of hardy organisms recovered previously from Cape Canaveral. Hardy organisms have been inoculated onto slides and subjected to an artificial Martian environment in an attempt to demonstrate their growth in this environment. Additional experiments using the artificial Martian environment include response of soil samples from the VAB with both constant temperature and freeze-thaw cycles. These experiments were performed with dried soil and soil containing added water. Other investigations included the effect of heatshock on soil samples, psychrophilic counts of new soil samples from the manufacture area of the Viking spacecraft, effect of pour plate versus spread plate on psychrophilic counts, and preparation of spore crops of hardy organisms from Cape Canaveral.

  5. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more sensitive to nutrient addition, and carbon mineralization in this layer is likely limited by carbon availability. Thus, any changes in environment conditions (global warming, nitrogen deposition, precipitation pattern change etc.) that affect the distribution of fresh carbon in soil profiles could then stimulate the release of deep soil carbon.

  6. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  7. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  8. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    PubMed

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  9. Effects of soil temperature, flooding, and organic matter addition on N2O emissions from a soil of Hongze Lake wetland, China.

    PubMed

    Lu, Yan; Xu, Hongwen

    2014-01-01

    The objectives of this study were to test the effects of soil temperature, flooding, and raw organic matter input on N2O emissions in a soil sampled at Hongze Lake wetland, Jiangsu Province, China. The treatments studied were-peat soil (I), peat soil under flooding (II), peat soil plus raw organic matter (III), and peat soil under flooding plus organic matter. These four treatments were incubated at 20°C and 35°C. The result showed that temperature increase could enhance N2O emissions rate and cumulative emissions significantly; moreover, the flooded soil with external organic matter inputs showed the lowest cumulative rise in N2O emissions due to temperature increment. Flooding might inhibit soil N2O emissions, and the inhibition was more pronounced after organic matter addition to the original soil. Conversely, organic matter input explained lower cumulative N2O emissions under flooding. Our results suggest that complex interactions between flooding and other environmental factors might appear in soil N2O emissions. Further studies are needed to understand potential synergies or antagonisms between environmental factors that control N2O emissions in wetland soils.

  10. [Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].

    PubMed

    Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu

    2014-02-01

    The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.

  11. Characteristics and influencing factors of tetrachloroethylene sorption-desorption on soil and its components.

    PubMed

    Qiu, Zhaofu; Yang, Weiwei; He, Long; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian

    2016-02-01

    To investigate the effects of soil structure, soil organic carbon (SOC), minerals, initial tetrachloroethylene (PCE) concentration (C0), and ionic strength (Ci) on PCE sorption-desorption, six types of soil were adopted as adsorbents, including two types of natural soil and four types of soil with most of the "soft carbon" pre-treated by H2O2 or with all SOC removed from the original soil by 600 °C ignition. The results showed that all of the sorption-desorption isotherms of PCE were non-linear within the experimental range, and the H2O2-treated samples exhibited higher non-linear sorption isotherms than those of the original soils. The hysteresis index of PCE sorption to original soil is less pronounced than that of the H2O2-treated and 600 °C-heated samples due to the entrapment of sorbate molecules in the "hard carbon" domain, together with the meso- and microporous structures within the 600 °C-heated samples. Both SOC and minerals have impacts on the sorption-desorption of PCE, and the sorption-desorption contribution rate of minerals increased with decreasing SOC content. C0 has almost no influence on the sorption to minerals of the soils, but the contribution rate of minerals decreased with increasing C0 in the desorption stage. As a result of the salting-out effect, PCE sorption capacity was increased by increasing Ci, especially when Ci ≥ 0.1 M. Moreover, desorption increased and hysteresis weakened with increasing Ci, except for the 600 °C-heated samples. In addition, no significant effect of Ci on desorption of PCE and no hysteresis was observed in this experimental range for the 600 °C-heated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Radiocarbon in CO2 and Soil Organic Matter from Laboratory Incubations, Barrow, Alaska, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia Vaughn; Margaret Torn

    Dataset includes Delta14C measurements made from soil organic matter and CO2 from laboratory soil incubations of active layer soils collected in Barrow, Alaska in 2012. In addition to Delta14CO2, dataset CO2 production rates and carbon and nitrogen concentrations. Samples were collected from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.

  13. Radiocarbon in CO2 and Soil Organic Matter from Laboratory Incubations, Barrow, Alaska, 2014

    DOE Data Explorer

    Lydia Vaughn; Margaret Torn

    2018-02-20

    Dataset includes 14C measurements made from soil organic matter and CO2 from paired anaerobic and aerobic laboratory soil incubations of active layer soils collected in Barrow, Alaska in 2014. In addition to 14CO2, dataset includes CO2 production rates and carbon and nitrogen concentrations. Samples were collected from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.

  14. Public-health assessment for Algoma Municipal Landfill, Algoma, Kewaunee County, Wisconsin, Region 5. CERCLIS No. WID980610380. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-22

    The Algoma Landfill Superfund Site is a former municipal landfill which accepted hazardous industrial waste from several area companies. The contaminant of concern is benzene in on-site groundwater. Samples taken from off-site private water supplies in the vicinity of the landfill did not indicate the presence of contaminants. On-site soil and sediment samples revealed low levels of inorganic chemicals. Although soil samples were not analyzed for asbestos it remains a contaminant of concern since asbestos-containing debris was reportedly buried as the site. The Algoma Landfill Superfund Site is a indeterminate public health hazard. There is insufficient data to evaluate workermore » exposure to airborne asbestos in the past when Kalo dust was deposited at the site. The public health assessment recommends that access to the site be restricted to prevent trespassing and disturbance of the soil. Additional groundwater monitoring and characterization is recommended as well as sampling of surface soil for asbestos contamination.« less

  15. Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities.

    PubMed

    McNeill, K S; Cancilla, D A

    2009-03-01

    Soil samples from three USA airports representing low, mid, and large volume users of aircraft deicing fluids (ADAFs) were analyzed by LC/MS/MS for the presence of triazoles, a class of corrosion inhibitors historically used in ADAFs. Triazoles, specifically the 4-methyl-1H-benzotriazole and the 5-methyl-1H-benzotriazole, were detected in a majority of samples and ranged from 2.35 to 424.19 microg/kg. Previous studies have focused primarily on ground and surface water impacts of larger volume ADAF users. The detection of triazoles in soils at low volume ADAF use airports suggests that deicing activities may have a broader environmental impact than previously considered.

  16. Nutritional characteristics of moon dust for soil microorganisms

    NASA Technical Reports Server (NTRS)

    Ito, T.

    1983-01-01

    Approximately 46% of the lunar sample (10084,151), 125.42 mg, was solubilized in 680 ml 0.01 M salicylic acid. Atomic absorption spectroscopic analysis of the solubilized lunar sample showed the following amount of metal ions: Ca, 3.1; Mg, 4.0; K, 0.09; Na, 0.67; Fe, 7.3; Mn, 1.6; Cu, Ni, Cr, less than 0.1 each. All are in ppm. Salicylic acid used to solubilize the lunar sample was highly inhibitory to the growth of mixed soil microbes. However, the mineral part of the lunar extract stimulated the growth. For optimal growth of the soil microbes the following nutrients must be added to the moon extract; sources of carbon, nitrogen, sulfur, phosphorus, and magnesium in addition to water.

  17. Fractionation of metals by sequential extraction procedures (BCR and Tessier) in soil exposed to fire of wide temperature range

    NASA Astrophysics Data System (ADS)

    Fajkovic, Hana; Rončević, Sanda; Nemet, Ivan; Prohić, Esad; Leontić-Vazdar, Dana

    2017-04-01

    Forest fire presents serious problem, especially in Mediterranean Region. Effects of fire are numerous, from climate change and deforestation to loss of soil organic matter and changes in soil properties. One of the effects, not well documented, is possible redistribution and/or remobilisation of pollutants previously deposited in the soil, due to the new physical and chemical soil properties and changes in equilibrium conditions. For understanding and predicting possible redistribution and/or remobilisation of potential pollutants from soil, affected by fire different in temperature, several laboratory investigations were carried out. To evaluate the influence of organic matter on soil under fire, three soil samples were analysed and compared: (a) the one with added coniferous organic matter; (b) deciduous organic matter (b) and (c) soil without additional organic matter. Type of organic matter is closely related to pH of soil, as pH is influencing the mobility of some pollutants, e.g. metals. For that reason pH was also measured through all experimental steps. Each of mentioned soil samples (a, b and c) were heated at 1+3 different temperatures (25°C, 200°C, 500°C and 850°C). After heating, whereby fire effect on soil was simulated, samples were analysed by BCR protocol with the addition of a first step of sequential extraction procedure by Tessier and analysis of residual by aqua regia. Element fractionation of heavy metals by this procedure was used to determine the amounts of selected elements (Al, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb and Zn). Selected metal concentrations were determined using inductively coupled plasma atomic emission spectrometer. Further on, loss of organic matter was calculated after each heating procedure as well as the mineral composition. The mineral composition was determined using an X-ray diffraction. From obtained results, it can be concluded that temperature has an influence on concentration of elements in specific step of sequential extraction procedures. The first step of Tessier and BCR extraction of samples heated at 250°C and 500°C showed increasing trend of elemental concentrations. Results of these steps are especially important since they indicate mobile fraction of the elements (exchangeable, water- and acid-soluble fraction), which can easily affect the environment. Extraction procedures of samples combusted at 850°C showed that decrease in measured elemental content occurred. Some correlation is also noticed between type of organic matter, pH and concentration of analysed elements.

  18. Gemas: Geochemical mapping of the agricultural and grasing land soils of Europe

    NASA Astrophysics Data System (ADS)

    Reimann, Clemens; Fabian, Karl; Birke, Manfred; Demetriades, Alecos; Matschullat, Jörg; Gemas Project Team

    2017-04-01

    Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) is a cooperative project between the Geochemistry Expert Group of EuroGeoSurveys and Eurometaux. During 2008 and until early 2009, a total of 2108 samples of agricultural (ploughed land, 0-20 cm, Ap-samples) and 2023 samples of grazing land (0-10 cm, Gr samples)) soil were collected at a density of 1 site/2500 km2 each from 33 European countries, covering an area of 5,600,000 km2. All samples were analysed for 52 chemical elements following an aqua regia extraction, 42 elements by XRF (total), and soil properties, like CEC, TOC, pH (CaCl2), following tight external quality control procedures. In addition, the Ap soil samples were analysed for 57 elements in a mobile metal ion (MMI®) extraction, Pb isotopes, magnetic susceptibility and total C, N and S. The results demonstrate that robust geochemical maps of Europe can be constructed based on low density sampling, the two independent sample materials, Ap and Gr, show very comparable distribution patterns across Europe. At the European scale, element distribution patterns are governed by natural processes, most often a combination of geology and climate. The geochemical maps reflect most of the known metal mining districts in Europe. In addition, a number of new anomalies emerge that may indicate mineral potential. The size of some anomalies is such that they can only be detected when mapping at the continental scale. For some elements completely new geological settings are detected. An anthropogenic impact at a much more local scale is discernible in the immediate vicinity of some major European cities (e.g., London, Paris) and some metal smelters. The impact of agriculture is visible for Cu (vineyard soils) and for some further elements only in the mobile metal ion (MMI) extraction. For several trace elements deficiency issues are a larger threat to plant, animal and finally human health at the European scale than toxicity. Taking the famous step back to see the whole picture at the continental scale and to understand the relative importance of the processes leading to element enrichment/depletion in soil may hold unexpected promise for mineral exploration as well as for environmental sciences.

  19. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fate and transport of the ß-adrenergic agonist ractopamine hydrochloride in soil-water systems

    USDA-ARS?s Scientific Manuscript database

    The feed additive ractopamine hydrochloride was fortified at four concentrations into batch vials containing soils that differed in both biological activity and organic matter (OM). Sampling of the liquid layer for 14 d demonstrated that ractopamine rapidly dissipated from the liquid layer. Less t...

  1. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in the contaminated samples all of the inorganic nitrogen was present as ammonium, probably because of inhibition of nitrification. There was a marked decrease in biomass-C with addition of copper, and the decrease was more acute at intermediate doses (average decrease, 73%). Despite the decreases in microbial biomass and mineralized C, the value of qCO2 increased after the addition of copper. Urease activity was strongly affected by the presence of copper and the decrease was proportional to the dose; the activity at the highest dose was only 96% of that in the uncontaminated sample. Phosphomonoesterase activity was also affected by addition of copper; the reduction in activity was less than for urease and the greatest reduction was observed for the dose of 1080 mg kg-1 of copper. Catalase activity was affected by the contamination, but no clear trend was observed in relation to the dose of copper. ß-glucosidase was scarcely modified by the contamination but an increase in activity was observed at the highest dose of copper. Seed germination was not affected by copper contamination, since it only showed a clear decrease for the sample contaminated with the highest dose of copper, while root elongation decreased sharply with doses higher than 120 mg kg-1 of copper. The combined germination-elongation index followed a similar pattern to that of root elongation. For all investigated properties showing a reduction of more than 50%, the response to copper contamination was fitted to a sigmoidal dose-response model, in order to estimate the ED50 values. The ED50 values were calculated for microbial biomass, urease, root elongation and germination-elongation index, and similar values were obtained, ranging from 340 to 405 mg kg-1 Cu. The ED50 values may therefore provide a good estimation of soil deterioration.

  2. Key parameters in testing biodegradation of bio-based materials in soil.

    PubMed

    Briassoulis, D; Mistriotis, A

    2018-09-01

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato.

    PubMed

    Entry, James A; Leytem, April B; Verwey, Sheryl

    2005-11-01

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al(2)(SO(4))(3)) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min.

  4. Organic Phosphorus Characterisation in Agricultural Soils by Enzyme Addition Assays

    NASA Astrophysics Data System (ADS)

    Jarosch, Klaus; Frossard, Emmanuel; Bünemann, Else K.

    2013-04-01

    Phosphorus (P) is a non-renewable resource and it is a building block of many molecules indispensable for life. Up to 80 per cent of total soil P can be in organic form. Hydrolysability and thereby availability to plants and microorganisms differ strongly among the multitude of chemical forms of soil organic P. A recent approach to characterise organic P classes is the addition of specific enzymes which hydrolyse organic P to inorganic orthophosphate, making it detectable by colorimetry. Based on the substrate specificity of the added enzymes, conclusions about the hydrolysed forms of organic P can then be made. The aim of this study was to determine the applicability of enzyme addition assays for the characterisation of organic P species in soil:water suspensions of soils with differing properties. To this end, ten different soil samples originating from four continents, with variable pH (in water) values (4.2-8.0), land management (grassland or cropped land) and P fertilization intensity were analysed. Three different enzymes were used (acid phosphatase, nuclease and phytase). Acid phosphatase alone or in combination with nuclease was applied to determine the content of P in simple monoesters (monoester-like P) and P in DNA (DNA-like P), while P hydrolysed from myo-inositol hexakisphosphate (Ins6P-like P) was calculated from P release after incubation with phytase minus P release by acid phosphatase. To reduce sorption of inorganic P on soil particles of the suspension, especially in highly weathered soils, soil specific EDTA additions were determined in extensive pre-tests. The results of these pre-tests showed that recoveries of at least 30 per cent could be achieved in all soils. Thus, detection of even small organic P pools, such as DNA-like P, was possible in all soils if a suitable EDTA concentration was chosen. The enzyme addition assays provided information about the hydrolysable quantities of the different classes of soil organic P compounds as affected by various soil specific variables. Thus, the characterisation of soil organic P by enzyme addition assays was further developed and shown to be applicable on a very wide range of soil types. The method also bears the potential for describing translocation processes of dissolved organic P species in soil - aquifer systems. Key words: soil organic phosphorus characterisation, enzyme additions, dissolved organic P

  5. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana

    2014-09-01

    The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (χlf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the χlf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (κis) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between χlf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier, and hematite. The predominance of superparamagnetic minerals in upper soil layers suggests enrichment in pedogenic minerals. The finer soil particles, the organic matter content and the magnetic susceptibility values are statistically correlated and their spatial variability is related to similar physical processes. Runoff redistributes soil components including magnetic minerals and exports fine particles out the field. This research contributed to further knowledge on the application of soil magnetic properties to derive useful information on soil processes in Mediterranean cultivated soils.

  6. Development of Sampling Methods for Powders and Soil for Detection of Biothreat Agents by Electrochemiluminecence

    DTIC Science & Technology

    2007-06-01

    DEC03; dairy creamer, lot number DPG 13MAY04; and flour , lot number DPGLJ24MAY05. In addition, flour (white, enriched , all purpose, Safeway brand...8 Table 2. M IM assay of dairy creamer, flour , and soil from swabs................................... 10 Table 3. M...IM assays of flour and soil in triplicate.................................................... 10 vi DRDC Suffield TM 2007-172 Acknowledgements The

  7. Heavy element affinities in Apollo 17 samples

    NASA Technical Reports Server (NTRS)

    Allen, R. O., Jr.; Jovanovic, S.; Reed, G. W., Jr.

    1975-01-01

    Pb-204, Bi, Tl, and Zn in samples from the Apollo 17 site exhibit relationships not found in samples from other sites. Pb-204, Tl, and Zn in residues remaining after dilute acid leaching are correlated with one another. Orange soil 74220, which is enriched in Pb-204, Tl, and Zn, is included in these relationships. In addition, the submicron metallic phase generally associated with agglutinate formation is correlated with all three of these elements; this relationship has already been reported for Pb-204 in other samples. Thus, orange soil and agglutinates appear to be involved in concentrating heavy volatile metals. A process other than mixing is required to account for this. As a consequence of the isolation of the landing site by the surrounding massifs, local supply and recycling of volatile trace elements in soils may account for some of the interelement relations.

  8. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    USGS Publications Warehouse

    Blecker, S.W.; Stillings, L.L.; DeCrappeo, N.M.; Ippolito, J.A.

    2014-01-01

    Soils developed on relict hydrothermally altered soils throughout the Western USA present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally altered (acid-sulfate) sites located in and around Lassen VolcanicNational Park in northeastern California. In addition, three different types of disturbed areas (clearcut, thinned, and pipeline) were sampled in acid-sulfate altered sites. Soils were sampled (0–15 cm) in mid-summer 2010 from both under-canopy and between-canopy areas within each of the sites. Soils were analyzed for numerous physical and chemical properties along with soil enzyme assays, C and N mineralization potential, microbial biomass-C and C-substrate utilization. Field vegetation measurements consisted of canopy cover by life form (tree, shrub, forb, and grass), tree and shrub density, and above-ground net primary productivity of the understory. Overall, parameters at the clearcut sites were more similar to the unaltered sites, while parameters at the thinned and pipeline sites were more similar to the altered sites. We employed principal components analysis (PCA) to develop two soil quality indices (SQI) to help quantify the differences among the sites: one based on the correlation between soil parameters and canopy cover, and the second based on six sub-indices. Soil quality indices developed in these systems could provide a means for monitoring and identifying key relations between the vegetation, soils, and microorganisms.

  9. Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt

    NASA Astrophysics Data System (ADS)

    El Shinawi, A.

    2017-06-01

    Subgrade soils can affect the stability of any construction elsewhere, instability problems were found at Borg El-Arab, Alexandria, Egypt. This paper investigates geoengineering properties of lime treated subgrade soils at Borg El-Arab. Basic laboratory tests, such as water content, wet and dry density, grain size, specific gravity and Atterberg limits, were performed for twenty-five samples. Moisture-density (compaction); California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS) were conducted on treated and natural soils. The measured geotechnical parameters of the treated soil shows that 6% lime is good enough to stabilize the subgrade soils. It was found that by adding lime, samples shifted to coarser side, Atterberg limits values of the treated soil samples decreased and this will improve the soil to be more stable. On the other hand, Subgrade soils improved as a result of the bonding fine particles, cemented together to form larger size and reduce the plastiCity index which increase soils strength. The environmental scanning electron microscope (ESEM) is point to the presence of innovative aggregated cement materials which reduce the porosity and increase the strength as a long-term curing. Consequently, the mixture of soil with the lime has acceptable mechanical characteristics where, it composed of a high strength base or sub-base materials and this mixture considered as subgrade soil for stabilizations and mitigation the instability problems that found at Borg Al-Arab, Egypt.

  10. Environmental implications of element emissions from phosphate-processing operations in southeastern Idaho

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1979-01-01

    In order to assess the contribution to plants and soils of certain elements emitted by phosphate processing, we sampled sagebrush, grasses, and A- and C-horizon soils along upwind and downwind transects at Pocatello and Soda Springs, Idaho. Analyses for 70 elements in plants showed that, statistically, the concentration of 7 environmentally important elements, cadmium, chromium, fluorine, selenium, uranium, vanadium, and zinc, were related to emissions from phosphate-processing operations. Two additional elements, lithium and nickel, show probable relationships. The literature on the effects of these elements on plant and animal health is briefly surveyed. Relations between element content in plants and distance from the phosphate-processing operations were stronger at Soda Springs than at Pocatello and, in general, stronger in sagebrush than in the grasses. Analyses for 58 elements in soils showed that, statistically, beryllium, fluorine, iron, lead, lithium, potassium, rubidium, thorium, and zinc were related to emissions only at Pocatello and only in the A horizon. Moreover, six additional elements, copper, mercury, nickel, titanium, uranium, and vanadium, probably are similarly related along the same transect. The approximate amounts of elements added to the soils by the emissions are estimated. In C-horizon soils, no statistically significant relations were observed between element concentrations and distance from the processing sites. At Soda Springs, the nonuniformity of soils at the sampling locations may have obscured the relationship between soil-element content and emissions from phosphate processing.

  11. Long-term effects of land application of class B biosolids on the soil microbial populations, pathogens, and activity.

    PubMed

    Zerzghi, Huruy; Gerba, Charles P; Brooks, John P; Pepper, Ian L

    2010-01-01

    This study evaluated the influence of 20 annual land applications of Class B biosolids on the soil microbial community. The potential benefits and hazards of land application were evaluated by analysis of surface soil samples collected following the 20th land application of biosolids. The study was initiated in 1986 at the University of Arizona Marana Agricultural Center, 21 miles north of Tucson, AZ. The final application of biosolids was in March 2005, followed by growth of cotton (Gossypium hirsutum L.) from April through November 2005. Surface soil samples (0-30 cm) were collected monthly from March 2005, 2 wk after the final biosolids application, through December 2005, and analyzed for soil microbial numbers. December samples were analyzed for additional soil microbial properties. Data show that land application of Class B biosolids had no significant long-term effect on indigenous soil microbial numbers including bacteria, actinomycetes, and fungi compared to unamended control plots. Importantly, no bacterial or viral pathogens were detected in soil samples collected from biosolid amended plots in December (10 mo after the last land application) demonstrating that pathogens introduced via Class B biosolids only survived in soil transiently. However, plots that received biosolids had significantly higher microbial activity or potential for microbial transformations, including nitrification, sulfur oxidation, and dehydrogenase activity, than control plots and plots receiving inorganic fertilizers. Overall, the 20 annual land applications showed no long-term adverse effects, and therefore, this study documents that land application of biosolids at this particular site was sustainable throughout the 20-yr period, with respect to soil microbial properties.

  12. Mitigation of water repellency in burned soils applying hydrophillic polymers

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; de la Torre, Sara; Vidal-Vazquez, Eva; Lado, Marcos

    2017-04-01

    In this study, the effect of fire on water repellency was analyzed in soils from different parent materials, as well as the suitability of anionic polyacrylamide (PAM) to reduce water repellency in these soils. Samples were collected in four different sites where wildfires took place: two in the Canary Islands, with soils developed on volcanic materials, and two in Galicia (NW Spain), with soils developed on plutonic rocks. In Galicia, two soil samples were collected in each site, one in the burnt area and one in an adjacent unburnt area. In the Canary Islands, four samples were collected from each site, three inside the burnt area where the soils were affected by different fire intensities, and one in an unburnt adjacent area. Samples were air-dried and sieved by a 2-mm mesh sieve. Water repellency was measured using the Water Drop Penetration Time test. An amount of 10 g of soil was placed in a tray. Five drops of deionized water were place on the soil surface with a pipette, and the time for each drop to fully penetrate into the soil was recorded. PAM solution was applied to the burnt soils simulating a field application rate of 1gm-2. The polymer used was Superfloc A-110 (Kemira Water Solutions BV, Holland) with 1x107 Da molecular weigth and 15% hydrolysis. PAM was sprayed on the soil surface as solution with a concentration 0.2 g/L. After the application, the samples were dried and the WDPT test was performed. Three replicates for each treatment and soil were used, and the treatments included: dry soil, dry soil after a wetting treatment, dry PAM-treated soil. The results showed that water repellency was modified by fire differently in the various soils. In hydrophilic soils and soils with low water repellency, water repellency was increased after the action of fire. In soils with noticeable initial water repellency, this was reduced or eliminated after the fire. Wetting repellent soils caused a decrease in water repellency most probably because of the spatial redistribution of hydrophobic organic compounds that caused water repellency. The addition of PAM further reduced in all of the cases. The application of PAM could be an effective method for mitigation of water repellency in burnt soils.

  13. Measurement of Tritium in Gas Phase Soil Moisture and Helium-3 in Soil Gas at the Hanford Townsite and 100 K Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KB Olsen; GW Patton; R Poreda

    2000-07-05

    In 1999, soil gas samples for helium-3 measurements were collected at two locations on the Hanford Site. Eight soil gas sampling points ranging in depth from 1.5 to 9.8 m (4.9 to 32 ft) below ground surface (bgs) in two clusters were installed adjacent to well 699-41-1, south of the Hanford Townsite. Fifteen soil gas sampling points, ranging in depth from 2.1 to 3.2 m (7 to 10.4 ft) bgs, were installed to the north and east of the 100 KE Reactor. Gas phase soil moisture samples were collected using silica gel traps from all eight sampling locations adjacent tomore » well 699-41-1 and eight locations at the 100 K Area. No detectable tritium (<240 pCi/L) was found in the soil moisture samples from either the Hanford Townsite or 100 K Area sampling points. This suggests that tritiated moisture from groundwater is not migrating upward to the sampling points and there are no large vadose zone sources of tritium at either location. Helium-3 analyses of the soil gas samples showed significant enrichments relative to ambient air helium-3 concentrations with a depth dependence consistent with a groundwater source from decay of tritium. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) at the Hanford Townsite ranged from 1.012 at 1.5 m (5 ft) bgs to 2.157 at 9.8 m (32 ft) bgs. Helium-3/helium-4 ratios at the 100 K Area ranged from 0.972 to 1.131. Based on results from the 100 K Area, the authors believe that a major tritium plume does not lie within that study area. The data also suggest there may be a tritium groundwater plume or a source of helium-3 to the southeast of the study area. They recommend that the study be continued by placing additional soil gas sampling points along the perimeter road to the west and to the south of the initial study area.« less

  14. Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003

    USGS Publications Warehouse

    Williams, Shannon D.; Ladd, David E.; Farmer, James

    2006-01-01

    In 2002 and 2003, the U.S. Geological Survey (USGS), by agreement with the National Park Service (NPS), investigated the effects of oil and gas production operations on ground-water quality at Big South Fork National River and Recreation Area (BISO) with particular emphasis on the fate and transport of petroleum hydrocarbons in soils and ground water. During a reconnaissance of ground-water-quality conditions, samples were collected from 24 different locations (17 springs, 5 water-supply wells, 1 small stream, and 1 spring-fed pond) in and near BISO. Benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were not detected in any of the water samples, indicating that no widespread contamination of ground-water resources by dissolved petroleum hydrocarbons probably exists at BISO. Additional water-quality samples were collected from three springs and two wells for more detailed analyses to obtain additional information on ambient water-quality conditions at BISO. Soil gas, soil, water, and crude oil samples were collected at three study sites in or near BISO where crude oil had been spilled or released (before 1993). Diesel range organics (DRO) were detected in soil samples from all three of the sites at concentrations greater than 2,000 milligrams per kilogram. Low concentrations (less than 10 micrograms per kilogram) of BTEX compounds were detected in lab-analyzed soil samples from two of the sites. Hydrocarbon-degrading bacteria counts in soil samples from the most contaminated areas of the sites were not greater than counts for soil samples from uncontaminated (background) sites. The elevated DRO concentrations, the presence of BTEX compounds, and the low number of -hydrocarbon-degrading bacteria in contaminated soils indicate that biodegradation of petroleum hydrocarbons in soils at these sites is incomplete. Water samples collected from the three study sites were analyzed for BTEX and DRO. Ground-water samples were collected from three small springs at the two sites located on ridge tops. BTEX and DRO were not detected in any of the water samples, and petroleum hydrocarbons do not appear to have leached into ground water at these sites. Ground-water samples were collected from a small spring and from three auger holes at the third site, which is located in a stream valley. BTEX and DRO were not detected in these ground-water samples, and currently, petroleum hydrocarbons do not appear to be leaching into ground water at this site. Weathered crude oil, however, was detected at the water surface in one of the auger holes, indicating that soluble petroleum hydrocarbons may have leached into the ground water and may have migrated downgradient from the site in the past. The concentration of soluble petroleum hydrocarbons present in the ground water would depend on the concentration of the hydrocarbons in the crude oil at the site. A laboratory study was conducted to examine the dissolution of petroleum hydrocarbons from a fresh crude oil sample collected from one of the study sites. The effective solubility of benzene, toluene, ethylbenzene, and total xylenes for the crude oil sample was determined to be 1,900, 1,800, 220, and 580 micrograms per liter (?g/L), respectively. These results indicate that benzene and toluene could be present at concentrations greater than maximum contaminant levels (5 ?g/L for benzene and 1,000 ?g/L for toluene for drinking water) in ground water that comes into contact with fresh crude oil from the study area.

  15. Soil Quality Index Determination Models for Restinga Forest

    NASA Astrophysics Data System (ADS)

    Bonilha, R. M.; Casagrande, J. C.; Soares, R. M.

    2012-04-01

    The Restinga Forest is a set of plant communities in mosaic, determined by the characteristics of their substrates as a result of depositional processes and ages. In this complex mosaic are the physiognomies of restinga forests of high-stage regeneration (high restinga) and middle stage of regeneration (low restinga), each with its plant characteristics that differentiate them. Located on the coastal plains of the Brazilian coast, suffering internal influences both the continental slopes, as well as from the sea. Its soils come from the Quaternary and are subject to constant deposition of sediments. The climate in the coastal type is tropical (Köppen). This work was conducted in four locations: (1) Anchieta Island, Ubatuba, (2) Juréia-Itatins Ecological Station, Iguape, (3) Vila das Pedrinhas, Comprida Island; and (4) Cardoso Island, Cananeia. The soil samples were collect at a depths of 0 to 5, 0-10, 0-20, 20-40 and 40 to 60cm for the chemical and physical analysis. Were studied the additive and pondering additive models to evaluate soil quality. It was concluded: a) the comparative additive model produces quantitative results and the pondering additive model quantitative results; b) as the pondering additive model, the values of Soil Quality Index (SQI) for soils under forest of restinga are low and realistic, demonstrating the small plant biomass production potential of these soils, as well as their low resilience; c) the values of SQI similar to areas with and without restinga forest give quantitative demonstration of the restinga be considered as soil phase; d) restinga forest, probably, is maintained solely by the cycling of nutrients in a closed nutrient cycling; e) for the determination of IQS for soils under restinga vegetation the use of routine chemical analysis is adequate. Keywords: Model, restinga forest, Soil Quality Index (SQI).

  16. Contamination of apple orchard soils and fruit trees with copper-based fungicides: sampling aspects.

    PubMed

    Wang, Quanying; Liu, Jingshuang; Liu, Qiang

    2015-01-01

    Accumulations of copper in orchard soils and fruit trees due to the application of Cu-based fungicides have become research hotspots. However, information about the sampling strategies, which can affect the accuracy of the following research results, is lacking. This study aimed to determine some sampling considerations when Cu accumulations in the soils and fruit trees of apple orchards are studied. The study was conducted in three apple orchards from different sites. Each orchard included two different histories of Cu-based fungicides usage, varying from 3 to 28 years. Soil samples were collected from different locations varying with the distances from tree trunk to the canopy drip line. Fruits and leaves from the middle heights of tree canopy at two locations (outer canopy and inner canopy) were collected. The variation in total soil Cu concentrations between orchards was much greater than the variation within orchards. Total soil Cu concentrations had a tendency to increase with the increasing history of Cu-based fungicides usage. Moreover, total soil Cu concentrations had the lowest values at the canopy drip line, while the highest values were found at the half distances between the trunk and the canopy drip line. Additionally, Cu concentrations of leaves and fruits from the outer parts of the canopy were significantly higher than from the inner parts. Depending on the findings of this study, not only the between-orchard variation but also the within-orchard variation should be taken into consideration when conducting future soil and tree samplings in apple orchards.

  17. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania.

    PubMed

    Nyanza, Elias C; Joseph, Mary; Premji, Shahirose S; Thomas, Deborah Sk; Mannion, Cynthia

    2014-04-15

    Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15-49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita District are exposed to potentially high levels of chemical elements, depending upon frequency of consumption, daily amount consumed and the source location of soil eaten.

  18. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    USGS Publications Warehouse

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  19. δ(15) N from soil to wine in bulk samples and proline.

    PubMed

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. A novel in-situ method for real-time monitoring of gas transport in soil

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.

  1. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation.

    PubMed

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Chen, Yuehmin; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0-15, 15-30, and 30-60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0-15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil.

  2. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation

    PubMed Central

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0–15, 15–30, and 30–60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0–15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil. PMID:29360853

  3. Radiocarbon in Ecosystem Respiration and Soil Pore-Space CO2 with Surface Gas Flux, Air Temperature, and Soil Temperature and Moisture, Barrow, Alaska, 2012-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia Vaughn; Margaret Torn; Rachel Porras

    Dataset includes Delta14C measurements made from CO2 that was collected and purified in 2012-2014 from surface soil chambers, soil pore space, and background atmosphere. In addition to 14CO2 data, dataset includes co-located measurements of CO2 and CH4 flux, soil and air temperature, and soil moisture. Measurements and field samples were taken from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.

  4. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Combinational effects of sulfomethoxazole and copper on soil microbial community and function.

    PubMed

    Liu, Aiju; Cao, Huansheng; Yang, Yan; Ma, Xiaoxuan; Liu, Xiao

    2016-03-01

    Sulfonamides and Cu are largely used feed additives in poultry farm. Subsequently, they are spread onto agricultural soils together with contaminated manure used as fertilizer. Both sulfonamides and Cu affect the soil microbial community. However, an interactive effect of sulfonamides and Cu on soil microorganisms is not well understood. Therefore, a short-time microcosm experiment was conducted to investigate the interaction of veterinary antibiotic sulfomethoxazole (SMX) and Cu on soil microbial structure composition and functions. To this end, selected concentrations of SMX (0, 5, and 50 mg kg(-1)) and Cu (0, 300, and 500 mg kg(-1)) were combined, respectively. Clear dose-dependent effects of SMX on microbial biomass and basal respiration were determined, and these effects were amplified in the presence of additional Cu. For activities of soil enzymes including β-glucosidase, urease, and protease, clear reducing effects were determined in soil samples containing 5 or 50 mg kg(-1) of SMX, and the interaction of SMX and Cu was significant, particularly in soil samples containing 50 mg kg(-1) SMX or 500 mg kg(-1) Cu. SMX amendments, particularly in combination with Cu, significantly reduced amounts of the total, bacterial, and fungal phospholipid fatty acids (PLFAs) in soil. Moreover, the derived ratio of bacteria to fungi decreased significantly with incremental SMX and Cu, and principal component analysis of the PLFAs showed that soil microbial composition was significantly affected by SMX interacted with Cu at 500 mg kg(-1). All of these results indicated that the interaction of SMX and Cu was synergistic to amplify the negative effect of SMX on soil microbial biomass, structural composition, and even the enzymatic function.

  6. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of Koc values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in Koc between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with Koc illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  7. Occurrence and quantitative microbial risk assessment of Cryptosporidium and Giardia in soil and air samples.

    PubMed

    Balderrama-Carmona, Ana Paola; Gortáres-Moroyoqui, Pablo; Álvarez-Valencia, Luis Humberto; Castro-Espinoza, Luciano; Mondaca-Fernández, Iram; Balderas-Cortés, José de Jesús; Chaidez-Quiroz, Cristóbal; Meza-Montenegro, María Mercedes

    2014-09-01

    Cryptosporidium oocysts and Giardia cysts can be transmitted by the fecal-oral route and may cause gastrointestinal parasitic zoonoses. These zoonoses are common in rural zones due to the parasites being harbored in fecally contaminated soil. This study assessed the risk of illness (giardiasis and cryptosporidiosis) from inhaling and/or ingesting soil and/or airborne dust in Potam, Mexico. To assess the risk of infection, Quantitative Microbial Risk Assessment (QMRA) was employed, with the following steps: (1) hazard identification, (2) hazard exposure, (3) dose-response, and (4) risk characterization. Cryptosporidium oocysts and Giardia cysts were observed in 52% and 57%, respectively, of total soil samples (n=21), and in 60% and 80%, respectively, of air samples (n=12). The calculated annual risks were higher than 9.9 × 10(-1) for both parasites in both types of sample. Soil and air inhalation and/or ingestion are important vehicles for these parasites. To our knowledge, the results obtained in the present study represent the first QMRAs for cryptosporidiosis and giardiasis due to soil and air inhalation/ingestion in Mexico. In addition, this is the first evidence of the microbial air quality around these parasites in rural zones. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  9. Laboratory study on subgrade soil stabilization using RBI grade 81

    NASA Astrophysics Data System (ADS)

    Cynthia, J. Bernadette; Kamalambikai, B.; Prasanna Kumar, R.; Dharini, K.

    2017-07-01

    The present study investigates the effect of reinforcing the sub grade soils with RBI 81 material. A soil nearby was collected and preliminary tests were conducted to classify the soil and it was found from the results that the sample collected was a poorly graded clay. Subsequently Tests such as Proctor Compaction, CBR, and UCC were conducted to study the various engineering properties of the identified soil. In addition to the above tests were also conducted on the soil by reinforcing with varying percentages of RBI 81. From the analysis of test results it was found that this material (RBI 81) will significantly improve the CBR value of the soil.

  10. Quantitative enzyme-linked immunosorbent assay for determination of polychlorinated biphenyls in environmental soil and sediment samples.

    PubMed

    Johnson, J C; Van Emon, J M

    1996-01-01

    An enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of Aroclors 1242, 1248, 1254, and 1260 in soil and sediments was developed and its performance compared with that of gas chromatography (GC). The detection limits for Aroclors 1242 and 1248 in soil are 10.5 and 9 ng/g, respectively. The assay linear dynamic range is 50-1333 ng/g. Cross-reactivity of the assay with 37 structurally related potential cocontaminants in environmental soil samples was examined; none of the chlorinated anisoles, benzenes, or phenols exhibited >3% cross-reactivity, with <0.1% cross-reactivity being the norm. Soil spike recoveries of 107% and 104% were obtained for Aroclors 1242 and 1248, respectively, for a spike level of 5 mg/kg, with corresponding relative standard deviations of 14% and 17%. One hundred forty-eight environmental soil, sediment, and paper pulp samples, obtained from two EPA listed Superfund sites, were analyzed by ELISA and standard GC methods. Samples were extracted for ELISA analysis by shaking with methanol. Additional extractions of the same samples were performed either with supercritical carbon dioxide or by Soxhlet extraction with methanol. ELISA results for both the supercritical fluid and the Soxhlet extracts were in close agreement with the GC results, while the ELISA results for the methanol shake extracts were not. The data for the environmental samples demonstrated the capability of the ELISA to provide accurate results and reinforced the dependence of any detection method, including ELISA, on appropriate extraction procedures.

  11. DNAPL distribution in the source zone: Effect of soil structure and uncertainty reduction with increased sampling density

    NASA Astrophysics Data System (ADS)

    Pantazidou, Marina; Liu, Ke

    2008-02-01

    This paper focuses on parameters describing the distribution of dense nonaqueous phase liquid (DNAPL) contaminants and investigates the variability of these parameters that results from soil heterogeneity. In addition, it quantifies the uncertainty reduction that can be achieved with increased density of soil sampling. Numerical simulations of DNAPL releases were performed using stochastic realizations of hydraulic conductivity fields generated with the same geostatistical parameters and conditioning data at two sampling densities, thus generating two simulation ensembles of low and high density (three-fold increase) of soil sampling. The results showed that DNAPL plumes in aquifers identical in a statistical sense exhibit qualitatively different patterns, ranging from compact to finger-like. The corresponding quantitative differences were expressed by defining several alternative measures that describe the DNAPL plume and computing these measures for each simulation of the two ensembles. The uncertainty in the plume features under study was affected to different degrees by the variability of the soil, with coefficients of variation ranging from about 20% to 90%, for the low-density sampling. Meanwhile, the increased soil sampling frequency resulted in reductions of uncertainty varying from 7% to 69%, for low- and high-uncertainty variables, respectively. In view of the varying uncertainty in the characteristics of a DNAPL plume, remedial designs that require estimates of the less uncertain features of the plume may be preferred over others that need a more detailed characterization of the source zone architecture.

  12. Uncertainty in sample estimates and the implicit loss function for soil information.

    NASA Astrophysics Data System (ADS)

    Lark, Murray

    2015-04-01

    One significant challenge in the communication of uncertain information is how to enable the sponsors of sampling exercises to make a rational choice of sample size. One way to do this is to compute the value of additional information given the loss function for errors. The loss function expresses the costs that result from decisions made using erroneous information. In certain circumstances, such as remediation of contaminated land prior to development, loss functions can be computed and used to guide rational decision making on the amount of resource to spend on sampling to collect soil information. In many circumstances the loss function cannot be obtained prior to decision making. This may be the case when multiple decisions may be based on the soil information and the costs of errors are hard to predict. The implicit loss function is proposed as a tool to aid decision making in these circumstances. Conditional on a logistical model which expresses costs of soil sampling as a function of effort, and statistical information from which the error of estimates can be modelled as a function of effort, the implicit loss function is the loss function which makes a particular decision on effort rational. In this presentation the loss function is defined and computed for a number of arbitrary decisions on sampling effort for a hypothetical soil monitoring problem. This is based on a logistical model of sampling cost parameterized from a recent geochemical survey of soil in Donegal, Ireland and on statistical parameters estimated with the aid of a process model for change in soil organic carbon. It is shown how the implicit loss function might provide a basis for reflection on a particular choice of sample size by comparing it with the values attributed to soil properties and functions. Scope for further research to develop and apply the implicit loss function to help decision making by policy makers and regulators is then discussed.

  13. Changes in Carbon Chemistry and Stability Along Deep Tropical Soil Profiles at the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Stone, M.; Hockaday, W. C.; Plante, A. F.

    2014-12-01

    Tropical forests are the largest terrestrial carbon (C) sink, and tropical forest soils contribute disproportionately to the poorly-characterized deep soil C pool. The goal of this study was to evaluate how carbon chemistry and stability change with depth in tropical forest soils formed on two contrasting parent materials. We used soils from pits excavated to 140 cm depth that were stratified across two soil types (Oxisols and Inceptisols) at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We used 13C nuclear magnetic resonance (NMR) spectroscopy to characterize soil C chemistry and differential scanning calorimetry (DSC) coupled with evolved gas analysis (CO2-EGA) to evaluate the thermal stability of soil C during ramped combustion. Thirty-four samples with an initial C concentration ≥1% were chosen from discrete depth intervals (0, 30, 60, 90 & 140 cm) for 13C NMR analysis, while DSC was performed on 122 samples that included the NMR sample set and additional samples at 20, 50, 80 and 110 cm depth. Preliminary 13C NMR results indicate higher alkyl : O-alkyl ratios and an enrichment of aliphatic and proteinaceous C with depth, compared with greater aromatic and carbohydrate signals in surface soils. The energy density of soil C (J mg-1 C) also declined significantly with depth. In Oxisols, most CO2 evolution from combustion occurred around 300ºC, while most CO2 evolution occurred at higher temperatures (400-500ºC) in Inceptisols. Our findings suggest soil C is derived primarily of plant biomolecules in surface soils and becomes increasingly microbial with depth. Soil matrix-mediated differences in C transport and preservation may result in differences in C chemistry between the two soil types and a more thermally labile C pool in the Oxisols. We suggest that energy-poor substrates, combined with potentially stronger organo-mineral interactions in subsoils, may explain the long-term stability of deep C in highly weathered tropical soils.

  14. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  15. Iron Redox Transformations And Phosphorous Cycling In Tropical Soils

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T.; Sposito, G.

    2003-12-01

    We are investigating the hypothesis that in highly weathered tropical soils iron oxidation-reduction reactions may mediate phosphorous solubility. In these soils phosphorous may be removed from the plant-available soil pool by sorption to Fe(III) oxides and by precipitation with Fe(III) to form insoluble minerals. The reduction of iron during episodic anoxic conditions has the potential to release phosphorous in a plant available form. We aim to explore the factors controlling Fe reduction and to evaluate the role of Fe reduction in P solubilization. Soil samples were collected along a toposequence (ridge-slope-valley) in the Luquillo Experimental Forest, Puerto Rico. Besides precipitation, the valley soils receive additional water through subsurface and upland runoff. These soils are poorly-drained and, therefore, periodically saturated with water, which creates anoxic conditions. Two series of incubation experiments were carried out on air-dried and freshly-sampled valley soils. During a 14-day incubation period, increasing production of Fe(II) was detected in both types of soil sample. We also found positive correlations between the concentrations of soluble Fe(II), pH, and soluble P. In general, the total amounts of Fe(II) and P produced were higher in the air-dried soil, mainly due to differences in microbial activity. To examine further the factors controlling Fe reduction and P solubilization, we are performing soil incubation experiments in the presence of "electron shuttle" compound (AQDS). SEM and STXM techniques will be applied to detect the formation of Fe(II) secondary minerals.

  16. Field and laboratory procedures used in a soil chronosequence study

    USGS Publications Warehouse

    Singer, Michael J.; Janitzky, Peter

    1986-01-01

    In 1978, the late Denis Marchand initiated a research project entitled "Soil Correlation and Dating at the U.S. Geological Survey" to determine the usefulness of soils in solving geologic problems. Marchand proposed to establish soil chronosequences that could be dated independently of soil development by using radiometric and other numeric dating methods. In addition, by comparing dated chronosequences in different environments, rates of soil development could be studied and compared among varying climates and mineralogical conditions. The project was fundamental in documenting the value of soils in studies of mapping, correlating, and dating late Cenozoic deposits and in studying soil genesis. All published reports by members of the project are included in the bibliography.The project demanded that methods be adapted or developed to ensure comparability over a wide variation in soil types. Emphasis was placed on obtaining professional expertise and on establishing consistent techniques, especially for the field, laboratory, and data-compilation methods. Since 1978, twelve chronosequences have been sampled and analyzed by members of this project, and methods have been established and used consistently for analysis of the samples.The goals of this report are to:Document the methods used for the study on soil chronosequences,Present the results of tests that were run for precision, accuracy, and effectiveness, andDiscuss our modifications to standard procedures.Many of the methods presented herein are standard and have been reported elsewhere. However, we assume less prior analytical knowledge in our descriptions; thus, the manual should be easy to follow for the inexperienced analyst. Each chapter presents one or more references of the basic principle, an equipment and reagents list, and the detailed procedure. In some chapters this is followed by additional remarks or example calculations.The flow diagram in figure 1 outlines the step-by-step procedures used to obtain and analyze soil samples for this study. The soils analyzed had a wide range of characteristics (such as clay content, mineralogy, salinity, and acidity). Initially, a major task was to test and select methods that could be applied and interpreted similarly for the various types of soils. Tests were conducted to establish the effectiveness and comparability of analytical techniques, and the data for such tests are included in figures, tables, and discussions. In addition, many replicate analyses of samples have established a "standard error" or "coefficient of variance" which indicates the average reproducibility of each laboratory procedure. These averaged errors are reported as percentage of a given value. For example, in particle-size determination, 3 percent error for 10 percent clay content equals 10 ± 0.3 percent clay. The error sources were examined to determine, for example, if the error in particle-size determination was dependent on clay content. No such biases were found, and data are reported as percent error in the text and in tables of reproducibility.

  17. Visual soil evaluation - future research requirements

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick

    2017-04-01

    A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.

  18. Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Chen; Hettich, Robert L.

    The microbial composition and their activities in soil environments play a critical role in organic matter transformation and nutrient cycling, perhaps most specifically with respect to impact on plant growth but also more broadly to global impact on carbon and nitrogen-cycling. Liquid chromatography coupled to high performance mass spectrometry provides a powerful approach to characterize soil microbiomes; however, the limited microbial biomass and the presence of abundant interferences in soil samples present major challenges to soil proteome extraction and subsequent MS measurement. To address some of the major issues, we have designed and optimized an experimental method to enhance microbialmore » proteome extraction concomitant with minimizing the soil-borne humic substances co-extraction from soils. Among the range of interferences, humic substances are often the worst in terms of adversely impacting proteome extraction and mass spectrometry measurement. Our approach employs an in-situ detergent-based microbial lysis / TCA precipitation coupled with an additional acidification precipitation step at the peptide level which efficiently removes humic acids. By combing filtration and pH adjustment of the final peptide solution, the remaining humic acids can be differentially precipitated and removed with a membrane filter, thereby leaving much cleaner proteolytic peptide samples for MS measurement. As a result, this modified method is a reliable and straight-forward protein extraction method that efficiently removes soil-borne humic substances without inducing proteome sample loss or reducing or biasing protein identification in mass spectrometry.« less

  19. Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements

    DOE PAGES

    Qian, Chen; Hettich, Robert L.

    2017-05-24

    The microbial composition and their activities in soil environments play a critical role in organic matter transformation and nutrient cycling, perhaps most specifically with respect to impact on plant growth but also more broadly to global impact on carbon and nitrogen-cycling. Liquid chromatography coupled to high performance mass spectrometry provides a powerful approach to characterize soil microbiomes; however, the limited microbial biomass and the presence of abundant interferences in soil samples present major challenges to soil proteome extraction and subsequent MS measurement. To address some of the major issues, we have designed and optimized an experimental method to enhance microbialmore » proteome extraction concomitant with minimizing the soil-borne humic substances co-extraction from soils. Among the range of interferences, humic substances are often the worst in terms of adversely impacting proteome extraction and mass spectrometry measurement. Our approach employs an in-situ detergent-based microbial lysis / TCA precipitation coupled with an additional acidification precipitation step at the peptide level which efficiently removes humic acids. By combing filtration and pH adjustment of the final peptide solution, the remaining humic acids can be differentially precipitated and removed with a membrane filter, thereby leaving much cleaner proteolytic peptide samples for MS measurement. As a result, this modified method is a reliable and straight-forward protein extraction method that efficiently removes soil-borne humic substances without inducing proteome sample loss or reducing or biasing protein identification in mass spectrometry.« less

  20. Biodegradation kinetics of BTE-OX and MTBE by a diesel-grown biomass.

    PubMed

    Acuna-Askar, K; de la Torre-Torres, M A; Guerrero-Munoz, M J; Garza-Gonzalez, M T; Chavez-Gomez, B; Rodriguez-Sanchez, I P; Barrera-Saldana, H A

    2006-01-01

    The biodegradation kinetics of BTE-oX and MTBE, mixed all together in the presence of diesel-grown bioaugmented bacterial populations as high as 885 mg/L VSS, was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 54 h, every 6 h. All BTE-oX chemicals followed a first-order two-phase biodegradation kinetic model, whereas MTBE followed a zero-order removal kinetic model in all samples. BTE-oX removal rates were much higher than those of MTBE in all samples. The presence of soil in aqueous samples retarded BTE-oX and MTBE removal rates. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged between 64.8-98.9% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged between 18.7-40.8% and 7.2-10.3%, respectively.

  1. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  2. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  3. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  4. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  5. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  6. Effect of herbicide concentration and organic and inorganic nutrient amendment on the mineralization of mecoprop, 2,4-D and 2,4,5-T in soil and aquifer samples.

    PubMed

    de Lipthay, Julia R; Sørensen, Sebastian R; Aamand, Jens

    2007-07-01

    The impact of the herbicide concentration (0.10-10,000 microg kg(-1)) and addition of organic and inorganic nutrients on mecoprop, 2,4-D and 2,4,5-T mineralization in aquifer and soil samples was studied in laboratory experiments. Generally, 2,4-D was most rapidly mineralized followed by mecoprop and 2,4,5-T. A shift from non-growth to growth-linked mineralization kinetics was observed in aquifer sediment with 2,4-D concentrations >0.10 microg kg(-1) and mecoprop concentrations >10.0 microg kg(-1). The shift was apparent at higher herbicide concentrations in soil coinciding with a lower bioavailable fraction and a higher herbicide sorption to soil. Herbicide addition did not affect the bacterial density, although 2,4-D and mecoprop applied at 10,000 microg kg(-1) stimulated growth of specific degraders. Generally, nutrient amendments did not stimulate mineralization at the lowest herbicide concentrations. In contrast, the mineralization rate of higher herbicide concentrations was significantly stimulated by the amendment of inorganic nutrients.

  7. Linear Regression Modeling of Selected Analytes from the Balad Air Sampling Program

    DTIC Science & Technology

    2012-04-05

    groundwater, air and soil contamination with unwanted chemicals as well as attract vectors (Insects, rodents, etc.) for diseases. In deployed...via in-flight jettisoning of fuel and from 31 accidental spills or leaks to soil during use, storage, and transportation. VOC components of JP-8...can be introduced to the atmosphere from the soil through volatilization.46 In addition, the reaction between JP-8 and atmospheric chemicals may

  8. Installation Restoration Program Records Search for Cannon Air Force Base, New Mexico.

    DTIC Science & Technology

    1983-08-01

    several years. A deteriorating black plastic liner was noted at the edge of the shallow pit. Approximately 4 to 6 inches of soil covered the rest of...subtotal/eximtm subtotal) 56 II. WASTE CARACTERISTICS A. Select the factor score based on the eatimeted quantity, the degree of hazard, and the...anticipated soil properties such as gradation, plasticity , or permea- bility by performing appropriate laboratory tests. In addition, soil samples may be

  9. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    NASA Astrophysics Data System (ADS)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  10. Determination of the water retention of peat soils in the range of the permanent wilting point.

    NASA Astrophysics Data System (ADS)

    Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang

    2017-04-01

    Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.

  11. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    PubMed

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  12. Pushing Boreal Headwaters: Responses of Dissolved Organic Carbon to Increased Hydro-Meteorological Forcing by Forest Harvesting

    NASA Astrophysics Data System (ADS)

    Schelker, J.; Grabs, T. J.; Bishop, K. H.; Laudon, H.

    2012-12-01

    Concentrations of dissolved organic carbon (DOC) in stream water show large variations as a response to disturbances such as forestry operations. We used a paired catchment experiment in northern Sweden which shows well quantified increases of DOC concentrations and C-exports as a result of forest harvesting. To identify the drivers of these increases, a physically-based process model (Riparian Flow Integration Model, RIM) was used to inversely simulate the DOC availability in the peat-rich riparian soils of the catchments. DOC availability in soils followed a seasonal signal paralleling the seasonality of soil-temperatures (min: February; max: August) during 2005-2011. Further, high-frequency event sampling of DOC during spring and summer seasons of 2007, 2008 and 2009, respectively, revealed that event size acted as a secondary control of DOC in streams: Spring snowmelt events (as well as one major event in 2009) showed clockwise hysteresis, whereas minor runoff episodes during summer (when DOC availability in soils was highest) were characterized by a counterclockwise behavior. The higher hydro-meteorological forcing consisting of increases of soil temperature and soil moisture after the forest removal governed additional increases in DOC availability in soils. The higher DOC concentrations observed in streams after forest harvesting can therefore be ascribed to i) the increased climatic forcing comprising higher water flows through riparian soils, ii) increased soil temperatures and soil moisture, respectively, favoring an increased production of DOC, and iii) additional variation by event size. Overall these results underline the large impact of forestry operations on stream water quality as well as DOC exports leaving managed boreal forests. Simulated and measured soil water TOC concentration profiles within the three Balsjö catchments (CC-4 = clear-cut with 67% harvest; NO-5 = 35% harvest; NR-7 = northern reference). The simulated curves represent the inversely modeled soil profiles using the average f-parameter calculated for August 2009 for each catchment. Measured values represent TOC concentrations of soil water sampled in mid August 2009. Sample numbers (soil depth in bracket) are given as: n (-0.2m) = 16; n (-0.6m) = 17; n (-0.9m) = 15. Horizontal whiskers indicate the standard deviation of measured values for each soil depth.

  13. Soil microbial toxicity assessment of a copper-based fungicide in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Dober, Melanie; Deltedesco, Evi; Jöchlinger, Lisa; Schneider, Martin; Gorfer, Markus; Bruckner, Alexander; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz; Keiblinger, Katharina Maria

    2016-04-01

    The infestation with the fungus downy mildew (Plasmopara viticola) causes dramatic losses in wine production. Copper (Cu) based fungicides have been used in viticulture since the end of the 19th century, and until today both conventional and organic viticulture strongly rely on Cu to prevent and reduce fungal diseases. Consequently, Cu has built up in many vineyard soils and it is still unclear how this affects soil functioning. The aim of the present study is the evaluation of the soil microbial toxicity of Cu contamination. Two contrasting agricultural soils, an acidic sandy soil and a calcareous loamy soil, were sampled to conduct an eco-toxicological greenhouse pot experiment. The soils were spiked with a commonly used fungicide based on copper hydroxid in seven concentrations (0, 50, 100, 200, 500, 1500 and 5000 mg Cu kg-1 soil) and Lucerne (Medicago sativa L. cultivar. Plato) was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test copper's soil microbial toxicity in total microbial biomass and basal respiration, as well as enzyme activities, such as exoglucanase, β-glucosidase, exochitinase, phosphatase, protease, phenol-, peroxidase and urease. Additionally, DOC, TN, Cmic, Nmic, NO3 and NH4 were determined to provide further insight into the carbon and nitrogen cycle. Microbial community structure was analysed by phospholipid fatty acids (PLFAs), and ergosterol as a fungal biomarker. In addition, molecular tools were applied by extracting soil DNA and performing real time quantitative polymerase chain reaction (qPCR) and a metagenomic approach using 16S and ITS amplification and sequencing with MiSeq platform for the second sampling. Hydrolytic extracellular enzymes were not clearly affected by rising Cu concentrations, while a trend of increasing activity of oxidative enzymes (phenol- and peroxidase) was observed. Microbial respiration rate as well as the amount of Cmic and Nmic decreased with increasing Cu concentrations. Ergosterol was especially sensitive to Cu and started to decline at even lower concentrations. A shift in the microbial community structure with rising Cu was observed using PLFA. The metagenomics approach enables us to investigate these changes at even finer taxonomic resolution and possible effects on the soil nutrient cycles will be discussed. In summary, our results showed distinct Cu toxicity effects on soil microbial biomass with a larger sensitivity of the loamy soil.

  14. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China.

    PubMed

    Xu, Guo-Liang; Mo, Jiang-Ming; Fu, Sheng-Lei; Gundersen, Per; Zhou, Guo-Yi; Xue, Jing-Hua

    2007-01-01

    We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting in January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2 x a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2 x a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.

  15. Effect of soil organic matter on antimony bioavailability after the remediation process.

    PubMed

    Nakamaru, Yasuo Mitsui; Martín Peinado, Francisco José

    2017-09-01

    We evaluated the long-term (18 year) and short-term (4 weeks) changes of Sb in contaminated soil with SOM increase under remediation process. In the Aznalcóllar mine accident (1998) contaminated area, the remediation measurement implemented the Guadiamar Green Corridor, where residual pollution is still detected. Soils of the re-vegetated area (O2) with high pH and high SOM content, moderately re-vegetated area (O1) and unvegetated area (C) were sampled. Soil pH, CEC, SOM amount and soil Sb forms were evaluated. Soil Sb was measured as total, soluble, exchangeable, EDTA extractable, acid oxalate extractable, and pyro-phosphate extractable fractions. Further, the short-term effect of artificial organic matter addition was also evaluated with incubation study by adding compost to the sampled soil from C, O1 and O2 areas. After 4 weeks of incubation, soil chemical properties and Sb forms were evaluated. In re-vegetated area (O2), soil total Sb was two times lower than in unvegetated area (C); however, soluble, exchangeable, and EDTA extractable Sb were 2-8 times higher. The mobile/bioavailable Sb increase was also observed after 4 weeks of incubation with the addition of compost. Soluble, exchangeable, and EDTA extractable Sb was increased 2-4 times by compost addition. By the linear regression analysis, the significantly related factors for soluble, exchangeable, and EDTA extractable Sb values were pH, CEC, and SOM, respectively. Soluble Sb increase was mainly related to pH rise. Exchangeable Sb should be bound by SOM-metal complex and increased with CEC. EDTA extractable fraction should be increased with increase of SOM as SOM-Fe associated Sb complex. From these results, it was shown that increase of SOM under natural conditions or application of organic amendment under remediation process should increase availability of Sb to plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling andmore » remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.« less

  17. BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites

    NASA Technical Reports Server (NTRS)

    Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.

  18. Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal

    PubMed Central

    Yan, Xuedong; Zhang, Fan; Zeng, Chen; Zhang, Man; Devkota, Lochan Prasad; Yao, Tandong

    2012-01-01

    Transportation activities can contribute to accumulation of heavy metals in roadside soil and grass, which could potentially compromise public health and the environment if the roadways cross farmland areas. Particularly, heavy metals may enter the food chain as a result of their uptake by roadside edible grasses. This research was conducted to investigate heavy metal (Cu, Zn, Cd, and Pb) concentrations in roadside farmland soils and corresponding grasses around Kathmandu, Nepal. Four factors were considered for the experimental design, including sample type, sampling location, roadside distance, and tree protection. A total of 60 grass samples and 60 topsoil samples were collected under dry weather conditions. The Multivariate Analysis of Variance (MANOVA) results indicate that the concentrations of Cu, Zn, and Pb in the soil samples are significantly higher than those in the grass samples; the concentrations of Cu and Pb in the suburban roadside farmland are higher than those in the rural mountainous roadside farmland; and the concentrations of Cu and Zn at the sampling locations with roadside trees are significantly lower than those without tree protection. The analysis of transfer factor, which is calculated as the ratio of heavy-metal concentrations in grass to those in the corresponding soil, indicates that the uptake capabilities of heavy metals from soil to grass is in the order of Zn > Cu > Pb. Additionally, it is found that as the soils’ heavy-metal concentrations increase, the capability of heavy-metal transfer to the grass decreases, and this relationship can be characterized by an exponential regression model. PMID:23202679

  19. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China)

    PubMed Central

    Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Wu, Xianliang

    2017-01-01

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People’s Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area. PMID:29258250

  20. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China).

    PubMed

    Huang, Xianfei; Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Fan, Mingyi; Wu, Xianliang

    2017-12-18

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People's Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area.

  1. Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction-gas chromatography.

    PubMed

    Fernandez-Alvarez, Maria; Llompart, Maria; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Cela, Rafael; Dagnac, Thierry

    2008-04-25

    A solvent-free and simple method based on headspace solid-phase microextraction (HS-SPME) was developed in order to determine simultaneously 36 common pesticides and breakdown products (mostly pyrethroids and organochlorine compounds) in soil. The analysis was carried out by gas chromatography with micro-electron-capture detection (GC-microECD). As far as we know, this is the first study about the SPME of pyrethroid insecticides from soil. Factors such as extraction temperature, matrix modification by addition of water, salt addition (% NaCl) and fiber coating were considered in the optimization of the HS-SPME. To this end, a 3 x 2(3-1) fractional factorial design was performed. The results showed that temperature and fiber coating were the most significant variables affecting extraction efficiency. A suitable sensitivity for all investigated compounds was achieved at 100 degrees C by extracting soil samples wetted with 0.5 mL of ultrapure water (0% NaCl) employing a polyacrylate (PA) coating fiber. Using the recommended extraction conditions with GC-microECD, a linear calibration could be achieved over a range of two orders of magnitude for both groups of analytes. Limits of detection (LODS) at the sub-ng g(-1) level were attained and relative standard deviations (RSDs) were found to be lower than 14% for both groups of pesticides. Matrix effects were investigated by the analysis of different soil samples fortified with the target compounds. The method accuracy was assessed and good recovery values (>70%, in most cases) were obtained. The method was also validated with a certified reference material (RTC-CRM818-050), which was quantified using a standard addition protocol. Finally, the proposed HS-SPME-GC-microECD methodology was further applied to the screening of environmental soil samples for the presence of the target pesticides.

  2. Improvement in engineering properties of soft-soil using cement and lime additives: A case study of southern Vietnam

    NASA Astrophysics Data System (ADS)

    To-Anh Phan, Vu; Ngoc-Anh Pham, Kha

    2018-04-01

    This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.

  3. Soil Organic Matter Responses to Chronic Nitrogen Additions in a Temperate Forest (Invited)

    NASA Astrophysics Data System (ADS)

    Frey, S. D.; Nadelhoffer, K.; Bowden, R.; Brzostek, E. R.; Caldwell, B. A.; Crow, S. E.; Finzi, A. C.; Goodale, C. L.; Grandy, S.; Lajtha, K.; Ollinger, S. V.; Plante, A. F.

    2010-12-01

    The Chronic Nitrogen Addition Experiment at Harvard Forest in central Massacusetts, USA was established in 1988 to investigate the effects of increasing anthropogenic atmospheric N deposition on forests in the eastern United States. Located in an old red pine plantation and a mixed hardwood forest, the treated plots have received 50 and 150 kg N/ha/yr, as ammonium sulfate, in six equal monthly applications during the growing season each year since the start of the experiment. Additionally, the control and low N treatments were given a single pulse label of 15N-nitrate or 15N-ammonium in 1991 and 1992. Regular measurements have been made over the past 20 years to assess woody biomass production and mortality, foliar chemistry, litter fall, and soil N dynamics. Less frequent measurements of soil C pools, soil respiration, fine root dynamics, and microbial biomass and community structure have been made. For the 20th anniversary, an intensive sampling campaign was carried out in fall 2008 with a focus on evaluating how the long-term N additions have impacted ecosystem C storage and N dynamics. Our primary objective was to assess the amount of C and N stored in wood, foliage, litter, roots, and soil (to a depth of ~50 cm). We also wanted to examine the fate of N by comparing patterns of 15N recovery to those observed previously. An additional objective was to further examine how chronic N additions impact microbial biomass, activity and community structure. Results indicate that chronic N additions over the past 20 years have increased forest floor mass and soil organic matter across the soil profile; decreased microbial biomass, especially the fungal component; and altered microbial community composition (i.e., significantly lower fungal:bacterial biomass ratios in the N amended plots). N15 tracer recoveries in soils and forest floors were much higher than in tree biomass, ranging from 49 to 101% of additions across forest types and N addition rates. Stoichiometric analyses of these recoveries suggest that N additions are contributing to soil C accumulation to a greater extent than to biomass accumulation in these forests.

  4. Bioremediation of pesticide wastes in soil using two plant species, Kochia Scoparia and Brassica Napus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, E.L.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    Radiotracer studies were conducted to determine the fate of atrazine and metolachlor, applied as a mixture, in soils taken from pesticide-contaminated sites. Samples taken from nonvegetated areas and from the rhizosphere of Kochia scoparia were treated with {sup 14}C-atrazine and unlabeled metolachlor (50 {mu}g/g each) and incubated for 30, 60 or 135 d. A mass balance of the {sup 14}C applied revealed significant differences between the two soil types in soil bound residues, {sup 14}CO{sub 2}, and the extractable organic fraction (p<0.05). After 135-d incubation, 28% of the applied {sup 14}C was mineralized in Kochia rhizosphere soil, compared to 4%more » in soil taken from a nonvegetated area. A greater amount of {sup 14}C was extractable from the nonvegetated soil compared to the rhizosphere soil (64% and 22%, respectively). The half-life of atrazine based on extractable {sup 14}C-atrazine was 193 d in nonvegetated soil and 50 d in Kochia rhizosphere soil. Additional subsamples of nonvegetated soils treated with a mixture of {sup 14}C-atrazine and metolachlor were allowed to age for 135 d, and then were either planted with Brassica napus, Kochia scoparia, or left unvegetated. Incubations were carried out in enclosed chambers under controlled conditions. After 30 additional days, a subset of samples was extracted and analyzed using thin-layer chromatography, soil and plant combustion, and liquid scintillation spectroscopy. The percent of applied {sup 14}C-atrazine remaining as atrazine in soil which was nonvegetated, or planted with Brassica napus or Kochia scoparia was 9.3, 6.5, and 4.2%, respectively. Combustion of plants revealed that 11% of the applied radioactivity was taken up in Kochia scoparia, while less than 1% was taken up in Brassica napus plants. The potential for vegetation to aid in bioremediating pesticide wastes in soil is promising.« less

  5. Measurement of N2O and CH4 soil fluxes from garden, agricultural and natural soils using both closed and open chamber systems coupled with high-precision CRDS analyzer

    NASA Astrophysics Data System (ADS)

    He, Yonggang; Jacobson, Gloria; Alexander, Chris; Fleck, Derek; Hoffnagel, John; Del Campo, Bernardo; Rella, Chris

    2013-04-01

    Studying the emission and uptake of greenhouse gases from soil is essential for understanding, adapting to and ultimately mitigating the effects of climate change. To-date, majority of such studies have been focused on carbon dioxide (CO2 ) , however, in 2006 the EPA estimated that "Agricultural activities currently generate the largest share, 63 percent, of the world's anthropogenic non-carbon dioxide (non-CO2) emissions (84 percent of nitrous oxide [N2O] and 52 percent of methane[CH4]), and make up roughly 15 percent of all anthropogenic greenhouse gas emissions" (Prentice et al., 2001). Therefore, enabling accurate N2O and CH4 flux measurements in the field are clearly critical to our ability to better constrain carbon and nitrogen budgets, characterize soil sensitivities, agricultural practices, and microbial processes like denitrification and nitrification. To aide in these studies, Picarro has developed a new analyzer based on its proven, NIR technology platform, which is capable of measuring both N2O and CH4 down to ppb levels in a single, field-deployable analyzer. This analyzer measures N2O with a 1-sigma, precision of 3.5 ppb and CH4 with a 1-sigma precision of 3ppb on a 5 minute average. The instrument also has extremely low drift to enable accurate measurements with infrequent calibrations. The data rate of the analyzer is on the order of 5 seconds in order to capture fast, episodic emission events. One of the keys to making accurate CRDS measurements is to thoroughly characterize and correct for spectral interfering species. This is especially important for closed system soil chambers used on agricultural soils where a variety of soil amendments may be applied and gases not usually present in ambient air could concentrate to high levels. In this work, we present the results of analyzer interference testing and corrections completed for the interference of carbon dioxide, methane, ammonia, ethane, ethylene, acetylene, and water on N2O. In addition, we will present the results of testing done with the analyzer attached to both closed and open chamber systems to quantify fluxes of N2O and CH4 from active soil samples. The soil samples were collected by the University of Iowa from soil test sites used for studying the application of biochar as a soil amendment. Results will compare the two chamber methodologies and results from several soil sample types, garden, agricultural and natural. Preliminary results from laboratory measurements of soil core samples taken from a garden soil sample using the closed-system chamber method show N2O emission to be on the order of 5.67 x 10-2 μg/cm3*hr, which is in good agreement with the open-system chamber method tested on the same soil sample, which yielded fluxes of 6.01 x 10-2 μg/cm3*hr . Additional work presented will verify these initial results and will be compared to literature such as Hutchinsion and Livingston 1993 assessment of the bias of different chamber flux methodologies.

  6. Arsenic contamination in New Orleans soil: temporal changes associated with flooding.

    PubMed

    Rotkin-Ellman, Miriam; Solomon, Gina; Gonzales, Christopher R; Agwaramgbo, Lovell; Mielke, Howard W

    2010-01-01

    The flooding of New Orleans in late August and September 2005 caused widespread sediment deposition in the flooded areas of the city. Post-flood sampling by US EPA revealed that 37% of sediment samples exceeded Louisiana corrective screening guidelines for arsenic of 12mg/kg, but there was debate over whether this contamination was pre-existing, as almost no pre-flood soil sampling for arsenic had been done in New Orleans. In this study, archived soil samples collected in 1998-1999 were location-matched with 70 residential sites in New Orleans where post-flood arsenic concentrations were elevated. Those same locations were sampled again during the recovery period 18 months later. During the recovery period, sampling for arsenic was also done for the first time at school sites and playgrounds within the flooded zone. Every sample of sediment taken 1-10 months after the flood exceeded the arsenic concentration found in the matched pre-flood soils. The average difference between the two sampling periods was 19.67mg/kg (95% CI 16.63-22.71) with a range of 3.60-74.61mg/kg. At virtually all of these sites (97%), arsenic concentrations decreased substantially by 18 months into the recovery period when the average concentration of matched samples was 3.26mg/kg (95% CI 1.86-4.66). However, 21 (30%) of the samples taken during the recovery period still had higher concentrations of arsenic than the matched sample taken prior to the flooding. In addition, 33% of samples from schoolyards and 13% of samples from playgrounds had elevated arsenic concentrations above the screening guidelines during the recovery period. These findings suggest that the flooding resulted in the deposition of arsenic-contaminated sediments. Diminution of the quantity of sediment at many locations has significantly reduced overall soil arsenic concentrations, but some locations remain of concern for potential long-term soil contamination.

  7. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    PubMed

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Long-term application of winery wastewater - Effect on soil microbial populations and soil chemistry

    NASA Astrophysics Data System (ADS)

    Mosse, Kim; Patti, Antonio; Smernik, Ron; Cavagnaro, Timothy

    2010-05-01

    The ability to reuse winery wastewater (WWW) has potential benefits both with respect to treatment of a waste stream, as well as providing a beneficial water resource in water limited regions such as south-eastern Australia, California and South Africa. Over an extended time period, this practice leads to changes in soil chemistry, and potentially, also to soil microbial populations. In this study, we compared the short term effects of WWW (both treated and untreated) application on soil biology and chemistry in two adjacent paired sites with the same soil type, one of which had received WWW for approximately 30 years, and the other which had not. The paired sites were treated with an industrially relevant quantity of WWW, and the soil microbial activity (measured as soil CO2 efflux) and common soil physicochemical properties were monitored over a 16-day period. In addition, Solid State 13C NMR was employed on whole soil samples from the two sites, to measure and compare the chemical nature of the soil organic matter at the paired sites. The acclimatised soil showed a high level of organic matter and a greater spike in microbial activity following WWW addition, in comparison with the non-acclimatised soil, suggesting differences in soil chemistry and soil microbial communities between the two sites. Soil nitrate and phosphorus levels showed significant differences between WWW treatments; these differences likely to be microbially mediated.

  9. Baseline element concentrations in soils and plants, Wattenmeer National Park, North and East Frisian Islands, Federal Republic of Germany

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.; van den Boom, G.

    1992-01-01

    Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.

  10. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    PubMed Central

    Kim, Sung-Min; Choi, Yosoon

    2017-01-01

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH), high content with a low z-score (HL), low content with a high z-score (LH), and low content with a low z-score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required. PMID:28629168

  11. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.

    PubMed

    Kim, Sung-Min; Choi, Yosoon

    2017-06-18

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z -score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z -scores: high content with a high z -score (HH), high content with a low z -score (HL), low content with a high z -score (LH), and low content with a low z -score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1-4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  12. Successive DNA extractions improve characterization of soil microbial communities

    PubMed Central

    de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105

  13. Fire impact and assessment of post-fire actions of a typical Mediterranean forest from SW Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-González, Marco A.; María De la Rosa, José; Jiménez-Morillo, Nicasio T.; Zavala, Lorena M.; Knicker, Heike

    2015-04-01

    Wildfires may cause significant changes in soil physical and chemical properties. In addition, soil organic matter (SOM) content and chemical properties are usually affected by fire. Fire impacts may negatively affect soil health and quality, and induce or enhance runoff generation and, thereby, soil erosion risk and cause damages to the habitat of species. This fact is especially dramatic in Mediterranean ecosystems, where forest fires are a frequent phenomenon and restoration strategies are a key issue. The goals of this study are to determine: i) the immediate effects of fire on soil properties, including changes occurred in the quantity and quality of SOM and ii) the effect of post-fire actions on soil properties. In August 2012, a wildfire affected a forest area of approx. 90 ha in Montellano (Seville, SW Spain; longitude 37.00 °, latitude -5.56 °). This area is dominated by pines (Pinus pinaster and Pinus halepensis), and eucalypts (Eucaliptus globulus) with a Mediterranean climate. Dominant soil types are Rendzic Leptosols and Calcaric Haplic Regosols. It is a poorly limestone-developed soil (usually swallower than 25 cm). Four soil subsamples were collected 1 month and 25 months after fire within an area of approximately 200 m2. Subsamples were mixed together, homogenized, air-dried, crushed and sieved (2 mm). One control sample was collected in an adjacent area. The litter layer was removed by hand and studied separately. Branches, stems, bushes and plant residues on the fire-affected area were removed 16 months after the fire using heavy machinery as part of the post-fire management. The present research focuses on the study of the elemental composition (C, H and N) and physical properties (pH, water holding capacity, electrical conductivity) of bulk soil samples, and on the spectroscopic analysis (FT-IR, 13C NMR) and analytical pyrolysis data obtained from bulk the oils and from the humic acid fraction. immediate effects of fire, including the charring of vegetation and litter, as the input of charred residues may contribute to increase the total amount of soil organic matter. The post-fire removal of vegetation probably contributed to an additional loss of soil material due to an increase of the erosion risk. In addition, preliminary results point out that the burnt soil is not being recovered to the pre-fire conditions at a molecular level neither in the elemental composition. Results of this study will constitute a valuable tool for stake holders and decision makers to avoid additional alterations caused by post fire management of fire affected forests.

  14. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination.

    PubMed

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2016-07-01

    The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment

    NASA Astrophysics Data System (ADS)

    Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette

    2017-04-01

    Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μg.kg-1) was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.

  16. Microbial N and P mining regulates the effect of N deposition on soil organic matter turnover

    NASA Astrophysics Data System (ADS)

    Meyer, Nele; Welp, Gerhard; Rodionov, Andrei; Borchard, Nils; Martius, Christopher; Amelung, Wulf

    2017-04-01

    Nitrogen (N) deposition to soils has become a global issue during the last decades. Its effect on mineralization of soil organic carbon (SOC), however, is still debated. Common theories based on Liebig's law predict higher SOC mineralization rates in nutrient-rich than in nutrient-poor soils. Contrastingly, the concept of microbial N mining predicts lower mineralization rates after N deposition. The latter is explained by ceased decomposition of recalcitrant soil organic matter (SOM) as the need of microbes to acquire N from this pool decreases. As N deposition might shift the nutrient balance towards relative phosphorus (P) deficiency, it is also necessary to consider P mining in this context. Due to limited knowledge about microbial nutrient mining, any predictions of N deposition effects are difficult. This study aims at elucidating the preconditions under which microbial nutrient mining occurs in soil. We hypothesized that the occurrence of N and P mining is controlled by the current nutrient status of the soil. Likewise, soils might respond differently to N additions. To investigate this hypothesis, we conducted substrate-induced respiration measurements on soils with pronounced gradients of N and P availability. We used topsoil samples taken repeatedly from a site which was up to 7 years under bare fallow (Selhausen, Germany) and up to 4 m deep tropical forest soils (Kalimantan, Indonesia). Additional nutrient manipulations (glucose, glucose+N, glucose+P, glucose+N+P additions) were conducted to study the effect of nutrient additions. Samples were incubated for one month. We further conducted 13C labeling experiments to trace the sources of CO2 (sugar vs. SOM derived CO2) for further hints on nutrient mining. Mineralization of glucose was limited by a lack of available N in the bare fallow soil but microbes were able to slowly acquire N from previously unavailable pools. This resulted in a slightly higher release of native SOM-derived CO2 compared to N-fertilized treatments. Nutrient additions had no effect on cumulative CO2 evolution in tropical topsoils. Subsoils of the tropical sites (20 - 100 cm depth) were co-limited by N and P. Here, alleviation of either N or P deficiency was necessary to stimulate the mineralization of glucose. In the deep subsoil (>150 cm depth) only the combined additions of N+P induced any CO2 release. Our results reveal that mining of both N and P potentially occurs but is restricted by multiple nutrient limitations, by the absence of potentially accessible nutrients (e.g., in the deep subsoil), and by full nutrient supply (e.g., high nutrient contents make mining unnecessary). The results suggest several implications for N deposition effects: 1) N deposition decreases (recalcitrant) SOC mineralization in former N-deficient soils, 2) N deposition increases SOC mineralization in former co-limited soils as it facilitates mining of the required P, 3) N deposition has no effect in nutrient rich topsoils.

  17. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin.

    PubMed

    Hildebrandt, Alain; Lacorte, Sílvia; Barceló, Damià

    2007-02-01

    Gas chromatography-mass spectrometry (GC/MS) was employed for the determination of 30 widely used pesticides including various transformation products and alkylphenols in water and agricultural soils with the aim of assessing the impact of these compounds in agricultural soils and the underlying aquifer. The extraction, clean-up, and analytical procedures were optimized for both water and soil samples to provide a highly robust method capable of determining target analytes at the ppb-ppt level with high precision. For water samples, different solid-phase extraction cartridges and conditions were optimized; similarly, pressurized liquid extraction conditions were tested to provide interference-free extracts and high sensitivity. Instrumental LODs of 3-4 pg were obtained. The multi-residue extraction procedures were applied to the analysis of groundwaters and agricultural soils from the Ebro river basin (NE Spain). Most ubiquitous herbicides detected were triazines but some acetanilides and organophosphorus pesticides were also found; the pesticide additive tributylphosphate was found in all water samples. Levels varied between 0.57 and 5.37 microg/L in groundwater, whereas nonylphenol was the sole compound detected in soil. Alkylphenols are used as adjuvants in pesticide formulations and are present in sludges employed as soil fertilizers. Occurrence was found to be similar to other environmental studies.

  18. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.

    PubMed

    Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A

    2016-11-01

    Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect of soil water infiltration deeper into the soil on soil gas diffusivity could be observed during the following hours. Our new DS determination device can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows following modifications of soil gas diffusivity due to rain events. In addition it enables the analysis of non-diffusive soil gas transport processes.

  20. Microbial biodiversity in arable soils is affected by agricultural practices

    NASA Astrophysics Data System (ADS)

    Wolińska, Agnieszka; Górniak, Dorota; Zielenkiewicz, Urszula; Goryluk-Salmonowicz, Agata; Kuźniar, Agnieszka; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2017-04-01

    The aim of the study was to examine the differences in microbial community structure as a result of agricultural practices. Sixteen samples of cultivated and the same number of non-cultivated soils were selected. Gel bands were identified using the GelCompar software to create the presence-absence matrix, where each band represented a bacterial operational taxonomic unit. The data were used for principal-component analysis and additionally, the Shannon- Weaver index of general diversity, Simpson index of dominance and Simpson index of diversity were calculated. Denaturing gradient gel electrophoresis profiles clearly indicated differentiation of tested samples into two clusters: cultivated and non-cultivated soils. Greater numbers of dominant operational taxonomic units (65) in non-cultivated soils were noted compared to cultivated soils (47 operational taxonomic units). This implies that there was a reduction of dominant bacterial operational taxonomic units by nearly 30% in cultivated soils. Simpson dominance index expressing the number of species weighted by their abundance amounted to 1.22 in cultivated soils, whereas a 3-fold higher value (3.38) was observed in non-cultivated soils. Land-use practices seemed to be a important factors affected on biodiversity, because more than soil type determined the clustering into groups.

  1. A simple and automated sample preparation system for subsequent halogens determination: Combustion followed by pyrohydrolysis.

    PubMed

    Pereira, L S F; Pedrotti, M F; Vecchia, P Dalla; Pereira, J S F; Flores, E M M

    2018-06-20

    A simple and automated system based on combustion followed by a pyrohydrolysis reaction was proposed for further halogens determination. This system was applied for digestion of soils containing high (90%) and also low (10%) organic matter content for further halogens determination. The following parameters were evaluated: sample mass, use of microcrystalline cellulose and heating time. For analytes absorption, a diluted alkaline solution (6 mL of 25 mmol L -1  NH 4 OH) was used in all experiments. Up to 400 mg of soil with high organic matter content and 100 mg of soil with low organic matter content (mixed with 400 mg of cellulose) could be completely digested using the proposed system. Quantitative results for all halogens were obtained using less than 12 min of sample preparation step (about 1.8 min for sample combustion and 10 min for pyrohydrolysis). The accuracy was evaluated using a certified reference material of coal and spiked samples. No statistical difference was observed between the certified values and results obtained by the proposed method. Additionally, the recoveries obtained using spiked samples were in the range of 98-103% with relative standard deviation values lower than 5%. The limits of quantification obtained for F, Cl, Br and I for soil with high (400 mg of soil) and low (100 mg of soil) organic matter were in the range of 0.01-2 μg g -1 and 0.07-59 μg g -1 , respectively. The proposed system was considered as a simple and suitable alternative for soils digestion for further halogens determination by ion chromatography and inductively coupled plasma mass spectrometry techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Donaldson-Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL).

  3. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest

    PubMed Central

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450

  4. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    PubMed

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.

  5. Determination of gross alpha and gross beta in soil around repository facility at Bukit Kledang, Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Adziz, Mohd Izwan Abdul; Siong, Khoo Kok

    2018-04-01

    Recently, the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak, Malaysia, has been upgraded to repository facility upon the completion of decontamination and decommissioning (D&D) process. Thorium waste and contaminated material that may contain some minor amounts of thorium hydroxide were disposed in this facility. This study is conducted to determine the concentrations of gross alpha and gross beta radioactivities in soil samples collected around the repository facility. A total of 12 soil samples were collected consisting 10 samples from around the facility and 2 samples from selected residential area near the facility. In addition, the respective dose rates were measured 5 cm and 1 m above the ground by using survey meter with Geiger Muller (GM) detector and Sodium Iodide (NaI) detector. Soil samples were collected using hand auger and then were taken back to the laboratory for further analysis. Samples were cleaned, dried, pulverized and sieved prior to analysis. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Canberra Series 5 XLB - Automatic Low Background Alpha and Beta Counting System. The obtained results show that, the gross alpha and gross beta activity concentration ranged from 1.55 to 5.34 Bq/g with a mean value of 3.47 ± 0.09 Bq/g and 1.64 to 5.78 Bq/g with a mean value of 3.49 ± 0.09 Bq/g, respectively. These results can be used as an additional data to represent terrestrial radioactivity baseline data for Malaysia environment. This estimation will also serve as baseline for detection of any future related activities of contamination especially around the repository facility area.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    The Hanford Reach National Monument (HRNM) was created by presidential proclamation in 2000. It is located along the Columbia River in south central Washington and consists of five distinct units. The McGee Ranch-Riverlands and the North Slope units are addressed in this report. North Slope refers to two of the HRNM units: the Saddle Mountain Unit and the Wahluke Slope Unit. The Saddle Mountain and Wahluke Slope Units are located north of the Columbia River, while the McGee Ranch-Riverlands Unit is located south of the Columbia River and north and west of Washington State Highway 24. To fulfill internal U.S.more » Department of Energy (DOE) requirements prior to any radiological clearance of land, the DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Authorized limits for residual radioactive contamination were developed based on the DOE annual exposure limit to the public (100 mrem) using future potential land-use scenarios. The DOE Office of Environmental Management approved these authorized limits on March 1, 2004. Historical soil monitoring conducted on and around the HRNM indicated soil concentrations of radionuclides were well below the authorized limits (Fritz et al. 2003). However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the McGee Ranch-Riverlands and North Slope units were below the authorized limits. Sixty-seven soil samples were collected from the McGee Ranch-Riverlands and North Slope units. A software package (Visual Sample Plan) was used to plan the collection to assure an adequate number of samples were collected. The number of samples necessary to decide with a high level of confidence (99%) that the soil concentrations of radionuclides on the North Slope and McGee Ranch-Riverlands units did not exceed the authorized limits was determined to be 27. Additional soil samples were collected from areas suspected to have a potential for accumulation of radionuclides. This included samples collected from the riparian zone along the Columbia River, Savage Island, and other locations across the North Slope and McGee Ranch-Riverlands units. The 67 soil samples collected from the McGee Ranch-Riverlands and North Slope units all had concentrations of radionuclides far below the authorized limits established by the DOE. Statistical analysis of the results concluded that the Authorized Limits were not exceeded when total uncertainty was considered. The calculated upper confidence limit for each radionuclide measured in this study (which represents the value at which 99% of the measurements reside below with a 99% confidence level) was lower than the Authorized Limit for each radionuclide. The maximum observed soil concentrations for the radionuclides included in the authorized limits would result in a potential annual dose of 0.23 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem/year dose limit for members of the public. Furthermore, the results of the biota dose assessment screen, which used the RESRAD biota code, indicated that the sum of fractions is less than one. This assumed soil concentrations equal to the maximum concentrations of radionuclides measured on the McGee Ranch-Riverlands and North Slope units’ in this study. Since the sum of fractions was less than 1, dose to terrestrial biota will not exceed the recommended biota dose limit for the soil concentrations measured in this study.« less

  7. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse change. Key words: Andosols, β-glucosidase, Cellobiohydrolase, Chitinase, Phosphatase, Mt. Kilimanjaro

  8. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    NASA Astrophysics Data System (ADS)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar in VPH polluted soil.

  9. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    NASA Astrophysics Data System (ADS)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points will provide insight into the production and cycling of thermally-altered SOM and DOM. We hypothesize that PyC will be an important source of SOM to surface mineral soil horizons, and that the quantity of DOM will increase after fire, providing a rapid pulse of C to deep soils and aquatic systems.

  10. Effects of land conversion from native shrub to pistachio orchard on soil erodibility in an arid region.

    PubMed

    Yakupoglu, Tugrul; Gundogan, Recep; Dindaroglu, Turgay; Kara, Zekeriya

    2017-10-29

    Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin's instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.

  11. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.

    PubMed

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils.

  12. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopographymore » in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.« less

  13. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the scanned structures we will highlight interfaces i.e. pore-solid interface and soil-root interface. The latter will be linked to examples of fluorescent microscopy and scanning electron microscopy obtained from 2D sections revealing additional biological and chemical information in the respective microenvironment. Based on the combination of all 3D and 2D imaging data habitat features of soils can be characterized and combined with studies analyzing microbial rhizosphere colonization.

  14. Role of sulfates on highway heave in Lake County, Ohio.

    DOT National Transportation Integrated Search

    2014-01-01

    Samples from borings in areas of heave on Route 2, Lake County, OH were analyzed for the amount, mineral form, : and distribution of sulfates. In addition, samples of non-stabilized (NSS) and cement-stabilized (CSS) soils from : three stations along ...

  15. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis

    NASA Astrophysics Data System (ADS)

    Sergaliev, N. Kh.; Kakishev, M. G.; Zhiengaliev, A. T.; Volodin, M. A.; Andronov, E. E.; Pinaev, A. G.

    2015-04-01

    A method for the extraction of soil microbial DNA has been tested on chestnut soils (Kastanozems) of the West Kazakhstan region. The taxonomic analysis of soil microbiome libraries has shown that the phyla Actinobacteria and Proteobacteria constitute the largest part of microbial communities in the analyzed soils. The Archaea form an appreciable part of the microbiome in the studied samples. In the underdeveloped dark chestnut soil, their portion is higher than 11%. This is of interest, as the proportion of Archaea in the soil communities of virgin lands usually does not exceed 5%. In addition to the phyla mentioned above, there are representatives of the phyla Acidobacteria, Bacteroidetes, Firmicutes, Gemmatimonadales, Planctomycetes, and Verrucomicrobia, which are all fairly common in soil communities.

  16. Compost quality and its function as a soil conditioner of recultivation layers - a critical review

    NASA Astrophysics Data System (ADS)

    Beck-Broichsitter, Steffen; Fleige, Heiner; Horn, Rainer

    2018-01-01

    During a period of 4 years, soil chemical and physical properties of the temporary capping system in Rastorf (Northern Germany) were estimated, whereby compost was partly used as soil improver in the upper recultivation layer. The air capacity and the available water capacity of soil samples were first determined in 2013 (without compost), and then in 2015 (with compost) under laboratory conditions. Herein, the addition of compost had a positive effect on: the air capacity up to 13.4 cm3 cm-3; and the available water capacity up to 20.1 cm3 cm-3 in 2015, in the recultivation layer (0-20 cm). However, taking into account the in situ results of the tensiometer and frequency domain reflectometry measurements, the addition of compost had a negative effect. The soil-compost mixture led to restricted remoistening even after a normal summer drying period in autumn and induced more negative matric potentials in the recultivation layer. In summary, the soil-improving effect of the compost addition, in conjunction with an increased water storage capacity, is undeniable and was demonstrated in a combined field and laboratory study. Therefore, intensive hydrophobicity can inhibit the homogeneous remoistening of the soil, resulting in a decreased hydraulic effectiveness of the sealing system.

  17. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-06-01

    In soils, the isotopic composition of water (δ2H and δ18O) provides qualitative (e.g., location of the evaporation front) and quantitative (e.g., evaporation flux and root water uptake depths) information. However, the main disadvantage of the isotope methodology is that contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here we present a nondestructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8°C and 24°C, we demonstrate that our new method is capable of monitoring δ2H and δ18O in soils online with high precision and after calibration, also with high accuracy. Our sampling protocol enabled detecting changes of δ2H and δ18O following nonfractionating addition and removal of liquid water and water vapor of different isotopic compositions. Finally, the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.

  18. Development of a national geodatabase (Greece) for soil surveys and land evaluation using space technology and GIS

    NASA Astrophysics Data System (ADS)

    Bilas, George; Dionysiou, Nina; Karapetsas, Nikolaos; Silleos, Nikolaos; Kosmas, Konstantinos; Misopollinos, Nikolaos

    2016-04-01

    This project was funded by OPEKEPE, Ministry of Agricultural Development and Food, Greece and involves development of a national geodatabase and a WebGIS that encompass soil data of all the agricultural areas of Greece in order to supply the country with a multi-purpose master plan for agricultural land management. The area mapped covered more than 385,000 ha divided in more than 9.000 Soil Mapping Units (SMUs) based on physiographic analysis, field work and photo interpretation of satellite images. The field work included description and sampling in three depths (0-30, 30-60 and >60 cm) of 2,000 soil profiles and 8,000 augers (sampling 0-30 and >30 cm). In total more than 22,000 soil samples were collected and analyzed for determining main soil properties associated with soil classification and soil evaluation. Additionally the project included (1) integration of all data in the Soil Geodatabase, (2) finalization of SMUs, (3) development of a Master Plan for Agricultural Land Management and (4) development and operational testing of the Web Portal for e-information and e-services. The integrated system is expected, after being fully operational, to provide important electronic services and benefits to farmers, private sector and governmental organizations. An e-book with the soil maps of Greece was also provided including 570 sheets with data description and legends. The Master Plan for Agricultural Land Management includes soil quality maps for 30 agricultural crops, together with maps showing soil degradation risks, such as erosion, desertification, salinity and nitrates, thus providing the tools for soil conservation and sustainable land management.

  19. Soil Types Effect on Grape and Wine Composition in Helan Mountain Area of Ningxia

    PubMed Central

    Wang, Rui; Sun, Quan; Chang, Qingrui

    2015-01-01

    Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types—aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine. PMID:25706126

  20. Soil types effect on grape and wine composition in Helan Mountain area of Ningxia.

    PubMed

    Wang, Rui; Sun, Quan; Chang, Qingrui

    2015-01-01

    Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types--aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine.

  1. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE PAGES

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha –1 yr –1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. As a result, given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  2. Carbon Content of Managed Grasslands Under Mediterranean Climate and Implications for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Owen, J. J.; Silver, W. L.

    2012-12-01

    Grasslands cover approximately 25% of the terrestrial land surface and typically have considerable carbon (C) storage potential in soils. Human activities have the potential to release or increase C stored in grassland soils. In California, where half the land area is comprised of grasslands, soil C content spans almost an order of magnitude and is not well correlated with climate. The role of management practices in these patterns has not been previously explored. We measured soil C pools and soil physical characteristics at 10 grazed grassland sites in Marin and Sonoma counties in California. At each site, 2 to 3 fields with similar soil units but under different management practices (including manure amendment, tilling, irrigation, and seeding) were sampled at intervals to 50 cm-depth. Soil C varied by a factor of 2 and manure additions tended to increase soil C content by 3 to 15%. Manure additions did not always increase soil C, however. Grazed but otherwise undisturbed conservation land at one site had higher soil C than the adjacent manured fields. This was likely due to the presence of tall grasses and scattered shrubs on the conservation land versus the ryegrass, orchard grass, and clover seeded on the other fields. Variations were greater between sites than between fields at the same site. Soil C percentage decreased with depth but typically more than half of the total soil C content was located below 10-cm-depth, as observed elsewhere in California. We found that California grasslands perform an important ecosystem service by storing C in soil. Management through manure addition can increase that storage, the amount of which primarily depends on climate and soil texture.

  3. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    USGS Publications Warehouse

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  4. Changes in the dissolved organic matter leaching from soil under severe temperature and N-deposition.

    PubMed

    Nguyen, Hang Vo-Minh; Choi, Jung Hyun

    2015-06-01

    In this study, we conducted growth chamber experiments using three types of soil (wetland, rice paddy, and forest) under the conditions of a severe increase in the temperature and N-deposition in order to investigate how extreme weather influences the characteristics of the dissolved organic matter (DOM) leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 5 months of incubation, the dissolved organic carbon (DOC) concentrations decreased in the range of 21.1 to 88.9 %, while the specific UV absorption (SUVA) values increased substantially in the range of 19.9 to 319.9 % for all of the samples. Higher increases in the SUVA values were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The parallel factor analysis (PARAFAC) results showed that four fluorescence components: terrestrial humic-like (component 1 (C1)), microbial humic-like (component 2 (C2)), protein-like (component 3 (C3)), and anthropogenic humic-like (component 4 (C4)) constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. The principle component analysis (PCA) results indicated that severe temperatures and N-deposition could enhance the contribution of the aromatic carbon compounds and humic-like components in the soil samples.

  5. Resampling soil profiles can constrain large-scale changes in the C cycle: obtaining robust information from radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Prior, C.; Lambie, S.; Tate, K.; Bruhn, F.; Parfitt, R.; Schipper, L.; Wilde, R. H.; Ross, C.

    2006-12-01

    Soil organic matter contains more C than terrestrial biomass and atmospheric CO2 combined, and reacts to climate and land-use change on timescales requiring long-term experiments or monitoring. The direction and uncertainty of soil C stock changes has been difficult to predict and incorporate in decision support tools for climate change policies. Moreover, standardization of approaches has been difficult because historic methods of soil sampling have varied regionally, nationally and temporally. The most common and uniform type of historic sampling is soil profiles, which have commonly been collected, described and archived in the course of both soil survey studies and research. Resampling soil profiles has considerable utility in carbon monitoring and in parameterizing models to understand the ecosystem responses to global change. Recent work spanning seven soil orders in New Zealand's grazed pastures has shown that, averaged over approximately 20 years, 31 soil profiles lost 106 g C m-2 y-1 (p=0.01) and 9.1 g N m{^-2} y-1 (p=0.002). These losses are unexpected and appear to extend well below the upper 30 cm of soil. Following on these recent results, additional advantages of resampling soil profiles can be emphasized. One of the most powerful applications afforded by resampling archived soils is the use of the pulse label of radiocarbon injected into the atmosphere by thermonuclear weapons testing circa 1963 as a tracer of soil carbon dynamics. This approach allows estimation of the proportion of soil C that is `passive' or `inert' and therefore unlikely to respond to global change. Evaluation of resampled soil horizons in a New Zealand soil chronosequence confirms that the approach yields consistent values for the proportion of `passive' soil C, reaching 25% of surface horizon soil C over 12,000 years. Across whole profiles, radiocarbon data suggest that the proportion of `passive' C in New Zealand grassland soil can be less than 40% of total soil C. Below 30 cm, 1 kg C m-2 or more may be reactive on decadal timescales, supporting evidence of soil C losses from throughout the soil profiles. Information from resampled soil profiles can be combined with additional contemporary measurements to test hypotheses about mechanisms for soil C changes. For example, Δ14C in excess of 200‰ in water extractable dissolved organic C (DOC) from surface soil horizons supports the hypothesis that decadal movement of DOC represents an important translocation of soil C. These preliminary results demonstrate that resampling whole soil profiles can support substantial progress in C cycle science, ranging from updating operational C accounting systems to the frontiers of research. Resampling can be complementary or superior to fixed-depth interval sampling of surface soil layers. Resampling must however be undertaken with relative urgency to maximize the potential interpretive power of bomb-derived radiocarbon.

  6. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed Central

    Balk, Melike; Laverman, Anniet M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  7. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  8. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania

    PubMed Central

    2014-01-01

    Background Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. Method We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15–49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Results Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Conclusion Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita District are exposed to potentially high levels of chemical elements, depending upon frequency of consumption, daily amount consumed and the source location of soil eaten. PMID:24731450

  9. GEMAS: Geochemical distribution of iodine in European agricultural soil

    NASA Astrophysics Data System (ADS)

    Birke, Manfred; Reimann, Clemens; Ladenberger, Anna; Négrel, Philippe; Rauch, Uwe; Demetriades, Alecos; Korte, Frank; Dinelli, Enrico

    2017-04-01

    Iodine concentrations are reported for the < 2 mm fraction of soil samples from agricultural land (Ap, 0-20 cm, N=2213) in 33 European countries, covering 5.6 million km2 at a sample density of 1 sample per 2500 km2. The analyses were carried out by ED-XRFS (energy dispersive X-ray fluorescence spetrometry). The European median I concentration is 2.70 mg/kg in agricultural soil (including eastern Ukraine), with a range of < 0.5 to 317 mg I/kg. Only 2.5 % of the Ap samples returned results below detection for I. A comparison of the map of the measured I concentrations with that of the clr-transformed data provides additional information about sources and processes influencing the I distribution in agricultural soils at the European scale. The spatial distribution patterns of I in the Ap samples are mainly governed by climate, soil formation processes, and geology (parent material, in some cases mineralisation). The distribution of anomalous I concentrations is likely a reflection of I input from atmospheric and marine sources, as well as the accumulation of I as a result of sorption on organic material. Across Europe, high I areas correlate well with soil with elevated TOC values. This is particularly evident for the western coastal areas of Ireland, UK, Norway, Galicia and France, where the organic matter content in the soil is generally high. The continuous supply of I from sea spray represents a potential source for high and elevated I concentrations. In the coastal zones of SE Spain, SE Ukraine and SW Croatia the I concentration in Ap samples is usually high. Along the eastern Adriatic coast as well as in South-East Ukraine and in the Crimea the elevated and anomalous I concentrations correspond well with the distribution of terra rossa soils developed on karst and organic-rich soils (black soil). In SE Spain the I enriched soils are most likely related to the occurrence of evaporites. The comparison of I background values (medians) based on the parent materials demonstrates a higher I content in soils over limestone and shale. Iodine-low soil areas (< 1.5 mg I/kg) correspond well with sandy deposits (East Germany, Poland, Lithuania and Latvia), sedimentary rocks (central Iberian Peninsula) and glacial and aeolian deposits (NW Ukraine).

  10. Kinetics of hydrogen release from lunar soil

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.

  11. Temporal variations of low molecular mass organic acids during vegetation period in temperate forest soil affected by acidification

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Drabek, O.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.

    2011-12-01

    The Low Molecular Mass Organic Acids (LMMOA) are essential in processes affecting the soils and represent reactive fraction of dissolved organic carbon (DOC). LMMOA influence soil-chemistry behaviour, participate in transport of mineral nutrition and reduce potential toxicity of selected elements like Al. The aim of this research was to assess behaviour, amount and composition of LMMOA in forest soil under different vegetation cover. The researched area is located in the naturally acid Jizera Mountains (Czech Republic), which was further affected by acid deposition and improper forest management. Soil samples from organic F and H horizons, organo-mineral A horizon and spodic or cambic mineral B horizons were taken under beech and spruce stands monthly (from April to October). Both stands were located immediately next to each other. The collected soil samples were analyzed immediately in a "fresh" state. Contents of LMMOA in deionised water extract were determined by means of ion-exchange chromatography (ICS-1600, Dionex, USA) with suppressed conductivity and gradient elution of KOH mobile phase. The contents of LMMOAS were also determined in precipitation samples. In addition, other selected elements (Al, Fe, Ca, Na, Mg and K), Al speciation and main inorganic anions were determined in water extract and precipitation samples. The highest amounts of LMMOA (mainly lactic, acetic, formic, malic and oxalic acid) were observed in organic F and H horizons and measured amounts decreased with increasing soil profile depth. Higher contents were determined in soil under spruce forest than under beech forest. External inputs of LMMOA in a form of precipitation were assessed as less significant in comparison with the soil processes (e.g. soil biological activity, soil organic matter decomposition processes). LMMOA amounts were higher in spring and summer (from April to August), caused by increased biological activity, while lower amounts were observed during the autumn period. Soil LMMOA were influencing also Al behaviour and Al species representation to less potentially toxic Al species.

  12. Biogeography and Metabolic Potential of Soil Microbial Communities Across Local Environmental Gradients Illuminated Through Metagenomics

    NASA Astrophysics Data System (ADS)

    Sharrar, A.; Diamond, S.; Butterfield, C.; Starr, E.; Thomas, B. C.; Banfield, J. F.

    2016-12-01

    Soils are extremely heterogeneous and diverse microbial habitats. The distribution of microbes and their metabolic functions in soil is important for carbon and nitrogen cycling and overall ecosystem functioning. Little is known about biogeographical patterns of microbes in soil and how they relate to different environmental gradients. To address this topic, we have obtained metagenomes from 86 soil samples taken at the Eel River Critical Zone Observatory and a nearby meadow in the northern California Angelo Coast Range Reserve over a period of two years. These samples span a variety of environmental parameters, including depth, relief, time since last rainfall, and proximity to root carbon inputs. Phylogenetic diversity and community overlap between these samples was analyzed using ribosomal protein sequence identity and scaffold coverage. Independent of genomic bins, de-replicated ribosomal protein sequences were used to identify thousands of unique organisms between datasets. Despite environmental differences, a subset of these organisms were found in every sample. The dominant phyla in this cosmopolitan subset were Proteobacteria, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Acidobacteria, and Rokubacteria. Archaea and Nitrospirae were particularly prevalent at depths below 30cm. Patterns of ribosomal protein scaffold coverage across samples was used to compare the similarity of the microbial communities. We found that location was the greatest predictor of community similarity, followed by depth. In a subset of 60 samples taken in the same meadow, sampling plot was a greater predictor of community similarity than time since last rainfall in the same year. In addition, genome-independent analyses revealed differences in the metabolic potential for functions involved in nitrogen and carbon metabolism across environmental gradients. This study will further our understanding of soil biogeography and its relationship to overall biogeochemical cycling.

  13. Soil Biogeochemical and Biophysical Footprint of Forest to Pasture Conversion in the Western Pyrenees Mountains, France

    NASA Astrophysics Data System (ADS)

    Leigh, D.; Gragson, T. L.

    2017-12-01

    Summits of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, including use of fire. We hypothesize differences in soil chemical and physical traits evolved because of this transformation. Paired forest versus grassland soils were sampled at four separate hillslope sites having a clear boundary between the two vegetation types. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples from the upper 7.6 cm of the mineral soil within each vegetation type and the A horizon thickness was recorded at each core hole. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. Analyses included bulk density, pH, plant-available nutrients, organic matter, fulvic versus humic acids, total carbon and nitrogen, amorphous silica, and charcoal content. Results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, and have lower bulk densities. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we validated with saturated hydraulic conductivity tests. Melanization has been more pronounced in the managed pastures, which contain significantly more humic acids than forests. Significantly more charcoal (black carbon) is present in the pastured soils from long-term use of fire, and having implications for sequestration of carbon. Pastures register significantly higher soil magnetic susceptibility than forests, also related to past use of fire as a management tool. Pastures contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our results indicate better soil quality in pastured soils, counter to stereotypical concepts of soil degradation due to grazing, and having important implications for soil sustainability

  14. Monitoring water stable isotope composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-04-01

    The water stable isotopologues 1H2H16O and 1H218O are powerful tracers of processes occurring in nature. Their slightly different masses as compared to the most abundant water isotopologue (1H216O) affect their thermodynamic (e.g. during chemical equilibrium reactions or physical phase transitions with equilibration) and kinetic (liquid and vapor phases transport processes and chemical reactions without equilibration) properties. This results in measurable differences of the isotopic composition of water within or between the different terrestrial ecosystem compartments (i.e. sub-soil, soil, surface waters, plant, and atmosphere). These differences can help addressing a number of issues, among them water balance closure and flux partitioning from the soil-plant-atmosphere continuum at the field to regional scales. In soils particularly, the isotopic composition of water (δ2H and δ18O) provides qualitative information about whether water has only infiltrated or already been re-evaporated since the last rainfall event or about the location of the evaporation front. From water stable isotope composition profiles measured in soils, it is also possible, under certain hypotheses, to derive quantitative information such as soil evaporation flux and the identification of root water uptake depths. In addition, water stable isotopologues have been well implemented into physically based Soil-Vegetation-Atmosphere Transfer models (e.g. SiSPAT-Isotope; Soil-Litter iso; TOUGHREACT) and have demonstrated their potential. However, the main disadvantage of the isotope methodology is that, contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here, we present a non-destructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling and measuring water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8-24° C, we demonstrate that (i) our new method is capable of monitoring δ2H and δ18O in soils online with high precision and, after calibration, also with high accuracy, (ii) our sampling protocol enabled detecting changes of δ2H and δ18O following non-fractionating addition and removal of liquid water and water vapor of different isotopic compositions, and (iii) the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.

  15. Comparison of Soil Quality Index Using Three Methods

    PubMed Central

    Mukherjee, Atanu; Lal, Rattan

    2014-01-01

    Assessment of management-induced changes in soil quality is important to sustaining high crop yield. A large diversity of cultivated soils necessitate identification development of an appropriate soil quality index (SQI) based on relative soil properties and crop yield. Whereas numerous attempts have been made to estimate SQI for major soils across the World, there is no standard method established and thus, a strong need exists for developing a user-friendly and credible SQI through comparison of various available methods. Therefore, the objective of this article is to compare three widely used methods to estimate SQI using the data collected from 72 soil samples from three on-farm study sites in Ohio. Additionally, challenge lies in establishing a correlation between crop yield versus SQI calculated either depth wise or in combination of soil layers as standard methodology is not yet available and was not given much attention to date. Predominant soils of the study included one organic (Mc), and two mineral (CrB, Ko) soils. Three methods used to estimate SQI were: (i) simple additive SQI (SQI-1), (ii) weighted additive SQI (SQI-2), and (iii) statistically modeled SQI (SQI-3) based on principal component analysis (PCA). The SQI varied between treatments and soil types and ranged between 0–0.9 (1 being the maximum SQI). In general, SQIs did not significantly differ at depths under any method suggesting that soil quality did not significantly differ for different depths at the studied sites. Additionally, data indicate that SQI-3 was most strongly correlated with crop yield, the correlation coefficient ranged between 0.74–0.78. All three SQIs were significantly correlated (r = 0.92–0.97) to each other and with crop yield (r = 0.65–0.79). Separate analyses by crop variety revealed that correlation was low indicating that some key aspects of soil quality related to crop response are important requirements for estimating SQI. PMID:25148036

  16. Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere.

    PubMed

    Jorquera, Milko A; Saavedra, Nicolás; Maruyama, Fumito; Richardson, Alan E; Crowley, David E; del C Catrilaf, Rosa; Henriquez, Evelyn J; de la Luz Mora, María

    2013-02-01

    Phytate-mineralizing rhizobacteria (PMR) perform an essential function for the mineralization of organic phosphorus but little is known about their ecology in soils and rhizosphere. In this study, PCR-based methods were developed for detection and quantification of the Bacillus β-propeller phytase (BPP) gene. Experiments were conducted to monitor the presence and persistence of a phytate-mineralizing strain, Bacillus sp. MQH19, after inoculation of soil microcosms and within the rhizosphere. The occurrence of the BPP gene in natural pasture soils from Chilean Andisols was also examined. The results showed that the Bacillus BPP gene was readily detected in sterile and nonsterile microcosms, and that the quantitative PCR (qPCR) methods could be used to monitor changes in the abundance of the BPP gene over time. Our results also show that the addition of phytate to nonsterile soils induced the expression of the BPP gene in the rhizosphere of ryegrass and the BPP gene was detected in all pasture soils sampled. This study shows that phytate addition soils induced changes in the abundance and expression of Bacillus BPP to genes in the rhizosphere and demonstrates that Bacillus BPP gene is cosmopolitan in pasture soils from Chilean Andisols. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Empirical and mechanistic evaluation of NH4(+) release kinetic in calcareous soils.

    PubMed

    Ranjbar, F; Jalali, M

    2014-05-01

    Release, fixation, and distribution of ammonium (NH4(+)) as a source of nitrogen can play an important role in soil fertility and plant nutrition. In this study, ten surface soils, after addition of 1,000 mg NH4(+) kg(-1,) were incubated for 1 week at the field capacity moisture and 25 ± 2 °C temperature, and then NH4(+) release kinetic was investigated by sequential extractions with 10 mM CaCl2. Furthermore, NH4(+) distribution among three fractions, including water-soluble, exchangeable, and non-exchangeable, was determined in all soil samples. NH4(+) release was initially rapid followed by a slower reaction, and this was described well with the Elovich equation as an empirical model. The cumulative NH4(+) concentration released in spiked soil samples had a positive significant correlation with sand content and negative ones with pH, exchangeable Ca(2+)m and K(+), cation exchange capacity (CEC), equivalent calcium carbonate (ECC), and clay content. The cation exchange model in the PHREEQC program was successful in mechanistic simulation of the release trend of native and added NH4(+) in all control and spiked soil samples. The results of fractionation experiments showed that the non-exchangeable fraction in control and spiked soil samples was greater than that in water-soluble and exchangeable fractions. Soil properties, such as pH, exchangeable Ca(2+) and K(+), CEC, ECC, and contents of sand and clay, had significant influences on the distribution of NH4(+) among three measured fractions. This study indicated that both native and recently fixed NH4(+), added to soil through the application of fertilizers, were readily available for plant roots during 1 week after exposure.

  18. Non-isothermal infiltration and tracer transport experiments on large soil columns

    NASA Astrophysics Data System (ADS)

    Sobotkova, Martina; Snehota, Michal; Cejkova, Eva; Tesar, Miroslav

    2016-04-01

    Isothermal and non-isothermal infiltration experiments were carried out in the laboratory on large undisturbed soil columns (19 cm in diameter, 25 cm high) taken at the experimental catchments Roklan (Sumava Mountains, Czech Republic) and Uhlirska (Jizera Mountains, Czech republic). The aim of the study was twofold. The first goal was to obtain water flow and heat transport data for indirect parameter estimation of thermal and hydraulic properties of soils from two sites by inverse modelling. The second aim was to investigate the extent of impact of the temperature on saturated hydraulic conductivity (Ksat) and dispersity of solute transport. The temperature of infiltrating water in isothermal experiment (20 °C) was equal to the initial temperature of the sample. For non-isothermal experiment water temperature was 5°C, while the initial temperature of the sample was 20°C as in previous case. The experiment was started by flooding the sample surface. Then water level was maintained at constant level throughout the infiltration run using the optical sensor and peristaltic pump. Concentration pulse of deuterium was applied at the top of the soil sample, during the steady state flow. Initial pressure head in the sample was close to field capacity. Two tensiometers and two temperature sensors were inserted in the soil sample in two depths (9 and 15 cm below the top of the sample). Two additional temperature sensors monitored the temperature entering and leaving the samples. Water drained freely through the perforated plate at the bottom of sample by gravity. Inflow and outflow water flux densities, water pressure heads and soil temperatures were monitored continuously during experiments. Effluent was sampled in regular time intervals and samples were analysed for deuterium concentrations by laser spectroscopy to develop breakthrough curves. The outcome of experiments are the series of measured water fluxes, pressure heads and temperatures ready for inverse modelling by dual permeability. The saturated hydraulic conductivity of soil columns was higher in the case of higher temperature of flowing water. The change was however not proportional to Ksat change induced by temperature change of viscosity only.

  19. Short-Term Effect of Vermicompost Application on Biological Properties of an Alkaline Soil with High Lime Content from Mediterranean Region of Turkey

    PubMed Central

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  20. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases liberated from heated soil samples; (2) Identification of the asteroid soil mineralogy to aid in the selection process for returned samples; (3) Existence of oxygen in the asteroid soil and the potential for in-situ resource utilization (ISRU); and (4) Existence of water and other volatiles in the asteroid soil. Additional information is contained in the original extended abstract.

  1. Using the Rasch model as an objective and probabilistic technique to integrate different soil properties

    NASA Astrophysics Data System (ADS)

    Rebollo, Francisco J.; Jesús Moral García, Francisco

    2016-04-01

    Soil apparent electrical conductivity (ECa) is one of the simplest, least expensive soil measurements that integrates many soil properties affecting crop productivity, including, for instance, soil texture, water content, and cation exchange capacity. The ECa measurements obtained with a 3100 Veris sensor, operating in both shallow (0-30 cm), ECs, and deep (0-90 cm), ECd, mode, can be used as an additional and essential information to be included in a probabilistic model, the Rasch model, with the aim of quantifying the overall soil fertililty potential in an agricultural field. This quantification should integrate the main soil physical and chemical properties, with different units. In this work, the formulation of the Rasch model integrates 11 soil properties (clay, silt and sand content, organic matter -OM-, pH, total nitrogen -TN-, available phosphorus -AP- and potassium -AK-, cation exchange capacity -CEC-, ECd, and ECs) measured at 70 locations in a field. The main outputs of the model include a ranking of all soil samples according to their relative fertility potential and the unexpected behaviours of some soil samples and properties. In the case study, the considered soil variables fit the model reasonably, having an important influence on soil fertility, except pH, probably due to its homogeneity in the field. Moreover, ECd, ECs are the most influential properties on soil fertility and, on the other hand, AP and AK the less influential properties. The use of the Rasch model to estimate soil fertility potential (always in a relative way, taking into account the characteristics of the studied soil) constitutes a new application of great practical importance, enabling to rationally determine locations in a field where high soil fertility potential exists and establishing those soil samples or properties which have any anomaly; this information can be necessary to conduct site-specific treatments, leading to a more cost-effective and sustainable field management. Furthermore, from the measures of soil fertility potential at sampled locations, estimates can be computed using, for instance, a geostatistical algorithm, and these estimates can be utilized to map soil fertility potential and delineate with a rational basis the management zones in the field. Keywords: Rasch model; soil management; soil electrical conductivity; probabilistic algorithm.

  2. Predicting Soil Organic Carbon and Total Nitrogen in the Russian Chernozem from Depth and Wireless Color Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Mikhailova, E. A.; Stiglitz, R. Y.; Post, C. J.; Schlautman, M. A.; Sharp, J. L.; Gerard, P. D.

    2017-12-01

    Color sensor technologies offer opportunities for affordable and rapid assessment of soil organic carbon (SOC) and total nitrogen (TN) in the field, but the applicability of these technologies may vary by soil type. The objective of this study was to use an inexpensive color sensor to develop SOC and TN prediction models for the Russian Chernozem (Haplic Chernozem) in the Kursk region of Russia. Twenty-one dried soil samples were analyzed using a Nix Pro™ color sensor that is controlled through a mobile application and Bluetooth to collect CIEL*a*b* (darkness to lightness, green to red, and blue to yellow) color data. Eleven samples were randomly selected to be used to construct prediction models and the remaining ten samples were set aside for cross validation. The root mean squared error (RMSE) was calculated to determine each model's prediction error. The data from the eleven soil samples were used to develop the natural log of SOC (lnSOC) and TN (lnTN) prediction models using depth, L*, a*, and b* for each sample as predictor variables in regression analyses. Resulting residual plots, root mean square errors (RMSE), mean squared prediction error (MSPE) and coefficients of determination ( R 2, adjusted R 2) were used to assess model fit for each of the SOC and total N prediction models. Final models were fit using all soil samples, which included depth and color variables, for lnSOC ( R 2 = 0.987, Adj. R 2 = 0.981, RMSE = 0.003, p-value < 0.001, MSPE = 0.182) and lnTN ( R 2 = 0.980 Adj. R 2 = 0.972, RMSE = 0.004, p-value < 0.001, MSPE = 0.001). Additionally, final models were fit for all soil samples, which included only color variables, for lnSOC ( R 2 = 0.959 Adj. R 2 = 0.949, RMSE = 0.007, p-value < 0.001, MSPE = 0.536) and lnTN ( R 2 = 0.912 Adj. R 2 = 0.890, RMSE = 0.015, p-value < 0.001, MSPE = 0.001). The results suggest that soil color may be used for rapid assessment of SOC and TN in these agriculturally important soils.

  3. Area G Perimeter Surface-Soil and Single-Stage Water Sampling: Environmental Surveillance for Fiscal Years 1996 and 1997, Group ESH-19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs; Ron Conrad

    1998-10-01

    Area Gin Technical Area 54, has been the principal facility at Los Alamos National Laboratory for the storage and disposal of low-level, solid mixed, and transuranic radioactive waste since 1957. Soil samples were analyzed for tritium, isotopic plutonium, americium-241, and cesium-137. Thirteen metals-silver, arsenic, barium, beryllium, cadmium, chromium, mercury, nickel, lead, antimony, selenium, thallium and zinc-were analyzed on filtered-sediment fractions of the single-stage samples using standard analytical chemistry techniques. During the two years of sampling discussed in this report elevated levels of tritium (as high as 716,000 pCi/L) in soil were found for sampling sites adjacent to the tritium burialmore » shafts located on the south- central perimeter of Area G. Additionally, tritium concentrations in soil as high as 38,300 pCi/L were detected adjacent to the TRU pads in the northeast comer of Area G. Plutonium-238 activities in FY96 soils ranged from 0.001-2.866 pCi/g, with an average concentration of 0.336& 0.734 pCdg. Pu-238 activities in FY97 soils ranged from 0.002-4.890 pCi/g, with an average concentration of 0.437 & 0.928 pCdg. Pu-239 activities in FY96 soils ranged from 0.009 to 1.62 pCdg, with an average of 0.177- 0.297 pCdg. Pu-239 activities in FY97 soils ranged from 0.005 to 1.71 pCi/g, with an average of 0.290- 0.415 pCi/g. The locations of elevated plutonium readings were consistent with the history of plutonium disposal at Area G. The two areas of elevated Am-241 activity reflected the elevated activities found for plutonium, the average values for Am-241 on soils were 0.6-2.07 pCi/g, and 0.10-0.14 pCi/g respectively for samples collected in FY96 and FY97. CS-137 activities in soils had average values of 0.33 pCi/g, and 0.28 pCi/g respectively for samples collected in FY96 and 97. There was no perimeter area where soil concentrations of CS-137 were significantly elevated.« less

  4. Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation

    NASA Astrophysics Data System (ADS)

    Sakiah; Sembiring, M.; Hasibuan, J.

    2018-02-01

    Optimal nutrient delivery is one way to improve the quality and quantity of crop production. This is because the crops needs for nutrient is quite high, while the soil capacity in providing nutrients is limited. In addition to fertilization, nutrients can be given in the form of added organic material or planted as cover crop. The research took place from April to August 2016 in Bandar Pinang, Bandar Sumatera Indonesia Ltd. (SIPEF Group) plantation, with survey method. Soil samples were taken based on: Topography (flat and slope 15-30%), cover crop (with or without Mucuna bracteata) and plant age (seedling periods 1, 2 and 3). The soil sample is taken composite by zig zag method. The observed parameters were organic matter, N total, soil texture, bulk density and infiltration rate. Mucuna bracteata planting increased the contain of soil organic matter by 30.43% in flat area and 53.33% in hilly area, amount of N total soil by 27.27% in flat area and 7.69% at hilly area, bulk density 3.73 % In flat area and 0.41% in hilly area, soil infiltration by 48.88% with sandy clay dominant soil texture.

  5. Behavior of nonplastic silty soils under cyclic loading.

    PubMed

    Ural, Nazile; Gunduz, Zeki

    2014-01-01

    The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.

  6. Behavior of Nonplastic Silty Soils under Cyclic Loading

    PubMed Central

    Ural, Nazile; Gunduz, Zeki

    2014-01-01

    The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results. PMID:24672343

  7. Biological Soil Crusts of Arctic Svalbard-Water Availability as Potential Controlling Factor for Microalgal Biodiversity.

    PubMed

    Borchhardt, Nadine; Baum, Christel; Mikhailyuk, Tatiana; Karsten, Ulf

    2017-01-01

    In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

  8. Assessment of groundwater, soil-gas, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2011

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2011. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. This report is a revision of "Assessment of soil-gas, surface-water, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2010," Open-File Report 2011-1200, and supersedes that report to include results of additional samples collected in July 2011. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons and benzene and octane were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF on June 3, 2010, and then later retrieved on June 9, 2010. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene (BTEX) was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds detected above their respective method detection levels were naphthalene, 2-methyl-naphthalene, tridecane, 1,2,4-trimethylbenzene, and perchloroethylene. After the results of the 71 soil-gas samplers were received, 31 additional passive soil-gas samplers were deployed on July 14, 2011, and retrieved on July 18, 2011. These 31 samplers were deployed on a larger areal scale to better define the extent of the contamination. Total petroleum hydrocarbons were detected above their method detection level at all 31 samplers, whereas BTEX was detected above its method detection level at 17 of the 31 samplers. Other organic compounds detected above their method detection levels were naphthalene, 2-methyl-naphthalene, octane, undecane, tridecane, pentadecane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, chloroform, and perchloroethylene. Subsequent to the 2010 soil-gas survey, four areas determined to have elevated contaminant mass were selected and sampled for explosives and chemical agents. No detections of explosives or chemical agents above their respective method detection levels were found at any of the sampling locations. The same four locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. A fifth location also was selected on the basis of the elevated contaminant mass of the soil-gas survey. No metals that exceeded the Regional Screening Levels for Industrial Soils, as classified by the U.S. Environmental Protection Agency, were detected at any of the five VATF locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina, as classified by the South Carolina Department of Health and Environmental Control. Because South Carolina is adjacent to Georgia and the soils in the Coastal Plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The metals that were detected above the ambient background levels for South Carolina, as classified by the South Carolina Department of Health and Environmental Control, include aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, and zinc.

  9. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    NASA Astrophysics Data System (ADS)

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in significantly smaller rapidly cycling C pools (1.8 ± 0.4 %, p < 0.05). These results demonstrate that changes in tropical forest NPP have high potential to alter the storage and cycling of C in C-rich soils, and that secondary fertilization effects are likely.

  10. Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.

    PubMed

    Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni

    2018-03-01

    Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Progress in the Use of Rapid Molecular Techniques to Detect Life Forms in Soil: Implications for Interplanetary Astrobiology Missions

    NASA Technical Reports Server (NTRS)

    Warmflash, D.; Larios-Sanz, M.; Fox, G. E.; McKay, D. S.

    2002-01-01

    To demonstrate the feasibility of two promising technologies, we have applied Enzyme-Linked Immunosorbent Assay (ELISA) as well as probes that target the 16S rRNA molecule to search for life in terrestrial soil samples, known to contain numerous life forms. Additional information is contained in the original extended abstract.

  12. Stabilization of the As-contaminated soil from the metal mining areas in Korea.

    PubMed

    Ko, Myoung-Soo; Kim, Ju-Yong; Bang, Sunbeak; Lee, Jin-Soo; Ko, Ju-In; Kim, Kyoung-Woong

    2012-01-01

    The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.

  13. Nitrogen availability from residues-based biochar at two pyrolisis temperatures

    NASA Astrophysics Data System (ADS)

    Coscione, Aline Renee; Silveira Bibar, Maria Paula; de Andrade, Cristiano Alberto

    2014-05-01

    Biochar has been studied for several applications, such as soil quality improvement, heavy metals remediation and N2O mitigation. Considering the soil quality improvement aspect it is desirable to evaluate if the nitrogen content in biochar samples obtained from several residues used as the biomass sources could be available for plants. Samples of sewage sludge (SS), coffee grounds (CG), chicken manure (CM) and fungi mycelia (FM) were pyrolyzed at two temperatures, 400 and 700 oC (indicated by the number 4 and 7 in this abstract, respectively), in order to obtain the biochar samples. The Kjeldahl nitrogen of biochar was (% m/m): 3.0 (CM4, CG7, FM7 and CG4); 2.0 (CM7 e SS4); 3.4 (FM7); 1.4 (SS7), with organic carbon (potassium dichromate method) ranging from 2.0 to 3.0% for all but CG4 (6%). The C/N ratio of biochar samples was: 9 (CM4, SS4 and CG7); 11 (CM7); 15 (SS7); 7 (FM4 and FM7); 21 (CG4). The eight soil + biochar resulting mixtures, prepared using the equivalent to 60 t/ha of biochar (about 3% w/w), and one additional control treatment (no biochar added) were incubated for 90 days, with four replications of each treatment per time evaluated. Inorganic nitrogen and soil pH measurements were performed for all treatments at 0, 5, 15, 30, 60 and 90 days of incubation. Soil moisture was kept at 40% soil water holding capacity, by weighting, during the experiment. The data was submitted to ANOVA with Tukey's average comparison test (p < 0.05). No significative pH changes were observed during the incubation of biochar samples. At the initial incubation time (zero days) no statistical difference was observed among biochar sources or pyrolisis temperatures. After five days of incubation SS4 and CM4 showed significant inorganic nitrogen release compared to all other treatments, behavior repeated at all the following times evaluated. For CM7, FM4 and FM7 maximum nitrogen availability was observed after 15 days, while it occurred after 90 days for SS4. After 90 days, only SS4 and CM4 presented a positive nitrogen balance, reaching 8 and 9 % of the nitrogen added by biochar samples release to the soil, respectively. A first order kinetic model was adjusted for SS4 nitrogen release, enabling the calculation of half life (10 days), potential available nitrogen (76.5 mg/kg) and the speed of the process. However, compared to SS4 the standard nitrogen availability of sewage sludge is up to 30% of its Kjeldahl nitrogen. For organic residues with C/N ratios lower than 20 applied to the soil a fast degradation, with the corresponding increase in inorganic nitrogen availability is expect. Although all the biochar samples tested had C/N ratios below that cutting point, just 2 of 8 presented inorganic nitrogen available in the soil+biochar mixtures. These results show that soil incubation tests are ultimate for the evaluation of the nitrogen potential release to the soil. Low temperature SS based biochar may offer additional nitrogen release to soil besides other soil conditioning properties.

  14. Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey.

    PubMed

    Bayramin, Ilhami; Basaran, Mustafa; Erpul, Günay; Canga, Mustafa R

    2008-05-01

    There has been increasing concern in highlands of semiarid Turkey that conversion of these systems results in excessive soil erosion, ecosystem degradation, and loss of sustainable resources. An increasing rate of land use/cover changes especially in semiarid mountainous areas has resulted in important effects on physical and ecological processes, causing many regions to undergo accelerated environmental degradation in terms of soil erosion, mass movement and reservoir sedimentation. This paper, therefore, explores the impact of land use changes on land degradation in a linkage to the soil erodibility, RUSLE-K, in Cankiri-Indagi Mountain Pass, Turkey. The characterization of soil erodibility in this ecosystem is important from the standpoint of conserving fragile ecosystems and planning management practices. Five adjacent land uses (cropland, grassland, woodland, plantation, and recreational land) were selected for this research. Analysis of variance showed that soil properties and RUSLE-K statistically changed with land use changes and soils of the recreational land and cropland were more sensitive to water erosion than those of the woodland, grassland, and plantation. This was mainly due to the significant decreases in soil organic matter (SOM) and hydraulic conductivity (HC) in those lands. Additionally, soil samples randomly collected from the depths of 0-10 cm (D1) and 10-20 cm (D2) with irregular intervals in an area of 1,200 by 4,200 m sufficiently characterized not only the spatial distribution of soil organic matter (SOM), hydraulic conductivity (HC), clay (C), silt (Si), sand (S) and silt plus very fine sand (Si + VFS) but also the spatial distribution of RUSLE-K as an algebraically estimate of these parameters together with field assessment of soil structure to assess the dynamic relationships between soil properties and land use types. In this study, in order to perform the spatial analyses, the mean sampling intervals were 43, 50, 64, 78, 85 m for woodland, plantation, grassland, recreation, and cropland with the sample numbers of 56, 79, 72, 13, and 69, respectively, resulting in an average interval of 64 m for whole study area. Although nugget effect and nugget effect-sill ratio gave an idea about the sampling design adequacy, the better results are undoubtedly likely by both equi-probable spatial sampling and random sampling representative of all land uses.

  15. Do anaerobic digestates promote dispersion, acidification and water repellency in soils?

    NASA Astrophysics Data System (ADS)

    Voelkner, Amrei; Holthusen, Dörthe; Horn, Rainer

    2014-05-01

    Digestates are used as organic fertilizer on agricultural land due to their high amounts of nutrients (e.g. potassium, sodium). It is commonly expected that the application of sludge derived from anaerobic digestion can influence the soil structure and soil stability. Due to the fact that digestates contain large quantities of monovalent salts and long-chained fatty acids, the consequence of sludge amendment can be soil degradation caused by acidification, dispersion and increased water-repellency. Thus, water infiltration can be impeded which results in a preservation of stable soil aggregates. However, a diminished water infiltration can support water erosion and preferential flow of easy soluble nutrients into the groundwater. Our research was conducted with different digestates derived from maize, wheat and sugar beet to examine occurring processes in soils of two different textures after the application of anaerobic sludges. Particularly, we focused on the wetting properties of the soil. For this purpose, the wetting behavior was investigated by determining the sorptivity-based Repellency Index with moist samples and the contact angle with homogenized, air-dried soil material. Further surveys were carried out to assess the flow behavior of digestates application and the deformation of the particle-to-particle association by microscaled shearing. Additionally, the acidification process in the soil as a result of sludge application was investigated. To account for the dispersive impact of digestates, the turbidity of soil suspensions was ascertained. We summarize from the results that the digestates have a clear impact on the water repellency of the soil. We recognized a shift to more hydrophobic conditions. Partially, the pH remains on a high level due to the alkaline digestate, but several samples show a decline of pH, depending on the soil texture, respectively. However, soil structure was weakened as was shown by an increase of turbidity. As a conclusion, we point out the necessity to take into account the impact which anaerobic digestates might have on soil structure and stability in addition to their fertilizing effect to sustain the soil in a good state.

  16. Soil drying procedure affects the DNA quantification of Lactarius vinosus but does not change the fungal community composition.

    PubMed

    Castaño, Carles; Parladé, Javier; Pera, Joan; Martínez de Aragón, Juan; Alday, Josu G; Bonet, José Antonio

    2016-11-01

    Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.

  17. Practice-Based Evidence Informs Environmental Health Policy and Regulation: A Case Study of Residential Lead-Soil Contamination in Rhode Island

    PubMed Central

    Thompson, Marcella Remer; Burdon, Andrea; Boekelheide, Kim

    2013-01-01

    Prior to 1978, the exteriors of Rhode Island's municipal water towers were painted with lead-containing paint. Over time, this lead-containing paint either flaked-off or was mechanically removed and deposited on adjacent residential properties. Residents challenged inconsistencies across state agencies and federal requirements for collecting and analyzing soil samples. The purpose of this case study was to evaluate the efficacy of Rhode Island Department of Health (RIDOH) soil sampling regulations in determining the extent of lead contamination on residential properties using real world data. Researchers interviewed key government personnel, reviewed written accounts of events and regulations, and extracted and compiled lead data from environmental soil sampling on 31 residential properties adjacent to six municipal water towers. Data were available for 498 core samples. Approximately 26% of the residential properties had lead soil concentrations >1,000 mg/kg. Overall, lead concentration was inversely related to distance from the water tower. Analysis indicated that surface samples alone were insufficient to classify a property as “lead safe”. Potential for misclassification using RIDOH regulations was 13%. For properties deemed initially “lead free”, the total number of samples was too few to analyze. Post-remediation lead-soil concentrations suggest the extent of lead contamination may have been deeper than initially determined. Additional data would improve the ability to draw more meaningful and generalized conclusions. Inconsistencies among regulatory agencies responsible for environmental health obfuscate transparency and erode the public's trust in the regulatory process. Recommendations for improvement include congruency across departmental regulations and specific modifications to soil sampling regulations reflective of lowered CDC reference blood lead value for children 1 to 5 years old (5μg/dL). While scientific research informed the initial development of these environmental health policies and regulations, practice-based evidence did not support their efficacy in context of real world practice. PMID:24055667

  18. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions

    PubMed Central

    Angel, Roey; Claus, Peter; Conrad, Ralf

    2012-01-01

    The prototypical representatives of the Euryarchaeota—the methanogens—are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ13C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment. PMID:22071343

  19. Soil Organic Carbon and Below Ground Biomass: Development of New GLOBE Special Measurements

    NASA Technical Reports Server (NTRS)

    Levine, Elissa; Haskett, Jonathan

    1999-01-01

    A scientific consensus is building that changes in the atmospheric concentrations of radiatively active gases are changing the climate (IPCC, 1990). One of these gases CO2 has been increasing in concentration due to additions from anthropogenic sources that are primarily industrial and land use related. The soil contains a very large pool of carbon, estimated at 1550 Gt (Lal 1995) which is larger than the atmospheric and biosphere pools of carbon combined (Greenland, 1995). The flux between the soil and the atmosphere is very large, 60 Pg C/yr (Lal 1997), and is especially important because the soil can act as either a source or a sink for carbon. On any given landscape, as much as 50% of the biomass that provides the major source of carbon can be below ground. In addition, the movement of carbon in and out of the soil is mediated by the living organisms. At present, there is no widespread sampling of soil biomass in any consistent or coordinated manner. Current large scale estimates of soil carbon are limited by the number and widely dispersed nature of the data points available. A measurement of the amount of carbon in the soil would supplement existing carbon data bases as well as provide a benchmark that can be used to determine whether the soil is storing carbon or releasing it to the atmosphere. Information on the below ground biomass would be a valuable addition to our understanding of net primary productivity and standing biomass. The addition of these as special measurements within GLOBE would be unique in terms of areal extent and continuity, and make a real contribution to scientific understanding of carbon dynamics.

  20. Soil ingestion rates for children under 3 years old in Taiwan.

    PubMed

    Chien, Ling-Chu; Tsou, Ming-Chien; Hsi, Hsing-Cheng; Beamer, Paloma; Bradham, Karen; Hseu, Zeng-Yei; Jien, Shih-Hao; Jiang, Chuen-Bin; Dang, Winston; Özkaynak, Halûk

    2017-01-01

    Soil and dust ingestion rates by children are among the most critical exposure factors in determining risks to children from exposures to environmental contaminants in soil and dust. We believe this is the first published soil ingestion study for children in Taiwan using tracer element methodology. In this study, 66 children under 3 years of age were enrolled from Taiwan. Three days of fecal samples and a 24-h duplicate food sample were collected. The soil and household dust samples were also collected from children's homes. Soil ingestion rates were estimated based on silicon (Si) and titanium (Ti). The average soil ingestion rates were 9.6±19.2 mg/day based on Si as a tracer. The estimated soil ingestion rates based on Si did not have statistically significant differences by children's age and gender, although the average soil ingestion rates clearly increased as a function of children's age category. The estimated soil ingestion rates based on Si was significantly and positively correlated with the sum of indoor and outdoor hand-to-mouth frequency rates. The average soil ingestion rates based on Si were generally lower than the results from previous studies for the US children. Ti may not be a suitable tracer for estimating soil ingestion rates in Taiwan because the Ti dioxide is a common additive in food. To the best of our knowledge, this is the first study that investigated the correlations between soil ingestion rates and mouthing behaviors in Taiwan or other parts of Asia. It is also the first study that could compare available soil ingestion data from different countries and/or different cultures. The hand-to-mouth frequency and health habits are important to estimate the soil ingestion exposure for children. The results in this study are particularly important when assessing children's exposure and potential health risk from nearby contaminated soils in Taiwan.

  1. The role of acoustic screens in distribution of technogenic magnetic particles and chemical pollution in roadside soil

    NASA Astrophysics Data System (ADS)

    Wawer, Małgorzata; Magiera, Tadeusz; Szuszkiewicz, Marcin

    2015-04-01

    Roads constructed nowadays should by all means be functional for their motorized users but at the same time their effect on the environment ought to be limited to the minimum. Despite the existence of various methods for preventing from negative influence of roads on the environment, there is still lack of adequate techniques to monitor and reduce the spreading of roadside pollution in the air and soils. The aim of the study was to assess the influence of acoustic screens on spreading and deposition of solid pollutants deriving from car emissions, based on their quantitative and qualitative analysis. During this study, measurements of magnetic susceptibility and analyses of heavy metals as well as Pt and Rh contents in soil and plant samples (Taraxacum officinale, Plantago major, Parthenocissus quinquefolia) collected near different kinds of acoustic screens ("green walls", Plexiglass, sawdust concrete, steel panels and earth embankments) have been done. Previous investigations showed showed that most of traffic emission is deposited in the close vicinity of the roads (up to 10 m) and the level of contamination decreased with increasing distance from the road edge. However, the results of this project indicate that, in the area where the acoustic screens are located, this distribution is disturbed and the additional enrichment of heavy metals in soil about 10 - 15 m behind screens is observed. Spatial distribution of heavy metal contents in soil samples corresponds to its magnetic susceptibility values. High contents of Fe, Zn, Mn and Pb was observed next to acoustic screens made of sawdust concrete and steel panels. Additionally, concentration of Zn in soil samples collected close to these screens exceeded threshold value. Analyses of plants showed that the highest content of examined elements and highest values of magnetic susceptibility were recorded near road edge. What is more, samples of Parthenocissus quinquefolia collected at height 0.2 m were characterized by higher contents of Cu, Pb, Zn, Mn and Fe and higher magnetic susceptibility values than samples collected at height 2 m.

  2. Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution.

    PubMed

    Cui, Er-Ping; Gao, Feng; Liu, Yuan; Fan, Xiang-Yang; Li, Zhong-Yang; Du, Zhen-Jie; Hu, Chao; Neal, Andrew L

    2018-05-10

    The spread of antibiotic resistance genes (ARGs) has become a cause for serious concern because of its potential risk to public health. The use of unconventional water resources (e.g., reclaimed water or piggery wastewater) in agriculture to relieve groundwater shortages may result in an accumulation of ARGs in soil. Biochar addition has been proven to be a beneficial method to alleviate the pollution of ARGs in manure-amended soil. However, the role of biochar on ARGs in soil-plant systems repeatedly irrigated with unconventional water resources is unknown. Under reclaimed water or piggery wastewater irrigation, rhizobox experiments using maize plants in soil amended with biochar were conducted to investigate the variation of typical ARGs (tet and sul genes) in soil-plant systems during a 60-day cultivation, and ARGs was characterized by high-throughput qPCR with a 48 (assays) × 108 (samples) array. Only piggery wastewater irrigation significantly increased the abundance of ARGs in rhizosphere and bulk soils and root endophytes. Following 30-day cultivation, the abundance of ARGs in soil was significantly lower due to biochar addition. However, by day 60, the abundance of ARGs in soil supplemented with biochar was significantly higher than in the control soils. Antibiotics, bio-available heavy metals, nutrients, bacterial community, and mobile gene elements (MGEs) were detected and analyzed to find factors shaping ARGs dynamics. The behavior of ARGs were associated with antibiotics but not with bio-available heavy metals. The correlation between ARGs and available phosphorus was stronger than that of ARGs with total phosphorus. MGEs had good relationship with ARGs, and MGEs shifts contributed most to ARGs variation in soil and root samples. In summary, this study provides insights into potential options for biochar use in agricultural activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.

    Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gasmore » flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.« less

  4. Substrate quality and nutrient availability influence CO2 production from tropical peat decomposition

    NASA Astrophysics Data System (ADS)

    Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.

    2015-12-01

    In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.

  5. The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway).

    PubMed

    Mateos-Rivera, Alejandro; Yde, Jacob C; Wilson, Bryan; Finster, Kai W; Reigstad, Laila J; Øvreås, Lise

    2016-04-01

    Microbial communities in the glacier forefield of Styggedalsbreen, Norway, were investigated along a chronosequence from newly exposed soil to vegetated soils using next-generation sequencing of the 16S rRNA gene. In order to monitor the short-term effect of temperature on community successions along the soil gradient, the soil samples were incubated at three different temperatures (5°C, 10°C and 22°C). The microbial community composition along the chronosequence differed according to distance from the glacial terminus and incubation temperature. Samples close to the glacier terminus were dominated by Proteobacteria at 5°C and 10°C, while at 22°C members of Chloroflexi, Acidobacteria and Verrucomicrobia in addition to Proteobacteria accounted for most of the diversity, indicating that sites close to the glacier terminus are more closely related to former subglacial environments. Within the Archaea domain, members of the phylum Euryarchaeota dominated in samples closer to the glacier terminus with a shift to members of the phyla Thaumarchaeota-Crenarchaeota with increased soil age. Our data indicate that composition and diversity of the microbial communities along the glacier forefield depend not only on exposure time but are also to a large degree influenced by soil surface temperature and soil maturation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Spatial Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Concentrations in Soils from Bursa, Turkey.

    PubMed

    Karaca, Gizem

    2016-02-01

    The objectives of this study were to identify regional variations in soil polycyclic aromatic hydrocarbon (PAH) contamination in Bursa, Turkey, and to determine the distributions and sources of various PAH species and their possible sources. Surface soil samples were collected from 20 different locations. The PAH concentrations in soil samples were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations (∑12 PAH) varied spatially between 8 and 4970 ng/g dry matter (DM). The highest concentrations were measured in soils taken from traffic+barbecue+ residential areas (4970 ng/g DM) and areas with cement (4382 ng/g DM) and iron-steel (4000 ng/g DM) factories. In addition, the amounts of ∑7 carcinogenic PAH ranged from 1 to 3684 ng/g DM, and between 5 and 74 % of the total PAHs consisted of such compounds. Overall, 4-ring PAH compounds (Fl, Pyr, BaA and Chr) were dominant in the soil samples, with 29-82 % of the ∑12 PAH consisting of 4-ring PAH compounds. The ∑12 BaPeq values ranged from 0.1 to 381.8 ng/g DM. Following an evaluation of the molecular diagnostic ratios, it was concluded that the PAH pollution in Bursa soil was related to pyrolytic sources; however, the impact of petrogenic sources should not be ignored.

  7. Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout.

    PubMed

    Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo

    2015-07-17

    For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m(2)) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The (240)Pu/(239)Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China.

  8. Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout

    PubMed Central

    Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo

    2015-01-01

    For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m2) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The 240Pu/239Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China. PMID:26184740

  9. Total elemental composition analysis of soil samples using the PIXE technique

    NASA Astrophysics Data System (ADS)

    Bolormaa, Oyuntsetseg; Baasansuren, Jamsranjav; Kawasaki, Katsunori; Watanabe, Makiko; Hattroi, Toshiyuki

    2007-09-01

    The determination of major and trace element contents in soils was developed by acid digestion method combined with particle-induced X-ray emission spectrometry (PIXE). The digestion of soils was achieved by using nitric acid (HNO3), hydrochloric acid HCl and hydrogen peroxide (H2O2) with repeated additions. A 20 μL aliquot from the digested samples was evaporated on the Nuclepore Track-Etch Membrane and irradiated by the 2.5 MeV proton beam from the single-end type Van de Graaff accelerator. The accuracy of this methodology was estimated based on series of measurements done for a reference material of soil CRM 023-050. The proposed experimental procedure was shown to have good reproducibility of the experimental results. The corresponding limits of detection (LODs) for Na, Mg, Al, P, S, Cl, K, Cr, Mn, Fe, Ni, Cu, Zn, As, Sr, Mo and Cd were estimated. Other soil characteristics such as total carbon (TC) and nitrogen (TN) content, pH and electrical conductivity (EC) were also measured.

  10. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry.

    PubMed

    Chen, Laiguo; Huang, Yumei; Han, Shuang; Feng, Yongbin; Jiang, Guo; Tang, Caiming; Ye, Zhixiang; Zhan, Wei; Liu, Ming; Zhang, Sukun

    2013-01-25

    Accurately quantifying short chain chlorinated paraffins (SCCPs) in soil samples with gas chromatograph coupled with electron capture negative ionization mass spectrometry (GC-ECNI-MS) is difficult because many other polychlorinated pollutants are present in the sample matrices. These pollutants (e.g., polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and toxaphene) can cause serious interferences during SCCPs analysis with GC-MS. Four main columns packed with different adsorbents, including silica gel, Florisil and alumina, were investigated in this study to determine their performance for separating interfering pollutants from SCCPs. These experimental results suggest that the optimum cleanup procedure uses a silica gel column and a multilayer silica gel-Florisil composite column. This procedure completely separated 22 PCB congeners, 23 OCPs and three toxaphene congeners from SCCPs. However, p,p'-DDD, cis-nonachlor and o,p'-DDD were not completely removed and only 53% of the total toxaphene was removed. This optimized method was successfully and effectively applied for removing interfering pollutants from real soil samples. SCCPs in 17 soil samples from different land use areas within a suburban region were analyzed with the established method. The concentrations of SCCPs in these samples were between 7 and 541 ng g(-1) (mean: 84 ng g(-1)). Similar homologue SCCPs patterns were observed between the soil samples collected from different land use areas. In addition, lower chlorinated (Cl(6/7)) C(10)- and C(11)- SCCPs were the dominant congeners. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Culturable psychrotolerant methanotrophic bacteria in landfill cover soil].

    PubMed

    Kallistova, A Iu; Montonen, L; Jurgens, G; Munster, U; Kevbrina, M V; Nozhevnikova, A N

    2014-01-01

    Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.

  12. Structural analysis of geochemical samples by solid-state nuclear magnetic resonance spectrometry. Role of paramagnetic material

    USGS Publications Warehouse

    Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.

    1987-01-01

    An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.

  13. Magnetic studies on Apollo 15 and 16 lunar samples

    NASA Technical Reports Server (NTRS)

    Pearce, G. W.; Gose, W. A.; Strangway, D. W.

    1973-01-01

    The magnetic properties of lunar samples are almost exclusively due to rather pure metallic iron. The mare basalt contains about 0.06 wt.% Fe, the soils 0.5-0.6 wt.%, and the breccias 0.3-1.0 wt.%. Most of the additional iron in the soils and breccias is believed to be the result of reduction processes operating on the lunar surface. Whereas the total metallic iron content of the soils from all landing sites is rather constant, the Fe(0)/Fe(++) ratio and the average iron grain size increase with the age of the landing site, reflecting increasing maturity. The crystalline rocks studied from Apollo 16 have highly variable, but generally, very high metallic Fe content (up to 1.7 wt.% Fe). It is suggested that these rocks are either breccias or igneous samples which have been severely thermally metamorphosed in a highly reducing environment.

  14. SEDIMENT-HOSTED PRECIOUS METAL DEPOSITS.

    USGS Publications Warehouse

    Bagby, W.C.; Pickthorn, W.J.; Goldfarb, R.; Hill, R.A.

    1984-01-01

    The Dee mine is a sediment-hosted, disseminated gold deposit in the Roberts Mountains allochthon of north central Nevada. Soil samples were collected from the C-horizon in undisturbed areas over the deposit in order to investigate the usefulness of soil geochemistry in identifying this type of deposit. Each sample was sieved to minus 80 mesh and analyzed quantitatively for Au, Ag, As, Sb, Hg, Tl and semi-quantitative data for an additional 31 elements. Rank sum analysis is successful for the Au, Ag, As, Sb, Hg, Tl suite, even though bedrock geology is disregarded. This method involves data transformation into a total element signature by ranking the data in ascending order and summing the element ranks for each sample. The rank sums are then divided into percentile groups and plotted. The rank sum plot for the Dee soils unequivocally identifies three of four known ore zones.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Walter S.

    The 324 Building on the Hanford site played a key role in radiochemical and metallurgical research programs conducted by DOE. The B hot cell in the 324 Building was the site of high-level waste vitrification research. During clean-out operations in November 2009, a tear was noted in the stainless steel liner on the floor of B Cell. Exposure rate readings taken at various locations in the soil about 0.5 meters below B Cell reached 8,900 Roentgen (R) per hour, confirming the existence of a significant soil contamination field. The source of the radioactive material was likely a 510 L spillmore » from the Canister Fabrication Project, consisting of purified, concentrated Cs-137 and Sr-90 solutions totaling 48,000 TBq (1.3 MCi). MCNP modeling was used to estimate that the measured exposure rates were caused by 5,900 TBq (160 kCi) of Sr- 90 and Cs-137, although additional contamination was thought to exist deeper in the soil column. Two physical soil samples were obtained at different depths, which helped verify the contamination estimates. A detailed exposure rate survey inside B Cell was combined with additional MCNP modeling to estimate that an additional 1,700 TBq (460 kCi) is present just below the floor. Based on the results of the sampling campaign, it is likely that the radioactive material below B Cell is primarily consists of feed solutions from the FRG Canister Fabrication Project, and that it contains purified Sr-90 and Cs-137 with enough actinide carryover to make some of the soil transuranic. The close agreement between the Geoprobe calculations and the physical samples adds confidence that there are more than 3700 TBq (100,000 Ci) of Sr-90 and Cs-137 in the soil approximately 1 meter below the cell floor. The majority of the Cs-137 is contained in the first meter of soil, while significant Sr-90 contamination extends to 10 meters below the cell floor. It is also likely that an additional 15,000 TBq (400,000 Ci) of Cs-137 and Sr-90 activity is present directly below the floor of the cell, and that the residual activity inside the cell is only half of the previous estimates. However, the partitioning of activity between residuals in the cell and in the soil below the floor is much more uncertain than the activity calculations associated with the Geoprobe measurements. Taken together, the calculated soil activities represent about half of the spill associated with the FRG Canister Fabrication project. The remainder of the spill is believed to have remained in the cell, where the majority has been removed as part of cell cleanup activities. The magnitude of the soil contamination below 324 B Cell is sobering, and it represents one of the most challenging remediation activities in the DOE complex. Of course, safe remediation begins with a good understanding of the magnitude of the problem. As a result, additional modeling and cross-comparison efforts are planned for 2012. (authors)« less

  16. Co-occurring anammox, denitrification, and codenitrification in agricultural soils.

    PubMed

    Long, Andrew; Heitman, Joshua; Tobias, Craig; Philips, Rebecca; Song, Bongkeun

    2013-01-01

    Anammox and denitrification mediated by bacteria are known to be the major microbial processes converting fixed N to N(2) gas in various ecosystems. Codenitrification and denitrification by fungi are additional pathways producing N(2) in soils. However, fungal codenitrification and denitrification have not been well investigated in agricultural soils. To evaluate bacterial and fungal processes contributing to N(2) production, molecular and (15)N isotope analyses were conducted with soil samples collected at six different agricultural fields in the United States. Denitrifying and anammox bacterial abundances were measured based on quantitative PCR (qPCR) of nitrous oxide reductase (nosZ) and hydrazine oxidase (hzo) genes, respectively, while the internal transcribed spacer (ITS) of Fusarium oxysporum was quantified to estimate the abundance of codenitrifying and denitrifying fungi. (15)N tracer incubation experiments with (15)NO(3)(-) or (15)NH(4)(+) addition were conducted to measure the N(2) production rates from anammox, denitrification, and codenitrification. Soil incubation experiments with antibiotic treatments were also used to differentiate between fungal and bacterial N(2) production rates in soil samples. Denitrifying bacteria were found to be the most abundant, followed by F. oxysporum based on the qPCR assays. The potential denitrification rates by bacteria and fungi ranged from 4.118 to 42.121 nmol N(2)-N g(-1) day(-1), while the combined potential rates of anammox and codenitrification ranged from 2.796 to 147.711 nmol N(2)-N g(-1) day(-1). Soil incubation experiments with antibiotics indicated that fungal codenitrification was the primary process contributing to N(2) production in the North Carolina soil. This study clearly demonstrates the importance of fungal processes in the agricultural N cycle.

  17. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China

    PubMed Central

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca2+ were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca2+. Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95g.kg-1). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca2+ to DOM, application of chemical fertilizers weakened Ca2+ association with components of the amide II group (1510 cm-1) and Si-O linkage (1080 cm-1), whereas application of goat manure enhanced the affinity of Ca2+ for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca2+ and organic matter complexes. PMID:26751962

  18. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.

    PubMed

    Fernández, Pilar; Sommer, Irene; Cram, Silke; Rosas, Irma; Gutiérrez, Margarita

    2005-09-15

    Dehydrogenase activity (DHA) in soils contaminated by arsenic-bearing tailings was correlated with total arsenic and total water-soluble arsenic (As(III)+As(V)) to evaluate the impact of tailings dispersion on the oxidative capacity of soil microorganisms. Georeferenced surface soil samples (0-10 cm depth) were collected at different distances from a tailings dam. In the samples farthest from the dam, all water-soluble arsenic (avg. 0.6+/-0.1 mg kg(-1)) was As(V). The highest concentration of water-soluble As(III)+As(V) (>1.9 mg kg(-1)) was found where As(III) was present. DHA averaged 438.9+/-79.3 microg INTF g(-1) h(-1) at the greatest distance from the dam and decreased to 92.3+/-27.1 microg INTF g(-1) h(-1) with decreasing distance from the dam. Pearson correlation coefficient between DHA and samples containing water-soluble As(V) (r=-0.87) was greater than that between DHA and total water-soluble arsenic (r=-0.57). The correlation between DHA and soluble arsenic containing both As(V) and As(III) was not significant (r=0.24). In soils with detectable As(III) concentrations where wet conditions prevail (i.e., reducing conditions), there is an abiotic response in addition to a biotic one. The correlation between DHA and total water-soluble As(III)+ As(V) was higher (r=-0.79) when the abiotic response was excluded. Our study demonstrated the importance of distinguishing between total and available fraction and its species and the need to evaluate biological functions in addition to purely geochemical analyses. DHA bioassay combined with other microbial properties offers a good tool for evaluating soil microbial activity and status and is a suitable indicator of the oxidative capacity of soil microorganisms affected by tailings in an oxidizing environment; however, under reducing conditions, abiotic responses must also be studied.

  19. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    PubMed

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes.

  20. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China.

    PubMed

    Shi, Rongguang; Xu, Mengmeng; Liu, Aifeng; Tian, Yong; Zhao, Zongshan

    2017-10-14

    Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ 16 PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.

  1. Biodegradation of simazine in olive fields.

    PubMed

    Santiago, R; De Prado, R; Franco, A R

    2003-01-01

    Simazine (2-chloro-4, bis ethylamino-1,3,5-triazine) is a herbicide of the s-triazine group used mainly to control broad-leaved weeds in different crops. Several papers report about simazine and other s-triazine derivates as being actual polluting agents. In fact, simazine has been detected in groundwater and soil. Since this herbicide has been extensively used in Andalusia (south of Spain), we are analyzing the levels of simazine residues found in the soil of olive fields. We are also simazine could be detected isolating live micro organisms able to degrade this compound, and are characterizing the metabolic pathways leading to this degradation and the fate of this compound in nature. With all these data in mind, we will try to develop a strategy for the bioremediation of contaminated soils. We have taken samples of soil from many olive orchards of Andalusia that have been treated with simazine. These samples were located with the help of a handheld GPS. The presence of simazine of these samples was detected by HPLC. In most of the samples taken no, and those where it could be, contained very low levels of this herbicide (lower than 0.5 ppm). Soil samples are being characterized to determine their physicochemical characteristics [pH, organic matter, texture, etc), and we are attempting to correlate all these parameters with the presence or absence of simazine. From some of the soils, we have isolated a group of micro organisms that can grow using simazine as the sole carbon and nitrogen sources. We are analyzing how the addition of carbon or nitrogen can influence the rate of the simazine degradation.

  2. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples.

    PubMed

    Jiang, Bo; Li, Guanghe; Xing, Yi; Zhang, Dayi; Jia, Jianli; Cui, Zhisong; Luan, Xiao; Tang, Hui

    2017-10-01

    Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples. Copyright © 2017. Published by Elsevier Ltd.

  3. Function of peatland located on secondary transformed peat-moorsh soils on groundwater purification processes and the elution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Szczepański, M.; Szajdak, L.; Bogacz, A.

    2009-04-01

    The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.

  4. Depletion of Stem Water of Sclerocarya birrea Agroforestry Tree Precedes Start of Rainy Season in West African Sudanian Zone

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Parlange, Marc B.

    2013-04-01

    Understanding water use by agroforestry trees in dry-land ecosystems is essential for improving water management. Agroforestry trees are valued and promoted for many of their ecologic and economic benefits but are often criticized as competing for valuable water resources. In order to understand the seasonal patterns of source water used by agroforestry trees, samples from rain, ground, and surface water were collected weekly in the subcatchment of the Singou watershed that is part of the Volta Basin. Soil and vegetation samples were collected from and under a Sclerocarya birrea agroforstry trees located in this catchment in sealed vials, extracted, and analyzed with a Picarro L2130-i CRDS to obtain both δO18 and δDH fractions. Meteorological measurements were taken with a network of wireless, autonomous stations that communicate through the GSM network (Sensorscope) and two complete eddy-covariance energy balance stations, in addition to intense monitoring of sub-canopy solar radiation, throughfall, stemflow, and soil moisture. Examination of the time series of δO18 concentrations confirm that values in soil and xylem water are coupled, both becoming enriched during the dry season and depleted during the rainy season. Xylem water δO18 levels drops to groundwater δO18 levels in early March when trees access groundwater for leafing out, however soil water does not reach this level until soil moisture increases in mid-June. The relationship between the δDH and δO18 concentrations of water extracted from soil and tree samples do not fall along the global meteoric water line. In order to explore whether this was a seasonally driven, we grouped samples into an "evaporated" group or a "meteoric" group based on the smaller residual to the respective lines. Although more soil samples were found along the m-line during the rainy season than tree samples or dry season soil samples, there was no significant difference in days since rain for any group This suggests that xylem water is always under stress from evapotranspiration and soil water underwent evaporation soon after a rain event. Visual observation of tree confirms conclusion that trees access deep ground water in March and April, before rain begins and before soil is connected to groundwater. Results from the research are being integrated into a local outreach project to improve use of agroforestry.

  5. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    USGS Publications Warehouse

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  6. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-12-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area. Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH. Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil. As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  7. Chronic copper toxicosis in sheep following the use of copper sulfate as a fungicide on fruit trees.

    PubMed

    Oruc, Hasan H; Cengiz, Murat; Beskaya, Atilla

    2009-07-01

    Between January and October 2006, 15 Chios sheep died in a field located near a factory in Orhangazi, Bursa, Turkey. In addition, in May 2007, 2 ewes died after aborting in the same field. Clinical signs in affected animals prior to death were anorexia, hematuria, icterus, incoordination, and ptyalism. Postmortem findings included generalized icterus; yellow, friable livers; distended gallbladders with dense, dark bile; and dark, hypertrophic kidneys with hemorrhage. Copper (Cu) concentrations were measured in multiple specimens of the following: 9 sera, 3 livers, 3 kidneys, 4 plants (including 2 artichoke leaf specimens), 3 soil samples, and 1 drinking water sample. High Cu concentrations were present in the livers, kidneys, and sera of dead sheep, as well as in the vegetation and soil samples from the field. Chronic Cu toxicosis was confirmed as the cause of death attributed primarily to the use of copper sulfate as a fungicide for fruit trees within the field. In addition, factory dust containing Cu might have been an additional factor in the toxicosis.

  8. Large scale prediction of soil properties in the West African yam belt based on mid-infrared soil spectroscopy

    NASA Astrophysics Data System (ADS)

    Baumann, Philipp; Lee, Juhwan; Paule Schönholzer, Laurie; Six, Johan; Frossard, Emmanuel

    2016-04-01

    Yam (Dioscorea sp.) is an important staple food in West Africa. Fertilizer applications have variable effects on yam tuber yields, and a management option solely based on application of mineral NPK fertilizers may bear the risk of increased organic matter mineralization. Therefore, innovative and sustainable nutrient management strategies need to be developed and evaluated for yam cultivation. The goal of this study was to establish a mid-infrared soil spectroscopic library and models to predict soil properties relevant to yam growth. Soils from yam fields at four different locations in Côte d'Ivoire and Burkina Faso that were representative of the West African yam belt were sampled. The project locations ranged from the humid forest zone (5.88 degrees N) to the northern Guinean savannah (11.07 degrees N). At each location, soils of 20 yam fields were sampled (0-30 cm). For the location in the humid forest zone additional 14 topsoil samples from positions that had been analyzed in the Land Degradation Surveillance Framework developed by ICRAF were included. In total, 94 soil samples were analyzed using established reference analysis protocols. Besides soils were milled and then scanned by fourier transform mid-infrared spectroscopy in the range between 400 and 4000 reciprocal cm. Using partial least squares (PLS) regression, PLS1 calibration models that included soils from the four locations were built using two thirds of the samples selected by Kennard-Stones sampling algorithm in the spectral principal component space. Models were independently validated with the remaining data set. Spectral models for total carbon, total nitrogen, total iron, total aluminum, total potassium, exchangeable calcium, and effective cation exchange capacity performed very well, which was indicated by R-squared values between 0.8 and 1.0 on both calibration and validation. For these soil properties, spectral models can be used for cost-effective, rapid, and accurate predictions. Measures of total silicium, total zinc, total copper, total manganese, pH, exchangeable magnesium, total sulfur, total phosphorus, resin membrane extractable phosphorus, DTPA iron, and DTPA copper were predicted with intermediate accuracy (R-squared of both calibration and validation between 0.5 and 0.8). For these measures, the models can be used to establish a rapid screening in order to distinguish high from low soil fertility status. Generally, soil fertility in West African soils is constrained by low organic C, for example, ranging between 0.2% to 2.5% in this study. The accurate prediction of total soil organic C is an important factor for monitoring soil fertility status. Results of this study showed that soil spectroscopy has a high potential to evaluate soil fertility in the selected locations.

  9. More Poop, More Precision: Improving Epidemiologic Surveillance of Soil-Transmitted Helminths with Multiple Fecal Sampling using the Kato-Katz Technique.

    PubMed

    Liu, Chengfang; Lu, Louise; Zhang, Linxiu; Bai, Yu; Medina, Alexis; Rozelle, Scott; Smith, Darvin Scott; Zhou, Changhai; Zang, Wei

    2017-09-01

    Soil-transmitted helminths, or parasitic intestinal worms, are among the most prevalent and geographically widespread parasitic infections in the world. Accurate diagnosis and quantification of helminth infection are critical for informing and assessing deworming interventions. The Kato-Katz thick smear technique, the most widely used laboratory method to quantitatively assess infection prevalence and infection intensity of helminths, has often been compared with other methods. Only a few small-scale studies, however, have considered ways to improve its diagnostic sensitivity. This study, conducted among 4,985 school-age children in an area of rural China with moderate prevalence of helminth infection, examines the effect on diagnostic sensitivity of the Kato-Katz technique when two fecal samples collected over consecutive days are examined and compared with a single sample. A secondary aim was to consider cost-effectiveness by calculating an estimate of the marginal costs of obtaining an additional fecal sample. Our findings show that analysis of an additional fecal sample led to increases of 23%, 26%, and 100% for Ascaris lumbricoides, Trichuris trichiura , and hookworm prevalence, respectively. The cost of collecting a second fecal sample for our study population was approximately USD4.60 per fecal sample. Overall, the findings suggest that investing 31% more capital in fecal sample collection prevents an underestimation of prevalence by about 21%, and hence improves the diagnostic sensitivity of the Kato-Katz method. Especially in areas with light-intensity infections of soil-transmitted helminths and limited public health resources, more accurate epidemiological surveillance using multiple fecal samples will critically inform decisions regarding infection control and prevention.

  10. Natural and enhanced biodegradation of propylene glycol in airport soil.

    PubMed

    Toscano, Giuseppe; Colarieti, M Letizia; Anton, Attila; Greco, Guido; Biró, Borbála

    2014-01-01

    Aircraft de-icing fluids (ADF) are a source of water and soil pollution in airport sites. Propylene glycol (PG) is a main component in several commercial formulations of ADFs. Even though PG is biodegradable in soil, seasonal overloads may result in occasional groundwater contamination. Feasibility studies for the biostimulation of PG degradation in soil have been carried out in soil slurries, soil microcosms and enrichment cultures with and without the addition of nutrients (N and P sources, oligoelements), alternative electron acceptors (nitrate, oxygen releasing compounds) and adsorbents (activated carbon). Soil samples have been taken from the contaminated area of Gardermoen Airport Oslo. Under aerobic conditions and in the absence of added nutrients, no or scarce biomass growth is observed and PG degradation occurs by maintenance metabolism at constant removal rate by the original population of PG degraders. With the addition of nutrient, biomass exponential growth enhances aerobic PG degradation also at low temperatures (4 ° C) that occur at the high season of snowmelt. Anaerobic PG degradation without added nutrients still proceeds at constant rate (i.e. no biomass growth) and gives rise to reduced fermentation product (propionic acid, reduced Fe and Mn, methane). The addition of nitrate does not promote biomass growth but allows full PG mineralization without reduced by-products. Further exploitation on the field is necessary to fully evaluate the effect of oxygen releasing compounds and adsorbents.

  11. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    NASA Astrophysics Data System (ADS)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in polluted soils and specific industrial dusts. Fly ashes were composed mainly of anhydrite (2-46%), quartz (18-33%), muscovite (0-8%), feldspar (0-8%) and hematite (2-8%), while different spinels (19-53%), hematite (0-38%), wüstite (0-40%) and additives of calcite, halite, sylvine and graphite are the components of metallurgical dusts. Dusts from non-ferrous metal smelting contain Pb and Zn minerals: zincite (1-95%), lanarkite (0-45%), gordaite (0-10%), challacoloite and sphalerite. Additionally, some rare minerals were found in these dusts, such as: anglesite, sphalerite, galena, metasideronatrite and in soil, coronadite. Acknowledgements: The research project received funding from the National Science Centre of Poland on the basis of the decision number DEC-2013/09/B/ST10/02227.

  12. Paradoxical associations between soil-transmitted helminths and Plasmodium falciparum infection.

    PubMed

    Fernández-Niño, Julián A; Idrovo, Alvaro J; Cucunubá, Zulma M; Reyes-Harker, Patricia; Guerra, Ángela P; Moncada, Ligia I; López, Myriam C; Barrera, Sandra M; Cortés, Liliana J; Olivera, Mario; Nicholls, Rubén S

    2012-11-01

    Evidence on the comorbidity between soil-transmitted helminth infections and malaria is scarce and divergent. This study explored the interactions between soil-transmitted helminth infections and uncomplicated falciparum malaria in an endemic area of Colombia. A paired case-control study matched by sex, age and location in Tierralta, Cordoba, was done between January and September 2010. The incident cases were 68 patients with falciparum malaria and 178 asymptomatic controls. A questionnaire was used to gather information on sociodemographic variables. Additionally physical examinations were carried out, stool samples were analysed for intestinal parasites and blood samples for Ig E concentrations. We found associations between infection with hookworm (OR: 4.21; 95% CI: 1.68-11.31) and Ascaris lumbricoides (OR 0.43; 95% CI: 0.18-1.04) and the occurrence of falciparum malaria. The effects of soil-transmitted helminths on the occurrence of malaria were found to be paradoxical. While hookworm is a risk factor, A. lumbricoides has a protective effect. The findings suggest that, in addition to the comorbidity, the presence of common determinants of soil-transmitted helminth infections and malaria could also exist. While the biological mechanisms involved are not clear, public health policies aimed at the control of their common social and environmental determinants are suggested. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  13. An evaluation of soil sampling for 137Cs using various field-sampling volumes.

    PubMed

    Nyhan, J W; White, G C; Schofield, T G; Trujillo, G

    1983-05-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.

  14. An Upscaling Method for Cover-Management Factor and Its Application in the Loess Plateau of China

    PubMed Central

    Zhao, Wenwu; Fu, Bojie; Qiu, Yang

    2013-01-01

    The cover-management factor (C-factor) is important for studying soil erosion. In addition, it is important to use sampling plot data to estimate the regional C-factor when assessing erosion and soil conservation. Here, the loess hill and gully region in Ansai County, China, was studied to determine a method for computing the C-factor. This C-factor is used in the Universal Soil Loss Equation (USLE) at a regional scale. After upscaling the slope-scale computational equation, the C-factor for Ansai County was calculated by using the soil loss ratio, precipitation and land use/cover type. The multi-year mean C-factor for Ansai County was 0.36. The C-factor values were greater in the eastern region of the county than in the western region. In addition, the lowest C-factor values were found in the southern region of the county near its southern border. These spatial differences were consistent with the spatial distribution of the soil loess ratios across areas with different land uses. Additional research is needed to determine the effects of seasonal vegetation growth changes on the C-factor, and the C-factor upscaling uncertainties at a regional scale. PMID:24113551

  15. An upscaling method for cover-management factor and its application in the loess Plateau of China.

    PubMed

    Zhao, Wenwu; Fu, Bojie; Qiu, Yang

    2013-10-09

    The cover-management factor (C-factor) is important for studying soil erosion. In addition, it is important to use sampling plot data to estimate the regional C-factor when assessing erosion and soil conservation. Here, the loess hill and gully region in Ansai County, China, was studied to determine a method for computing the C-factor. This C-factor is used in the Universal Soil Loss Equation (USLE) at a regional scale. After upscaling the slope-scale computational equation, the C-factor for Ansai County was calculated by using the soil loss ratio, precipitation and land use/cover type. The multi-year mean C-factor for Ansai County was 0.36. The C-factor values were greater in the eastern region of the county than in the western region. In addition, the lowest C-factor values were found in the southern region of the county near its southern border. These spatial differences were consistent with the spatial distribution of the soil loess ratios across areas with different land uses. Additional research is needed to determine the effects of seasonal vegetation growth changes on the C-factor, and the C-factor upscaling uncertainties at a regional scale.

  16. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.

    PubMed

    Wan, Yanan; Camara, Aboubacar Younoussa; Huang, Qingqing; Yu, Yao; Wang, Qi; Li, Huafen

    2018-07-30

    The accumulation of arsenic (As) in rice grain is a potential threat to human health. Our study investigated the possible mediatory role of selenite fertilization on As uptake and accumulation by rice (Oryza sativa L.) under different water management regimes (aerobic or flooded) in a pot experiment. Soil solutions were also extracted during the growing season to monitor As dynamics. Results showed that As contents in the soil solutions, seedlings, and mature rice were higher under flooded than under aerobic water management. Under aerobic conditions, selenite additions slightly increased As concentrations in soil solutions (in the last two samplings), but decreased As levels in rice plants. Relative to the control, 0.5 mg kg -1 selenite decreased rice grain As by 27.5%. Under flooded conditions, however, selenite additions decreased As in soil solutions, while increased As in rice grain. Tendencies also showed that selenite additions decreased the proportion of As in rice shoots both at the seedling stage and maturity, and were more effective in aerobic soil. Our results demonstrate that the effect of selenite fertilizer on As accumulation by rice is related to water management. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material.

    PubMed

    Hatakeyama, Takashi; Takagi, Kazuhiro

    2016-08-01

    This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition.

  18. Nitrous oxide fluxes and nitrogen cycling along a pasturechronosequence in Central Amazonia, Brazil

    Treesearch

    B. Wick; E. Veldkamp; W. Z. de Mello; M. Keller; P. Crill

    2005-01-01

    We studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N...

  19. Field Sampling Plan for Closure of the Central Facilities Area Sewage Treatment Plant Lagoon 3 and Land Application Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This field sampling plan describes sampling of the soil/liner of Lagoon 3 at the Central Facilities Area Sewage Treatment Plant. The lagoon is to be closed, and samples obtained from the soil/liner will provide information to determine if Lagoon 3 and the land application area can be closed in a manner that renders it safe to human health and the environment. Samples collected under this field sampling plan will be compared to Idaho National Laboratory background soil concentrations. If the concentrations of constituents of concern exceed the background level, they will be compared to Comprehensive Environmental Response, Compensation, and Liabilitymore » Act preliminary remediation goals and Resource Conservation and Recovery Act levels. If the concentrations of constituents of concern are lower than the background levels, Resource Conservation and Recovery Act levels, or the preliminary remediation goals, then Lagoon 3 and the land application area will be closed. If the Resource Conservation and Recovery Act levels and/or the Comprehensive Environmental Response, Compensation, and Liability Act preliminary remediation goals are exceeded, additional sampling and action may be required.« less

  20. Microbiological assessment of the application of quicklime and limestone as a measure to stabilize the structure of compaction-prone soils

    NASA Astrophysics Data System (ADS)

    Deltedesco, Evi; Bauer, Lisa-Maria; Unterfrauner, Hans; Peticzka, Robert; Zehetner, Franz; Keiblinger, Katharina Maria

    2014-05-01

    Compaction of soils is caused by increasing mechanization of agriculture and forestry, construction of pipelines, surface mining and land recultivation. This results in degradation of aggregate stability and a decrease of pore space, esp. of macropores. It further impairs the water- and air permeability, and restricts the habitat of soil organisms. A promising approach to stabilize the structure and improve the permeability of soils is the addition of polyvalent ions like Ca2+ which can be added in form of quicklime (CaO) and limestone (CaCO3). In this study, we conducted a greenhouse pot experiment using these two different sources of calcium ions in order to evaluate their effect over time on physical properties and soil microbiology. We sampled silty and clayey soils from three different locations in Austria and incubated them with and without the liming materials (application 12.5 g) for 3 months in four replicates. In order to assess short-term and medium-term effects, soil samples were taken 2 days, 1 month and 3 months after application of quicklime and limestone, respectively. For these samples, we determined pH, bulk density, aggregate stability and water retention characteristics. Further, we measured microbiological parameters, such as potential enzyme activities (cellulase, phosphatase, chitinase, protease, phenoloxidase and peroxidase activity), PLFAs, microbial biomass carbon and nitrogen, dissolved organic carbon and nitrogen, nitrate nitrogen and ammonium nitrogen. In contrast to limestone, quicklime significantly improved soil aggregate stability in all tested soils only 2 days after application. Initially, soil pH was strongly increased by quicklime; however, after the second sampling (one month) the pH values of all tested soils returned to levels comparable to the soils treated with limestone. Our preliminary microbiological results show an immediate inhibition effect of quicklime on most potential hydrolytic enzyme activities and an increase in oxidative enzyme activities. These effects seem to be less pronounced in the medium term. In summary our results indicate, that the application of quicklime is a feasible measure for immediate stabilization of the structure of compaction-prone soils, showing only short-term impact on most microbial parameters.

  1. Use of 137Cs measurements to estimate changes in soil erosion rates associated with changes in soil management practices on cultivated land.

    PubMed

    Schuller, P; Walling, D E; Sepúlveda, A; Trumper, R E; Rouanet, J L; Pino, I; Castillo, A

    2004-05-01

    Intensification of agricultural production in south-central Chile since the 1970s has caused problems of increased soil erosion and associated soil degradation. These problems have prompted a shift from conventional tillage to no-till management practices. Faced with the need to establish the impact of this shift in soil management on rates of soil loss, the use of caesium-137 (137Cs) measurements has been explored. A novel procedure for using measurements of the 137Cs depth distribution to estimate rates of soil loss at a sampling point under the original conventional tillage and after the shift to no-till management has been developed. This procedure has been successfully applied to a study site at Buenos Aires farm near Carahue in the 9th region of Chile. The results obtained indicate that the shift from conventional tillage to no-till management has caused net rates of soil loss to decrease to about 40% of those existing under conventional tillage. This assessment of the impact of introducing no-till management at the study site must, however, be seen as provisional, since only a limited number of sampling points were used. A simplified procedure aimed at documenting the reduction in erosion rates at additional sampling points, based solely on measurements of the 137Cs inventory of bulk cores and the 137Cs activity in the upper part of the soil has been developed and successfully tested at the study site. Previous application of 137Cs measurements to estimate erosion rates has been limited to estimation of medium-term erosion rates during the period extending from the beginning of fallout receipt to the time of sampling. The procedures described in this paper, which permits estimation of the change in erosion rates associated with a shift in land management practices, must be seen as representing a novel application of 137Cs measurements in soil erosion investigations.

  2. Portable gamma spectrometry: measuring soil erosion in-situ at four Critical Zone Observatories in P. R. China

    NASA Astrophysics Data System (ADS)

    Sanderson, N. K.; Green, S. M.; Chen, Z.; Wang, J.; Wang, Y.; Wang, R.; Yu, K.; Tu, C.; Jia, X.; Li, G.; Peng, X.; Quine, T. A.

    2017-12-01

    Detecting patterns of soil erosion, redistribution, and/soil nutrient loss is important for long-term soil conservation and agricultural sustainability. Caesium-137 (137Cs) and other fallout radionuclide inventories have been used over the the last 50 years to track soil erosion, transport and deposition on a catchment scale, and have been shown to be useful for informing models of temporal/spatial soil redistribution. Traditional sampling methods usually involves coring, grinding, sieving, sub-sampling and laboratory analysis using HPGe detectors, all of which can be costly and time consuming. In-situ measurements can provide a mechanism for assessment of 137Cs over larger areas that integrate the spatial variability, and expand turnover of analyses. Here, we assess the applicability of an in-situ approach based on radionuclide principles, and provide a comparison of the two approaches: laboratory vs. in-situ. The UK-China Critical Zone Observatory (CZO) programme provides an ideal research platform to assess the in-situ approach to measuring soil erosion: using a portable gamma spectrometer to determine 137Cs inventories. Four extensive field slope surveys were conducted in the CZO's, which covers four ecosystem types in China: karst, red soil, peri-urban, and loess plateau. In each CZO, 3-6 plots were measured along 2 slope transects, with 3 replicated 1 hour counts of 137Cs in each plot. In addition, 137Cs soil depth and bulk density profiles were also sampled for each plot, and lab-derived inventories calculated using traditional methods for comparison. Accurately and rapidly measuring 137Cs inventories using a portable field detector allows for a greater coverage of sampling locations and the potential for small-scale spatial integration, as well as the ability to re-visit sites over time and continually adapt and improve soil erosion/redistribution models, thus more effectively targeting areas of interest with reduced cost and time constraints.

  3. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater.

    PubMed

    Dungan, Robert S; McKinney, Chad W; Leytem, April B

    2018-09-01

    The application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) water, and diluted wastewater spiked with copper sulfate (50 mg Cu L -1 ), while control plots were irrigated with canal water. In addition, half of all plots were either planted with wheat or were left as bare soil. Biweekly soil samples were collected during this period and processed to determine the occurrence and abundance of antibiotic resistance genes [bla CTX-M-1 , erm(B), sul1, tet(B), tet(M), and tet(X)] and a class 1 integron-integrase gene (intI1) via quantitative real-time PCR (qPCR). Only sul1 and tet(X) were detected in soil (3 out of 32 samples) before the wastewater treatments were applied. However, the occurrence and relative abundance (normalized to 16S rRNA gene copies) of most genes [erm(B), intI1, sul1, and tet(M)] increased dramatically after wastewater irrigation and levels were maintained during the entire study period. bla CTX-M-1 was the only gene not detected in wastewater-treated soils, which is likely related to its absence in the dairy wastewater. Relative gene levels in soil were found to be statistically similar among the treatments in most cases, regardless of the wastewater percentage applied and presence or absence of plants. The key result from this study is that dairy wastewater irrigation significantly enlarges the reservoir of ARGs and intI1 in soils, while detection of these genes rarely occurred in soil irrigated only with canal water. In addition, elevated levels of Cu in the wastewater and treated soil did not produce a concomitant increase of the ARG levels. Published by Elsevier B.V.

  4. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  5. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M.

    2008-01-01

    Biological soil crusts (BSCs), a consortium of cyanobacteria, lichens, and mosses, are essential in most dryland ecosystems. As these organisms are relatively immobile and occur on the soil surface, they are exposed to high levels of ultraviolet (UV) radiation and atmospheric nitrogen (N) deposition, rising temperatures, and alterations in precipitation patterns. In this study, we applied treatments to three types of BSCs (early, medium, and late successional) over three time periods (spring, summer, and spring-fall). In the first year, we augmented UV and altered precipitation patterns, and in the second year, we augmented UV and N. In the first year, with average air temperatures, we saw little response to our treatments except quantum yield, which was reduced in dark BSCs during one of three sample times and in Collema BSCs two of three sample times. There was more response to UV augmentation the second year when air temperatures were above average. Declines were seen in 21% of the measured variables, including quantum yield, chlorophyll a, UV-protective pigments, nitrogenase activity, and extracellular polysaccharides. N additions had some negative effects on light and dark BSCs, including the reduction of quantum yield, ??-carotene, nitrogenase activity, scytonemin, and xanthophylls. N addition had no effects on the Collema BSCs. When N was added to samples that had received augmented UV, there were only limited effects relative to samples that received UV without N. These results indicate that the negative effect of UV and altered precipitation on BSCs will be heightened as global temperatures increase, and that as their ability to produce UV-protective pigments is compromised, physiological functioning will be impaired. N deposition will only ameliorate UV impacts in a limited number of cases. Overall, increases in UV will likely lead to lowered productivity and increased mortality in BSCs through time, which, in turn, will reduce their ability to contribute to the stability and fertility of soils in dryland regions. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  6. The Soil Microbiome Influences Grapevine-Associated Microbiota

    PubMed Central

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A.; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel

    2015-01-01

    ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. PMID:25805735

  7. The soil microbiome influences grapevine-associated microbiota

    DOE PAGES

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; ...

    2015-03-24

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less

  8. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils

    PubMed Central

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-01-01

    Abstract Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline–alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation. PMID:26064038

  9. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils.

    PubMed

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-06-01

    Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline-alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation.

  10. Soil processes at Emerald Lake Watershed. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, L.J.; Brown, A.D.; Lueking, M.A.

    1987-04-20

    The objectives of the Soils Processes research at Emerald Lake Watershed (ELW) were to assess physical, chemical and biological processes contributing to the production or consumption of acidity in soils and to assess the net effect of soil processes on surface-water quality in an alpine watershed. Most of the N and S in ELW soils is stored in organic forms. Most of the soil P is present in nearly insoluble mineral forms. The ELW soils can adsorb only small quantities of sulfate, thus their capacity for buffering acid additions by sulfate adsorption is low. Concentrations of Al, Ca, Mg, K,more » and Na in both soil solution and stream samples reflected patterns of mineral weathering in the watershed. Summer CO/sub 2/ concentrations in the soils were high enough to increase soil solution acidity and influence the speciation of dissolved elements. The overall chemistry of stream waters reflects the mineral composition of soils and rocks at ELW.« less

  11. Technical bases and guidance for the use of composite soil sampling for demonstrating compliance with radiological release criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitkus, Timothy J.

    2012-04-24

    This guidance provides information on methodologies and the technical bases that licensees should consider for incorporating composite sampling strategies into final status survey (FSS) plans. In addition, this guidance also includes appropriate uses of composite sampling for generating the data for other decommissioning site investigations such as characterization or other preliminary site investigations.

  12. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    The majority of earth's biodiversity lives in and makes up the soil, but the majority of soil biodiversity has yet to be characterized or even quantified. This may be especially true of urban soil systems. The last decade of advances in molecular, technical and bioinformatic techniques have contributed greatly to our understanding of belowground biodiversity, from global distribution to species counts. Yet, much of this work has been done in ';natural' systems and it is not known if established patterns of distribution, especially in relation to soil factors hold up in urban soils. Urban soils are intensively managed and disturbed, often by effects unique to urban settings. It remains unclear how urban pressures influence soil biodiversity, or if there is a defined or typical ';urban soil community'. Here we describe a study to examine the total soil biodiversity - Bacteria, Archaea and Eukarya- of Central Park, New York City and test for patterns of distribution and relationships to soil characteristics. We then compare the biodiversity of Central Park to 57 global soils, spanning a number of biomes from Alaska to Antarctica. In this way we can identify similarities and differences in soil communities of Central Park to soils from ';natural' systems. To generate a broad-scale survey of total soil biodiversity, 596 soil samples were collected from across Central Park (3.41 km2). Soils varied greatly in vegetation cover and soil characteristics (pH, moisture, soil C and soil N). Using high-throughput Illumina sequencing technology we characterized the complete soil community from 16S rRNA (Bacteria and Archaea) and 18S rRNA gene sequences (Eukarya). Samples were rarified to 40,000 sequences per sample. To compare Central Park to the 57 global soils the complete soil community of the global soils was also characterized using Illumina sequencing technology. All samples were rarified to 40,000 sequences per sample. The total measured biodiversity in Central Park was high: >540,000 bacterial and archaeal species; and >97,000 eukaryotic species (as determined using a 97% sequence similarity cutoff). The most dominant bacterial phyla include Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia and Actinobacteria, and Archaea represent 1-8% of the sequences. Additionally, the distribution patterns of Acidobacteria and consequently beta-diversity, was strongly related to soil pH. The most dominant eukaryotic taxa include many Protists (Rhizara, Gregarinia), Fungi (Basidiomycota, Ascomycota), and Metazoa (Nematodes, Rotifers, Arthropods and Annelids). No single soil factor could predict eukaryotic distribution. Central Park soil diversity was strikingly similar to the diversity of the 57 global soils. Central Park and the global soils had similarities in alpha diversity, taxon abundances. Interestingly, there was significant overlap in a number of dominant species between Central Park and the global soils. Together these results represent the most comprehensive analysis of soil biodiversity conducted to date. Our data suggest that even well-studied locations like Central Park harbor very high levels of unexplored biodiversity, and that Central Park biodiversity is comparable to soil biodiversity found globally.

  13. Detecting the Spatio-temporal Distribution of Soil Salinity and Its Relationship to Crop Growth in a Large-scale Arid Irrigation District Based on Sampling Experiment and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.

    2016-12-01

    Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.

  14. Peat soils stabilization using Effective Microorganisms (EM)

    NASA Astrophysics Data System (ADS)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  15. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter

    PubMed Central

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial “DOK.” We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0–0.25, 0.25–0.5, 0.5–0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils. PMID:28298919

  16. Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment.

    PubMed

    Kończak, Magdalena; Oleszczuk, Patryk

    2018-06-01

    The aim of the present study was to determine changes in the physicochemical properties and toxicity of soil amended with sewage sludge (10t dw /ha) or sewage sludge (10t dw /ha) with biochar addition (2.5, 5 or 10% of sewage sludge). The study was carried out as a field experiment over a period of 18months. Samples for analysis were taken at the beginning of the experiment as well as after 6, 12 and 18months. The study investigated toxicity of the unamended soil, sewage sludge-amended soil and sewage sludge-amended soil with biochar addition towards Folsomia candida (collembolan test) and Lepidium sativum (Phytotoxkit F). Moreover, toxicity of aqueous extracts obtained from the tested soils towards Vibrio fischeri (Microtox®) and Lepidium sativum (elongation test) was determined. The study showed that addition of biochar to the sewage sludge and soil reduced leaching of nutrients (mainly phosphorus and potassium) from the amended soil. Biochar significantly reduced sewage sludge toxicity, exhibiting a stimulating effect on the tested organisms. The stimulating effect of biochar addition to the sewage sludge persisted throughout the entire experiment. Apart from the remediatory character of biochar, this is also evidence of its fertilizing character. In the tests with L. sativum (leachates and solid phase) and V. fischeri (leachates), increasing the rate of biochar in the sewage sludge increased root growth stimulation (L. sativum) and bacteria luminescence (V. fischeri). However, increasing biochar rate decreased F. candida reproduction stimulation, which could have been an effect of reduced nutrient bioavailability due to the biochar. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Prokaryotic communities differ along a geothermal soil photic gradient.

    PubMed

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  18. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  19. The use of NTA for lead phytoextraction from soil from a battery recycling site.

    PubMed

    Freitas, Eriberto Vagner de Souza; do Nascimento, Clístenes Williams Araújo

    2009-11-15

    The application of synthetic aminopolycarboxylic acids to soil increases metal solubility, and therefore enhances phytoextraction. However, synthetic chelants degrade poorly in soil, and metal leaching threatens human and animal health. The aim of this study is to assess the use of a biodegradable chelant (NTA) for Pb phytoextraction from a soil contaminated by battery-casing disposal. EDTA was also included in the experiment to assess the behavior of a non-degradable chelant. Each synthetic chelant was applied to soil pots cultivated with maize plants at rates of 0, 2, 5, 10, and 20 mmol kg(-1). Soil samples were extracted with CaCl(2) and by sequential extraction for Pb. In addition, a soil column experiment was set up to study the leaching of Pb from the chelant-amended soil. The results showed that both NTA and EDTA were highly effective in solubilizing Pb from soil. The Pb distribution into soil fractions after chelant addition followed the sequence: Ex (exchangeable)>OM (organic matter)>AFeOx (amorphous iron oxides)>CFeOx (crystalline iron oxides). The 5 mmol kg(-1) dose of EDTA increased the Pb concentration in maize shoots to 1.1%, but it promoted unacceptable Pb leaching rates. On the other hand, the results showed that phytoremediating the site using 5 mmol kg(-1) NTA could be feasible with no environmental effects due to Pb leaching over a five-year period.

  20. Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal.

    PubMed

    Otero, David; Alho, Ana M; Nijsse, Rolf; Roelfsema, Jeroen; Overgaauw, Paul; Madeira de Carvalho, Luís

    Toxocarosis is a zoonotic parasitic disease transmitted from companion animals to humans. Environmental contamination with Toxocara eggs is considered to be the main source of human infections. In Portugal, knowledge regarding the current situation, including density, distribution and environmental contamination by Toxocara spp., is largely unknown. The present study investigated environmental contamination with Toxocara spp. eggs, in soil and faecal samples collected from public parks and playground sandpits in Greater Lisbon, Portugal. A total of 151 soil samples and 135 canine faecal samples were collected from 7 public sandpits and 12 public parks, over a 4 month-period. Soil samples were tested by a modified centrifugation and sedimentation/flotation technique and faecal samples were tested by an adaptation of the Cornell-Wisconsin method. Molecular analysis and sequencing were performed to discriminate Toxocara species in the soil. Overall, 85.7% of the sandpits (6/7) and 50.0% of the parks (6/12) were contaminated with Toxocara spp. eggs. The molecular analysis of soil samples showed that, 85.5% of the sandpits and 34.4% of the parks were contaminated with Toxocara cati eggs. Faecal analysis showed that 12.5% of the sandpits and 3.9% of the parks contained Toxocara canis eggs. In total, 53.0% of soil and 5.9% of faecal samples were positive for Toxocara spp. Additionally, 56.0% of the eggs recovered from the samples were embryonated after 60 days of incubation, therefore considered viable and infective. The average density was 4.2 eggs per hundred grams of soil. Public parks and playground sandpits in the Lisbon area were found to be heavily contaminated with T. cati eggs, representing a serious menace to public health as the studied areas represent common places where people of all ages, particularly children, recreate. This study sounds an alarm bell regarding the necessity to undertake effective measures such as reduction of stray animals, active faecal collection by pet owners, awareness campaigns and control strategies to decrease the high risk to both animal and human health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.

  2. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China.

    PubMed

    Liu, Junjie; Yu, Zhenhua; Yao, Qin; Sui, Yueyu; Shi, Yu; Chu, Haiyan; Tang, Caixian; Franks, Ashley E; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2018-01-01

    Black soils (Mollisols) of northeast China are highly productive and agriculturally important for food production. Ammonia-oxidizing microbes play an important role in N cycling in the black soils. However, the information related to the composition and distribution of ammonia-oxidizing microbes in the black soils has not yet been addressed. In this study, we used the amoA gene to quantify the abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across the black soil zone. The amoA abundance of AOA was remarkably larger than that of AOB, with ratios of AOA/AOB in the range from 3.1 to 91.0 across all soil samples. The abundance of AOA amoA was positively correlated with total soil C content ( p < 0.001) but not with soil pH ( p > 0.05). In contrast, the abundance of AOB amoA positively correlated with soil pH ( p = 0.009) but not with total soil C. Alpha diversity of AOA did not correlate with any soil parameter, however, alpha diversity of AOB was affected by multiple soil factors, such as soil pH, total P, N, and C, available K content, and soil water content. Canonical correspondence analysis indicated that the AOA community was mainly affected by the sampling latitude, followed by soil pH, total P and C; while the AOB community was mainly determined by soil pH, as well as total P, C and N, water content, and sampling latitude, which highlighted that the AOA community was more geographically distributed in the black soil zone of northeast China than AOB community. In addition, the pairwise analyses showed that the potential nitrification rate (PNR) was not correlated with alpha diversity but weakly positively with the abundance of the AOA community ( p = 0.048), whereas PNR significantly correlated positively with the richness ( p = 0.003), diversity ( p = 0.001) and abundance ( p < 0.001) of the AOB community, which suggested that AOB community might make a greater contribution to nitrification than AOA community in the black soils when ammonium is readily available.

  3. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China

    PubMed Central

    Liu, Junjie; Yu, Zhenhua; Yao, Qin; Sui, Yueyu; Shi, Yu; Chu, Haiyan; Tang, Caixian; Franks, Ashley E.; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2018-01-01

    Black soils (Mollisols) of northeast China are highly productive and agriculturally important for food production. Ammonia-oxidizing microbes play an important role in N cycling in the black soils. However, the information related to the composition and distribution of ammonia-oxidizing microbes in the black soils has not yet been addressed. In this study, we used the amoA gene to quantify the abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across the black soil zone. The amoA abundance of AOA was remarkably larger than that of AOB, with ratios of AOA/AOB in the range from 3.1 to 91.0 across all soil samples. The abundance of AOA amoA was positively correlated with total soil C content (p < 0.001) but not with soil pH (p > 0.05). In contrast, the abundance of AOB amoA positively correlated with soil pH (p = 0.009) but not with total soil C. Alpha diversity of AOA did not correlate with any soil parameter, however, alpha diversity of AOB was affected by multiple soil factors, such as soil pH, total P, N, and C, available K content, and soil water content. Canonical correspondence analysis indicated that the AOA community was mainly affected by the sampling latitude, followed by soil pH, total P and C; while the AOB community was mainly determined by soil pH, as well as total P, C and N, water content, and sampling latitude, which highlighted that the AOA community was more geographically distributed in the black soil zone of northeast China than AOB community. In addition, the pairwise analyses showed that the potential nitrification rate (PNR) was not correlated with alpha diversity but weakly positively with the abundance of the AOA community (p = 0.048), whereas PNR significantly correlated positively with the richness (p = 0.003), diversity (p = 0.001) and abundance (p < 0.001) of the AOB community, which suggested that AOB community might make a greater contribution to nitrification than AOA community in the black soils when ammonium is readily available. PMID:29497404

  4. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  5. Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina.

    PubMed

    Lupi, Leonardo; Miglioranza, Karina S B; Aparicio, Virginia C; Marino, Damian; Bedmar, Francisco; Wunderlin, Daniel A

    2015-12-01

    Glyphosate (GLY) and AMPA concentrations were determined in sandy soil profiles, during pre- and post-application events in two agricultural soybean fields (S1 and S2). Streamwater and sediment samples were also analyzed. Post-application sampling was carried out one month later from the event. Concentrations of GLY+AMPA in surface soils (0-5 cm depth) during pre-application period showed values 20-fold higher (0.093-0.163 μg/g d.w.) than control area (0.005 μg/g d.w.). After application event soils showed markedly higher pesticide concentrations. A predominance of AMPA (80%) was observed in S1 (early application), while 34% in S2 for surface soils. GLY+AMPA concentrations decreased with depth and correlated strongly with organic carbon (r between 0.74 and 0.88, p<0.05) and pH (r between -0.81 and -0.76, p<0.001). The slight enrichment of pesticides observed from 25 cm depth to deeper layer, in addition to the alkaline pH along the profile, is of high concern about groundwater contamination. Sediments from pre-application period showed relatively lower pesticide levels (0.0053-0.0263 μg/g d.w.) than surface soil with a predominance of glyphosate, indicating a limited degradation. Levels of contaminants (mainly AMPA) in streamwater (ND-0.5 ng/mL) denote the low persistence of these compounds. However, a direct relationship in AMPA concentration was observed between sediment and streamwater. Despite the known relatively short half-life of glyphosate in soils, GLY+AMPA occurrence is registered in almost all matrices at different sampling times (pre- and post-application events). The physicochemical characteristics (organic carbon, texture, pH) and structure of soils and sediment in addition to the time elapsed from application determined the behavior of these contaminants in the environment. As a whole, the results warn us about vertical transport trough soil profile with the possibility of reaching groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia

    PubMed Central

    Le Blond, Jennifer S.; Baxter, Peter J.; Bello, Dhimiter; Raftis, Jennifer; Molla, Yordanos B.; Cuadros, Javier; Davey, Gail

    2017-01-01

    Background Podoconiosis, non-filarial elephantiasis, is a non-infectious disease found in tropical regions such as Ethiopia, localized in highland areas with volcanic soils cultivated by barefoot subsistence farmers. It is thought that soil particles can pass through the soles of the feet and taken up by the lymphatic system, leading to the characteristic chronic oedema of the lower legs that becomes disfiguring and disabling over time. Methods The close association of the disease with volcanic soils led us to investigate the characteristics of soil samples in an endemic area in Ethiopia to identify the potential causal constituents. We used the in vitro haemolysis assay and compared haemolytic activity (HA) with soil samples collected in a non-endemic region of the same area in Ethiopia. We included soil samples that had been previously characterized, in addition we present other data describing the characteristics of the soil and include pure phase mineral standards as comparisons. Results The bulk chemical composition of the soils were statistically significantly different between the podoconiosis-endemic and non-endemic areas, with the exception of CaO and Cr. Likewise, the soil mineralogy was statistically significant for iron oxide, feldspars, mica and chlorite. Smectite and kaolinite clays were widely present and elicited a strong HA, as did quartz, in comparison to other mineral phases tested, although no strong difference was found in HA between soils from the two areas. The relationship was further investigated with principle component analysis (PCA), which showed that a combination of an increase in Y, Zr and Al2O3, and a concurrent increase Fe2O3, TiO2, MnO and Ba in the soils increased HA. Conclusion The mineralogy and chemistry of the soils influenced the HA, although the interplay between the components is complex. Further research should consider the variable biopersistance, hygroscopicity and hardness of the minerals and further characterize the nano-scale particles. PMID:28493920

  7. Synthetic Constraint of Ecosystem C Models Using Radiocarbon and Net Primary Production (NPP) in New Zealand Grazing Land

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.

    2011-12-01

    Time-series radiocarbon measurements have substantial ability to constrain the size and residence time of the soil C pools commonly represented in ecosystem models. Radiocarbon remains unique in the ability to constrain the large stabilized C pool with decadal residence times. Radiocarbon also contributes usefully to constraining the size and turnover rate of the passive pool, but typically struggles to constrain pools with residence times less than a few years. Overall, the number of pools and associated turnover rates that can be constrained depends upon the number of time-series samples available, the appropriateness of chemical or physical fractions to isolate unequivocal pools, and the utility of additional C flux data to provide additional constraints. In New Zealand pasture soils, we demonstrate the ability to constrain decadal turnover times with in a few years for the stabilized pool and reasonably constrain the passive fraction. Good constraint is obtained with two time-series samples spaced 10 or more years apart after 1970. Three or more time-series samples further improve the level of constraint. Work within this context shows that a two-pool model does explain soil radiocarbon data for the most detailed profiles available (11 time-series samples), and identifies clear and consistent differences in rates of C turnover and passive fraction in Andisols vs Non-Andisols. Furthermore, samples from multiple horizons can commonly be combined, yielding consistent residence times and passive fraction estimates that are stable with, or increase with, depth in different sites. Radiocarbon generally fails to quantify rapid C turnover, however. Given that the strength of radiocarbon is estimating the size and turnover of the stabilized (decadal) and passive (millennial) pools, the magnitude of fast cycling pool(s) can be estimated by subtracting the radiocarbon-based estimates of turnover within stabilized and passive pools from total estimates of NPP. In grazing land, these estimates can be derived primarily from measured aboveground NPP and calculated belowground NPP. Results suggest that only 19-36% of heterotrophic soil respiration is derived from the soil C with rapid turnover times. A final logical step in synthesis is the analysis of temporal variation in NPP, primarily due to climate, as driver of changes in plant inputs and resulting in dynamic changes in rapid and decadal soil C pools. In sites with good time series samples from 1959-1975, we examine the apparent impacts of measured or modelled (Biome-BGC) NPP on soil Δ14C. Ultimately, these approaches have the ability to empirically constrain, and provide limited verification, of the soil C cycle as commonly depicted ecosystem biogeochemistry models.

  8. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will providemore » additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well casing interference and soil moisture content and may not be successful in some conditions. In some cases the level of interference must be estimated due to uncertainties regarding the materials used in well construction and soil conditions, Well casing deployment used for many in-situ geophysical methods is relatively expensive and geophysical methods do not generally provide real time values for contaminants. In addition, some of these methods are not practical within the boundaries of the tank farm due to physical constraints, such as underground piping and other hardware. The CP technologies could facilitate future characterization of vadose zone soils by providing vadose zone data in near real-time, reducing the number of soil samples and boreholes required, and reducing characterization costs.« less

  9. A versatile system for biological and soil chemical tests on a planetary landing craft. I - Scientific objectives

    NASA Technical Reports Server (NTRS)

    Radmer, R. J.; Kok, B.; Martin, J. P.

    1976-01-01

    We describe an approach for the remote detection and characterization of life in planetary soil samples. A mass spectrometer is used as the central sensor to monitor changes in the gas phase in eleven test cells filled with soil. Many biological assays, ranging from general 'in situ' assays to specific metabolic processes (such as photosynthesis, respiration, denitrification, etc.) can be performed by appropriate additions to the test cell via attached preloaded injector capsules. The system is also compatible with a number of chemical assays such as the analysis of atmospheric composition (both chemical and isotopic), the status of soil water, and the determination of compounds of carbon, nitrogen and sulfur in the soil.

  10. Modeling metal binding to soils: the role of natural organic matter.

    PubMed

    Gustafsson, Jon Petter; Pechová, Pavlina; Berggren, Dan

    2003-06-15

    The use of mechanistically based models to simulate the solution concentrations of heavy metals in soils is complicated by the presence of different sorbents that may bind metals. In this study, the binding of Zn, Pb, Cu, and Cd by 14 different Swedish soil samples was investigated. For 10 of the soils, it was found that the Stockholm Humic Model (SHM) was able to describe the acid-base characteristics, when using the concentrations of "active" humic substances and Al as fitting parameters. Two additional soils could be modeled when ion exchange to clay was also considered, using a component additivity approach. For dissolved Zn, Cd, Ca, and Mg reasonable model fits were produced when the metal-humic complexation parameters were identical for the 12 soils modeled. However, poor fits were obtained for Pb and Cu in Aquept B horizons. In two of the soil suspensions, the Lund A and Romfartuna Bhs, the calculated speciation agreed well with results obtained by using cation-exchange membranes. The results suggest that organic matter is an important sorbent for metals in many surface horizons of soils in temperate and boreal climates, and the necessity of properly accounting for the competition from Al in simulations of dissolved metal concentrations is stressed.

  11. Optimization of the time series NDVI-rainfall relationship using linear mixed-effects modeling for the anti-desertification area in the Beijing and Tianjin sandstorm source region

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sun, Tao; Fu, Anmin; Xu, Hao; Wang, Xinjie

    2018-05-01

    Degradation in drylands is a critically important global issue that threatens ecosystem and environmental in many ways. Researchers have tried to use remote sensing data and meteorological data to perform residual trend analysis and identify human-induced vegetation changes. However, complex interactions between vegetation and climate, soil units and topography have not yet been considered. Data used in the study included annual accumulated Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m normalized difference vegetation index (NDVI) from 2002 to 2013, accumulated rainfall from September to August, digital elevation model (DEM) and soil units. This paper presents linear mixed-effect (LME) modeling methods for the NDVI-rainfall relationship. We developed linear mixed-effects models that considered the random effects of sample points nested in soil units for nested two-level modeling and single-level modeling of soil units and sample points, respectively. Additionally, three functions, including the exponential function (exp), the power function (power), and the constant plus power function (CPP), were tested to remove heterogeneity, and an additional three correlation structures, including the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and the compound symmetry structure (CS), were used to address the spatiotemporal correlations. It was concluded that the nested two-level model considering both heteroscedasticity with (CPP) and spatiotemporal correlation with [ARMA(1,1)] showed the best performance (AMR = 0.1881, RMSE = 0.2576, adj- R 2 = 0.9593). Variations between soil units and sample points that may have an effect on the NDVI-rainfall relationship should be included in model structures, and linear mixed-effects modeling achieves this in an effective and accurate way.

  12. Soil moisture determination study. [Guymon, Oklahoma

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1979-01-01

    Soil moisture data collected in conjunction with aircraft sensor and SEASAT SAR data taken near Guymon, Oklahoma are summarized. In order to minimize the effects of vegetation and roughness three bare and uniformly smooth fields were sampled 6 times at three day intervals on the flight days from August 2 through 17. Two fields remained unirrigated and dry. A similar pair of fields was irrigated at different times during the sample period. In addition, eighteen other fields were sampled on the nonflight days with no field being sampled more than 24 hours from a flight time. The aircraft sensors used included either black and white or color infrared photography, L and C band passive microwave radiometers, the 13.3, 4.75, 1.6 and .4 GHz scatterometers, the 11 channel modular microwave scanner, and the PRT5.

  13. Natural Terrestrial Sequestration Potential of Highplains Prairie to Subalpine Forest and Mined-Lands Soils Derived from Weathering of Tertiary Volcanics

    NASA Astrophysics Data System (ADS)

    Yager, D. B.; Burchell, A.; Robinson, R.; Odell, S.; Dick, R. P.; Johnson, C. A.; Hidinger, J.; Rathke, D.

    2007-12-01

    There is now widespread agreement that, if the climate is to be stabilized, then net greenhouse gas emissions must be greatly reduced (IPCC, 2007). The need to reduce net CO2 emissions plus the possible economic and environmental ramifications of not addressing climate change have stimulated important atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. Soils represent a potentially large and environmentally significant natural carbon reservoir. Increasing the natural terrestrial sequestration potential (NTS) of soils is among the seven, "Sokolow CO2 stabilization wedges' or carbon management strategies needed to thwart doubling of atmospheric CO2. Additionally, high plains to subalpine temperate soils tend to be less susceptible to baseline C pool declines due to global warming than are warmer regions and are important ecosystems in which to quantify soil carbon storage capacity. To examine the potential of magnesium silicate-bearing soils to sequester additional carbon, we sampled 60 high plains prairie to subalpine forest soil horizons derived from weathering of Tertiary-age dacite-andesite- basalt compositions in Colorado, U.S.A.: the San Luis Valley, San Juan Volcanic Field, Grand Mesa, White River- Roan Plateau (Flat Tops), Rocky Mountain National Park, Front Range and propylitically-altered terrain in the western San Juan Volcanic field containing secondary magnesium silicates (chlorite-species). Data for C, N, O (total conc., isotopes), metals, major and trace elements, Hg, S, microbial enzymes (β-glucosidase, arylsulfatase, acid neutralizing capacity (ANC), and 14C radiocarbon dates are reported. Samples demonstrate variable but elevated C relative to average global soil C. In particular, the propylitically-altered rocks have a high instantaneous ANC in laboratory tests (> 20 kg/ton CaCO3 equivalent) and derivative forest soils containing low-temperature charcoal "burn" horizons have high total organic carbon contents (12-14 Wt.% in the A-B horizons; 0 to 30 cm). These data are important to understanding the carbon sequestration potential that soils derived from intermediate to mafic igneous rocks can provide. Additionally, for range or forest management and mine waste remediation scenarios, this data suggests C mitigation efforts may be augmented by 'geomimicry' scenarios whereby projects model and enhance natural processes that support CO2 sequestration.

  14. Spatial distribution of organochlorine contaminants in soil, sediment, and fish in Bikini and Enewetak Atolls of the Marshall Islands, Pacific Ocean.

    PubMed

    Wang, Jun; Caccamise, Sarah A L; Wu, Liejun; Woodward, Lee Ann; Li, Qing X

    2011-08-01

    Several nuclear tests were performed at Enewetak and Bikini Atolls in the Marshall Islands between 1946 and 1958. The events at Bikini Atoll involved several ships that were tested for durability during nuclear explosions, and 24 vessels now rest on the bottom of the Bikini lagoon. Nine soil samples were collected from different areas on the two islands of the atoll, and eighteen sediment, nine fish, and one lobster were collected in the vicinity of the sunken ships. Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polychlorinated terphenyls (PCTs) in these samples were analyzed using gas chromatography/ion trap mass spectrometry (GC/ITMS). The average recoveries ranged from 78% to 104% for the different PCB congeners. The limits of detection (LOD) for PCBs, PCTs, DDE, DDT, and dieldrin ranged 10-50 pg g(-1). Some fish from Enewetak contained PCBs at a concentration range of 37-137 ng g(-1), dry weight (dw), and most of the soils from Enewetak showed evidence of PCBs (22-392 ng g(-1)dw). Most of the Bikini lagoon sediment samples contained PCBs, and the highest was the one collected from around the Saratoga, an aircraft carrier (1555 ng g(-1)dw). Some of the fish samples, most of the soil samples, and only one of the sediment samples contained 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) and PCBs. In addition to PCBs, the soils from Enewetak Atoll contained PCTs. PCTs were not detected in the sediment samples from Bikini Atoll. The results suggest local pollution sources of PCBs, PCTs, and OCPs. Copyright © 2011. Published by Elsevier Ltd.

  15. Priming effect in topsoil and subsoil induced by earthworm burrows

    NASA Astrophysics Data System (ADS)

    Thu, Duyen Hoang Thi

    2017-04-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.

  16. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    NASA Astrophysics Data System (ADS)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  17. Persistent aryl hydrocarbon receptor inducers increase with altitude, and estrogen-like disrupters are low in soils of the Alps.

    PubMed

    Levy, Walkiria; Henkelmann, Bernhard; Bernhöft, Silke; Bovee, Toine; Buegger, Franz; Jakobi, Gert; Kirchner, Manfred; Bassan, Rodolfo; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Simončič, Primoz; Weiss, Peter; Schramm, Karl-Werner

    2011-01-01

    Soil samples from remote Alpine areas were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and polychlorinated biphenyls by high-resolution gas chromatography/high-resolution gas spectrometry. Additionally, the EROD micro-assay and a genetically modified yeast estrogen bioassay were carried out to determine persistent aryl hydrocarbon receptors (AhR) and estrogen receptors (ER) agonists, respectively. Regarding the AhR agonists, the toxicity equivalents of analytical and EROD determined values were compared, targeting both altitude of samples and their soil organic content. The ratio between bioassay derived equivalents and analytical determinations suggested no significant contribution of unknown AhR inducers in these sampling sites and some antagonism in soils with relatively high PCB loading. More CYP1A1 expression was induced at the highest sites or about 1400-1500 m a.s.l. along the altitude profiles. Surprisingly, no clear tendencies with the soil organic content were found for dioxin-like compounds. Mean values obtained in the present study were for ER agonists, 2: 0.37±0.12ng 17ß-estradiol EQ g-1 dry soil [corrected] and 6.1 ± 4.2 pg TCDD-EQ g⁻¹ dry soil for AhR agonists. Low bioassay responses with a higher relative amount of ER disrupters than AhR inducers were detected,indicating the higher abundance of estrogen-like than persistent dioxin-like compounds in these forested areas [corrected].

  18. Apollo 16 regolith breccias and soils - Recorders of exotic component addition to the Descartes region of the moon

    NASA Technical Reports Server (NTRS)

    Simon, S. B.; Papike, J. J.; Laul, J. C.; Hughes, S. S.; Schmitt, R. A.

    1988-01-01

    Using the subdivision of Apollo 16 regolith breccias into ancient (about 4 Gyr) and younger samples (McKay et al., 1986), with the present-day soils as a third sample, a petrologic and chemical determination of regolith evolution and exotic component addition at the A-16 site was performed. The modal petrologies and mineral and chemical compositions of the regolith breccias in the region are presented. It is shown that the early regolith was composed of fragments of plutonic rocks, impact melt rocks, and minerals and impact glasses. It is found that KREEP lithologies and impact melts formed early in lunar history. The mare components, mainly orange high-TiO2 glass and green low-TiO2 glass, were added to the site after formation of the ancient breccias and prior to the formation of young breccias. The major change in the regolith since the formation of the young breccias is an increase in maturity represented by the formation of fused soil particles with prolonged exposure to micrometeorite impacts.

  19. Combined effects of nitrogen addition and organic matter manipulation on soil respiration in a Chinese pine forest.

    PubMed

    Wang, Jinsong; Wu, L; Zhang, Chunyu; Zhao, Xiuhai; Bu, Wensheng; Gadow, Klaus V

    2016-11-01

    The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH 2 ) 2 ) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m -2  year -1 ), low-N (N1: 5 g N m -2  year -1 ), medium-N (N2: 10 g N m -2  year -1 ), and high-N (N3: 15 g N m -2  year -1 ), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3-5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO 2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the "priming" effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.

  20. Rhamnolipids Increase the Phytotoxicity of Diesel Oil Towards Four Common Plant Species in a Terrestrial Environment.

    PubMed

    Marecik, Roman; Wojtera-Kwiczor, Joanna; Lawniczak, Lukasz; Cyplik, Paweł; Szulc, Alicja; Piotrowska-Cyplik, Agnieszka; Chrzanowski, Lukasz

    2012-09-01

    The study focused on assessing the influence of rhamnolipids on the phytotoxicity of diesel oil-contaminated soil samples. Tests evaluating the seed germination and growth inhibition of four terrestrial plant species (alfalfa, sorghum, mustard and cuckooflower) were carried out at different rhamnolipid concentrations (ranging from 0 to 1.200 mg/kg of wet soil). The experiments were performed in soil samples with a different diesel oil content (ranging from 0 to 25 ml/kg of wet soil). It was observed that the sole presence of rhamnolipids may be phytotoxic at various levels, which is especially notable for sorghum (the germination index decreased to 41 %). The addition of rhamnolipids to diesel oil-contaminated soil samples contributed to a significant increase of their phytotoxicity. The most toxic effect was observed after a rhamnolipid-supplemented diesel oil biodegradation, carried out with the use of a hydrocarbon-degrading bacteria consortium. The supplemention of rhamnolipids (600 mg/kg of wet soil) resulted in a decrease of seed germination of all studied plant species and an inhibition of microbial activity, which was measured by the 2,3,5-triphenyltetrazolium chloride tests. These findings indicate that the presence of rhamnolipids may considerably increase the phytotoxicity of diesel oil. Therefore, their use at high concentrations, during in situ bioremediation processes, should be avoided in a terrestrial environment.

  1. Stray animal and human defecation as sources of soil-transmitted helminth eggs in playgrounds of Peninsular Malaysia.

    PubMed

    Mohd Zain, S N; Rahman, R; Lewis, J W

    2015-11-01

    Soil contaminated with helminth eggs and protozoan cysts is a potential source of infection and poses a threat to the public, especially to young children frequenting playgrounds. The present study determines the levels of infection of helminth eggs in soil samples from urban and suburban playgrounds in five states in Peninsular Malaysia and identifies one source of contamination via faecal screening from stray animals. Three hundred soil samples from 60 playgrounds in five states in Peninsular Malaysia were screened using the centrifugal flotation technique to identify and determine egg/cyst counts per gram (EPG) for each parasite. All playgrounds, especially those in Penang, were found to be contaminated with eggs from four nematode genera, with Toxocara eggs (95.7%) the highest, followed by Ascaris (93.3%), Ancylostoma (88.3%) and Trichuris (77.0%). In addition, faeces from animal shelters were found to contain both helminth eggs and protozoan cysts, with overall infection rates being 54% and 57% for feline and canine samples, respectively. The most frequently occurring parasite in feline samples was Toxocara cati (37%; EPG, 42.47 ± 156.08), while in dog faeces it was Ancylostoma sp. (54%; EPG, 197.16 ± 383.28). Infection levels also tended to be influenced by season, type of park/playground and the texture of soil/faeces. The occurrence of Toxocara, Ancylostoma and Trichuris eggs in soil samples highlights the risk of transmission to the human population, especially children, while the presence of Ascaris eggs suggests a human source of contamination and raises the issue of hygiene standards and public health risks at sites under investigation.

  2. Characterizing mineral dusts and other aerosols from the Middle East--Part 2: grab samples and re-suspensions.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M Jay; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected during a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). To fully understand mineral dusts, their chemical and physical properties, as well as mineralogical inter-relationships, were accurately established. In addition to the ambient samples, bulk soil samples were collected at each of the 15 sites. In each case, approximately 1 kg of soil from the top 10 mm at a previously undisturbed area near the aerosol sampling site was collected. The samples were air-dried and sample splits taken for soil analysis. Further sample splits were sieved to separate the < 38 micro m particle fractions for mineralogical analysis. Examples of major-element and trace-element chemistry, mineralogy, and other physical properties of the 15 grab samples are presented. The purpose of the trace-element analysis was to measure levels of potentially harmful metals while the major-element and ion-chemistry analyses provided an estimate of mineral components. X-ray diffractometry provided a measure of the mineral content of the dust. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze chemical composition of small individual particles. From similarities in the chemistry and mineralogy of re-suspended and ambient sample sets, it is evident that portions of the ambient dust are from local soils.

  3. Combined Analyses of Bacterial, Fungal and Nematode Communities in Andosolic Agricultural Soils in Japan

    PubMed Central

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols. PMID:22223474

  4. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    PubMed

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  5. Percolation behavior of tritiated water into a soil packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T.; Katayama, K.; Uehara, K.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particlemore » densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less

  7. Oxidant activity in hyperarid soils from Atacama Desert in southern Peru, under conditions of the labeled release and thermal evolved gas analysis experiments: Implications for the search of organic matter on Mars

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; McKay, Chris

    Thermal evolved gas analysis (TEGA), one of several instruments on board of the Phoenix Lander, is a combination of a high temperature furnace and a mass spectrometer that was used to analyze Mars soil samples heated at a programmed ramp rate up to 1000 ° C. The evolved gases generated during the process were analyzed with the evolved gas analyzer (a mass spectrometer) in order to determine the composition of gases released as a function of temperature. In other hand, labeled release experiment (LR), one of the Viking biology anal-ysis used on Mars, monitored the radioactive gas evolution after the addition of a 14C-labeled aqueous organic substrate into a sealed test cell that contained a Martian surface sample. This experiment was designed to test Martian surface samples for the presence of life by measuring metabolic activity and distinguishing it from physical or chemical activity. The interpretation of the Viking LR experiment was that the tested soils were chemically reactive and not biolog-ically active, and that at least two oxidative processes with different kinetics were required to explain the observed decomposition of organics, while TEGA experiment of the Phoenix mis-sion apparently didn't detect organic matter on the surface of Mars. Both of these experiments showed little possibility of the presence of organics, and therefore the presence of life. Here we examine the evolved gas properties of hyperarid soils from the Pampas de La Joya, which is considered as a new analogue to Mars, in order to investigate the effect of the soil matrix on the TEGA response, and additionally, we conducted experiments under Viking LR protocol to test the decomposition kinetics of organic compounds in aqueous solution added to these soils. Our TEGA results indicate that native or added organics present in these samples were oxidized to CO2 during thermal process, suggesting the existence in these soils of a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Interestingly, LR experiment shows that the 13C-labeled formate and DL-alanine were oxidized to 13CO2 when added in aqueous solution to soils collected from the Pampas de La Joya region. The observation of similar 13CO2 initial releasing by soils treated with L-alanine, compared to soils treated D-alanine, indicates the presence of one or more nonbiological chemical decomposition mechanisms similar to Yungay soils and the Viking LR experiment. Thus, the soils from Pampas of La Joya, are potentially excellent analogues of the oxidative processes that occur on Mars, and can be used to study mechanisms of destruction of organics on this planet. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.

  8. Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea.

    PubMed

    Jung, Myung Chae; Thornton, Iain; Chon, Hyo-Taek

    2002-08-05

    The objective of this study is to investigate environmental contamination derived from metalliferous mining activities. In the study area, the Dalsung Cu-W mine, soils, various crop plants, stream waters, sediments and particulates were sampled in and around the mine and analyzed for As, Sb and Bi by ICP-AES with a hydride generator. In addition, soil pH, cation exchange capacity, loss-on-ignition and soil texture were also measured. Concentrations of As, Sb and Bi in surface soils sampled in the mine dump sites averaged 2500, 54 and 436 microg g(-1), respectively. Relatively lower concentrations, however, were found in soils from alluvial and high land sites and household garden sites. Arsenic, Sb and Bi contents in plant samples varied depending upon their species and parts, with higher concentrations in spring onions, soybean leaves and perilla leaves and lower levels in red peppers, corn grains and jujube grains. These results confirm that elemental concentrations in plant leaves are much higher than those in plant grain. Elevated levels of As, Sb and Bi were also found in stream sediments sampled in the vicinity of the mine and decreased with distance from the mine. Concentrations in stream water samples ranged from 0.8 to 19.1 microg As l(-1) and from 0.3 to 8.4 microg Bi l(-1); all the samples contained less than 1.0 microg Sb l(-1). Because of very low particulate loading at the time of sampling, the metal contents in particulates were very low (< 8.2 microg As l(-1), < 0.22 microg Sb l(-1) and 2.8 microg Bi l(-1). This may be mainly due to the low solubility of those elements under moderately acidic and oxidizing conditions of the mining area.

  9. How do soil types affect stable isotope ratios of 2H and 18O under evaporation: A Fingerprint of the Niipele subbasin of the Cuvelai - Etosha basin, Namibia.

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; Beyer, Matthias; Hamutoko, Josefina; Uugulu, Shoopi; Wanke, Heike; Koeniger, Paul; Kuells, Christoph; Lohe, Christoph; Himmelsbach, Thomas

    2014-05-01

    Northern Namibia is a region with high population growth, limited water resources and a transboundary aquifer system where groundwater recharge and groundwater flow processes are not well understood. This study is an interdisciplinary approach within the frame of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management) to improve the understanding of links between hydrological, geochemical and ecological processes to locate areas that contribute to recharge a shallow aquifer system in the Cuvelai-Etosha basin. Results of a field campaign are presented, conducted in November 2013 which is the first of a series planned between the years 2013 and 2016. Soil samples were taken in the semi-arid subbasin of the Cuvelai Etosha surface water basin before the rainy season. Potential evaporation, temperature measurements and infiltration tests were performed at two sites with different soil characteristics. Soil samples were taken under natural conditions to a maximum depth of 4 meters. Additionally to environmental isotope signals (stable isotopes 2H, and 18O and water of known isotopic composition (local groundwater) has been applied to the same plots. Soil samples were taken to a depth of 1 m with an interval of 10 cm after 24 and 48 hours for an investigation of evaporation impact on stable isotope ratios. The soil water is extracted cryogenically from the soil samples in the laboratory and subsequently analyzed using a Picarro L2120-i cavity-ringdown (CRD) water vapor analyzer after vaporization. Results of the direct measurement of different soil types indicate that evaporation from a saturated soil can exceed potential evaporation from an open water surface1. This implies, alternative methods are needed for the determination of evaporation which will be discussed here. 1Brutsaert W.; Parlanget M.B. (1998): Hydrologic cycle explains the evaporation paradox. In: Nature (396), p. 30.

  10. Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes

    NASA Astrophysics Data System (ADS)

    Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian

    2014-05-01

    Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and by accounting for the impact of sensitive ecosystems.

  11. 50 Years And 400 Radiocarbon Measurements Since 1959: What Has The “Bomb Spike” Taught Us About Soil C Dynamics In New Zealand Soils?

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Parfitt, R. L.; Ross, C.

    2009-12-01

    In 1959, Athol Rafter began a substantial programme of monitoring the flow of 14C produced by atmospheric thermonuclear tests through New Zealand’s atmosphere, biosphere and soil. The programme produced important publications, but also leaves a legacy of unpublished data critical for understanding soil C dynamics. A database of ~400 soil radiocarbon measurements spanning 50 years has now been compiled. Among the most compelling data is a comparison of soil carbon dynamics in deforested dairy pastures under similar climate in the Tokomaru silt loam (non-Andisol) versus the Egmont black loam (Andisol), originally sampled in 1962-3, 1965 and 1969. After adding soil profiles sampled to similar depths in 2008, we can use a relatively simple 2-box model to calculate that the residence time of soil C (upper ~8 cm) in the Tokomaru soil is ~9 years compared to ~15 years for the Egmont soil. This difference represents nearly a doubling of soil C residence time, and roughly explains the doubling of the soil C stock. With three measurements in the 1960s, the data is of sufficient resolution to estimate the parameters for an “inert” or “passive pool” comprising approximately 15% of soil C, and having a residence time of 600 years in the Tokomaru soil versus 3000 years in the Egmont surface soil. The Tokomaru/Egmont comparison is necessarily illustrative since the 1960s samplings were not replicated extensively, but provides globally unique data illustrating the nature of C movement through soil. Moreover, the Tokomaru/Egmont comparison supports evidence that C dynamics does differ in Andisols versus other soils. Additional lines of evidence include emerging theories of soil organic matter stabilisation processes, rates of soil organic matter change following land-use change, and chemistry data. The contrasting soil C dynamics in these different soils appear to have implications for land-use change and management schemes that could be eligible for “C credits”. More broadly, the large database of radiocarbon measurements also creates opportunities to quantify carbon turnover and transport as a function of soil depth, and in non-steady state soil systems where the C stocks are known to be changing. The Egmont loam (Allophanic) and Tokomaru silt loam (non-Allophanic) showed different rates of "bomb-14C" incorporation under similar climate and land use.

  12. Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces

    NASA Astrophysics Data System (ADS)

    Khoury, Charbel N.

    Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear strength than that of the drying (D) tests. This is believed to be the result of many factors such as: (1) cyclic suction stress loading, (2) water content (less on wetting than drying), and (3) type of soil. The cyclic suction loading may have induced irrecoverable plastic strains, resulting in stiffer samples for wetting tests as compared to drying. Additionally, water may be acting as a lubricant and thus resulting in lower shear strength for test samples D with higher water contents than DW samples. Furthermore, various shear strength models were investigated for their applicability to the experimental data. Models were proposed for the prediction of shear strength with suction based on the SWCC. The models are able to predict the shear strength of unsaturated soil and interfaces due to drying and wetting (i.e. hydraulic hysteresis) by relating directly to the SWCC. The proposed models were used and partly validated by predicting different test results from the literature. In addition, an existing elastoplastic constitutive model was investigated and validated by comparing the predicted and experimental (stress-displacement, volume change behavior) results obtained from rough and geotextile interface tests. This study also explores the effect of hydraulic hysteresis on the resilient modulus (Mr) of subgrade soils. Suction-controlled Mr tests were performed on compacted samples along the primary drying, wetting, secondary drying and wetting paths. Two test types were performed to check the effect of cyclic deviatoric stress loading on the results. First, M r tests were performed on the same sample at each suction (i.e. 25, 50, 75, 100 kPa) value along all the paths (drying, wetting etc.). A relationship between resilient modulus (Mr) and matric suction was obtained and identified as the resilient modulus characteristic curve (MRCC). MRCC results indicated that Mr increased with suction along the drying curve. On the other hand, results on the primary wetting indicated higher Mr than that of the primary drying and the secondary drying. The second type of test was performed at selected suction without subjecting the sample to previous Mr tests. Results indicated that Mr compared favorably with the other type of test (i.e. with previous M r testing), which indicates that the cyclic deviatoric stress loading influence was not as significant as the hydraulic hysteresis (i.e. cyclic suction stress loading). A new model to predict the MRCC results during drying and wetting (i.e., hydraulic hysteresis) is proposed based on the SWCC hysteresis. The model predicted favorably the drying and then the wetting results using the SWCC at all stress levels. (Abstract shortened by UMI.)

  13. Isolation of PCR quality microbial community DNA from heavily contaminated environments.

    PubMed

    Gunawardana, Manjula; Chang, Simon; Jimenez, Abraham; Holland-Moritz, Daniel; Holland-Moritz, Hannah; La Val, Taylor P; Lund, Craig; Mullen, Madeline; Olsen, John; Sztain, Terra A; Yoo, Jennifer; Moss, John A; Baum, Marc M

    2014-07-01

    Asphalts, biochemically degraded oil, contain persistent, water-soluble compounds that pose a significant challenge to the isolation of PCR quality DNA. The adaptation of existing DNA purification protocols and commercial kits proved unsuccessful at overcoming this hurdle. Treatment of aqueous asphalt extracts with a polyamide resin afforded genomic microbial DNA templates that could readily be amplified by PCR. Physicochemically distinct asphalt samples from five natural oil seeps successfully generated the expected 291 bp amplicons targeting a region of the 16S rRNA gene, illustrating the robustness of the method. DNA recovery yields were in the 50-80% range depending on how the asphalt sample was seeded with exogenous DNA. The scope of the new method was expanded to include soil with high humic acid content. DNA from soil samples spiked with a range of humic acid concentrations was extracted with a commercial kit followed by treatment with the polyamide resin. The additional step significantly improved the purity of the DNA templates, especially at high humic acid concentrations, based on qPCR analysis of the bacterial 16S rRNA genes. The new method has the advantages of being inexpensive, simple, and rapid and should provide a valuable addition to protocols in the field of petroleum and soil microbiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Land-cover effects on the fate and transport of surface-applied antibiotics and 17-beta-estradiol on a sandy outwash plain, Anoka County, Minnesota, 2008–09

    USGS Publications Warehouse

    Trost, Jared J.; Kiesling, Richard L.; Erickson, Melinda L.; Rose, Peter J.; Elliott, Sarah M.

    2013-01-01

    A plot-scale field experiment on a sandy outwash plain in Anoka County in east-central Minnesota was used to investigate the fate and transport of two antibiotics, sulfamethazine (SMZ) and sulfamethoxazole (SMX), and a hormone, 17-beta-estradiol (17BE), in four land-cover types: bare soil, corn, hay, and prairie. The SMZ, SMX, and 17BE were applied to the surface of five plots of each land-cover type in May 2008 and again in April 2009. The cumulative application rate was 16.8 milligrams per square meter (mg/m2) for each antibiotic and 0.6 mg/m2 for 17BE. Concentrations of each chemical in plant-tissue, soil, soil-water, and groundwater samples were determined by using enzyme-linked immunosorbent assay (ELISA) kits. Soil-water and groundwater sampling events were scheduled to capture the transport of SMZ, SMX, and 17BE during two growing seasons. Soil and plant-tissue sampling events were scheduled to identify the fate of the parent chemicals of SMZ, SMX, and 17BE in these matrices after two chemical applications. Areal concentrations (mg/m2) of SMZ and SMX in soil tended to decrease in prairie plots in the 8 weeks after the second chemical application, from April 2009 to June 2009, but not in other land-cover types. During these same 8 weeks, prairie plots produced more aboveground biomass and had extracted more water from the upper 125 centimeters of the soil profile compared to all other land-cover types. Areal concentrations of SMZ and SMX in prairie plant tissue did not explain the temporal changes in areal concentrations of these chemicals in soil. The areal concentrations of SMZ and SMX in the aboveground plant tissues in June 2009 and August 2009 were much lower, generally two to three orders of magnitude, than the areal concentrations of these chemicals in soil. Pooling all treatment plot data, the median areal concentration of SMZ and SMX in plant tissues was 0.01 and 0.10 percent of the applied chemical mass compared to 22 and 12 percent in soil, respectively. Furthermore, areal concentrations of SMZ and SMX in plant-tissue samples were variable, and did not differ significantly between control and treatment plots within each land-cover type. SMZ was detected in 23 percent of soil-water samples and in 16 percent of groundwater samples collected between October 2008 and October 2009 in treatment plots, indicating that surface-applied SMZ leached below the rooting zone and reached groundwater. SMX was detected in only 1 percent of soil-water and groundwater samples during this same time period. In contrast to the antibiotics, 17BE was not reliably detected in soil samples. Additionally, ELISA-determined 17BE concentrations in plant-tissue, soil-water, and groundwater samples indicated the presence of chemicals that were not applied as part of this experiment [17BE from an external source or other chemical(s) that interfered with the 17BE ELISA kits].

  15. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    PubMed

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data is necessary to properly assess the ecological risk of bioremediation processes. (c) 2005 Wiley Periodicals, Inc.

  16. Noninvasive methods for dynamic mapping of microbial populations across the landscape

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Sengupta, A.; Troch, P. A.; Volkmann, T. H. M.

    2017-12-01

    Soil microorganisms drive key ecosystem processes, and yet characterizing their distribution and activity in soil has been notoriously difficult. This is due, in part, to the heterogeneous nature of their response to changing environmental and nutrient conditions across time and space. These dynamics are challenging to constrain in both natural and experimental systems because of sampling difficulty and constraints. For example, soil microbial sampling at the Landscape Evolution Observatory (LEO) infrastructure in Biosphere 2 is limited in efforts to minimize soil disruption to the long term experiment that aims to characterize the interacting biological, hydrological, and geochemical processes driving soil evolution. In this and other systems, new methods are needed to monitor soil microbial communities and their genetic potential over time. In this study, we take advantage of the well-defined boundary conditions on hydrological flow at LEO to develop a new method to nondestructively characterize in situ microbial populations. In our approach, we sample microbes from the seepage flow at the base of each of three replicate LEO hillslopes and use hydrological models to `map back' in situ microbial populations. Over the course of a 3-month periodic rainfall experiment we collected samples from the LEO outflow for DNA and extraction and microbial community composition analysis. These data will be used to describe changes in microbial community composition over the course of the experiment. In addition, we will use hydrological flow models to identify the changing source region of discharge water over the course of periodic rainfall pulses, thereby mapping back microbial populations onto their geographic origin in the slope. These predictions of in situ microbial populations will be ground-truthed against those derived from destructive soil sampling at the beginning and end of the rainfall experiment. Our results will show the suitability of this method for long-term, non-destructive monitoring of the microbial communities that contribute to soil evolution in this large-scale model system. Furthermore, this method may be useful for other study systems with limitations to destructive sampling including other model infrastructures and natural landscapes.

  17. Assessment of soil contamination by (210)Po and (210)Pb around heavy oil and natural gas fired power plants.

    PubMed

    Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y

    2014-06-01

    Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics

    NASA Astrophysics Data System (ADS)

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-05-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were installed in two slanted boreholes on site, together with four vertical boreholes containing electrodes for geophysical measurements. Currently the site is being monitored under natural recharge conditions. Initial results show the reaction of the vadose zone to rainfall events, as well as chemical evolution of soil water with depth.

  19. Martian (and Cold Region Lunar) Soil Mechanics Considerations

    NASA Astrophysics Data System (ADS)

    Chua, Koon Meng; Johnson, Stewart W.

    1998-01-01

    The exploration of Mars has generated a lot of interest in recent years. With the completion of the Pathfinder Mission and the commencement of detailed mapping by Mars Global Surveyor, the possibility of an inhabited outpost on the planet is becoming more realistic. In spite of the upbeat mood, human exploration of Mars is still many years in the future. Additionally, the earliest return of any martian soil samples will probably not be until 2008. So why the discussion about martian soil mechanics when there are no returned soil samples on hand to examine? In view of the lack of samples, the basis of this or any discussion at this time must necessarily be one that involves conjecture, but not without the advantage of our knowledge of regolith mechanics of the Moon and soil mechanics on Earth. The objective of this presentation/discussion is fourfold: (1) Review some basic engineering-related information about Mars that may be of interest to engineers, and scientists - including characteristics of water and C02 at low temperature; (2) review and bring together principles of soil mechanics pertinent to studying and predicting how martian soil may behave, including the morphology and physical characteristics of coarse-grained and fine-grained soils (including clays), the characteristics of collapsing soils, potentials and factors that affect migration of water in unfrozen and freezing/frozen soils, and the strength and stiffness characteristics of soils at cold temperatures; (3) discuss some preliminary results of engineering experiments performed with frozen lunar soil simulants, JSC-1, in the laboratory that show the response to temperature change with and without water, effects of water on the strength and stiffness at ambient and at below freezing temperatures; and (4) discuss engineering studies that could be performed prior to human exploration and engineering research to be performed alongside future scientific missions to that planet.

  20. Near infrared spectra are more sensitive to land use changes than physical, chemical and biological soil properties

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Scow, K.

    2009-04-01

    We studied the sensibility of the near infrared spectra (NIR) of soils to the changes caused by land use, and we compared with the sensibility of different sets of physical, chemical and biological soil properties. For this purpose, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations from the province of Alicante (SE Spain). We used discriminant analysis (DA) using different sets of soil properties. The different sets tested in this study using DA were: (1) physical and chemical properties (organic carbon, total nitrogen, available phosphorus, pH, electrical conductivity, cation exchange capacity, aggregate stability, water holding capacity, and available Ca, Mg, K and Na), (2) biochemical properties (microbial biomass carbon, basal respiration and urease, phosphatase and β-glucosidase activities), (3) phospholipids fatty acids (PLFAs), (4) physical, chemical and biochemical properties (all properties of the previous sets), and (5) the NIR spectra of soils (scores of the principal components). In general, all sets of properties were sensible to land use. This was observed in the DAs by the separation (more or less clear) of samples in groups defined by land use (irrespective of site). The worst results were obtained using soil physical and chemical properties. The combination of physical, chemical and biological properties enhanced the separation of samples in groups, indicating higher sensibility. It is accepted than combination of properties of different nature is more effective to evaluate the soil quality. The microbial community structure (PLFAs) was highly sensible to the land use, grouping correctly the 100% of the samples according with the land use. The NIR spectra were also sensitive to land use. The scores of the first 5 components, which explained 99.97% of the variance, grouped correctly the 85% of the soil samples by land use, but were unable to group correctly the 100% of the samples. Surprisingly, when the scarce variance presents in components 5 to 40 was also used, the 100% of the samples were grouped by land use, as it was observed with PLFAs. But PLFAs analysis is expensive and time-consuming (some weeks). In contrast, only some minutes are needed for the obtainment of the NIR spectra. Additionally, no chemicals are need, decreasing the costs. The NIR spectrum of a soil contains relevant information about physical, chemical and biochemical properties. NIR spectrum could be considered as an integrated vision of soil quality, and as consequence offers an integrated vision of perturbations. Thus, NIR spectroscopy could be used as tool to monitoring soil quality in large areas. Acknowledgements: Authors acknowledge to "Bancaja-UMH" for the financial support of the project "NIRPRO"

  1. Completing below-ground carbon budgets for pastures, recovering forests, and mature forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.

    1994-01-01

    The objective of this grant was to complete below-ground carbon budgets for pastures and forest soils in the Amazon. Profiles of radon and carbon dioxide were used to estimate depth distribution of CO2 production in soil. This information is necessary for determining the importance of deep roots as sources of carbon inputs. Samples were collected for measuring root biomass from new research sites at Santana de Araguaia and Trombetas. Soil gases will be analyzed for CO2 and (14)CO2, and soil organic matter will be analyzed for C-14. Estimates of soil texture from the RADAMBRASIL database were merged with climate data to calculate soil water extraction by forest canopies during the dry season. In addition, a preliminary map of areas where deep roots are needed for deep soil water was produced. A list of manuscripts and papers prepared during the reporting periods is given.

  2. Microbiological indicators for assessing ecosystem soil quality and changes in it at degraded sites treated with compost

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Barra Caracciolo, Anna; Grenni, Paola; Di Lenola, Martina; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Soil quality is defined as the capacity of a soil to function as a vital system, within natural or managed ecosystem boundaries, sustain plant and animal health and productivity, maintain or enhance air and water environment quality and support human health and habitation. Soil organisms are extremely diverse and contribute to a wide range of ecosystem services that are essential to the sustainable functioning of natural and managed ecosystems. In particular, microbial communities provide several ecosystem services, which ensure soil quality and fertility. In fact, they adapt promptly to environmental changes by varying their activity and by increasing the reproduction of populations that have favourable skills. The structure (e.g. cell abundance) and functioning (e.g. viability and activity) of natural microbial communities and changes in them under different environmental conditions can be considered useful indicators of soil quality state. In this work we studied the quality state of three different soils, located in Taranto Province (Southern Italy), affected by land degradation processes, such as organic matter depletion, desertification and contamination (PCB and metals). Moreover, compost, produced from selected organic waste, was added to the soils studied in order to improve their quality state. Soil samples were collected before and after compost addition and both microbial and chemical analyses were performed in order to evaluate the soil quality state at each site at different times. For this purpose, the microbiological indicators evaluated were bacterial abundance (DAPI counts), cell viability (Live/Dead method), dehydrogenase activity (DHA) and soil respiration. At the same time, the main physico-chemical soil characteristics (organic carbon, available phosphorous, total nitrogen, carbonate and water content, texture and pH) were also measured. Moreover, in the contaminated soil samples PCB and inorganic (e.g. Pb, Se, Sn, Zn) contaminants were analysed respectively by GC-MS and ICP-MS. The overall results showed that the bacterial structure and functioning were affected in different ways by the organic carbon availability and quality, and contaminant occurrence (organic or inorganic compounds). The compost treatment contributed to improve soil fertility and to increase cell number and activity after 7 months in the two low organic carbon content soils. At the polluted site a general increase in bacterial activity after compost addition was also observed and this might be related to a decrease in inorganic and organic contamination levels.

  3. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali Aldabaa, Abdalsamad Abdalsatar; Ghosh, Rakesh Kumar; Paul, Sathi; Nasim Ali, Md

    2015-05-01

    Using 108 petroleum contaminated soil samples, this pilot study proposed a new analytical approach of combining visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence spectrometry (PXRF) for rapid and improved quantification of soil petroleum contamination. Results indicated that an advanced fused model where VisNIR DRS spectra-based penalized spline regression (PSR) was used to predict total petroleum hydrocarbon followed by PXRF elemental data-based random forest regression was used to model the PSR residuals, it outperformed (R(2)=0.78, residual prediction deviation (RPD)=2.19) all other models tested, even producing better generalization than using VisNIR DRS alone (RPD's of 1.64, 1.86, and 1.96 for random forest, penalized spline regression, and partial least squares regression, respectively). Additionally, unsupervised principal component analysis using the PXRF+VisNIR DRS system qualitatively separated contaminated soils from control samples. Fusion of PXRF elemental data and VisNIR derivative spectra produced an optimized model for total petroleum hydrocarbon quantification in soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil

    NASA Astrophysics Data System (ADS)

    Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.

    2017-03-01

    We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.

  5. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

    PubMed

    Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre

    2015-04-09

    Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.

  7. The evaluation of polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soil amended with organic fertilizers and bulking agents.

    PubMed

    Włóka, Dariusz; Placek, Agnieszka; Rorat, Agnieszka; Smol, Marzena; Kacprzak, Małgorzata

    2017-11-01

    The aim of this study was to investigate the polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soils fertilized with organic amendments (sewage sludge, compost), bulking agents (mineral sorbent, silicon dioxide in form of nano powder), and novel compositions of those materials. The scope of conducted works includes a cyclic CO 2 production measurements and the determinations of PAHs content in soil samples, before and after 3-months of incubation. Obtained results show that the use of both type of organic fertilizers have a positive effect on the PAHs removal from soil. However, the CO 2 emission remains higher only in the first stage of the process. The best acquired means in terms of PAHs removal as well as most sustained CO 2 production were noted in samples treated with the mixtures of organic fertilizers and bulking agents. In conclusion the addition of structural forming materials to the organic fertilizers was critical for the soil bioremediation efficiency. Therefore, the practical implementation of collected data could find a wide range of applications during the design of new, more effective solutions for the soil bioremediation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools.

    PubMed

    Muñiz, Selene; Gonzalvo, Pilar; Valdehita, Ana; Molina-Molina, José Manuel; Navas, José María; Olea, Nicolás; Fernández-Cascán, Jesús; Navarro, Enrique

    2017-11-01

    An ecotoxicological survey of soils that were polluted with wastes from lindane (γ-HCH) production assessed the effects of organochlorine compounds on the metabolism of microbial communities and the toxicity of these compounds to a native earthworm (Allolobophora chlorotica). Furthermore, the bioremediation role of earthworms as facilitators of soil washing and the microbial degradation of these organic pollutants were also studied. Soil samples that presented the highest concentrations of ε-HCH, 2,4,6-trichlorophenol, pentachlorobenzene and γ-HCH were extremely toxic to earthworms in the short term, causing the death of almost half of the population. In addition, these soils inhibited the heterotrophic metabolic activity of the microbial community. These highly polluted samples also presented substances that were able to activate cellular detoxification mechanisms (measured as EROD and BFCOD activities), as well as compounds that were able to cause endocrine disruption. A few days of earthworm activity increased the extractability of HCH isomers (e.g., γ-HCH), facilitating the biodegradation of organochlorine compounds and reducing the intensity of endocrine disruption in soils that had low or medium contamination levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and datamore » assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ∼0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA [5, 6, 7] Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples [8]. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. [9, 10] Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. [11] The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities. (authors)« less

  10. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teamsmore » were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ~0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA. Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities.« less

  11. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    PubMed

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  12. Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp.

    PubMed

    Scott, Andrew; Tien, Yuan-Ching; Drury, Craig F; Reynolds, W Daniel; Topp, Edward

    2018-03-01

    The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.

  13. Efficiency of different techniques to identify changes in land use

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Mateix-Solera, Jorge; Gerrero, César

    2013-04-01

    The need for the development of sensitive and efficient methodologies for soil quality evaluation is increasing. The ability to assess soil quality and identify key soil properties that serve as indicators of soil function is complicated by the multiplicity of physical, chemical and biological factors that control soil processes. In the mountain region of the Mediterranean Basin of Spain, almond trees have been cultivated in terraced orchards for centuries. These crops are immersed in the Mediterranean forest scenery, configuring a mosaic landscape where orchards are integrated in the forest masses. In the last decades, almond orchards are being abandoned, leading to an increase in vegetation cover, since abandoned fields are naturally colonized by the surrounded natural vegetation. Soil processes and properties are expected to be associated with vegetation successional dynamics. Thus, the establishment of suitable parameters to monitor soil quality related to land use changes is particularly important to guarantee the regeneration of the mature community. In this study, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations in SE Spain. The main purpose was to evaluate if changes in management have significantly influenced different sets of soil characteristics. For this purpose, we used a discriminant analysis (DA). The different sets of soil characteristics tested in this study were 1: physical, chemical and biochemical properties; 2: soil near infrared (NIR) spectra; and 3: phospholipid fatty acids (PLFAs). After the DA performed with the sets 1 and 2, the three land uses were clearly separated by the two first discriminant functions, and more than 85 % of the samples were correctly classified (grouped). Using the sets 3 and 4 for DA resulted in a slightly better separation of land uses, being more than 85% of the samples correctly classified. These results suggest that the combination of properties of different nature is effective to show the state of soil quality, owing to the close interaction among physical, chemical and biochemical properties in soil. In addition, NIR spectra offer an integrate vision of soil quality, as they synthesize information regarding mineralogy, soil chemistry, soil biology, organic matter and physical attributes. With the DA developed with the PLFAs, the 100% of samples were correctly classified or grouped, indicating a clear impact of land management. This confirms the higher sensitivity of parameters related to soil microbial community structure to evaluate soil quality, perturbations and management. This result was expected as microbial communities respond very fast to changes in land use, faster than measurements of total microbial biomass and activity. Key Words: Land use changes; Phospholipids fatty acids; Near Infrared Spectroscopy

  14. Development and validation of a solid phase extraction sample cleanup procedure for the recovery of trace levels of nitro-organic explosives in soil.

    PubMed

    Thomas, Jennifer L; Donnelly, Christopher C; Lloyd, Erin W; Mothershead, Robert F; Miller, Mark L

    2018-03-01

    An improved cleanup method has been developed for the recovery of trace levels of 12 nitro-organic explosives in soil, which is important not only for the forensic community, but also has environmental implications. A wide variety of explosives or explosive-related compounds were evaluated, including nitramines, nitrate esters, nitroaromatics, and a nitroalkane. Fortified soil samples were extracted with acetone, processed via solid phase extraction (SPE), and then analyzed by gas chromatography with electron capture detection. The following three SPE sorbents in cartridge format were compared: Empore™ SDB-XC, Oasis ® HLB, and Bond Elut NEXUS cartridges. The NEXUS cartridges provided the best overall recoveries for the 12 explosives in potting soil (average 48%) and the fastest processing times (<30min). It also rejected matrix components from spent motor oil on potting soil. The SPE method was validated by assessing limit of detection (LOD), processed sample stability, and interferences. All 12 compounds were detectable at 0.02μg explosive/gram of soil or lower in the three matrices tested (potting soil, sand, and loam) over three days. Seven explosives were stable up to seven days at 2μg/g and three were stable at 0.2μg/g, both in processed loam, which was the most challenging matrix. In the interference study, five interferences above the determined LOD for soil were detected in matrices collected across the United States and in purchased all-purpose sand, potting soil, and loam. This represented a 3.2% false positive rate for the 13 matrices processed by the screening method for interferences. The reported SPE cleanup method provides a fast and simple extraction process for separating organic explosives from matrix components, facilitating sample throughput and reducing instrument maintenance. In addition, a comparison study of the validated SPE method versus conventional syringe filtration was completed and highlighted the benefits of sample cleanup for removing matrix interferences, while also providing lower supply cost, order of magnitude lower LODs for most explosives, higher percent recoveries for complex matrices, and fewer instrument maintenance issues. Published by Elsevier B.V.

  15. Nutrient limitation in soils and trees of a treeline ecotone in Rolwaling Himal, Nepal

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Müller, Michael; Schickhoff, Udo; Böhner, Jürgen; Scholten, Thomas

    2015-04-01

    At a global scale, tree growth and thus the position of natural alpine treelines is limited by low temperatures. At landscape and local scales, however, the treeline position depends on multiple interactions of influencing factors and mechanisms. The aim of our research is to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors, in a near-natural alpine treeline ecotone of Rolwaling Himal, Nepal. In total 48 plots (20 m x 20 m) were investigated. Three north-facing slopes were separated in four different altitudinal zones with the characteristic vegetation of tree species Rhododendron campanulatum, Abies spectabilis, Betula utilis, Sorbus microphylla and Acer spec. We collected 151 soil horizon samples (Ah, Ae, Bh, Bs), 146 litter layer samples (L), and 146 decomposition layer samples (Of) in 2013, as well as 251 leaves from standing biomass (SB) in 2013 and 2014. All samples were analysed for exchangeable cations or nutrient concentrations of C, N, P, K, Mg, Ca, Mn, Fe and Al. Soil moisture, soil and surface air temperatures were measured by 34 installed sensors. Precipitation and air temperatures were measured by three climate stations. The main pedogenic process is leaching of dissolved organic carbon, aluminium and iron from topsoil to subsoil. Soil types are classified as podzols with generally low nutrient concentrations. Soil acidity is extremely high and humus quality of mineral soils is poor. Our results indicate multilateral interactions and a great spatial variability of essential nutrients within the treeline ecotone. Both, soil nutrients and leave macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K) decrease significantly with elevation in the treeline ecotone. Besides, phosphorus (P) foliar concentrations decrease significantly with elevation. Based on regression analyses, low soil temperatures and malnutrition most likely affect tree growth in high altitudes. Thus, we assume a high influence of soil properties and nutrient supply on the position of alpine treeline at a local scale. In addition, a manganese (Mn) excess in foliage of woody species was determined above treeline. With the help of multivariate statistical approaches, potential determining factors of treeline position could be quantified.

  16. Post-wildfire erosion in mountainous terrain leads to rapid and major redistribution of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Abney, Rebecca B.; Sanderman, Jonathan; Johnson, Dale; Fogel, Marilyn L.; Berhe, Asmeret Asefaw

    2017-11-01

    Catchments impacted by wildfire typically experience elevated rates of post-fire erosion and formation and deposition of pyrogenic carbon (PyC). To better understand the role of erosion in post-fire soil carbon dynamics, we determined distribution of soil organic carbon in different chemical fractions before and after the Gondola fire in South Lake Tahoe, CA. We analyzed soil samples from eroding and depositional landform positions in control and burned plots pre- and post-wildfire (in 2002, 2003, and 10-years post-fire in 2013). We determined elemental concentrations, stable isotope compositions, and biochemical composition of organic matter (OM) using mid-infrared (MIR) spectroscopy for all of the samples. A subset of samples was analyzed by 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (CPMAS 13C-NMR). We combined the MIR and CPMAS 13C-NMR data in the Soil Carbon Research Program partial least squares regression model to predict distribution of soil carbon into three different fractions: 1) particulate, humic, and resistant organic matter fractions representing relatively fresh larger pieces of OM, 2) fine, decomposed OM, and 3) pyrogenic C, respectively. Samples from the post-fire eroding landform position showed no major difference in soil organic carbon (SOC) fractions one year post-fire. The depositional samples, however, had increased concentrations of all SOC fractions, particularly the fraction that resembles PyC, one year post-fire (2002), which had a mean of 160 g/kg compared with burned hillslope soils, which had 84 g/kg. The increase in all SOC fractions in the post-fire depositional landform position one year post-fire indicates significant lateral mobilization of the eroded PyC. In addition, our NMR analyses revealed a post-fire increase in both the aryl and O-aryl carbon compounds in the soils from the depositional landform position, indicating increases in soil PyC concentrations post-fire. After 10 years, the C concentration from all three fractions declined in the depositional landform position to below pre-fire levels likely due to further erosion or elevated rates of decomposition. Thus, we found, at this site, that both fire and erosion exert significant influence on the distribution of PyC throughout a landscape and its long-term fate in the soil system.

  17. New record of Scedosporium dehoogii from Chile: Phylogeny and susceptibility profiles to classic and novel putative antifungal agents.

    PubMed

    Alvarez, Eduardo; Sanhueza, Camila

    Scedosporium species are considered emerging agents causing illness in immunocompromised patients. In Chile, only Scedosporium apiospermum, Scedosporium boydii and Lomentospora prolificans haven been reported previously. The study aimed to characterize genetically Scedosporium dehoogii strains from Chilean soil samples, and assessed the antifungal susceptibility profile to classic and novel putative antifungal molecules. In 2014, several samples were obtained during a survey of soil fungi in urban areas from Chile. Morphological and phylogenetic analyses of the internal transcribed spacer region (ITS), tubulin (TUB), and calmodulin (CAL) sequences were performed. In addition, the susceptibility profiles to classic antifungal and new putative antifungal molecules were determined. Four strains of Scedosporium dehoogii were isolated from soil samples. The methodology confirmed the species (reported here as a new record for Chile). Antifungal susceptibility testing demonstrates the low activity of terpenes (α-pinene and geraniol) against this species. Voriconazole (VRC), posaconazole (PSC), and the hydroxyquinolines (clioquinol, and 5,7-dibromo-8-hydroxyquinoline) showed the best antifungal activity. Our results demonstrate that Scedosporium dehoogii is present in soil samples from Chile. This study shows also that hydroxyquinolines have potential as putative antifungal molecules. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Effect of farmyard manure rate on water erosion of a Mediterranean soil: determination of the critical point of inefficacy

    NASA Astrophysics Data System (ADS)

    Annabi, Mohamed; Bahri, Haithem; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Intensive cultivation of soils, using multiple soil tillage, led to the decrease of their organic matter content and structural stability in several cultivated area of the Mediterranean countries. In these degraded soils, the addition of organic products, traditionally the animal manure, should improve soil health among them the resistance of soil to water erosion. The aim of this study was to evaluate after 1 year of the addition to a cambisoil different doses of farmyard manure on soil organic matter content, on microbial activity and on aggregate stability (proxy to soil resistance to water erosion). The statistical process (bilinear model) was used to found a point at which the addition of the organic product no longer influences the soil resistance to erosion. The farmyard manure issued from a cow breeding was composted passively during 4 months and used to amend a small plots of a cultivated cambisol (silty-clay texture, 0.9% TOC) located in the northeast of Tunisia (Morneg region). The manure was intimately incorporate to the soil. The manure organic matter content was 31%, and its isohumic coefficient was 49%. Twelve dose of manure were tested: from 0 to 220 t C.ha-1. The experiment was started on September 2011. In November 2012, soil sampling was done and soil organic carbon content (Walkley-Black method) and soil aggregate stability (wet method of Le Bissonnais) were assessed. A laboratory incubations of soil+manure mixtures, with the same proportions as tested in the field conditions, was carried at 28°C and at 75% of the mixture field capacity water retention. Carbon mineralization was monitored during three months incubation. Results show that the addition of farmyard manure stimulated the microbial activity proportionally to the added dose. This activation is due to the presence of easily biodegradable carbon in the manure, which increases with increasing manure dose. On the other hand, the addition of manure increased the aggregate stability with the manure dose increasing. This aggregate stabilization is due to the stimulation of microbial activity (r= 0.72, n=12) which can improves the aggregate stability by increasing the aggregate cohesion by adhesive substances such as the polysaccharides and by the enmeshment of aggregate by fungal hyphea. The increase of organic matter content due to manure addition contributes also to aggregate stabilization with a high regression slope with the first manure doses (less then 120 t C.ha-1). Using a bi-linear model, reach 2.3% of soil organic carbon seems to be a critical level from which the aggregate stability evolves little.

  19. Environmental Occurrence of Madurella mycetomatis, the Major Agent of Human Eumycetoma in Sudan

    PubMed Central

    Ahmed, Abdalla; Adelmann, Daniel; Fahal, Ahmed; Verbrugh, Henri; Belkum, Alex van; Hoog, Sybren de

    2002-01-01

    Madurella mycetomatis is the main causative agent of human eumycetoma, a severe debilitating disease endemic in Sudan. It has been suggested that eumycetoma has a soil-borne or thorn prick-mediated origin. For this reason, efforts were undertaken to culture M. mycetomatis from soil samples (n = 43) and thorn collections (n = 35) derived from areas in which it is endemic. However, ribosomal sequencing data revealed that the black fungi obtained all belonged to other fungal species. In addition, we performed PCR-mediated detection followed by restriction fragment length polymorphism (RFLP) analysis for the identification of M. mycetomatis DNA from the environmental samples as well as biopsies from patients with mycetoma. In the case of the Sudanese soil samples, 17 out of 74 (23%) samples were positive for M. mycetomatis DNA. Among the thorn collections, 1 out of 22 (5%) was positive in the PCR. All PCR RFLP patterns clearly indicated the presence of M. mycetomatis. In contrast, 15 Dutch and English control soil samples were all negative. Clinically and environmentally obtained fungal PCR products share the same PCR RFLP patterns, suggesting identity, at least at the species level. These observations support the hypothesis that eumycetoma is primarily environmentally acquired and suggest that M. mycetomatis needs special conditions for growth, as direct isolation from the environment seems to be impossible. PMID:11880433

  20. Environmental Screening for the Scedosporium apiospermum Species Complex in Public Parks in Bangkok, Thailand.

    PubMed

    Luplertlop, Natthanej; Pumeesat, Potjaman; Muangkaew, Watcharamat; Wongsuk, Thanwa; Alastruey-Izquierdo, Ana

    2016-01-01

    The Scedosporium apiospermum species complex, comprising filamentous fungal species S. apiospermum sensu stricto, S. boydii, S. aurantiacum, S. dehoogii and S. minutispora, are important pathogens that cause a wide variety of infections. Although some species (S. boydii and S. apiospermum) have been isolated from patients in Thailand, no environmental surveys of these fungi have been performed in Thailand or surrounding countries. In this study, we isolated and identified species of these fungi from 68 soil and 16 water samples randomly collected from 10 parks in Bangkok. After filtration and subsequent inoculation of samples on Scedo-Select III medium, colony morphological examinations and microscopic observations were performed. Scedosporium species were isolated from soil in 8 of the 10 parks, but were only detected in one water sample. Colony morphologies of isolates from 41 of 68 soil samples (60.29%) and 1 of 15 water samples (6.67%) were consistent with that of the S. apiospermum species complex. Each morphological type was selected for species identification based on DNA sequencing and phylogenetic analysis of the β-tubulin gene. Three species of the S. apiospermum species complex were identified: S. apiospermum (71 isolates), S. aurantiacum (6 isolates) and S. dehoogii (5 isolates). In addition, 16 sequences could not be assigned to an exact Scedosporium species. According to our environmental survey, the S. apiospermum species complex is widespread in soil in Bangkok, Thailand.

  1. Environmental Screening for the Scedosporium apiospermum Species Complex in Public Parks in Bangkok, Thailand

    PubMed Central

    Pumeesat, Potjaman; Muangkaew, Watcharamat; Wongsuk, Thanwa; Alastruey-Izquierdo, Ana

    2016-01-01

    The Scedosporium apiospermum species complex, comprising filamentous fungal species S. apiospermum sensu stricto, S. boydii, S. aurantiacum, S. dehoogii and S. minutispora, are important pathogens that cause a wide variety of infections. Although some species (S. boydii and S. apiospermum) have been isolated from patients in Thailand, no environmental surveys of these fungi have been performed in Thailand or surrounding countries. In this study, we isolated and identified species of these fungi from 68 soil and 16 water samples randomly collected from 10 parks in Bangkok. After filtration and subsequent inoculation of samples on Scedo-Select III medium, colony morphological examinations and microscopic observations were performed. Scedosporium species were isolated from soil in 8 of the 10 parks, but were only detected in one water sample. Colony morphologies of isolates from 41 of 68 soil samples (60.29%) and 1 of 15 water samples (6.67%) were consistent with that of the S. apiospermum species complex. Each morphological type was selected for species identification based on DNA sequencing and phylogenetic analysis of the β-tubulin gene. Three species of the S. apiospermum species complex were identified: S. apiospermum (71 isolates), S. aurantiacum (6 isolates) and S. dehoogii (5 isolates). In addition, 16 sequences could not be assigned to an exact Scedosporium species. According to our environmental survey, the S. apiospermum species complex is widespread in soil in Bangkok, Thailand. PMID:27467209

  2. An assessment of absorbed dose and radiation hazard index from soil around repository facility at Bukit Kledang, Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Adziz, M. I. Abdul; Khoo, K. S.

    2018-01-01

    The process of natural decay of radionuclides that emit gamma rays can infect humans and other living things. In this study, soil samples were taken at various locations which have been identified around the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak. In addition, the respective dose rates in the sampling sites were measured at 5cm and 1m above the ground using a survey meter with Geiger Muller (GM) detector. Soil samples were taken using a hand Auger and then brought back to the laboratory for sample prepreparation process. The measuring of radioactivity concentration in soil samples were carried out using gamma spectrometer counting system equipped with HPGe detector. The obtained results show, the radioactivity concentration ranged from 11.98 - 29.93 Bq/kg for Radium-226 (226Ra), 20.97 - 41.45 Bq/kg for Thorium-232 (232Th) and 5.73 - 59.41 Bq/kg for Potassium-40 (40K), with mean values of 20.83 ± 5.88 Bq/kg, 32.87 ± 5.88 Bq/kg and 21.50 ± 2.79 Bq/kg, respectively. To assess the radiological hazards of natural radioactivity, radium equivalent activity (Raeq), the rate of absorption dose (D), the annual effective dose and external hazard index (Hex) was calculated and compared to the world average values.

  3. Exfiltrometer apparatus and method for measuring unsaturated hydrologic properties in soil

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.; Schafer, Annette L.

    2006-01-17

    Exfiltrometer apparatus includes a container for holding soil. A sample container for holding sample soil is positionable with respect to the container so that the sample soil contained in the sample container is in communication with soil contained in the container. A first tensiometer operatively associated with the sample container senses a surface water potential at about a surface of the sample soil contained in the sample container. A second tensiometer operatively associated with the sample container senses a first subsurface water potential below the surface of the sample soil. A water content sensor operatively associated with the sample container senses a water content in the sample soil. A water supply supplies water to the sample soil. A data logger operatively connected to the first and second tensiometers, and to the water content sensor receives and processes data provided by the first and second tensiometers and by the water content sensor.

  4. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  5. Construction and testing of a simple and economical soil greenhouse gas automatic sampler

    USGS Publications Warehouse

    Ginting, D.; Arnold, S.L.; Arnold, N.S.; Tubbs, R.S.

    2007-01-01

    Quantification of soil greenhouse gas emissions requires considerable sampling to account for spatial and/or temporal variation. With manual sampling, additional personnel are often not available to sample multiple sites within a narrow time interval. The objectives were to construct an automatic gas sampler and to compare the accuracy and precision of automatic versus manual sampling. The automatic sampler was tested with carbon dioxide (CO2) fluxes that mimicked the range of CO2 fluxes during a typical corn-growing season in eastern Nebraska. Gas samples were drawn from the chamber at 0, 5, and 10 min manually and with the automatic sampler. The three samples drawn with the automatic sampler were transferred to pre-vacuumed vials after 1 h; thus the samples in syringe barrels stayed connected with the increasing CO2 concentration in the chamber. The automatic sampler sustains accuracy and precision in greenhouse gas sampling while improving time efficiency and reducing labor stress. Copyright ?? Taylor & Francis Group, LLC.

  6. Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors

    USGS Publications Warehouse

    Miller, R.L.; Jackson, L.E.

    1998-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (VAM) root colonization and spore number in soil was assessed for 18 fields under intensive lettuce (Lactuca sativa L.) production in California during July and August of 1995. Data on management practices and soil characteristics were compiled for each field, and included a wide range of conditions. The relationship between these factors and the occurrence of VAM in these fields was explored with multivariate statistical analysis. VAM colonization of lettuce tended to decrease with the use of chemical inputs, such as pesticides and high amounts of P and N fertilizers. Addition of soil organic matter amendments, the occurrence of other host crops in the rotation, and soil carbon:phosphorus and carbon:nitrogen ratios, were positively associated with VAM colonization of lettuce roots. The number of VAM spores in soil was strongly correlated with the number of other host crops in the rotation, the occurrence of weed hosts and sampling date, but was more affected by general soil conditions than by management inputs. Higher total soil N, C and P, as well as CEC, were inversely related to soil spore number. A glasshouse study of the two primary lettuce types sampled in the field showed no significant differences in the extent of root colonization under similar growing conditions. The results of this study are compared with other studies on the effects of management and soil conditions on mycorrhizal occurrence in agriculture.

  7. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas.

    PubMed

    Nieminen, Jouni K; Räisänen, Mikko

    2013-07-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4-N (2100%), the proportion of soil NO3-N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Vertical nutrient and trace element migration in cambisoils after application of residues from anaerobic digestion of pig manure

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Unterfrauner, Hans

    2013-04-01

    Cambisols sampled in alpine pastures were packed into soil columns in order to monitor downward migration of nutrient and trace elements, applied within the residue from anaerobic digestion of a pig manure. 2 rain events per week were simulated. The manure added substantial amounts of K, ammonium, Na, Ca, P, S, Cl, B, Zn and Cu to the soil, whereas Mg, Mn, Ni, Cr, Pb, Cd and V were at the same level. In the eluates, total elemental composition as well as nitrate and ammonium were monitored. Addition of soluble Fe (at 1000 mg/l as FeCl3) decreased the release of soluble sulphate, but had no significant effect on the release of Fe and P. During subsequent rain events, exchangeable K remained enriched in the topsoil, wheras total sulfur moved to deeper layers. After 8 weeks, the columns were dismantled and analyzed for quasi-total and mobile fractions. Both in topsoils and subsoils, manure addition finally increased soil pH in case of low P soils, but decreased soil pH in case of high pH soils. Effects of manure applications on groundwater formation processes will be discussed.

  9. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    PubMed

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA. (c) 2010 Elsevier Ltd. All rights reserved.

  10. The development of Operational Intervention Levels (OILs) for Soils - A decision support tool in nuclear and radiological emergency response

    NASA Astrophysics Data System (ADS)

    Lee Zhi Yi, Amelia; Dercon, Gerd; Blackburn, Carl; Kheng, Heng Lee

    2017-04-01

    In the event of a large-scale nuclear accident, the swift implementation of response actions is imperative. For food and agriculture, it is important to restrict contaminated food from being produced or gathered, and to put in place systems to prevent contaminated produce from entering the food chain. Emergency tools and response protocols exist to assist food control and health authorities but they tend to focus on radioactivity concentrations in food products as a means of restricting the distribution and sale of contaminated produce. Few, if any, emergency tools or protocols focus on the food production environment, for example radioactivity concentrations in soils. Here we present the Operational Intervention Levels for Soils (OIL for Soils) concept, an optimization tool developed at the IAEA to facilitate agricultural decision making and to improve nuclear emergency preparedness and response capabilities. Effective intervention relies on the prompt availability of radioactivity concentration data and the ability to implement countermeasures. Sampling in food and agriculture can be demanding because it may involve large areas and many sample types. In addition, there are finite resources available in terms of manpower and laboratory support. Consequently, there is a risk that timely decision making will be hindered and food safety compromised due to time taken to sample and analyse produce. However, the OILs for Soils concept developed based on experience in Japan can help in this situation and greatly assist authorities responsible for agricultural production. OILs for Soils - pre-determined reference levels of air dose rates linked to radionuclide concentrations in soils - can be used to trigger response actions particularly important for agricultural and food protection. Key considerations in the development of the OILs for Soils are: (1) establishing a pragmatic sampling approach to prioritize and optimize available resources and data requirements for decision making in agricultural sites: (2) creating a system that is adaptable to different countries, and; (3) developing a framework to calculate default values of OILs for Soils for application during an emergency. The OILs for Soils reference levels are calculated using a mathematical model. Empirical equations, paired with radionuclide data (e.g. Cs-134, Cs-137 and I-131) from the ICRU 53 report, are utilized to determine soil contamination from aerial monitoring air dose rate data. Modelling allows soil contamination values to be readily approximated and this is used to prioritize soil and food sampling sites. Reference levels are based on a model that considers radionuclide transfer factors for up-take into plants, soil density, and soil sampling depth. Decision actions for determined reference levels are suggested for processed foods, animal products, animal feed and crop products (including plants at the growing stage, mature stage, fallow farmland, and forestry products). With these steps, OILs for Soils provide practical guidance that will equip authorities to respond efficiently and help maintain the safety of the food supply during large-scale nuclear or radiological emergency situations.

  11. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  12. Revisiting chlorophyll extraction methods in biological soil crusts - methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    NASA Astrophysics Data System (ADS)

    Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina

    2018-03-01

    Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  13. The Effects of Wideband Complex Electromagnetic Properties of Soils on Geophysical Sensor Performance

    NASA Astrophysics Data System (ADS)

    North, Ryan Elliot

    Common near-surface geophysical methods such as time domain electromagnetic induction (TDEM) metal detectors and ground penetrating radar (GPR) suffer performance degradation as a function of site specific complex electromagnetic soil properties (permittivity, permeability and conductivity). Knowledge of these soil properties from the kHz to the GHz frequency range can be used to predict and improve sensor performance. A prototype permittivity probe was used to measure the complex permittivity and conductivity of the soil and calculate the GPR velocity and attenuation of the from the in-situ measurements. The prototype probe was capable of accurately predicting the GPR velocities when compared with the GPR measurement and could easily predict the attenuation which is difficult to determine from actual GPR data. Unfortunately the prototype probe here has one primarily deficiency which is the assumption that the soils where it is used are non-magnetic. To illustrate the problems with using this probe in magnetic soils I made soil analogues from commercially available magnetite and crushed silica powder then measured them using a common open ended coaxial probe followed by measurements with coaxial air- line fixture which can also calculate magnetic properties. The calculated permittivities are up to twice as high when measured with the coaxial probe as they are when measured with a coaxial airline fixture which will lead to incorrect estimates of GPR velocity and attenuation. To address the performance issues of metal detectors in magnetically viscous soils I created a magnetically viscous soil analogue that could be used in mine detection training lanes instead of importing soil from sites exhibiting magnetic viscosity. Five commercially available iron oxide nano-powders were tested as additives to create the soil analogues by measuring the magnetic viscosity of these iron oxides with a new prototype instrument and compared them to samples of magnetically viscous soils collected at sites around the world. Three of the iron oxides exhibited comparable magnetic viscosities to the naturally occurring soil samples. One was selected to make a soil analogue by mixing it with crushed silica. The resulting magnetic susceptibilities compared favorably with those of the natural soil samples.

  14. Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput Sequencing Surveys of Soils

    PubMed Central

    Song, Zewei; Schlatter, Dan; Kennedy, Peter; Kinkel, Linda L.; Kistler, H. Corby; Nguyen, Nhu; Bates, Scott T.

    2015-01-01

    Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modifications to library preparation for high-throughput sequencing (HTS). The following treatments were considered: 1) the amount of soil used in DNA extraction, 2) the inclusion of additional steps (freeze/thaw cycles, sonication, or hot water bath incubation) in the extraction procedure, 3) the amount of DNA template used in PCR, and 4) the effect of sample pooling, either physically or computationally. Soils from two different ecosystems in Minnesota, USA, one prairie and one forest site, were used to assess the generality of our results. The first three treatments did not significantly influence observed fungal OTU richness or community structure at either site. Physical pooling captured more OTU richness compared to individual samples, but total OTU richness at each site was highest when individual samples were computationally combined. We conclude that standard extraction kit protocols are well optimized for fungal HTS surveys, but because sample pooling can significantly influence OTU richness estimates, it is important to carefully consider the study aims when planning sampling procedures. PMID:25974078

  15. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.

    PubMed

    Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin

    2015-03-01

    Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

  16. Letter Report for Characterization of Biochar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amonette, James E.

    2013-04-09

    On 27 November 2012, a bulk biochar sample was received for characterization of selected physical and chemical properties. The main purpose of the characterization was to help determine the degree to which biochar would be suitable as a soil amendment to aid in growth of plants. Towards this end, analyses to determine specific surface, pH, cation-exchange capacity, water retention, and wettability (i.e. surface tension) were conducted. A second objective was to determine how uniform these properties were in the sample. Towards this end, the sample was separated into fractions based on initial particle size and on whether the material wasmore » from the external surface or the internal portion of the particle. Based on the results, the biochar has significant liming potentials, significant cation-retention capacities, and highly variable plant-available moisture retention properties that, under the most favorable circumstances, could be helpful to plants. As a consequence, it would be quite suitable for addition to acidic soils and should enhance the fertility of those soils.« less

  17. A comparison of two methods for quantifying soil organic carbon of alpine grasslands on the Tibetan Plateau.

    PubMed

    Chen, Litong; Flynn, Dan F B; Jing, Xin; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2015-01-01

    As CO2 concentrations continue to rise and drive global climate change, much effort has been put into estimating soil carbon (C) stocks and dynamics over time. However, the inconsistent methods employed by researchers hamper the comparability of such works, creating a pressing need to standardize the methods for soil organic C (SOC) quantification by the various methods. Here, we collected 712 soil samples from 36 sites of alpine grasslands on the Tibetan Plateau covering different soil depths and vegetation and soil types. We used an elemental analyzer for soil total C (STC) and an inorganic carbon analyzer for soil inorganic C (SIC), and then defined the difference between STC and SIC as SOCCNS. In addition, we employed the modified Walkley-Black (MWB) method, hereafter SOCMWB. Our results showed that there was a strong correlation between SOCCNS and SOCMWB across the data set, given the application of a correction factor of 1.103. Soil depth and soil type significantly influenced on the recovery, defined as the ratio of SOCMWB to SOCCNS, and the recovery was closely associated with soil carbonate content and pH value as well. The differences of recovery between alpine meadow and steppe were largely driven by soil pH. In addition, statistically, a relatively strong correlation between SOCCNS and STC was also found, suggesting that it is feasible to estimate SOCCNS stocks through the STC data across the Tibetan grasslands. Therefore, our results suggest that in order to accurately estimate the absolute SOC stocks and its change in the Tibetan alpine grasslands, adequate correction of the modified WB measurements is essential with correct consideration of the effects of soil types, vegetation, soil pH and soil depth.

  18. A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau

    PubMed Central

    Chen, Litong; Flynn, Dan F. B.; Jing, Xin; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2015-01-01

    As CO2 concentrations continue to rise and drive global climate change, much effort has been put into estimating soil carbon (C) stocks and dynamics over time. However, the inconsistent methods employed by researchers hamper the comparability of such works, creating a pressing need to standardize the methods for soil organic C (SOC) quantification by the various methods. Here, we collected 712 soil samples from 36 sites of alpine grasslands on the Tibetan Plateau covering different soil depths and vegetation and soil types. We used an elemental analyzer for soil total C (STC) and an inorganic carbon analyzer for soil inorganic C (SIC), and then defined the difference between STC and SIC as SOCCNS. In addition, we employed the modified Walkley-Black (MWB) method, hereafter SOCMWB. Our results showed that there was a strong correlation between SOCCNS and SOCMWB across the data set, given the application of a correction factor of 1.103. Soil depth and soil type significantly influenced on the recovery, defined as the ratio of SOCMWB to SOCCNS, and the recovery was closely associated with soil carbonate content and pH value as well. The differences of recovery between alpine meadow and steppe were largely driven by soil pH. In addition, statistically, a relatively strong correlation between SOCCNS and STC was also found, suggesting that it is feasible to estimate SOCCNS stocks through the STC data across the Tibetan grasslands. Therefore, our results suggest that in order to accurately estimate the absolute SOC stocks and its change in the Tibetan alpine grasslands, adequate correction of the modified WB measurements is essential with correct consideration of the effects of soil types, vegetation, soil pH and soil depth. PMID:25946085

  19. Size-fractionation and characterization of landfill leachate and the improvement of Cu{sup 2+} adsorption capacity in soil and aged refuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou Ziyang; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092; Chai Xiaoli

    2009-01-15

    Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting formore » 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.« less

  20. Alternative Penetrometers to Measure the Near Surface Strength of Soft Seafloor Soils

    DTIC Science & Technology

    2011-09-30

    penetrometer (CPT), standard ball penetrometer (BPT), mini-ball penetrometer (mBPT) and a shear vane ( VST ). The CPT and BPT measure electronically a...The VST records the undrained shear strength of the soil at discreet depths. In addition, Shelby tube samples were collected for triaxial and...benchmark strengths from the VST and triaxial/simple shear tests. Thus far, the VST strengths have compared favorably with the results. Results from the

  1. Implications of complete watershed soil moisture measurements to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Jackson, T. J.; Schmugge, T. J.

    1983-01-01

    A series of six microwave data collection flights for measuring soil moisture were made over a small 7.8 square kilometer watershed in southwestern Minnesota. These flights were made to provide 100 percent coverage of the basin at a 400 m resolution. In addition, three flight lines were flown at preselected areas to provide a sample of data at a higher resolution of 60 m. The low level flights provide considerably more information on soil moisture variability. The results are discussed in terms of reproducibility, spatial variability and temporal variability, and their implications for hydrologic modeling.

  2. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above their method detection levels, but those that were detected were above the nondetection level. The same six locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. No metals that exceeded the Regional Screening Levels for Industrial Soils as classified by the U.S. Environmental Protection Agency were detected at any of the six Old Incinerator Area locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina. Because South Carolina is adjacent to Georgia and the soils in the coastal plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The only metal detected above the ambient background levels for South Carolina was barium. A surface-water sample collected from a tributary west and north of the Old Incinerator Area was analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). The only volatile organic and (or) semivolatile organic compound that was detected above the laboratory reporting level was toluene. The compounds 4-isopropyl-1-methylbenzene and isophorone were detected above the nondetection level but below the laboratory reporting level and were estimated. These compounds were detected at levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency National Primary Drinking Water Standard. Iron was the only inorganic compound detected in the surface-water sample that exceeded the maximum contaminant level set by the U.S. Environmental Protection Agency National Secondary Drinking Water Standard. No other inorganic compounds exceeded the maximum contaminant levels for the U.S. Environmental Protection Agency National Primary Drinking Water Standard, National Secondary Drinking Water Standard, or the Georgia In-Stream Water Quality Standard.

  3. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Li, X.; Wu, H.

    2014-12-01

    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (P<0.01) between ECa, soil water and salinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  4. Grassland management regimens reduce small-scale heterogeneity and species diversity of beta-proteobacterial ammonia pxidizer populations.

    PubMed

    Webster, Gordon; Embley, T Martin; Prosser, James I

    2002-01-01

    The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.

  5. Experimental protocol for manipulating plant-induced soil heterogeneity.

    PubMed

    Brandt, Angela J; del Pino, Gaston A; Burns, Jean H

    2014-03-13

    Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.

  6. Combining Neutron and Magnetic Resonance Imaging to Study the Interaction of Plant Roots and Soil

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha E.; Tötzke, Christian; Haber-Pohlmeier, Sabina; Pohlmeier, Andreas; Kaestner, Anders P.; Lehmann, Eberhard

    The soil in direct vicinity of the roots, the root-soil interface or so called rhizosphere, is heavily modified by the activity of roots, compared to bulk soil, e.g. in respect to microbiology and soil chemistry. It has turned out that the root-soil interface, though small in size, also plays a decisive role in the hydraulics controlling the water flow from bulk soil into the roots. A promising approach for the non-invasive investigation of water dynamics, water flow and solute transport is the combination of the two imaging techniques magnetic resonance imaging (MRI) and neutron imaging (NI). Both methods are complementary, because NI maps the total proton density, possibly amplified by NI tracers, which usually corresponds to total water content, and is able to detect changes and spatial patterns with high resolution. On the other side, nuclear magnetic resonance relaxation times reflect the interaction between fluid and matrix, while also a mapping of proton spin density and thus water content is possible. Therefore MRI is able to classify different water pools via their relaxation times additionally to the water distribution inside soil as a porous medium. We have started such combined measurements with the approach to use the same samples and perform tomography with each imaging method at different location and short-term sample transfer.

  7. Priming of soil carbon decomposition in two Inner Mongolia grassland soils following sheep dung addition: a study using ¹³C natural abundance approach.

    PubMed

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping; Wang, Yanfen; Wang, Chengjie

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ¹³C = -26.8‰; dung δ¹³C = -26.2‰) or Cleistogenes squarrosa (C₄ plant with δ¹³C = -14.6‰; dung δ¹³C = -15.7‰). Fresh C₃ and C₄ sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of ¹³C-CO₂ emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ¹³C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO₂. The cumulative amounts of C respired from dung treated soils during 152 days were 7-8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO₂ originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg⁻¹ dry soil had been emitted as CO₂ for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg⁻¹ soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration.

  8. Priming of Soil Carbon Decomposition in Two Inner Mongolia Grassland Soils following Sheep Dung Addition: A Study Using 13C Natural Abundance Approach

    PubMed Central

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping; Wang, Yanfen; Wang, Chengjie

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = −26.8‰; dung δ13C = −26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = −14.6‰; dung δ13C = −15.7‰). Fresh C3 and C4 sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg−1 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg−1 soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration. PMID:24236024

  9. Spatial variability of soil and vegetation characteristics in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Sarah, Pariente; Zhevelev, Helena M.; Oz, Atar

    2010-05-01

    Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments. Six microenvironments were within the park: area under Ceratonia siliqua (Cs-U), area under Ficus sycomorus (Fi-U), a rest area under F. sycomorus (Re-U), an open area with bare soil (Oa-S), an open area with biological crusts (Oa-C), and an open area with herbaceous vegetation (Oa-V). Outside the park were two control microenvironments, located, respectively, on a flat area (Co-P) and an inclined open area (Co-S). The soil was sampled from two depths (0-2 and 5-10 cm), during the peak of the growing season (March). For each soil sample, moisture content, organic matter content, CaCO3 content, texture, pH, electrical conductivity, and soluble ions contents were determined in 1:1 water extraction. In addition, prior to the soil sampling, vegetation cover, number of species, and species diversity of herbaceous vegetation were measured. The barbecue fires and visitors in each of the microenvironments were counted. Whereas the soil organic matter and vegetation in Fi-U differed from those in the control(Co-P, Co-S), those in Oa-V were similar to those in the control. Fi-U was characterized by higher values of soil moisture, organic matter, penetration depth, and vegetation cover than Cs-U. Open microenvironments within the park (Oa-S, Oa-C, Oa-V) showed lower values of soil penetration than the control microenvironments. In Oa-V unique types of plants such as Capsella bursa-pastoris and Anagallis arvensis, which did not appear in the control microenvironments, were found. This was true also for Fi-U, in which species like Oxalis pes-caprae were found. Significant differences in soil and vegetation properties were found between Re-U and the rest of microenvironments. Differences in levels of human activities, in addition to differences in vegetation types, increased the spatial heterogeneity of soil properties. The rest microenvironment (Re-U) exhibited degraded soil conditions and can be regarded as forming the fragile areas of the park. An urban park offers potential for presence and growth of natural vegetation and, therefore, also for preservation of biodiversity. Natural vegetation, in its role as a part of the urban park, enriches the landscape diversity and thereby may contribute to the enjoyment of the visitors in the park.

  10. Determining the Limiting Factors Controlling Soil Ecosystem Regeneration After a Stand-replacing Wildfire

    NASA Astrophysics Data System (ADS)

    Cooperdock, S.; Breecker, D.

    2016-12-01

    Like all forest disturbances, wildfires remove vegetation but additionally they can remove or transform soil nutrients through volatilization due to extreme temperatures. As the stability and nutrient source for plants, soils are the key to forest regeneration after disturbances and in order to predict and mitigate damage, it is essential to understand how soils are affected by fires. In this study, soil respiration and temperature were measured in-situ at 20 sites affected by two fires that occurred during September 2011 and October 2015 in Bastrop County TX. At each site, soil samples were collected from 0-5 cm depth. These samples were incubated in the dark at 25° C and 22% water content to determine respiration rates under controlled environmental conditions. Total C, N, trace element concentrations and pH were measured in each soil sample to determine the effect of fire on soil chemistry and the effect of soil chemistry on soil activity. These methods of respiration measurement were performed to distinguish the impact of environmental and chemical factors on soil biological activity. Results show that from May to July 2016, soil temperatures increased an average of 6° C and 1° C more in burned areas than in unburned areas at depths of 5 cm and 15 cm, respectively. This likely results from fire-induced decrease in overstory cover, decrease in organic matter insulation and darkening soil color. Increasing temperatures correspond with a decrease in water content and respiration. Pearson's tests of the effect of soil moisture loss on a decrease of in-situ respiration rate show a correlation for burned soils, especially at sites burned in both fires (rho=0.90, p=0.04) and no correlation for unburned soils, suggesting a larger impact of environmental factors on soil activity in burned soils. Microcosm experiments show N concentration significantly affects respiration rate in unburned plots (rho=0.89, p=0.04) and both N (rho=0.92, p=0.03) and C concentration (rho=0.92, p=0.03) affect respiration rate in plots burned in 2011. No correlation was detected between nutrient concentration and respiration rate in recently burned plots, suggesting a larger influence of nutrient limitation on regeneration as time since burn increases. These results reveal that the limiting factors governing soil activity shift after wildfires.

  11. Effects of Potassium Permanganate Oxidation on Subsurface Microbial Activity

    NASA Technical Reports Server (NTRS)

    Rowland, Martin A.; Brubaker, Gaylen R.; Westray, Mark; Morris, Damon; Kohler, Keisha; McCool, Alex (Technical Monitor)

    2001-01-01

    In situ chemical oxidation has the potential for degrading large quantities of organic contaminants and can be more effective and timely than traditional ex situ treatment methods. However, there is a need to better characterize the potential effects of this treatment on natural processes. This study focuses on potential inhibition to anaerobic dechlorination of trichloroethene (TCE) in soils from a large manufacturing facility as a result of in situ oxidation using potassium permanganate (KMn04)Previous microcosm studies established that natural attenuation occurs on-site and that it is enhanced by the addition of ethanol to the system. A potential remediation scheme for the site involves the use of potassium permanganate to reduce levels of TCE in heavily contaminated areas, then to inject ethanol into the system to "neutralize" excess oxidant and enhance microbial degradation. However, it is currently unknown whether the exposure of indigenous microbial populations to potassium permanganate may adversely affect biological reductive dechlorination by these microorganisms. Consequently, additional microcosm studies were conducted to evaluate this remediation scheme and assess the effect of potassium permanganate addition on biological reductive dechlorination of TCE. Samples of subsurface soil and groundwater were collected from a TCE-impacted area of the site. A portion of the soil was pretreated with nutrients and ethanol to stimulate microbial activity, while the remainder of the soil was left unamended. Soil/groundwater microcosms were prepared in sealed vials using the nutrient-amended and unamended soils, and the effects of potassium permanganate addition were evaluated using two permanganate concentrations (0.8 and 2.4 percent) and two contact times (1 and 3 weeks). TCE was then re-added to each microcosm and TCE and dichloroethene (DCE) concentrations were monitored to determine the degree to which microbial dechlorination occurred following chemical oxidation. Evidence of microbial degradation was generally detected within four weeks after TCE addition. Increases in DCE concentrations were consistent with decreases in TCE. The concentration of TCE in the nutrient-amended samples exposed to 2.4% KMnO4 for one week degraded somewhat more slowly than the samples exposed to the 0.8% KMnO4. The rates of degradation did not correlate with the length of KMn04 exposure for the nutrient-amended microcosms. Microbial degradation of TCE in the unamended microcosms was generally similar to that observed in the nutrient-amended microcosms. One treatment condition (unamended, one week exposure, 2.4% KMnO4) was exposed to elevated levels of ethanol and showed little evidence of degradation. It is suspected that the high levels of ethanol were toxic to the microorganisms. The results of the study indicate that exposure of indigenous soil and groundwater microbial populations to KMnO4 at concentrations of 0.8 to 2.4% do not impair the ability of the microbial populations to dechlorinate TCE. Consequently, the combination of chemical oxidation followed by enhanced biological reductive dechlorination appears to be a viable remedial strategy for highly-impacted subsurface areas of the site.

  12. Evaluation of the potential agricultural use of biostimulated sewage sludge using mammalian cell culture assays.

    PubMed

    Sommaggio, Lais Roberta Deroldo; Mazzeo, Dânia Elisa Christofoletti; Pamplona-Silva, Maria Tereza; Marin-Morales, Maria Aparecida

    2018-05-01

    Among the bioremediation processes, biostimulation is an effective methodology for the decontamination of organic waste by the addition of agents that stimulate the indigenous microbiota development. Rice hull is a biostimulating agent that promotes the aeration of edaphic systems and stimulates the aerobiotic activity of soil microorganisms. The present study aimed to evaluate the efficacy of the bioremediation and biostimulation processes in reducing the toxicity of sewage sludge (SS) and to evaluate its possible application in agriculture using cytotoxic and genotoxic assays in human hepatoma cells (HepG2). SS of domestic origin was tested as both the pure product (PSS) and mixed with soil (S) and with a stimulating agent, such as rice hull (RH), in different proportions (SS + S and SS + S + RH); we also examined different remediation periods (3 months - T1 and 6 months - T2). For the PSS sample, a significant induction of micronucleus (MN) in T2 was observed with nuclear buds in all of the periods assessed, and we observed the presence of more than one alteration per cell (MN and nuclear bud) in T1 and T2. The PSS sample caused genotoxic effects in the HepG2 cells even after being bioremediated. For the samples containing soil and/or rice hull, no toxic effects were observed in the test system used. Therefore, the addition of SS to agricultural soils should be conducted with caution, and it is important that the SS undergoes a remediation process, such as bioremediation and biostimulation treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid

    NASA Astrophysics Data System (ADS)

    Zhan, Ying; Ginder-Vogel, Matthew; Shafer, Martin M.; Rudich, Yinon; Pardo, Michal; Katra, Itzhak; Katoshevski, David; Schauer, James J.

    2018-01-01

    The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)2). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.

  14. Effects of different agricultural systems on soil quality in Northern Limón province, Costa Rica.

    PubMed

    Cornwell, Emma

    2014-09-01

    Conversion of native rainforest ecosystems in Limón Province of Costa Rica to banana and pineapple monoculture has led to reductions in biodiversity and soil quality. Agroforestry management of cacao (Theobroma cacao) is an alternative system that may maintain the agricultural livelihood of the region while more closely mimicking native ecosystems. This study compared physical, biological and chemical soil quality indicators of a cacao plantation under organic agroforestry management with banana, pineapple, and pasture systems; a native forest nearby served as a control. For bulk density and earthworm analysis, 18 samples were collected between March and April 2012 from each ecosystem paired with 18 samples from the cacao. Cacao had a lower bulk density than banana and pineapple monocultures, but greater than the forest (p < 0.05). Cacao also hosted a greater number and mass of earthworms than banana and pineapple (p < 0.05), but similar to forest and pasture. For soil chemical characteristics, three composite samples were collected in March 2012 from each agroecosystem paired with three samples from the cacao plantation. Forest and pineapple ecosystems had the lowest pH, cation exchange capacity, and exchangeable nutrient cations, while cacao had the greatest (p < 0.05). Total nutrient levels of P and N were slightly greater in banana, pineapple and pasture than in cacao; probably related to addition of chemical fertilizer and manure from cattle grazing. Forest and cacao also had greater %C, than other ecosystems, which is directly related to soil organic matter content (p < 0.0001). Overall, cacao had more favorable physical, biological and chemical soil characteristics than banana and pineapple monocultures, while trends were less conclusive compared to the pastureland. While organic cacao was inferior to native forest in some soil characteristics such as bulk density and organic carbon, its soil quality did best mimic that of the native forest. This supports the organic cultivation of cacao as a desirable alternative to banana and pineapple monoculture.

  15. Effects of climate and soil properties on U.S. home lawn soil organic carbon concentration and pool.

    PubMed

    Selhorst, Adam; Lal, Rattan

    2012-12-01

    Following turfgrass establishment, soils sequester carbon (C) over time. However, the magnitude of this sequestration may be influenced by a range of climatic and soil factors. Analysis of home lawn turfgrass soils throughout the United States indicated that both climatic and soil properties significantly affected the soil organic carbon (SOC) concentration and pool to 15-cm depth. Soil sampling showed that the mean annual temperature (MAT) was negatively correlated with SOC concentration. Additionally, a nonlinear interaction was observed between mean annual precipitation (MAP) and SOC concentration with optimal sequestration occurring in soils receiving 60-70 cm of precipitation per year. Furthermore, soil properties also influenced SOC concentration. Soil nitrogen (N) had a high positive correlation with SOC concentration, as a 0.1 % increase in N concentration led to a 0.99 % increase in SOC concentration. Additionally, soil bulk density (ρ(b)) had a curvilinear interaction with SOC concentration, with an increase in ρ(b) indicating a positive effect on SOC concentration until a ρ(b) of ~1.4-1.5 Mg m(-3) was attained, after which, inhibition of SOC sequestration occurred. Finally, no correlation between SOC concentration or pool was observed with texture. Based upon these results, highest SOC pools within this study are observed in regions of low MAT, moderate MAP (60-70 cm year(-1)), high soil N concentration, and moderate ρ(b) (1.4-1.5 Mg m(-3)). In order to maximize the C storage capacity of home lawns, non C-intensive management practices should be used to maintain soils within these conditions.

  16. Influence of soil types and osmotic pressure on growth and 137Cs accumulation in blackgram (Vigna mungo L.).

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Bellingrath-Kimura, Sonoko Dorothea

    2017-04-01

    A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137 Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg -1 DW, respectively. The 137 Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137 Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137 Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137 Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137 Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137 Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137 Cs decreased when soil water is limited by osmotic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Factors responsible for the patchy distribution of natural soil water repellency in Mediterranean semiarid forest

    NASA Astrophysics Data System (ADS)

    Lozano, E.; Jiménez-Pinilla, P.; Mataix-Solera, J.; González-Pérez, J. A.; García-Orenes, F.; Torres, M. P.; Arcenegui, V.; Mataix-Beneyto, J.

    2012-04-01

    Soil water repellency (WR) is commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. This has important hydrological implications; in semiarid areas where water supply is limited, even slight WR may play an important role in infiltration patterns and distribution of water into the soil (Mataix-Solera et al., 2007). It has been proposed that the origin of WR is the release of organic compounds from different plants species and sources (due to waxes and other organic substances in their tissues; Doerr et al., 1998). However, the relationship between WR and plants may not always be a direct one: a group of fungi (mainly mycorrhizal fungi) and microorganisms could be also responsible for WR. The aim of this research is to study the relationships between WR in soils under different plant cover with selected soil properties and the quantity of fungi and their exudates. The study area is located in Southeast Spain, "Sierra de la Taja" near Pinoso (Alicante)), with a semiarid Mediterranean climate (Pm=260mm). Samples were taken in September 2011, when WR is normally strongest after summer drought. Soil samples were collected from the first 2.5cm of the mineral A horizon at microsites beneath each of the four most representative species (Pinus halepensis, Rosmarinus officinalis, Quercus. rotundifolia and Cistus albidus; n=15 per specie) and 5 samples from bare soil with no influence of any species. Different soil parameters were analyzed; water content, soil organic mater content (SOM), pH, WR, easily extractable glomalin (EEG), total mycelium and extractable lipids. The occurrence of WR was higher under P. halepensis (87% of samples) and Q. rotundifolia (60% of samples). Positive significant correlations were found between WR and SOM content for all species, with the best correlations for Pinus and Quercus (r=0.855**, r= 0.934** respectively). In addition, negative significant correlations were found between WR and pH and between SOM and pH for all except for Q. rotundifolia. However, the negative correlation found between pH and persistence of WR seems to be related to soil organic matter (SOM) content for all vegetal species. Glomalin exudates from arbuscular mycorrhizal fungi in soil revealed significant differences between species. However, the first results do not point to a direct relationship between EEG content and WR but to soil mineralogy or certain components within SOM pool i.e. litter debris degradation products or specific components within the glomalin extract, as main factors affecting soil WR. Nonetheless, since some samples with the same SOM content (including some under the same vegetation cover) showed different WR persistence, complementary research including a more detailed characterization of most soil functional fractions (SOM and clays) is planned in order to elucidat the main factors influencing the presence and persistence of WR in soils under Mediterranean semiarid forest. Keywords: Water repellency, hydrophobicity, easily extractable glomalin, mycelium, arbuscular mycorrhizal fungi.

  18. Germanium and rare earth elements in soils under different land use types in the area of Freiberg (Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Moschner, Christin; Székely, Balázs

    2017-04-01

    A geochemical mapping study was conducted to investigate the spatial distribution and chemical fractionation of germanium (Ge) and selected rare earth elements (REEs) in topsoils and soil-grown plants under different land use types (moist grassland, mesic grassland, arable land) in the area of Freiberg (Saxony, Germany). The area of Freiberg is characterized by the mining of polymetallic sulphide deposits (Pb, As, Zn, Cd) which led to the pollution of top soils with metals and metalloids due to local emissions from metal smelting plants that occur widespread in the area. Since Ge often appears to be associated to sulphide ores like sphalerite, galenite and argyrodite, (post-)mining areas such as the Freiberg region are paradigmatic for phytomining research. The study area covers approximately 1,000 km2 in the south of Central Saxony, and 138 samples from 46 sampling sites were examined. Additionally, at each sampling site plant samples were collected. On arable soils the plant samples represented the cultivated crop species. On sites in mesic and moist grassland, samples from the most dominant plant species were taken and measured with ICP-MS. Ge and REEs in soils were partitioned by a sequential extraction procedure into mobile/exchangeable (Fraction 1), acid soluble (Fraction 2), bound to organic matter (Fraction 3), amorphous Fe/Mn-oxides (Fraction 4), crystalline Fe/Mn-oxides (Fraction 5) and residual fractions (Fraction 6). Total concentrations of Ge and REEs in soil varied considerably ranging from 1.0 µg g-1 to 4.3 µg g-1 for Ge and 97 µg g-1 to 402 µg g-1 for total REE concentrations. Elements in potentially plant available fractions (sums of Fraction 1 - Fraction 4) represented 8% of total Ge and 30% of total REEs, respectively. Soils on moist grasslands contained significantly higher total concentrations of Ge and REEs and higher concentrations of Ge and REEs in potentially plant available soil fractions compared to soils of mesic grasslands and arable land. Highest concentrations of Ge could be measured in plant species growing on moist grassland. The results of this study indicate that moist grasslands may act as sinks for Ge and REEs. In these soils high amounts of soil organic matter may foster the formation of labile element pools, increasing the availability of Ge and REEs. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  19. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air. In an open hole, the VOC readings seem to be strongly dependent on the degree of diffusion and advection of soil gas VOCs into the open hole from the surrounding soil, a process that may vary with soil and wind conditions. Making measurements with the sealed hole does take some additional time (4-7 minutes after the hole is augered) compared to the open-hole technique (1-2 minutes). We used the rigid-plastic tube technique to survey for soil gas VOCs across the entire site, less than ? acre. Condensate has impacted at least 0.28 acres. The impacted area may extend northwest of the surveyed area.

  20. Regional prediction of soil organic carbon content over croplands using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefebvre, Josias; Chehdi, Kacem

    2015-04-01

    This study was carried out in the framework of the Prostock-Gessol3 and the BASC-SOCSENSIT projects, dedicated to the spatial monitoring of the effects of exogenous organic matter land application on soil organic carbon storage. It aims at identifying the potential of airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks which were georeferenced. Tracks were atmospherically corrected using a set of 22 synchronous field spectra of both bare soils, black and white targets and impervious surfaces. Atmospherically corrected track tiles were mosaicked at a 2 m-resolution resulting in a 66 Gb image. A SPOT4 satellite image was acquired the same day in the framework of the SPOT4-Take Five program of the French Space Agency (CNES) which provided it with atmospheric correction. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then NDVI calculation and thresholding enabled to map agricultural fields with bare soil. All 18 sampled sites known to be bare at this very date were correctly included in this map. A total of 85 sites sampled in 2013 or in the 3 previous years were identified as bare by means of this map. Predictions were made from the mosaic spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples. The use of the total sample including 27 sites under cloud shadows led to non-significant results. Considering 43 sites outside cloud shadows only, median validation root-mean-square errors (RMSE) were ~4-4.5 g. kg-1. An additional set of 15 samples with bare soils led to similar RMSE values. Such results are only slightly better than those resulting from an earlier study with multispectral satellite images (Vaudour et al., 2013). The influence of soil surface condition and particularly soil roughness is discussed.

  1. Adhesion and enrichment of metals on human hands from contaminated soil at an Arctic urban brownfield.

    PubMed

    Siciliano, Steven D; James, K; Zhang, Guiyin; Schafer, Alexis N; Peak, J Derek

    2009-08-15

    Human exposure to contaminated soils drives clean up criteria at many urban brownfields. Current risk assessment guidelines assume that humans ingest some fraction of soil smaller than 4 mm but have no estimates of what fraction of soil is ingested by humans. Here, we evaluated soil adherence to human hands for 13 agricultural soils from Saskatchewan, Canada and 17 different soils from a brownfield located in Iqaluit, Nunavut, Canada. In addition, we estimated average particle size adhering to human hands for residents of a northern urban setting. Further, we estimated how metal concentrations differed between the adhered and bulk (< 4 mm) fraction of soil. The average particle size for adhered agricultural soils was 34 microm, adhered brownfield soils was 105 microm, and particles adhered to human residentswas 36 microm. Metals were significantly enriched in these adhered fractions with an average enrichment [(adhered-bulk)/bulk] in metal concentration of 184% (113% median) for 24 different elements. Enrichment was greater for key toxicological elements of concern such as chromium (140%), copper (140%), nickel (130%), lead (110%), and zinc (130%) and was highest for silver (810%), mercury (630%), selenium (500%), and arsenic (420%). Enrichment were positively correlated with carbonate complexation constants (but not bulk solubility products) and suggests that the dominant mechanism controlling metal enrichment in these samples is a precipitation of carbonate surfaces that subsequently adsorb metals. Our results suggest that metals of toxicological concern are selectively enriched in the fraction of soil that humans incidentally ingest. Investigators should likely process soil samples through a 45 microm sieve before estimating the risk associated with contaminated soils to humans. The chemical mechanisms resulting in metal enrichment likely differ between sites but at our site were linked to surface complexation with carbonates.

  2. Agroforestry management in vineyards: effects on soil microbial communities

    NASA Astrophysics Data System (ADS)

    Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel

    2017-04-01

    Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.

  3. Role of Siderophores in Dissimilatory Iron Reduction in Arctic Soils : Effect of Direct Amendment of Siderophores to Arctic Soil

    NASA Astrophysics Data System (ADS)

    Srinivas, A. J.; Dinsdale, E. A.; Lipson, D.

    2014-12-01

    Dissimilatory iron reduction (DIR), where ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) anaerobically, is an important respiratory pathway used by soil bacteria. DIR contributes to carbon dioxide (CO2) efflux from the wet sedge tundra biome in the Arctic Coastal Plain (ACP) in Alaska, and could competitively inhibit the production of methane, a stronger greenhouse gas than CO2, from arctic soils. The occurrence of DIR as a dominant anaerobic process depends on the availability of substantial levels of Fe3+ in soils. Siderophores are metabolites made by microbes to dissolve Fe3+ from soil minerals in iron deficient systems, making Fe3+ soluble for micronutrient uptake. However, as the ACP is not iron deficient, siderophores in arctic soils may play a vital role in anaerobic respiration by dissolving Fe3+ for DIR. We studied the effects of direct siderophore addition to arctic soils through a field study conducted in Barrow, Alaska, and a laboratory incubation study conducted at San Diego State University. In the field experiment, 50μM deferroxamine mesylate (a siderophore), 50μM trisodium nitrilotriacetate (an organic chelator) or an equal volume of water was added to isolated experimental plots, replicated in clusters across the landscape. Fe2+ concentrations were measured in soil pore water samples collected periodically to measure DIR over time in each. In the laboratory experiment, frozen soil samples obtained from drained thaw lake basins in the ACP, were cut into cores and treated with the above-mentioned compounds to the same final concentrations. Along with measuring Fe2+ concentrations, CO2 output was also measured to monitor DIR over time in each core. Experimental addition of siderophores to soils in both the field and laboratory resulted in increased concentrations of soluble Fe3+ and a sustained increase in Fe2+concentrations over time, along with increased respiration rates in siderophore-amended cores. These results show increased DIR in siderophore treated cores compared to the other treatments. From the results of these experiments, we conclude that arctic soil microbes can use siderophores to maintain a pool of dissolved Fe3+ for DIR. This study provides insight into the mechanisms of DIR in this ecosystem, and has relevance for understanding anaerobic soil respiration in the Arctic.

  4. Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil.

    PubMed

    Mollon, L C; Norton, G J; Trakal, L; Moreno-Jimenez, E; Elouali, F Z; Hough, R L; Beesley, L

    2016-11-01

    Heavy metal(loid) rich ash (≤10,000 mg kg -1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1-3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash. The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits. The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sorption and desorption of glyphosate, MCPA and tetracycline and their mixtures in soil as influenced by phosphate.

    PubMed

    Munira, Sirajum; Farenhorst, Annemieke

    2017-12-02

    Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg -1 ) and elevated (81 to 99 mg kg -1 ) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.

  6. Arsenic and metals in soils in the vicinity of the Imperial Oil Company Superfund Site, Marlboro Township, Monmouth County, New Jersey. Water-resources investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barringer, J.L.; Szabo, Z.; Barringer, T.H.

    1998-09-01

    Concentrations of arsenic exceed the New Jersey State Cleanup Criterion of 20 parts per million in sandy and clay-rich soils of two residential areas in the vicinity of the Imperial Oil Company Superfund site in Marlboro Township, Monmouth County, New Jersey. In order to determine the source of the arsenic and metals in soils in the two residential areas, soil samples were collected from (1) long-term forested areas, to determine background geologic and regional atmospheric inputs of arsenic and metals; (2) former and current orchards, to assess the range of concentrations of arsenic and metals that could be contributed bymore » past use of pesticides; (3) the Imperial Oil Company Superfund site, to characterize the chemical composition of contamination from activities at the site; (4) a wooded area adjacent to the Superfund site, to determine whether arsenic and metals from the Superfund site were evident; and (5) the two residential areas, to compare soil chemistry in these areas with the chemistry of soils from forests, orchards, and the Superfund site. The soil samples were divided by soil horizon and were analyzed for 23 metals and metalloids, total organic carbon, and total sulfur. Additionally, air-flow models were used to determine whether roasting of arsenic at the Imperial Oil Company Superfund site was a possible source of arsenic in the soils.« less

  7. Prediction and inter-dependence of stock and change of soil quality, function and diversity at a national scale and implications for ecosystem services

    NASA Astrophysics Data System (ADS)

    Reynolds, B.; Emmett, B.; Spurgeon, D.; Rowe, E. C.; Mills, R.; Griffiths, R.; Jones, D.; Simfukwe, P.

    2011-12-01

    A soils monitoring programme which uses an ecosystem approach has been in place in Great Britain for 30 years.The findings from the latest survey in 2007 has been interpreted within a natural capital and ecosystem services context to assess the outcome of a range of policies to protect the natural environment and increase sustainability. Issues of interest included the impacts of declines in atmospheric deposition of acidity, nitrogen and metals, the benefits of agri-environment schemes and climate change on carbon storage in soils and soil biodiversity, and reduced fertiliser applications on eutrophication of soils and waters. Topsoil samples (0-15cm) were taken within 600 1km squares across the country stratified to cover all major habitat types. At the same time botanical surveys in permanent vegetation plots were recorded together with change in land use and management and stream and pond water quality and ecology. These data are used together with satellite images, digital cartography, and ancillary datasets to assess change in landcover for all of GB and upscaling of change data from the samples squares. Changes in topsoil were assessed in 1978, 1998 and again in 2007. An increase in pH but no change in soil carbon was observed between 1978 and 2007. Additional measures added in 1998 enabled a decline in Olsen-P,increase in C:N, decline in soil mesofauna diversity and decline in many metal concentrations to be identified over the last 10 years. In 2007, futher measurements were added to include carbon substrate utilisation, nitrogen mineralisation and bacterial diversity (fungi is in progress)enabling national maps to be created for the first time for these important soil parameters. Multi-variate statistics were used to explore the relationship between the different soil measures, the predictive capability of soil and vegetation type, and drivers of change to be identified. In addition, assigning measurements to specific functions which underpinned individual supporting and regulation services provided a method for assessing direction of change of a range of ecosystem services at national scale for the first time.

  8. Land cover heterogeneity and soil respiration in a west Greenland tundra landscape

    NASA Astrophysics Data System (ADS)

    Bradley-Cook, J. I.; Burzynski, A.; Hammond, C. R.; Virginia, R. A.

    2011-12-01

    Multiple direct and indirect pathways underlie the association between land cover classification, temperature and soil respiration. Temperature is a main control of the biological processes that constitute soil respiration, yet the effect of changing atmospheric temperatures on soil carbon flux is unresolved. This study examines associations amongst land cover, soil carbon characteristics, soil respiration, and temperature in an Arctic tundra landscape in western Greenland. We used a 1.34 meter resolution multi-spectral WorldView2 satellite image to conduct an unsupervised multi-staged ISODATA classification to characterize land cover heterogeneity. The four band image was taken on July 10th, 2010, and captures an 18 km by 15 km area in the vicinity of Kangerlussuaq. The four major terrestrial land cover classes identified were: shrub-dominated, graminoid-dominated, mixed vegetation, and bare soil. The bare soil class was comprised of patches where surface soil has been deflated by wind and ridge-top fellfield. We hypothesize that soil respiration and soil carbon storage are associated with land cover classification and temperature. We set up a hierarchical field sampling design to directly observe spatial variation between and within land cover classes along a 20 km temperature gradient extending west from Russell Glacier on the margin of the Greenland Ice Sheet. We used the land cover classification map and ground verification to select nine sites, each containing patches of the four land cover classes. Within each patch we collected soil samples from a 50 cm pit, quantified vegetation, measured active layer depth and determined landscape characteristics. From a subset of field sites we collected additional 10 cm surface soil samples to estimate soil heterogeneity within patches and measured soil respiration using a LiCor 8100 Infrared Gas Analyzer. Soil respiration rates varied with land cover classes, with values ranging from 0.2 mg C/m^2/hr in the bare soil class to over 5 mg C/m^2/hr in the graminoid-dominated class. These findings suggest that shifts in land cover vegetation types, especially soil and vegetation loss (e.g. from wind deflation), can alter landscape soil respiration. We relate soil respiration measurements to soil, vegetation, and permafrost characteristics to understand how ecosystem properties and processes vary at the landscape scale. A long-term goal of this research is to develop a spatially explicit model of soil organic matter, soil respiration, and temperature sensitivity of soil carbon dynamics for a western Greenland permafrost tundra ecosystems.

  9. Enhanced dissipation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin in soil by solarization and biosolarization.

    PubMed

    Fenoll Serrano, José; Ruiz, Encarnación; Hellín, Pilar; Lacasa, Alfredo; Flores, Pilar

    2010-02-24

    This study was conducted to assess the effects of solarization and biosolarization on the degradation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin. The experimental design consisted of 17 L pots filled with clay-loam soil, which were contaminated with the studied herbicides. Then, soil disinfection treatments were applied during the summer season, including a control without disinfection (C), solarization (S), and biosolarization (BS). Soil from five pots per treatment was sampled periodically up to 90 days. Herbicide dissipation rates were higher in both S and BS treatments with regard to the control. Similar dissipation rates were observed under S and BS for most of the herbicides studied, except oxyfluorfen and pendimethalin, which were degraded to a greater extent in the BS than in the S treatment. The obtained results showed that both solarization and biosolarization can be considered, in addition to soil disinfection techniques, such as bioremediation tools for herbicide-polluted soils.

  10. Reducing the bioavailability of cadmium in contaminated soil by dithiocarbamate chitosan as a new remediation.

    PubMed

    Yin, Zheng; Cao, Jingjing; Li, Zhen; Qiu, Dong

    2015-07-01

    Dithiocarbamate chitosan (DTC-CTS) was used as a new amendment for remediation of cadmium (Cd)-contaminated soils to reduce the Cd bioavailability. Arabidopsis thaliana was chosen as a model plant to evaluate its efficiency. It was found that DTC-CTS could effectively improve the growth of A. thaliana. The amount of Cd up-taken by A. thaliana could be decreased by as much as 50% compared with that grown in untreated Cd-contaminated soil samples. The chlorophyll content and the aerial biomass of Arabidopsis also increased substantially and eventually returned to a level comparable to plants grown in non-contaminated soils, with the addition of DTC-CTS. These findings suggested that DTC-CTS amendment could be effective in immobilizing Cd and mitigating its accumulation in plants grown in Cd-contaminated soils, with potential application as an in situ remediation of Cd-polluted soils.

  11. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo.

    PubMed

    Downie, Helen F; Valentine, Tracy A; Otten, Wilfred; Spiers, Andrew J; Dupuy, Lionel X

    2014-01-01

    The recently developed transparent soil consists of particles of Nafion, a polymer with a low refractive index (RI), which is prepared by milling and chemical treatment for use as a soil analog. After the addition of a RI-matched solution, confocal imaging can be carried out in vivo and without destructive sampling. In a previous study, we showed that the new substrate provides a good approximation of plant growth conditions found in natural soils. In this paper, we present further development of the techniques for detailed quantitative analysis of images of root-microbe interactions in situ. Using this system it was possible for the first time to analyze bacterial distribution along the roots and in the bulk substrate in vivo. These findings indicate that the coupling of transparent soil with light microscopy is an important advance toward the discovery of the mechanisms of microbial colonisation of the rhizosphere.

  12. The Influence of Nitrogen on the Biological Properties of Soil Contaminated with Zinc.

    PubMed

    Strachel, Rafał; Wyszkowska, Jadwiga; Baćmaga, Małgorzata

    2017-03-01

    This study analyzed the relationship between nitrogen fertilization and the biological properties of soil contaminated with zinc. The influence of various concentrations of zinc and nitrogen on the microbiological and biochemical activity of soil was investigated. In a laboratory experiment, loamy sand with pH KCl 5.6 was contaminated with zinc (ZnCl 2 ) and fertilized with urea as a source of nitrogen. The activity of acid phosphatase, alkaline phosphatase, urease and β-glucosidase, and microbial counts were determined in soil samples after 2 and 20 weeks of incubation. Zinc generally stimulated hydrolase activity, but the highest zinc dose (1250 mg kg -1 ) led to the inhibition of hydrolases. Nitrogen was not highly effective in neutralizing zinc's negative effect on enzyme activity, but it stimulated the growth of soil-dwelling microorganisms. The changes in soil acidity observed after the addition of urea modified the structure of microbial communities.

  13. Analysis of nitrification in agricultural soil and improvement of nitrogen circulation with autotrophic ammonia-oxidizing bacteria.

    PubMed

    Matsuno, Toshihide; Horii, Sachie; Sato, Takanobu; Matsumiya, Yoshiki; Kubo, Motoki

    2013-02-01

    Accumulations of inorganic nitrogen (NH₄⁺, NO₂⁻, and NO₃⁻) were analyzed to evaluate the nitrogen circulation activity in 76 agricultural soils. Accumulation of NH₄⁺ was observed, and the reaction of NH₄⁺→ NO₂⁻ appeared to be slower than that of NO₂⁻ → NO₃⁻ in agricultural soil. Two autotrophic and five heterotrophic ammonia-oxidizing bacteria (AOB) were isolated and identified from the soils, and the ammonia-oxidizing activities of the autotrophic AOB were 1.0 × 10³-1.0 × 10⁶ times higher than those of heterotrophic AOB. The relationship between AOB number, soil bacterial number, and ammonia-oxidizing activity was investigated with 30 agricultural soils. The ratio of autotrophic AOB number was 0.00032-0.26% of the total soil bacterial number. The soil samples rich in autotrophic AOB (>1.0 × 10⁴ cells/g soil) had a high nitrogen circulation activity, and additionally, the nitrogen circulation in the agricultural soil was improved by controlling the autotrophic AOBs.

  14. On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS.

    PubMed

    Silva Junior, Mario M; Portugal, Lindomar A; Serra, Antonio M; Ferrer, Laura; Cerdà, Victor; Ferreira, Sergio L C

    2017-04-01

    This paper proposes the use of a multisyringe flow injection analysis (MSFIA) system for inorganic antimony speciation analysis, trimethyl antimony(V) and determination of total antimony in soil samples using hydride generation atomic fluorescence spectrometry (HG-AFS). Total antimony has been determined after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. For determination of total inorganic antimony the sample is percolated in a mini-column containing the Dowex 50W-X8 resin for retention of the organic species of antimony. Antimony(III) is quantified in presence of 8-hydroxyquinoline as masking agent for antimony(V) after an extraction step of the organic antimony species using the also same mini-column. The trimethyl antimony(V) content is found by difference between total antimony and total inorganic antimony. By other hand, antimony(V) is quantified by difference between total inorganic antimony and antimony(III). The analytical determinations were performed using sodium tetrahydroborate as reducing agent. The optimization step was performed using two-level full factorial design and Doehlert matrix involving the factors: hydrochloric acid and sodium tetrahydroborate concentrations and sample flow rate. The optimized experimental conditions allow the antimony determination utilizing the external calibration technique with limits of detection and quantification of 0.9 and 3.1ngg -1 , respectively, and a precision expressed as relative standard deviation of 3.2% for an antimony solution of 5.0µgL -1 . The method accuracy was confirmed by analysis of the soil certified reference material furnished from Sigma-Aldrich RTC. Additionally, addition/recovery tests were performed employing synthetic solutions prepared using trimethyl antimony(V), antimony(III), antimony(V) and five soil samples. The antimony extraction step was performed in a closed system using hydrochloric acid, ultrasonic radiation and controlled temperature. The method proposed was applied for analysis of thirteen soil samples collected in different sites of the Balearic Islands, Spain, and the results obtained varied from 19 to 46ngg -1 for trimethyl antimony(V) and from 113 to 215ngg -1 for total inorganic antimony. The concentrations obtained to antimony(V) were always higher than for antimony(III) in all the analyzed samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Humus-assisted cleaning of heavy metal contaminated soils

    NASA Astrophysics Data System (ADS)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  16. Fractionation, Bioaccessibility, and Risk Assessment of Heavy Metals in the Soil of an Urban Recreational Area Amended with Composted Sewage Sludge

    PubMed Central

    Zhang, Tao; Shao, Yanqiu; Tian, Chao; Cattle, Stephen R.; Zhu, Ying; Song, Jinjuan

    2018-01-01

    A composted sewage sludge (CSS) was added to the soil of an urban garden at 5%, 10%, and 25% (w/w soil) and stabilised for 180 days. Samples were then collected and analysed for total heavy metal concentrations, chemical fractions, and bioaccessibility, together with some physicochemical properties. The results showed that the total chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) concentrations were increased with CSS addition rate. The CSS addition decreased the residual fractions of these four elements. The exchangeable Cr, Cu, and Pb fractions were very small or not detected, while Zn exhibited an increasing trend in its exchangeable fraction with CSS addition rate. The bioaccessibility of these four elements was increased with the CSS addition rate. Moreover, the Cr, Cu, and Zn bioaccessibility correlated positively with the total concentration, while the bioaccessibility of these four elements exhibited a negative correlation with the residual fraction. The fractionation and bioaccessibility of heavy metals may have also been influenced by pH, cation exchange capacity, and organic matter. The risk assessment code reflected the amended soil showed no or low environmental risks for Cr, Cu, and Pb and a medium risk for Zn. The hazardous index values and cancer risk levels indicated that the heavy metals in the soil amended with 25% CSS posed negligible potential noncarcinogenic and carcinogenic risks to children and adults via incidental ingestion. PMID:29597244

  17. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    USGS Publications Warehouse

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  18. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil respiration, compost, electrical conductivity, salinization, Bac-Trac References: Abdelbasset Lakhdar, Mokded Rabhi, Tahar Ghnaya, Francesco Montemurro, Naceur Jedidi , Chedly Abdelly. Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials 171 (2009) pp 29-37. M. Tejada, C. Garcia, J.L. Gonzalez , M.T. Hernandez . Use of organic amendment as a strategy for saline soil remediation:Influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry 38 (2006) pp 1413-1421. I. Gomez; J.M. Disla Soriano; J. Navarro-Pedreño; F. García-Orenes; M.B. Almendro-Candel; M.M. Jordan. Quantification of soil respiration in different saline soil of Alicante (Spain). EGU General Assembly (2012). Viena. Ed. Geophysycal Research Abstracts. Vol 14 EGU2012-2399,(2012). (Acknowledgements: This work was supported by the Spanish MICINN. Project Ref.: CGL2009-11194)

  19. Mobility, bioavailability and speciation of potentially toxic metals in a sludges-polluted agricultural soil under remediation with poplar trees and native grasses

    NASA Astrophysics Data System (ADS)

    Adamo, Paola; Agrelli, Diana; Giandonato Caporale, Antonio; Fiorentino, Nunzio; Duri, Luigi; Fagnano, Massimo

    2017-04-01

    For the assessment of health and environmental risks deriving from the pollution of agricultural soils, it is critical the identification and the chemical characterization of the contaminants and of the polluted soil, because these characteristics influence the mobility and bioavailability of the contaminants and therefore their transfer from soil to other environmental compartments and to the food chain. In addition, these information are crucial to assess the effectiveness of remediation and management actions. Our study site is an agricultural area of 6 ha, currently under sequestration, located in the province of Naples (Campania Region), interested by past illegal dumping of industrial wastes, mainly tannery sludges. In the area, after an intense phase of soil characterization by geophysical and geochemical surveys, it is realizing an environmental remediation project with poplar trees and native grass species, also with the aim of analyzing the possible absorption and accumulation of contaminants in the vegetables. The soil sampling was carried out by taking punctual samples of soil according to a grid of 20 x 20 m, at three depths (0-20; 30-60; 70-90 cm). Furthermore, materials attributable to the buried sludges were sampled from pedological profiles opened in the field. All the samples were analyzed for the content of potentially toxic metals and of heavy hydrocarbons (C>12). On selected samples were determined the main chemical and physical characteristics, mobile and bioavailable fractions of the major metal contaminants and their distribution in the soil geochemical fractions, with water (solid/liquid partition coefficient), 1 M NH4NO3 and 0.05 M EDTA pH 7 extractions, and EU-BCR sequential fractionation. The data showed a significant, widespread and disorderly contamination by chromium, zinc and heavy hydrocarbons (up to values of: 4500 mg/kg for Cr, 1850 mg/kg for Zn 1250 mg/kg for hydrocarbons C>12). In certain sub-areas it has also been observed a punctual contamination by lead, copper, cadmium, and arsenic. Chromium was always found poorly mobile and bioavailable, unlike zinc, that was extracted in significant amounts in EDTA and NH4NO3 and was found mainly distributed among the HOAc-extractable and reducible fraction of the soil. Chromium, instead, was found principally associated with the oxidizable and to a lesser extent the reducible fractions of the soil, presumably bound to organic matter and iron oxides, as also highlighted by SEM-EDS analysis. Given the high chromium content of the soil and buried materials, on selected samples was also determined the content of Cr(VI) and assessed the oxidizing potential of the soil in respect to the Cr(III). Keywords: chromium, zinc, metal speciation, bioavailability, polluted site.

  20. Thermally evolved gas analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru: Implications for the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-González, Rafael; McKay, Christopher

    2009-07-01

    TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms ( Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ˜5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ˜20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO 2 (ion 44 m/z) from microorganisms evolved at temperatures of ˜326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO 2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO 2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO 2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.

  1. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the conventional treatment with coal fly ash. One of the most important parameters to evaluate the swelling potential, swelling pressure, dramatically decreased in samples treated with olive mill wastewater, from 220kPa in the original sample of bentonite to values under 60kPa after 30 days. Regarding the mineralogy of the treated soil, X-ray Diffraction tests suggested a noticeable reduction in the amount of smectite within the crystalline structure of treated soils. Moreover, the smectite 001 peak shifted to right indicating a smaller d-spacing and hence a more stable mineral structure. To sum up, the improvements achieved by adding olive mill wastewater were, to some extent, similar to those produced by lower dosages of conventional additives (Portland cement or coal fly ash). The first results obtained in this work therefore indicate promising properties of biomass for its use in stabilization of expansive soils. A further research is still necessary. Finally, it must be pointed out that the use of raw biomass proceeding from olive grove might considerably improve the waste management in olive oil industry while offering new opportunities to civil works.

  2. Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material

    NASA Technical Reports Server (NTRS)

    Boslough, Mark B.; Bernold, Leonhard E.; Horie, Yasuyuki

    1992-01-01

    In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith.

  3. Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildenschild, D; Berge, P A; Berryman, K G

    1999-01-15

    The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of themore » measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.« less

  4. Regional Geochemical Results from Analyses of Stream-Water, Stream-Sediment, Soil, Soil-Water, Bedrock, and Vegetation Samples, Tangle Lakes District, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, L.P.; Wanty, R.B.; Lee, G.K.; Vohden, James; O'Neill, J. M.; Kerin, L.J.

    2008-01-01

    We report chemical analyses of stream-water, stream-sediment, soil, soil-water, bedrock, and vegetation samples collected from the headwaters of the Delta River (Tangle Lakes District, Mount Hayes 1:250,000-scale quadrangle) in east-central Alaska for the period June 20-25, 2006. Additionally, we present mineralogic analyses of stream sediment, concentrated by panning. The study area includes the southwestward extent of the Bureau of Land Management (BLM) Delta River Mining District (Bittenbender and others, 2007), including parts of the Delta River Archeological District, and encompasses an area of about 500 km2(approximately bordered by the Denali Highway to the south, near Round Tangle Lake, northward to the foothills of the Alaska Range (fig. 1). The primary focus of this study was the chemical characterization of native materials, especially surface-water and sediment samples, of first-order streams from the headwaters of the Delta River. The impetus for this work was the need, expressed by the Alaska Department of Natural Resources (ADNR), for an inventory of geochemical and hydrogeochemical baseline information about the Delta River Mining District. This information is needed because of a major upturn in exploration, drilling, and general mineral-resources assessments in the region since the late 1990s. Currently, the study area, called the 'MAN Project' area is being explored by Pure Nickel, Inc. (http://www.purenickel.com/s/MAN_Alaska.asp), and includes both Cu-Au-Ag and Ni-Cu-PGE (Pt-Pd-Au-Ag) mining claims. Geochemical data on surface-water, stream-sediment, soil, soil-water, grayleaf willow (Salix glauca L.), and limited bedrock samples are provided along with the analytical methodologies used and panned-concentrate mineralogy. We are releasing the data at this time with only minimal interpretation.

  5. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.

    PubMed

    Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena

    2011-12-01

    The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from the "Cerco Metalúrgico de Almadenejos" decommissioned metallurgical precinct were estimated at 16.4 kg Hg y(-1), with significant differences between seasons.

  6. Redistribution of magnetic iron oxide along soil profile after eight years managing a commercial olive orchard in a Vertisol

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Gómez, José Alfonso

    2017-04-01

    Magnetic iron oxide has been used as a tracer to monitor top soil movement and to identify source of sediments at the short-term scale, after high intensity rainfall events (Guzmán et al., 2010; Obereder et al., 2016) and periods up to two years (Guzmán et al., 2013). As it can be strongly bound to soil particles, its use allows the tacking of tagged soil all over the years until all this soil is lost or it is totally diluted with blank soil making the signal undetectable. Olive orchards planted on Vertisols are subject not only to tillage operations modifying soil profile but also to expansion-compression cycles and cracks appearance due to soil moisture changes. The aim of communication is to assess the soil movement at the mid-term scale, taking advantage of a tracer trial already performed by Guzmán et al. (2013) and a new sampling after 8 years of soil disturbance. In October 2008 two plots of 330 m2 were delimited and in which the top 5 cm of the inter tree rows were tagged with magnetite. Seventy locations at both plots were sampled so as to measure magnetic susceptibility twice (just after the tagging and March 2010), at three depth intervals (0-1, 1-8 and 8-12 cm) and distinguishing two zones: tree and inter tree rows. A third sampling was carried out at 0-2, 2-10 and 10-20 cm in August 2016 at the same locations and zones. Furthermore, in twenty of the sampling points additional samples from 20-30, 30-40, 40-50 and 50-60 cm were taken to check if tagged soil went deeper into the soil profile. Background values of susceptibility and bulk density at each depth, were characterized as well at the three sampling campaigns. Rainfall, soil management during these years and the inherent characteristics of a Vertisol have enhanced the movement of top soil not only superficially but also within the soil profile. First results comparing the evolution of magnetite distribution along soil profile indicate that while in 2008 and 2010 background values were measured at 12 cm, in 2016, in both zones (tree and inter tree rows) magnetite decreases slightly from the 10-20 cm interval but still finding tagged soil at a depth of 60 cm where background values were nearly reached. The implications of these results on the use of erosion magnetic tracers in long-term erosion experiments and soil vertical fluxes in Vertic soils will be discussed. References: Guzmán G., Vanderlinden K., Giráldez J.V., Gómez J. A. 2013. Assessment of spatial variability in water erosion rates in an olive orchard at plot scale using a magnetic iron oxide tracer. Soil Science Society of America Journal, 77(2), 350-361. Guzmán G., Barrón V., Gómez J.A. 2010. Evaluation of magnetic iron oxides as sediment tracers in water erosion experiments. Catena, 82(2), 126-133. Obereder E., Klik A., Wakolbinger S., Guzmán G., Strohmeier S., Demelash N., Gómez, J.A. 2016. Investigation of the impact of stone bunds on erosion and deposition processes combining conventional and tracer methodology in the Gumara Maksegnit watershed, Northern highlands of Ethiopia. In EGU General Assembly Conference Abstracts (Vol. 18, p. 2455).

  7. Release dynamics of dissolved organic matter in soil amended with biosolids

    NASA Astrophysics Data System (ADS)

    Trifonov, Pavel; Ilani, Talli; Arye, Gilboa

    2014-05-01

    Among the soil organic matter (SOM) components, dissolved organic matter (DOM) is the link between the solid phase and the soil solution. Previous studies emphasize the turnover of dissolved organic carbon (DOC) and nitrogen (DON) in soils as major pathways of element cycling. In addition to DOM contribution to carbon, nitrogen and other nutrient budgets, it also influence soil biological activity, reduces metal-ion toxicity, increase the transport of some compounds and contribute to the mineral weathering. Amending soils with biosolids originated from sludge have become very popular in the recent years. Those additions significantly affect the quantity and the composition of the DOM in agricultural soils. It should be noted that under most irrigation habitants, the soil is subjected to drying and re-wetting cycles, inducing a complex changes of soil structure, aggregation, SOM quality and micro-flora. However, most studies that addressed the above issues (directly or indirectly) are engaged with soils under cover of naturally occurring forests of relatively humid areas rather than agricultural soils in arid areas. In the current study we examined the DOC and DON release dynamic of sand and loess soils sampled from the Negev Desert of Israel. Each one of the soils were mixing with 5% (w/w) of one of the biosolids and packed into a Plexiglass column (I.d. 5.2 cm, L=20 cm). The flow-through experiments were conducted under low (1 ml/min) or high (10 ml/min) flow rates in a continuous or interrupted manner. The leachates were collected in time intervals equivalent to about 0.12 pore volume of a given soil-biosolids mixture. The established leaching curves of DOC, DON, NO3-, NH4+ and Cl- are analyzed by water flow and solute transport model for saturate (continuous runs) or variably saturate water flow conditions (interrupted runs). The chemical equilibrium or non-equilibrium (i.e. equilibrium and/or kinetics adsorption/desorption) versions of the convection dispersion equation are being used to describe the solute transport. In addition the sensitivity of the model for assigning a first order production term will be demonstrated.

  8. Thermal volatilization (TV) of different hyperarid Mars like-soils from the Atacama Desert: Implications for the analysis of the Phoenix Mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, J. E.; Navarro-Gonzalez, R.; McKay, C. P.

    2008-09-01

    The Phoenix spacecraft will search for organics in the soil and ice in the Martian north polar regions using thermal volatilization (TV) followed by mass spectrometry (MS). This experiment is a combination of a high-temperature furnace and a mass spectrometer that will be use to analyze samples delivered to instrument via a robotic arm. The samples will be heated from ambient to 1000ºC while evolved gases, including organic molecules and fragments, if they are present, will be simultaneously measured by a magnetic sector mass spectrometer (1). Our laboratory has developed a sample characterization method using a pyrolizer integrated to a quadrupole mass spectrometer to support the interpretations of TV data. The Atacama Desert, on northern Chile and southern Peru, has been considered the most arid region over the world (2) and an excellent Mars-like soil analogous (3). These soils contain very low levels to organic matter (10-40 ppm of organic C), and exotic mineralogical composition including iron oxides, which are common characteristics expected on Mars. A previous paper that examined the release of organics from samples soils by flash TV (pyrolisis) coupled to GC-MS (4). This work showed low efficiency of flash TV in soils with low organics or high contents of iron minerals. In addition, other study of agricultural soils showed low correlation between organics concentration and TV response, when levels of total organic matter were below 50000 ppm C or high presence of iron oxides (5). However, the efficiency of gradual heating by TV analysis from hyperarid soils has not been investigated. Here we examine the thermal and evolved gas properties of six types of soils from the two hyperarid core regions from the Atacama Desert: Yungay (northern Chile) and Pampas de La Joya (southern Peru), in order to investigate the effect of soil matrix and low organics contents over TV response. Between 20 to 40 mg of soil was loaded in a capillary quartz tube and it was mounted in the center of platinum coil filament pyrolizer probe. Then sample into de quartz tube was subjected to a thermal treatment from 30°C to 1200°C with a heating rate of 20°C/min. The resulting volatiles evolved from the sample were carried away by helium and transferred into a HP quadrupole mass spectrometer operating in electron ionization mode at 70 eV with a resolution of 1m/z. The mass analyzer was scanned from 10 to 200 m/z at a rate 5.3 scans per second. The nominal sensitivity of the mass analyzer is 0.02 ppb of hexachlorobenzene. Blanks were prepared with no soil added. As expected, there were significant differences in the evolved gas behaviors between soils samples depending of the soil matrix under similar heating conditions. First, the samples belonging to the most arid environments (PE001, PE389) had significant differences compared with less arid soils (PE378, PE386). Carbon in hyperarid soils, in the form of CO2 (ion 44 m/z) began its release to 330±30°C, while the less arid soils to 245±45°C. Volatile ions released from soils during TV-MS analysis were analyzed searching organics fragments. Soil type VI (PE-001), which contains ~11.4 ppm organic C, showed the release of the following mass fragments: 18, 44, 48, 64, and 66. Sources for the release of CO2 in TV analysis of soils comes to oxidation of organic matter (<600ºC), and thermal decomposition of carbonates (>600ºC). Mass 18 originates from water releasing in the course of dehydration processes that is bound in soil minerals, and from oxidation of organics in different temperatures depending the mineral fraction in the soil. The masses 48, 64, and 66 have similar thermal properties, beginning to be released at ~370°C and continue to rise up to 1200°C. These masses are due to the decomposition of sulfates into SO+, SO2 +, and S34O2 +. Mass 66 is detected only if the abundance of mass 64 is very high. TV traces from soils type V (PE-276), type I (PE-361), and type II (PE-388), which contain low organics concentrations (3-23 ppm of organic C), presented similar ions released to soil type VI, but with some variations at times of peak start or maximum release. The TV-MS trace for soil type IV (PE-287) showed the release of the following ions: 16, 18, 36, 44, 48, and 64. In this soil, the mass 44 showed the highest value at >760°C, probably by thermal decomposition of carbonates at higher temperatures; however at 700ºC, CO2 could result from the decomposition oxidation of refractory organics that have been detected by pyrolisis-GC-MS at 750ºC (4). In contrast, the TV-MS trace for sample soil type III (PE-386), which contains 35 ppm of organic C, showed the release of the following major mass fragments (m/z): 18, 30, 36, 44, 48 and 64 (Figure 1). EPSC Abstracts, Vol. 3, EPSC2008-A-00490, 2008 European Planetary Science Congress, Author(s) 2008 Probably, the mass 30 is due to NO that evolves from the thermal oxidation of N-organics at low temperature or degradation of nitrates at high temperatures. Additionally, ion 36 could be due to thermal degradation to chlorides. Our results show interesting ions released from Marslike soils by TV analysis, however soils that have low levels to organic carbon (3-40 ppm), were not detected by this method. If the concentrations of organics in the soils and ice on Mars at the Phoenix landing site are low than 30 ppm, the experiment could fail. Recently, our laboratory investigated the presence of organics in the samples soils by the release of NO (mass 30) at low temperatures using TV-MS (Research submitted). Hence, Phoenix mission could have an option in the searching for organic matter on Mars. These data indicate the importance of the study of Mars-like soils to prevent similar problems in space research.

  9. Rangeland degradation in savannas of South Africa: spatial patterns of soil and vegetation

    NASA Astrophysics Data System (ADS)

    Sandhage-Hofmann, Alexandra; Löffler, Jörg; du Preez, Chris; Kotzé, Elmarie; Weijers, Stef; Wundram, Dirk; Zacharias, Maximilan; Amelung, Wulf

    2017-04-01

    Extensive bush encroachment by Acacia mellifera and associated woody species at semi-arid and arid sites are the most notable forms of rangeland degradation in savannas of South Africa. Concerns are growing over the threat of suppression and loss of nutritious perennial grass species. Grazing and different rangeland management systems (communal and freehold) are considered to be of major importance for degradation, but the process of encroachment is not restricted to communal land. A vegetation change is mostly accompanied by changes in soil properties, where soils in savanna systems can profit from woody species due to litter fall, root distribution, shadow and animal resting time. Savannas are very heterogeneous systems with high spatial variation of patches with wood, herbaceous species and bare ground. We hypothesized that the spatial patterns of soil properties in South Africás rangelands are controlled by present or past vegetation, modulated by the tenure systems with higher rangeland degradation in communal areas. To test this, we sampled soils at communal and commercial land in the Kuruman area of South Africa with the following design: three farms per tenure system, 6 randomly chosen plots (100x100m) per farm, and 25 soil samples (0-10 cm) per plot, each in a 5x5m sampling area. At every sampling point, information of overlying vegetation was recorded (species or bare soil, canopy size, height). For each sampling area, if present, trees/ shrubs were sampled and their ages estimated through the counting of annual growth rings. For each plot, high resolution UAV aerial photos were taken to evaluate the extent of bush encroachment. Analyses involved main physical and chemical soil parameters and isotopic analyses. The results of a rough aerial image classification (grass, woody species, bare ground) revealed significant differences between the tenure systems with higher coverage of bare ground and shrubs at communal farms, and higher grass cover at commercial farms. The tenure systems had no differences in main texture classes of the soils, but significant differences in the composition of the sand fraction, with higher levels of fine sand and lower levels of coarse sand in communal farms. The chemical soil properties showed a high variability both within and between the farms, with much higher variability within communal than commercial farms. Additionally, concentrations of nitrogen, carbon, calcium and pH were significant higher in communal farms. Isotopic analyses in soils showed significant differences for 15N with higher levels in commercial farms. Different photosynthetic pathways are responsible for differences found in 13C values, with higher levels (-16-18‰) in C4-grassland and lower values (-22-26‰) in soils under Acacia (C3). We found relationships between soil properties and species or bare ground, where differences in texture likely interact with both, vegetation cover and soil properties.

  10. Prediction of SOC content by Vis-NIR spectroscopy at European scale using a modified local PLS algorithm

    NASA Astrophysics Data System (ADS)

    Nocita, M.; Stevens, A.; Toth, G.; van Wesemael, B.; Montanarella, L.

    2012-12-01

    In the context of global environmental change, the estimation of carbon fluxes between soils and the atmosphere has been the object of a growing number of studies. This has been motivated notably by the possibility to sequester CO2 into soils by increasing the soil organic carbon (SOC) stocks and by the role of SOC in maintaining soil quality. Spatial variability of SOC masks its slow accumulation or depletion, and the sampling density required to detect a change in SOC content is often very high and thus very expensive and labour intensive. Visible near infrared diffuse reflectance spectroscopy (Vis-NIR DRS) has been shown to be a fast, cheap and efficient tool for the prediction of SOC at fine scales. However, when applied to regional or country scales, Vis-NIR DRS did not provide sufficient accuracy as an alternative to standard laboratory soil analysis for SOC monitoring. Under the framework of Land Use/Cover Area Frame Statistical Survey (LUCAS) project of the European Commission's Joint Research Centre (JRC), about 20,000 samples were collected all over European Union. Soil samples were analyzed for several physical and chemical parameters, and scanned with a Vis-NIR spectrometer in the same laboratory. The scope of our research was to predict SOC content at European scale using LUCAS spectral library. We implemented a modified local partial least square regression (l-PLS) including, in addition to spectral distance, other potentially useful covariates (geography, texture, etc.) to select for each unknown sample a group of predicting neighbours. The dataset was split in mineral soils under cropland, mineral soils under grassland, mineral soils under woodland, and organic soils due to the extremely diverse spectral response of the four classes. Four every class training (70%) and test (30%) sets were created to calibrate and validate the SOC prediction models. The results showed very good prediction ability for mineral soils under cropland and mineral soils under grassland, with a root mean square error (RMSE) of 3.6 and 7.2 g C kg-1 respectively, while mineral soils under woodland and organic soils predictions were less accurate (RMSE of 11.9 and 51.1 g C kg-1). The RMSE was lower (except for organic soils) when sand content was used as covariate in the selection of the l-PLS predicting neighbours. The obtained results proved that: (i) Although the enormous spatial variability of European soils, the developed modified l-PLS algorithm was able to produce stable calibrations and accurate predictions. (ii) It is essential to invest in spectral libraries built according to sampling strategies, based on soil types, and a standardized laboratory protocol. (iii) Vis-NIR DRS spectroscopy is a powerful and cost effective tool to predict SOC content at regional/continental scales, and should be converted from a pure research discipline into a reference operational method decreasing the uncertainties of SOC monitoring and terrestrial ecosystems carbon fluxes at all scales.

  11. Metal uptake by homegrown vegetables - the relative importance in human health risk assessments at contaminated sites.

    PubMed

    Augustsson, Anna L M; Uddh-Söderberg, Terese E; Hogmalm, K Johan; Filipsson, Monika E M

    2015-04-01

    Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. DNA-polyfluorophore Chemosensors for Environmental Remediation: Vapor-phase Identification of Petroleum Products in Contaminated Soil†

    PubMed Central

    Jiang, Wei; Wang, Shenliang; Yuen, Lik Hang; Kwon, Hyukin; Ono, Toshikazu

    2013-01-01

    Contamination of soil and groundwater by petroleum-based products is an extremely widespread and important environmental problem. Here we have tested a simple optical approach for detecting and identifying such industrial contaminants in soil samples, using a set of fluorescent DNA-based chemosensors in pattern-based sensing. We used a set of diverse industrial volatile chemicals to screen and identify a set of five short oligomeric DNA fluorophores on PEG-polystyrene microbeads that could differentiate the entire set after exposure to their vapors in air. We then tested this set of five fluorescent chemosensor compounds for their ability to respond with fluorescence changes when exposed to headgas over soil samples contaminated with one of ten different samples of crude oil, petroleum distillates, fuels, lubricants and additives. Statistical analysis of the quantitative fluorescence change data (as Δ(R,G,B) emission intensities) revealed that these five chemosensors on beads could differentiate all ten product mixtures at 1000 ppm in soil within 30 minutes. Tests of sensitivity with three of the contaminant mixtures showed that they could be detected and differentiated in amounts at least as low as one part per million in soil. The results establish that DNA-polyfluorophores may have practical utility in monitoring the extent and identity of environmental spills and leaks, while they occur and during their remediation. PMID:23878719

  13. An Arduino Based Citizen Science Soil Moisture Sensor in Support of SMAP and GLOBE

    NASA Astrophysics Data System (ADS)

    Podest, E.; Das, N. N.; Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Citizen science allows individuals anywhere in the world to engage in science by collecting environmental variables. One of the longest running platforms for the collection of in situ variables is the GLOBE program, which is international in scope and encourages students and citizen scientists alike to collect in situ measurements. NASA's Soil Moisture Active Passive (SMAP) satellite mission, which has been acquiring global soil moisture measurements every 3 days of the top 5 cm of the soil since 2015, has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino- microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. In addition, we have developed a phone app, which interfaces with the Arduino, displays the soil moisture value and send the measurement to the GLOBE database. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting

    NASA Astrophysics Data System (ADS)

    Kaarakka, Lilli; Hyvönen, Riitta; Strömgren, Monika; Palviainen, Marjo; Persson, Tryggve; Olsson, Bengt A.; Helmisaari, Heljä-Sisko

    2016-04-01

    The use of forest-derived biomass has steadily increased in the Finland and Sweden during the past decades. Thus, more intensive forest management practices are becoming more common in the region, such as whole-tree harvesting, both above- and belowground. Stump harvesting causes a direct removal of carbon (C) in the form of biomass from the stand and can cause extensive soil disturbance, which in turn can result in increased C mineralization. In this study, the effects of stump harvesting on soil C and nitrogen (N) mineralization, and soil surface disturbance were studied at two different clear-felled Norway spruce (Picea abies) stands in Central Finland. The treatments were conventional stem-only harvesting combined with mounding (WTH) and stump harvesting (i.e. complete tree harvesting) combined with mounding (WTH+S). Logging residues were removed from all study sites. Soil samples down to a depth of 20 cm were systematically collected from the different soil disturbance surfaces (undisturbed soil, the mounds and the pits) 12-13 years after final harvest. Soil samples were incubated in the laboratory to determine the C and N mineralization rates. In addition, total C and N pools were estimated for each disturbance class and soil layer. Soil C and N pools were lower following stump harvesting, however, no statistically significant treatment effect was detected. Instead, C mineralization responses to treatment intensity was site-specific. C/N-ratio and organic matter content were significantly affected by harvest intensity. The observed changes in C and N pools appear to be related to the intrinsic variation of the surface disturbance and soil characteristics, and harvesting per se, rather than treatment intensity. Long-term studies are however needed to draw long-term conclusions whether stump harvesting significantly changes soil C and nutrient dynamics.

  15. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    NASA Astrophysics Data System (ADS)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  16. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Utami, S. R.; Marxen, A.; Mangelsdorf, K.; Bauersachs, T.; Schwark, L.

    2015-10-01

    Insufficient knowledge of the composition and variation of isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) in agricultural soils exists, despite of the potential effect of different management types (e.g. soil/water and redox conditions, cultivated plants) on GDGT distribution. Here, we determined the influence of different soil management types on the GDGT composition in paddy (flooded) and adjacent upland (non-flooded) soils, and if available also forest, bushland and marsh soils. To compare the local effects on GDGT distribution patterns, we collected comparable soil samples in various locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general upland soil had higher crenarchaeol contents than paddy soil, which on the contrary was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio was 3-27 times higher in paddy soil and indicates the enhanced presence of methanogenic archaea, which were additionally linked to the number of rice cultivation cycles per year (higher number of cycles was coupled with an increase in the ratio). The TEX86 values were 1.3 times higher in upland, bushland and forest soils than in paddy soils. In all soils brGDGT predominated over iGDGTs, with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher BIT values in paddy soils compared to upland soils together with higher BIT values in soil from subtropical climates indicate effects on the amounts of brGDGT through differences in management as well as climatic zones. In acidic soil CBT values correlated well with soil pH. In neutral to alkaline soils, however, no apparent correlation but an offset between paddy and upland managed soils was detected, which may suggest that soil moisture may exert an additional control on the CBT in these soils. Lower MBT' values and calculated temperatures (TMC) in paddy soils compared to upland soils may indicate a management (e.g. enhanced soil moisture through flooding practises) induced effect on mean annual soil temperature (MST).

  17. Inorganic species of arsenic in soil solution determined by microcartridges and ferrihydrite-based diffusive gradient in thin films (DGT).

    PubMed

    Moreno-Jiménez, Eduardo; Six, Laetitia; Williams, Paul N; Smolders, Erik

    2013-01-30

    The bioavailability of soil arsenic (As) is determined by its speciation in soil solution, i.e., arsenite [As(III)] or arsenate [As(V)]. Soil bioavailability studies require suitable methods to cope with small volumes of soil solution that can be speciated directly after sampling, and thereby minimise any As speciation change during sample collection. In this study, we tested a self-made microcartridge to separate both As species and compared it to a commercially available cartridge. In addition, the diffusive gradient in thin films technique (DGT), in combination with the microcartridges, was applied to synthetic solutions and to a soil spiked with As. This combination was used to improve the assessment of available inorganic As species with ferrihydrite(FH)-DGT, in order to validate the technique for environmental analysis, mainly in soils. The self-made microcartridge was effective in separating As(III) from As(V) in solution with detection by inductively coupled plasma optical emission spectrometry (ICP-OES) in volumes of only 3 ml. The DGT study also showed that the FH-based binding gels are effective for As(III) and As(V) assessment, in solutions with As and P concentrations and ionic strength commonly found in soils. The FH-DGT was tested on flooded and unflooded As spiked soils and recoveries of As(III) and As(V) were 85-104% of the total dissolved As. This study shows that the DGT with FH-based binding gel is robust for assessing inorganic species of As in soils. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout.

    PubMed

    Hrachowitz, Markus; Maringer, Franz-Josef; Steineder, Christian; Gerzabek, Martin H

    2005-01-01

    Measurements of 137Cs fallout have been used in combination with a range of conversion models for the investigation of soil relocation mechanisms and sediment budgets in many countries for more than 20 yr. The objective of this paper is to develop a conversion model for quantifying soil redistribution, based on Chernobyl-derived 137Cs. The model is applicable on uncultivated as well as on cultivated sites, taking into account temporal changes in the 137Cs depth distribution pattern as well as tillage-induced 137Cs dilution effects. The main idea of the new model is the combination of a modified exponential model describing uncultivated soil with a Chapman distribution based model describing cultivated soil. The compound model subsequently allows a dynamic description of the Chernobyl derived 137Cs situation in the soil and its change, specifically migration and soil transport processes over the course of time. Using the suggested model at the sampling site in Pettenbach, in the Austrian province of Oberösterreich 137Cs depth distributions were simulated with a correlation coefficient of 0.97 compared with the measured 137Cs depth profile. The simulated rates of soil distribution at different positions at the sampling site were found to be between 27 and 60 Mg ha(-1) yr(-1). It was shown that the model can be used to describe the temporal changes of 137Cs depth distributions in cultivated as well as uncultivated soils. Additionally, the model allows to quantify soil redistribution in good correspondence with already existing models.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorfman, D.

    Earthworms can live in soils containing high quantities of mercury, lead, and zinc. The worms (Lumbricus terrestris) concentrate these heavy metals in their tissues. The use of these worms to reduce the quantities of mercury and other heavy metals in soils may be practical. In July, 1993, a preliminary study was made using earthworms and soils with differing amounts of mercury, The quantities were 0.0 grams, 0.5 grams, and 1.0 grams of mercury as mercuric chloride. Earthworms were placed into these soils for two or more weeks, then harvested. The worms were rinsed with deionized water, then dissolved in nitricmore » acid. Each sample was prepared for analysis with the addition of HNO{sub 3}, H{sub 2}SO{sub 4}, potassium permanganate, and hydrozylamine hydrochloride. A Jerome Instrument gold foil analyzer was used to determine levels of mercury after volatilizing the sample with stannous chloride. Worms exposed to contaminated soils remove 50 to 1,400 times as much mercury as do worms in control soils. In a hypothetical case, a site contaminated with one pound of mercury, 1,000 to 45,000 worms would be required to reduce mercury levels to background levels in the soil (about 250 ppb). After harvesting worms in contaminated soil they could be dried (90% of their weight is water), and the mercury regained by chemical processes. Soil conducive to earthworm survival is required. This includes a well aerated loamy soil, proper pH (7.0), and periodic watering and feeding. There are several methods of harvesting worms, including flooding and electricity. Large numbers of worms can be obtained from commercial growers.« less

  20. Reclamation of acidic mine residues by creation of technosoils with the addition of biochar and marble waste

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Díaz, Vicente; Acosta, José; Faz, Ángel; Zornoza, Raul

    2016-04-01

    This study reports the short-term effect of biochar and marble waste addition for the reclamation of acidic mine residues. A lab incubation was carried out for 90 days. Biochars derived from pig manure (PM), crop residues (CR) and municipal solid waste (MSW) were added to the soil at a rate of 20 g kg-1. The marble waste (MW) was added at a rate of 200 g kg-1. Bochars and MW were applied independently and combined. A control soil was used without application of amendments. The evolution of different physical, chemical and biochemical properties and availability of heavy metals was periodically monitored. Results showed that original pH (2.8) was increased with all amendments, those samples containing MW being the ones with the highest pH (~8.0). The electrical conductivity (EC) decreased from 6.6 to 3.0-4.5 mS cm-1 in all the treatments receiving MW. Soil organic C (SOC) increased in all samples receiving biochar up to 18-20 g kg-1, with no shifts during the 90 d incubation, indicating the high stability of the C supplied. Recalcitrant organic C accounted for ~90-98% of the SOC. No significant effect of amendment addition was observed for carbohydrates, soluble C, microbial biomass C and β-glucosidase activity. However, arylesterase activity increased with amendments, highly related to pH. The availability of heavy metals decreased up to 90-95% owing to the addition of amendments, mainly in samples containing MW. The MW provided conditions to increase pH and decrease EC and metals mobility. Biochar was an effective strategy to increase SOC, recalcitrant C and AS, essential to create soil structure. However, a labile source of organic matter should be added together with the proposed amendments to promote the activation of microbial communities. Acknowledgement : This work has been funded by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) by the project 18920/JLI/13

Top