Science.gov

Sample records for additional specific interactions

  1. Additive interaction between heterogeneous environmental ...

    EPA Pesticide Factsheets

    BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000-2005.METHODS: The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built and sociodemographic) using principal component analyses. County-level preterm birth rates (n=3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PD) and 95% confidence intervals (CI) comparing worse environmental quality to the better quality for each model for a) each individual domain main effect b) the interaction contrast and c) the two main effects plus interaction effect (i.e. the “net effect”) to show departure from additive interaction for the all U.S counties. Analyses were also performed for subgroupings by four urban/rural strata. RESULTS: We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interac

  2. Information capacity of specific interactions

    PubMed Central

    Huntley, Miriam H.; Murugan, Arvind; Brenner, Michael P.

    2016-01-01

    Specific interactions are a hallmark feature of self-assembly and signal-processing systems in both synthetic and biological settings. Specificity between components may arise from a wide variety of physical and chemical mechanisms in diverse contexts, from DNA hybridization to shape-sensitive depletion interactions. Despite this diversity, all systems that rely on interaction specificity operate under the constraint that increasing the number of distinct components inevitably increases off-target binding. Here we introduce “capacity,” the maximal information encodable using specific interactions, to compare specificity across diverse experimental systems and to compute how specificity changes with physical parameters. Using this framework, we find that “shape” coding of interactions has higher capacity than chemical (“color”) coding because the strength of off-target binding is strongly sublinear in binding-site size for shapes while being linear for colors. We also find that different specificity mechanisms, such as shape and color, can be combined in a synergistic manner, giving a capacity greater than the sum of the parts. PMID:27155013

  3. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  4. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  5. Specificity of marine microbial surface interactions.

    PubMed Central

    Imam, S H; Bard, R F; Tosteson, T R

    1984-01-01

    The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293

  6. Issues in Interaction Language Specification and Representation.

    DTIC Science & Technology

    1983-11-01

    A16~ REPRESENTATION(J) VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG COMPUTER S. D N JOHNSON ET AL. NOV 83 UNCLASSIFIED CSIE-83-15 NBOB14 81 K...8217, ___ 4 ~ISSUES IN INTERACTION LANGUAGE SPECIFICATION AND REPRESENTATION Deborah H. Johnson H. Rex Hartson .4 This document has been approved...ISSUES IN INTERACTION LANGUAGE SPECIFICATION AND REPRESENTATION Deborah H. Johnson H. Rex Hartson TECHNICAL REPORT Prepared for Engineering Psychology

  7. Non-additive model for specific heat of electrons

    NASA Astrophysics Data System (ADS)

    Anselmo, D. H. A. L.; Vasconcelos, M. S.; Silva, R.; Mello, V. D.

    2016-10-01

    By using non-additive Tsallis entropy we demonstrate numerically that one-dimensional quasicrystals, whose energy spectra are multifractal Cantor sets, are characterized by an entropic parameter, and calculate the electronic specific heat, where we consider a non-additive entropy Sq. In our method we consider an energy spectra calculated using the one-dimensional tight binding Schrödinger equation, and their bands (or levels) are scaled onto the [ 0 , 1 ] interval. The Tsallis' formalism is applied to the energy spectra of Fibonacci and double-period one-dimensional quasiperiodic lattices. We analytically obtain an expression for the specific heat that we consider to be more appropriate to calculate this quantity in those quasiperiodic structures.

  8. Interactions of Organic Additives with Ionic Crystal Hydrates

    NASA Astrophysics Data System (ADS)

    Füredi-Milhofer, H.; Sikirić, M.; Tunik, L.; Filipović-Vinceković, N.; Garti, N.

    The interactions of two groups of hydrated model crystals, calcium hydrogenphosphate dihydrate (DCPD) vs. octacalcium phosphate (OCP) and calcium oxalate monohydrate (COM) vs. calcium oxalate dihydrate (COD) with different organic additives are considered. DCPD precipitates as platelet-like crystals with the dominant faces shielded by hydrated layers and charged lateral faces. In the second system COM has charged surfaces, while all faces of COD are covered with layers containing water molecules. The organic molecules tested include negatively charged, flexible and rigid small and macromolecules (glutamic and aspartic acid, citrate, hexaammonium polyphosphate, phytate and polyaspartate) and anionic surfactants (sodium dodecyl sulphate, SDS, sodium diisooctyl sulfosuccinate, AOT, sodium cholate NaC and disodium oleoamido PEG-2 sulfosuccinate, PEG). Two types of effects have been demonstrated: (1) Effect on crystal growth morphology: Flexible organic molecules with high charge density and anionic surfactants affected the growth morphology of DCPD and COM by selectively interacting with the charged lateral faces while rigid molecules (phytate, polyaspartate) specifically recognized the dominant (010) face of DCPD due to structural and stereochemical compatibility. (2) Effect on phase composition: Anionic surfactants at concentrations above the cmc promoted growth of OCP and COD respectively by selectively adsorbing at, and inhibiting growth oif nuclei of DCPD and/or COM, which were dominant in the respective control systems. The effect was especially pronounced in the calcium oxalate precipitation system, where in some cases complete reversal of the phase composition occurred. The important role of the hydrated layer, as part of the structure of the investigated crystal hydrates, in the above crystal additive interactions is discussed.

  9. Interactive specification acquisition via scenarios: A proposal

    NASA Technical Reports Server (NTRS)

    Hall, Robert J.

    1992-01-01

    Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT.

  10. Issues in Interaction Language Specification and Representation.

    DTIC Science & Technology

    1983-11-01

    JOHNSON ET AL. NOV 83 UNCLASSIFIED CSIE-83-15 N@014-8 1K -143 F/G 5/8 N mEEEomhEEEmhiI EEEEEEEEmhEEEE mEEEEEEEmhEEEE EEEEEEEEohEohEmhE~~hEEEEEE 1.8...IN - INTERACTION LANGUAGE SPECIFICATION CAND REPRESENTATION Deborah H. Johnson H. Rex Hartson N nT1C Virginia Polytechnic Institute and State...oISSUES IN INTERACTION LANGUAGE SPECIFICATION N. AND REPRESENTATION Deborah H. Johnson I. H. Rex Hartson - I TECHNICAL REPORT Prepared for Engineering

  11. Interactive effects of nutrient additions and predation on infaunal communities

    USGS Publications Warehouse

    Posey, M.H.; Alphin, T.D.; Cahoon, L.; Lindquist, D.; Becker, M.E.

    1999-01-01

    Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa, Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.

  12. Behaviors of Polymer Additives Under EHL and Influences of Interactions Between Additives on Friction Modification

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    Polymer additives have become requisite for the formulation of multigrade engine oils. The behavior of polymethacrylate (PMA)-thickened oils as lubricants in concentrated contacts under nominal rolling and pure sliding conditions was investigated by conventional optical interferometry. The PMA thickened oils behaved differently from the base oil in the formation of elastohydrodynamic (EHL) films. The higher the elastohydrodynamic molecular weight of the PMA contained in the lubricant, the thinner was the oil film under EHL conditions. The film thickness of shear-degraded PMA-thickened oils was also investigated. The behavior of graphite particles dispersed in both the base oil and the PMA-thickened oil was studied under pure sliding by taking photomicrographs. Many kinds of additives are contained in lubricating oil and the interactions between additives are considered. The interactions of zinc-organodithiophosphates (ZDP) with other additives is discussed.

  13. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  14. Specificity of Intramembrane Protein–Lipid Interactions

    PubMed Central

    Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta

    2011-01-01

    Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707

  15. Non-additivity of pair interactions in charged colloids

    NASA Astrophysics Data System (ADS)

    Finlayson, Samuel D.; Bartlett, Paul

    2016-07-01

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry.

  16. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.

  17. Exosite Interactions Impact Matrix Metalloproteinase Collagen Specificities*

    PubMed Central

    Robichaud, Trista K.; Steffensen, Bjorn; Fields, Gregg B.

    2011-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I–III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769–783 from type I–III collagens, the second inserted α1(II) collagen residues 763–768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784–792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased kcat/Km and kcat for MMP-1. MMP-13 showed the opposite behavior with a decreased kcat/Km and kcat and a greatly improved Km in response to the C-terminal residues. Insertion of the N-terminal residues enhanced kcat/Km and kcat for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced Km and dramatically decreased kcat, resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs. PMID:21896477

  18. FPGA-specific decimal sign-magnitude addition and subtraction

    NASA Astrophysics Data System (ADS)

    Vázquez, Martín; Todorovich, Elías

    2016-07-01

    The interest in sign-magnitude (SM) representation in decimal numbers lies in the IEEE 754-2008 standard, where the significand in floating-point numbers is coded as SM. However, software implementations do not meet performance constraints in some applications and more development is required in programmable logic, a key technology for hardware acceleration. Thus, in this work, two strategies for SM decimal adder/subtractors are studied and six new Field Programmable Gate Array (FPGA)-specific circuits are derived from these strategies. The first strategy is based on ten's complement (C10) adder/subtractors and the second one is based on parallel computation of an unsigned adder and an unsigned subtractor. Four of these alternative circuits are useful for at least one area-time-trade-off and specific operand size. For example, the fastest SM adder/subtractor for operand sizes of 7 and 16 decimal digits is based on the second proposed strategy with delays of 3.43 and 4.33 ns, respectively, but the fastest circuit for 34-digit operands is one of the three specific implementations based on C10 adder/subtractors with a delay of 4.65 ns.

  19. Additive manufacturing of patient-specific tubular continuum manipulators

    NASA Astrophysics Data System (ADS)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  20. Modulation of additive and interactive effects by trial history revisited.

    PubMed

    Masson, Michael E J; Rabe, Maximilian M; Kliegl, Reinhold

    2017-04-01

    Masson and Kliegl (Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 898-914, 2013) reported evidence that the nature of the target stimulus on the previous trial of a lexical decision task modulates the effects of independent variables on the current trial, including additive versus interactive effects of word frequency and stimulus quality. In contrast, recent reanalyses of previously published data from experiments that, unlike the Masson and Kliegl experiments, did not include semantic priming as a factor, found no evidence for modulation of additive effects of frequency and stimulus quality by trial history (Balota, Aschenbrenner, & Yap, Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1563-1571, 2013; O'Malley & Besner, Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1400-1411, 2013). We report two experiments that included semantic priming as a factor and that attempted to replicate the modulatory effects found by Masson and Kliegl. In neither experiment was additivity of frequency and stimulus quality modulated by trial history, converging with the findings reported by Balota et al. and O'Malley and Besner. Other modulatory influences of trial history, however, were replicated in the new experiments and reflect potential trial-by-trial alterations in decision processes.

  1. Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation.

    PubMed

    Bemer, Marian; van Dijk, Aalt D J; Immink, Richard G H; Angenent, Gerco C

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger protein complexes. The importance of protein-protein interactions between members of a particular plant TF family has long been recognised; however, a significant number of interfamily TF interactions has recently been reported. The biological implications and the molecular mechanisms involved in cross-family interactions have now started to be elucidated and the examples illustrate potential roles in the bridging of biological processes. Hence, cross-family TF interactions expand the molecular toolbox for plants with additional mechanisms to control and fine-tune robust gene expression patterns and to adapt to their continuously changing environment.

  2. Interaction between Polymeric Additives and Secondary Fluids in Capillary Suspensions.

    PubMed

    Bitsch, Boris; Braunschweig, Björn; Willenbacher, Norbert

    2016-02-16

    Capillary suspensions are ternary systems including a solid and two liquid phases representing a novel formulation platform for pastes with unique processing and end-use properties. Here we have investigated aqueous suspensions of non-Brownian graphite particles including different polymers commonly used as thickening agents or binders in paste formulations. We have studied the interaction between these additives and organic solvents in order to elucidate its effect on the characteristic formation of a particle network structure in corresponding ternary capillary suspension systems. Organic solvents with different polarity have been employed, and in the presence of nonadsorbing poly(ethylene oxide), all of them, whether they preferentially wet the graphite surface or not, induce the formation of a network structure within the suspension as indicated by a strong change in rheological properties. However, when the adsorbing polymers carboxymethylcellulose and poly(vinylpyrrolidone) are included, the drastic change in rheological behavior occurs only when polar organic solvents are used as secondary liquids. Obviously, these solvents can form pendular bridges, finally resulting in a sample-spanning particle network. Vibrational sum frequency spectroscopy provides evidence that these polar liquids remove the adsorbed polymer from the graphite particles. In contrast, nonpolar and nonwetting solvents do not force polymer desorption. In these cases, the formation of a percolating network structure within the suspensions is presumably prevented by the strong steric repulsion among graphite particles, not allowing for the formation of particle clusters encapsulating the secondary liquid. Accordingly, polymeric additives and secondary fluids have to be carefully selected in capillary suspension formulations, then offering a new pathway to customize paste formulations. The polymer may serve to adjust an appropriate viscosity level, and the capillary bridging induces the

  3. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Additional requirements applicable to specific types of... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  4. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Additional requirements applicable to specific types of... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  5. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Additional requirements applicable to specific types of... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  6. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Additional requirements applicable to specific types of... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  7. Molecular Recognition and Specific Interactions for Biosensing Applications

    PubMed Central

    Kim, Dong Chung; Kang, Dae Joon

    2008-01-01

    Molecular recognition and specific interactions are reliable and versatile routes for site-specific and well-oriented immobilization of functional biomolecules on surfaces. The control of surface properties via the molecular recognition and specific interactions at the nanoscale is a key element for the nanofabrication of biosensors with high sensitivity and specificity. This review intends to provide a comprehensive understanding of the molecular recognition- and specific interaction-mediated biosensor fabrication routes that leads to biosensors with well-ordered and controlled structures on both nanopatterned surfaces and nanomaterials. Herein self-assembly of the biomolecules via the molecular recognition and specific interactions on nanoscaled surfaces as well as nanofabrication techniques of the biomolecules for biosensor architecture are discussed. We also describe the detection of molecular recognition- and specific interaction-mediated molecular binding as well as advantages of nanoscale detection. PMID:27873889

  8. Extending theories on muon-specific interactions

    SciTech Connect

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  9. Extending theories on muon-specific interactions

    DOE PAGES

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  10. Interaction Between the Pipeline and Additional Equipment for Trenchless Technologies

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.; Temirbaev, R. M.; Toropov, E. S.; Toropov, S. Yu

    2016-10-01

    In this article the authors defined the limits of applicability of the pipeline pusher as additional equipment for pipeline construction when using trenchless methods. In this case, the pushing force is applied to the free end of the pipeline section located on the day surface. The authors obtained analytical dependences for determining the stress-strain state of the pushed pipeline when using the pusher in a particular case. In addition, they identified values of axial pushing force that are considered dangerous, because they can cause pipeline dropping down from the roller supports during pipeline pullback.

  11. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  12. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases

    PubMed Central

    Lenz, Tobias L.; Deutsch, Aaron J.; Han, Buhm; Hu, Xinli; Okada, Yukinori; Eyre, Stephen; Knapp, Michael; Zhernakova, Alexandra; Huizinga, Tom W.J.; Abecasis, Goncalo; Becker, Jessica; Boeckxstaens, Guy E.; Chen, Wei-Min; Franke, Andre; Gladman, Dafna D.; Gockel, Ines; Gutierrez-Achury, Javier; Martin, Javier; Nair, Rajan P.; Nöthen, Markus M.; Onengut-Gumuscu, Suna; Rahman, Proton; Rantapää-Dahlqvist, Solbritt; Stuart, Philip E.; Tsoi, Lam C.; Van Heel, David A.; Worthington, Jane; Wouters, Mira M.; Klareskog, Lars; Elder, James T.; Gregersen, Peter K.; Schumacher, Johannes; Rich, Stephen S.; Wijmenga, Cisca; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Raychaudhuri, Soumya

    2015-01-01

    Human leukocyte antigen (HLA) genes confer strong risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen binding repertoires between a heterozygote’s two expressed HLA variants may result in additional non-additive risk effects. We tested non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (RA, Ncases=5,337), type 1 diabetes (T1D, Ncases=5,567), psoriasis vulgaris (Ncases=3,089), idiopathic achalasia (Ncases=727), and celiac disease (Ncases=11,115). In four out of five diseases, we observed highly significant non-additive dominance effects (RA: P=2.5×1012; T1D: P=2.4×10−10; psoriasis: P=5.9×10−6; celiac disease: P=1.2×10−87). In three of these diseases, the dominance effects were explained by interactions between specific classical HLA alleles (RA: P=1.8×10−3; T1D: P=8.6×1027; celiac disease: P=6.0×10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (RA: 1.4%, T1D: 4.0%, and celiac disease: 4.1%, beyond a simple additive model). PMID:26258845

  13. The additive effect of harmonics on conservative and dissipative interactions

    NASA Astrophysics Data System (ADS)

    Santos, Sergio; Gadelrab, Karim R.; Barcons, Victor; Font, Josep; Stefancich, Marco; Chiesa, Matteo

    2012-12-01

    Multifrequency atomic force microscopy holds promise as a tool for chemical and topological imaging with nanoscale resolution. Here, we solve the equation of motion exactly for the fundamental mode in terms of the cantilever mean deflection, the fundamental frequency of oscillation, and the higher harmonic amplitudes and phases. The fundamental frequency provides information about the mean force, dissipation, and variations in the magnitude of the attractive and the repulsive force components during an oscillation cycle. The contributions of the higher harmonics to the position, velocity, and acceleration can be added gradually where the details of the true instantaneous force are recovered only when tens of harmonics are included. A formalism is developed here to decouple and quantify the viscous term of the force in the short and long range. It is also shown that the viscosity independent paths on tip approach and tip retraction can also be decoupled by simply acquiring a FFT at two different cantilever separations. The two paths correspond to tip distances at which metastability is present as, for example, in the presence of capillary interactions and where there is surface energy hysteresis.

  14. Isothermal microcalorimetry to investigate non specific interactions in biophysical chemistry.

    PubMed

    Ball, Vincent; Maechling, Clarisse

    2009-07-28

    Isothermal titration microcalorimetry (ITC) is mostly used to investigate the thermodynamics of "specific" host-guest interactions in biology as well as in supramolecular chemistry. The aim of this review is to demonstrate that ITC can also provide useful information about non-specific interactions, like electrostatic or hydrophobic interactions. More attention will be given in the use of ITC to investigate polyelectrolyte-polyelectrolyte (in particular DNA-polycation), polyelectrolyte-protein as well as protein-lipid interactions. We will emphasize that in most cases these "non specific" interactions, as their definition will indicate, are favoured or even driven by an increase in the entropy of the system. The origin of this entropy increase will be discussed for some particular systems. We will also show that in many cases entropy-enthalpy compensation phenomena occur.

  15. Domain Specificity in Social Interactions, Social Thought, and Social Development

    ERIC Educational Resources Information Center

    Turiel, Elliot

    2010-01-01

    J. E. Grusec and M. Davidov (this issue) have taken good steps in formulating a domain-specific view of parent-child interactions. This commentary supports the introduction of domain specificity to analyses of parenting. Their formulation is an advance over formulations that characterized parental practices globally. This commentary calls for…

  16. Element-specific density profiles in interacting biomembrane models

    NASA Astrophysics Data System (ADS)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg; Gochev, Georgi

    2017-03-01

    Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces.

  17. Specific non-monotonous interactions increase persistence of ecological networks.

    PubMed

    Yan, Chuan; Zhang, Zhibin

    2014-03-22

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.

  18. Specific non-monotonous interactions increase persistence of ecological networks

    PubMed Central

    Yan, Chuan; Zhang, Zhibin

    2014-01-01

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies. PMID:24478300

  19. Domain specificity in social interactions, social thought, and social development.

    PubMed

    Turiel, Elliot

    2010-01-01

    J. E. Grusec and M. Davidov (this issue) have taken good steps in formulating a domain-specific view of parent-child interactions. This commentary supports the introduction of domain specificity to analyses of parenting. Their formulation is an advance over formulations that characterized parental practices globally. This commentary calls for inclusion of definitions of the classification system of domain-specific interactions and criteria for each domain. It is also maintained that Grusec and Davidov's domains of social interaction imply that processes of development are involved, along with socialization; that bidirectionality in parent-child relations needs to be extended to include mutual influences and the construction of domains of social thought; and that conflicts and opposition within families coexist with compliance and social harmony.

  20. Isothermal Microcalorimetry to Investigate Non Specific Interactions in Biophysical Chemistry

    PubMed Central

    Ball, Vincent; Maechling, Clarisse

    2009-01-01

    Isothermal titration microcalorimetry (ITC) is mostly used to investigate the thermodynamics of “specific” host-guest interactions in biology as well as in supramolecular chemistry. The aim of this review is to demonstrate that ITC can also provide useful information about non-specific interactions, like electrostatic or hydrophobic interactions. More attention will be given in the use of ITC to investigate polyelectrolyte-polyelectrolyte (in particular DNA-polycation), polyelectrolyte-protein as well as protein-lipid interactions. We will emphasize that in most cases these “non specific” interactions, as their definition will indicate, are favoured or even driven by an increase in the entropy of the system. The origin of this entropy increase will be discussed for some particular systems. We will also show that in many cases entropy-enthalpy compensation phenomena occur. PMID:20111693

  1. Lattice cluster theory for polymer melts with specific interactions

    SciTech Connect

    Xu, Wen-Sheng; Freed, Karl F.

    2014-07-28

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  2. Lattice cluster theory for polymer melts with specific interactions

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Freed, Karl F.

    2014-07-01

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  3. Specific interaction between coronavirus leader RNA and nucleocapsid protein

    SciTech Connect

    Stohlman, S.A.; Baric, R.S.; Nelson, G.N.; Soe, L.H.; Welter, L.M.; Deans, R.J.

    1988-11-01

    Northwestern blot analysis in the presence of competitor RNA was used to examine the interaction between the mouse hepatitis virus (MHV) nucleocapsid protein (N) and virus-specific RNAs. The authors accompanying article demonstrates that anti-N monoclonal antibodies immunoprecipitated all seven MHV-specific RNAs as well as the small leader-containing RNAs from infected cells. In this article the authors report that a Northwestern blotting protocol using radiolabeled viral RNAs in the presence of host cell competitor RNA can be used to demonstrate a high-affinity interaction between the MHV N protein and the virus-specific RNAs. Further, RNA probes prepared by in vitro transcription were used to define the sequences that participate in such high-affinity binding. A specific interaction occurs between the N protein and sequences contained with the leader RNA which is conserved at the 5' end of all MHV RNAs. They have further defined the binding sites to the area of nucleotides 56 to 65 at the 3' end of the leader RNA and suggest that this interaction may play an important role in the discontinuous nonprocessive RNA transcriptional process unique to coronaviruses.

  4. Contribution of temperament to eating disorder symptoms in emerging adulthood: Additive and interactive effects.

    PubMed

    Burt, Nicole M; Boddy, Lauren E; Bridgett, David J

    2015-08-01

    Temperament characteristics, such as higher negative emotionality (NE) and lower effortful control (EC), are individual difference risk factors for developmental psychopathology. Research has also noted relations between temperament and more specific manifestations of psychopathology, such as eating disorders (EDs). Although work is emerging that indicates that NE and EC may additively contribute to risk for ED symptoms, no studies have considered the interactive effects of NE and EC in relation to ED symptoms. In the current investigation, we hypothesized that (1) low EC would be associated with increased ED symptoms, (2) high NE would be associated with increased ED symptoms, and (3) these temperament traits would interact, such that the relationship between NE and ED symptoms would be strongest in the presence of low EC. After controlling for gender and child trauma history, emerging adults' (N=160) lower EC (i.e., more difficulties with self-regulation) was associated with more ED symptoms. NE did not emerge as a direct predictor of ED symptoms. However, the anticipated interaction of these temperament characteristics on ED symptoms was found. The association between NE and ED symptoms was only significant in the context of low EC. These findings provide evidence that elevated NE may only be a risk factor for the development of eating disorders when individuals also have self-regulation difficulties. The implications of these findings for research and interventions are discussed.

  5. Phase separation in solutions with specific and nonspecific interactions

    SciTech Connect

    Jacobs, William M.; Frenkel, Daan; Oxtoby, David W.

    2014-05-28

    Protein solutions, which tend to be thermodynamically stable under physiological conditions, can demix into protein-enriched and protein-depleted phases when stressed. Using a lattice-gas model of proteins with both isotropic and specific, directional interactions, we calculate the critical conditions for phase separation for model proteins with up to four patches via Monte Carlo simulations and statistical associating fluid theory. Given a fixed specific interaction strength, the critical value of the isotropic energy, which accounts for dispersion forces and nonspecific interactions, measures the stability of the solution with respect to nonspecific interactions. Phase separation is suppressed by the formation of protein complexes, which effectively passivate the strongly associating sites on the monomers. Nevertheless, we find that protein models with three or more patches can form extended aggregates that phase separate despite the assembly of passivated complexes, even in the absence of nonspecific interactions. We present a unified view of the critical behavior of model fluids with anisotropic interactions, and we discuss the implications of these results for the thermodynamic stability of protein solutions.

  6. Genetic evidence for an additional function of phage T4 gene 32 protein: interaction with ligase.

    PubMed

    Mosig, G; Breschkin, A M

    1975-04-01

    Gene 32 of bacteriophage T4 is essential for DNA replication, recombination, and repair. In an attempt to clarify the role of the corresponding gene product, we have looked for mutations that specifically inactivate one but not all of its functions and for compensating suppressor mutations in other genes. Here we describe a gene 32 ts mutant that does not produce progeny, but in contrast to an am mutant investigated by others, is capable of some primary and secondary DNA replication and of forming "joint" recombinational intermediates after infection of Escherichia coli B at the restrictive temperature. However, parental and progeny DNA strands are not ligated to covalently linked "recombinant" molecules, and single strands of vegetative DNA do not exceed unit length. Progeny production as well as capacity for covalent linkage in this gene 32 ts mutant are partially restored by additional rII mutations. Suppression by rII depends on functioning host ligase [EC 6.5.1.2; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming, NMN-forming)]. This gene 32 ts mutation (unlike some others) in turn suppresses the characteristic plaque morphology of rII mutants. We conclude that gene 32 protein, in addition to its role in DNA replication and in the formation of "joint" recombinational intermediates, interacts with T4 ligase [EC 6.5.1.1; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming)] when recombining DNA strands are covalently linked. The protein of the mutant that we describe here is mainly defective in this interaction, thus inactivating T4 ligase in recombination. Suppressing rII mutations facilitate substitution of host ligase. There is suggestive evidence that these interactions occur at the membrane.

  7. Additivity in protein–DNA interactions: how good an approximation is it?

    PubMed Central

    Benos, Panayiotis V.; Bulyk, Martha L.; Stormo, Gary D.

    2002-01-01

    Man and Stormo and Bulyk et al. recently presented their results on the study of the DNA binding affinity of proteins. In both of these studies the main conclusion is that the additivity assumption, usually applied in methods to search for binding sites, is not true. In the first study, the analysis of binding affinity data from the Mnt repressor protein bound to all possible DNA (sub)targets at positions 16 and 17 of the binding site, showed that those positions are not independent. In the second study, the authors analysed DNA binding affinity data of the wild-type mouse EGR1 protein and four variants differing on the middle finger. The binding affinity of these proteins was measured to all 64 possible trinucleotide (sub)targets of the middle finger using microarray technology. The analysis of the measurements also showed interdependence among the positions in the DNA target. In the present report, we review the data of both studies and we re- analyse them using various statistical methods, including a comparison with a multiple regression approach. We conclude that despite the fact that the additivity assumption does not fit the data perfectly, in most cases it provides a very good approximation of the true nature of the specific protein–DNA interactions. Therefore, additive models can be very useful for the discovery and prediction of binding sites in genomic DNA. PMID:12384591

  8. Specific interaction of lectins with liposomes and monolayers bearing neoglycolipids.

    PubMed

    Faivre, Vincent; Costa, Maria de Lourdes; Boullanger, Paul; Baszkin, Adam; Rosilio, Véronique

    2003-10-01

    The interaction of three lectins (wheat germ, Ulex europaeus I, and Lotus tetragonolobus agglutinins: WGA, UEA-I and LTA) with either N-acetyl-D-glucosamine or L-fucose neoglycolipids incorporated into phospholipid monolayers and liposome bilayers was studied at the air/water interface and in bulk solution. The results show that for both systems studied, synthesized neoglycolipids were capable of binding their specific lectin and that, in general, the binding of lectins increased with the increase in the molar fraction of the saccharide derivative incorporated in either the monolayers or bilayers. However, whereas for UEA-I, molecular recognition was enhanced by a strong hydrophobic interaction, for WGA and LTA successful recognition was predominantly related to the distance between neighboring sugar groups. The observed lengthy adsorption times of these lectins onto their specific ligands were attributed to interfacial conformational changes occurring in the proteins upon their adsorption at the interfaces.

  9. An interactive database for the assessment of histone antibody specificity

    PubMed Central

    Rothbart, Scott B.; Dickson, Bradley M.; Raab, Jesse R.; Grzybowski, Adrian T.; Krajewski, Krzysztof; Guo, Angela H.; Shanle, Erin K.; Josefowicz, Steven Z.; Fuchs, Stephen M.; Allis, C. David; Magnuson, Terry R.; Ruthenburg, Alexander J.; Strahl, Brian D.

    2015-01-01

    SUMMARY Access to high quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut The Histone Antibody Specificity Database (http://www.histoneantibodies.com), an online and expanding resource cataloguing the behavior of widely used commercially available histone antibodies by peptide microarray. This interactive web portal provides a critical resource to the biological research community who routinely use these antibodies as detection reagents for a wide range of applications. PMID:26212453

  10. Graphical models of protein-protein interaction specificity from correlated mutations and interaction data.

    PubMed

    Thomas, John; Ramakrishnan, Naren; Bailey-Kellogg, Chris

    2009-09-01

    Protein-protein interactions are mediated by complementary amino acids defining complementary surfaces. Typically not all members of a family of related proteins interact equally well with all members of a partner family; thus analysis of the sequence record can reveal the complementary amino acid partners that confer interaction specificity. This article develops methods for learning and using probabilistic graphical models of such residue "cross-coupling" constraints between interacting protein families, based on multiple sequence alignments and information about which pairs of proteins are known to interact. Our models generalize traditional consensus sequence binding motifs, and provide a probabilistic semantics enabling sound evaluation of the plausibility of new possible interactions. Furthermore, predictions made by the models can be explained in terms of the underlying residue interactions. Our approach supports different levels of prior knowledge regarding interactions, including both one-to-one (e.g., pairs of proteins from the same organism) and many-to-many (e.g., experimentally identified interactions), and we present a technique to account for possible bias in the represented interactions. We apply our approach in studies of PDZ domains and their ligands, fundamental building blocks in a number of protein assemblies. Our algorithms are able to identify biologically interesting cross-coupling constraints, to successfully identify known interactions, and to make explainable predictions about novel interactions.

  11. Cracking the phosphatase code: docking interactions determine substrate specificity.

    PubMed

    Roy, Jagoree; Cyert, Martha S

    2009-12-08

    Phosphoserine- and phosphothreonine-directed phosphatases display remarkable substrate specificity, yet the sites that they dephosphorylate show little similarity in amino acid sequence. Studies reveal that docking interactions are key for the recognition of substrates and regulators by two conserved phosphatases, protein phosphatase 1 (PP1) and the Ca2+-calmodulin-dependent phosphatase calcineurin. In each case, a small degenerate sequence motif in the interacting protein directs low-affinity binding to a docking surface on the phosphatase that is distinct from the active site; several such interactions combine to confer overall binding specificity. Some docking surfaces are conserved, such as a hydrophobic groove on a face opposite the active site that serves as a major recognition surface for the "RVxF" motif of proteins that interact with PP1 and the "PxIxIT" motif of substrates of calcineurin. Secondary motifs combine with this primary targeting sequence to specify phosphatase binding. A comprehensive interactome for mammalian PP1 was described, analysis of which defines several PP1-binding motifs. Studies of "LxVP," a secondary calcineurin-binding sequence, establish that this motif is a conserved feature of calcineurin substrates and that the immunosuppressants FK506 and cyclosporin A inhibit the phosphatase by interfering with LxVP-mediated docking.

  12. A Specification Method for Interactive Medical Information Systems

    PubMed Central

    Wasserman, Anthony I.; Stinson, Susan K.

    1980-01-01

    This paper presents the User Software Engineering (USE) approach for developing specifications for an interactive information system (IIS) and shows how the method is applied to the specification of a Perinatal Data Registry system. Two linked views of the system are developed: a user view suitable for computer-naive users, and a design/verification view, suitable for computer-knowledgeable users. The user view is intended to facilitate user participation in the analysis task and in the definition of the user/system dialogue. The verification view is intended to facilitate design and testing of the resulting system. The two notations share their notations for data base definition and for specification of the user/system dialogue; however, the user view may utilize narrative text for describing the operations, while the design/verification view relies on a more formal specification method. The specification method encourages effective communication between users and developers and permits refinement of the specification in order to ensure that the resulting specification is as complete, consistent, and accurate as possible before proceeding with design and implementation.

  13. Addition of Polyadenylate Sequences to Virus-Specific RNA during Adenovirus Replication

    PubMed Central

    Philipson, L.; Wall, R.; Glickman, G.; Darnell, J. E.

    1971-01-01

    Adenovirus-specific nuclear and polysomal RNA, both early and late in the infectious cycle, contain a covalently linked region of polyadenylic acid 150-250 nucleotides long. A large proportion of the adenovirus-specific messenger RNA contains poly(A). As revealed by hybridization experiments, the poly(A) is not transcribed from adenovirus DNA. Furthermore, an adenosine analogue, cordycepin, blocks the synthesis of poly(A) and also inhibits the accumulation of adenovirus messenger RNA on polysomes. Addition of poly(A) to viral RNA may involve a host-controlled mechanism that regulates the processing and transport of messenger RNA. PMID:5315962

  14. Addition of polyadenylate sequences to virus-specific RNA during adenovirus replication.

    PubMed

    Philipson, L; Wall, R; Glickman, G; Darnell, J E

    1971-11-01

    Adenovirus-specific nuclear and polysomal RNA, both early and late in the infectious cycle, contain a covalently linked region of polyadenylic acid 150-250 nucleotides long. A large proportion of the adenovirus-specific messenger RNA contains poly(A). As revealed by hybridization experiments, the poly(A) is not transcribed from adenovirus DNA. Furthermore, an adenosine analogue, cordycepin, blocks the synthesis of poly(A) and also inhibits the accumulation of adenovirus messenger RNA on polysomes. Addition of poly(A) to viral RNA may involve a host-controlled mechanism that regulates the processing and transport of messenger RNA.

  15. Site-Specific Tandem Knoevenagel Condensation-Michael Addition To Generate Antibody-Drug Conjugates.

    PubMed

    Kudirka, Romas A; Barfield, Robyn M; McFarland, Jesse M; Drake, Penelope M; Carlson, Adam; Bañas, Stefanie; Zmolek, Wes; Garofalo, Albert W; Rabuka, David

    2016-11-10

    Expanded ligation techniques are sorely needed to generate unique linkages for the growing field of functionally enhanced proteins. To address this need, we present a unique chemical ligation that involves the double addition of a pyrazolone moiety with an aldehyde-labeled protein. This ligation occurs via a tandem Knoevenagel condensation-Michael addition. A pyrazolone reacts with an aldehyde to generate an enone, which undergoes subsequent attack by a second pyrazolone to generate a bis-pyrazolone species. This rapid and facile ligation technique is performed under mild conditions in the absence of catalyst to generate new architectures that were previously inaccessible via conventional ligation reactions. Using this unique ligation, we generated three site-specifically labeled antibody-drug conjugates (ADCs) with an average of four drugs to one antibody. The in vitro and in vivo efficacies along with pharmacokinetic data of the site-specific ADCs are reported.

  16. Uncovering Phosphorylation-Based Specificities through Functional Interaction Networks*

    PubMed Central

    Wagih, Omar; Sugiyama, Naoyuki; Ishihama, Yasushi; Beltrao, Pedro

    2016-01-01

    Protein kinases are an important class of enzymes involved in the phosphorylation of their targets, which regulate key cellular processes and are typically mediated by a specificity for certain residues around the target phospho-acceptor residue. While efforts have been made to identify such specificities, only ∼30% of human kinases have a significant number of known binding sites. We describe a computational method that utilizes functional interaction data and phosphorylation data to predict specificities of kinases. We applied this method to human kinases to predict substrate preferences for 57% of all known kinases and show that we are able to reconstruct well-known specificities. We used an in vitro mass spectrometry approach to validate four understudied kinases and show that predicted models closely resemble true specificities. We show that this method can be applied to different organisms and can be extended to other phospho-recognition domains. Applying this approach to different types of posttranslational modifications (PTMs) and binding domains could uncover specificities of understudied PTM recognition domains and provide significant insight into the mechanisms of signaling networks. PMID:26572964

  17. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions.

    PubMed

    Vandiver, Jennifer; Dean, Delphine; Patel, Nelesh; Botelho, Claudia; Best, Serena; Santos, José D; Lopes, Maria A; Bonfield, William; Ortiz, Christine

    2006-08-01

    The normal intersurface forces between nanosized probe tips functionalized with COO(-)-terminated alkanethiol self-assembling monolayers and dense, polycrystalline silicon-substituted synthetic hydroxyapatite (SiHA) and phase pure hydroxyapatite (HA) were measured via a nanomechanical technique called chemically specific high-resolution force spectroscopy. A significantly larger van der Waals interaction was observed for the SiHA compared to HA; Hamaker constants (A) were found to be A(SiHA) = 35 +/- 27 zJ and A(HA) = 13 +/- 12 zJ. Using the Derjaguin-Landau-Verwey-Overbeek approximation, which assumes linear additivity of the electrostatic double layer and van der Waals components, and the nonlinear Poisson-Boltzmann surface charge model for electrostatic double-layer forces, the surface charge per unit area, sigma (C/m(2)), was calculated as a function of position for specific nanosized areas within individual grains. SiHA was observed to be more negatively charged than HA with sigma(SiHA) = -0.024 +/- 0.013 C/m(2), two times greater than sigma(HA) = -0.011 +/- 0.006 C/m(2). Additionally, SiHA was found to have increased surface adhesion (0.7 +/- 0.3 nN) compared to HA (0.5 +/- 0.3 nN). The characterization of the nanoscale variations in surface forces of SiHA and HA will enable an improved understanding of the initial stages of bone-biomaterial bonding.

  18. Chromatic patchy particles: Effects of specific interactions on liquid structure

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg A.; Klumov, Boris A.; Tkachenko, Alexei V.

    2015-07-01

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of "color," i.e., specific interactions between individual patches. A possible experimental realization of such "chromatic" interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the "colored" and "colorless" systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral and cubic). It is found that the aggregated (liquid) phase of the "colorless" patchy particles is better connected, denser and typically has stronger local order than the corresponding "colored" one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.

  19. Chromatic patchy particles: Effects of specific interactions on liquid structure

    SciTech Connect

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral and cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.

  20. Chromatic patchy particles: Effects of specific interactions on liquid structure

    DOE PAGES

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral andmore » cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.« less

  1. The pain interactome: connecting pain-specific protein interactions.

    PubMed

    Jamieson, Daniel G; Moss, Andrew; Kennedy, Michael; Jones, Sherrie; Nenadic, Goran; Robertson, David L; Sidders, Ben

    2014-11-01

    Understanding the molecular mechanisms associated with disease is a central goal of modern medical research. As such, many thousands of experiments have been published that detail individual molecular events that contribute to a disease. Here we use a semi-automated text mining approach to accurately and exhaustively curate the primary literature for chronic pain states. In so doing, we create a comprehensive network of 1,002 contextualized protein-protein interactions (PPIs) specifically associated with pain. The PPIs form a highly interconnected and coherent structure, and the resulting network provides an alternative to those derived from connecting genes associated with pain using interactions that have not been shown to occur in a painful state. We exploit the contextual data associated with our interactions to analyse subnetworks specific to inflammatory and neuropathic pain, and to various anatomical regions. Here, we identify potential targets for further study and several drug-repurposing opportunities. Finally, the network provides a framework for the interpretation of new data within the field of pain.

  2. Modulation of Additive and Interactive Effects in Lexical Decision by Trial History

    ERIC Educational Resources Information Center

    Masson, Michael E. J.; Kliegl, Reinhold

    2013-01-01

    Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model…

  3. Parental Anxiety and Child Symptomatology: An Examination of Additive and Interactive Effects of Parent Psychopathology

    ERIC Educational Resources Information Center

    Burstein, Marcy; Ginsburg, Golda S.; Tein, Jenn-Yun

    2010-01-01

    The current study examined relations between parent anxiety and child anxiety, depression, and externalizing symptoms. In addition, the study tested the additive and interactive effects of parent anxiety with parent depression and externalizing symptoms in relation to child symptoms. Forty-eight parents with anxiety disorders and 49 parents…

  4. Optimizing molecular electrostatic interactions: Binding affinity and specificity

    NASA Astrophysics Data System (ADS)

    Kangas, Erik

    The design of molecules that bind tightly and specifically to designated target molecules is an important goal in many fields of molecular science. While the shape of the molecule to be designed is a relatively well defined problem with an intuitive answer, determination of the distribution of electrostatic charge that it should have in order to possess high affinity and/or specificity for a target is a subtle problem involving a tradeoff between an unfavorable electrostatic desolvation penalty incurred due to the removal of solvent from the interacting surfaces of the reactants, and the generally favorable intermolecular interactions made in the bound state. In this thesis, a theoretical formalism based on a continuum electrostatic approximation is developed in which charge distributions leading to optimal affinity and/or high specificity may be obtained. Methods for obtaining these charge distributions are developed in detail and analytical solutions are obtained in several special cases (where the molecules are shaped as infinite membranes, spheres, and spheroids). Their existence and non-uniqueness are also shown, and it is proven that the resulting optimized electrostatic binding free energies are favorable (negative) in many cases of physical interest. Affinity and specificity optimization is then applied to the chorismate mutase family of enzymes, including the catalytic antibody 1F7. It is shown that affinity optimization can be used to suggest better molecular inhibitors and that specificity optimization can be used to help elucidate molecular function and possibly aid in the creation of improved haptens. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  5. [Bootstrap method-based estimation on the confidence interval for additive interaction in cohort studies].

    PubMed

    Pan, Jin-ren; Chen, Kun

    2010-07-01

    Interaction assessment is an important step in epidemiological analysis. When etiological study is carried out, the logarithmic models such as logistic model or Cox proportional hazard model are commonly used to estimate the independent effects of the risk factors. However, estimating interaction between risk factors by the regression coefficient of the product term is on multiplicative scale, and for public-health purposes, it is supposed to be on additive scale or departure from additivity. This paper illustrates with a example of cohort study by fitting Cox proportional hazard model to estimate three measures for additive interaction which presented by Rothman. Adopting the S-Plus application with a built-in Bootstrap function, it is convenient to estimate the confidence interval for additive interaction. Furthermore, this method can avoid the exaggerated estimation by using ORs in a cohort study to gain better precision. When using the complex combination models between additive interaction and multiplicative interaction, it is reasonable to choose the former one when the result is inconsistent.

  6. Age and work environment characteristics in relation to sleep: Additive, interactive and curvilinear effects.

    PubMed

    Parkes, Katharine R

    2016-05-01

    Although additive combinations of age and work environment characteristics have been found to predict sleep impairment, possible age x work environment interactions have been largely disregarded. The present study examined linear and curvilinear interactions of age with work environment measures in relation to sleep quality and duration. Survey data were collected from offshore day-shift personnel (N = 901). Main effects and interactions of the age terms with work environment measures (job demand, control, and social support, physical environment and strenuous work) were evaluated. Sleep duration was predicted by a curvilinear interaction, age(2) x job demand (p < .005), and by the age x social support interaction (p < .002); sleep quality was predicted by age x job demand (p < .002). Job control and physical environment showed significant additive effects. At a time when older employees are encouraged to remain in the workforce, the findings serve to increase understanding of how ageing and work demands jointly contribute to sleep impairment.

  7. Specific features of nonvalent interactions in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B.

    2014-07-01

    It is established that isostructural orthorhombic perovskites ABO3 (sp. gr. Pnma in different systems, no. 62, Z = 4), depending on the specificity of nonvalent interactions (which determine the combinatorial-topological type of the Voronoi-Dirichlet polyhedra (VDPs) of four basis atoms), are divided into ten different stereotypes. It is shown by the example of 259 perovskites belonging to the DyCrO3 stereotype that VDP characteristics can be used to quantitatively estimate the distortion of BO6 octahedra, including that caused by the Jahn-Teller effect. It is found that one of the causes of the distortion of the coordination polyhedra of atoms in the structure of orthorhombic perovskites is heteroatomic metal-metal interactions, for which the interatomic distances are much shorter than the sum of the Slater radii of A and B atoms.

  8. LUMIS Interactive graphics operating instructions and system specifications

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Yu, T. C.; Landini, A. J.

    1976-01-01

    The LUMIS program has designed an integrated geographic information system to assist program managers and planning groups in metropolitan regions. Described is the system designed to interactively interrogate a data base, display graphically a portion of the region enclosed in the data base, and perform cross tabulations of variables within each city block, block group, or census tract. The system is designed to interface with U. S. Census DIME file technology, but can accept alternative districting conventions. The system is described on three levels: (1) introduction to the systems's concept and potential applications; (2) the method of operating the system on an interactive terminal; and (3) a detailed system specification for computer facility personnel.

  9. Optimization of the thermophilic anaerobic co-digestion of pig manure, agriculture waste and inorganic additive through specific methanogenic activity.

    PubMed

    Jiménez, J; Cisneros-Ortiz, M E; Guardia-Puebla, Y; Morgan-Sagastume, J M; Noyola, A

    2014-01-01

    The anaerobic co-digestion of three wastes (manure, rice straw and clay residue, an inorganic additive) at different concentration levels and their interactive effects on methanogenic activity were investigated in this work at thermophilic conditions in order to enhance hydrolytic activity and methane production. A central composite design and the response surface methodology were applied for the optimization of specific methanogenic activity (SMA) by assessing their interaction effects with a reduced number of experiments. The results showed a significant interaction among the wastes on the SMA and confirmed that co-digestion enhances methane production. Rice straw apparently did not supply a significant amount of substrate to make a difference in SMA or methane yield. On the other hand, clay residue had a positive effect as an inorganic additive for stimulating the anaerobic process, based on its mineral content and its adsorbent properties for ammonia. Finally, the optimal conditions for achieving a thermophilic SMA value close to 1.4 g CH4-COD/g VSS · d(-1) were 20.3 gVSS/L of manure, 9.8 gVSS/L of rice straw and 3.3 gTSS/L of clay.

  10. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  11. Reactivity of Dazomet, a Hydraulic Fracturing Additive: Hydrolysis and Interaction with Pyrite

    NASA Astrophysics Data System (ADS)

    Consolazio, N.; Lowry, G. V.; Karamalidis, A.; Hakala, A.

    2015-12-01

    reaction products. Our results indicate the need to determine specific mineral-additive interactions to evaluate the potential risks of chemical use in hydraulic fracturing.

  12. Solubility Testing of Sucrose Esters of Fatty Acids in International Food Additive Specifications.

    PubMed

    Nagai, Yukino; Kawano, Satoko; Motoda, Kenichiro; Tomida, Masaaki; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2017-03-01

    We investigated the solubility of 10 samples of sucrose esters of fatty acids (SEFA) products that are commercially available worldwide as food additives (emulsifiers). Although one sample dissolved transparently in both water and ethanol, other samples produced white turbidity and/or precipitates and did not meet the solubility criterion established by the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA). When the sample solutions were heated, the solubility in both water and ethanol increased. All of the samples dissolved transparently in ethanol, and dispersed and became white without producing precipitates in water. The present study suggests that the current solubility criterion of the JECFA SEFA specifications needs to be revised.

  13. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation

    PubMed Central

    Taylor, James A.; Pastrana, Cesar L.; Butterer, Annika; Pernstich, Christian; Gwynn, Emma J.; Sobott, Frank; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2015-01-01

    The segregation of many bacterial chromosomes is dependent on the interactions of ParB proteins with centromere-like DNA sequences called parS that are located close to the origin of replication. In this work, we have investigated the binding of Bacillus subtilis ParB to DNA in vitro using a variety of biochemical and biophysical techniques. We observe tight and specific binding of a ParB homodimer to the parS sequence. Binding of ParB to non-specific DNA is more complex and displays apparent positive co-operativity that is associated with the formation of larger, poorly defined, nucleoprotein complexes. Experiments with magnetic tweezers demonstrate that non-specific binding leads to DNA condensation that is reversible by protein unbinding or force. The condensed DNA structure is not well ordered and we infer that it is formed by many looping interactions between neighbouring DNA segments. Consistent with this view, ParB is also able to stabilize writhe in single supercoiled DNA molecules and to bridge segments from two different DNA molecules in trans. The experiments provide no evidence for the promotion of non-specific DNA binding and/or condensation events by the presence of parS sequences. The implications of these observations for chromosome segregation are discussed. PMID:25572315

  14. Species specificity in avian sperm:perivitelline interaction.

    PubMed

    Stewart, Sarah G; Bausek, Nina; Wohlrab, Franz; Schneider, Wolfgang J; Janet Horrocks, A; Wishart, Graham J

    2004-04-01

    The interaction of chicken spermatozoa with the inner perivitelline layer from different avian species in vitro during a 5 min co-incubation was measured as the number of points of hydrolysis produced per unit area of inner perivitelline layer. The average degree of interaction, as a proportion of that between chicken spermatozoa and their homologous inner perivitelline layer, was: equal to or greater than 100% within Galliformes (chicken, turkey, quail, pheasant, peafowl and guineafowl); 44% within Anseriformes (goose, duck); and less than 30% in Passeriformes (Zebra Finch) and Columbiformes (collared-dove). The homologue of the putative chicken sperm-binding proteins, chicken ZP1 and ZP3, were identified by Western blotting with anti-chicken ZP1/ZP3 antibody in the perivitelline layers of all species. The functional cross-reactivity between chicken spermatozoa and heterologous inner perivitelline layer appeared to be linked to known phylogenetic distance between the species, although it was not related to the relative affinity of the different ZP3 homologues for anti-chicken ZP3. This work demonstrates that sperm interaction with the egg investment does not represent such a stringent species-specific barrier in birds as it does in mammals and marine invertebrates. This may be a factor in the frequency of hybrid production in birds.

  15. Application of histone modification-specific interaction domains as an alternative to antibodies

    PubMed Central

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z.; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul

    2014-01-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. PMID:25301795

  16. Patient-specific in vitro models for hemodynamic analysis of congenital heart disease - Additive manufacturing approach.

    PubMed

    Medero, Rafael; García-Rodríguez, Sylvana; François, Christopher J; Roldán-Alzate, Alejandro

    2017-03-21

    Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses.

  17. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  18. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  19. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  20. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  1. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  2. Spatial frequency specific interaction of dot patterns and gratings.

    PubMed Central

    De Valois, K K; Switkes, E

    1980-01-01

    Adaptation to patterns of paired random dots produces loss of contrast sensitivity to sinusoidal luminance gratings oriented perpendicularly to the dot-pair direction. This adaptation loss is spatial frequency- and orientation-specific and varies with dot-pair separation in a manner predictable from the Fourier spectra of the stimuli and observed characteristics of the visual system. These results support the idea that the visual system acts as a periodicity analyzer with known restrictions and cannot be accounted for by a feature-detector model. When the bars of the test gratings are aligned in the dot-pair direction, there is no adaptational loss at any frequency despite the fact that the adaptation pattern contains significant spectral power at all frequencies in this orientation. This lack of adaptation may be due to inhibitory interactions among channels or to nonlinear effects within local receptive fields. Images PMID:6928651

  3. Ammonium catalyzed cyclitive additions: evidence for a cation-π interaction with alkynes.

    PubMed

    Nagy, Edith; St Germain, Elijah; Cosme, Patrick; Maity, Pradip; Terentis, Andrew C; Lepore, Salvatore D

    2016-02-07

    The addition of carbamate nitrogen to a non-conjugated carbon-carbon triple bond is catalyzed by an ammonium salt leading to a cyclic product. Studies in homogeneous systems suggest that the ammonium agent facilitates nitrogen-carbon bond formation through a cation-π interaction with the alkyne unit that, for the first time, is directly observed by Raman spectroscopy.

  4. Ammonium Catalyzed Cyclitive Additions: Evidence for a Cation-π Interaction with Alkynes†

    PubMed Central

    Nagy, Edith; St.Germain, Elijah; Cosme, Patrick; Maity, Pradip; Terentis, Andrew C.; Lepore, Salvatore D.

    2016-01-01

    The addition of carbamate nitrogen to a non-conjugated carbon-carbon triple bond is catalyzed by an ammonium salt leading to a cyclic product. Studies in homogeneous systems suggest that the ammonium agent facilitates nitrogen-carbon bond formation through a cation-π interaction with the alkyne unit that, for the first time, is directly observed by Raman spectroscopy. PMID:26728333

  5. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  6. Quasi-chemical approach for adsorption of mixtures with non-additive lateral interactions

    NASA Astrophysics Data System (ADS)

    Pinto, O. A.; Pasinetti, P. M.; Ramirez-Pastor, A. J.

    2017-01-01

    The statistical thermodynamics of binary mixtures with non-additive lateral interactions was developed on a generalization in the spirit of the lattice-gas model and the classical quasi-chemical approximation (QCA). The traditional assumption of a strictly pairwise additive nearest-neighbors interaction is replaced by a more general one, namely that the bond linking a certain atom with any of its neighbors depends considerably on how many of them are actually present (or absent) on the sites in the first coordination shell of the atom. The total and partial adsorption isotherms are given for both attractive and repulsive lateral interactions between the adsorbed species. Interesting behaviors are observed and discussed in terms of the low-temperature phases formed in the system. Comparisons with Monte Carlo simulations are performed in order to test the validity of the theoretical model.

  7. Role of strongly interacting additives in tuning the structure and properties of polymer systems

    NASA Astrophysics Data System (ADS)

    Daga, Vikram Kumar

    Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals

  8. Just-in-time Design and Additive Manufacture of Patient-specific Medical Implants

    NASA Astrophysics Data System (ADS)

    Shidid, Darpan; Leary, Martin; Choong, Peter; Brandt, Milan

    Recent advances in medical imaging and manufacturing science have enabled the design and production of complex, patient-specific orthopaedic implants. Additive Manufacture (AM) generates three-dimensional structures layer by layer, and is not subject to the constraints associated with traditional manufacturing methods. AM provides significant opportunities for the design of novel geometries and complex lattice structures with enhanced functional performance. However, the design and manufacture of patient-specific AM implant structures requires unique expertise in handling various optimization platforms. Furthermore, the design process for complex structures is computationally intensive. The primary aim of this research is to enable the just-in-time customisation of AM prosthesis; whereby AM implant design and manufacture be completed within the time constraints of a single surgical procedure, while minimising prosthesis mass and optimising the lattice structure to match the stiffness of the surrounding bone tissue. In this research, a design approach using raw CT scan data is applied to the AM manufacture of femoral prosthesis. Using the proposed just-in-time concept, the mass of the prosthesis was rapidly designed and manufactured while satisfying the associated structural requirements. Compressive testing of lattice structures manufactured using proposed method shows that the load carrying capacity of the resected composite bone can be recovered by up to 85% and the compressive stiffness of the AM prosthesis is statistically indistinguishable from the stiffness of the initial bone.

  9. Synergistic interactions between commonly used food additives in a developmental neurotoxicity test.

    PubMed

    Lau, Karen; McLean, W Graham; Williams, Dominic P; Howard, C Vyvyan

    2006-03-01

    Exposure to non-nutritional food additives during the critical development window has been implicated in the induction and severity of behavioral disorders such as attention deficit hyperactivity disorder (ADHD). Although the use of single food additives at their regulated concentrations is believed to be relatively safe in terms of neuronal development, their combined effects remain unclear. We therefore examined the neurotoxic effects of four common food additives in combinations of two (Brilliant Blue and L-glutamic acid, Quinoline Yellow and aspartame) to assess potential interactions. Mouse NB2a neuroblastoma cells were induced to differentiate and grow neurites in the presence of additives. After 24 h, cells were fixed and stained and neurite length measured by light microscopy with computerized image analysis. Neurotoxicity was measured as an inhibition of neurite outgrowth. Two independent models were used to analyze combination effects: effect additivity and dose additivity. Significant synergy was observed between combinations of Brilliant Blue with L-glutamic acid, and Quinoline Yellow with aspartame, in both models. Involvement of N-methyl-D-aspartate (NMDA) receptors in food additive-induced neurite inhibition was assessed with a NMDA antagonist, CNS-1102. L-glutamic acid- and aspartame-induced neurotoxicity was reduced in the presence of CNS-1102; however, the antagonist did not prevent food color-induced neurotoxicity. Theoretical exposure to additives was calculated based on analysis of content in foodstuff, and estimated percentage absorption from the gut. Inhibition of neurite outgrowth was found at concentrations of additives theoretically achievable in plasma by ingestion of a typical snack and drink. In addition, Trypan Blue dye exclusion was used to evaluate the cellular toxicity of food additives on cell viability of NB2a cells; both combinations had a straightforward additive effect on cytotoxicity. These data have implications for the

  10. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  11. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE PAGES

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  12. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    SciTech Connect

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  13. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex

    PubMed Central

    Ortega, Davi R.; Zhulin, Igor B.

    2016-01-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  14. Disparity-Specific Spatial Interactions: Evidence from EEG Source Imaging

    PubMed Central

    Cottereau, Benoit R.; McKee, Suzanne P.; Ales, Justin M.; Norcia, Anthony M.

    2012-01-01

    Using cortical source estimation techniques based on high-density EEG and fMRI measurements in humans, we measured how a disparity-defined surround influenced the responses to the changing disparity of a central disk within five visual ROIs: V1, V4, lateral occipital complex (LOC), hMT+, and V3A. The responses in the V1 ROI were not consistently affected either by changes in the characteristics of the surround (correlated or uncorrelated) or by its disparity value, consistent with V1 being responsive only to absolute, not relative, disparity. Correlation in the surround increased the responses in the V4, LOC, and hMT+ ROIs over those measured with the uncorrelated surround. Thus, these extrastriate areas contain neurons that are sensitive to disparity differences. However, their evoked responses did not vary systematically with the surround disparity. Responses in the V3A ROI, in contrast, were increased by correlation in the surround and varied with its disparity. We modeled these V3A responses as attributable to a gain modulation of the absolute disparity response, where the gain amplitude is proportional to the center–surround disparity difference. An additional experiment identified a nonlinear center–surround interaction in V3A that facilitates the responses when center and surround are misaligned but suppresses it when they share the same disparity plane. PMID:22262881

  15. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database.

    PubMed

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E

    2017-01-04

    The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed.

  16. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database

    PubMed Central

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E.

    2017-01-01

    The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. PMID:27915230

  17. Evolutionary reprograming of protein-protein interaction specificity.

    PubMed

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles.

  18. Biokinetics of food additive silica nanoparticles and their interactions with food components.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Song, Jae Ho; Jo, Mi-Rae; Yu, Jin; Kim, Kyoung-Min; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2017-02-01

    Nanomaterials have been widely utilized in the food industry in production, packaging, sensors, nutrient delivery systems, and food additives. However, research on the interactions between food-grade nanoparticles and biomolecules as well as their potential toxicity is limited. In the present study, the in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of one of the most extensively used food additives, silica (SiO2) were evaluated with respect to particle size (nano vs bulk) following single-dose oral administration to rats. Intestinal transport mechanism was investigated using a 3D culture system, in vitro model of human intestinal follicle-associated epithelium (FAE). The effect of the presence of food components, such as sugar and protein, on the oral absorption of nanoparticles was also evaluated with focus on their interactions. The results obtained demonstrated that the oral absorption of nanoparticles (3.94±0.38%) was greater than that of bulk materials (2.95±0.37%), possibly due to intestinal transport by microfold (M) cells. On the other hand, particle size was found to have no significant effect on in vivo dissolution property, biodistribution, or excretion kinetics. Oral absorption profile of silica nanoparticles was highly dependent on the presence of sugar or protein, showing rapid absorption rate in glucose, presumably due to their surface interaction on nanoparticles. These findings will be useful for predicting the potential toxicity of food-grade nanoparticles and for understanding biological interactions.

  19. Packing contacts can mediate highly specific interactions between artificial transmembrane proteins and the PDGFβ receptor

    PubMed Central

    Ptacek, Jennifer B.; Edwards, Anne P. B.; Freeman-Cook, Lisa L.; DiMaio, Daniel

    2007-01-01

    We used proteins with randomized transmembrane (TM) domains to explore the role of hydrophobic amino acids in mediating specific interactions between transmembrane helices. The 44-aa bovine papillomavirus E5 protein, which binds to the TM domain of the PDGFβ receptor (PDGFβR) was used as a scaffold to construct a library encoding small dimeric proteins with randomized, strictly hydrophobic TM domains, and proteins were selected that induced focus formation in mouse C127 cells by activating the PDGFβR. Analysis of these proteins identified a motif of two hydrophobic residues that, when inserted into a 17-residue polyleucine TM domain, generated a protein that activated the PDGFβR and transformed cells. In addition, we identified transforming proteins that activated the wild-type PDGFβR but did not activate a series of PDGFβR TM point mutants that were efficiently activated by the E5 protein, indicating that these proteins were more specific than the E5 protein. Our results implied that multiple van der Waals interactions distributed along the entire length of the TM domains were required for productive interaction between the PDGFβR and some small proteins lacking hydrophilic TM residues. Our results also suggested that excluding hydrophilic residues from small TM proteins and peptides is a strategy to increase the specificity of heteromeric TM helix–helix interactions. PMID:17609376

  20. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    SciTech Connect

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  1. PHI-base update: additions to the pathogen–host interaction database

    PubMed Central

    Winnenburg, Rainer; Urban, Martin; Beacham, Andrew; Baldwin, Thomas K.; Holland, Sabrina; Lindeberg, Magdalen; Hansen, Hilde; Rawlings, Christopher; Hammond-Kosack, Kim E.; Köhler, Jacob

    2008-01-01

    The pathogen–host interaction database (PHI-base) is a web-accessible database that catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and Oomycete pathogens, which infect human, animal, plant, insect, fish and fungal hosts. Plant endophytes are also included. PHI-base is therefore an invaluable resource for the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. The database is freely accessible to both academic and non-academic users. This publication describes recent additions to the database and both current and future applications. The number of fields that characterize PHI-base entries has almost doubled. Important additional fields deal with new experimental methods, strain information, pathogenicity islands and external references that link the database to external resources, for example, gene ontology terms and Locus IDs. Another important addition is the inclusion of anti-infectives and their target genes that makes it possible to predict the compounds, that may interact with newly identified virulence factors. In parallel, the curation process has been improved and now involves several external experts. On the technical side, several new search tools have been provided and the database is also now distributed in XML format. PHI-base is available at: http://www.phi-base.org/. PMID:17942425

  2. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  3. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    PubMed Central

    Lee, KyungA; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-01-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for additions of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to synthesis of anti-parasitic drug Bravecto™ (presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in controlling enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate future development of transformations involving fluoro-organic entities. PMID:27442282

  4. 14-3-3 phosphoprotein interaction networks – does isoform diversity present functional interaction specification?

    PubMed Central

    Paul, Anna-Lisa; Denison, Fiona C.; Schultz, Eric R.; Zupanska, Agata K.; Ferl, Robert J.

    2012-01-01

    The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question – does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis. PMID:22934100

  5. Specific non-local interactions are not necessary for recovering native protein dynamics.

    PubMed

    Dasgupta, Bhaskar; Kasahara, Kota; Kamiya, Narutoshi; Nakamura, Haruki; Kinjo, Akira R

    2014-01-01

    The elastic network model (ENM) is a widely used method to study native protein dynamics by normal mode analysis (NMA). In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2) information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent) such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N) restraints. This model, named the 'contact number diffusion' model (CND), includes specific distance restraints for only local (along the amino acid sequence) atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics.

  6. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  7. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  8. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte

    NASA Astrophysics Data System (ADS)

    Tu, Wenqiang; Xia, Pan; Zheng, Xiongwen; Ye, Changchun; Xu, Mengqiang; Li, Weishan

    2017-02-01

    Electrolyte additives have been found to be effective for the cyclic stability improvement of layered lithium-rich oxide (LRO), which is ascribed to the formation of cathode films derived from the preferential oxidation of the electrolyte additives. However, the detailed mechanism on the formation of the cathode film is unclear. This paper uncovers the interaction between LRO and additive-containing electrolyte through theoretical calculations, electrochemical measurements and physical characterizations. A representative LRO, Li1.2Mn0.54Ni0.13Co0.13O2, is synthesized, and an electrolyte, 1 M LiPF6 in EC/DMC (1/2, in volume) using triethyl phosphite (TEP) as additive, is considered. Charge/discharge tests demonstrate that LRO suffers severe capacity fading and TEP can significantly improve the cyclic stability of LRO. Characterizations from SEM and TEM demonstrate that a cathode film exists on the LRO after cycling in the TEP-containing electrolyte. The theoretical calculations suggest that TEP traps the active oxygen and is then oxidized on LRO preferentially compared to the electrolyte, forming the cathode film. The further characterizations from FTIR and GC, confirm that the preferential combination of TEP with active oxygen is beneficial for the suppression of oxygen evolution, and that the resulting cathode film can suppress the electrolyte decomposition and protect LRO from destruction.

  9. Performance and interaction anxiety: specific relationships with other- and self-evaluation concerns.

    PubMed

    Hook, Julie N; Valentiner, David P; Connelly, Jill

    2013-03-01

    This study examines whether performance anxiety (PA) is specifically associated with other-evaluation concerns and interaction anxiety (IA) with self-evaluation concerns. Individuals with public speaking fears and high levels of PA or IA were distinguishable from nonanxious controls on measures taken during a public speaking challenge. In addition, high PA individuals exhibited more observer-rated negative speech characteristics in an Other-Evaluation condition compared to a Self-Evaluation condition, but high IA individuals and nonanxious individuals did not. These results provide some evidence for the distinctiveness of these dimensions of social anxiety.

  10. DNA interaction studies of sesamol (3,4-methylenedioxyphenol) food additive.

    PubMed

    Kashanian, Soheila; Tahmasian Ghobadi, Ameneh; Roshanfekr, Hamideh; Shariati, Zohreh

    2013-02-01

    The interaction of native calf thymus DNA (CT-DNA) with sesamol (3,4-methylenedioxyphenol) in Tris-HCl buffer at neutral pH 7.4 was monitored by absorption spectrophotometry, viscometry and spectrofluorometry. It is found that sesamol molecules could interact with DNA outside and/or groove binding modes, as are evidenced by: hyperchromism in UV absorption band, very slow decrease in specific viscosity of DNA, and small increase in the fluorescence of methylene blue (MB)-DNA solutions in the presence of increasing amounts of sesamol, which indicates that it is able to partially release the bound MB. Furthermore, the enthalpy and entropy of the reaction between sesamol and CT-DNA showed that the reaction is enthalpy-favored and entropy-disfavored (ΔH = -174.08 kJ mol(-1); ΔS = -532.92 J mol(-1) K(-1)). The binding constant was determined using absorption measurement and found to be 2.7 × 10(4) M(-1); its magnitude suggests that sesamol interacts to DNA with a high affinity.

  11. Specific ion effects on macromolecular interactions in Escherichia coli extracts.

    PubMed

    Kyne, Ciara; Ruhle, Brian; Gautier, Virginie W; Crowley, Peter B

    2015-03-01

    Protein characterization in situ remains a major challenge for protein science. Here, the interactions of ΔTat-GB1 in Escherichia coli cell extracts were investigated by NMR spectroscopy and size exclusion chromatography (SEC). ΔTat-GB1 was found to participate in high molecular weight complexes that remain intact at physiologically-relevant ionic strength. This observation helps to explain why ΔTat-GB1 was not detected by in-cell NMR spectroscopy. Extracts pre-treated with RNase A had a different SEC elution profile indicating that ΔTat-GB1 predominantly interacted with RNA. The roles of biological and laboratory ions in mediating macromolecular interactions were studied. Interestingly, the interactions of ΔTat-GB1 could be disrupted by biologically-relevant multivalent ions. The most effective shielding of interactions occurred in Mg(2+) -containing buffers. Moreover, a combination of RNA digestion and Mg(2+) greatly enhanced the NMR detection of ΔTat-GB1 in cell extracts.

  12. 75 FR 18413 - 2009-2010 Refuge-Specific Hunting and Sport Fishing Regulations-Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... refuge-specific hunting and sport fishing regulations when we open wildlife refuges to migratory game bird hunting, upland game hunting, big game hunting, or sport fishing. These regulations list the..., Federal Register , we published a proposed rulemaking identifying changes pertaining to migratory...

  13. 49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The... temperature of 55 °C (131 °F) that is greater than permitted. (d) Cylinder pressure at 55 °C (131 °F). The... cylinder filled with acetylene, liquefied nitrous oxide, or carbon dioxide. (2) For a cylinder filled...

  14. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  15. Non-additive increases in sediment stability are generated by macroinvertebrate species interactions in laboratory streams.

    PubMed

    Albertson, Lindsey K; Cardinale, Bradley J; Sklar, Leonard S

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  16. Non-Additive Increases in Sediment Stability Are Generated by Macroinvertebrate Species Interactions in Laboratory Streams

    PubMed Central

    Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  17. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye.

    PubMed

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza

    2016-06-02

    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer.

  18. Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness.

    PubMed

    Johnson, Marc T J; Lajeunesse, Marc J; Agrawal, Anurag A

    2006-01-01

    Recent research suggests that genetic diversity in plant populations can shape the diversity and abundance of consumer communities. We tested this hypothesis in a field experiment by manipulating patches of Evening Primrose (Oenothera biennis) to contain one, four or eight plant genotypes. We then surveyed 92 species of naturally colonizing arthropods. Genetically diverse plant patches had 18% more arthropod species, and a greater abundance of omnivorous and predacious arthropods, but not herbivores, compared with monocultures. The effects of genotypic diversity on arthropod communities were due to a combination of interactive and additive effects among genotypes within genetically diverse patches. Greater genetic diversity also led to a selective feedback, as mean genotype fitness was 27% higher in diverse patches than in monocultures. A comparison between our results and the literature reveals that genetic diversity and species diversity can have similar qualitative and quantitative effects on arthropod communities. Our findings also illustrate the benefit of preserving genetic variation to conserve species diversity and interactions within multitrophic communities.

  19. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    PubMed

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability.

  20. Effect of Operating Parameters and Chemical Additives on Crystal Habit and Specific Cake Resistance of Zinc Hydroxide Precipitates

    SciTech Connect

    Alwin, Jennifer Louise

    1999-08-01

    The effect of process parameters and chemical additives on the specific cake resistance of zinc hydroxide precipitates was investigated. The ability of a slurry to be filtered is dependent upon the particle habit of the solid and the particle habit is influenced by certain process variables. The process variables studied include neutralization temperature, agitation type, and alkalinity source used for neutralization. Several commercially available chemical additives advertised to aid in solid/liquid separation were also examined in conjunction with hydroxide precipitation. A statistical analysis revealed that the neutralization temperature and the source of alkalinity were statistically significant in influencing the specific cake resistance of zinc hydroxide precipitates in this study. The type of agitation did not significantly effect the specific cake resistance of zinc hydroxide precipitates. The use of chemical additives in conjunction with hydroxide precipitation had a favorable effect on the filterability. The morphology of the hydroxide precipitates was analyzed using scanning electron microscopy.

  1. A method for interactive specification of multiple-block topologies

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.; Mccann, Karen M.

    1991-01-01

    A method is presented for dealing with the vast amount of topological and other data which must be specified to generate a multiple-block computational grid. Specific uses of the graphical capabilities of a powerful scientific workstation are described which reduce the burden on the user of collecting and formatting such large amounts of data. A program to implement this method, 3DPREP, is described. A plotting transformation algorithm, some useful software tools, notes on programming, and a database organization are also presented. Example grids developed using the method are shown.

  2. Assessing an unknown evolutionary process: effect of increasing site-specific knowledge through taxon addition.

    PubMed

    Pollock, D D; Bruno, W J

    2000-12-01

    Assessment of the evolutionary process is crucial for understanding the effect of protein structure and function on sequence evolution and for many other analyses in molecular evolution. Here, we used simulations to study how taxon sampling affects accuracy of parameter estimation and topological inference in the absence of branch length asymmetry. With maximum-likelihood analysis, we find that adding taxa dramatically improves both support for the evolutionary model and accurate assessment of its parameters when compared with increasing the sequence length. Using a method we call "doppelgänger trees," we distinguish the contributions of two sources of improved topological inference: greater knowledge about internal nodes and greater knowledge of site-specific rate parameters. Surprisingly, highly significant support for the correct general model does not lead directly to improved topological inference. Instead, substantial improvement occurs only with accurate assessment of the evolutionary process at individual sites. Although these results are based on a simplified model of the evolutionary process, they indicate that in general, assuming processes are not independent and identically distributed among sites, more extensive sampling of taxonomic biodiversity will greatly improve analytical results in many current sequence data sets with moderate sequence lengths.

  3. Detecting Departure From Additivity Along a Fixed-Ratio Mixture Ray With a Piecewise Model for Dose and Interaction Thresholds

    PubMed Central

    Gennings, Chris; Wagner, Elizabeth D.; Simmons, Jane Ellen; Plewa, Michael J.

    2010-01-01

    For mixtures of many chemicals, a ray design based on a relevant, fixed mixing ratio is useful for detecting departure from additivity. Methods for detecting departure involve modeling the response as a function of total dose along the ray. For mixtures with many components, the interaction may be dose dependent. Therefore, we have developed the use of a three-segment model containing both a dose threshold and an interaction threshold. Prior to the dose threshold, the response is that of background; between the dose threshold and the interaction threshold, an additive relationship exists; the model allows for departure from additivity beyond the interaction threshold. With such a model, we can conduct a hypothesis test of additivity, as well as a test for a region of additivity. The methods are illustrated with cytotoxicity data that arise when Chinese hamster ovary cells are exposed to a mixture of nine haloacetic acids. PMID:21359103

  4. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2015-01-05

    Better predictive ability of salt and buffer effects on protein-protein interactions requires separating out contributions due to ionic screening, protein charge neutralization by ion binding, and salting-in(out) behavior. We have carried out a systematic study by measuring protein-protein interactions for a monoclonal antibody over an ionic strength range of 25 to 525 mM at 4 pH values (5, 6.5, 8, and 9) in solutions containing sodium chloride, calcium chloride, sodium sulfate, or sodium thiocyante. The salt ions are chosen so as to represent a range of affinities for protein charged and noncharged groups. The results are compared to effects of various buffers including acetate, citrate, phosphate, histidine, succinate, or tris. In low ionic strength solutions, anion binding affinity is reflected by the ability to reduce protein-protein repulsion, which follows the order thiocyanate > sulfate > chloride. The sulfate specific effect is screened at the same ionic strength required to screen the pH dependence of protein-protein interactions indicating sulfate binding only neutralizes protein charged groups. Thiocyanate specific effects occur over a larger ionic strength range reflecting adsorption to charged and noncharged regions of the protein. The latter leads to salting-in behavior and, at low pH, a nonmonotonic interaction profile with respect to sodium thiocyanate concentration. The effects of thiocyanate can not be rationalized in terms of only neutralizing double layer forces indicating the presence of an additional short-ranged protein-protein attraction at moderate ionic strength. Conversely, buffer specific effects can be explained through a charge neutralization mechanism, where buffers with greater valency are more effective at reducing double layer forces at low pH. Citrate binding at pH 6.5 leads to protein charge inversion and the formation of attractive electrostatic interactions. Throughout the report, we highlight similarities in the measured

  5. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2009-04-14

    Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.

  6. Human-display interactions: Context-specific biases

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Proffitt, Dennis R.

    1987-01-01

    Recent developments in computer engineering have greatly enhanced the capabilities of display technology. As displays are no longer limited to simple alphanumeric output, they can present a wide variety of graphic information, using either static or dynamic presentation modes. At the same time that interface designers exploit the increased capabilities of these displays, they must be aware of the inherent limitation of these displays. Generally, these limitations can be divided into those that reflect limitations of the medium (e.g., reducing three-dimensional representations onto a two-dimensional projection) and those reflecting the perceptual and conceptual biases of the operator. The advantages and limitations of static and dynamic graphic displays are considered. Rather than enter into the discussion of whether dynamic or static displays are superior, general advantages and limitations are explored which are contextually specific to each type of display.

  7. Interactions between cocoa flavanols and inorganic nitrate: additive effects on endothelial function at achievable dietary amounts.

    PubMed

    Rodriguez-Mateos, Ana; Hezel, Michael; Aydin, Hilal; Kelm, Malte; Lundberg, Jon O; Weitzberg, Eddie; Spencer, Jeremy P E; Heiss, Christian

    2015-03-01

    Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial

  8. [Gender-specific aspects of the physician-patient interaction].

    PubMed

    Cronauer, C Klöckner; Schmid Mast, M

    2010-10-01

    This article aims at shedding light on the role of physician and patient gender in the medical consultation. Because of the scarce amount of studies concentrating on gender aspects of the physician-patient interaction in rehabilitation or chronic disease, mostly results from general medicine are reported. Female physicians have a more emotional and less dominant communication style. Female patients bring up more psychosocial topics and disclose more information about themselves in general. Both female and male physicians give more information and apply a more partnership-oriented communication style when seeing a female patient. Female and male patients communicate more partnership-oriented with female physicians and share more psychosocial and medical information with them. Same-gender dyads seem beneficial most of the time for physician-patient communication. Mixed-gender dyads are more difficult, especially when a younger female physician sees a male patient. There is no single good communication style recommendable for all physicians. Rather, the research results presented should be applied to communication trainings for physicians. This could provide physicians with a flexible choice of communication styles to apply according to different situations.

  9. Interactive patient-specific vascular modeling with sweep surfaces.

    PubMed

    Kretschmer, Jan; Godenschwager, Christian; Preim, Bernhard; Stamminger, Marc

    2013-12-01

    The precise modeling of vascular structures plays a key role in medical imaging applications, such as diagnosis, therapy planning and blood flow simulations. For the simulation of blood flow in particular, high-precision models are required to produce accurate results. It is thus common practice to perform extensive manual data polishing on vascular segmentations prior to simulation. This usually involves a complex tool chain which is highly impractical for clinical on-site application. To close this gap in current blood flow simulation pipelines, we present a novel technique for interactive vascular modeling which is based on implicit sweep surfaces. Our method is able to generate and correct smooth high-quality models based on geometric centerline descriptions on the fly. It supports complex vascular free-form contours and consequently allows for an accurate and fast modeling of pathological structures such as aneurysms or stenoses. We extend the concept of implicit sweep surfaces to achieve increased robustness and applicability as required in the medical field. We finally compare our method to existing techniques and provide case studies that confirm its contribution to current simulation pipelines.

  10. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein

    PubMed Central

    Minervini, Giovanni; Mazzotta, Gabriella M.; Masiero, Alessandro; Sartori, Elena; Corrà, Samantha; Potenza, Emilio; Costa, Rodolfo; Tosatto, Silvio C. E.

    2015-01-01

    Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation through complex formation with the p14ARF oncosuppressor. The alternatively spliced pVHL19, missing the first 53 residues, lacks this interaction and suggests an asymmetric function of the two pVHL isoforms. Here, we present an integrative bioinformatics and experimental characterization of the pVHL oncosuppressor isoforms. Predictions of the pVHL30 N-terminus three-dimensional structure suggest that it may exist as an ensemble of structured and disordered forms. The results were used to guide Yeast two hybrid experiments to highlight isoform-specific binding properties. We observed that the physical pVHL/p14ARF interaction is specifically mediated by the 53 residue long pVHL30 N-terminal region, suggesting that this N-terminus acts as a further pVHL interaction interface. Of note, we also observed that the shorter pVHL19 isoform shows an unexpected high tendency to form homodimers, suggesting an additional isoform-specific binding specialization. PMID:26211615

  11. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco–Pseudomonas syringae Interactions

    PubMed Central

    Bozsó, Zoltán; Ott, Péter G.; Kámán-Tóth, Evelin; Bognár, Gábor F.; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco–Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca2+ influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were

  12. A predictive modeling approach for cell line-specific long-range regulatory interactions

    PubMed Central

    Roy, Sushmita; Siahpirani, Alireza Fotuhi; Chasman, Deborah; Knaack, Sara; Ay, Ferhat; Stewart, Ron; Wilson, Michael; Sridharan, Rupa

    2015-01-01

    Long range regulatory interactions among distal enhancers and target genes are important for tissue-specific gene expression. Genome-scale identification of these interactions in a cell line-specific manner, especially using the fewest possible datasets, is a significant challenge. We develop a novel computational approach, Regulatory Interaction Prediction for Promoters and Long-range Enhancers (RIPPLE), that integrates published Chromosome Conformation Capture (3C) data sets with a minimal set of regulatory genomic data sets to predict enhancer-promoter interactions in a cell line-specific manner. Our results suggest that CTCF, RAD21, a general transcription factor (TBP) and activating chromatin marks are important determinants of enhancer-promoter interactions. To predict interactions in a new cell line and to generate genome-wide interaction maps, we develop an ensemble version of RIPPLE and apply it to generate interactions in five human cell lines. Computational validation of these predictions using existing ChIA-PET and Hi-C data sets showed that RIPPLE accurately predicts interactions among enhancers and promoters. Enhancer-promoter interactions tend to be organized into subnetworks representing coordinately regulated sets of genes that are enriched for specific biological processes and cis-regulatory elements. Overall, our work provides a systematic approach to predict and interpret enhancer-promoter interactions in a genome-wide cell-type specific manner using a few experimentally tractable measurements. PMID:26338778

  13. 77 FR 58499 - Substitution of Term in a Definition; Addition and Adoption of the Use of Specific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 41 CFR Parts 51-1 Substitution of Term in a Definition; Addition and Adoption of the Use of Specific Interchangeable or Synonymous Terms AGENCY: Committee...

  14. Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability

    NASA Astrophysics Data System (ADS)

    Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.

    2016-08-01

    Specific DNA-protein interactions are fundamental processes of living cells. We propose a new model of DNA-protein interactions to explain the site specificity of the interactions. The hydrogen bonds between DNA base pairs and between DNA-protein peptide groups play a significant role in determination of the specific binding site. We adopt the Morse potential with coupling terms to construct the Hamiltonian of coupled oscillators representing the hydrogen bonds in which the depth of the potentials vary in the DNA chain. In this paper we investigate the stability of the model to determine the conditions satisfying the biological circumstances of the DNA-protein interactions.

  15. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

    NASA Astrophysics Data System (ADS)

    Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.; Sampaio, J.; Vaz, C. A. F.; van Horne, N.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; Wohlhüter, P.; George, J.-M.; Weigand, M.; Raabe, J.; Cros, V.; Fert, A.

    2016-05-01

    Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii-Moriya interactions (DMIs), which reach a value close to 2 mJ m-2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future.

  16. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  17. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  18. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes.

    PubMed

    Singh, Arvinder; Chandra, Amreesh

    2016-05-17

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs.

  19. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Chandra, Amreesh

    2016-05-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs.

  20. Autoinducer-2-like activity associated with foods and its interaction with food additives.

    PubMed

    Lu, Lingeng; Hume, Michael E; Pillai, Suresh D

    2004-07-01

    The autoinducer-2 (AI-2) molecule produced by bacteria as part of quorum sensing is considered to be a universal inducer signal in bacteria because it reportedly influences gene expression in a variety of both gram-negative and gram-positive bacteria. The objective of this study was to determine whether selected fresh produce and processed foods have AI-2-like activity and whether specific food additives can act as AI-2 mimics and result in AI-2-like activity. The luminescence-based response of the reporter strain Vibrio harveyi BB170 was used as the basis for determining AI-2 activity in the selected foods and food ingredients. Maximum AI-2 activity was seen on the frozen fish sample (203-fold, compared with the negative control) followed by tomato, cantaloupe, carrots, tofu, and milk samples. Interestingly, some samples were capable of inhibiting AI-2 activity. Turkey patties showed the highest inhibition (99.8% compared with the positive control) followed by chicken breast (97.5%), homemade cheeses (93.7%), beef steak (90.6%), and beef patties (84.4%). AI-2 activity was almost totally inhibited by sodium propionate, whereas sodium benzoate caused 93.3% inhibition, compared with 75% inhibition by sodium acetate. Sodium nitrate did not have any appreciable effect, even at 200 ppm. Understanding the relationships that exist between AI-2 activity on foods and the ecology of pathogens and food spoilage bacteria on foods could yield clues about factors controlling food spoilage and pathogen virulence.

  1. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine.

    PubMed

    Kobayashi, Makoto; Nishizawa, Masato; Inoue, Nao; Hosoya, Takahiro; Yoshida, Masahito; Ukawa, Yuichi; Sagesaka, Yuko M; Doi, Takayuki; Nakayama, Tsutomu; Kumazawa, Shigenori; Ikeda, Ikuo

    2014-04-02

    The mechanisms underlying the effect of epigallocatechin gallate (EGCG) on the micellar solubility of cholesterol were examined. EGCG eliminated both cholesterol and phosphatidylcholine (PC) from bile salt micelles in a dose-dependent manner in vitro. When the bile salt micelles contained a phospholipid other than PC, neither cholesterol nor the phospholipid was eliminated following the addition of EGCG. When vesicles comprised of various phospholipids were prepared and, EGCG was added to the vesicles, EGCG effectively and exclusively eliminated only PC. An intermolecular nuclear Overhauser effect (NOE) was observed between PC and EGCG in bile salt micelles with EGCG added, but not between cholesterol and EGCG, by using a NOE-correlated spectroscopy nuclear magnetic resonance method. The results of binding analyses using surface plasmon resonance (SPR) showed that EGCG did not bind to cholesterol. These observations strongly suggest that EGCG decreases the micellar solubility of cholesterol via specific interaction with PC.

  2. Persistent Currents and Addition Spectrum in Strongly Interacting Chaotic Quantum Dots

    NASA Astrophysics Data System (ADS)

    Herman, Damir; Mathur, H.; Murthy, Ganpathy

    2003-03-01

    Murthy and Shankar(Ganpathy Murthy, R. Shankar, Quantum Dots with Disorder and Interactions: A Solvable Large-g Limit), family cond-mat/0209136 have introduced a non-perturbative approach to analyzing the effects of interaction and randomness in chaotic quantum dots in the limit of large Thouless number. Using this framework we study two experimentally observable quantities in the strongly interacting regime. First we compare the Coulomb blockade peak spacing distribution in the strong coupling regime to the distribution in the weak coupling regime (described by the ``universal Hamiltonian''). Second we study persistent currents in mesoscopic rings in the regime of strong interaction.

  3. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-01

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2‧,3‧-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2‧,3‧-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 105 M-1, which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.

  4. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin.

    PubMed

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-25

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2',3'-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 10(5) M(-1), which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.

  5. Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level?

    PubMed

    Qaisar, Rizwan; Renaud, Guillaume; Morine, Kevin; Barton, Elisabeth R; Sweeney, H Lee; Larsson, Lars

    2012-03-01

    Muscle force is typically proportional to muscle size, resulting in constant force normalized to muscle fiber cross-sectional area (specific force). Mice overexpressing insulin-like growth factor-1 (IGF-1) exhibit a proportional gain in muscle force and size, but not the myostatin-deficient mice. In an attempt to explore the role of the cytoplasmic volume supported by individual myonuclei [myonuclear domain (MND) size] on functional capacity of skeletal muscle, we have investigated specific force in relation to MND and the content of the molecular motor protein, myosin, at the single muscle fiber level from myostatin-knockout (Mstn(-/-)) and IGF-1-overexpressing (mIgf1(+/+)) mice. We hypothesize that the addition of extra myonuclei is a prerequisite for maintenance of specific force during muscle hypertrophy. A novel algorithm was used to measure individual MNDs in 3 dimensions along the length of single muscle fibers from the fast-twitch extensor digitorum longus and the slow-twitch soleus muscle. A significant effect of the size of individual MNDs in hypertrophic muscle fibers on both specific force and myosin content was observed. This effect was muscle cell type specific and suggested there is a critical volume individual myonuclei can support efficiently. The large MNDs found in fast muscles of Mstn(-/-) mice were correlated with the decrement in specific force and myosin content in Mstn(-/-) muscles. Thus, myostatin inhibition may not be able to maintain the appropriate MND for optimal function.

  6. Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases

    PubMed Central

    2015-01-01

    Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π–π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties. PMID:24803854

  7. Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: The addition of peripubertal exposure exacerbates adverse effects in female mice.

    PubMed

    Rubin, Beverly S; Paranjpe, Maneesha; DaFonte, Tracey; Schaeberle, Cheryl; Soto, Ana M; Obin, Martin; Greenberg, Andrew S

    2017-03-01

    Body weight (BW) and body composition were examined in CD-1 mice exposed perinatally or perinatally and peripubertally to 0, 0.25, 2.5, 25, or 250μg BPA/kg BW/day. Our goal was to identify the BPA dose (s) and the exposure window(s) that increased BW and adiposity, and to assess potential sex differences in this response. Both perinatal exposure alone and perinatal plus peripubertal exposure to environmentally relevant levels of BPA resulted in lasting effects on body weight and body composition. The effects were dose specific and sex specific and were influenced by the precise window of BPA exposure. The addition of peripubertal BPA exposure following the initial perinatal exposure exacerbated adverse effects in the females but appeared to reduce differences in body weight and body composition between control and BPA exposed males. Some effects of BPA on body weight and body composition showed a non-linear dose response.

  8. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  9. Conformational changes induced in Hoxb-8/Pbx-1 heterodimers in solution and upon interaction with specific DNA.

    PubMed Central

    Sánchez, M; Jennings, P A; Murre, C

    1997-01-01

    Two classes of homeodomain proteins, Hox and Pbx gene products, have the ability to bind cooperatively to DNA. In Hox proteins, the homeodomain and a highly conserved hexapeptide are required for cooperative DNA binding. In Pbx, the homeodomain and a region immediately C terminal of the homeodomain are essential for cooperativity. Using fluorescence and circular dichroism spectroscopy, we demonstrated that Hox and Pbx proteins interact in the absence of DNA. The interaction in solution is accompanied by conformational changes. Furthermore, upon interaction with specific DNA, additional conformational changes are induced in the Pbx-1/Hoxb-8 heterodimer. These data indicate that prior to DNA binding, Hox-Pbx interaction in solution is accompanied by structural alterations. We propose that these conformational changes modulate the DNA binding properties of these proteins, ultimately resulting in cooperative DNA binding. PMID:9271414

  10. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases.

    PubMed

    Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A

    2013-03-01

    The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via

  11. ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis.

    PubMed

    Veres, Daniel V; Gyurkó, Dávid M; Thaler, Benedek; Szalay, Kristóf Z; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein-protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein-protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design.

  12. ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis

    PubMed Central

    Veres, Daniel V.; Gyurkó, Dávid M.; Thaler, Benedek; Szalay, Kristóf Z.; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein–protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein–protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein–protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design. PMID:25348397

  13. A two-hybrid dual bait system to discriminate specificity of protein interactions.

    PubMed

    Serebriiskii, I; Khazak, V; Golemis, E A

    1999-06-11

    Biological regulatory systems require the specific organization of proteins into multicomponent complexes. Two hybrid systems have been used to identify novel components of signaling networks based on interactions with defined partner proteins. An important issue in the use of two-hybrid systems has been the degree to which interacting proteins distinguish their biological partner from evolutionarily conserved related proteins and the degree to which observed interactions are specific. We adapted the basic two-hybrid strategy to create a novel dual bait system designed to allow single-step screening of libraries for proteins that interact with protein 1 of interest, fused to DNA binding domain A (LexA), but do not interact with protein 2, fused to DNA binding domain B (lambda cI). Using the selective interactions of Ras and Krev-1(Rap1A) with Raf, RalGDS, and Krit1 as a model, we systematically compared LexA- and cI-fused baits and reporters. The LexA and cI baitr reporter systems are well matched for level of bait expression and sensitivity range for interaction detection and allow effective isolation of specifically interacting protein pairs against a nonspecific background. These reagents should prove useful to refine the selectivity of library screens, to reduce the isolation of false positives in such screens, and to perform directed analyses of sequence elements governing the interaction of a single protein with multiple partners.

  14. Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests

    PubMed Central

    Henne, Melina; König, Nicolas; Triulzi, Tiziana; Baroni, Sara; Forlani, Fabio; Scheibe, Renate; Papenbrock, Jutta

    2015-01-01

    Sulfurtransferases (Strs) and thioredoxins (Trxs) are members of large protein families. Trxs are disulfide reductases and play an important role in redox-related cellular processes. They interact with a broad range of proteins. Strs catalyze the transfer of a sulfur atom from a suitable sulfur donor to nucleophilic sulfur acceptors in vitro, but the physiological roles of these enzymes are not well defined. Several studies in different organisms demonstrate protein–protein interactions of Strs with members of the Trx family. We are interested in investigating the specificity of the interaction between Str and Trx isoforms. In order to use the bimolecular fluorescence complementation (BiFC), several Str and Trx sequences from Arabidopsis thaliana were cloned into the pUC-SPYNE and pUC-SPYCE split-YFP vectors, respectively. Each couple of plasmids containing the sequences for the putative interaction partners were transformed into Arabidopsis protoplasts and screened using a confocal laser scanning microscope. Compartment- and partner-specific interactions could be observed in transformed protoplasts. Replacement of cysteine residues in the redox-active site of Trxs abolished the interaction signal. Therefore, the redox site is not only involved in the redox reaction but also responsible for the interaction with partner proteins. Biochemical assays support a specific interaction among Strs and certain Trxs. Based on the results obtained, the interaction of Strs and Trxs indicates a role of Strs in the maintenance of the cellular redox homeostasis. PMID:26605137

  15. Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive.

    PubMed

    Mohammadzadeh-Aghdash, Hossein; Ezzati Nazhad Dolatabadi, Jafar; Dehghan, Parvin; Panahi-Azar, Vahid; Barzegar, Abolfazl

    2017-08-01

    Sodium acetate (SA) has been used as a highly effective protectant in food industry and the possible effect of this additive on the binding to albumin should be taken into consideration. Therefore, for the first time, the mechanism of SA interaction with bovine serum albumin (BSA) has been investigated by multi-spectroscopic and molecular modeling methods under physiological conditions. Stern-Volmer fluorescence quenching analysis showed an increase in the fluorescence intensity of BSA upon increasing the amounts of SA. The high affinity of SA to BSA was demonstrated by a binding constant value (1.09×10(3) at 310°K). The thermodynamic parameters indicated that hydrophobic binding plays a main role in the binding of SA to Albumin. Furthermore, the results of UV-vis spectra confirmed the interaction of this additive to BSA. In addition, molecular modeling study demonstrated that A binding sites of BSA play the main role in the interaction with acetate.

  16. Patient-Specific Modeling of Biomechanical Interaction in Transcatheter Aortic Valve Deployment

    PubMed Central

    Wang, Qian; Sirois, Eric; Sun, Wei

    2012-01-01

    The objective of this study was to develop a patient-specific computational model to quantify the biomechanical interaction between the transcatheter aortic valve (TAV) stent and the stenotic aortic valve during TAV intervention. Finite element models of a patient-specific stenotic aortic valve were reconstructed from multi-slice computed tomography (MSCT) scans, and TAV stent deployment into the aortic root was simulated. Three initial aortic root geometries of this patient were analyzed: (a) aortic root geometry directly reconstructed from MSCT scans, (b) aortic root geometry at the rapid right ventricle pacing phase, and (c) aortic root geometry with surrounding myocardial tissue. The simulation results demonstrated that stress, strain, and contact forces of the aortic root model directly reconstructed from MSCT scans were significantly lower than those of the model at the rapid ventricular pacing phase. Moreover, the presence of surrounding myocardium slightly increased the mechanical responses. Peak stresses and strains were observed around the calcified regions in the leaflets, suggesting the calcified leaflets helped secure the stent in position. In addition, these elevated stresses induced during TAV stent deployment indicated a possibility of tissue tearing and breakdown of calcium deposits, which might lead to an increased risk of stroke. The potential of paravalvular leak and occlusion of coronary ostia can be evaluated from simulated post-deployment aortic root geometries. The developed computational models could be a valuable tool for pre-operative planning of TAV intervention and facilitate next generation TAV device design. PMID:22698832

  17. NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation.

    PubMed

    Oh, Yong-Seok; Jo, Nam Won; Choi, Jung Woong; Kim, Hyeon Soo; Seo, Sang-Won; Kang, Kyung-Ok; Hwang, Jong-Ik; Heo, Kyun; Kim, Sun-Hee; Kim, Yun-Hee; Kim, In-Hoo; Kim, Jae Ho; Banno, Yoshiko; Ryu, Sung Ho; Suh, Pann-Ghill

    2004-06-01

    Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that LPA(2), but not the other LPA receptor isoforms, specifically interacts with Na(+)/H(+) exchanger regulatory factor2 (NHERF2). In addition, the interaction between them requires the C-terminal PDZ domain-binding motif of LPA(2) and the second PDZ domain of NHERF2. Moreover, the stable expression of NHERF2 potentiated LPA-induced phospholipase C-beta (PLC-beta) activation, which was markedly attenuated by either a mutation in the PDZ-binding motif of LPA(2) or by the gene silencing of NHERF2. Using its second PDZ domain, NHERF2 was found to indirectly link LPA(2) to PLC-beta3 to form a complex, and the other PLC-beta isozymes were not included in the protein complex. Consistently, LPA(2)-mediated PLC-beta activation was specifically inhibited by the gene silencing of PLC-beta3. In addition, NHERF2 increases LPA-induced ERK activation, which is followed by cyclooxygenase-2 induction via a PLC-dependent pathway. Overall, the results suggest that a ternary complex composed of LPA(2), NHERF2, and PLC-beta3 may play a key role in the LPA(2)-mediated PLC-beta signaling pathway.

  18. Thermodynamic and Structural Properties of Methanol-Water Solutions Using Non-Additive Interaction Models

    PubMed Central

    Zhong, Yang; Warren, G. Lee; Patel, Sandeep

    2014-01-01

    We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be −5.6±0.2 kcal/mole, in respectable agreement with the experimental value of −5.1 kcal/mole. With respect to solution micro-structure, the present cluster analysis suggests that the micro-scale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bi-percolating network structure. PMID:18074339

  19. A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area

    PubMed Central

    2013-01-01

    A simple additive-free approach is developed to synthesize uniform manganese monoxide (MnO) one-dimensional nanorods, in which only manganese acetate and ethanol were used as reactants. The as-synthesized MnO nanorods were characterized in detail by X-ray diffraction, scanning and transmission electron microscopy (TEM) including high-resolution TEM and selected-area electron diffraction, Fourier transform infrared spectrum, and nitrogen adsorption isotherm measurements. The results indicate that the as-synthesized MnO nanorods present a mesoporous characteristic with large specific surface area (153 m2 g−1), indicating promising applications in catalysis, energy storage, and biomedical image. On the basis of experimental results, the formation mechanism of MnO one-dimensional nanorods in the absence of polymer additives was also discussed. PMID:23578214

  20. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with corresponding host sensitivity (S) genes in an inv...

  1. Utilization of specific and non-specific peptide interactions with inorganic nanomaterials on the surface of bacteriophage M13: Methodologies towards phage supported bi-functional materials

    NASA Astrophysics Data System (ADS)

    Avery, Kendra Nicole

    the phage with a negative charge on which nanomaterials can be supported. Metal salt precursors reduced in the presence of WT M13 are studied in this chapter. Metal salt precursors of Fe, Co, Ru, Rh and Pd seem to be the most effective at coating the surface of the phage based on the positively charged metal-aquo complexes formed in water, which are attracted to the negative pVIII region. Other types of reactions are explored with WT phage as a scaffold such as conversion chemistry in a polyol solvent to access several intermetallic phases as well as co-precipitation reactions to access ternary oxides. Chapter 4 focuses on combining research from chapter 2 and chapter 3 to create a bi-functional material that utilizes both specific and non-specific peptide interactions with inorganic materials on the surface of M13 to attach two different types of nanomaterials. The example provided here is a magnetically recoverable hydrogenation catalyst made up of a pVIII region coated with rhodium nanoparticles held in place by non-specific peptide interactions and a pIII region attached to iron oxide nanoparticles via specific peptide interactions. This is the first example in the literature of a commercially available pIII bioengineered M13 bacteriophage forming a bi-functional material. This research provides a methodology to design and build single and multi-component materials on the surface of bacteriophage M13 without the necessity for additional bioengineering and library characterization. The simplicity of use will make the technique available to a wider variety of researchers in the materials science community.

  2. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-02-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  3. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  4. Allotype specific interactions of drugs and HLA molecules in hypersensitivity reactions.

    PubMed

    Illing, Patricia T; Mifsud, Nicole A; Purcell, Anthony W

    2016-10-01

    It is hypothesised that associations between adverse drug reactions and specific alleles of the human leukocyte antigens arise due to specific interactions between the human leukocyte antigen molecules and the causative drug that stimulate immune responses targeting drug exposed tissues. To date this has only been definitively demonstrated for abacavir, an antiretroviral that causes a systemic adverse drug reaction, abacavir hypersensitivity syndrome, solely in HLA-B*57:01(+) individuals. Whilst this has informed the modification of abacavir to remove immunogenicity, there remains an imperative to define other interactions between drugs and specific HLA in order to understand the scope of interactions that can drive T cell mediated drug hypersensitivity. Here we review the current state of understanding of these interactions.

  5. Different responses of alpine plants to nitrogen addition: effects on plant-plant interactions

    PubMed Central

    Wang, Jun; Luo, Peng; Yang, Hao; Mou, Chengxiang; Mo, Li

    2016-01-01

    The different responses of plant species to resource stress are keys to understand the dynamics of plant community in a changing environment. To test the hypothesis that nitrogen (N) increase would benefit N competitive species, rather than N stress-tolerant species, to compete with neighbours, we conducted an experiment with neighbour removal, N addition and soil moisture as treatments in an alpine grassland on the southeastern Tibetan Plateau. Both growths and competitive-response abilities (CRA, the ability to tolerate the inhibitory effects of neighbors) of Kobresia macrantha, Polygonum viviparum and Potentilla anserine in wet site were facilitated by N addition, conversely, both growths and CRA of Taraxacum mongolicum and Ligularia virgaurea were suppressed by N addition, indicating that the responses of CRA of target species under N addition were consistent with the N utilization strategies of them. Moreover, the facilitative effects of N addition on competitive-response abilities of Kobresia macrantha and Polygonum viviparum were not found at the dry site, illustrating that soil moisture can alter the changes of neighbour effects caused by N addition. Life strategy of dominant species in plant community on the undisturbed southeastern Tibetan Plateau may shift from N stress-tolerant to N competitive, if the N increases continuously. PMID:27922131

  6. Phase Segregation and Dynamics in Strongly Interacting Small Molecule Additive - Block Copolymer Surfactant Complexes

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Khalil, Ahmed; Henning Winter, H.; Watkins, James J.

    2012-02-01

    Rheology and Small Angle X-Ray Scattering (SAXS) were used to investigate order to disorder transitions (ODTs) and disorder to order transitions (DOTs) of poly(ethyleneoxide-b-propyleneoxide-b-ethyleneoxide) block copolymer surfactants mixed with hydrogen-bond-donating small molecule additives. A series of additives having a core benzene ring and systematic variation in the number of carboxylic or hydroxyl groups attached to the ring were of particular interest. Ordered cylindrical morphologies, confirmed using SAXS, were obtained only in a certain additive concentration region. ODTs were characterized by sudden changes in the linear viscoelastic properties in low frequency region upon increasing temperature. The locations of ODTs varied widely with hydrogen-bond-donating ability of the functional group and were found to be strongly dependent on the number of functional groups attached to the ring. For a given additive, the temperature at which ODT occur was strong function of the additive loading, whereas the linear viscoelastic properties of the ordered state were little changed upon varying additive concentration in ordered region. The location and dynamics of DOTs upon cooling were comparable to the ODTs upon heating. Studies using these model systems provide insight into the design of well-ordered hybrid materials.

  7. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network

    PubMed Central

    Alhindi, T.; Zhang, Z.; Ruelens, P.; Coenen, H.; Degroote, H.; Iraci, N.; Geuten, K.

    2017-01-01

    A key question regarding protein evolution is how proteins adapt to the dynamic environment in which they function and how in turn their evolution shapes the protein interaction network. We used extant and resurrected ancestral plant MADS-domain transcription factors to understand how SEPALLATA3, a protein with hub and glue properties, evolved and takes part in network organization. Although the density of dimeric interactions was saturated in the network, many new interactions became mediated by SEPALLATA3 after a whole genome triplication event. By swapping SEPALLATA3 and its ancestors between dimeric networks of different ages, we found that the protein lost the capacity of promiscuous interaction and acquired specificity in evolution. This was accompanied with constraints on conformations through proline residue accumulation, which made the protein less flexible. SHORT VEGETATIVE PHASE on the other hand (non-hub) was able to gain protein-protein interactions due to a C-terminal domain insertion, allowing for a larger interaction interface. These findings illustrate that protein interaction evolution occurs at the level of conformational dynamics, when the binding mechanism concerns an induced fit or conformational selection. Proteins can evolve towards increased specificity with reduced flexibility when the complexity of the protein interaction network requires specificity. PMID:28337996

  8. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    PubMed Central

    Zhang, Chongxu; Nielsen, Maria E. O.; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J.; Andersen, Jens S.; Yao, Gang

    2013-01-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1’s defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. PMID:22836166

  9. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    PubMed

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  10. Learning contextual gene set interaction networks of cancer with condition specificity

    PubMed Central

    2013-01-01

    Background Identifying similarities and differences in the molecular constitutions of various types of cancer is one of the key challenges in cancer research. The appearances of a cancer depend on complex molecular interactions, including gene regulatory networks and gene-environment interactions. This complexity makes it challenging to decipher the molecular origin of the cancer. In recent years, many studies reported methods to uncover heterogeneous depictions of complex cancers, which are often categorized into different subtypes. The challenge is to identify diverse molecular contexts within a cancer, to relate them to different subtypes, and to learn underlying molecular interactions specific to molecular contexts so that we can recommend context-specific treatment to patients. Results In this study, we describe a novel method to discern molecular interactions specific to certain molecular contexts. Unlike conventional approaches to build modular networks of individual genes, our focus is to identify cancer-generic and subtype-specific interactions between contextual gene sets, of which each gene set share coherent transcriptional patterns across a subset of samples, termed contextual gene set. We then apply a novel formulation for quantitating the effect of the samples from each subtype on the calculated strength of interactions observed. Two cancer data sets were analyzed to support the validity of condition-specificity of identified interactions. When compared to an existing approach, the proposed method was much more sensitive in identifying condition-specific interactions even in heterogeneous data set. The results also revealed that network components specific to different types of cancer are related to different biological functions than cancer-generic network components. We found not only the results that are consistent with previous studies, but also new hypotheses on the biological mechanisms specific to certain cancer types that warrant further

  11. Chronopotentiometric sensing of specific interactions between lysozyme and the DNA aptamer.

    PubMed

    Ostatná, Veronika; Kasalová-Vargová, Veronika; Kékedy-Nagy, László; Černocká, Hana; Ferapontova, Elena E

    2017-04-01

    Specific DNA-protein interactions are vital for cellular life maintenance processes, such as transcriptional regulation, chromosome maintenance, replication and DNA repair, and their monitoring gives valuable information on molecular-level organization of those processes. Here, we propose a new method of label-free electrochemical sensing of sequence specific binding between the lysozyme protein and a single stranded DNA aptamer specific for lysozyme (DNAapta) that exploits the constant current chronopotentiometric stripping (CPS) analysis at modified mercury electrodes. Specific lysozyme-DNAapta binding was distinguished from nonspecific lysozyme-DNA interactions at thioglycolic acid-modified mercury electrodes, but not at the dithiothreitol-modified or bare mercury electrodes. Stability of the surface-attached lysozyme-DNAapta layer depended on the stripping current (Istr) intensity, suggesting that the integrity of the layer critically depends on the time of its exposure to negative potentials. Stabilities of different lysozyme-DNA complexes at the negatively polarized electrode surface were tested, and it was shown that structural transitions of the specific lysozyme-DNAapta complexes occur in the Istr ranges different from those observed for assemblies of lysozyme with DNA sequences capable of only nonspecific lysozyme-DNA interactions. Thus, the CPS allows distinct discrimination between specific and non-specific protein-DNA binding and provides valuable information on stability of the nucleic acid-protein interactions at the polarized interfaces.

  12. Thermodynamic method of calculating the effect of alloying additives on interphase interaction in composite materials

    NASA Technical Reports Server (NTRS)

    Tuchinsky, L. I.

    1986-01-01

    The effect of alloying additives to the matrix of a composite on the high temperature solubility rate of a single component fiber was analyzed thermodynamically. With an example of binary Ni alloys, with Group IV-VI transition metals reinforced with W fibers, agreement between the calculated and experimental data was demonstrated.

  13. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters

    PubMed Central

    Bailey, Swneke D.; Zhang, Xiaoyang; Desai, Kinjal; Aid, Malika; Corradin, Olivia; Cowper-Sal·lari, Richard; Akhtar-Zaidi, Batool; Scacheri, Peter C.; Haibe-Kains, Benjamin; Lupien, Mathieu

    2015-01-01

    Chromatin interactions connect distal regulatory elements to target gene promoters guiding stimulus- and lineage-specific transcription. Few factors securing chromatin interactions have so far been identified. Here by integrating chromatin interaction maps with the large collection of transcription factor binding profiles provided by the ENCODE project, we demonstrate that the zinc-finger protein ZNF143 preferentially occupies anchors of chromatin interactions connecting promoters with distal regulatory elements. It binds directly to promoters and associates with lineage-specific chromatin interactions and gene expression. Silencing ZNF143 or modulating its DNA-binding affinity using single nucleotide polymorphisms (SNPs) as a surrogate of site-directed mutagenesis reveals the sequence dependency of chromatin interactions at gene promoters. We also find that chromatin interactions alone do not regulate gene expression. Together, our results identify ZNF143 as a novel chromatin-looping factor that contributes to the architectural foundation of the genome by providing sequence specificity at promoters connected with distal regulatory elements. PMID:25645053

  14. The emotion potential of simple sentences: additive or interactive effects of nouns and adjectives?

    PubMed Central

    Lüdtke, Jana; Jacobs, Arthur M.

    2015-01-01

    The vast majority of studies on affective processes in reading focus on single words. The most robust finding is a processing advantage for positively valenced words, which has been replicated in the rare studies investigating effects of affective features of words during sentence or story comprehension. Here we were interested in how the different valences of words in a sentence influence its processing and supralexical affective evaluation. Using a sentence verification task we investigated how comprehension of simple declarative sentences containing a noun and an adjective depends on the valences of both words. The results are in line with the assumed general processing advantage for positive words. We also observed a clear interaction effect, as can be expected from the affective priming literature: sentences with emotionally congruent words (e.g., The grandpa is clever) were verified faster than sentences containing emotionally incongruent words (e.g., The grandpa is lonely). The priming effect was most prominent for sentences with positive words suggesting that both, early processing as well as later meaning integration and situation model construction, is modulated by affective processing. In a second rating task we investigated how the emotion potential of supralexical units depends on word valence. The simplest hypothesis predicts that the supralexical affective structure is a linear combination of the valences of the nouns and adjectives (Bestgen, 1994). Overall, our results do not support this: The observed clear interaction effect on ratings indicate that especially negative adjectives dominated supralexical evaluation, i.e., a sort of negativity bias in sentence evaluation. Future models of sentence processing thus should take interactive affective effects into account. PMID:26321975

  15. Developing site-specific interactive environmental management tools: An exciting method of communicating training, procedures, and other information

    SciTech Connect

    Jaeckels, J.M.

    1999-07-01

    Environmental managers are faced with numerous programs that must be communicated throughout their organizations. Among these are regulatory training programs, internal environmental policy, regulatory guidance/procedures and internal guidance/procedures. Traditional methods of delivering this type of information are typically confined to written materials and classroom training. There are many challenges faced by environmental managers with these traditional approaches including: determining if recipients of written plans or procedures are reading and comprehending the information; scheduling training sessions to reach all affected people across multiple schedules/shifts; and maintaining adequate training records. In addition, current trends toward performance-based or competency-based training requires a more consistent method of measuring and documenting performance. The use of interactive computer applications to present training or procedural information is a new and exciting tool for delivering environmental information to employees. Site-specific pictures, text, sound, and even video can be combined with multimedia software to create informative and highly interactive applications. Some of the applications that can be produced include integrated environmental training, educational pieces, and interactive environmental procedures. They can be executed from a CD-ROM, hard drive, network or a company Intranet. Collectively, the authors refer to these as interactive environmental management tools (IEMTs). This paper focuses on site-specific, interactive training as an example of an IEMT. Interactive training not only delivers a highly effective message, but can also be designed to focus on site-specific environmental issues that are unique to each company. Interactive training also lends itself well to automated record keeping functions and to reaching all affected employees.

  16. dbx mediates neuronal specification and differentiation through cross-repressive, lineage-specific interactions with eve and hb9.

    PubMed

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2009-10-01

    Individual neurons adopt and maintain defined morphological and physiological phenotypes as a result of the expression of specific combinations of transcription factors. In particular, homeodomain-containing transcription factors play key roles in determining neuronal subtype identity in flies and vertebrates. dbx belongs to the highly divergent H2.0 family of homeobox genes. In vertebrates, Dbx1 and Dbx2 promote the development of a subset of interneurons, some of which help mediate left-right coordination of locomotor activity. Here, we identify and show that the single Drosophila ortholog of Dbx1/2 contributes to the development of specific subsets of interneurons via cross-repressive, lineage-specific interactions with the motoneuron-promoting factors eve and hb9 (exex). dbx is expressed primarily in interneurons of the embryonic, larval and adult central nervous system, and these interneurons tend to extend short axons and be GABAergic. Interestingly, many Dbx(+) interneurons share a sibling relationship with Eve(+) or Hb9(+) motoneurons. The non-overlapping expression of dbx and eve, or dbx and hb9, within pairs of sibling neurons is initially established as a result of Notch/Numb-mediated asymmetric divisions. Cross-repressive interactions between dbx and eve, and dbx and hb9, then help maintain the distinct expression profiles of these genes in their respective pairs of sibling neurons. Strict maintenance of the mutually exclusive expression of dbx relative to that of eve and hb9 in sibling neurons is crucial for proper neuronal specification, as misexpression of dbx in motoneurons dramatically hinders motor axon outgrowth.

  17. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-05-30

    The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine.

  18. Gender and migration on the labour market: Additive or interacting disadvantages in Germany?

    PubMed

    Fleischmann, Fenella; Höhne, Jutta

    2013-09-01

    Despite substantial differences in labour market attainment according to gender and migration status, gender and ethnic differences in labour market behaviour are most often studied separately. In contrast, this study describes and analyses interactions between gender, ethnic background and immigrant generation with regard to labour market participation, part-time work, and occupational status. The double comparison aims to reveal whether gender gaps in these labour market outcomes among the majority population generalise to ethnic minorities. Moreover, we ask whether variation in gender gaps in labour market behaviour follows the patterns in migrants' origin countries, and whether gender gaps show signs of intergenerational assimilation. Our heterogeneous choice and OLS regressions of 2009 German Microcensus data reveal considerable variation in gender gaps in labour market behaviour between East and West Germany, across ethnic groups and across generations. Intergenerational comparisons show that most ethnic minorities assimilate towards German patterns of gendered labour market attainment.

  19. Attaching single biomolecules selectively to the apex of AFM tips for measuring specific interactions.

    PubMed

    Gu, Jianhua; Xiao, Zhongdang; Yam, Chi-Ming; Qin, Guoting; Deluge, Maxence; Boutet, Sabine; Cai, Chengzhi

    2005-11-01

    We present a general approach for preparing well-defined AFM tips for probing single target molecules. We demonstrated that carboxylic acid groups could be generated by electrochemical oxidation selectively at the apex of an AFM tip that is coated with a monolayer of oligo(ethylene glycol) derivatives for resisting nonspecific interactions. These carboxylic acid groups were used as handles to tether only one ligand molecule, such as biotin, to the tip apex for measurement of specific interactions with biomolecules.

  20. Generation of reactive oxygen species by interaction between antioxidants used as food additive and metal ions.

    PubMed

    Iwasaki, Yusuke; Oda, Momoko; Tsukuda, Yuri; Nagamori, Yuki; Nakazawa, Hiroyuki; Ito, Rie; Saito, Koichi

    2014-01-01

    Food additives, such as preservatives, sweeteners, coloring agents, and flavoring agents, are widely used in food manufacturing. However, their combined effects on the human body are not known. The purpose of this study was to examine whether combinations of antioxidants and metal ions generate reactive oxygen species (ROS) under in vitro conditions using electron spin resonance (ESR). Among the metal ions examined, only iron and copper generated ROS in the presence of antioxidants. Moreover, certain phenolic antioxidants having pro-oxidant activity induced DNA oxidation and degradation via the generation of high levels of ROS in the presence of copper ion, resulting in complete degradation of DNA in vitro.

  1. IDENTIFYING MUTATION SPECIFIC CANCER PATHWAYS USING A STRUCTURALLY RESOLVED PROTEIN INTERACTION NETWORK

    PubMed Central

    ENGIN, H. BILLUR; HOFREE, MATAN; CARTER, HANNAH

    2014-01-01

    Here we present a method for extracting candidate cancer pathways from tumor ‘omics data while explicitly accounting for diverse consequences of mutations for protein interactions. Disease-causing mutations are frequently observed at either core or interface residues mediating protein interactions. Mutations at core residues frequently destabilize protein structure while mutations at interface residues can specifically affect the binding energies of protein-protein interactions. As a result, mutations in a protein may result in distinct interaction profiles and thus have different phenotypic consequences. We describe a protein structure-guided pipeline for extracting interacting protein sets specific to a particular mutation. Of 59 cancer genes with 3D co-complexed structures in the Protein Data Bank, 43 showed evidence of mutations with different functional consequences. Literature survey reciprocated functional predictions specific to distinct mutations on APC, ATRX, BRCA1, CBL and HRAS. Our analysis suggests that accounting for mutation-specific perturbations to cancer pathways will be essential for personalized cancer therapy. PMID:25592571

  2. Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods.

    PubMed

    Chen, T Scott; Keating, Amy E

    2012-07-01

    Given the importance of protein-protein interactions for nearly all biological processes, the design of protein affinity reagents for use in research, diagnosis or therapy is an important endeavor. Engineered proteins would ideally have high specificities for their intended targets, but achieving interaction specificity by design can be challenging. There are two major approaches to protein design or redesign. Most commonly, proteins and peptides are engineered using experimental library screening and/or in vitro evolution. An alternative approach involves using protein structure and computational modeling to rationally choose sequences predicted to have desirable properties. Computational design has successfully produced novel proteins with enhanced stability, desired interactions and enzymatic function. Here we review the strengths and limitations of experimental library screening and computational structure-based design, giving examples where these methods have been applied to designing protein interaction specificity. We highlight recent studies that demonstrate strategies for combining computational modeling with library screening. The computational methods provide focused libraries predicted to be enriched in sequences with the properties of interest. Such integrated approaches represent a promising way to increase the efficiency of protein design and to engineer complex functionality such as interaction specificity.

  3. Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity.

    PubMed

    Kelil, Abdellali; Levy, Emmanuel D; Michnick, Stephen W

    2016-07-05

    Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.

  4. Evolution of domain–peptide interactions to coadapt specificity and affinity to functional diversity

    PubMed Central

    Kelil, Abdellali; Levy, Emmanuel D.; Michnick, Stephen W.

    2016-01-01

    Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain–peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain–peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain–peptide interactions. Thus, domain–peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved. PMID:27317745

  5. Carbon source utilization profiles suggest additional metabolic interactions in a synergistic linuron-degrading bacterial consortium.

    PubMed

    Horemans, Benjamin; Smolders, Erik; Springael, Dirk

    2013-04-01

    A bacterial triple-species consortium that synergistically metabolizes the phenylurea herbicide linuron was studied to determine whether synergy is extended toward the metabolism of other C-sources. The metabolic performance and range of the individual consortium members were compared with those of paired and three-species combinations in Biolog GN2 MicroPlate assays. The strain combinations showed an increase in the rate and extent of utilization of 80% of the C-sources that were utilized by either one or more of the individual consortium members and the additional utilization of eight C-sources for which oxidation was not observed for the individual strains. When one of the three strains was replaced by bacterial strains 'foreign' to the consortium, either belonging to the same genus or to other genera, mainly antagonistic effects occurred. The data suggest that the consortium members cooperate in the metabolism of C-sources in addition to linuron. This feature can contribute in consolidating consortium composition when linuron is absent or present at low concentrations.

  6. Specificity and affinity motifs for Grb2 SH2-ligand interactions

    PubMed Central

    Kessels, Helmut W. H. G.; Ward, Alister C.; Schumacher, Ton N. M.

    2002-01-01

    Protein–protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains. However, in many biological systems specificity of interaction may be of equal or greater importance than affinity. To address this issue we have developed a peptide library screening technology that can be used to directly define ligands for protein domains based on both affinity and specificity of interaction. We demonstrate the value of this approach by the selection of peptide ligands that are either highly specific for the Grb2 Src homology 2 (SH2) domain or that are cross-reactive between a group of related SH2 domains. Examination of previously identified physiological ligands for the Grb2 SH2 domain suggests that for these ligands regulation of the specificity of interaction may be an important factor for in vivo ligand selection. PMID:12084912

  7. Interactions between DRD4 and Developmentally Specific Environments in Alcohol Dependence Symptoms

    PubMed Central

    Carlson, Marie D.; Harden, K. Paige; Kretsch, Natalie; Corbin, William R.; Fromme, Kim

    2015-01-01

    Social experiences may moderate genetic influences on alcohol dependence (AD) symptoms. Consistent with this hypothesis, Park, Sher, Todorov, and Heath (2011) previously reported interactions between the dopamine D4 receptor gene (DRD4) and developmentally specific environments in the etiology of AD symptoms during emerging and young adulthood. Using a longitudinal cohort of n = 367 White participants followed from ages 18–27 we examine a series of similar interactions between DRD4 and developmentally sensitive contexts including childhood adversity and work and family roles. In contrast to previous results, we observed no significant interactions between DRD4 and childhood adversity. Overall, results further highlight the need for longitudinal studies of gene × environment interaction in the behavioral sciences and the difficulty of identifying candidate gene × environment interaction effects that are consistent across studies. PMID:26595480

  8. Interactions between DRD4 and developmentally specific environments in alcohol-dependence symptoms.

    PubMed

    Carlson, Marie D; Harden, K Paige; Kretsch, Natalie; Corbin, William R; Fromme, Kim

    2015-11-01

    Social experiences may moderate genetic influences on alcohol dependence (AD) symptoms. Consistent with this hypothesis, Park, Sher, Todorov, and Heath (2011) previously reported interactions between the dopamine D4 receptor gene (DRD4) and developmentally specific environments in the etiology of AD symptoms during emerging and young adulthood. Using a longitudinal cohort of n = 367 White participants followed from ages 18 to 27 years, we examine a series of similar interactions between DRD4 and developmentally sensitive contexts including childhood adversity and work and family roles. In contrast to previous results, we observed no significant interactions between DRD4 and childhood adversity. Overall, results further highlight the need for longitudinal studies of Gene × Environment interaction in the behavioral sciences and the difficulty of identifying candidate Gene × Environment interaction effects that are consistent across studies.

  9. Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2015-05-15

    The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation.

  10. Review of Specific Chemical Interactions for Hydrazine Analysis and Proposed Adaptation for Microsensor Chemical Detection

    DTIC Science & Technology

    1984-11-30

    basic hydrszine chemistry relevant to the analytical reactions presented in subsequent sections and to the coating requirements for chemical microsensors...Sections 2, 3, 4 and 5 discuss specific analytical hydrazine reactions which have been classified as alldehyde or ketone condensations, aromatfc...surface. It "is ideally designed to have a specific chemical receptivity to a "particular vapor whose interaction coincidentally produces a -I property

  11. Specific heat spectra of non-interacting fermions in a quasiperiodic ladder sequence

    NASA Astrophysics Data System (ADS)

    Moreira, D. A.; Albuquerque, E. L.; Anselmo, D. H. A. L.

    2008-07-01

    We compute the specific heat spectra of non-interacting fermions whose energy spectrum was obtained from a quasiperiodic ladder sequence (Fibonacci and Rudin-Shapiro type), mimicking a DNA molecule model. The specific heat is calculated from their underlying multi-fractal energy spectrum, considering several values of energy densities. Comparisons are made with a real DNA sequence, namely the human chromosome 22 (Ch22).

  12. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  13. Affinity and Specificity of Protein U1A-RNA Complex Formation Based on an Additive Component Free Energy Model

    PubMed Central

    Kormos, Bethany L.; Benitex, Yulia; Baranger, Anne M.; Beveridge, David L.

    2007-01-01

    Summary A MM-GBSA computational protocol was used successfully to account for wild type U1A-RNA and F56 U1A mutant experimental binding free energies. The trend in mutant binding free energies compared to wild type is well-reproduced. Following application of a linear-response-like equation to scale the various energy components, the binding free energies agree quantitatively with observed experimental values. Conformational adaptation contributes to the binding free energy for both the protein and the RNA in these systems. Small differences in ΔGs are the result of different and sometimes quite large relative contributions from various energetic components. Residual free energy decomposition indicates differences not only at the site of mutation, but throughout the entire protein. MM-GBSA and ab initio calculations performed on model systems suggest that stacking interactions may nearly, but not completely, account for observed differences in mutant binding affinities. This study indicates that there may be different underlying causes of ostensibly similar experimentally observed binding affinities of different mutants, and thus recommends caution in the interpretation of binding affinities and specificities purely by inspection. PMID:17603075

  14. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    NASA Astrophysics Data System (ADS)

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2013-12-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.

  15. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp)

    PubMed Central

    Nsa, Imade Y.; Kareem, Kehinde T.

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar “White” and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar “White” was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures. PMID:26483824

  16. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).

    PubMed

    Nsa, Imade Y; Kareem, Kehinde T

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar "White" and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar "White" was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures.

  17. A non-additive interaction in a single locus causes a very short root phenotype in wheat.

    PubMed

    Li, Wanlong; Zhu, Huilan; Challa, Ghana S; Zhang, Zhengzhi

    2013-05-01

    Non-additive allelic interactions underlie over dominant and under dominant inheritance, which explain positive and negative heterosis. These heteroses are often observed in the aboveground traits, but rarely reported in root. We identified a very short root (VSR) phenotype in the F1 hybrid between the common wheat (Triticum aestivum L.) landrace Chinese Spring and synthetic wheat accession TA4152-71. When germinated in tap water, primary roots of the parental lines reached ~15 cm 10 days after germination, but those of the F1 hybrid were ~3 cm long. Selfing populations segregated at a 1 (long-root) to 1 (short-root) ratio, indicating that VSR is controlled by a non-additive interaction between two alleles in a single gene locus, designated as Vsr1. Genome mapping localized the Vsr1 locus in a 3.8-cM interval delimited by markers XWL954 and XWL2506 on chromosome arm 5DL. When planted in vermiculite with supplemental fertilizer, the F1 hybrid had normal root growth, virtually identical to the parental lines, but the advanced backcrossing populations segregated for VSR, indicating that the F1 VSR expression was suppressed by interactions between other genes in the parental background and the vermiculite conditions. Preliminary physiological analyses showed that the VSR suppression is independent of light status but related to potassium homeostasis. Phenotyping additional hybrids between common wheat and synthetics revealed a high VSR frequency and their segregation data suggested more Vsr loci involved. Because the VSR plants can be regularly maintained and readily phenotyped at the early developmental stage, it provides a model for studies of non-additive interactions in wheat.

  18. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    PubMed

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  19. Integrated interactions database: tissue-specific view of the human and model organism interactomes.

    PubMed

    Kotlyar, Max; Pastrello, Chiara; Sheahan, Nicholas; Jurisica, Igor

    2016-01-04

    IID (Integrated Interactions Database) is the first database providing tissue-specific protein-protein interactions (PPIs) for model organisms and human. IID covers six species (S. cerevisiae (yeast), C. elegans (worm), D. melonogaster (fly), R. norvegicus (rat), M. musculus (mouse) and H. sapiens (human)) and up to 30 tissues per species. Users query IID by providing a set of proteins or PPIs from any of these organisms, and specifying species and tissues where IID should search for interactions. If query proteins are not from the selected species, IID enables searches across species and tissues automatically by using their orthologs; for example, retrieving interactions in a given tissue, conserved in human and mouse. Interaction data in IID comprises three types of PPI networks: experimentally detected PPIs from major databases, orthologous PPIs and high-confidence computationally predicted PPIs. Interactions are assigned to tissues where their proteins pairs or encoding genes are expressed. IID is a major replacement of the I2D interaction database, with larger PPI networks (a total of 1,566,043 PPIs among 68,831 proteins), tissue annotations for interactions, and new query, analysis and data visualization capabilities. IID is available at http://ophid.utoronto.ca/iid.

  20. A functional sequence-specific interaction between influenza A virus genomic RNA segments

    PubMed Central

    Gavazzi, Cyrille; Yver, Matthieu; Isel, Catherine; Smyth, Redmond P.; Rosa-Calatrava, Manuel; Lina, Bruno; Moulès, Vincent; Marquet, Roland

    2013-01-01

    Influenza A viruses cause annual influenza epidemics and occasional severe pandemics. Their genome is segmented into eight fragments, which offers evolutionary advantages but complicates genomic packaging. The existence of a selective packaging mechanism, in which one copy of each viral RNA is specifically packaged into each virion, is suspected, but its molecular details remain unknown. Here, we identified a direct intermolecular interaction between two viral genomic RNA segments of an avian influenza A virus using in vitro experiments. Using silent trans-complementary mutants, we then demonstrated that this interaction takes place in infected cells and is required for optimal viral replication. Disruption of this interaction did not affect the HA titer of the mutant viruses, suggesting that the same amount of viral particles was produced. However, it nonspecifically decreased the amount of viral RNA in the viral particles, resulting in an eightfold increase in empty viral particles. Competition experiments indicated that this interaction favored copackaging of the interacting viral RNA segments. The interaction we identified involves regions not previously designated as packaging signals and is not widely conserved among influenza A virus. Combined with previous studies, our experiments indicate that viral RNA segments can promote the selective packaging of the influenza A virus genome by forming a sequence-dependent supramolecular network of interactions. The lack of conservation of these interactions might limit genetic reassortment between divergent influenza A viruses. PMID:24067651

  1. Assessing Student Perceptions of Positive and Negative Social Interactions in Specific School Settings

    ERIC Educational Resources Information Center

    Zumbrunn, Sharon; Doll, Beth; Dooley, Kadie; LeClair, Courtney; Wimmer, Courtney

    2013-01-01

    This study explored the use of student-marked school maps, a practitioner-friendly method for assessing student perceptions of positive and negative peer interactions in specific school settings. Two hundred eighty-two third- through fifth-grade students from a Midwestern U.S. elementary school participated. Descriptive analyses were used to…

  2. Specificity of Practice: Interaction between Concurrent Sensory Information and Terminal Feedback

    ERIC Educational Resources Information Center

    Blandin, Yannick; Toussaint, Lucette; Shea, Charles H.

    2008-01-01

    In 2 experiments, the authors investigated a potential interaction involving the processing of concurrent feedback using design features from the specificity of practice literature and the processing of terminal feedback using a manipulation from the guidance hypothesis literature. In Experiment 1, participants produced (198 trials)…

  3. Interactions among Domain-Specific Expectancies, Values, and Gender: Predictors of Test Anxiety during Early Adolescence

    ERIC Educational Resources Information Center

    Selkirk, Laura C.; Bouchey, Heather A.; Eccles, Jacquelynne S.

    2011-01-01

    This research focuses on the interaction between students' domain-specific expectancies and values as a predictor of test anxiety. A subsample of adolescents from the MSALT dataset are used in the current study; students complete measures during the spring of sixth grade and again during the spring of seventh grade. Overall, findings provide…

  4. Interaction of Language Processing and Motor Skill in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    DiDonato Brumbach, Andrea C.; Goffman, Lisa

    2014-01-01

    Purpose: To examine how language production interacts with speech motor and gross and fine motor skill in children with specific language impairment (SLI). Method: Eleven children with SLI and 12 age-matched peers (4-6 years) produced structurally primed sentences containing particles and prepositions. Utterances were analyzed for errors and for…

  5. Interactions of Carbon Gain and Nitrogen Addition in a Temperate Forest

    NASA Astrophysics Data System (ADS)

    Bazzaz, F. A.

    2001-12-01

    In plants, carbon and nitrogen are intimately related. The plant gains carbon using nitrogen because it is a major constituent of both the light reaction (chlorophyll) and dark reaction (Rubisco and PEP carboxylase). The plant also gains more nitrogen by using carbon to grow roots that can forage for nitrogen, especially the less mobile (NH4+). Rising CO2 and increased nitrogen deposition are important elements of global change, both of which may affect ecosystem structure and function. They may cause a particularly large shift in species composition in systems where contrasting groups of species co-occur, e.g. evergreen coniferous and deciduous broad-leaved tree species. We studied the impact of nitrogen deposition in a mixed forest in central Massachusetts (Harvard Forest). We found that the early-successional broad-leaved species, yellow birch (Betula alleghaniensis) and red maple (Acer rubrum), both showed large increases in biomass, while the late successional species sugar maple (Acer saccharum) and all the coniferous species, hemlock (Tsuga canadensis), red spruce (Picea rubens) and white pine (Pinus strobus), only showed slight increases. As a result, when these species wre grown together, there was a decrease in species diversity. There was a significant correlation between species growth rate and the growth enhancement following nitrogen addition. We used SORTIE, a spatially explicit forest model to speculate about the future of this community. In both hemlock and red oak stands, nitrogen deposition led to shift in forest composition towards further dominance of young forests by yellow birch. We conclude that seedling physiological and demographic responses to increased nitrogen availability will scale up to exaggerate successional dynamics in mixed temperate forests in the future

  6. Spectral study of specific interactions between zwitterionic compounds and protic solvents

    NASA Astrophysics Data System (ADS)

    Babusca, Daniela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2017-02-01

    The zwitterionic compounds, like ylids, can interact both by universal and specific forces with the protic solvents. Ylids have a visible electronic absorption band with intramolecular charge transfer (ICT), very sensitive to the solvent nature and considered as an indicator of their stability. Two zwitterionic compounds: pyridinium dicarbethoxy methylid and iso-quinolinium dicarbethoxy methylid were studied from solvatochromic point of view and the contribution of solute-solvent specific interactions to the total spectral shift of the visible ICT band was established. Ternary solutions of the studied ylids were used to estimate the difference of interaction energies in molecular pairs ylid-protic solvent and ylid-aprotic solvent in the limits of the cell model of three component solutions.

  7. Targeted In Vivo Inhibition of Specific Protein–Protein Interactions Using Recombinant Antibodies

    PubMed Central

    Zábrady, Matej; Hrdinová, Vendula; Müller, Bruno; Conrad, Udo; Hejátko, Jan; Janda, Lubomír

    2014-01-01

    With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated “silencing” represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein–protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell. PMID:25299686

  8. Direct isolation of specific RNA-interacting proteins using a novel affinity medium.

    PubMed

    Liu, Ding-Gan; Sun, Li

    2005-08-26

    Isolation of proteins that specifically interact with a given RNA or RNA regulation element is essential for studies on the molecular mechanisms of gene expression. Here, a novel method for direct isolation of such interacting proteins is described. It uses an affinity medium that consists of an interacting RNA with an artificially added 'tail', which is annealed to one end of a DNA 'arm', the other end of which is fixed covalently on the surface of aminosilanized glass powder. Thus the RNA itself is fully suspending, facilitating its interactions with proteins in its natural conformation. The proteins bound on the interacting RNA are eluted and subjected to SDS-PAGE, and the Coomassie-stained protein bands are cut and subjected to mass spectrometry (MS) analysis. Using this method, three proteins specifically interacting with the C/EBPbeta 3'-untranslated region (3'-UTR) RNA were isolated and identified. This method is simple and convenient, and the DNA-glass powder medium can be used repeatedly.

  9. Development of immune-specific interaction potentials and their application in the multi-agent-system VaccImm.

    PubMed

    Woelke, Anna Lena; von Eichborn, Joachim; Murgueitio, Manuela S; Worth, Catherine L; Castiglione, Filippo; Preissner, Robert

    2011-01-01

    Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail.In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy.

  10. Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm

    PubMed Central

    Woelke, Anna Lena; von Eichborn, Joachim; Murgueitio, Manuela S.; Worth, Catherine L.; Castiglione, Filippo; Preissner, Robert

    2011-01-01

    Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail. In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy. PMID:21858048

  11. A quantitative method to discriminate between non-specific and specific lectin-glycan interactions on silicon-modified surfaces.

    PubMed

    Yang, Jie; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal

    2016-02-15

    Essential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces. An efficient conjugation protocol featuring a key "click"-based coupling step has been developed which ensures the obtention of interfaces with controlled glycan density. The adsorption behavior of these newly developed interfaces with the lectins, Lens culinaris and Peanut agglutinin, has been probed using quantitative IR-ATR and the data interpreted using various isothermal models. The analysis reveals that protein physisorption to the interface is more prevalent than specific chemisorption for the majority of washing protocols investigated. Physisorption can be greatly suppressed through application of a strong surfactinated rinse. The coexistence of chemisorption and physisorption processes is further demonstrated by quantification of the amounts of adsorbed proteins distributed on the surface, in correlation with the results obtained by atomic force microscopy (AFM). Taken together, the data demonstrates that the nonspecific adsorption of proteins to these glycan-terminated surfaces can be effectively eliminated through the proper control of the chemical structure of the surface monolayer combined with the implementation of an appropriate surface-rinse protocol.

  12. Differences between non-specific and bio-specific, and between equilibrium and non-equilibrium, interactions in biological systems.

    PubMed

    Israelachvili, Jacob

    2005-11-01

    The interaction forces between biological molecules and surfaces are much more complex than those between non-biological molecules or surfaces, such as colloidal particle surfaces. This complexity is due to a number of factors: (i) the simultaneous involvement of many different molecules and different non-covalent forces - van der Waals, electrostatic, solvation (hydration, hydrophobic), steric, entropic and 'specific', and (ii) the flexibility of biological macromolecules and fluidity of membranes. Biological interactions are better thought of as 'processes' that evolve in space and time and, under physiological conditions, involve a continuous input of energy. Such systems are, therefore, not at thermodynamic equilibrium, or even tending towards equilibrium. Recent surface forces apparatus (SFA) and atomic force microscopy (AFM) measurements on supported model membrane systems (protein-containing lipid bilayers) illustrate these effects. It is suggested that the major theoretical challenge is to establish manageable theories or models that can describe the spatial and time evolution of systems consisting of different molecules subject to certain starting conditions or energy inputs.

  13. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    SciTech Connect

    Wang, Ruoxiang; He, Hui; Sun, Xiaojuan; Xu, Jianchun; Marshall, Fray F.; Zhau, Haiyen; Chung, Leland W.K.; Fu, Haian; He, Dalin

    2009-11-20

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  14. Proliferating cell nuclear antigen (PCNA) interacts with a meiosis-specific RecA homologues, Lim15/Dmc1, but does not stimulate its strand transfer activity

    SciTech Connect

    Hamada, Fumika N.; Koshiyama, Akiyo; Namekawa, Satoshi H.; Ishii, Satomi; Iwabata, Kazuki; Sugawara, Hiroko; Nara, Takayuki Y.; Sakaguchi, Kengo . E-mail: kengo@rs.noda.tus.ac.jp; Sawado, Tomoyuki

    2007-01-26

    PCNA is a multi-functional protein that is involved in various nuclear events. Here we show that PCNA participates in events occurring during early meiotic prophase. Analysis of protein-protein interactions using surface plasmon resonance indicates that Coprinus cinereus PCNA (CoPCNA) specifically interacts with a meiotic specific RecA-like factor, C. cinereus Lim15/Dmc1 (CoLim15) in vitro. The binding efficiency increases with addition of Mg{sup 2+} ions, while ATP inhibits the interaction. Co-immunoprecipitation experiments indicate that the CoLim15 protein interacts with the CoPCNA protein in vitro and in the cell extracts. Despite the interaction between these two factors, no enhancement of CoLim15-dependent strand transfer activity by CoPCNA was found in vitro. We propose that the interaction between Lim15/Dmc1 and PCNA mediates the recombination-associated DNA synthesis during meiosis.

  15. Specific and Nonspecific Interactions in Ultraweak Protein–Protein Associations Revealed by Solvent Paramagnetic Relaxation Enhancements

    PubMed Central

    2015-01-01

    Weak and transient protein–protein interactions underlie numerous biological processes. However, the location of the interaction sites of the specific complexes and the effect of transient, nonspecific protein–protein interactions often remain elusive. We have investigated the weak self-association of human growth hormone (hGH, KD = 0.90 ± 0.03 mM) at neutral pH by the paramagnetic relaxation enhancement (PRE) of the amide protons induced by the soluble paramagnetic relaxation agent, gadodiamide (Gd(DTPA-BMA)). Primarily, it was found that the PREs are in agreement with the general Hwang-Freed model for relaxation by translational diffusion (J. Chem. Phys.1975, 63, 4017–4025), only if crowding effects on the diffusion in the protein solution are taken into account. Second, by measuring the PREs of the amide protons at increasing hGH concentrations and a constant concentration of the relaxation agent, it is shown that a distinction can be made between residues that are affected only by transient, nonspecific protein–protein interactions and residues that are involved in specific protein–protein associations. Thus, the PREs of the former residues increase linearly with the hGH concentration in the entire concentration range because of a reduction of the diffusion caused by the transient, nonspecific protein–protein interactions, while the PREs of the latter residues increase only at the lower hGH concentrations but decrease at the higher concentrations because of specific protein–protein associations that impede the access of gadodiamide to the residues of the interaction surface. Finally, it is found that the ultraweak aggregation of hGH involves several interaction sites that are located in patches covering a large part of the protein surface. PMID:24969589

  16. Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials.

    PubMed

    Guseinov, Israfil

    2003-06-01

    By the use of complete orthonormal sets of psi(alpha)-ETOs (alpha=1, 0, m1, m2,...) introduced by the author, new addition theorems are derived for STOs and arbitrary central and noncentral interaction potentials (CIPs and NCIPs). The expansion coefficients in these addition theorems are expressed through the Gaunt and Gegenbauer coefficients. Using the addition theorems obtained for STOs and potentials, general formulae in terms of three-center overlap integrals are established for the multicenter t-electron integrals of CIPs and NCIPs that arise in the solution of the N-electron atomic and molecular problem (2hthN) when a Hylleraas approximation in Hartree-Fock-Roothaan theory is employed. With the help of expansion formulae for translation of STOs, the three-center overlap integrals are expressed through the two-center overlap integrals. The formulae obtained are valid for arbitrary quantum numbers, screening constants and location of orbitals.

  17. Interactive responses of grass litter decomposition to warming, nitrogen addition and detritivore access in a temperate old field.

    PubMed

    Moise, Eric R D; Henry, Hugh A L

    2014-12-01

    Plant litter decomposition has been studied extensively in the context of both climate warming and increased atmospheric N deposition. However, much of this research is based on microbial responses, despite the potential for detritivores to contribute substantially to litter breakdown. We measured litter mass-loss responses to the combined effects of warming, N addition and detritivore access in a grass-dominated old field. We concurrently assessed the roles of litter treatment origin vs. microenvironment (direct warming and N-addition effects) to elucidate the mechanisms through which these factors affect decomposition. After 6 weeks, mass loss increased in N-addition plots, and it increased with detritivore access in the absence of warming. After 1 year, warming, N addition, and detritivore access all increased litter mass loss, although the effects of N addition and warming were non-additive in the detritivore-access plots. For the litter-origin experiment, mass loss after 6 weeks increased in litter from N-addition plots and warmed plots, but unlike the overall decomposition response, the N-addition effect was enhanced by detritivore access. Conversely, for the microenvironment experiment, detritivore access only increased mass loss in unfertilized plots. After 1 year, detritivore access increased mass loss in the litter-origin and microenvironment experiments, but there were no warming or N-addition effects. Overall, our results provide support for a substantial role of detritivores in promoting litter mass loss in our system. Moreover, they reveal important interactions between litter origin, microclimate and detritivores in determining decomposition responses to global change.

  18. The dependence of Ig class-switching on the nuclear export sequence of AID likely reflects interaction with factors additional to Crm1 exportin.

    PubMed

    Ellyard, Julia I; Benk, Amelie S; Taylor, Benjamin; Rada, Cristina; Neuberger, Michael S

    2011-02-01

    Activation-induced deaminase (AID) is a B lymphocyte-specific DNA deaminase that triggers Ig class-switch recombination (CSR) and somatic hypermutation. It shuttles between cytoplasm and nucleus, containing a nuclear export sequence (NES) at its carboxyterminus. Intriguingly, the precise nature of this NES is critical to AID's function in CSR, though not in somatic hypermutation. Many alterations to the NES, while preserving its nuclear export function, destroy CSR ability. We have previously speculated that AID's ability to potentiate CSR may critically depend on the affinity of interaction between its NES and Crm1 exportin. Here, however, by comparing multiple AID NES mutants, we find that - beyond a requirement for threshold Crm1 binding - there is little correlation between CSR and Crm1 binding affinity. The results suggest that CSR, as well as the stabilisation of AID, depend on an interaction between the AID C-terminal decapeptide and factor(s) additional to Crm1.

  19. Hanford waste-form release and sediment interaction: A status report with rationale and recommendations for additional studies

    SciTech Connect

    Serne, R.J. ); Wood, M.I. )

    1990-05-01

    This report documents the currently available geochemical data base for release and retardation for actual Hanford Site materials (wastes and/or sediments). The report also recommends specific laboratory tests and presents the rationale for the recommendations. The purpose of this document is threefold: to summarize currently available information, to provide a strategy for generating additional data, and to provide recommendations on specific data collection methods and tests matrices. This report outlines a data collection approach that relies on feedback from performance analyses to ascertain when adequate data have been collected. The data collection scheme emphasizes laboratory testing based on empiricism. 196 refs., 4 figs., 36 tabs.

  20. Interaction of Sesbania Mosaic Virus Movement Protein with VPg and P10: Implication to Specificity of Genome Recognition

    PubMed Central

    Roy Chowdhury, Soumya; Savithri, Handanahal S.

    2011-01-01

    Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 5′ end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement. PMID:21246040

  1. Effects of magnetic dipolar interactions on the specific time constant in superparamagnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Iacob, N.; Schinteie, G.; Bartha, C.; Palade, P.; Vekas, L.; Kuncser, V.

    2016-07-01

    A quantitative treatment of the effects of magnetic mutual interactions on the specific absorption rate of a superparamagnetic system of iron oxide nanoparticles coated with oleic acid is reported. The nanoparticle concentration of the considered ferrofluid samples varied from a very low (0.005) to a medium (0.16) value of the volume fraction, whereas the amplitude of the exciting AC magnetic field ranged from 14-35 kA m-1. It was proved that a direct effect of the interparticle interactions resides in the regime of the modified superparamagnetism, dealing, besides the usual increase in the anisotropy energy barrier per nanoparticle, with the decrease in the specific time constant {τ0} of the relaxation law, usually considered as a material constant. Consequently, the increase in the specific absorption rate versus the volume fraction is significantly diminished in the presence of the interparticle interactions compared to the case of non-interacting superparamagnetic nanoparticles, with direct influence on the magnetic hyperthermia efficiency.

  2. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  3. Contribution of Physical Interactions to Signaling Specificity between a Diguanylate Cyclase and Its Effector

    PubMed Central

    Dahlstrom, Kurt M.; Giglio, Krista M.; Collins, Alan J.; Sondermann, Holger

    2015-01-01

    ABSTRACT Cyclic diguanylate (c-di-GMP) is a bacterial second messenger that controls multiple cellular processes. c-di-GMP networks have up to dozens of diguanylate cyclases (DGCs) that synthesize c-di-GMP along with many c-di-GMP-responsive target proteins that can bind and respond to this signal. For such networks to have order, a mechanism(s) likely exists that allow DGCs to specifically signal their targets, and it has been suggested that physical interactions might provide such specificity. Our results show a DGC from Pseudomonas fluorescens physically interacting with its target protein at a conserved interface, and this interface can be predictive of DGC-target protein interactions. Furthermore, we demonstrate that physical interaction is necessary for the DGC to maximally signal its target. If such “local signaling” is a theme for even a fraction of the DGCs used by bacteria, it becomes possible to posit a model whereby physical interaction allows a DGC to directly signal its target protein, which in turn may help curtail undesired cross talk with other members of the network. PMID:26670387

  4. Polymer coatings that display specific biological signals while preventing nonspecific interactions.

    PubMed

    Ameringer, Thomas; Fransen, Peter; Bean, Penny; Johnson, Graham; Pereira, Suzanne; Evans, Richard A; Thissen, Helmut; Meagher, Laurence

    2012-02-01

    Control over cell-material surface interactions is the key to many new and improved biomedical devices. It can only be achieved if interactions that are mediated by nonspecifically adsorbed serum proteins are minimized and if cells instead respond to specific ligand molecules presented on the surface. Here, we present a simple yet effective surface modification method that allows for the covalent coupling and presentation of specific biological signals on coatings which have significantly reduced nonspecific biointerfacial interactions. To achieve this we synthesized bottle brush type copolymers consisting of poly(ethylene glycol) methyl ether methacrylate and (meth)acrylates providing activated NHS ester groups as well as different spacer lengths between the NHS groups and the polymer backbone. Copolymers containing different molar ratios of these monomers were grafted to amine functionalized polystyrene cell culture substrates, followed by the covalent immobilization of the cyclic peptides cRGDfK and cRADfK using residual NHS groups. Polymers were characterized by GPC and NMR and surface modification steps were analyzed using XPS. The cellular response was evaluated using HeLa cell attachment experiments. The results showed strong correlations between the effectiveness of the control over biointerfacial interactions and the polymer architecture. They also demonstrate that optimized fully synthetic copolymer coatings, which can be applied to a wide range of substrate materials, provide excellent control over biointerfacial interactions.

  5. Mapping the distribution of specific antibody interaction forces on individual red blood cells

    PubMed Central

    Yeow, Natasha; Tabor, Rico F.; Garnier, Gil

    2017-01-01

    Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG – IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses. PMID:28157207

  6. Mapping the distribution of specific antibody interaction forces on individual red blood cells

    NASA Astrophysics Data System (ADS)

    Yeow, Natasha; Tabor, Rico F.; Garnier, Gil

    2017-02-01

    Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG – IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses.

  7. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study

    SciTech Connect

    Tan Ming |; Xia Ming; Cao Sheng; Huang Pengwei; Farkas, Tibor |; Meller, Jarek |; Hegde, Rashmi S. |; Li Xuemei; Rao Zihe; Jiang Xi |

    2008-09-30

    Noroviruses interact with histo-blood group antigen (HBGA) receptors in a strain-specific manner probably detecting subtle structural differences in the carbohydrate receptors. The specific recognition of types A and B antigens by various norovirus strains is a typical example. The only difference between the types A and B antigens is the acetamide linked to the terminal galactose of the A but not to the B antigen. The crystal structure of the P dimer of a GII-4 norovirus (VA387) bound to types A and B trisaccharides has elucidated the A/B binding site on the capsid but did not explain the binding specificity of the two antigens. In this study, using site-directed mutagenesis, we have identified three residues on the VA387 capsid that are sterically close to the acetamide and are required for binding to A but not B antigens, indicating that the acetamide determines the binding specificity between the A and B antigens. Further mutational analysis showed that a nearby open cavity may also be involved in binding specificity to HBGAs. In addition, a systematic mutational analysis of residues in and around the binding interface has identified a group of amino acids that are required for binding but do not have direct contact with the carbohydrate antigens, implying that these residues may be involved in the structural integrity of the receptor binding interface. Taken together, our study provides new insights into the carbohydrate/capsid interactions which are a valuable complement to the atomic structures in understanding the virus/host interaction and in the future design of antiviral agents.

  8. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  9. Non-equilibrium fluctuations and metastability arising from non-additive interactions in dissipative multi-component Rydberg gases

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Ricardo; Garrahan, Juan P.; Lesanovsky, Igor

    2016-09-01

    We study the out-of-equilibrium dynamics of dissipative gases of atoms excited to two or more high-lying Rydberg states. This situation bears interesting similarities to classical binary (in general p-ary) mixtures of particles. The effective forces between the components are determined by the inter-level and intra-level interactions of Rydberg atoms. These systems permit to explore new parameter regimes which are physically inaccessible in a classical setting, for example one in which the mixtures exhibit non-additive interactions. In this situation the out-of-equilibrium evolution is characterized by the formation of metastable domains that reach partial equilibration long before the attainment of stationarity. In experimental settings with mesoscopic sizes, this collective behavior may in fact take the appearance of dynamic symmetry breaking.

  10. The additive and interactive effects of parenting and temperament in predicting adjustment problems of children of divorce.

    PubMed

    Lengua, L J; Wolchik, S A; Sandler, I N; West, S G

    2000-06-01

    Investigated the interaction between parenting and temperament in predicting adjustment problems in children of divorce. The study utilized a sample of 231 mothers and children, 9 to 12 years old, who had experienced divorce within the previous 2 years. Both mothers' and children's reports on parenting, temperament, and adjustment variables were obtained and combined to create cross-reporter measures of the variables. Parenting and temperament were directly and independently related to outcomes consistent with an additive model of their effects. Significant interactions indicated that parental rejection was more strongly related to adjustment problems for children low in positive emotionality, and inconsistent discipline was more strongly related to adjustment problems for children high in impulsivity. These findings suggest that children who are high in impulsivity may be at greater risk for developing problems, whereas positive emotionality may operate as a protective factor, decreasing the risk of adjustment problems in response to negative parenting.

  11. Interactions of cryptosin with mammalian cardiac dihydropyridine-specific calcium channels

    SciTech Connect

    Rao, V.R.; Banning, J.W. )

    1990-01-01

    Cryptosin, a new cardenolide, was found to be a potent inhibitor of cardiac Na{sup +} and K{sup +} dependent Adenosinetri-phosphatase. In experiments with dog heart ex vivo, development of inotropic and toxic effect correlated with changes in the cardiac dihydropyridine-specific calcium channels as measured by the binding of {sup 3}(H)PN 200-110. A significant change in the PN 200-110 binding was observed when guinea pig and dog heart sarcolemmal membranes were pre-incubated with cryptosin in vitro. Binding analysis of {sup 3}(H)PN 200-110 (Isradipine), a 1,4-dihydropyridine analog with very specific calcium channel binding properties, in both in vitro and ex vivo studies were consistent and indicated a non-specific type of interaction of cryptosin with mammalian cardiac 1,4-dihydropyridine-specific calcium channels.

  12. Specific Interactions of Clausin, a New Lantibiotic, with Lipid Precursors of the Bacterial Cell Wall

    PubMed Central

    Bouhss, Ahmed; Al-Dabbagh, Bayan; Vincent, Michel; Odaert, Benoit; Aumont-Nicaise, Magalie; Bressolier, Philippe; Desmadril, Michel; Mengin-Lecreulx, Dominique; Urdaci, Maria C.; Gallay, Jacques

    2009-01-01

    Abstract We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of ∼0.3 μM and stoichiometry of ∼2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C55-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target. PMID:19720027

  13. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall.

    PubMed

    Bouhss, Ahmed; Al-Dabbagh, Bayan; Vincent, Michel; Odaert, Benoit; Aumont-Nicaise, Magalie; Bressolier, Philippe; Desmadril, Michel; Mengin-Lecreulx, Dominique; Urdaci, Maria C; Gallay, Jacques

    2009-09-02

    We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of approximately 0.3 muM and stoichiometry of approximately 2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C(55)-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target.

  14. Additive effects of levonorgestrel and ethinylestradiol on brain aromatase (cyp19a1b) in zebrafish specific in vitro and in vivo bioassays.

    PubMed

    Hinfray, N; Tebby, C; Garoche, C; Piccini, B; Bourgine, G; Aït-Aïssa, S; Kah, O; Pakdel, F; Brion, F

    2016-09-15

    Estrogens and progestins are widely used in combination in human medicine and both are present in aquatic environment. Despite the joint exposure of aquatic wildlife to estrogens and progestins, very little information is available on their combined effects. In the present study we investigated the effect of ethinylestradiol (EE2) and Levonorgestrel (LNG), alone and in mixtures, on the expression of the brain specific ER-regulated cyp19a1b gene. For that purpose, recently established zebrafish-derived tools were used: (i) an in vitro transient reporter gene assay in a human glial cell line (U251-MG) co-transfected with zebrafish estrogen receptors (zfERs) and the luciferase gene under the control of the zebrafish cyp19a1b gene promoter and (ii) an in vivo bioassay using a transgenic zebrafish expressing GFP under the control of the zebrafish cyp19a1b gene promoter (cyp19a1b-GFP). Concentration-response relationships for single chemicals were modeled and used to design the mixture experiments following a ray design. The results from mixture experiments were analyzed to predict joint effects according to concentration addition and statistical approaches were used to characterize the potential interactions between the components of the mixtures (synergism/antagonism). We confirmed that some progestins could elicit estrogenic effects in fish brain. In mixtures, EE2 and LNG exerted additive estrogenic effects both in vitro and in vivo, suggesting that some environmental progestin could exert effects that will add to those of environmental (xeno-)estrogens. Moreover, our zebrafish specific assays are valuable tools that could be used in risk assessment for both single chemicals and their mixtures.

  15. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  16. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering.

    PubMed

    Bassett, Andrew R; Azzam, Ghows; Wheatley, Lucy; Tibbit, Charlotte; Rajakumar, Timothy; McGowan, Simon; Stanger, Nathan; Ewels, Philip Andrew; Taylor, Stephen; Ponting, Chris P; Liu, Ji-Long; Sauka-Spengler, Tatjana; Fulga, Tudor A

    2014-08-19

    MicroRNA (miRNA) target recognition is largely dictated by short 'seed' sequences, and single miRNAs therefore have the potential to regulate a large number of genes. Understanding the contribution of specific miRNA-target interactions to the regulation of biological processes in vivo remains challenging. Here we use transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technologies to interrogate the functional relevance of predicted miRNA response elements (MREs) to post-transcriptional silencing in zebrafish and Drosophila. We also demonstrate an effective strategy that uses CRISPR-mediated homology-directed repair with short oligonucleotide donors for the assessment of MRE activity in human cells. These methods facilitate analysis of the direct phenotypic consequences resulting from blocking specific miRNA-MRE interactions at any point during development.

  17. β-Lactoglobulin nanofibrils can be assembled into nanotapes via site-specific interactions with pectin.

    PubMed

    Hettiarachchi, Charith A; Melton, Laurence D; McGillivray, Duncan J; Loveday, Simon M; Gerrard, Juliet A; Williams, Martin A K

    2016-01-21

    Controlling the self-assembly of individual supramolecular entities, such as amyloid fibrils, into hierarchical architectures enables the 'bottom-up' fabrication of useful bionanomaterials. Here, we present the hierarchical assembly of β-lactoglobulin nanofibrils into the form of 'nanotapes' in the presence of a specific pectin with a high degree of methylesterification. The nanotapes produced were highly ordered, and had an average width of 180 nm at pH 3. Increasing the ionic strength or the pH of the medium led to the disassembly of nanotapes, indicating that electrostatic interactions stabilised the nanotape architecture. Small-angle X-ray scattering experiments conducted on the nanotapes showed that adequate space is available between adjacent nanofibrils to accommodate pectin molecules. To locate the interaction sites on the pectin molecule, it was subjected to endopolygalacturonase digestion, and the resulting products were analysed using capillary electrophoresis and size-exclusion chromatography for their charge and molecular weight, respectively. Results suggested that the functional pectin molecules carry short (<10 residues) enzyme-susceptible blocks of negatively charged, non-methylesterified galacturonic acid residues in the middle of their homogalacturonan backbones (and possibly near their ends), that specifically bind to sites on the nanofibrils. Blocking the interaction sites on the nanofibril surface using small oligomers of non-methylesterified galacturonic acid residues similar in size to the interaction sites of the pectin molecule decreased the nanotape formation, indicating that site-specific electrostatic interactions are vital for the cross-linking of nanofibrils. We propose a structural model for the pectin-cross-linked β-lactoglobulin nanotapes, the elements of which will inform the future design of bionanomaterials.

  18. The Interaction of Language-Specific and Universal Factors During the Acquisition of Morphophonemic Alternations With Exceptions.

    PubMed

    Baer-Henney, Dinah; Kügler, Frank; van de Vijver, Ruben

    2015-09-01

    Using the artificial language paradigm, we studied the acquisition of morphophonemic alternations with exceptions by 160 German adult learners. We tested the acquisition of two types of alternations in two regularity conditions while additionally varying length of training. In the first alternation, a vowel harmony, backness of the stem vowel determines backness of the suffix. This process is grounded in substance (phonetic motivation), and this universal phonetic factor bolsters learning a generalization. In the second alternation, tenseness of the stem vowel determines backness of the suffix vowel. This process is not based in substance, but it reflects a phonotactic property of German and our participants benefit from this language-specific factor. We found that learners use both cues, while substantive bias surfaces mainly in the most unstable situation. We show that language-specific and universal factors interact in learning.

  19. Neuron-specific protein interactions of Drosophila CASK-β are revealed by mass spectrometry

    PubMed Central

    Mukherjee, Konark; Slawson, Justin B.; Christmann, Bethany L.; Griffith, Leslie C.

    2014-01-01

    Modular scaffolding proteins are designed to have multiple interactors. CASK, a member of the membrane-associated guanylate kinase (MAGUK) superfamily, has been shown to have roles in many tissues, including neurons and epithelia. It is likely that the set of proteins it interacts with is different in each of these diverse tissues. In this study we asked if within the Drosophila central nervous system, there were neuron-specific sets of CASK-interacting proteins. A YFP-tagged CASK-β transgene was expressed in genetically defined subsets of neurons in the Drosophila brain known to be important for CASK function, and proteins present in an anti-GFP immunoprecipitation were identified by mass spectrometry. Each subset of neurons had a distinct set of interacting proteins, suggesting that CASK participates in multiple protein networks and that these networks may be different in different neuronal circuits. One common set of proteins was associated with mitochondria, and we show here that endogenous CASK-β co-purifies with mitochondria. We also determined CASK-β posttranslational modifications for one cell type, supporting the idea that this technique can be used to assess cell- and circuit-specific protein modifications as well as protein interaction networks. PMID:25071438

  20. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin; Lan Zijian

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  1. Specific heat and magnetic interactions in NdCrO3

    NASA Astrophysics Data System (ADS)

    Bartolomé, Fernando; Bartolomé, Juan; Castro, Miguel; Melero, Julio J.

    2000-07-01

    The specific heat of NdCrO3 in the thermal range from 0.3 to 300 K is presented. The magnetic ordering of Cr ions at TN=219+/-1 K is observed, as well as the spin reorientation transition (SRT) at TSRT=34.2+/-0.5 K. The specific heat of the isostructural nonmagnetic compound LaGaO3 has been subtracted, allowing us to separate and quantify the different magnetic contributions to the specific heat in NdCrO3. The exchange coupling constant for the Cr-Cr interaction is found to be \\|JCr\\|/kB=21.7(7) K. The fitting of the Schottky contribution from the thermal depopulation of the Nd3+ 4I9/2 ground multiplet allows us to propose a crystal-field energy-level scheme which is in agreement with the available neutron-scattering spectral lines. The intensity of the Nd-Cr magnetic interaction is obtained. Finally, we show that the strength of the Nd-Cr interaction in this compound is of the same order of magnitude as that found in other Nd orthoperovskites, namely, in NdFeO3, despite the different Zeeman splitting of the Nd ground doublet in both compounds.

  2. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells

    SciTech Connect

    Fibbi, G.; Ziche, M.; Morbidelli, L. ); Magnelli, L.; Del Rosso, M. )

    1988-12-01

    On the basis of {sup 125}I-labeled plasminogen activator binding analysis the authors have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a K{sub d} of 0.8958{times}10{sup {minus}12} M. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.

  3. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets.

    PubMed

    Mohan, Nimmy; Sudheesh, A P; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S

    2015-08-18

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing.

  4. Activation of tumoricidal properties in human blood monocytes by muramyl dipeptide requires specific intracellular interaction

    SciTech Connect

    Fogler, W.E.; Fidler, I.J.

    1986-03-15

    The purpose of this study was to identify the mechanism by which muramyl dipeptide (MDP) activates antitumor cytotoxic properties in normal and interferon-..gamma.. (IFN-..gamma..)-primed human peripheral blood monocytes. The structurally and functionally active MDP analog, nor-muramyl dipeptide (nor-MDP), and (/sup 3/H)nor-MDP were used as reference glycopeptides. Direct activation of normal, noncytotoxic monocytes by nor-MDP was enhanced its encapsulation within multilamellar vesicles (MLV). Studies with (/sup 3/H)nor-MDP revealed that the activation of monocytes by nor-MDP was not attributable to its interaction with a specific cell surface receptor, nor did it result merely from the internalization by monocytes of glycopeptide. Subthreshold concentrations of nor-MDP could activate tumor cytotoxic properties in IFN-..gamma..-primed monocytes. The intracellular interaction of (/sup 3/H)nor-MDP with IFN-..gamma..-primed monocytes was specific in that intracellular levels of radiolabeled material could be displaced and recovered as intact molecules by unlabeled nor-MDP, but not by a biologically inactive MDP stereoisomer. Collectively, these results suggest that the activation of tumoricidal properties in human blood monocytes by MDP occurs subsequent to intracellular interaction with specific MDP receptors.

  5. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing.

    PubMed

    Wu, J Y; Maniatis, T

    1993-12-17

    Specific recognition and pairing of the 5' and 3' splice sites are critical steps in pre-mRNA splicing. We report that the splicing factors SC35 and SF2/ASF specifically interact with both the integral U1 small nuclear ribonucleoprotein (snRNP U1-70K) and with the 35 kd subunit of the splicing factor U2AF (U2AF35). Previous studies indicated that the U1 snRNP binds specifically to the 5' splice site, while U2AF35-U2AF65 heterodimer binds to the 3' splice site. Together, these observations suggest that SC35 and other members of the SR family of splicing factors may function in splice site selection by acting as a bridge between components bound to the 5' and 3' splice sites. Interestingly, SC35, SF2/ASF, and U2AF35 also interact with the Drosophila splicing regulators Transformer (Tra) and Transformer-2 (Tra2), suggesting that protein-protein interactions mediated by SR proteins may also play an important role in regulating alternative splicing.

  6. Competitive interactions are mediated in a sex-specific manner by arbuscular mycorrhiza in Antennaria dioica.

    PubMed

    Varga, S; Vega-Frutis, R; Kytöviita, M-M

    2017-03-01

    Plants usually interact with other plants, and the outcome of such interaction ranges from facilitation to competition depending on the identity of the plants, including their sexual expression. Arbuscular mycorrhizal (AM) fungi have been shown to modify competitive interactions in plants. However, few studies have evaluated how AM fungi influence plant intraspecific and interspecific interactions in dioecious species. The competitive abilities of female and male plants of Antennaria dioica were examined in a greenhouse experiment. Females and males were grown in the following competitive settings: (i) without competition, (ii) with intrasexual competition, (iii) with intersexual competition, and (iv) with interspecific competition by Hieracium pilosella - a plant with similar characteristics to A. dioica. Half of the pots were grown with Claroideoglomus claroideum, an AM fungus isolated from the same habitat as the plant material. We evaluated plant survival, growth, flowering phenology, and production of AM fungal structures. Plant survival was unaffected by competition or AM fungi. Competition and the presence of AM fungi reduced plant biomass. However, the sexes responded differently to the interaction between fungal and competition treatments. Both intra- and interspecific competition results were sex-specific, and in general, female performance was reduced by AM colonization. Plant competition or sex did not affect the intraradical structures, extraradical hyphae, or spore production of the AM fungus. These findings suggest that plant sexual differences affect fundamental processes such as competitive ability and symbiotic relationships with AM fungi.

  7. The detection of specific biomolecular interactions with micro-Hall magnetic sensors.

    PubMed

    Manandhar, Pradeep; Chen, Kan-Sheng; Aledealat, Khaled; Mihajlović, Goran; Yun, C Steven; Field, Mark; Sullivan, Gerard J; Strouse, Geoffrey F; Chase, P Bryant; von Molnár, Stephan; Xiong, Peng

    2009-09-02

    The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.

  8. Multiple Stressors in Agricultural Streams: A Mesocosm Study of Interactions among Raised Water Temperature, Sediment Addition and Nutrient Enrichment

    PubMed Central

    Piggott, Jeremy J.; Lange, Katharina; Townsend, Colin R.; Matthaei, Christoph D.

    2012-01-01

    Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural) and/or sediment (grain size 0.2 mm; high, intermediate, natural) to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor) generally in a negative manner, while nutrient enrichment affected 59% (mostly positive) and raised temperature 59% (mostly positive). More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss) accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer strips, both

  9. Specific neosaxitoxin interactions with the Na+ channel outer vestibule determined by mutant cycle analysis.

    PubMed Central

    Penzotti, J L; Lipkind, G; Fozzard, H A; Dudley, S C

    2001-01-01

    The voltage-gated Na+ channel alpha-subunit consists of four homologous domains arranged circumferentially to form the pore. Several neurotoxins, including saxitoxin (STX), block the pore by binding to the outer vestibule of this permeation pathway, which is composed of four pore-forming loops (P-loops), one from each domain. Neosaxitoxin (neoSTX) is a variant of STX that differs only by having an additional hydroxyl group at the N1 position of the 1,2,3 guanidinium (N1-OH). We used this structural variant in mutant cycle experiments to determine interactions of the N1-OH and its guanidinium with the outer vestibule. NeoSTX had a higher affinity for the adult rat skeletal muscle Na+ channel (muI or Scn4a) than for STX (DeltaG approximately = 1.3 kcal/mol). Mutant cycle analysis identified groups that potentially interacted with each other. The N1 toxin site interacted most strongly with muI Asp-400 and Tyr-401. The interaction between the N1-OH of neoSTX and Tyr-401 was attractive (DeltaDeltaG = -1.3 +/- 0.1 kcal/mol), probably with formation of a hydrogen bond. A second possible attractive interaction to Asp-1532 was identified. There was repulsion between Asp-400 and the N1-OH (DeltaDeltaG = 1.4 +/- 0.1 kcal/mol), and kinetic analysis further suggested that the N1-OH was interacting negatively with Asp-400 at the transition state. Changes in pH altered the affinity of neoSTX, as would be expected if the N1-OH site were partially deprotonated. These interactions offer an explanation for most of the difference in blocking efficacy between neoSTX and STX and for the sensitivity of neoSTX to pH. Kinetic analysis suggested significant differences in coupling energies between the transition and the equilibrium, bound states. This is the first report to identify points of interaction between a channel and a non-peptide toxin. This interaction pattern was consistent with previous proposals describing the interactions of STX with the outer vestibule (Lipkind, G. M., and H

  10. Specific anion effects on the pressure dependence of the protein-protein interaction potential.

    PubMed

    Möller, Johannes; Grobelny, Sebastian; Schulze, Julian; Steffen, Andre; Bieder, Steffen; Paulus, Michael; Tolan, Metin; Winter, Roland

    2014-04-28

    We present a study on ion specific effects on the intermolecular interaction potential V(r) of dense protein solutions under high hydrostatic pressure conditions. Small-angle X-ray scattering in combination with a liquid-state theoretical approach was used to determine the effect of structure breaking/making salt anions (Cl(-), SO4(2-), PO4(3-)) on the intermolecular interaction of lysozyme molecules. It was found that besides the Debye-Hückel charge screening effect, reducing the repulsiveness of the interaction potential V(r) at low salt concentrations, a specific ion effect is observed at high salt concentrations for the multivalent kosmotropic anions, which modulates also the pressure dependence of the protein-protein interaction potential. Whereas sulfate and phosphate strongly influence the pressure dependence of V(r), chloride anions do not. The strong structure-making effect of the multivalent anions, dominating for the triply charged PO4(3-), renders the solution structure less bulk-water-like at high salt concentrations, which leads to an altered behavior of the pressure dependence of V(r). Hence, the particular structural properties of the salt solutions are able to influence the spatial organization and the intermolecular interactions of the proteins, in particular upon compression. These results are of interest for exploring the combined effects of ionic strength, temperature and pressure on the phase behavior of protein solutions, but may also be of relevance for understanding pressure effects on the hydration behavior of biological matter under extreme environmental conditions.

  11. Interactions in the pollen-specific receptor-like kinases-containing signaling network.

    PubMed

    Löcke, Susanne; Fricke, Inka; Mucha, Elena; Humpert, Marie-Luise; Berken, Antje

    2010-12-01

    The pollen-specific receptor-like kinases (PRKs) from Solanum lycopersicum, LePRK1 and LePRK2, are believed to be involved in the regulation of pollen germination and pollen tube growth. They appear to be part of a multimeric complex in which the transmembranic LePRKs presumably have a key position in transducing exogenous signals through the plasma membrane. Here, we focused on extra- and intracellular interactions involving the LePRKs. We show in yeast two-hybrid experiments a cross-interaction of putative PRK-ligands, the oligomerization of LePRK2 and a direct contact of LePRKs to activated Rho proteins of plants (ROPs). Moreover, we observed that pollen-specific RopGEFs, which catalyze ROP activation and may be regulated by PRK interaction, are active in vitro while autoinhibition seems to occur in vivo. We suggest that activation of RopGEFs as a checkpoint in PRK signal transduction is a more complex event including further components in planta. Our findings point to some new aspects in PRK-mediated signal transduction implying a LePRK2 complex with different signaling activity and a further direct control of LePRKs by activated ROP.

  12. Structural analysis and evolution of specificity of the SUMO UFD E1-E2 interactions

    PubMed Central

    Liu, Bing; Lois, L. Maria; Reverter, David

    2017-01-01

    SUMO belongs to the ubiquitin-like family (UbL) of protein modifiers. SUMO is conserved among eukaryotes and is essential for the regulation of processes such as DNA damage repair, transcription, DNA replication and mitosis. UbL modification of proteins occurs via a specific enzymatic cascade formed by the crosstalk between the E1-activating enzyme, the E2-conjugating enzyme and the E3-ligase. An essential discrimination step in all UbL modifiers corresponds to the interaction between E1 and E2 enzymes, which is mediated by the recruitment of the E2 to the UFD domain (Ubiquitin-Fold Domain) of the E1 enzyme. To gain insights in the properties of this interface, we have compared the structures of the complexes between E1 UFD domain and E2 in human and yeast, revealing two alternative UFD platforms that interact with a conserved E2. Comparative sequence analysis of the E1 UFD domain indicates that the E2 binding region has been conserved across phylogenetic closely related species, in which higher sequence conservation can be found in the E2 binding region than in the entire UFD domain. These distinctive strategies for E1-E2 interactions through the UFD domain might be the consequence of a high selective pressure to ensure specificity of each modifier conjugation system. PMID:28165030

  13. On the Role of Specific Interactions in the Diffusion of Nanoparticles in Aqueous Polymer Solutions

    PubMed Central

    2013-01-01

    Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions. PMID:24354390

  14. Exploring site-specific chemical interactions at surfaces: a case study on highly ordered pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Götzen, Jan; Altman, Eric I.; Schwarz, Udo D.

    2016-12-01

    A material’s ability to interact with approaching matter is governed by the structural and chemical nature of its surfaces. Tailoring surfaces to meet specific needs requires developing an understanding of the underlying fundamental principles that determine a surface’s reactivity. A particularly insightful case occurs when the surface site exhibiting the strongest attraction changes with distance. To study this issue, combined noncontact atomic force microscopy and scanning tunneling microscopy experiments have been carried out, where the evolution of the local chemical interaction with distance leads to a contrast reversal in the force channel. Using highly ordered pyrolytic graphite surfaces and metallic probe tips as a model system, we find that at larger tip-sample distances, carbon atoms exhibit stronger attractions than hollow sites while upon further approach, hollow sites become energetically more favorable. For the tunneling current that is recorded at large tip-sample separations during acquisition of a constant-force image, the contrast is dominated by the changes in tip-sample distance required to hold the force constant (‘cross-talk’) at smaller separations the contrast turns into a convolution of this cross-talk and the local density of states. Analysis shows that the basic factors influencing the force channel contrast reversal are locally varying decay lengths and an onset of repulsive forces that occurs for distinct surface sites at different tip-sample distances. These findings highlight the importance of tip-sample distance when comparing the relative strength of site-specific chemical interactions.

  15. Structural analysis and evolution of specificity of the SUMO UFD E1-E2 interactions.

    PubMed

    Liu, Bing; Lois, L Maria; Reverter, David

    2017-02-06

    SUMO belongs to the ubiquitin-like family (UbL) of protein modifiers. SUMO is conserved among eukaryotes and is essential for the regulation of processes such as DNA damage repair, transcription, DNA replication and mitosis. UbL modification of proteins occurs via a specific enzymatic cascade formed by the crosstalk between the E1-activating enzyme, the E2-conjugating enzyme and the E3-ligase. An essential discrimination step in all UbL modifiers corresponds to the interaction between E1 and E2 enzymes, which is mediated by the recruitment of the E2 to the UFD domain (Ubiquitin-Fold Domain) of the E1 enzyme. To gain insights in the properties of this interface, we have compared the structures of the complexes between E1 UFD domain and E2 in human and yeast, revealing two alternative UFD platforms that interact with a conserved E2. Comparative sequence analysis of the E1 UFD domain indicates that the E2 binding region has been conserved across phylogenetic closely related species, in which higher sequence conservation can be found in the E2 binding region than in the entire UFD domain. These distinctive strategies for E1-E2 interactions through the UFD domain might be the consequence of a high selective pressure to ensure specificity of each modifier conjugation system.

  16. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    PubMed

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (P<0.01). Our results suggest that both the absolute and specific enzyme activities could be used as sensitive soil quality indicators that provide useful linkages with the microbial community structures and environmental factors. To maintain microbial activity and to minimize environmental impacts, P should be applied as a combination of inorganic and organic forms, and total P fertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1).

  17. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    PubMed

    Clare, David S; Spencer, Matthew; Robinson, Leonie A; Frid, Christopher L J

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  18. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions

    PubMed Central

    Spencer, Matthew; Robinson, Leonie A.; Frid, Christopher L. J.

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed. PMID:27812164

  19. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design.

    PubMed

    Zhou, P; Huang, J; Tian, F

    2012-01-01

    Specific noncovalent interactions that are indicative of attractive, directional intermolecular forces have always been of key interest to medicinal chemists in their search for the "glue" that holds drugs and their targets together. With the rapid increase in the number of solved biomolecular structures as well as the performance enhancement of computer hardware and software in recent years, it is now possible to give more comprehensive insight into the geometrical characteristics and energetic landscape of certain sophisticated noncovalent interactions present at the binding interface of protein receptors and small ligands based on accumulated knowledge gaining from the combination of two quite disparate but complementary approaches: crystallographic data analysis and quantum-mechanical ab initio calculation. In this perspective, we survey massive body of published works relating to structural characterization and theoretical investigation of three kinds of strong, specific, direct, enthalpy-driven intermolecular forces, including hydrogen bond, halogen bond and salt bridge, involved in the formation of protein-ligand complex architecture in order to characterize their biological functions in conferring affinity and specificity for ligand recognition by host protein. In particular, the biomedical implications of raised knowledge are discussed with respect to potential applications in rational drug design.

  20. Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA.

    PubMed

    Eom, Ki Seong; Cheong, Jin Sung; Lee, Seung Jae

    2016-12-28

    Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues (Cys₂His₂) coordinate to the zinc ion for the structural functions to generate a ββα fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known Cys₂His₂-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.

  1. Cation-specific effects on enzymatic catalysis driven by interactions at the tunnel mouth.

    PubMed

    Štěpánková, Veronika; Paterová, Jana; Damborský, Jiří; Jungwirth, Pavel; Chaloupková, Radka; Heyda, Jan

    2013-05-30

    Cationic specificity which follows the Hofmeister series has been established for the catalytic efficiency of haloalkane dehalogenase LinB by a combination of molecular dynamics simulations and enzyme kinetic experiments. Simulations provided a detailed molecular picture of cation interactions with negatively charged residues on the protein surface, particularly at the tunnel mouth leading to the enzyme active site. On the basis of the binding affinities, cations were ordered as Na(+) > K(+) > Rb(+) > Cs(+). In agreement with this result, a steady-state kinetic analysis disclosed that the smaller alkali cations influence formation and productivity of enzyme-substrate complexes more efficiently than the larger ones. A subsequent systematic investigation of two LinB mutants with engineered charge in the cation-binding site revealed that the observed cation affinities are enhanced by increasing the number of negatively charged residues at the tunnel mouth, and vice versa, reduced by decreasing this number. However, the cation-specific effects are overwhelmed by strong electrostatic interactions in the former case. Interestingly, the substrate inhibition of the mutant LinB L177D in the presence of chloride salts was 7 times lower than that of LinB wild type in glycine buffer. Our work provides new insight into the mechanisms of specific cation effects on enzyme activity and suggests a potential strategy for suppression of substrate inhibition by the combination of protein and medium engineering.

  2. [Specific interaction study in collagen/hyaluronic acid blends by two-dimensional infrared correlation spectroscopy].

    PubMed

    Tan, Qing-Tian; Tian, Zhen-Hua; Li, Guo-Ying

    2011-04-01

    Conformational changes and specific interactions in the collagen/hyaluronic acid blends were studied by two-dimensional infrared correlation spectroscopy with the interruption of the component of hyaluronic acid in collagen/ hyaluronic acid blends. It was found that the synchronous cross-peaks, derived from stretching vibrations of C=O at 1 694 cm(-1), wagging of N-H at 1 524 cm(-1) and in-plane deformation of N-H at 1 241 cm(-1) of collagen, were indicative of local conformational changes of collagen. The synchronous negative cross-peak between stretching vibrations of C-OH of hyaluronic acid at 1 045 cm(-1) and streching vibrations of C=O of collagen at 1 694 cm(-1) suggested that the interaction of hydrogen bonding existing between O-H of HA and C=O of collagen with the content of HA varied from 0% to 50%. With the content of HA more than 50%, the cross-peak at 1 045 cm(-1) disappeared in synchronous correlation spectra while the intensity of cross-peak at (1 694, 1 524), (1 694, 1 241), (1 524, 1 241) increased, which indicated that no interaction was found between O-H of HA and collagen, however, the interactions of hydrogen bonding existed between C=O of HA and N-H of collagen, resulting in the conformational changes of collagen.

  3. The interaction of extraversion and anxiety sensitivity on social anxiety: evidence of specificity relative to depression.

    PubMed

    Naragon-Gainey, Kristin; Rutter, Lauren A; Brown, Timothy A

    2014-05-01

    Neuroticism and extraversion have been linked to the etiologies and course of anxiety and mood disorders, such that neuroticism is broadly associated with numerous disorders and extraversion is most strongly associated with social anxiety and depression. While previous research has established the broad associations between temperament and emotional disorders, less is known about the specific, proximal factors that are associated with them, and very few studies have situated these risk factors into a larger etiological model that specifies how they may relate to one another. The current study examined the interaction of extraversion and anxiety sensitivity (AS) in predicting social anxiety symptoms in a large, diagnostically diverse clinical sample (N=826). Symptoms were assessed with self-report and dimensional interview measures, and regression analyses were performed examining the main effects and interaction of extraversion and AS (examining both total and lower-order components) on social anxiety. Results showed that at higher levels of AS, the inverse relationship between extraversion and social anxiety was stronger, and the social concerns component of AS is responsible for this effect. This interaction was also observed with regard to depression symptoms, but the interaction was not present after accounting for shared variance (i.e., comorbidity) between depression and social anxiety symptoms. Clinical and theoretical implications of the results are discussed.

  4. Synthetic peptides from Plasmodium falciparum apical membrane antigen 1 (AMA-1) specifically interacting with human hepatocytes.

    PubMed

    Valbuena, J; Rodríguez, L; Vera, R; Puentes, A; Curtidor, H; Cortés, J; Rosas, J; Patarroyo, M E

    2006-10-01

    Plasmodium falciparum apical membrane antigen 1 (AMA-1) is expressed during both the sporozoite and merozoite stage of the parasite's life cycle. The role placed by AMA-1 during sporozoite invasion of hepatocytes has not been made sufficiently clear to date. Identifying the sequences involved in binding to hepatocytes is an important step towards understanding the structural basis for sporozoite-hepatocyte interaction. Binding assays between P. falciparum AMA-1 peptides and HepG2 cell were performed in this study to identify possible AMA-1 functional regions. Four AMA-1 high activity binding peptides (HABPs) bound specifically to hepatocytes: 4310 ((74)QHAYPIDHEGAEPAPQEQNL(93)), 4316 ((194)TLDEMRHFYKDNKYVKNLDE(213)), 4321 ((294)VVDNWEKVCPRKNLQNAKFGY(313)) and 4332 ((514)AEVTSNNEVVVKEEYKDEYA(533)). Their binding to these cells became saturable and resistant to treatment with neuraminidase. Most of these peptides were located in AMA-1 domains I and III, these being target regions for protective antibody responses. These peptides interacted with 36 and 58 kDa proteins on the erythrocyte surface. Some of the peptides were found in exposed regions of the AMA-1 protein, thereby facilitating their interaction with host cells. It is thus probable that AMA-1 regions defined by the four peptides mentioned above are involved in sporozoite-hepatocyte interaction.

  5. Improving Dispersion of Single-Walled Carbon Nanotubes in a Polymer Matrix Using Specific Interactions

    SciTech Connect

    Rasheed, Asif; Dadmun, Mark D; Ivanov, Ilia N; Britt, Phillip F; Geohegan, David B

    2006-01-01

    A novel approach is presented to improve the dispersion of oxidized single-walled carbon nanotubes (SWNTs) in a copolymer matrix by tuning hydrogen-bonding interactions to enhance dispersion. Nanocomposites of single-walled carbon nanotubes and copolymers of styrene and vinyl phenol (PSVPh) with varying vinyl phenol content were produced and examined. The dispersion of the SWNT in the polymer matrix is quantified by optical microscopy and Raman spectroscopy. Raman spectroscopy is also used to investigate preferred interactions between the SWNTs and the copolymers via the shift in the D* Raman band of the SWNTs in the composites. All composites show regions of SWNT aggregates; however, the aggregate size varies with composition of the PSVPh copolymer and the amount of SWNT oxidation. Optimal dispersion of the SWNT is observed in PSVPh with 20% vinyl phenol and oxidized nanotubes, which correlates with spectroscopic evidence that indicates that this system also incorporates the most interactions between SWNT and polymer matrix. These results are in agreement with previous studies that indicate that optimizing the extent of specific interactions between a polymer matrix and nanoscale filler enables the efficient dispersion of the nanofillers.

  6. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  7. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes.

    PubMed

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-11-14

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.

  8. Isoscapes resolve species-specific spatial patterns in plant-plant interactions in an invaded Mediterranean dune ecosystem.

    PubMed

    Hellmann, Christine; Rascher, Katherine G; Oldeland, Jens; Werner, Christiane

    2016-12-01

    Environmental heterogeneity and plant-plant interactions are key factors shaping plant communities. However, the spatial dimension of plant-plant interactions has seldom been addressed in field studies. This is at least partially rooted in a lack of methods that can accurately resolve functional processes in a spatially explicit manner. Isoscapes, that is, spatially explicit representations of stable isotope data, provide a versatile means to trace functional changes on spatial scales, for example, related to N-cycling (foliar δ(15)N) and water use efficiency (WUEi, foliar δ(13)C). In a case study in a nutrient-depleted Mediterranean dune ecosystem, we analysed the spatial impact of the invasive N2-fixing Acacia longifolia on three native species of different functional types using δ(15)N and δ(13)C isoscapes and spatial autocorrelation analyses. Isoscapes revealed strong spatial patterns in δ(15)N and δ(13)C with pronounced species-specific differences, demonstrating distinct spatial ranges of plant-plant interactions. A coniferous tree and an ericaceous dwarf shrub showed significant enrichment in δ(15)N within a range of 5-8 m surrounding the canopy of A. longifolia, indicating input of N originating from symbiotic N2-fixation by the invader. In the dwarf shrub, which was most responsive to invader influence, enrichment in δ(13)C additionally demonstrated spatially explicit changes to WUEi, while a native N2-fixer was unresponsive to the presence of the invader. Furthermore, δ(15)N and δ(13)C isoscapes yielded different patterns, indicating that plant-plant interactions can have distinct spatial distributions and ranges based on the process measured. Additionally, the magnitude of the effect differed between field situations with high and low invasion pressure. This study highlights that the spatial scale must be accounted for when assessing the effects and outcome of species interactions. Functional tracers such as stable isotopes enable us to

  9. Task-specific rehabilitation of finger-hand function using interactive computer gaming.

    PubMed

    Szturm, Tony; Peters, James F; Otto, Chris; Kapadia, Naaz; Desai, Ankur

    2008-11-01

    The present case study assessed the feasibility of using an interactive gaming system, coupled with the manipulation of common objects, as a form of repetitive, task-specific movement therapy. Three adults with moderate chronic motor impairments of the fingers and hand participated: one 36-year-old man with an incomplete cervical spinal cord injury, one 60-year-old man with a left cortical cerebro-vascular accident, and one 38-year-old woman with left hemiplegic cerebral palsy. Each subject received an intervention of 15 one-hour sessions, which consisted solely of interactive exercise gaming using a diverse range of objects. The objects provided graded and challenging training levels, which emulated the functional properties of objects used in daily life. This in turn produced positive effects on the recovery of active finger range of motion and hand function.

  10. Interaction of nonionic detergents with the specific sites of lysozyme amyloidogenic region - inhibition of amyloid fibrillization.

    PubMed

    Siposova, Katarina; Kozar, Tibor; Musatov, Andrey

    2017-02-01

    Two nonionic detergents, Triton X-100 (TX-100) and n-dodecyl-β-d-maltoside (DDM) were tested for their ability to affect lysozyme amyloid aggregation. We have demonstrated that fibrillization of lysozyme is completely inhibited by low sub-micellar concentrations of both of these detergents. The apparent IC50 values were calculated to be 22μM and 26μM for TX-100 and DDM, respectively. The detergent/protein ratio is not the only parameter controlling inhibition. The precise timing of the detergent addition was found to be also crucial. It appears that the primary inhibitory activity of detergents resulted from inhibition of nuclei formation, in addition to inhibition of fibril polymerization at the early stage of protofibrils growth. The docking study revealed that Asn-59, Trp-63 and Ala-107, all present within the lysozyme amyloidogenic region, were involved in the interaction with both detergents. In addition, TX-100 also interacted with Gln-57 and Asp-103 within lysozyme. Moreover, based on our computational results, TX-100 bridges the Gln-57 and Ala-107 amino acids of the amyloidogenic segment of lysozyme and therefore inhibits more effectively the amyloid fibril formation. Along these lines, the knowledge gained from our study indicates that the detergents or their derivatives may be applicable as a promising strategy for the modulation of lysozyme protein aggregation.

  11. Human brain proteins showing neuron-specific interactions with γ-secretase.

    PubMed

    Inoue, Mitsuhiro; Hur, Ji-Yeun; Kihara, Takahiro; Teranishi, Yasuhiro; Yamamoto, Natsuko G; Ishikawa, Taizo; Wiehager, Birgitta; Winblad, Bengt; Tjernberg, Lars O; Schedin-Weiss, Sophia

    2015-07-01

    The transmembrane protease complex γ-secretase is a key enzyme in Alzheimer disease pathogenesis as it liberates the neurotoxic amyloid β-peptide (Aβ); however, the mechanism of regulation of its activity in various cell types and subcellular compartments is largely unknown. Several γ-secretase inhibitors have been developed, but none have been released due to side-effects that appear to arise from reduced processing of Notch, one of many γ-secretase substrates. Hence, it is desirable to specifically inhibit Aβ production. In our previous studies, we have identified several γ-secretase-associated proteins (GSAPs) from brain, which affect Aβ production without having any major effects on Notch processing. In the present study using detergent-resistant membranes prepared from brain, we have identified four GSAPs that affect Aβ production to a greater extent than Notch processing. We evaluated the interaction between GSAPs and γ-secretase in various cell types and their mRNA expression in various human organs. Using an in situ proximity ligation assay, we demonstrated that many GSAPs showed considerably greater interaction with γ-secretase in neurons than in human embryonic kidney cells stably over-expressing APP, and showed that several GSAPs are highly expressed in human brain. This study underscores the importance of studying protein-protein interactions in relevant cell types, and suggests that reducing Aβ production by interfering with brain- or neuron-specific γ-secretase/GSAP interactions may reduce the risk of unwanted side-effects associated with treatment of Alzheimer disease.

  12. Kpna7 interacts with egg-specific nuclear factors in the rainbow trout (Oncorhynchus mykiss).

    PubMed

    Wang, Lei; Ma, Hao; Fu, Liyuan; Yao, Jianbo

    2014-12-01

    Nuclear proteins are required for the initiation of transcription in early embryos before embryonic genome activation. The regulated transport of nuclear proteins is mediated by factors known as importins (karyopherins). Kpna7, a newly discovered member of the importin α family, is critical for early development in mammals. In this study, we characterize rainbow trout Kpna7. The cDNA for rainbow trout Kpna7 encodes a 519 amino acid protein that contains a conserved importin β binding (IBB) domain and seven armadillo/beta-catenin-like repeat (ARM) motifs. Reverse-transcriptase PCR and Western blot analyses revealed that Kpna7 is specifically expressed in eggs/ovary. Real-time PCR analysis demonstrated that expression of Kpna7 mRNA is high in unfertilized eggs, gradually decreases in early-stage embryos until 3 days post-fertilization, and declines sharply thereafter, reaching a level that is barely detectable in 4-day-old embryos. Using a yeast two-hybrid screening system, we identified two Kpna7-interacting proteins from a rainbow trout egg cDNA library: Stl3 (rhamnose-binding lectin 3) and an uncharacterized protein. Both genes appear to be expressed specifically in eggs/testis. Co-immunoprecipitation assays confirmed the interaction between Kpna7 and Stl3, and co-transfection experiments using EGFP-tagged Stl3 showed that Kpna7 facilitates the nuclear transport of Stl3 through an interaction with the predicted nuclear-localization signal cluster at the carboxy-terminus of Stl3. Our data suggest that Kpna7 may function in early embryonic development as a unique nuclear transporter for egg-specific proteins.

  13. 49 CFR 173.304a - Additional requirements for shipment of liquefied compressed gases in specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., toxic & mixtures or solution thereof filled w/nitrogen, carbon dioxide, or air (see Notes 7 and 8). Not... specification cylinders. (a) Detailed filling requirements. Liquefied gases (except gas in solution) must be... that no DOT 4E or 39 packaging may be filled and shipped with a mixture containing a pyrophoric...

  14. 49 CFR 173.304a - Additional requirements for shipment of liquefied compressed gases in specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., toxic & mixtures or solution thereof filled w/nitrogen, carbon dioxide, or air (see Notes 7 and 8). Not... specification cylinders. (a) Detailed filling requirements. Liquefied gases (except gas in solution) must be... that no DOT 4E or 39 packaging may be filled and shipped with a mixture containing a pyrophoric...

  15. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  16. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  17. Specificity of Interaction between Clostridium perfringens Enterotoxin and Claudin-Family Tight Junction Proteins

    PubMed Central

    Mitchell, Leslie A.; Koval, Michael

    2010-01-01

    Clostridium perfringens enterotoxin (CPE), a major cause of food poisoning, forms physical pores in the plasma membrane of intestinal epithelial cells. The ability of CPE to recognize the epithelium is due to the C-terminal binding domain, which binds to a specific motif on the second extracellular loop of tight junction proteins known as claudins. The interaction between claudins and CPE plays a key role in mediating CPE toxicity by facilitating pore formation and by promoting tight junction disassembly. Recently, the ability of CPE to distinguish between specific claudins has been used to develop tools for studying roles for claudins in epithelial barrier function. Moreover, the high affinity of CPE to selected claudins makes CPE a useful platform for targeted drug delivery to tumors expressing these claudins. PMID:22069652

  18. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers.

    PubMed

    Groner, William D; Christy, Megan E; Kreiner, Catherine M; Liljegren, Sarah J

    2016-01-01

    An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  19. Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids

    NASA Astrophysics Data System (ADS)

    Santoshi, Seneha; Naik, Pradeep K.

    2014-07-01

    Noscapine and its derivatives bind stoichiometrically to tubulin, alter its dynamic instability and thus effectively inhibit the cellular proliferation of a wide variety of cancer cells including many drug-resistant variants. The tubulin molecule is composed of α- and β-tubulin, which exist as various isotypes whose distribution and drug-binding properties are significantly different. Although the noscapinoids bind to a site overlapping with colchicine, their interaction is more biased towards β-tubulin. In fact, their precise interaction and binding affinity with specific isotypes of β-tubulin in the αβ-heterodimer has never been addressed. In this study, the binding affinity of a panel of noscapinoids with each type of tubulin was investigated computationally. We found that the binding score of a specific noscapinoid with each type of tubulin isotype is different. Specifically, amino-noscapine has the highest binding score of -6.4, -7.2, -7.4 and -7.3 kcal/mol with αβI, αβII, αβIII and αβIV isotypes, respectively. Similarly 10 showed higher binding affinity of -6.8 kcal/mol with αβV, whereas 8 had the highest binding affinity of -7.2, -7.1 and -7.2 kcal/mol, respectively with αβVI, αβVII and αβVIII isotypes. More importantly, both amino-noscapine and its clinical derivative, bromo-noscapine have the highest binding affinity of -46.2 and -38.1 kcal/mol against αβIII (overexpression of αβIII has been associated with resistance to a wide range of chemotherapeutic drugs for several human malignancies) as measured using MM-PBSA. Knowledge of the isotype specificity of the noscapinoids may allow for development of novel therapeutic agents based on this class of drugs.

  20. Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy.

    PubMed

    da Silva, Aline C N; Deda, Daiana K; Bueno, Carolina C; Moraes, Ariana S; Da Roz, Alessandra L; Yamaji, Fabio M; Prado, Rogilene A; Viviani, Vadim; Oliveira, Osvaldo N; Leite, Fábio L

    2014-09-01

    The development of sensitive methodologies for detecting agrochemicals has become important in recent years due to the increasingly indiscriminate use of these substances. In this context, nanosensors based on atomic force microscopy (AFM) tips are useful because they provide higher sensitivity with operation at the nanometer scale. In this paper we exploit specific interactions between AFM tips functionalized with the enzyme acetolactate synthase (ALS) to detect the ALS-inhibitor herbicides metsulfuron-methyl and imazaquin. Using atomic force spectroscopy (AFS) we could measure the adhesion force between tip and substrate, which was considerably higher when the ALS-functionalized tip (nanobiosensor) was employed. The increase was approximately 250% and 160% for metsulfuron-methyl and imazaquin, respectively, in comparison to unfunctionalized probes. We estimated the specific enzyme-herbicide force by assuming that the measured force comprises an adhesion force according to the Johnson-Kendall-Roberts (JKR) model, the capillary force and the specific force. We show that the specific, biorecognition force plays a crucial role in the higher sensitivity of the nanobiosensor, thus opening the way for the design of similarly engineered tips for detecting herbicides and other analytes.

  1. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https

  2. Specificity in transmembrane helix-helix interactions mediated by aromatic residues.

    PubMed

    Sal-Man, Neta; Gerber, Doron; Bloch, Itai; Shai, Yechiel

    2007-07-06

    Aromatic residues have been previously shown to mediate the self-assembly of different soluble proteins through pi-pi interactions (McGaughey, G. B., Gagne, M., and Rappe, A. K. (1998) J. Biol. Chem. 273, 15458-15463). However, their role in transmembrane (TM) assembly is not yet clear. In this study, we performed statistical analysis of the frequency of occurrence of aromatic pairs in a bacterial TM data base that provided an initial indication that the appearance of a specific aromatic pattern, Aromatic-XX-Aromatic, is not coincidental, similar to the well characterized QXXS motif. The QXXS motif was previously shown to be both critical and sufficient for stabilizing TM self-assembly. Using the ToxR system, we monitored the dimerization propensities of TM domains that contain mutations of interacting residues to aromatic amino acids and demonstrated that aromatic residues can adequately stabilize self-association. Importantly, we have provided an example of a natural TM domain, the cholera toxin secretion protein EpsM, whose TM self-assembly is mediated by an aromatic motif (WXXW). This is, in fact, the first evidence that aromatic residues are involved in the dimerization of a wild type TM domain. The association mediated by aromatic residues was found to be sensitive to the TM sequence, suggesting that aromatic residue motifs can provide a general means for specificity in TM assembly. Molecular dynamics provided a structural explanation for this backbone sequence sensitivity.

  3. Multivalent drug design and inhibition of cholera toxin by specific and transient protein-ligand interactions.

    PubMed

    Liu, Jiyun; Begley, Darren; Mitchell, Daniel D; Verlinde, Christophe L M J; Varani, Gabriele; Fan, Erkang

    2008-05-01

    Multivalent inhibitors of the cholera toxin B pentamer are potential therapeutic drugs for treating cholera and serve as models for demonstrating multivalent ligand effects through a structure-based approach. A crucial yet often overlooked aspect of multivalent drug design is the length, rigidity and chemical composition of the linker used to connect multiple binding moieties. To specifically study the role of chemical linkers in multivalent ligand design, we have synthesized a series of compounds with one and two binding motifs connected by several different linkers. These compounds have affinity for and potency against the cholera toxin B pentamer despite the fact that none can simultaneously bind two toxin receptor sites. Results from saturation transfer difference NMR reveal transient, non-specific interactions between the cholera toxin and linker groups contribute significantly to overall binding affinity of monovalent compounds. However, the same random protein-ligand interactions do not appear to affect binding of bivalent molecules. Moreover, the binding affinities and potencies of these 'non-spanning' bivalent ligands appear to be wholly independent of linker length. Our detailed analysis identifies multiple effects that account for the improved inhibitory potencies of bivalent ligands and suggest approaches to further improve the activity of this class of compounds.

  4. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  5. Modified inoculation and disease assessment methods reveal host specificity in Erwinia tracheiphila-Cucurbitaceae interactions.

    PubMed

    Nazareno, Eric S; Dumenyo, C Korsi

    2015-12-01

    We conducted a greenhouse trial to determine specific compatible interactions between Erwinia tracheiphila strains and cucurbit host species. Using a modified inoculation system, E. tracheiphila strains HCa1-5N, UnisCu1-1N, and MISpSq-N were inoculated to cucumber (Cucumis sativus) cv. 'Sweet Burpless', melon (Cucumis melo) cv. 'Athena Hybrid', and squash (Cucubita pepo) cv. 'Early Summer Crookneck'. We observed symptoms and disease progression for 30 days; recorded the number of days to wilting of the inoculated leaf (DWIL), days to wilting of the whole plant (DWWP), and days to death of the plant (DDP). We found significant interactions between host cultivar and pathogen strains, which imply host specificity. Pathogen strains HCa1-5N and UnisCu1-1N isolated from Cucumis species exhibited more virulence in cucumber and melon than in squash, while the reverse was true for strain MISpSq-N, an isolate from Cucurbita spp. Our observations confirm a previous finding that E. tracheiphila strains isolated from Cucumis species were more virulent on Cucumis hosts and those from Cucubita were more virulent on Cucubita hosts. This confirmation helps in better understanding the pathosystem and provides baseline information for the subsequent development of new disease management strategies for bacterial wilt. We also demonstrated the efficiency of our modified inoculation and disease scoring methods.

  6. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  7. Mining topological structures of protein-protein interaction networks for human brain-specific genes.

    PubMed

    Cui, W J; Gong, X J; Yu, H; Zhang, X C

    2015-10-16

    Compared to other placental mammals, humans have unique thinking and cognitive abilities because of their developed cerebral cortex composed of billions of neurons and synaptic connections. As the primary effectors of the mechanisms of life, proteins and their interactions form the basis of cellular and molecular functions in the living body. In this paper, we developed a pipeline for mining topological structures, identifying functional modules, and analyzing their functions from publically available datasets. A human brain-specific protein-protein interaction network with 1482 nodes and 3105 edges was built using a MapReduce based shortest path algorithm. Within this, 7 functional cliques were identified using a network clustering method, 98 hub proteins were obtained by the calculation of betweenness and connectivity, and 5 closest relationship to clique connector proteins were recognized by the combination scores of topological distance and gene ontology similarity. Furthermore, we discovered functional modules interacting with TP53 protein, which involves several fragmented research study conclusions and might be an important clue for further in vivo or in silico experiments to confirm these associations.

  8. Molecular recognition by van der Waals interaction between polymers with sequence-specific polarizabilities.

    PubMed

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    2015-06-07

    We analyze van der Waals interactions between two rigid polymers with sequence-specific, anisotropic polarizabilities along the polymer backbones, so that the dipole moments fluctuate parallel to the polymer backbones. Assuming that each polymer has a quenched-in polarizability sequence which reflects, for example, the polynucleotide sequence of a double-stranded DNA molecule, we study the van der Waals interaction energy between a pair of such polymers with rod-like structure for the cases where their respective polarizability sequences are (i) distinct and (ii) identical, with both zero and non-zero correlation length of the polarizability correlator along the polymer backbones in the latter case. For identical polymers, we find a novel r(-5) scaling behavior of the van der Waals interaction energy for small inter-polymer separation r, in contradistinction to the r(-4) scaling behavior of distinct polymers, with furthermore a pronounced angular dependence favoring attraction between sufficiently aligned identical polymers. Such behavior can assist the molecular recognition between polymers.

  9. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    SciTech Connect

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y. )

    1991-05-25

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100{degree}C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein.

  10. Molecular recognition by van der Waals interaction between polymers with sequence-specific polarizabilities

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    2015-06-01

    We analyze van der Waals interactions between two rigid polymers with sequence-specific, anisotropic polarizabilities along the polymer backbones, so that the dipole moments fluctuate parallel to the polymer backbones. Assuming that each polymer has a quenched-in polarizability sequence which reflects, for example, the polynucleotide sequence of a double-stranded DNA molecule, we study the van der Waals interaction energy between a pair of such polymers with rod-like structure for the cases where their respective polarizability sequences are (i) distinct and (ii) identical, with both zero and non-zero correlation length of the polarizability correlator along the polymer backbones in the latter case. For identical polymers, we find a novel r-5 scaling behavior of the van der Waals interaction energy for small inter-polymer separation r, in contradistinction to the r-4 scaling behavior of distinct polymers, with furthermore a pronounced angular dependence favoring attraction between sufficiently aligned identical polymers. Such behavior can assist the molecular recognition between polymers.

  11. Allele-Specific Suppression by Formation of New Protein-Protein Interactions in Yeast

    PubMed Central

    Sandrock, T. M.; O'Dell, J. L.; Adams, AEM.

    1997-01-01

    Yeast fimbrin is encoded by the SAC6 gene, mutations of which suppress temperature-sensitive mutations in the actin gene (ACT1). To examine the mechanism of suppression, we have conducted a biochemical analysis of the interaction between various combinations of wild-type and mutant actin and Sac6 proteins. Previously, we showed that actin mutations that are suppressed by sac6 mutations encode proteins with a reduced affinity for wild-type Sac6p. In the present study, we have found that mutant Sac6 proteins bind more tightly to mutant actin than does wild-type Sac6p, and thus compensate for weakened interactions caused by the mutant actin. Remarkably, we have also found that mutant Sac6 proteins bind more tightly to wild-type actin than does wild-type Sac6p. This result indicates that suppression does not occur through the restoration of the original contact site, but rather through the formation of a novel contact site. This finding argues against suppression occurring through a ``lock-and-key'' mechanism and suggests a mechanism involving more global increases in affinity between the two proteins. We propose that the most common kind of suppressors involving interacting proteins will likely occur through this less specific mechanism. PMID:9409826

  12. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    SciTech Connect

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  13. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is stabilized by additional proline residues and an interdomain salt bridge.

    PubMed

    Kuravsky, Mikhail; Barinova, Kseniya; Marakhovskaya, Aleksandra; Eldarov, Mikhail; Semenyuk, Pavel; Muronetz, Vladimir; Schmalhausen, Elena

    2014-10-01

    Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) exhibits enhanced stability compared to the somatic isoenzyme (GAPD). A comparative analysis of the structures of these isoenzymes revealed characteristic features, which could be important for the stability of GAPDS: six specific proline residues and three buried salt bridges. To evaluate the impact of these structural elements into the stability of this isoenzyme, we obtained two series of mutant GAPDS: 1) six mutants each containing a substitution of one of the specific prolines by alanine, and 2) three mutants each containing a mutation breaking one of the salt bridges. Stability of the mutants was evaluated by differential scanning calorimetry and by their resistance towards guanidine hydrochloride (GdnHCl). The most effect on thermostability was observed for the mutants P326A and P164A: the Tm values of the heat-absorption curves decreased by 6.0 and 3.3°C compared to the wild type protein, respectively. The resistance towards GdnHCl was affected most by the mutation D311N breaking the salt bridge between the catalytic and NAD(+)-binding domains: the inactivation rate constant in the presence of GdnHCl increased six-fold, and the value of GdnHCl concentration corresponding to the protein half-denaturation decreased from 1.83 to 1.35M. Besides, the mutation D311N enhanced the enzymatic activity of the protein two-fold. The results suggest that the residues P164 (β-turn), P326 (first position of α-helix), and the interdomain salt bridge D311-H124 are significant for the enhanced stability of GAPDS. The salt bridge D311-H124 enhances stability of the active site of GAPDS at the expense of the catalytic activity.

  14. CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions

    PubMed Central

    Fiorito, Elisa; Sharma, Yogita; Gilfillan, Siv; Wang, Shixiong; Singh, Sachin Kumar; Satheesh, Somisetty V.; Katika, Madhumohan R.; Urbanucci, Alfonso; Thiede, Bernd; Mills, Ian G.; Hurtado, Antoni

    2016-01-01

    Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells. PMID:27638884

  15. Mass-action equilibrium and non-specific interactions in protein binding networks

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei

    2009-03-01

    Large-scale protein binding networks serve as a paradigm of complex properties of living cells. These networks are naturally weighted with edges characterized by binding strength and protein-nodes -- by their concentrations. However, the state-of-the-art high-throughput experimental techniques generate just a binary (yes or no) information about individual interactions. As a result, most of the previous research concentrated just on topology of these networks. In a series of recent publications [1-4] my collaborators and I went beyond purely topological studies and calculated the mass-action equilibrium of a genome-wide binding network using experimentally determined protein concentrations, localizations, and reliable binding interactions in baker's yeast. We then studied how this equilibrium responds to large perturbations [1-2] and noise [3] in concentrations of proteins. We demonstrated that the change in the equilibrium concentration of a protein exponentially decays (and sign-alternates) with its network distance away from the perturbed node. This explains why, despite a globally connected topology, individual functional modules in such networks are able to operate fairly independently. In a separate study [4] we quantified the interplay between specific and non-specific binding interactions under crowded conditions inside living cells. We show how the need to limit the waste of resources constrains the number of types and concentrations of proteins that are present at the same time and at the same place in yeast cells. [1] S Maslov, I. Ispolatov, PNAS 104:13655 (2007). [2] S. Maslov, K. Sneppen, I. Ispolatov, New J. of Phys. 9: 273 (2007). [3] K-K. Yan, D. Walker, S. Maslov, PRL accepted (2008). [4] J. Zhang, S. Maslov, and E. I. Shakhnovich, Mol Syst Biol 4, 210 (2008).

  16. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti

  17. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features

    PubMed Central

    Iwata, Hiroaki; Gotoh, Osamu

    2012-01-01

    Spliced alignment plays a central role in the precise identification of eukaryotic gene structures. Even though many spliced alignment programs have been developed, recent rapid progress in DNA sequencing technologies demands further improvements in software tools. Benchmarking algorithms under various conditions is an indispensable task for the development of better software; however, there is a dire lack of appropriate datasets usable for benchmarking spliced alignment programs. In this study, we have constructed two types of datasets: simulated sequence datasets and actual cross-species datasets. The datasets are designed to correspond to various real situations, i.e. divergent eukaryotic species, different types of reference sequences, and the wide divergence between query and target sequences. In addition, we have developed an extended version of our program Spaln, which incorporates two additional features to the scoring scheme of the original version, and examined this extended version, Spaln2, together with the original Spaln and other representative aligners based on our benchmark datasets. Although the effects of the modifications are not individually striking, Spaln2 is consistently most accurate and reasonably fast in most practical cases, especially for plants and fungi and for increasingly divergent pairs of target and query sequences. PMID:22848105

  18. Bovine Lhx8, a Germ Cell-Specific Nuclear Factor, Interacts with Figla

    PubMed Central

    Fu, Liyuan; Zhang, Mingxiang; Mastrantoni, Kristen; Perfetto, Mark; Wei, Shuo; Yao, Jianbo

    2016-01-01

    LIM homeobox 8 (Lhx8) is a germ cell-specific transcription factor essential for the development of oocytes during early oogenesis. In mice, Lhx8 deficiency causes postnatal oocyte loss and affects the expression of many oocyte-specific genes. The aims of this study were to characterize the bovine Lhx8 gene, determine its mRNA expression during oocyte development and early embryogenesis, and evaluate its interactions with other oocyte-specific transcription factors. The bovine Lhx8 gene encodes a protein of 377 amino acids. A splice variant of Lhx8 (Lhx8_v1) was also identified. The predicted bovine Lhx8 protein contains two LIM domains and one homeobox domain. However, one of the LIM domains in Lhx8_v1 is incomplete due to deletion of 83 amino acids near the N terminus. Both Lhx8 and Lhx8_v1 transcripts were only detected in the gonads but none of the somatic tissues examined. The expression of Lhx8 and Lhx8_v1 appears to be restricted to oocytes as none of the transcripts was detectable in granulosa or theca cells. The maternal Lhx8 transcript is abundant in GV and MII stage oocytes as well as in early embryos but disappear by morula stage. A nuclear localization signal that is required for the import of Lhx8 into nucleus was identified, and Lhx8 is predominantly localized in the nucleus when ectopically expressed in mammalian cells. Finally, a novel interaction between Lhx8 and Figla, another transcription factor essential for oogenesis, was detected. The results provide new information for studying the mechanisms of action for Lhx8 in oocyte development and early embryogenesis. PMID:27716808

  19. Solubility-insolubility interconversion of sophoragrin, a mannose/glucose-specific lectin in Sophora japonica (Japanese pagoda tree) bark, regulated by the sugar-specific interaction.

    PubMed

    Ueda, Haruko; Fukushima, Hisako; Hatanaka, Yasumaru; Ogawa, Haruko

    2004-09-15

    Sophoragrin, a mannose/glucose-specific lectin in Sophora japonica (Japanese pagoda tree) bark, was the first lectin found to show self-aggregation that is dependent on the sugar concentration accompanying the interconversion between solubility and insolubility [Ueno, Ogawa, Matsumoto and Seno (1991) J. Biol. Chem. 266, 3146-3153]. The interconversion is regulated by the concentrations of Ca(2+) and specific sugars: mannose, glucose or sucrose. The specific glycotopes for sophoragrin were found in the sophoragrin subunit and an endogenous galactose-specific lectin, B-SJA-I (bark S. japonica agglutinin I), and the lectin subunit that binds to the glycotope was identified by photoaffinity glycan probes. Remarkably, the insoluble polymer of sophoragrin is dissociated by interaction with B-SJA-I into various soluble complexes. Based on these results, self-aggregation of sophoragrin was shown to be a unique homopolymerization due to the sugar-specific interaction. An immunostaining study indicated that sophoragrin localizes mainly in vacuoles of parenchymal cells coincidently with B-SJA-I. These results indicate that sophoragrin can sequester endogenous glycoprotein ligands via sugar-specific interactions, thus providing new insights into the occurrence and significance of the intravacuolar interaction shown by a legume lectin.

  20. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study.

    PubMed Central

    Georis, J.; de Lemos Esteves, F.; Lamotte-Brasseur, J.; Bougnet, V.; Devreese, B.; Giannotta, F.; Granier, B.; Frère, J. M.

    2000-01-01

    In a general approach to the understanding of protein adaptation to high temperature, molecular models of the closely related mesophilic Streptomyces sp. S38 Xyl1 and thermophilic Thermomonospora fusca TfxA family 11 xylanases were built and compared with the three-dimensional (3D) structures of homologous enzymes. Some of the structural features identified as potential contributors to the higher thermostability of TfxA were introduced in Xyl1 by site-directed mutagenesis in an attempt to improve its thermostability and thermophilicity. A new Y11-Y16 aromatic interaction, similar to that present in TfxA and created in Xyl1 by the T11Y mutation, improved both the thermophilicity and thermostability. Indeed, the optimum activity temperature (70 vs. 60 degrees C) and the apparent Tm were increased by about 9 degrees C, and the mutant was sixfold more stable at 57 degrees C. The combined mutations A82R/F168H/N169D/delta170 potentially creating a R82-D169 salt bridge homologous to that present in TfxA improved the thermostability but not the thermophilicity. Mutations R82/D170 and S33P seemed to be slightly destabilizing and devoid of influence on the optimal activity temperature of Xyl1. Structural analysis revealed that residues Y11 and Y16 were located on beta-strands B1 and B2, respectively. This interaction should increase the stability of the N-terminal part of Xyl1. Moreover, Y11 and Y16 seem to form an aromatic continuum with five other residues forming putative subsites involved in the binding of xylan (+3, +2, +1, -1, -2). Y11 and Y16 might represent two additional binding subsites (-3, -4) and the T11Y mutation could thus improve substrate binding to the enzyme at higher temperature and thus the thermophilicity of Xyl1. PMID:10752608

  1. Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity.

    PubMed

    Romeo, Margherita; Stravalaci, Matteo; Beeg, Marten; Rossi, Alessandro; Fiordaliso, Fabio; Corbelli, Alessandro; Salmona, Mario; Gobbi, Marco; Cagnotto, Alfredo; Diomede, Luisa

    2017-03-06

    The 24-residue peptide humanin (HN) has been proposed as peptide-based inhibitors able to interact directly with amyloid-β (Aβ) oligomers and interfere with the formation and/or biological properties of toxic Aβ species. When administered exogenously HN, or its synthetic S14G-derivative (HNG), exerted multiple cytoprotective effects, counteracting the Aβ-induced toxicity. Whether these peptides interact directly with Aβ, particularly with the soluble oligomeric assemblies, remains largely unknown. We here investigated the ability of HN and HNG to interact directly with highly aggregating Aβ42, and interfere with the formation and toxicity of its oligomers. Experiments were run in cell-free conditions and in vivo in a transgenic C. elegans strain in which the Aβ toxicity was specifically due to oligomeric species. Thioflavin-T assay indicated that both HN and HNG delay the formation and reduce the final amount of Aβ42 fibrils. In vitro surface plasmon resonance studies indicated that they interact with Aβ42 oligomers favoring the formation of amorphous larger assemblies, observed with turbidity and electron microscopy. In vivo studies indicated that both HN and HNG decrease the relative abundance of A11-positive prefibrillar oligomers as well as OC-positive fibrillar oligomers and had similar protective effects. However, while HN possibly decreased the oligomers by promoting their assembly into larger aggregates, the reduction of oligomers caused by HNG can be ascribed to a marked decrease of the total Aβ levels, likely the consequence of the HNG-induced overexpression of the Aβ-degrading enzyme neprilysin. These findings provide information on the mechanisms underlying the anti-oligomeric effects of HN and HNG and illustrate the role of S14G substitution in regulating the in vivo mechanism of action.

  2. Characterization of the heterogeneity and specificity of interpolypeptide interactions in amyloid protofibrils by measurement of site-specific fluorescence anisotropy decay kinetics.

    PubMed

    Jha, Anjali; Udgaonkar, Jayant B; Krishnamoorthy, G

    2009-10-30

    The aggregation of proteins often results in highly ordered fibrillar structures. While significant insights have been obtained on structural aspects of amyloid fibrils, little is known about the structures of protofibrils, which are presumed to be the precursors of fibrils. An understanding of the molecular mechanism of the formation of protofibrils and fibrils requires information on the landscape of interpeptide interactions. This work addresses this question by using, as a model protein, barstar, which forms protofibrils and fibrils at low (<3) pH. Use was made of the heterogeneity of aggregate populations encountered during fibril formation. Population heterogeneity was scored through rotational dynamics monitored by time-resolved fluorescence anisotropy of an environment-sensitive fluorophore, 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (1,5-IAEDANS), attached to specific locations in the protein. Firstly, it was observed that barstar, when labeled at certain locations with 1,5-IAEDANS, did not form mixed protofibrils with the corresponding unlabeled protein. Labeled and unlabeled proteins formed protofibrils as separate populations. A two-population model of fluorescence anisotropy decay kinetics exhibiting a 'dip-and-rise' behavior was the main readout in arriving at this conclusion. Additional support for this conclusion came from the fluorescence lifetime of the probe 1,5-IAEDANS. Subsequently, the location of the fluorophore was moved along the length of the protein in nine mutant proteins, and the capability to form mixed fibrils was assessed. The results revealed that about two-thirds of the protein sequence at the C-terminal end of the protein was intimately involved in the formation of ordered protofibrils, probably forming the core, while the remaining one-third of the protein (i.e., the N-terminal region) remained largely noninteractive and flexible. This methodology can be used as a general strategy to identify regions of a

  3. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM.

    PubMed

    Zhu, Yuwen; Yao, Sheng; Augustine, Mathew M; Xu, Haiying; Wang, Jun; Sun, Jingwei; Broadwater, Megan; Ruff, William; Luo, Liqun; Zhu, Gefeng; Tamada, Koji; Chen, Lieping

    2016-04-01

    The central nervous system (CNS) is an immune-privileged organ with the capacity to prevent excessive inflammation. Aside from the blood-brain barrier, active immunosuppressive mechanisms remain largely unknown. We report that a neuron-specific molecule, synaptic adhesion-like molecule 5 (SALM5), is a crucial contributor to CNS immune privilege. We found that SALM5 suppressed lipopolysaccharide-induced inflammatory responses in the CNS and that a SALM-specific monoclonal antibody promoted inflammation in the CNS, and thereby aggravated clinical symptoms of mouse experimental autoimmune encephalomyelitis. In addition, we identified herpes virus entry mediator as a functional receptor that mediates SALM5's suppressive function. Our findings reveal a molecular link between the neuronal system and the immune system, and provide potential therapeutic targets for the control of CNS diseases.

  4. POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis

    PubMed Central

    Kim, Yun Ju; Wang, Ruozhong; Gao, Lei; Li, Dongming; Xu, Chi; Mang, Hyunggon; Jeon, Jien; Chen, Xiangsong; Kwak, June M.; Mo, Beixin; Xiao, Langtao

    2016-01-01

    Histone acetylation is a major epigenetic control mechanism that is tightly linked to the promotion of gene expression. Histone acetylation levels are balanced through the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Arabidopsis HDAC genes (AtHDACs) compose a large gene family, and distinct phenotypes among AtHDAC mutants reflect the functional specificity of individual AtHDACs. However, the mechanisms underlying this functional diversity are largely unknown. Here, we show that POWERDRESS (PWR), a SANT (SWI3/DAD2/N-CoR/TFIII-B) domain protein, interacts with HDA9 and promotes histone H3 deacetylation, possibly by facilitating HDA9 function at target regions. The developmental phenotypes of pwr and hda9 mutants were highly similar. Three lysine residues (K9, K14, and K27) of H3 retained hyperacetylation status in both pwr and hda9 mutants. Genome-wide H3K9 and H3K14 acetylation profiling revealed elevated acetylation at largely overlapping sets of target genes in the two mutants. Highly similar gene-expression profiles in the two mutants correlated with the histone H3 acetylation status in the pwr and hda9 mutants. In addition, PWR and HDA9 modulated flowering time by repressing AGAMOUS-LIKE 19 expression through histone H3 deacetylation in the same genetic pathway. Finally, PWR was shown to physically interact with HDA9, and its SANT2 domain, which is homologous to that of subunits in animal HDAC complexes, showed specific binding affinity to acetylated histone H3. We therefore propose that PWR acts as a subunit in a complex with HDA9 to result in lysine deacetylation of histone H3 at specific genomic targets. PMID:27930340

  5. Possible role of mother-daughter vocal interactions on the development of species-specific song in gibbons.

    PubMed

    Koda, Hiroki; Lemasson, Alban; Oyakawa, Chisako; Rizaldi; Pamungkas, Joko; Masataka, Nobuo

    2013-01-01

    Mother-infant vocal interactions play a crucial role in the development of human language. However, comparatively little is known about the maternal role during vocal development in nonhuman primates. Here, we report the first evidence of mother-daughter vocal interactions contributing to vocal development in gibbons, a singing and monogamous ape species. Gibbons are well known for their species-specific duets sung between mates, yet little is known about the role of intergenerational duets in gibbon song development. We observed singing interactions between free-ranging mothers and their sub-adult daughters prior to emigration. Daughters sang simultaneously with their mothers at different rates. First, we observed significant acoustic variation between daughters. Co-singing rates between mother and daughter were negatively correlated with the temporal precision of the song's synchronization. In addition, songs of daughters who co-sang less with their mothers were acoustically more similar to the maternal song than any other adult female's song. All variables have been reported to be influenced by social relationships of pairs. Therefore those correlations would be mediated by mother-daughter social relationship, which would be modifiable in daughter's development. Here we hypothesized that daughters who co-sing less often, well-synchronize, and converge acoustically with the maternal acoustic pattern would be at a more advanced stage of social independence in sub-adult females prior to emigration. Second, we observed acoustic matching between mothers and daughters when co-singing, suggesting short-term vocal flexibility. Third, we found that mothers adjusted songs to a more stereotyped pattern when co-singing than when singing alone. This vocal adjustment was stronger for mothers with daughters who co-sang less. These results indicate the presence of socially mediated vocal flexibility in gibbon sub-adults and adults, and that mother-daughter co

  6. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  7. Zoledronic acid inhibits aromatase activity and phosphorylation: potential mechanism for additive zoledronic acid and letrozole drug interaction.

    PubMed

    Schech, Amanda J; Nemieboka, Brandon E; Brodie, Angela H

    2012-11-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole. This combination significantly increased inhibition of aromatase activity of AC-1 cells when compared to letrozole alone. Treatment of 1 nM letrozole in combination with 1 μM or 10 μM ZA resulted in an additive drug interaction on inhibition of cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine residues. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1 μM and 10 μM ZA on cell viability following treatment for 72 h, as shown by a shift to the right in the estradiol dose-response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability.

  8. Specificity of Interactions between mDia Isoforms and Rho Proteins*

    PubMed Central

    Lammers, Michael; Meyer, Simon; Kühlmann, Dorothee; Wittinghofer, Alfred

    2008-01-01

    Formins are key regulators of actin nucleation and polymerization. They contain formin homology 1 (FH1) and 2 (FH2) domains as the catalytic machinery for the formation of linear actin cables. A subclass of formins constitutes the Diaphanous-related formins, members of which are regulated by the binding of a small GTP-binding protein of the Rho subfamily. Binding of these molecular switch proteins to the regulatory N-terminal mDiaN, including the GTPase-binding domain, leads to the release of auto-inhibition. From the three mDia isoforms, mDia1 is activated only by Rho (RhoA, -B, and -C), in contrast to mDia2 and -3, which is also activated by Rac and Cdc42. Little is known about the determinants of specificity. Here we report on the interactions of RhoA, Rac1, and Cdc42 with mDia1 and an mDia1 mutant (mDiaN-Thr-Ser-His (TSH)), which based on structural information should mimic mDia2 and -3. Specificity is analyzed by biochemical studies and a structural analysis of a complex between Cdc42·Gpp(NH)p and mDiaN-TSH. A triple NNN motif in mDia1 (amino acids 164-166), corresponding to the TSH motif in mDia2/3 (amino acids 183-185 and 190-192), and the epitope interacting with the Rho insert helix are essential for high affinity binding. The triple N motif of mDia1 allows tight interaction with Rho because of the presence of Phe-106, whereas the corresponding His-104 in Rac and Cdc42 forms a complementary interface with the TSH motif in mDia2/3. We also show that the F106H and H104F mutations drastically alter the affinities and thermodynamics of mDia interactions. PMID:18829452

  9. Specific BACE1 genotypes provide additional risk for late-onset Alzheimer disease in APOE epsilon 4 carriers.

    PubMed

    Gold, Gabriel; Blouin, Jean-Louis; Herrmann, François R; Michon, Agnès; Mulligan, Reinhild; Duriaux Saïl, Geneviève; Bouras, Constantin; Giannakopoulos, Panteleimon; Antonarakis, Stylianos E

    2003-05-15

    Alzheimer disease (AD) is characterized neuropathologically by neurofibrillary tangles and senile plaques. A key component of plaques is A beta, a polypeptide derived from A beta-precursor protein (APP) through proteolytic cleavage catalyzed by beta and gamma-secretase. We hypothesized that sequence variation in genes BACE1 (on chromosome 11q23.3) and BACE2 (on chromosome 21q22.3), which encode two closely related proteases that seem to act as the APP beta-secretase, may represent a genetic risk factor for AD. We analyzed the frequencies of single nucleotide polymorphisms (SNPs) in BACE1 and BACE2 genes in a community-based sample of 96 individuals with late-onset AD and 170 controls selected randomly among residents of the same community. The genotype data in both study groups did not demonstrate any association between AD and BACE1 or BACE2. After stratification for APOE status, however, an association between a BACE1 polymorphism located within codon V262 and AD in APOE epsilon 4 carriers was observed (P = 0.03). We conclude that sequence variation in the BACE1 or BACE 2 gene is not a significant risk factor for AD; however, a combination of a specific BACE1 allele and APOE epsilon 4 may increase the risk for Alzheimer disease over and above that attributed to APOE epsilon 4 alone.

  10. Systematic Dissection of Coding Exons at Single Nucleotide Resolution Supports an Additional Role in Cell-Specific Transcriptional Regulation

    PubMed Central

    Kim, Mee J.; Findlay, Gregory M.; Martin, Beth; Zhao, Jingjing; Bell, Robert J. A.; Smith, Robin P.; Ku, Angel A.; Shendure, Jay; Ahituv, Nadav

    2014-01-01

    In addition to their protein coding function, exons can also serve as transcriptional enhancers. Mutations in these exonic-enhancers (eExons) could alter both protein function and transcription. However, the functional consequence of eExon mutations is not well known. Here, using massively parallel reporter assays, we dissect the enhancer activity of three liver eExons (SORL1 exon 17, TRAF3IP2 exon 2, PPARG exon 6) at single nucleotide resolution in the mouse liver. We find that both synonymous and non-synonymous mutations have similar effects on enhancer activity and many of the deleterious mutation clusters overlap known liver-associated transcription factor binding sites. Carrying a similar massively parallel reporter assay in HeLa cells with these three eExons found differences in their mutation profiles compared to the liver, suggesting that enhancers could have distinct operating profiles in different tissues. Our results demonstrate that eExon mutations could lead to multiple phenotypes by disrupting both the protein sequence and enhancer activity and that enhancers can have distinct mutation profiles in different cell types. PMID:25340400

  11. Immobilization of sugar-non-specific nucleases by utilizing the streptavidin--biotin interaction.

    PubMed

    Gast, F U; Franke, I; Meiss, G; Pingoud, A

    2001-05-04

    Due to their high enzymatic activity, the sugar-non-specific endonucleases from Serratia marcescens and Anabaena can be used for a number of applications, such as the removal of contaminating genetic material from biological preparations, footprinting studies, and the determination of nucleic acids in biochemical samples. These methods would benefit from immobilized nucleases. For this purpose, a single cysteine residue was added at the N-terminus of the Serratia and Anabaena nucleases and subsequently modified with a maleimide-biotin conjugate. Alternatively, a biotin acceptor domain was fused to the Anabaena nuclease, allowing biotinylation during expression in E. coli without a further chemical step. The attachment of biotin-modified nucleases to streptavidin-coated paramagnetic beads and to streptavidin-coated surface plasmon resonance sensor chips (to study interactions with substrate and inhibitor) worked well when aggregates present in the protein preparations were removed by ultrafiltration. These methods should be of general use for similar enzyme systems.

  12. Specific interaction between antidigoxin antibodies and digoxin-like immunoreactive substances in cord serum.

    PubMed

    Scherrmann, J M; Sandouk, P; Guedeney, X

    1986-01-01

    Digoxin-like immunoreactive substances (DLIS) have been quantified by two different digoxin radioimmunoassays (RIA) in 47 cord sera. The mean DLIS value (in digoxin equivalents) ranged from 0.960 (SD 0.184) to 0.181 (SD 0.104) nmol/L between the two different kits and different lot numbers of the reagents. One of the RIA methods showed an obvious lot-to-lot effect. The use of a longer incubation interval and a higher incubation temperature markedly decreased cross reactions with DLIS. The effect of modifying the incubation conditions in RIA is similar to that described for assays of steroids because the dissociation rates of the immunocomplex play a critical role. Data suggest a specific interaction between DLIS and digoxin antibodies. Control of the incubation conditions is recommended, to decrease or increase the amount of the DLIS in cord serum specimens.

  13. Kinetoplastid Specific RNA-Protein Interactions in Trypanosoma cruzi Ribosome Biogenesis.

    PubMed

    Umaer, Khan; Williams, Noreen

    2015-01-01

    RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components.

  14. Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase.

    PubMed

    Mládková, Jana; Hladílková, Jana; Diamond, Carrie E; Tryon, Katherine; Yamada, Kazuhiro; Garrow, Timothy A; Jungwirth, Pavel; Koutmos, Markos; Jiráček, Jiří

    2014-10-01

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S-adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent K(M) for K⁺ of about 100 µM. The presence of potassium ions lowers the apparent K(M) of the enzyme for homocysteine, but it does not affect the apparent K(M) for betaine or the apparent k(cat) for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K⁺ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K⁺ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26-Gly27-Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site-specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme.

  15. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

    PubMed Central

    Mossman, Jim A.; Tross, Jennifer G.; Li, Nan; Wu, Zhijin; Rand, David M.

    2016-01-01

    The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses. PMID:27558138

  16. Prevalence, Specificity and Determinants of Lipid-Interacting PDZ Domains from an In-Cell Screen and In Vitro Binding Experiments

    PubMed Central

    Kashyap, Rudra; Polanowska, Jolanta; Betzi, Stéphane; Lembo, Frédérique; Vermeiren, Elke; Chiheb, Driss; Lenfant, Nicolas; Morelli, Xavier; Borg, Jean-Paul; Reboul, Jérôme; Zimmermann, Pascale

    2013-01-01

    Background PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. Methodology/Principal Findings We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. Conclusions/Significance Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands. PMID:23390500

  17. Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors.

    PubMed

    Kaufmann, Walter E; Cortell, Ranon; Kau, Alice S M; Bukelis, Irena; Tierney, Elaine; Gray, Robert M; Cox, Christiane; Capone, George T; Stanard, Pia

    2004-09-01

    The present study extends our previous work on social behavior impairment in young males with fragile X syndrome (FraX). Specifically, we evaluated whether the autistic phenomenon in FraX is expressed as a range of behavioral impairments as in idiopathic autism (Aut). We also examined whether there are behaviors, identified as items of the Autism Diagnostic Interview-Revised (ADI-R), that in FraX predispose to or differentiate subjects with autism spectrum disorder (ASD) diagnosis. Finally, regression models were utilized to test the relative contribution of reduced communication and socialization skills to ADI-R scores and diagnoses. A cohort of 56 boys (3-8 years) with FraX was examined in terms of scores on measures of cognition (IQ was a co-variate in most analyses.), autistic behavior, problem/aberrant behavior, adaptive behavior, and language development. We found that, indeed, in terms of problem behavior and adaptive skills, there is a range of severity from FraX + Aut to FraX + PDD (Pervasive Developmental Disorder) to FraX + none. ADI-R items representing "Play" types of interaction appear to be "susceptibility" factors since they were abnormal across the FraX cohort. Integrated regression models demonstrated that items reflecting complex social interaction differentiated the FraX + ASD (Aut + PDD) subgroup from the rest of the FraX cohort, while abnormalities in basic verbal and non-verbal communication distinguished the most severely affected boys with FraX + Aut from the milder FraX + PDD cohort. Models incorporating language, adaptive communication, and adaptive socialization skills revealed that socialization was not only the main influence on scores but also a predictor of ASD diagnosis. Altogether, our findings demonstrate that the diagnosis of ASD in FraX reflects, to a large extent, an impairment in social interaction that is expressed with variable severity in young males with FraX.

  18. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    PubMed

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.

  19. DUF581 Is Plant Specific FCS-Like Zinc Finger Involved in Protein-Protein Interaction

    PubMed Central

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction. PMID:24901469

  20. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions

    PubMed Central

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2014-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  1. Species-specific long range interactions between receptor/ligand pairs.

    PubMed Central

    Liebert, R B; Prieve, D C

    1995-01-01

    Total internal reflection microscopy (TIRM) monitors Brownian fluctuations in elevation as small as 1 nm by measuring the scattering of a single sphere illuminated by an evanescent wave when the sphere is levitated by colloidal forces such as electrostatic double-layer repulsion. From the Boltzmann distribution of elevations sampled by the sphere over time, the potential energy profile can be determined with a resolution of approximately 0.1 of the thermal energy kT. Thus, the interaction between a receptor-coated (goat, horse, or rabbit immunoglobulin G (IgG)) latex sphere and a protein A (SpA)-coated glass microscope slide was studied. A typical TIRM potential energy profile measured between a bare sphere and a bare glass plate, where the sphere fluctuates around the secondary potential energy minimum formed between double-layer repulsion and gravitational attraction, agrees well with DLVO theory. The interactions measured between IgG-coated spheres and SpA-coated slides, on the other hand, displayed a weaker repulsion compared with that observed between bare surfaces under the same conditions. Analysis of the results obtained between the coated surfaces suggests an additional attractive force. The decay length of this attraction correlates with the known dissociation constants for the binding of IgG with SpA in free solution. Images FIGURE 1 PMID:7669911

  2. Improved affinity at the cost of decreased specificity: a recurring theme in PDZ-peptide interactions.

    PubMed

    Karlsson, O Andreas; Sundell, Gustav N; Andersson, Eva; Ivarsson, Ylva; Jemth, Per

    2016-10-03

    The E6 protein from human papillomavirus (HPV) plays an important role during productive infection and is a potential drug target. We have previously designed a high affinity bivalent protein binder for the E6 protein, a fusion between a helix from the E6 associated protein and PDZØ9, an engineered variant (L391F/K392M) of the second PDZ domain from synapse associated protein 97 (SAP97 PDZ2). How the substitutions improve the affinity of SAP97 PDZ2 for HPV E6 is not clear and it is not known to what extent they affect the specificity for cellular targets. Here, we explore the specificity of wild type SAP97 PDZ2 and PDZØ9 through proteomic peptide phage display. In addition, we employ a double mutant cycle of SAP97 PDZ2 in which the binding kinetics for nine identified potential cellular peptide ligands are measured and compared with those for the C-terminal E6 peptide. The results demonstrate that PDZØ9 has an increased affinity for all peptides, but at the cost of specificity. Furthermore, there is a peptide dependent coupling free energy between the side chains at positions 391 and 392. This corroborates our previous allosteric model for PDZ domains, involving sampling of intramolecular energetic pathways.

  3. LRT, a tendon-specific leucine-rich repeat protein, promotes muscle-tendon targeting through its interaction with Robo.

    PubMed

    Wayburn, Bess; Volk, Talila

    2009-11-01

    Correct muscle migration towards tendon cells, and the adhesion of these two cell types, form the basis for contractile tissue assembly in the Drosophila embryo. While molecules promoting the attraction of muscles towards tendon cells have been described, signals involved in the arrest of muscle migration following the arrival of myotubes at their corresponding tendon cells have yet to be elucidated. Here, we describe a novel tendon-specific transmembrane protein, which we named LRT due to the presence of a leucine-rich repeat domain (LRR) in its extracellular region. Our analysis suggests that LRT acts non-autonomously to better target the muscle and/or arrest its migration upon arrival at its corresponding tendon cell. Muscles in embryos lacking LRT exhibited continuous formation of membrane extensions despite arrival at their corresponding tendon cells, and a partial failure of muscles to target their correct tendon cells. In addition, overexpression of LRT in tendon cells often stalled muscles located close to the tendon cells. LRT formed a protein complex with Robo, and we detected a functional genetic interaction between Robo and LRT at the level of muscle migration behavior. Taken together, our data suggest a novel mechanism by which muscles are targeted towards tendon cells as a result of LRT-Robo interactions. This mechanism may apply to the Robo-dependent migration of a wide variety of cell types.

  4. Specific interactions of Mss4 with members of the Rab GTPase subfamily.

    PubMed

    Burton, J L; Burns, M E; Gatti, E; Augustine, G J; De Camilli, P

    1994-12-01

    Mss4 is a mammalian protein that was identified as a suppressor of a yeast secretory mutant harboring a mutation in the GTPase Sec4 and was found to stimulate GDP release from this protein. We have now performed a biochemical characterization of the Mss4 protein and examined the specificity of its association with mammalian GTPases. Mss4 is primarily a soluble protein with a widespread tissue distribution. Recombinant Mss4 binds GTPases present in tissue extracts, and by a gel overlay assay binds specifically Rab Rab10proteins. We further define the Mss4-GTPase interaction to a subset of Rabs belonging to the same subfamily branch which include Rab1, Rab3, Rab8, Rab10, Sec4 and Ypt1 but not Rab2, Rab4, Rab5, Rab6, Rab9 and Rab11. Accordingly, Mss4 co-precipitates from a brain extract with Rab3a but not Rab5. Mss4 only stimulates GDP release from, and the association of GTP gamma S with, this Rab subset. Recombinant Mss4 and Rab3a form a stable complex in solution that is dissociated with either GDP or GTP gamma S. Injection of Mss4 into the squid giant nerve terminal enhances neurotransmitter release. These results suggest that Mss4 behaves as a guanylnucleotide exchange factor (GEF) for a subset of Rabs to influence distinct vesicular transport steps along the secretory pathway.

  5. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  6. Interaction between Axons and Specific Populations of Surrounding Cells Is Indispensable for Collateral Formation in the Mammillary System

    PubMed Central

    Çankaya, Murat; Stoykova, Anastassia; Zhou, Xunlei; Alvarez-Bolado, Gonzalo

    2011-01-01

    Background An essential phenomenon during brain development is the extension of long collateral branches by axons. How the local cellular environment contributes to the initial sprouting of these branches in specific points of an axonal shaft remains unclear. Methodology/Principal Findings The principal mammillary tract (pm) is a landmark axonal bundle connecting ventral diencephalon to brainstem (through the mammillotegmental tract, mtg). Late in development, the axons of the principal mammillary tract sprout collateral branches at a very specific point forming a large bundle whose target is the thalamus. Inspection of this model showed a number of distinct, identified cell populations originated in the dorsal and the ventral diencephalon and migrating during development to arrange themselves into several discrete groups around the branching point. Further analysis of this system in several mouse lines carrying mutant alleles of genes expressed in defined subpopulations (including Pax6, Foxb1, Lrp6 and Gbx2) together with the use of an unambiguous genetic marker of mammillary axons revealed: 1) a specific group of Pax6-expressing cells in close apposition with the prospective branching point is indispensable to elicit axonal branching in this system; and 2) cooperation of transcription factors Foxb1 and Pax6 to differentially regulate navigation and fasciculation of distinct branches of the principal mammillary tract. Conclusions/Significance Our results define for the first time a model system where interaction of the axonal shaft with a specific group of surrounding cells is essential to promote branching. Additionally, we provide insight on the cooperative transcriptional regulation necessary to promote and organize an intricate axonal tree. PMID:21625468

  7. Interaction of HRP-2 isoforms with HDGF: chromatin binding of a specific heteromer.

    PubMed

    Thakar, Ketan; Votteler, Ina; Kelkar, Dipti; Shidore, Teja; Gupta, Shivangi; Kelm, Sørge; Dietz, Frank

    2012-03-01

    Hepatoma-derived growth-factor-related protein 2 (HRP-2) belongs to a family with five additional members: hepatoma-derived growth factor (HDGF); lens epithelium-derived growth factor; and the HDGF-related proteins -1, -3 and -4. Very little is known regarding the function of HRP-2 in particular. This study shows for the first time heteromer formation of different members of the HRP family; HDGF and HRP-2. In addition, we discovered a previously unknown splice variant of HRP-2 mRNA encoding for a protein with a 53-amino acid deletion in its hath region. This HRP-2 isoform c interacts preferentially with a processed form of HDGF probably because of the loss of an α helix of HRP-2. Furthermore, in contrast to other isoforms of HRP-2, isoform c binds to chromatin similar to its most closely related family member lens epithelium-derived growth factor with potential consequences regarding its function in HIV integration. Interestingly, only the new HRP-2 isoform c and a processed form of HDGF are displaced from condensed mitotic metaphase chromatin. In conclusion, these observations provide a new perspective for understanding the biological functions of HDGF and related proteins.

  8. [Mechanisms underlying physiological functions of food factors via non-specific interactions with biological proteins].

    PubMed

    Murakami, Akira

    2015-01-01

      We previously reported that zerumbone, a sesquiterpene found in Zingiber zerumbet SMITH, showed notable cancer preventive effects in various organs of experimental rodents. This agent up-regulated nuclear factor-E2-related factor (Nrf2)-dependent expressions of anti-oxidative and xenobiotics-metabolizing enzymes, leading to an increased self-defense capacity. On the other hand, zerumbone markedly suppressed the expression of cyclooxygenase-2, an inducible pro-inflammatory enzyme, by disrupting mRNA stabilizing processes. Binding experiments using a biotin derivative of zerumbone demonstrated that Keap1, an Nrf2 repressive protein, is one of its major binding proteins that promotes their dissociation for inducing Nrf2 transactivation. We then generated a specific antibody against zerumbone-modified proteins and found that zerumbone modified numerous cellular proteins in a non-specific manner, with global distribution of the modified proteins seen not only in cytoplasm but also the nucleus. Based on those observations, zerumbone was speculated to cause proteo-stress, a notion supported by previous findings that it increased the C-terminus of Hsc70 interacting protein-dependent protein ubiquitination and also promoted aggresome formation. Interestingly, zerumbone counteracted proteo-stress and heat stress via up-regulation of the protein quality control systems (PQCs), e.g., heat shock proteins (HSPs), ubiquitin-proteasome, and autophagy. Meanwhile, several phytochemicals, including ursolic acid and curcumin, were identified as marked HSP70 inducers, whereas most nutrients tested were scarcely active. Recent studies have revealed that PQCs play important roles in the prevention of many lifestyle related diseases, such as cancer, thus non-specific binding of phytochemicals to cellular proteins may be a novel and unique mechanism underlying their physiological activities.

  9. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    SciTech Connect

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A.

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.

  10. Interactive cervical motion kinematics: sensitivity, specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain.

    PubMed

    Sarig Bahat, Hilla; Chen, Xiaoqi; Reznik, David; Kodesh, Einat; Treleaven, Julia

    2015-04-01

    Chronic neck pain has been consistently shown to be associated with impaired kinematic control including reduced range, velocity and smoothness of cervical motion, that seem relevant to daily function as in quick neck motion in response to surrounding stimuli. The objectives of this study were: to compare interactive cervical kinematics in patients with neck pain and controls; to explore the new measures of cervical motion accuracy; and to find the sensitivity, specificity, and optimal cutoff values for defining impaired kinematics in those with neck pain. In this cross-section study, 33 patients with chronic neck pain and 22 asymptomatic controls were assessed for their cervical kinematic control using interactive virtual reality hardware and customized software utilizing a head mounted display with built-in head tracking. Outcome measures included peak and mean velocity, smoothness (represented by number of velocity peaks (NVP)), symmetry (represented by time to peak velocity percentage (TTPP)), and accuracy of cervical motion. Results demonstrated significant and strong effect-size differences in peak and mean velocities, NVP and TTPP in all directions excluding TTPP in left rotation, and good effect-size group differences in 5/8 accuracy measures. Regression results emphasized the high clinical value of neck motion velocity, with very high sensitivity and specificity (85%-100%), followed by motion smoothness, symmetry and accuracy. These finding suggest cervical kinematics should be evaluated clinically, and screened by the provided cut off values for identification of relevant impairments in those with neck pain. Such identification of presence or absence of kinematic impairments may direct treatment strategies and additional evaluation when needed.

  11. The Development and Application of a Quantitative Peptide Microarray Based Approach to Protein Interaction Domain Specificity Space*

    PubMed Central

    Engelmann, Brett W.; Kim, Yohan; Wang, Miaoyan; Peters, Bjoern; Rock, Ronald S.; Nash, Piers D.

    2014-01-01

    Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology. PMID:25135669

  12. Getting down to specifics: profiling gene expression and protein-DNA interactions in a cell type-specific manner

    PubMed Central

    McClure, Colin D.; Southall, Tony D.

    2015-01-01

    The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique, and how their individual characteristics are attributed, are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e. only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features. PMID:26410031

  13. Computational studies on the interactions among redox couples, additives and TiO2: implications for dye-sensitized solar cells.

    PubMed

    Asaduzzaman, Abu Md; Schreckenbach, Georg

    2010-11-21

    One of the major and unique components of dye-sensitized solar cells (DSSC) is the iodide/triiodide redox couple. Periodic density-functional calculations have been carried out to study the interactions among three different components of the DSSC, i.e. the redox shuttle, the TiO(2) semiconductor surface, and nitrogen containing additives, with a focus on the implications for the performance of the DSSC. Iodide and bromide with alkali metal cations as counter ions are strongly adsorbed on the TiO(2) surface. Small additive molecules also strongly interact with TiO(2). Both interactions induce a negative shift of the Fermi energy of TiO(2). The negative shift of the Fermi energy is related to the performance of the cell by increasing the open voltage of the cell and retarding the injection dynamics (decreasing the short circuit current). Additive molecules, however, have relatively weaker interaction with iodide and triiodide.

  14. Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies.

    PubMed

    Zhang, Wei-Jie; Luo, Xiao; Liu, Ya-Li; Shao, Xiao-Xia; Wade, John D; Bathgate, Ross A D; Guo, Zhan-Yun

    2012-08-01

    Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It has putative roles in the regulation of stress responses, food intake, and reproduction by activation of its cognate G-protein-coupled receptor RXFP3. It also binds and activates the relaxin family peptide receptors RXFP1 and RXFP4 in vitro. To obtain a europium-labeled relaxin-3 as tracer for studying the interaction of these receptors with various ligands, in the present work we propose a novel site-specific labeling strategy for the recombinant human relaxin-3 that has been previously prepared in our laboratory. First, the N-terminal 6 × His-tag of the single-chain relaxin-3 precursor was removed by Aeromonas aminopeptidase and all of the primary amines of the resultant peptide were reversibly blocked by citroconic anhydride. Second, the A-chain N-terminus of the blocked peptide was released by endoproteinase Asp-N cleavage that removed the linker peptide between the B- and A-chains. Third, an alkyne moiety was introduced to the newly released A-chain N-terminus by reaction with the highly active primary amine-specific N-hydroxysuccinimide ester. Fourth, after removal of the reversible blockage under mild acidic condition, europium-loaded DOTA with an azide moiety was introduced to the two-chain relaxin-3 carrying the alkyne moiety through click chemistry. Using this site-specific labeling strategy, homogeneous monoeuropium-labeled human relaxin-3 could be obtained with good overall yield. In contrast, conventional random labeling resulted in a complex mixture that was poorly resolved because human relaxin-3 has four primary amine moieties that all react with the modification reagent. Both saturation and competition binding assays demonstrated that the DOTA/Eu(3+)-labeled relaxin-3 retained high binding affinity for human RXFP3, RXFP4, and RXFP1 and was therefore a suitable non-radioactive and stable tracer to study the interaction of various

  15. Specific interactions versus counterion condensation. 1. Nongelling ions/polyuronate systems.

    PubMed

    Donati, Ivan; Cesàro, Attilio; Paoletti, Sergio

    2006-01-01

    The characteristics of the interaction between nongelling divalent cations (typically Mg(2+)) and polyuronates have been explored by means of isothermal calorimetry. In particular, three polyuronates mimicking separately guluronan (polyguluronate, polyG), mannuronan (polymannuronate, polyM), and polyalternating (polyMG), the three block-components of natural alginate samples, have been treated with divalent ions, and the enthalpy of mixing was determined for different values of the [M(2+)]/[Polym](rep.unit) ratio. Despite the absence of a site-specific chemical bonding between the two, as confirmed by circular dichroism spectroscopy, a substantial deviation of the experimental enthalpy of mixing from the theoretical behavior, as predicted by the classical counterion condensation (CC) theory, was observed. Such deviation has been interpreted in terms of a "generic" nonbonding affinity of the condensed divalent counterion for the polyelectrolytes. The mathematical formalism of the CC theory was extended to include a contribution to the (reduced) free energy and enthalpy arising from the counterion affinity, g(aff,0) and h(aff,0), and allowed the parametrical calculation of the fraction of divalent counterions condensed as function of the reduced thermodynamic quantity g(aff,0). A best fit procedure of the experimental enthalpy of mixing allowed the g(aff,0) and h(aff,0) pair to be estimated for each of the different polyuronates considered, revealing differences in the three samples. In qualitative terms, the results obtained seem to suggest a notable contribution of the desolvation process (i.e., release of structured water as a consequence of the interaction between the divalent counterion and the uronate group) to the enthalpy of affinity for polyM which is counterbalanced and overcome by an ion pairing term (i.e., partial formation of ion-ion and/or ion-dipole bonds) for polyG and polyMG, respectively.

  16. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    NASA Astrophysics Data System (ADS)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  17. Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells

    PubMed Central

    Jensen, R. T.; Moody, T.; Pert, C.; Rivier, J. E.; Gardner, J. D.

    1978-01-01

    We have prepared 125I-labeled [Tyr4]bombesin and have examined the kinetics, stoichiometry, and chemical specificity with which the labeled peptide binds to dispersed acini from guinea pig pancreas. Binding of 125I-labeled [Tyr4]-bombesin was saturable, temperature-dependent, and reversible and reflected interaction of the labeled peptide with a single class of binding sites on the plasma membrane of pancreatic acinar cells. Each acinar cell possessed approximately 5000 binding sites, and binding of the tracer to these sites could be inhibited by [Tyr4]bombesin [concentration for half-maximal effect (Kd), 2 nM], bombesin (Kd, 4 nM), or litorin (Kd, 40 nM) but not by eledoisin, physalemin, somatostatin, carbachol, atropine, secretin, vasocative intestinal peptide, neurotensin, or bovine pancreatic polypeptide. At high concentrations (>0.1 μM), cholecystokinin and caerulein each caused a small (15-20%) reduction in binding of lableled [Tyr4]bombesin. With bombesin, litorin, and [Tyr4]bombesin, there was a close correlation between the relative potency for inhibition of binding of labeled [Tyr4]bombesin and that for stimulation of amylase secretion. For a given peptide, however, a 10-fold higher concentration was required for half-maximal inhibition of binding than for half-maximal stimulation of amylase secretion, calcium outflux, or cyclic GMP accumulation. These results indicate that dispersed acini from guinea pig pancreas possess a single class of receptors that interact with [Tyr4]bombesin, bombesin, and litorin and that occupation of 25% of these receptors will cause a maximal biological response. PMID:216015

  18. Sequence-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex.

    PubMed

    Palumbo, Manlio; Gatto, Barbara; Moro, Stefano; Sissi, Claudia; Zagotto, Giuseppe

    2002-07-18

    DNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top-DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top-DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug-DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells.

  19. Interaction of the tobacco-specific nitrosamines, methylethylnitrosamine and N-nitrosonornicotine, with DNA and guanosine.

    PubMed

    Lai, D Y; Arcos, J C; Argus, M F

    1980-04-01

    In vitro binding of the tobacco-specific nitrosamines, methylethylnitrosamine (MEN) and nitrosonornicotine (NNN), to exogenous DNA and guanosine was studies in a rat liver microsome-catalyzed system. MEN (N-[ethyl-1-14C]) binds covalently to calf thymus DNA whereas NNN (N'-[pyrrolidine-2-14C]) binds only to guanosine but not to DNA. Pretreatment of the rats with either phenobarbital (PB) or 3-methylcholanthrene (MC) greatly diminishes the binding of 14C-MEN to DNA. Both MEN-demethylase and -deethylase activities are stimulated by PB pretreatment and inhibited by MC pretreatment, but the degree of stimulation and inhibition of the two dealkylases are not the same. Addition of cytosol to the incubation system does not enhance but suppresses the binding of 14C-MEN to DNA. Inclusion of mitochondria in the system has no effect on the binding. Addition of benzylamine (250 microM), which is a potent inhibitor of dimethylnitrosamine-demethylase, however totally abolishes the binding of 14C-MEN catalyzed by microsomes. The data suggest that ethylcarbonium ion may be the metabolically activated intermediate of MEN that binds to DNA.

  20. Interactions of five D-mannose-specific lectins with a series of synthetic branched trisaccharides.

    PubMed

    Kaku, H; Goldstein, I J; Oscarson, S

    1991-06-25

    The interaction of a series of synthetic, branched trisaccharides with five D-mannose-specific lectins was studied by precipitation-inhibition assay. The branched methyl alpha-D-mannotrioside, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man pOMe, the best inhibitor of the Con A-Dextran interaction, was 42 times more potent than alpha-D-ManpOMe, and 3-6 times more potent than the two trisaccharides substituted with D-glucosyl groups, and 8-15 times those with D-galactosyl groups. Surprisingly, methyl O-alpha-D-mannopyranosyl-(1----3)-alpha-D-mannopyranoside was bound to Con A 8-fold more avidly than methyl alpha-D-mannopyranoside. However, the related pea lectin (PSA) was singularly different from Con A in its carbohydrate-binding activity, showing no significantly enhanced binding to any of the sugars examined. The trisacchrides containing terminal, nonreducing, (1----3)-linked alpha-D-mannopyranosyl groups, i.e., alpha-D-Manp-(1----3)-[alpha-D-Glep-(1----6)]alpha-D-Manp OMe, alpha-D-Manp-(1----3)]-alpha-D-Galp-(1----6)]-alpha-D-ManpOMe++ +, and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man pOMe, were the best inhibitors of the snowdrop lectin (GNA)-D-mannan precipitation system. On the other hand, all branched trisaccharides exhibited very similar inhibitory potencies toward the daffodil lectin (NPA)-D-mannan interaction, whereas alpha-D-Manp-(1----3)-[alpha-D-Galp-(1----6)]-alpha-D-ManpOMe++ + and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man pOMe were somewhat better inhibitors than the other branched trisaccharides of the amaryllis lectin (HHA)-D-mannan precipitation reaction. (ABSTRACT TRUNCATED AT 250 WORDS)

  1. Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction

    PubMed Central

    Iwamoto, Takeo; Takada, Koji; Okuda, Ken-ichi; Tajima, Akiko; Iwase, Tadayuki

    2013-01-01

    Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (EspS235A) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction. PMID:23316041

  2. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction.

    PubMed

    Sugimoto, Shinya; Iwamoto, Takeo; Takada, Koji; Okuda, Ken-Ichi; Tajima, Akiko; Iwase, Tadayuki; Mizunoe, Yoshimitsu

    2013-04-01

    Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (Esp(S235A)) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction.

  3. Identification of novel interaction sites that determine specificity between fibroblast growth factor homologous factors and voltage-gated sodium channels.

    PubMed

    Wang, Chaojian; Wang, Chuan; Hoch, Ethan G; Pitt, Geoffrey S

    2011-07-08

    Fibroblast growth factor homologous factors (FHFs, FGF11-14) bind to the C termini (CTs) of specific voltage-gated sodium channels (VGSC) and thereby regulate their function. The effect of an individual FHF on a specific VGSC varies greatly depending upon the individual FHF isoform. How individual FHFs impart distinctive effects on specific VGSCs is not known and the specificity of these pairwise interactions is not understood. Using several biochemical approaches combined with functional analysis, we mapped the interaction site for FGF12B on the Na(V)1.5 C terminus and discovered previously unknown determinants necessary for FGF12 interaction. Also, we demonstrated that FGF12B binds to some, but not all Na(V)1 CTs, suggesting specificity of interaction. Exploiting a human single nucleotide polymorphism in the core domain of FGF12 (P149Q), we identified a surface proline that contributes a part of this pairwise specificity. This proline is conserved among all FHFs, and mutation of the homologous residue in FGF13 also leads to loss of interaction with a specific VGSC CT (Na(V)1.1) and loss of modulation of the resultant Na(+) channel function. We hypothesized that some of the specificity mediated by this proline may result from differences in the affinity of the binding partners. Consistent with this hypothesis, surface plasmon resonance data showed that the P149Q mutation decreased the binding affinity between FHFs and VGSC CTs. Moreover, immunocytochemistry revealed that the mutation prevented proper subcellular targeting of FGF12 to the axon initial segment in neurons. Together, these results give new insights into details of the interactions between FHFs and Na(V)1.x CTs, and the consequent regulation of Na(+) channels.

  4. The role of specific tomato volatiles in tomato-whitefly interaction.

    PubMed

    Bleeker, Petra M; Diergaarde, Paul J; Ament, Kai; Guerra, José; Weidner, Monique; Schütz, Stefan; de Both, Michiel T J; Haring, Michel A; Schuurink, Robert C

    2009-10-01

    Bemisia tabaci (whitefly) infestations and the subsequent transfer of viruses are the cause of severe losses in crop production and horticultural practice. To improve biological control of B. tabaci, we investigated repellent properties of plant-produced semiochemicals. The mix of headspace volatiles, collected from naturally repellent wild tomato accessions, influenced B. tabaci initial choice behavior, indicating a role for plant semiochemicals in locating host plants. A collection of wild tomato accessions and introgression lines (Solanum pennellii LA716 x Solanum lycopersicum 'Moneyberg') were extensively screened for attractiveness to B. tabaci, and their headspace profiles were determined by means of gas chromatography-mass spectrometry. Correlation analysis revealed that several terpenoids were putatively involved in tomato-whitefly interactions. Several of these candidate compounds conferred repellence to otherwise attractive tomato plants when applied to the plant's branches on paper cards. The sesquiterpenes zingiberene and curcumene and the monoterpenes p-cymene, alpha-terpinene, and alpha-phellandrene had the strongest effects in free-choice bioassays. These terpenes also elicited a response of receptors on the insect's antennae as determined by electroantennography. Conversely, the monoterpene beta-myrcene showed no activity in both assays. B. tabaci apparently uses, besides visual cues, specific plant volatile cues for the initial selection of a host. Altering whitefly choice behavior by manipulation of the terpenoid composition of the host headspace may therefore be feasible.

  5. Synergistic interaction of telomerase-specific oncolytic virotherapy and chemotherapeutic agents for human cancer.

    PubMed

    Fujiwara, Toshiyoshi; Kagawa, Shunsuke; Tazawa, Hiroshi

    2012-07-01

    Replication-selective tumor-specific viruses present a novel approach for treatment of neoplastic disease. These vectors are designed to induce virus-mediated lysis of tumor cells after selective viral propagation within the tumor. Telomerase activation is considered to be a critical step in carcinogenesis through the maintenance of telomeres, and its activity correlates closely with human telomerase reverse transcriptase (hTERT) expression. We constructed an attenuated adenovirus 5 vector, in which the hTERT promoter element drives expression of E1 genes, OBP-301 (Telomelysin). Since only tumor cells that express telomerase activity would activate this promoter, the hTERT proximal promoter allows for preferential expression of viral genes in tumor cells, leading to selective viral replication and oncolytic cell death. OBP-301 alone exhibited substantial antitumor effects both in animal models and in clinical trials; data regarding combination therapy with OBP-301 and chemotherapeutic agents are preliminary but encouraging. This article reviews synergistic interaction of virotherapy and chemotherapy, and illustrates the potential application for the treatment of human cancer.

  6. Recognition of class I major histocompatibility complex molecules by Ly- 49: specificities and domain interactions

    PubMed Central

    1996-01-01

    Ly-49 is a family type II transmembrane proteins encoded by a gene cluster on murine chromosome 6. One member of this family, Ly-49A, is expressed by a natural killer (NK) cell subset, binds to class I major histocompatibility complex (MHC) molecules, and blocks the killing of target cells bearing the appropriate H-2 antigens. Here we show that another member of this family which is expressed by an NK cell subset, Ly-49C, recognizes H-2b and H-2d structures which are distinct from and overlapping with those recognized by Ly-49A. Interactions between Ly- 49A and C and their class I ligands are entirely blocked by the antibodies 5E6, YE1/48, YE1/32, and A1, all of which were found to recognize epitopes contained within the carbohydrate recognition domain (CRD). However, cell-cell binding assays revealed that class I binding specificity is conferred by a combination of sequences within both the CRD and a 19-amino acid adjacent region. We also investigated the question of whether Ly-49A and C form dimers on cells which express both receptors. When coexpressed on COS cells, sequential immunoprecipitation demonstrated that these receptors pair exclusively as homodimers, with no evidence for heterodimeric structures. These observations provide insight into both the biochemical nature of the Ly- 49 family as well as the receptor functions of Ly-49C on NK cells. PMID:8666913

  7. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    USGS Publications Warehouse

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  8. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    SciTech Connect

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  9. Subtype-specific roles of phospholipase C-β via differential interactions with PDZ domain proteins.

    PubMed

    Kim, Jung Kuk; Lim, Seyoung; Kim, Jinho; Kim, Sanguk; Kim, Jae Ho; Ryu, Sung Ho; Suh, Pann-Ghill

    2011-01-01

    Since we first identified the PLC-β isozyme, enormous studies have been conducted to investigate the functional roles of this protein (Min et al., 1993; Suh et al.,1988). It is now well-known that the four PLC-β subtypes are major effector molecules in GPCR-mediated signaling, especially for intracellular Ca2+ signaling. Nonetheless, it is still poorly understood why multiple PLC-β subtype exist. Most cells express multiple subtypes of PLC-β in different combinations, and each subtype is involved in somewhat different signaling pathways. Therefore, studying the differential roles of each PLC-β subtype is a very interesting issue. In this regard, we focus here on PDZ domain proteins which are novel PLC-β interacting proteins. As scaffolders, PDZ domain proteins recruit various target proteins ranging from membrane receptors to cytoskeletal proteins to assemble highly organized signaling complexes; this can give rise to efficiency and diversity in cellular signaling. Because PLC-β subtypes have different PDZ-binding motifs, it is possible that they are engaged with different PDZ domain proteins, and in turn participate in distinct physiological responses. To date, several PDZ domain proteins, such as the NHERF family, Shank2, and Par-3, have been reported to selectively interact with certain PLC-β subtypes and GPCRs. Systematic predictions of potential binding partners also suggests differential binding properties between PLC-β subtypes. Furthermore, we elucidated parallel signaling processes for multiple PLC-β subtypes, which still perform distinct functions resulting from differential interactions with PDZ domain proteins within a single cell. Therefore, these results highlight the novel function of PDZ domain proteins as intermediaries in subtype-specific role of PLC-β in GPCR-mediated signaling. Future studies will focus on the physiological meanings of this signaling complex formation by different PDZ domain proteins and PLC-β subtypes. It has been

  10. Rheological investigation of specific interactions in Na Alginate and Na MMT suspension.

    PubMed

    Zlopasa, Jure; Norder, Ben; Koenders, Eduard A B; Picken, Stephen J

    2016-10-20

    Here we report on a study of a rheological behavior of sodium alginate and montmorillonite suspension. We find that viscoelastic behavior of this suspension is dramatically affected with increasing volume fraction of montmorillonite platelets. Addition of montmorillonite generally leads to gel formation, which is attributed to interactions of montmorillonite and alginate via H-bonding and attraction between the positive edges of the platelets and the anionic backbone of the biopolymer. A critical concentration for the measured system was observed at 20wt.% montmorillonite, where a crossover to a gel-like structure was detected. The observed gel has a rubber plateau, which develops further with higher montmorillonite concentration. In this physical gel the relaxation maximum was detected, which is associated with the breaking and reformation of the bonds between the platelets and the biopolymer. For this transient behavior, we find that a Maxwell type viscoelasticity quite well describes the relaxation time and the observed G'-G" crossover. We believe that this gel-like behavior plays an important role in formation of highly ordered nanostructures that develop during the drying of these bio-nanocomposite suspensions.

  11. Differential scanning microcalorimetry indicates that human defensin, HNP-2, interacts specifically with biomembrane mimetic systems.

    PubMed

    Lohner, K; Latal, A; Lehrer, R I; Ganz, T

    1997-02-11

    alpha-Defensins are antimicrobial peptides with 29-35 amino acid residues and cysteine-stabilized amphiphilic, triple-stranded beta-sheet structures. We used high-precision differential scanning microcalorimetry to investigate the effects of a human neutrophil alpha-defensin, HNP-2, on the phase behavior of model membranes mimicking bacterial and erythrocyte cell membranes. In the presence of this positively charged peptide, the phase behavior of liposomes containing negatively charged phosphatidylglycerol was markedly altered even at a high lipid-to-peptide molar ratio of 500:1. Addition of HNP-2 to liposomes mimicking bacterial membranes (mixtures of dipalmitoylphosphatidylglycerol and -ethanolamine) resulted in phase separation owing to some domains being peptide-poor and others peptide-rich. The latter are characterized by an increase of the main transition temperature, most likely arising from electric shielding of the phospholipid headgroups by the peptide. On the other hand, HNP-2 did not affect the phase behavior of membranes mimicking erythrocyte membranes (equimolar mixtures of dipalmitoylphosphatidylcholine and sphingomyelin) as well as the pure single components. This is in contrast to melittin, which significantly affected the phase behavior of choline phospholipids in accordance with its unspecific lytic activity. These results support the hypothesis of preferential interaction of defensins with negatively charged membrane cell surfaces, a common feature of bacterial cell membranes, and demonstrate that HNP-2 discriminates between model membrane systems mimicking prokaryotic and eukaryotic cell membranes.

  12. Additive interaction between heterogeneous environmental quality domains (air, water, land, sociodemographic and built environment) on preterm birth

    EPA Science Inventory

    BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this ...

  13. Self-Specific Stimuli Interact Differently than Non-Self-Specific Stimuli with Eyes-Open Versus Eyes-Closed Spontaneous Activity in Auditory Cortex

    PubMed Central

    Qin, Pengmin; Grimm, Simone; Duncan, Niall W.; Holland, Giles; Guo, Jia shen; Fan, Yan; Weigand, Anne; Baudewig, Juergen; Bajbouj, Malek; Northoff, Georg

    2013-01-01

    Previous studies suggest that there may be a distinct relationship between spontaneous neural activity and subsequent or concurrent self-specific stimulus-induced activity. This study aims to test the impact of spontaneous activity as recorded in an eyes-open (EO) resting state as opposed to eyes-closed (EC) on self-specific versus non-self-specific auditory stimulus-induced activity in fMRI. In our first experiment we used self-specific stimuli comprised of the subject’s own name and non-self-specific stimuli comprised of a friend’s name and an unknown name, presented during EO versus EC baselines in a 3 name condition × 2 baseline design. In Experiment 2 we directly measured spontaneous activity in the absence of stimuli during EO versus EC to confirm a modulatory effect of the two baseline conditions in the regions found to show an interaction effect in Experiment 1. Spontaneous activity during EO was significantly higher than during EC in bilateral auditory cortex and non-self-specific names yielded stronger signal changes relative to EO baseline than to EC. In contrast, there was no difference in response to self-specific names relative to EO baseline than to EC despite the difference between spontaneous activity levels. These results support an impact of spontaneous activity on stimulus-induced activity, moreover an impact that depends on the high-level stimulus characteristic of self-specificity. PMID:23908625

  14. Possible Role of Mother-Daughter Vocal Interactions on the Development of Species-Specific Song in Gibbons

    PubMed Central

    Koda, Hiroki; Lemasson, Alban; Oyakawa, Chisako; Rizaldi; Pamungkas, Joko; Masataka, Nobuo

    2013-01-01

    Mother-infant vocal interactions play a crucial role in the development of human language. However, comparatively little is known about the maternal role during vocal development in nonhuman primates. Here, we report the first evidence of mother-daughter vocal interactions contributing to vocal development in gibbons, a singing and monogamous ape species. Gibbons are well known for their species-specific duets sung between mates, yet little is known about the role of intergenerational duets in gibbon song development. We observed singing interactions between free-ranging mothers and their sub-adult daughters prior to emigration. Daughters sang simultaneously with their mothers at different rates. First, we observed significant acoustic variation between daughters. Co-singing rates between mother and daughter were negatively correlated with the temporal precision of the song’s synchronization. In addition, songs of daughters who co-sang less with their mothers were acoustically more similar to the maternal song than any other adult female’s song. All variables have been reported to be influenced by social relationships of pairs. Therefore those correlations would be mediated by mother-daughter social relationship, which would be modifiable in daughter’s development. Here we hypothesized that daughters who co-sing less often, well-synchronize, and converge acoustically with the maternal acoustic pattern would be at a more advanced stage of social independence in sub-adult females prior to emigration. Second, we observed acoustic matching between mothers and daughters when co-singing, suggesting short-term vocal flexibility. Third, we found that mothers adjusted songs to a more stereotyped pattern when co-singing than when singing alone. This vocal adjustment was stronger for mothers with daughters who co-sang less. These results indicate the presence of socially mediated vocal flexibility in gibbon sub-adults and adults, and that mother-daughter co

  15. Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies.

    PubMed

    Sengupta, Abhigyan; Sung, Hsuan-Lei; Nesbitt, David J

    2016-10-10

    In light of the current models for an early RNA-based universe, the potential influence of simple amino acids on tertiary folding of ribozymal RNA into biochemically competent structures is speculated to be of significant evolutionary importance. In the present work, the folding-unfolding kinetics of a ubiquitous tertiary interaction motif, the GAAA tetraloop-tetraloop receptor (TL-TLR), is investigated by single-molecule fluorescence resonance energy transfer spectroscopy in the presence of natural amino acids both with (e.g., lysine, arginine) and without (e.g., glycine) protonated side chain residues. By way of control, we also investigate the effects of a special amino acid (e.g., proline) and amino acid mimetic (e.g., betaine) that contain secondary or quaternary amine groups rather than a primary amine group. This combination permits systematic study of amino acid induced (or amino acid like) RNA folding dynamics as a function of side chain complexity, pKa, charge state, and amine group content. Most importantly, each of the naturally occurring amino acids is found to destabilize the TL-TLR tertiary folding equilibrium, the kinetic origin of which is dominated by a decrease in the folding rate constant (kdock), also affected by a strongly amino acid selective increase in the unfolding rate constant (kundock). To further elucidate the underlying thermodynamics, single-molecule equilibrium constants (Keq) for TL-TLR folding have been probed as a function of temperature, which reveal an amino acid dependent decrease in both overall exothermicity (ΔΔH° > 0) and entropic cost (-TΔΔS° < 0) for the overall folding process. Temperature-dependent studies on the folding/unfolding kinetic rate constants reveal analogous amino acid specific changes in both enthalpy (ΔΔH(⧧)) and entropy (ΔΔS(⧧)) for accessing the transition state barrier. The maximum destabilization of the TL-TLR tertiary interaction is observed for arginine, which is consistent with early

  16. Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel.

    PubMed

    Henry, Pauline C; Kanelis, Voula; O'Brien, M Christine; Kim, Brian; Gautschi, Ivan; Forman-Kay, Julie; Schild, Laurent; Rotin, Daniela

    2003-05-30

    The epithelial Na+ channel (alphabetagammaENaC) regulates salt and fluid homeostasis and blood pressure. Each ENaC subunit contains a PY motif (PPXY) that binds to the WW domains of Nedd4, a Hect family ubiquitin ligase containing 3-4 WW domains and usually a C2 domain. It has been proposed that Nedd4-2, but not Nedd4-1, isoforms can bind to and suppress ENaC activity. Here we challenge this notion and show that, instead, the presence of a unique WW domain (WW3*) in either Nedd4-2 or Nedd4-1 determines high affinity interactions and the ability to suppress ENaC. WW3* from either Nedd4-2 or Nedd4-1 binds ENaC-PY motifs equally well (e.g. Kd approximately 10 microm for alpha- or betaENaC, 3-6-fold higher affinity than WW4), as determined by intrinsic tryptophan fluorescence. Moreover, dNedd4-1, which naturally contains a WW3* instead of WW2, is able to suppress ENaC function equally well as Nedd4-2. Homology models of the WW3*.betaENaC-PY complex revealed that a Pro and Ala conserved in all WW3*, but not other Nedd4-WW domains, help form the binding pocket for PY motif prolines. Extensive contacts are formed between the betaENaC-PY motif and the Pro in WW3*, and the small Ala creates a large pocket to accommodate the peptide. Indeed, mutating the conserved Pro and Ala in WW3* reduces binding affinity 2-3-fold. Additionally, we demonstrate that mutations in PY motif residues that form contacts with the WW domain based on our previously solved structure either abolish or severely reduce binding affinity to the WW domain and that the extent of binding correlates with the level of ENaC suppression. Independently, we show that a peptide encompassing the PY motif of sgk1, previously proposed to bind to Nedd4-2 and alter its ability to regulate ENaC, does not bind (or binds poorly) the WW domains of Nedd4-2. Collectively, these results suggest that high affinity of WW domain-PY-motif interactions rather than affiliation with Nedd4-1/Nedd-2 is critical for ENaC suppression

  17. The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner

    PubMed Central

    Vikis, Haris G.; Li, Weiquan; He, Zhigang; Guan, Kun-Liang

    2000-01-01

    Semaphorin molecules serve as axon guidance signals that regulate the navigation of neuronal growth cones. Semaphorins have also been implicated in other biological processes, including the immune response. Plexins, acting either alone or in complex with neuropilins, have recently been identified as functional semaphorin receptors. However, the mechanisms of signal transduction by plexins remain largely unknown. We have demonstrated a direct interaction between plexin-B1 and activated Rac. Rac specifically interacts with the cytosolic domain of plexin-B1, but not with that of plexin-A3 or -C1. Neither RhoA nor Cdc42 interacts with plexin-B1, indicating that the Rac/plexin-B1 interaction is highly specific. The binding of GTP and the integrity of the Rac effector domain are required for the interaction with plexin-B1. Furthermore, we have identified that a Cdc42/Rac interactive binding (CRIB) motif in the cytosolic domain of plexin-B1 is essential for its interaction with active Rac. We have also observed that the semaphorin CD100, a ligand for plexin-B1, stimulates the interaction between plexin-B1 and active Rac. Our results support a model by which activated Rac plays a role in mediating semaphorin signals, resulting in reorganization of actin cytoskeletal structure. PMID:11035813

  18. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen

    PubMed Central

    1996-01-01

    Heat shock protein 47 (HSP47), a collagen-specific stress protein, has been postulated to be a collagen-specific molecular chaperone localized in the ER. We previously demonstrated that HSP47 transiently associated with newly synthesized procollagen in the ER (Nakai, A., M. Satoh, K. Hirayoshi, and K. Nagata. 1992. J. Cell Biol. 117:903-914). In the present work, we examined the location where HSP47 binds to and dissociates from newly synthesized procollagen within the cells, and whether HSP47 associates with nascent single procollagen polypeptide chains and/or with mature triple-helix procollagen. This was accomplished by biochemical coprecipitation with anti-HSP47 and anticollagen antibodies, combined with pulse-label and chase experiments in the presence or absence of various inhibitors for protein secretion, as well as by confocal laser microscopic observation of the cells double stained with both antibodies. We further examined whether the RDEL (Arg-Asp-Glu-Leu) sequence at the COOH terminus of HSP47 can act as an ER-retention signal, as the KDEL sequence does. When the secretion of procollagen was inhibited by the presence of alpha, alpha'-dipyridyl, an iron chelator that inhibits procollagen triple-helix formation, or by the presence of brefeldin A. which inhibits protein transport between the ER and the Golgi apparatus, procollagen was found to be bound to HSP47 during the chase period in the intermediate compartment. In contrast, the dissociation of procollagen chains from HSP47 was not inhibited when procollagen secretion was inhibited by monensin or bafilomycin A1, both of which are known to be inhibitors of post-cis-Golgi transport. These findings suggest that HSP47 and procollagen dissociated between the post-ER and the cis-Golgi compartments. HSP47 was shown to bind to nascent, single- polypeptide chains of newly synthesized procollagen, as well as to the mature triple-helix form of procollagen. HSP47 with the RDEL sequence deleted was secreted out of

  19. ICRF Specific Plasma Wall Interactions in JET with the ITER-Like Wall

    SciTech Connect

    Bobkov, V.; Arnoux, G.; Brezinsek, S.; Coenen, J. W.; Colas, L.; Clever, M.; Czarnecka, A.; Braun, F.; Dux, R.; Huber, Alexander; Lerche, E.; Maggi, C.; Marcotte, F.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Meigs, A. G.; Monakhov, I.; Putterich, Th.; Rimini, F.; Rooj, G. Van; Sergienko, G.; Van Eester, D.

    2013-01-01

    A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q95-scans, and intensification of those for the 90 phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall.

  20. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  1. Specific Heat and Effects of Uniaxial Anisotropy of a p-Wave Pairing Interaction in a Strongly Interacting Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Inotani, Daisuke; van Wyk, Pieter; Ohashi, Yoji

    2017-04-01

    We investigate the specific heat CV at constant volume and effects of uniaxial anisotropy of a p-wave attractive interaction in the normal state of an ultracold Fermi gas. Within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we evaluate this thermodynamic quantity as a function of temperature, in the whole interaction regime. While the uniaxial anisotropy is not crucial for CV in the weak-coupling regime, CV is found to be sensitive to the uniaxial anisotropy in the strong-coupling regime. This originates from the population imbalance among pi-wave molecules (i = x,y,z), indicating that the specific heat is a useful observable to see which kinds of p-wave molecules dominantly exist in the strong-coupling regime when the p-wave interaction has uniaxial anisotropy. Using this strong point, we classify the strong-coupling regime into some characteristic regions. Since a p-wave pairing interaction with uniaxial anisotropy has been discovered in a 40K Fermi gas, our results would be useful in considering strong-coupling properties of a p-wave interacting Fermi gas, when the interaction is uniaxially anisotropic.

  2. Combining subject-specific and low-order modeling techniques to study fluid-structure interaction of rabbit phonation

    NASA Astrophysics Data System (ADS)

    Chang, Siyuan; Luo, Haoxiang; Novaleski, Carolyn; Rousseau, Bernard

    2014-11-01

    A subject-specific computational model has been developed to simulate flow-induced vocal fold vibration for evoked rabbit phonation. A freshly excised larynx was scanned using micro magnetic resonance imaging. Images were segmented to identify the vocal fold tissue and lumen surface. The 3D fluid-structure interaction (FSI) model was then constructed with experimentally measured flow parameters as input. The tissue deformation is assumed to be finite, and a previously developed FSI solver is used to simulate the coupled flow and nonlinear tissue mechanics. In addition, a one-dimensional flow model based on heuristic estimate of the flow separation point is used as an efficient tool to guide the full 3D simulation. This low-order model is motivated by presence of uncertainties in the tissue properties and boundary conditions, and it has proven to be very useful in our study. Similarities and differences in the vibration characteristics of the vocal fold predicted by these two models will be discussed.

  3. Cyclotides Insert into Lipid Bilayers to Form Membrane Pores and Destabilize the Membrane through Hydrophobic and Phosphoethanolamine-specific Interactions*

    PubMed Central

    Wang, Conan K.; Wacklin, Hanna P.; Craik, David J.

    2012-01-01

    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities. PMID:23129773

  4. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus

    PubMed Central

    Smith, Emily M.; Lajoie, Bryan R.; Jain, Gaurav; Dekker, Job

    2016-01-01

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519

  5. RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis

    PubMed Central

    Lin, Ying-Hung; Ke, Chih-Chun; Wang, Ya-Yun; Chen, Mei-Feng; Chen, Tsung-Ming; Ku, Wei-Chi; Chiang, Han-Sun; Yeh, Chung-Hsin

    2017-01-01

    According to recent estimates, 2%–15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins (MGCRABGAPs) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP–RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10. PMID:28067790

  6. Effect of the interaction between dye and acetic acid on the decomposition of Basic Green 4 with additive by ozone.

    PubMed

    Pérez, Arizbeth A; Poznyak, Tatiana I; Chairez, Jorge I

    2014-01-01

    This research investigated the ozonation of Basic Green 4 (BG4) under the presence of acetic acid (AA). This acid is used as a textile additive for many industrial dyes derived from triphenylmethane. Determining the effect of this additive on discoloration, degradation dynamics, and final by-product distribution is the main objective of this study. The reaction system was the ozonation of a dye solution in co-solvents. This solution (dye and AA) was considered a simplified version of real BG4 dyeing wastewaters supplied with additives. The dye concentration was set to 50, 150, and 250 mg/L without pH adjustment (pH = 3). This low value was forced by the AA. Ozonation reaction with dye was mainly done by a direct molecular mechanism. The discoloration dynamics of BG4 without and with the additive were determined by ultraviolet and visible wavelength spectroscopy. The dye decomposition and the intermediate and final product formation-decomposition dynamics were followed by high-performance liquid chromatography. The effects of AA in the ozonation results were significant in the following ways: 1) a possible complex, formed between AA and the dye, changed ozone consumption; 2) the presence of additive decelerated the dye discoloration and decomposition; and 3) the number of by-products was dissimilar in both systems, with and without the additive the ozonation. The accumulation of organic acids with low molecular weight was determined in both systems, with and without the additive. Only one by-product was obtained in ozonation when AA participated in the reactor. A possible reaction mechanism is proposed for the system dye-AA-ozone.

  7. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-01

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.

  8. Understanding the Specificity and Random Collision of Enzyme-Substrate Interaction

    ERIC Educational Resources Information Center

    Kin, Ng Hong; Ling, Tan Aik

    2016-01-01

    The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…

  9. Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcS gene family.

    PubMed

    Manzara, T; Carrasco, P; Gruissem, W

    1991-12-01

    The five genes encoding ribulose-1,5-bisphosphate carboxylase (rbcS) from tomato are differentially expressed. Transcription of the genes is organ specific and developmentally regulated in fruit and light regulated in cotyledons and leaves. DNase I footprinting assays were used to map multiple sites of DNA-protein interaction in the promoter regions of all five genes and to determine whether the differential transcriptional activity of each gene correlated with developmental or organ-specific changes in DNA-protein interactions. We show organ-specific differences in DNase I protection patterns, suggesting that differential transcription of rbcS genes is controlled at least in part at the level of DNA-protein interactions. In contrast, no changes were detected in the DNase I footprint pattern generated with nuclear extracts from dark-grown cotyledons versus cotyledons exposed to light, implying that light-dependent regulation of rbcS transcription is controlled by protein-protein interactions or modification of DNA binding proteins. During development of tomato fruit, most DNA-protein interactions in the rbcS promoter regions disappear, coincident with the transcriptional inactivation of the rbcS genes. In nuclear extracts from nonphotosynthetic roots and red fruit, the only detectable DNase I protection corresponds to a G-box binding activity. Detection of other DNA binding proteins in extracts from these organs and expression of nonphotosynthetic genes exclude the possibility that roots and red fruit are transcriptionally inactive. The absence of complex promoter protection patterns in these organs suggests either that cooperative interactions between different DNA binding proteins are necessary to form functional transcription complexes or that there is developmental and organ-specific regulation of several rbcS-specific transcription factors in these organs. The DNase I-protected DNA sequences defined in this study are discussed in the context of conserved DNA

  10. Enzymatic Mechanism of Leishmania major Peroxidase and the Critical Role of Specific Ionic Interactions

    PubMed Central

    Chreifi, Georges; Hollingsworth, Scott A.; Li, Huiying; Tripathi, Sarvind; Arce, Anton P.; Magaña-Garcia, Hugo I.; Poulos, Thomas L.

    2015-01-01

    Leishmania major peroxidase (LmP) is very similar to the well-known yeast cytochrome c peroxidase (CcP). Both enzymes catalyze the peroxidation of cytochrome c. Like CcP, LmP reacts with H2O2 to form Compound I, which consists of a ferryl heme and a Trp radical, FeIV= O;Trp•+. Cytochrome c (Cytc) reduces the Trp radical to give Compound II, FeIV= O;Trp, which is followed by an intramolecular electron transfer to give FeIII–OH;Trp•+, and in the last step, Cytc reduces the Trp radical. In this study, we have used steady-state and single-turnover kinetics to improve our understanding of the overall mechanism of LmP catalysis. While the activity of CcP greatly increases with ionic strength, the kcat for LmP remains relatively constant at all ionic strengths tested. Therefore, unlike CcP, where dissociation of oxidized Cytc is limiting at low ionic strengths, association/dissociation reactions are not limiting at any ionic strength in LmP. We conclude that in LmP, the intramolecular electron transfer reaction, FeIV= O;Trp to FeIII–OH;Trp•+, is limiting at all ionic strengths. Unlike CcP, LmP depends on key intermolecular ion pairs to form the electron transfer competent complex. Mutating these sites causes the initial rate of association to decrease by 2 orders of magnitude and a substantial decrease in kcat. The drop in kcat is due to a switch in the rate-limiting step of the mutants from intramolecular electron transfer to the rate of association in forming the LmP–LmCytc complex. These studies show that while LmP and CcP form very similar complexes and exhibit similar activities, they substantially differ in how their activity changes as a function of ionic strength. This difference is primarily due to the heavy reliance of LmP on highly specific intermolecular ion pairs, while CcP relies mainly on nonpolar interactions. PMID:25941976

  11. Genetic relationships between race-nonspecific and race-specific interactions in the wheat-Pyrenophora tritici-repentis pathosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tan spot, caused by the fungus Pyrenophora tritici-repentis, is a destructive disease of wheat worldwide. The disease system is known to include inverse gene-for-gene, race specific interactions involving the recognition of fungal-produced necrotrophic effectors (NEs) by corresponding host sensitiv...

  12. Molecular-Level Thermodynamic Switch Controls Chemical Equilibrium in Sequence-Specific Hydrophobic Interaction of 35 Dipeptide Pairs

    PubMed Central

    Chun, Paul W.

    2003-01-01

    Applying the Planck-Benzinger methodology, the sequence-specific hydrophobic interactions of 35 dipeptide pairs were examined over a temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. The hydrophobic interaction in these sequence-specific dipeptide pairs is highly similar in its thermodynamic behavior to that of other biological systems. The results imply that the negative Gibbs free energy change minimum at a well-defined stable temperature, 〈Ts〉, where the bound unavailable energy, TΔSo = 0, has its origin in the sequence-specific hydrophobic interactions, are highly dependent on details of molecular structure. Each case confirms the existence of a thermodynamic molecular switch wherein a change of sign in ΔCpo(T)reaction (change in specific heat capacity of reaction at constant pressure) leads to true negative minimum in the Gibbs free energy change of reaction, ΔGo(T)reaction, and hence a maximum in the related equilibrium constant, Keq. Indeed, all interacting biological systems examined to date by Chun using the Planck-Benzinger methodology have shown such a thermodynamic switch at the molecular level, suggesting its existence may be universal. PMID:12547816

  13. Electrostatic Interactions Guide the Active Site Face of a Structure-Specific Ribonuclease to Its RNA Substrate†

    PubMed Central

    2008-01-01

    Restrictocin, a member of the α-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S−28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme−substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [∂ log(k2/K1/2)/∂ log[KCl

  14. Aegyptin, a Novel Mosquito Salivary Gland Protein Specifically Binds to Collagen and Prevents its Interaction with Glycoprotein VI, Integrin α2β1 and von Willebrand Factor

    PubMed Central

    Calvo, Eric; Tokumasu, Fuyuki; Marinotti, Osvaldo; Villeval, Jean-Luc; Ribeiro, José M. C.; Francischetti, Ivo M. B.

    2010-01-01

    Blood-sucking arthropods have evolved a number of inhibitors of platelet aggregation and blood coagulation. In this report we have molecularly and functionally characterized aegyptin, a member of the family of 30-kDa salivary allergens from Aedes aegypti, whose function remained elusive thus far. Aegyptin displays a unique sequence characterized by glycine, glutamic acid, and aspartic acid repeats and was shown to specifically block collagen-induced human platelet aggregation and granule secretion. Plasmon resonance experiments demonstrate that aegyptin binds to collagen types I-V (Kd ≈ 1 nM) but does not interact with vitronectin, fibronectin, laminin, fibrinogen, and von Willebrand factor (vWf). In addition, aegyptin attenuates platelet adhesion to soluble or fibrillar collagen. Furthermore, aegyptin inhibits vWf interaction with collagen type III under static conditions and completely blocks platelet adhesion to collagen under flow conditions at high shear rates. Notably, aegyptin completely prevents collagen but not convulxin binding to recombinant glycoprotein VI. These findings indicate that aegyptin recognizes specific binding sites for glycoprotein VI, integrin α2β1, and vWf, thereby preventing collagen interaction with its three major ligands. Aegyptin is a novel tool to study collagen-platelet interaction and a prototype for development of molecules with antithrombotic properties. PMID:17650501

  15. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.

    PubMed

    Holland, Joseph G; Malin, Jessica N; Jordan, David S; Morales, Esmeralda; Geiger, Franz M

    2011-03-02

    This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.

  16. Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin.

    PubMed

    Macwan, Isaac G; Zhao, Zihe; Sobh, Omar T; Mukerji, Ishita; Dharmadhikari, Bhushan; Patra, Prabir K

    2016-01-01

    Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.

  17. Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions.

    PubMed

    Dunn, Barnaby D; Stefanovitch, Iolanta; Evans, Davy; Oliver, Clare; Hawkins, Amy; Dalgleish, Tim

    2010-11-01

    Delineating the differential effects of anxiety versus depression on patterns of information processing has proved challenging. The tripartite model of mood disorders (Clark & Watson, 1991) suggests that one way forward is to adopt a dimensional rather than categorical approach, making it possible to explore the main and interaction effects of depression- and anxiety-specific symptoms on a given cognitive-affective process. Here we examined how the interplay of anxiety-specific arousal and depression-specific anhedonia symptoms in the same individuals relate to interoceptive (bodily) awareness. 113 participants with varying levels of mood disorder symptoms completed a heartbeat perception task to assess interoceptive accuracy. Superior interoception was associated with anxiety-specific arousal symptoms, and this relationship held when controlling for depression-specific anhedonia symptoms and shared general distress symptoms. This main effect was qualified by an interaction between anhedonia and arousal. As anhedonia symptoms increased in severity, the relationship between arousal and interoceptive accuracy became less strong. These results further validate the tripartite framework, help clarify the mixed existing literature on interoception in mood disorders, and suggest that considering the unique and interactive effects of different symptom dimensions is a useful strategy to help identify the cognitive-affective profiles associated with anxiety and depression.

  18. Targeted silencing of DNA-specific B cells combined with partial plasma cell depletion displays additive effects on delaying disease onset in lupus-prone mice

    PubMed Central

    Nikolova-Ganeva, K A; Gesheva, V V; Todorov, T A; Voll, R E; Vassilev, T L

    2013-01-01

    Targeting autoreactive B lymphocytes at any stage of their differentiation could yield viable therapeutic strategies for treating autoimmunity. All currently used drugs, including the most recently introduced biological agents, lack target specificity. Selective silencing of double-stranded DNA-specific B cells in animals with spontaneous lupus has been achieved previously by the administration of a chimeric antibody molecule that cross-links their DNA-reactive B cell immunoglobulin receptors with inhibitory FcγIIb (CD32) receptors. However, long-lived plasmacytes are resistant to this chimeric antibody as well as to all conventional treatments. Bortezomib (a proteasome inhibitor) depletes most plasma cells and has been shown recently to suppress disease activity in lupus mice. We hypothesized that the co-administration of non-toxic doses of bortezomib, that partially purge long-lived plasma cells, together with an agent that selectively silences DNA-specific B cells, should have additive effects in an autoantibody-mediated disease. Indeed, our data show that the simultaneous treatment of lupus-prone MRL/lpr mice with suboptimal doses of bortezomib plus the chimeric antibody resulted in the prevention or the delayed appearance of the disease manifestations as well as in a prolonged survival. The effect of the combination therapy was significantly stronger than that of the respective monotherapies and was comparable to that observed after cyclophosphamide administration. PMID:23808414

  19. Targeted silencing of DNA-specific B cells combined with partial plasma cell depletion displays additive effects on delaying disease onset in lupus-prone mice.

    PubMed

    Nikolova-Ganeva, K A; Gesheva, V V; Todorov, T A; Voll, R E; Vassilev, T L

    2013-11-01

    Targeting autoreactive B lymphocytes at any stage of their differentiation could yield viable therapeutic strategies for treating autoimmunity. All currently used drugs, including the most recently introduced biological agents, lack target specificity. Selective silencing of double-stranded DNA-specific B cells in animals with spontaneous lupus has been achieved previously by the administration of a chimeric antibody molecule that cross-links their DNA-reactive B cell immunoglobulin receptors with inhibitory FcγIIb (CD32) receptors. However, long-lived plasmacytes are resistant to this chimeric antibody as well as to all conventional treatments. Bortezomib (a proteasome inhibitor) depletes most plasma cells and has been shown recently to suppress disease activity in lupus mice. We hypothesized that the co-administration of non-toxic doses of bortezomib, that partially purge long-lived plasma cells, together with an agent that selectively silences DNA-specific B cells, should have additive effects in an autoantibody-mediated disease. Indeed, our data show that the simultaneous treatment of lupus-prone MRL/lpr mice with suboptimal doses of bortezomib plus the chimeric antibody resulted in the prevention or the delayed appearance of the disease manifestations as well as in a prolonged survival. The effect of the combination therapy was significantly stronger than that of the respective monotherapies and was comparable to that observed after cyclophosphamide administration.

  20. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors

    PubMed Central

    Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter

    2010-01-01

    The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028

  1. In vivo stage- and tissue-specific DNA-protein interactions at the D. melanogaster alcohol dehydrogenase distal promoter and adult enhancer.

    PubMed Central

    Jackson, J R; Benyajati, C

    1992-01-01

    We performed a high resolution analysis of the chromatin structure within the regions required for distal transcription of the Drosophila melanogaster alcohol dehydrogenase gene (Adh). Using dimethyl sulfate, DNase I, and micrococcal nuclease as structural probes, and comparing chromatin structure in tissues isolated from several developmental stages, we have identified several sites of stage- and tissue-specific DNA-protein interactions that correlate with distal transcription initiation. Most were within previously identified cis-acting elements and/or in vitro protein binding sites of the adult enhancer (AAE) and distal promoter, including the TATA box. We also detected a novel stage-specific DNA-protein interaction at the Adf-2a binding site where a non-histone protein was bound to the DNA on the surface of a positioned nucleosome previously identified between the distal promoter and adult enhancer. In addition to footprints, we have also revealed stage- and tissue-specific DNA helix deformations between many of the non-histone protein binding sites. These helix distortions suggest there are interactions among the adjacently bound proteins that result in bending or kinking of the intervening DNA. The distal promoter and AAE have an accessible chromatin conformation in fat body prior to the third larval instar and many of the regulatory proteins that bind in these regions are also available before distal transcription begins. Nevertheless, the timing of DNA-protein interactions in the distal promoter and AAE suggest these proteins do not bind individually or assemble progressively as they and their binding sites become available. Instead, there appears to be a coordinated assembly of a large cooperative complex of proteins interacting with the distal promoter, the positioned nucleosome, the enhancer of the distal promoter (the AAE), and each other. Images PMID:1437559

  2. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment.

    PubMed

    Bocharov, Eduard V; Mineev, Konstantin S; Pavlov, Konstantin V; Akimov, Sergey A; Kuznetsov, Andrey S; Efremov, Roman G; Arseniev, Alexander S

    2017-04-01

    Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  3. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants

    PubMed Central

    Fleming, Karen G.; Engelman, Donald M.

    2001-01-01

    The folding, stability, and oligomerization of helical membrane proteins depend in part on a precise set of packing interactions between transmembrane helices. To understand the energetic principles of these helix–helix interactions, we have used alanine-scanning mutagenesis and sedimentation equilibrium analytical ultracentrifugation to quantitatively examine the sequence dependence of the glycophorin A transmembrane helix dimerization. In all cases, we found that mutations to alanine at interface positions cost free energy of association. In contrast, mutations to alanine away from the dimer interface showed free energies of association that are insignificantly different from wild-type or are slightly stabilizing. Our study further revealed that the energy of association is not evenly distributed across the interface, but that there are several “hot spots” for interaction including both glycines participating in a GxxxG motif. Inspection of the NMR structure indicates that simple principles of protein–protein interactions can explain the changes in energy that are observed. A comparison of the dimer stability between different hydrophobic environments suggested that the hierarchy of stability for sequence variants is conserved. Together, these findings imply that the protein–protein interaction portion of the overall association energy may be separable from the contributions arising from protein–lipid and lipid–lipid energy terms. This idea is a conceptual simplification of the membrane protein folding problem and has implications for prediction and design. PMID:11724930

  4. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    PubMed

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  5. Interactive effects of nitrogen addition, warming and invasion across organizational levels in an old-field plant community.

    PubMed

    Gornish, Elise S

    2014-10-08

    Response to global change is dependent on the level of biological organization (e.g. the ecologically relevant spatial scale) in which species are embedded. For example, individual responses can affect population-level responses, which, in turn, can affect community-level responses. Although relationships are known to exist among responses to global change across levels of biological organization, formal investigations of these relationships are still uncommon. I conducted an exploratory analysis to identify how nitrogen addition and warming by open top chambers might affect plants across spatial scales by estimating treatment effect size at the leaf level, the plant level and the community level. Moreover, I investigated if the presence of Pityopsis aspera, an experimentally introduced plant species, modified the relationship between spatial scale and effect size across treatments. I found that, overall, the spatial scale significantly contributes to differences in effect size, supporting previous work which suggests that mechanisms driving biotic response to global change are scale dependent. Interestingly, the relationship between spatial scale and effect size in both the absence and presence of experimental invasion is very similar for nitrogen addition and warming treatments. The presence of invasion, however, did not affect the relationship between spatial scale and effect size, suggesting that in this system, invasion may not exacerbate or attenuate climate change effects. This exercise highlights the value of moving beyond integration and scaling to the practice of directly testing for scale effects within single experiments.

  6. Molecule-specific interactions of diatomic adsorbates at metal-liquid interfaces

    PubMed Central

    Kraack, Jan Philip; Kaech, Andres; Hamm, Peter

    2017-01-01

    Ultrafast vibrational dynamics of small molecules on platinum (Pt) layers in water are investigated using 2D attenuated total reflectance IR spectroscopy. Isotope combinations of carbon monoxide and cyanide are used to elucidate inter-adsorbate and substrate-adsorbate interactions. Despite observed cross-peaks in the CO spectra, we conclude that the molecules are not vibrationally coupled. Rather, strong substrate-adsorbate interactions evoke rapid (∼2 ps) vibrational relaxation from the adsorbate into the Pt layer, leading to thermal cross-peaks. In the case of CN, vibrational relaxation is significantly slower (∼10 ps) and dominated by adsorbate-solvent interactions, while the coupling to the substrate is negligible.

  7. Daphnia magna's sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity.

    PubMed

    Gust, Kurt A; Kennedy, Alan J; Melby, Nicolas L; Wilbanks, Mitchell S; Laird, Jennifer; Meeks, Barbara; Muller, Erik B; Nisbet, Roger M; Perkins, Edward J

    2016-08-01

    This work investigates whether the scale-up to multi-animal exposures that is commonly applied in genomics studies provides equivalent toxicity outcomes to single-animal experiments of standard Daphnia magna toxicity assays. Specifically, we tested the null hypothesis that intraspecific interactions (ISI) among D. magna have neither effect on the life history strategies of this species, nor impact toxicological outcomes in exposure experiments with Cu and Pb. The results show that ISI significantly increased mortality of D. magna in both Cu and Pb exposure experiments, decreasing 14 day LC50 s and 95 % confidence intervals from 14.5 (10.9-148.3) to 8.4 (8.2-8.7) µg Cu/L and from 232 (156-4810) to 68 (63-73) µg Pb/L. Additionally, ISI potentiated Pb impacts on reproduction eliciting a nearly 10-fold decrease in the no-observed effect concentration (from 236 to 25 µg/L). As an indication of environmental relevance, the effects of ISI on both mortality and reproduction in Pb exposures were sustained at both high and low food rations. Furthermore, even with a single pair of Daphnia, ISI significantly increased (p < 0.05) neonate production in control conditions, demonstrating that ISI can affect life history strategy. Given these results we reject the null hypothesis and conclude that results from scale-up assays cannot be directly applied to observations from single-animal assessments in D. magna. We postulate that D. magna senses chemical signatures of conspecifics which elicits changes in life history strategies that ultimately increase susceptibility to metal toxicity.

  8. Atomic level understanding of site-specific interactions in Polyaniline/TiO2 composite

    NASA Astrophysics Data System (ADS)

    Chabungbam, Satyananda; Loh, G. C.; Sahariah, Munima B.; Pal, Arup R.; Pandey, Ravindra

    2016-02-01

    Spin-polarized density functional theory calculations have been performed to understand the interactions in polyaniline (PAni) and TiO2 composite at the atomic level. Binding energy calculation shows that composite structure is energetically more stable when Ti atom of TiO2 sits on top of PAni. It is also found that there is a dependency of the CBM on the site of TiO2 interaction in this composite system. The results suggest that optimization of the synthesis parameters at atomic level can be an effective way to improve the performance of a photovoltaic device based on PAni-TiO2 composite.

  9. Switching assay as a novel approach for specific antigen- antibody interaction analysis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Parr, M.; Illarionov, R.; Marchenko, Y.; Yakovleva, L.; Nikolaev, B.; Ischenko, A.; Shevtsov, M.

    2016-08-01

    Switching assay was applied for the detection of antigen-antibody interaction between 70-kDa heat shock protein (Hsp70) and anti-Hsp70 monoclonal antibodies in water solutions using conjugates with magnetic iron oxide nanoparticles (MNPs). Hsp70 is a ubiquitous intracellular protein that plays a crucial role in cancerogenesis and many other pathologies. Detection of the Hsp70 level in the biological fluids might have a prognostic and diagnostic value in clinic. The developed switch assay for the detection of Hsp70 demonstrated high sensitivity for antigen-antibody interaction analysis thus proving its potential for further preclinical and clinical studies.

  10. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo.

    PubMed Central

    Stapleton, G; Somma, M P; Lavia, P

    1993-01-01

    Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinations of factors may ensure ubiquitous expression of the Htf9-associated genes. Images PMID:8389443

  11. Energy coupling between DNA binding and subunit association is responsible for the specificity of DNA-Arc interaction.

    PubMed Central

    Silva, J. L.; Silveira, C. F.

    1993-01-01

    The effects of several DNA molecules on the free energy of subunit association of Arc repressor were measured. The association studies under equilibrium conditions were performed by the dissociating perturbation of hydrostatic pressure. The magnitude of stabilization of the subunit interaction was determined by the specificity of the protein-DNA interaction. Operator DNA stabilized the free energy of association by about 2.2 kcal/mol of monomeric unit, whereas poly(dG-dC) stabilized the subunit interaction by only 0.26 kcal. Measurements of the stabilizing free energy at different DNA concentrations revealed a stoichiometry of two dimers per 21 bp for the operator DNA sequence and for the nonspecific DNA poly(dA-dT). However, the maximum stabilization was much larger for operator sequence (delta p = 1,750 bar) as compared for poly(dA-dT) (delta p = 750 bar). The importance of the free-energy linkage for the recognition process was corroborated by its absence in a mutant Arc protein (PL8) that binds to operator and nonspecific DNA sequences with equal, low affinity. We conclude that the coupling accounts for the high specificity of the Arc-operator DNA interaction. We hypothesize a mutual coupling between the protein subunits and the two DNA strands, in which the much higher persistency of the associated form when Arc is bound to operator would stabilize the interactions between the two DNA strands. PMID:8318899

  12. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.

    PubMed

    Su, Ji Guo; Han, Xiao Ming; Zhang, Xiao; Hou, Yan Xue; Zhu, Jian Zhuo; Wu, Yi Dong

    2016-01-01

    Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.

  13. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    SciTech Connect

    Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu; Lee, Jae-Ran

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.

  14. Child Effortful Control, Teacher-student Relationships, and Achievement in Academically At-risk Children: Additive and Interactive Effects.

    PubMed

    Liew, Jeffrey; Chen, Qi; Hughes, Jan N

    2010-01-01

    The joint contributions of child effortful control (using inhibitory control and task accuracy as behavioral indices) and positive teacher-student relationships at first grade on reading and mathematics achievement at second grade were examined in 761 children who were predominantly from low-income and ethnic minority backgrounds and assessed to be academically at-risk at entry to first grade. Analyses accounted for clustering effects, covariates, baselines of effortful control measures, and prior levels of achievement. Even with such conservative statistical controls, interactive effects were found for task accuracy and positive teacher-student relationships on future achievement. Results suggest that task accuracy served as a protective factor so that children with high task accuracy performed well academically despite not having positive teacher-student relationships. Further, positive teacher-student relationships served as a compensatory factor so that children with low task accuracy performed just as well as those with high task accuracy if they were paired with a positive and supportive teacher. Importantly, results indicate that the influence of positive teacher-student relationships on future achievement was most pronounced for students with low effortful control on tasks that require fine motor skills, accuracy, and attention-related skills. Study results have implications for narrowing achievement disparities for academically at-risk children.

  15. Child Effortful Control, Teacher-student Relationships, and Achievement in Academically At-risk Children: Additive and Interactive Effects

    PubMed Central

    Liew, Jeffrey; Chen, Qi; Hughes, Jan N.

    2009-01-01

    The joint contributions of child effortful control (using inhibitory control and task accuracy as behavioral indices) and positive teacher-student relationships at first grade on reading and mathematics achievement at second grade were examined in 761 children who were predominantly from low-income and ethnic minority backgrounds and assessed to be academically at-risk at entry to first grade. Analyses accounted for clustering effects, covariates, baselines of effortful control measures, and prior levels of achievement. Even with such conservative statistical controls, interactive effects were found for task accuracy and positive teacher-student relationships on future achievement. Results suggest that task accuracy served as a protective factor so that children with high task accuracy performed well academically despite not having positive teacher-student relationships. Further, positive teacher-student relationships served as a compensatory factor so that children with low task accuracy performed just as well as those with high task accuracy if they were paired with a positive and supportive teacher. Importantly, results indicate that the influence of positive teacher-student relationships on future achievement was most pronounced for students with low effortful control on tasks that require fine motor skills, accuracy, and attention-related skills. Study results have implications for narrowing achievement disparities for academically at-risk children. PMID:20161421

  16. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.

    PubMed

    Petushkov, V N; Ketelaars, M; Gibson, B G; Lee, J

    1996-09-17

    The kinetics of the bacterial bioluminescence reaction is altered in the presence of the fluorescent (antenna) proteins, lumazine protein (LumP) from Photobacterium or the yellow fluorescence proteins (YFP) having FMN or Rf bound, from Vibrio fischeri strain Y1. Depending on reaction conditions, the bioluminescence intensity and its decay rate may be either enhanced or strongly quenched in the presence of the fluorescent proteins. These effects can be simply explained on the basis of the same protein-protein complex model that accounts for the bioluminescence spectral shifts induced by these fluorescent proteins. In such a complex, where the fluorophore evidently is in proximity to the luciferase active site, it is expected that the on-off rate of certain aliphatic components of the reaction should be altered with a consequent shift in the equilibria among the luciferase intermediates, as recently elaborated in a kinetic scheme. These aliphatic components are the bioluminescence reaction substrate, tetradecanal or other long-chain aldehyde, its carboxylic acid product, or dodecanol used as a stabilizer of the luciferase peroxyflavin. No evidence can be found for the protein-protein interaction in the absence of the aliphatic component.

  17. Effects of eye movement desensitization and reprocessing (EMDR) on non-specific chronic back pain: a randomized controlled trial with additional exploration of the underlying mechanisms

    PubMed Central

    2013-01-01

    Background Non-specific chronic back pain (CBP) is often accompanied by psychological trauma, but treatment for this associated condition is often insufficient. Nevertheless, despite the common co-occurrence of pain and psychological trauma, a specific trauma-focused approach for treating CBP has been neglected to date. Accordingly, eye movement desensitization and reprocessing (EMDR), originally developed as a treatment approach for posttraumatic stress disorders, is a promising approach for treating CBP in patients who have experienced psychological trauma. Thus, the aim of this study is to determine whether a standardized, short-term EMDR intervention added to treatment as usual (TAU) reduces pain intensity in CBP patients with psychological trauma vs. TAU alone. Methods/design The study will recruit 40 non-specific CBP patients who have experienced psychological trauma. After a baseline assessment, the patients will be randomized to either an intervention group (n = 20) or a control group (n = 20). Individuals in the EMDR group will receive ten 90-minute sessions of EMDR fortnightly in addition to TAU. The control group will receive TAU alone. The post-treatment assessments will take place two weeks after the last EMDR session and six months later. The primary outcome will be the change in the intensity of CBP within the last four weeks (numeric rating scale 0–10) from the pre-treatment assessment to the post-treatment assessment two weeks after the completion of treatment. In addition, the patients will undergo a thorough assessment of the change in the experience of pain, disability, trauma-associated distress, mental co-morbidities, resilience, and quality of life to explore distinct treatment effects. To explore the mechanisms of action that are involved, changes in pain perception and pain processing (quantitative sensory testing, conditioned pain modulation) will also be assessed. The statistical analysis of the primary outcome will be performed

  18. Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane.

    PubMed

    Asanuma-Date, Kimie; Hirano, Yuki; Le, Na; Sano, Kotone; Kawasaki, Nana; Hashii, Noritaka; Hiruta, Yoko; Nakayama, Ken-ichi; Umemura, Mariko; Ishikawa, Kazuhiko; Sakagami, Hiromi; Ogawa, Haruko

    2012-06-29

    Porcine pancreatic α-amylase (PPA) binds to N-linked glycans of glycoproteins (Matsushita, H., Takenaka, M., and Ogawa, H. (2002) J. Biol Chem., 277, 4680-4686). Immunostaining revealed that PPA is located at the brush-border membrane (BBM) of enterocytes in the duodenum and that the binding is inhibited by mannan but not galactan, indicating that PPA binds carbohydrate-specifically to BBM. The ligands for PPA in BBM were identified as glycoprotein N-glycans that are significantly involved in the assimilation of glucose, including sucrase-isomaltase (SI) and Na(+)/Glc cotransporter 1 (SGLT1). Binding of SI and SGLT1 in BBM to PPA was dose-dependent and inhibited by mannan. Using BBM vesicles, we found functional changes in PPA and its ligands in BBM due to the N-glycan-specific interaction. The starch-degrading activity of PPA and maltose-degrading activity of SI were enhanced to 240 and 175%, respectively, while Glc uptake by SGLT1 was markedly inhibited by PPA at high but physiologically possible concentrations, and the binding was attenuated by the addition of mannose-specific lectins, especially from Galanthus nivalis. Additionally, recombinant human pancreatic α-amylases expressed in yeast and purified by single-step affinity chromatography exhibited the same carbohydrate binding specificity as PPA in binding assays with sugar-biotinyl polymer probes. The results indicate that mammalian pancreatic α-amylases share a common carbohydrate binding activity and specifically bind to the intestinal BBM. Interaction with N-glycans in the BBM activated PPA and SI to produce much Glc on the one hand and to inhibit Glc absorption by enterocytes via SGLT1 in order to prevent a rapid increase in blood sugar on the other.

  19. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling.

    PubMed

    Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E

    2013-07-01

    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.

  20. Job demands × job control interaction effects: do occupation-specific job demands increase their occurrence?

    PubMed

    Brough, Paula; Biggs, Amanda

    2015-04-01

    Despite evidence that the accurate assessment of occupational health should include measures of both generic job demands and occupation-specific job demands, most research includes only generic job demands. The inclusion of more focused occupation-specific job demands is suggested to explain a larger proportion of variance for both direct effects and job demands × job control/support interaction effects, as compared with the inclusion of generic job demands. This research tested these two propositions via a self-report survey assessing key psychological job characteristics administered twice to a sample of correctional workers (N = 746). The research clearly identified that the assessment of correctional-specific job demands (CJD) was more strongly associated with job satisfaction, work engagement, turnover intentions and psychological strain, as compared with an assessment of generic job demands. However, the CJD did not produce a greater proportion of significant job demands × job control/support interaction effects, as compared with the generic job demands measure. The results thereby provide further support for the acknowledged 'elusiveness' of these theoretical interactions. Overall, however, the results did support the inclusion of occupation-specific measures of job demands for the accurate assessment of the health and job performance of high-risk workers. The implications for theoretical discussions that describe how high job demands are moderated by job resources are discussed.

  1. Specificity of root-bacterial interactions for drought stress tolerance in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants cope with drought stress by a variety of mechanisms that occur above- and below-ground. Below the soil surface, root architecture and interactions with beneficial bacteria, including aminocyclopropane carboxylic acid deaminase-positive (ACC+) bacteria, may contribute to differences in drought...

  2. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration

    PubMed Central

    Goessling, Wolfram; North, Trista E.; Loewer, Sabine; Lord, Allegra M.; Lee, Sang; Stoick-Cooper, Cristi L.; Weidinger, Gilbert; Puder, Mark; Daley, George Q.; Moon, Randall T.; Zon, Leonard I.

    2009-01-01

    Summary Interactions between developmental signaling pathways govern the formation and function of stem cells. Prostaglandin (PG) E2 regulates vertebrate hematopoietic stem cells (HSC). Similarly, the Wnt signaling pathway controls HSC self-renewal and bone marrow repopulation. Here, we show that wnt reporter activity in zebrafish HSCs is responsive to PGE2 modulation, demonstrating a direct interaction in vivo. Inhibition of PGE2 synthesis blocked wnt-induced alterations in HSC formation. PGE2 modified the wnt signaling cascade at the level of β-catenin degradation through cAMP/PKA-mediated stabilizing phosphorylation events. The PGE2/Wnt interaction regulated murine stem and progenitor populations in vitro in hematopoietic ES cell assays and in vivo following transplantation. The relationship between PGE2 and Wnt was also conserved during regeneration of other organ systems. Our work provides the first in vivo evidence that Wnt activation in stem cells requires PGE2, and suggests the PGE2/Wnt interaction is a master regulator of vertebrate regeneration and recovery. PMID:19303855

  3. A Note on the Specification of Error Structures in Latent Interaction Models

    ERIC Educational Resources Information Center

    Mao, Xiulin; Harring, Jeffrey R.; Hancock, Gregory R.

    2015-01-01

    Latent interaction models have motivated a great deal of methodological research, mainly in the area of estimating such models. Product-indicator methods have been shown to be competitive with other methods of estimation in terms of parameter bias and standard error accuracy, and their continued popularity in empirical studies is due, in part, to…

  4. Additive sex-specific influence of common non-synonymous DISC1 variants on amygdala, basal ganglia, and white cortical surface area in healthy young adults.

    PubMed

    Mühle, Christiane; Kreczi, Jakob; Rhein, Cosima; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Lenz, Bernd; Kornhuber, Johannes

    2017-03-01

    The disrupted-in-schizophrenia-1 (DISC1) gene is known for its role in the development of mental disorders. It is also involved in neurodevelopment, cognition, and memory. To investigate the association between DISC1 variants and brain morphology, we analyzed the influence of the three common non-synonymous polymorphisms in DISC1 on specific brain structures in healthy young adults. The volumes of brain regions were determined in 145 subjects by magnetic resonance imaging and automated analysis using FreeSurfer. Genotyping was performed by high resolution melting of amplified products. In an additive genetic model, rs6675281 (Leu607Phe), rs3738401 (Arg264Gln), and rs821616 (Ser704Cys) significantly explained the volume variance of the amygdala (p = 0.007) and the pallidum (p = 0.004). A higher cumulative portion of minor alleles was associated with larger volumes of the amygdala (p = 0.005), the pallidum (p = 0.001), the caudate (p = 0.024), and the putamen (p = 0.007). Sex-stratified analysis revealed a strong genetic effect of rs6675281 on putamen and pallidum in females but not in males and an opposite influence of rs3738401 on the white cortical surface in females compared to males. The strongest single association was found for rs821616 and the amygdala volume in male subjects (p < 0.001). No effect was detected for the nucleus accumbens. We report-to our knowledge-for the first time a significant and sex-specific influence of common DISC1 variants on volumes of the basal ganglia, the amygdala and on the cortical surface area. Our results demonstrate that the additive model of all three polymorphisms outperforms their single analysis.

  5. Kinetics of the addition of olefins to Si-centered radicals: the critical role of dispersion interactions revealed by theory and experiment.

    PubMed

    Johnson, Erin R; Clarkin, Owen J; Dale, Stephen G; DiLabio, Gino A

    2015-06-04

    Solution-phase rate constants for the addition of selected olefins to the triethylsilyl and tris(trimethylsilyl)silyl radicals are measured using laser-flash photolysis and competition kinetics. The results are compared with predictions from density functional theory (DFT) calculations, both with and without dispersion corrections obtained from the exchange-hole dipole moment (XDM) model. Without a dispersion correction, the rate constants are consistently underestimated; the errors increase with system size, up to 10(6) s(-1) for the largest system considered. Dispersion interactions preferentially stabilize the transition states relative to the separated reactants and bring the DFT-calculated rate constants into excellent agreement with experiment. Thus, dispersion interactions are found to play a key role in determining the kinetics for addition reactions, particularly those involving sterically bulky functional groups.

  6. The Qb-SNARE Memb11 interacts specifically with Arf1 in the Golgi apparatus of Arabidopsis thaliana.

    PubMed

    Marais, Claireline; Wattelet-Boyer, Valérie; Bouyssou, Guillaume; Hocquellet, Agnès; Dupuy, Jean-William; Batailler, Brigitte; Brocard, Lysiane; Boutté, Yohann; Maneta-Peyret, Lilly; Moreau, Patrick

    2015-11-01

    The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are critical for the function of the secretory pathway. The SNARE Memb11 is involved in membrane trafficking at the ER-Golgi interface. The aim of the work was to decipher molecular mechanisms acting in Memb11-mediated ER-Golgi traffic. In mammalian cells, the orthologue of Memb11 (membrin) is potentially involved in the recruitment of the GTPase Arf1 at the Golgi membrane. However molecular mechanisms associated to Memb11 remain unknown in plants. Memb11 was detected mainly at the cis-Golgi and co-immunoprecipitated with Arf1, suggesting that Arf1 may interact with Memb11. This interaction of Memb11 with Arf1 at the Golgi was confirmed by in vivo BiFC (Bimolecular Fluorescence Complementation) experiments. This interaction was found to be specific to Memb11 as compared to either Memb12 or Sec22. Using a structural bioinformatic approach, several sequences in the N-ter part of Memb11 were hypothesized to be critical for this interaction and were tested by BiFC on corresponding mutants. Finally, by using both in vitro and in vivo approaches, we determined that only the GDP-bound form of Arf1 interacts with Memb11. Together, our results indicate that Memb11 interacts with the GDP-bound form of Arf1 in the Golgi apparatus.

  7. Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes

    PubMed Central

    Zhi, Xueyuan; Yang, Boyi; Fan, Shujun; Li, Yongfang; He, Miao; Wang, Da; Wang, Yanxun; Wei, Jian; Zheng, Quanmei; Sun, Guifan

    2016-01-01

    Although both methylenetetrahydrofolate reductase (MTHFR) C677T and methionine synthase reductase (MTRR) A66G polymorphisms have been associated with type 2 diabetes (T2D), their interactions with being overweight/obesity on T2D risk remain unclear. To evaluate the associations of the two polymorphisms with T2D and their interactions with being overweight/obesity on T2D risk, a case-control study of 180 T2D patients and 350 healthy controls was conducted in northern China. Additive interaction was estimated using relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP) and synergy index (S). After adjustments for age and gender, borderline significant associations of the MTHFR C677T and MTRR A66G polymorphisms with T2D were observed under recessive (OR = 1.43, 95% CI: 0.98–2.10) and dominant (OR = 1.43, 95% CI: 1.00–2.06) models, respectively. There was a significant interaction between the MTHFR 677TT genotype and being overweight/obesity on T2D risk (AP = 0.404, 95% CI: 0.047–0.761), in addition to the MTRR 66AG/GG genotypes (RERI = 1.703, 95% CI: 0.401–3.004; AP = 0.528, 95% CI: 0.223–0.834). Our findings suggest that individuals with the MTHFR 677TT or MTRR 66AG/GG genotypes are more susceptible to the detrimental effect of being overweight/obesity on T2D. Further large-scale studies are still needed to confirm our findings. PMID:27983710

  8. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    PubMed

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition.

  9. Addition of positively charged tripeptide to N-terminus of the Fos basic region leucine zipper domain: implications on DNA bending, affinity, and specificity.

    PubMed

    Mahmoudi, T; Sarkar, B

    1999-09-01

    GKH-Fos(139-211)/Jun(248-334) (GKH: glycine-lysine-histidine) is a modified Fos/Jun heterodimer designed to contain a metal binding motif in the form of a GKH tripeptide at the amino terminus of Fos bZIP domain dimerized with the Jun basic region leucine zipper (bZIP) domain. We examined the effect of the addition of positively charged GKH motif to the N-terminus of Fos(139-211) on the DNA binding characteristics of the Fos(139-211)/Jun(248-334) heterodimer. Binding studies indicate that while the nonspecific DNA binding affinity of the GKH modified heterodimer increases 4-fold, it specifically binds the activating protein-1 (AP-1) site 6-fold less tightly than the control unmodified counterpart. Furthermore, helical phasing analysis indicates that GKH-Fos(139-211)/Jun(248-334) and control Fos(139-211)/Jun(248-334) both bend the DNA at the AP-1 site toward the minor groove. However, due to the presence of the positively charged GKH motif on Fos, the degree of the induced bend by GKH- Fos(139-211)/Jun(248-334) is greater than that induced by the unmodified Fos/Jun heterodimer. Our results suggest that the unfavorable energetic cost of the increased DNA bending by GKH-Fos(139-211)/Jun(248-334) results in a decrease in both specificity and affinity of binding of the heterodimer to the AP-1 site. These findings may have important implications in protein design as well in our understanding of DNA bending and factors responsible for the functional specificity of different members of the bZIP family of transcription factors.

  10. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    SciTech Connect

    Bhuvanakantham, Raghavan; Chong, Mun-Keat; Ng, Mah-Lee

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  11. Size limits of self-assembled colloidal structures made using specific interactions

    PubMed Central

    Zeravcic, Zorana; Brenner, Michael P.

    2014-01-01

    We establish size limitations for assembling structures of controlled size and shape out of colloidal particles with short-ranged interactions. Through simulations we show that structures with highly variable shapes made out of dozens of particles can form with high yield, as long as each particle in the structure binds only to the particles in their local environment. To understand this, we identify the excited states that compete with the ground-state structure and demonstrate that these excited states have a completely topological characterization, valid when the interparticle interactions are short-ranged. This allows complete enumeration of the energy landscape and gives bounds on how large a colloidal structure can assemble with high yield. For large structures the yield can be significant, even with hundreds of particles. PMID:25349380

  12. Molecular interactions and trafficking of influenza A virus polymerase proteins analyzed by specific monoclonal antibodies

    SciTech Connect

    MacDonald, Leslie A.; Aggarwal, Shilpa; Bussey, Kendra A.; Desmet, Emily A.; Kim, Baek; Takimoto, Toru

    2012-04-25

    The influenza polymerase complex composed of PA, PB1 and PB2, plays a key role in viral replication and pathogenicity. Newly synthesized components must be translocated to the nucleus, where replication and transcription of viral genomes take place. Previous studies suggest that while PB2 is translocated to the nucleus independently, PA and PB1 subunits could not localize to the nucleus unless in a PA-PB1 complex. To further determine the molecular interactions between the components, we created a panel of 16 hybridoma cell lines, which produce monoclonal antibodies (mAbs) against each polymerase component. We showed that, although PB1 interacts with both PA and PB2 individually, nuclear localization of PB1 is enhanced only when co-expressed with PA. Interestingly, one of the anti-PA mAbs reacted much more strongly with PA when co-expressed with PB1. These results suggest that PA-PB1 interactions induce a conformational change in PA, which could be required for its nuclear translocation.

  13. Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association

    PubMed Central

    2015-01-01

    Some frequently encountered deficiencies in all-atom molecular simulations, such as nonspecific protein–protein interactions being too strong, and unfolded or disordered states being too collapsed, suggest that proteins are insufficiently well solvated in simulations using current state-of-the-art force fields. To address these issues, we make the simplest possible change, by modifying the short-range protein–water pair interactions, and leaving all the water–water and protein–protein parameters unchanged. We find that a modest strengthening of protein–water interactions is sufficient to recover the correct dimensions of intrinsically disordered or unfolded proteins, as determined by direct comparison with small-angle X-ray scattering (SAXS) and Förster resonance energy transfer (FRET) data. The modification also results in more realistic protein-protein affinities, and average solvation free energies of model compounds which are more consistent with experiment. Most importantly, we show that this scaling is small enough not to affect adversely the stability of the folded state, with only a modest effect on the stability of model peptides forming α-helix and β-sheet structures. The proposed adjustment opens the way to more accurate atomistic simulations of proteins, particularly for intrinsically disordered proteins, protein–protein association, and crowded cellular environments. PMID:25400522

  14. Real-Time Analysis of Specific Protein-DNA Interactions with Surface Plasmon Resonance

    PubMed Central

    Ritzefeld, Markus; Sewald, Norbert

    2012-01-01

    Several proteins, like transcription factors, bind to certain DNA sequences, thereby regulating biochemical pathways that determine the fate of the corresponding cell. Due to these key positions, it is indispensable to analyze protein-DNA interactions and to identify their mode of action. Surface plasmon resonance is a label-free method that facilitates the elucidation of real-time kinetics of biomolecular interactions. In this article, we focus on this biosensor-based method and provide a detailed guide how SPR can be utilized to study binding of proteins to oligonucleotides. After a description of the physical phenomenon and the instrumental realization including fiber-optic-based SPR and SPR imaging, we will continue with a survey of immobilization methods. Subsequently, we will focus on the optimization of the experiment, expose pitfalls, and introduce how data should be analyzed and published. Finally, we summarize several interesting publications of the last decades dealing with protein-DNA and RNA interaction analysis by SPR. PMID:22500214

  15. Specific interactions between vitamin-D receptor and its ligands: Ab initio molecular orbital calculations in water.

    PubMed

    Takeda, Ryosuke; Kobayashi, Ittetsu; Shimamura, Kanako; Ishimura, Hiromi; Kadoya, Ryushi; Kawai, Kentaro; Kittaka, Atsushi; Takimoto-Kamimura, Midori; Kurita, Noriyuki

    2017-02-27

    Vitamin D is recognized to play important roles not only in the bone metabolism and the regulation of Ca amount in the blood but also in the onset of immunological diseases. These physiological actions caused by vitamin D are triggered by the specific interaction between vitamin D receptor (VDR) and vitamin D. In the present study, we investigated the interactions between VDR and vitamin D derivatives using ab initio molecular simulation, in order to elucidate the reason for the significant difference in their effects on VDR activity. Based on the results simulated, we elucidated which parts of the derivatives and which residues of VDR mainly contribute to the specific binding between VDR and the derivatives at an electronic level. This finding will be helpful for proposing new vitamin D derivatives as a potent modulator or inhibitor against VDR.

  16. Evidence for general and domain-specific elements of teacher-child interactions: associations with preschool children's development.

    PubMed

    Hamre, Bridget; Hatfield, Bridget; Pianta, Robert; Jamil, Faiza

    2014-01-01

    This study evaluates a model for considering domain-general and domain-specific associations between teacher-child interactions and children's development, using a bifactor analytic strategy. Among a sample of 325 early childhood classrooms there was evidence for both general elements of teacher-child interaction (responsive teaching) and domain-specific elements related to positive management and routines and cognitive facilitation. Among a diverse population of 4-year-old children (n = 1,407) responsive teaching was modestly associated with development across social and cognitive domains, whereas positive management and routines was modestly associated with increases in inhibitory control and cognitive facilitation was associated with gains in early language and literacy skills. The conceptual and methodological contributions and challenges of this approach are discussed.

  17. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions

    PubMed Central

    Bukhari, Qasim; Schroeter, Aileen; Cole, David M.; Rudin, Markus

    2017-01-01

    fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under

  18. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions.

    PubMed

    Bukhari, Qasim; Schroeter, Aileen; Cole, David M; Rudin, Markus

    2017-01-01

    fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under

  19. Temperature-specific outcomes of cytoplasmic-nuclear interactions on egg-to-adult development time in seed beetles.

    PubMed

    Dowling, Damian K; Abiega, Katia Chávez; Arnqvist, Göran

    2007-01-01

    The integration of the mitochondrial and nuclear genomes coordinates cellular energy production and is fundamental to life among eukaryotes. Therefore, there is potential for strong selection to shape the interactions between the two genomes. Several studies have now demonstrated that epistatic interactions between cytoplasmic and nuclear genes for fitness can occur both at a "within" and "across" population level. Genotype-by-environment interactions are common for traits that are encoded by nuclear genes, but the effects of environmental heterogeneity on traits that are partly encoded by cytoplasmic genes have received little attention despite the fact that there are reasons to believe that phenotypic effects of cytoplasmic genetic variation may often be environment specific. Consequently, the importance of environmental heterogeneity to the outcomes of cyto-nuclear fitness interactions and to the maintenance of mitochondrial polymorphism is unclear. Here, we assess the influence of temperature on cyto-nuclear effects on egg-to-adult development time in seed beetles (Callosobruchus maculatus). We employed an "across-population" design, sourcing beetles from five distinct populations and using backcrossing to create orthogonal combinations of distinct introgression lines, fixed for their cytoplasmic and nuclear lineages. We then assayed development times at two different temperatures and found sizeable cyto-nuclear effects in general, as well as temperature- and block-specific cyto-nuclear effects. These results demonstrate that environmental factors such as temperature do exert selection on cytoplasmic genes by favoring specific cyto-nuclear genetic combinations, and are consistent with the suggestion that complex genotype-by-environment interactions may promote the maintenance of polymorphism in mitochondrial genes.

  20. Specific Inhibition of DNMT3A/ISGF3γ Interaction Increases the Temozolomide Efficiency to Reduce Tumor Growth.

    PubMed

    Cheray, Mathilde; Pacaud, Romain; Nadaradjane, Arulraj; Oliver, Lisa; Vallette, François M; Cartron, Pierre-François

    2016-01-01

    DNA methylation is a fundamental feature of genomes and is a candidate for pharmacological manipulation that might have important therapeutic advantage. Thus, DNA methyltransferases (DNMTs) appear to be ideal targets for drug intervention. By focusing on interactions existing between DNMT3A and DNMT3A-binding protein (D3A-BP), our work identifies the DNMT3A/ISGF3γ interaction such as a biomarker whose the presence level is associated with a poor survival prognosis and with a poor prognosis of response to the conventional chemotherapeutic treatment of glioblastoma multiforme (radiation plus temozolomide). Our data also demonstrates that the disruption of DNMT3A/ISGF3γ interactions increases the efficiency of chemotherapeutic treatment on established tumors in mice. Thus, our data opens a promising and innovative alternative to the development of specific DNMT inhibitors.

  1. Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection.

    PubMed Central

    Purohit, P; Dupont, S; Stevenson, M; Green, M R

    2001-01-01

    The human immunodeficiency virus type-1 matrix protein (HIV-1 MA) is a multifunctional structural protein synthesized as part of the Pr55 gag polyprotein. We have used in vitro genetic selection to identify an RNA consensus sequence that specifically interacts with MA (Kd = 5 x 10(-7) M). This 13-nt MA binding consensus sequence bears a high degree of homology (77%) to a region (nt 1433-1446) within the POL open reading frame of the HIV-1 genome (consensus sequence from 38 HIV-1 strains). Chemical interference experiments identified the nucleotides within the MA binding consensus sequence involved in direct contact with MA. We further demonstrate that this RNA-protein interaction is mediated through a stretch of basic amino acids within MA. Mutations that disrupt the interaction between MA and its RNA binding site within the HIV-1 genome resulted in a measurable decrease in viral replication. PMID:11345436

  2. Single-cell tracking of flavivirus RNA uncovers species-specific interactions with the immune system dictating disease outcome.

    PubMed

    Douam, Florian; Hrebikova, Gabriela; Albrecht, Yentli E Soto; Sellau, Julie; Sharon, Yael; Ding, Qiang; Ploss, Alexander

    2017-03-14

    Positive-sense RNA viruses pose increasing health and economic concerns worldwide. Our limited understanding of how these viruses interact with their host and how these processes lead to virulence and disease seriously hampers the development of anti-viral strategies. Here, we demonstrate the tracking of (+) and (-) sense viral RNA at single-cell resolution within complex subsets of the human and murine immune system in different mouse models. Our results provide insights into how a prototypic flavivirus, yellow fever virus (YFV-17D), differentially interacts with murine and human hematopoietic cells in these mouse models and how these dynamics influence distinct outcomes of infection. We detect (-) YFV-17D RNA in specific secondary lymphoid compartments and cell subsets not previously recognized as permissive for YFV replication, and we highlight potential virus-host interaction events that could be pivotal in regulating flavivirus virulence and attenuation.

  3. Specific Protein-Protein Interaction between Basic Helix-Loop-Helix Transcription Factors and Homeoproteins of the Pitx Family

    PubMed Central

    Poulin, Gino; Lebel, Mélanie; Chamberland, Michel; Paradis, Francois W.; Drouin, Jacques

    2000-01-01

    Homeoproteins and basic helix-loop-helix (bHLH) transcription factors are known for their critical role in development and cellular differentiation. The pituitary pro-opiomelanocortin (POMC) gene is a target for factors of both families. Indeed, pituitary-specific transcription of POMC depends on the action of the homeodomain-containing transcription factor Pitx1 and of bHLH heterodimers containing NeuroD1. We now show lineage-restricted expression of NeuroD1 in pituitary corticotroph cells and a direct physical interaction between bHLH heterodimers and Pitx1 that results in transcriptional synergism. The interaction between the bHLH and homeodomains is restricted to ubiquitous (class A) bHLH and to the Pitx subfamily. Since bHLH heterodimers interact with Pitx factors through their ubiquitous moiety, this mechanism may be implicated in other developmental processes involving bHLH factors, such as neurogenesis and myogenesis. PMID:10848608

  4. Rotational Diffusion of Charged and Nondipolar Solutes in Ionic Liquid-Organic Solvent Mixtures: Evidence for Stronger Specific Solute-Solvent Interactions in Presence of Organic Solvent.

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2015-08-20

    Rotational diffusion of a charged solute, rhodamine 110 (R110), and a nondipolar solute, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP), has been investigated in ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([BMIM][FAP]), with 0.8 mole fraction of dibenzyl ether (DBE). This study has been undertaken to find out how specific interactions between the solute and the ionic liquid are affected upon dilution with a nondipolar solvent. It has been observed that at a given viscosity (η) and temperature (T), the reorientation times of R110 increase by 40-60% in the ionic liquid-organic solvent mixtures compared to ones in the corresponding neat ionic liquids. In the case of DMDPP, the influence of DBE is less pronounced, and its reorientation times increase by 25-50% at a given η/T. The addition of DBE weakens the numerous interactions prevailing between the cations and the anions of the ionic liquids, which results in stronger specific interactions between the solutes and the constituent ions, consequently leading to slower rotation of the solutes.

  5. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    PubMed

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-05

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc.

  6. Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly

    PubMed Central

    Wawrzycka, Aleksandra; Gross, Marta; Wasaznik, Anna; Konieczny, Igor

    2015-01-01

    Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined. PMID:26195759

  7. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia.

    PubMed

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-15

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 10(4)M(-1), this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer.

  8. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-01

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 104 M-1, this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer.

  9. Iron–Sulfur Cluster Biogenesis Chaperones: Evidence for Emergence of Mutational Robustness of a Highly Specific Protein–Protein Interaction

    PubMed Central

    Delewski, Wojciech; Paterkiewicz, Bogumiła; Manicki, Mateusz; Schilke, Brenda; Tomiczek, Bartłomiej; Ciesielski, Szymon J.; Nierzwicki, Lukasz; Czub, Jacek; Dutkiewicz, Rafal; Craig, Elizabeth A.; Marszalek, Jaroslaw

    2016-01-01

    Biogenesis of iron–sulfur clusters (FeS) is a highly conserved process involving Hsp70 and J-protein chaperones. However, Hsp70 specialization differs among species. In most eukaryotes, including Schizosaccharomyces pombe, FeS biogenesis involves interaction between the J-protein Jac1 and the multifunctional Hsp70 Ssc1. But, in Saccharomyces cerevisiae and closely related species, Jac1 interacts with the specialized Hsp70 Ssq1, which emerged through duplication of SSC1. As little is known about how gene duplicates affect the robustness of their protein interaction partners, we analyzed the functional and evolutionary consequences of Ssq1 specialization on the ubiquitous J-protein cochaperone Jac1, by comparing S. cerevisiae and S. pombe. Although deletion of JAC1 is lethal in both species, alanine substitutions within the conserved His–Pro–Asp (HPD) motif, which is critical for Jac1:Hsp70 interaction, have species-specific effects. They are lethal in S. pombe, but not in S. cerevisiae. These in vivo differences correlated with in vitro biochemical measurements. Charged residues present in the J-domain of S. cerevisiae Jac1, but absent in S. pombe Jac1, are important for tolerance of S. cerevisiae Jac1 to HPD alterations. Moreover, Jac1 orthologs from species that encode Ssq1 have a higher sequence divergence. The simplest interpretation of our results is that Ssq1’s coevolution with Jac1 resulted in expansion of their binding interface, thus increasing the efficiency of their interaction. Such an expansion could in turn compensate for negative effects of HPD substitutions. Thus, our results support the idea that the robustness of Jac1 emerged as consequence of its highly efficient and specific interaction with Ssq1. PMID:26545917

  10. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II

    PubMed Central

    Bharati, Akhilendra Pratap; Singh, Neha; Kumar, Vikash; Kashif, Md.; Singh, Amit Kumar; Singh, Priyanka; Singh, Sudhir Kumar; Siddiqi, Mohammad Imran; Tripathi, Timir; Akhtar, Md. Sohail

    2016-01-01

    RNA Polymerase II (RNAPII) uniquely possesses an extended carboxy terminal domain (CTD) on its largest subunit, Rpb1, comprising a repetitive Tyr1Ser2Pro3Thr4 Ser5Pro6Ser7 motif with potential phosphorylation sites. The phosphorylation of the CTD serves as a signal for the binding of various transcription regulators for mRNA biogenesis including the mRNA capping complex. In eukaryotes, the 5 prime capping of the nascent transcript is the first detectable mRNA processing event, and is crucial for the productive transcript elongation. The binding of capping enzyme, RNA guanylyltransferases to the transcribing RNAPII is known to be primarily facilitated by the CTD, phosphorylated at Ser5 (Ser5P). Here we report that the Saccharomyces cerevesiae RNA guanylyltransferase (Ceg1) has dual specificity and interacts not only with Ser5P but also with Ser7P of the CTD. The Ser7 of CTD is essential for the unconditional growth and efficient priming of the mRNA capping complex. The Arg159 and Arg185 of Ceg1 are the key residues that interact with the Ser5P, while the Lys175 with Ser7P of CTD. These interactions appear to be in a specific pattern of Ser5PSer7PSer5P in a tri-heptad CTD (YSPTSPPS YSPTSPSP YSPTSPPS) and provide molecular insights into the Ceg1-CTD interaction for mRNA transcription. PMID:27503426

  11. Repulsive interactions induced by specific adsorption: Anomalous step diffusivity and inadequacy of nearest-neighbor Ising model. (part I experimental)

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo; Ibach, Harald; Beltramo, Guillermo L.; Giesen, Margret

    2016-09-01

    This is Part I of two closely related papers, where we show that the specific adsorption of anions leads to a failure of the nearest-neighbor Ising model to describe island perimeter curvatures on Au(100) electrodes in dilute KBr, HCl and H2SO4 electrolytes and the therewith derived step diffusivity vs. step orientation. This result has major consequences for theoretical studies aiming at the understanding of growth, diffusion and degradation phenomena. Part I focuses on the experimental data. As shown theoretically in detail in Part II (doi:10.1016/j.susc.2016.03.022), a set of nearest-neighbor and next-nearest-neighbor interaction energies (ɛNN, ɛNNN) can uniquely be derived from the diffusivity of steps along <100> and <110>. We find strong repulsive next-nearest neighbor (NNN) interaction in KBr and HCl, whereas NNN interaction is negligibly for H2SO4. The NNN repulsive interaction energy ɛNNN therefore correlates positively with the Gibbs adsorption energy of the anions. We find furthermore that ɛNNN increases with increasing Br- and Cl- coverage. The results for ɛNN and ɛNNN are quantitatively consistent with the coverage dependence of the step line tension. We thereby establish a sound experimental base for theoretical studies on the energetics of steps in the presence of specific adsorption.

  12. A binding site outside the canonical PDZ domain determines the specific interaction between Shank and SAPAP and their function

    PubMed Central

    Zeng, Menglong; Shang, Yuan; Guo, Tingfeng; He, Qinghai; Yung, Wing-Ho; Liu, Kai; Zhang, Mingjie

    2016-01-01

    Shank and SAPAP (synapse-associated protein 90/postsynaptic density-95–associated protein) are two highly abundant scaffold proteins that directly interact with each other to regulate excitatory synapse development and plasticity. Mutations of SAPAP, but not other reported Shank PDZ domain binders, share a significant overlap on behavioral abnormalities with the mutations of Shank both in patients and in animal models. The molecular mechanism governing the exquisite specificity of the Shank/SAPAP interaction is not clear, however. Here we report that a sequence preceding the canonical PDZ domain of Shank, together with the elongated PDZ BC loop, form another binding site for a sequence upstream of the SAPAP PDZ-binding motif, leading to a several hundred-fold increase in the affinity of the Shank/SAPAP interaction. We provide evidence that the specific interaction afforded by this newly identified site is required for Shank synaptic targeting and the Shank-induced synaptic activity increase. Our study provides a molecular explanation of how Shank and SAPAP dosage changes due to their gene copy number variations can contribute to different psychiatric disorders. PMID:27185935

  13. Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase.

    PubMed Central

    Yauch, R L; Hemler, M E

    2000-01-01

    In earlier work we established that phosphoinositide 4-kinase (PI 4-kinase) may associate with transmembrane 4 superfamily (TM4SF, tetraspanin) proteins, but critical specificity issues were not addressed. Here we demonstrate that at least five different TM4SF proteins (CD9, CD63, CD81, CD151 and A15/TALLA1) can associate with a similar or identical 55 kDa type II PI 4-kinase. These associations were specific, since we found no evidence for other phosphoinositide kinases (e.g. phosphoinositide 3-kinase and phosphoinositide-4-phosphate 5-kinase) associating with TM4SF proteins, and many other TM4SF proteins (including CD82 and CD53) did not associate with PI 4-kinase. CD63-PI 4-kinase complexes were almost entirely intracellular, and thus are distinct from other TM4SF-PI 4-kinase complexes (e.g. involving CD9), which are largely located in the plasma membrane. These results suggest that a specific subset of TM4SF proteins may recruit PI 4-kinase to specific membrane locations, and thereby influence phosphoinositide-dependent signalling. PMID:11042117

  14. Category-Specific Naming Deficit in Alzheimer's Disease: The Effect of a Display by Domain Interaction

    ERIC Educational Resources Information Center

    Zannino, Gian Daniele; Perri, Roberta; Caltagirone, Carlo; Carlesimo, Giovanni A.

    2007-01-01

    A category-specific naming effect penalizing living things has often been reported in patients suffering from Alzheimer's disease (AD) and in other brain damaged populations, while the opposite dissociation (i.e., lower accuracy in naming nonliving than living things) is much rarer. In this study, we investigated whether the use of line drawings…

  15. Wound-regulated accumulation of specific transcripts in tomato fruit: interactions with fruit development, ethylene and light.

    PubMed

    Parsons, B L; Mattoo, A K

    1991-09-01

    Regulation of three cDNA clones (pT52, pT53, and pT58) was analyzed in terms of wounding alone and wounding in conjunction with developmental and environmental cues (ripening, ethylene, and light) in tomato fruit tissue. The pT52-specific transcript level is induced by wounding in early-red and red stage fruit and by ethylene. The pT58-specific transcript level is also induced by wounding and ethylene in early-red stage fruit but is not induced by wounding in red fruit. The pT53-specific transcript level is repressed by wounding in early-red and red stage fruit. Like the pT52- and pT58-specific transcripts, the pT53-specific transcript is induced by ethylene. Furthermore, the level of the pT52-specific transcript is regulated by light. Analysis of unwounded tissue showed that the abundance of each cDNA-specific transcript changes during fruit ripening and that each of the transcripts is present in other plant organs as well. This analysis provides information about the interactions between developmental and environmental factors affecting these genes.

  16. The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction

    PubMed Central

    Sot, Begoña; Rubio-Muñoz, Alejandra; Leal-Quintero, Ahudrey; Martínez-Sabando, Javier; Marcilla, Miguel; Roodveldt, Cintia; Valpuesta, José M.

    2017-01-01

    The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism. PMID:28102321

  17. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  18. Generalized theory on the mechanism of site-specific DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Niranjani, G.; Murugan, R.

    2016-05-01

    We develop a generalized theoretical framework on the binding of transcription factor proteins (TFs) with specific sites on DNA that takes into account the interplay of various factors regarding overall electrostatic potential at the DNA-protein interface, occurrence of kinetic traps along the DNA sequence, presence of other roadblock protein molecules along DNA and crowded environment, conformational fluctuations in the DNA binding domains (DBDs) of TFs, and the conformational state of the DNA. Starting from a Smolochowski type theoretical framework on site-specific binding of TFs we logically build our model by adding the effects of these factors one by one. Our generalized two-step model suggests that the electrostatic attractive forces present inbetween the positively charged DBDs of TFs and the negatively charged phosphate backbone of DNA, along with the counteracting shielding effects of solvent ions, is the core factor that creates a fluidic type environment at the DNA-protein interface. This in turn facilitates various one-dimensional diffusion (1Dd) processes such as sliding, hopping and intersegmental transfers. These facilitating processes as well as flipping dynamics of conformational states of DBDs of TFs between stationary and mobile states can enhance the 1Dd coefficient on a par with three-dimensional diffusion (3Dd). The random coil conformation of DNA also plays critical roles in enhancing the site-specific association rate. The extent of enhancement over the 3Dd controlled rate seems to be directly proportional to the maximum possible 1Dd length. We show that the overall site-specific binding rate scales with the length of DNA in an asymptotic way. For relaxed DNA, the specific binding rate will be independent of the length of DNA as length increases towards infinity. For condensed DNA as in in vivo conditions, the specific binding rate depends on the length of DNA in a turnover way with a maximum. This maximum rate seems to scale with the

  19. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  20. Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.

    PubMed

    Jankowsky, Eckhard; Harris, Michael E

    2017-03-02

    To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reaction, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which combine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively assess substrate discrimination for large numbers of substrate variants at ground and transition states of RNA-protein binding reactions. We discuss experimental design, practical considerations and data analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity landscapes.

  1. Representation of the Essential Flame-Turbulence Dynamics using Specific Flame-Vortex Interactions

    NASA Astrophysics Data System (ADS)

    Paes, Paulo L. K.; Brasseur, James; Xuan, Yuan

    2016-11-01

    Many engineering applications involve turbulent reacting flows, where nonlinear, multi-scale turbulence-combustion couplings are important. Directly resolving the complex fluid dynamics involved in these applications is associated with prohibitive computational costs, which makes it necessary to employ turbulent closure models and turbulent combustion models to account for the effects of unresolved scales on resolved scales. Most of these existent closure models rely on some assumptions about the turbulence dynamics and the scale separation between turbulence and the different combustion processes. A better understanding of the turbulence-combustion interactions is required for the development of more accurate, physics-based sub-grid-scale models for turbulent reacting flows. Instead of developing an extreme-resolution, high Reynolds number turbulent flame simulation that is limited to a localized part of the regime diagram, in this work, we propose to develop a series of numerical experiments of simplified interactions between a laminar premixed flame and specified vortex distributions of varying strengths and scales to capture the essential flame-turbulence dynamics over distinct premixed turbulent combustion regimes. The response of the laminar flame to different vortex time and length scales is investigated and the physical relevance of each dataset to practical turbulent premixed flames is discussed.

  2. Nutrimetabonomics:applications for nutritional sciences, with specific reference to gut microbial interactions.

    PubMed

    Claus, Sandrine P; Swann, Jonathan R

    2013-01-01

    Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.

  3. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins

    PubMed Central

    Vedelek, Balázs; Blastyák, András; Boros, Imre M.

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction. PMID:26566042

  4. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.

    PubMed

    Vedelek, Balázs; Blastyák, András; Boros, Imre M

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.

  5. Stoichiometric analysis of the specific interaction of the glucocorticoid receptor with DNA.

    PubMed

    Wrange, O; Carlstedt-Duke, J; Gustafsson, J A

    1986-09-05

    Purified preparations of activated glucocorticoid X receptor complex (GR) contain a Mr 94,000 hormone-binding polypeptide co-purifying together with a Mr 72,000 non-hormone-binding polypeptide (Wrange, O., Okret, S., Radojcic, M., Carlstedt-Duke, J., and Gustafsson, J.-A. (1984) J. Biol. Chem. 259, 4534-4541). GR binds selectively to discrete regions of DNA in mouse mammary tumor virus (Payvar, F., DeFranco, D., Firestone, G.L., Edgar, B., Wrange, O., Okret, S., Gustafsson, J.-A., and Yamamoto, K. R. (1983) Cell 35, 381-392). Such GR-binding DNA fragments were used to measure the stoichiometry of GR to DNA. Quantitative DNaseI protection "footprinting" analysis was used to ensure that saturation conditions for specific DNA-binding were achieved. Glycerol density gradient centrifugation was used to quantitate Mr 94,000 binding to specific and nonspecific DNA sites. One Mr 94,000 entity was bound per specific DNA site. A modified GR purification procedure resulted in increased amounts of Mr 72,000 polypeptide (1.6:1, 94,000:72,000 molar ratio), compared to previous GR preparations. Glycerol gradient centrifugation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the specific GR X DNA complex contained similar amounts of Mr 94,000 and Mr 72,000 polypeptide. It is as yet uncertain if the Mr 72,000 polypeptide is a functional subunit of GR or a co-purifying contaminant only.

  6. Following macromolecular interactions and sugar metabolism using site specific /sup 3/H labelling and NMR spectroscopy

    SciTech Connect

    Williams, P.; Morimoto, Hiromi; Gehring, K.B.; Nikaido, Hiroshi; Carson, P.; Un, Sun; Klein, M.; Wemmer, D.E.

    1988-06-01

    In this paper we discuss the application of /sup 3/H NMR to biological problems. Two specific examples will be described; first, analysis of the binding of maltose to its transport protein from E. coli, called MBP; and second, following the glycolytic metabolism of glucose in erythrocytes. In both of these cases the unique properties of /sup 3/H for magnetic resonance make possible observations which are difficult with other methods. 4 refs., 2 figs.

  7. The intriguing Cyclophilin A-HIV-1 Vpr interaction: prolyl cis/trans isomerisation catalysis and specific binding

    PubMed Central

    2010-01-01

    Background Cyclophilin A (CypA) represents a potential target for antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication, although the mechanism through which CypA modulates HIV-1 infectivity still remains unclear. The interaction of HIV-1 viral protein R (Vpr) with the human peptidyl prolyl isomerase CypA is known to occur in vitro and in vivo. However, the nature of the interaction of CypA with Pro-35 of N-terminal Vpr has remained undefined. Results Characterization of the interactions of human CypA with N-terminal peptides of HIV-1 Vpr has been achieved using a combination of nuclear magnetic resonace (NMR) exchange spectroscopy and surface plasmon resonance spectroscopy (SPR). NMR data at atomic resolution indicate prolyl cis/trans isomerisation of the highly conserved proline residues Pro-5, -10, -14 and -35 of Vpr are catalyzed by human CypA and require only very low concentrations of the isomerase relative to that of the peptide substrates. Of the N-terminal peptides of Vpr only those containing Pro-35 bind to CypA in a biosensor assay. SPR studies of specific N-terminal peptides with decreasing numbers of residues revealed that a seven-residue motif centred at Pro-35 consisting of RHFPRIW, which under membrane-like solution conditions comprises the loop region connecting helix 1 and 2 of Vpr and the two terminal residues of helix 1, is sufficient to maintain strong specific binding. Conclusions Only N-terminal peptides of Vpr containing Pro-35, which appears to be vital for manifold functions of Vpr, bind to CypA in a biosensor assay. This indicates that Pro-35 is essential for a specific CypA-Vpr binding interaction, in contrast to the general prolyl cis/trans isomerisation observed for all proline residues of Vpr, which only involve transient enzyme-substrate interactions. Previously suggested models depicting CypA as a chaperone that plays a role in HIV-1 virulence are now supported by our data

  8. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession.

    PubMed

    Paver, Sara F; Hayek, Kevin R; Gano, Kelsey A; Fagen, Jennie R; Brown, Christopher T; Davis-Richardson, Austin G; Crabb, David B; Rosario-Passapera, Richard; Giongo, Adriana; Triplett, Eric W; Kent, Angela D

    2013-09-01

    Time-series observations and a phytoplankton manipulation experiment were combined to test the hypothesis that phytoplankton succession effects changes in bacterial community composition. Three humic lakes were sampled weekly May-August and correlations between relative abundances of specific phytoplankton and bacterial operational taxonomic units (OTUs) in each time series were determined. To experimentally characterize the influence of phytoplankton, bacteria from each lake were incubated with phytoplankton from one of the three lakes or no phytoplankton. Following incubation, variation in bacterial community composition explained by phytoplankton treatment increased 65%, while the variation explained by bacterial source decreased 64%. Free-living bacteria explained, on average, over 60% of the difference between phytoplankton and corresponding no-phytoplankton control treatments. Fourteen out of the 101 bacterial OTUs that exhibited positively correlated patterns of abundance with specific algal populations in time-series observations were enriched in mesocosms following incubation with phytoplankton, and one out of 59 negatively correlated bacterial OTUs was depleted in phytoplankton treatments. Bacterial genera enriched in mesocosms containing specific phytoplankton assemblages included Limnohabitans (clade betI-A), Bdellovibrio and Mitsuaria. These results suggest that effects of phytoplankton on certain bacterial populations, including bacteria tracking seasonal changes in algal-derived organic matter, result in correlations between algal and bacterial community dynamics.

  9. Hemodynamics and flow-vessel interaction in patient-specific aorta using unified lattice Boltzmann computation and simulation

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Wang, Zhiqiang; Zhao, Ye; Teague, Shawn D.

    2013-11-01

    Patient-specific blood flow simulation is mainly relying on the utilization of commercial software. Geometrical simplification and approximation are usually made thus weaken the capability to aid clinical diagnose and assessment. We develop a unified computing platform to simulate patient-specific hemodynamics and flow-vessel interaction using lattice Boltzmann method (LBM), which tightly integrates anatomical-structure extraction from imaging data and numerical simulation in one computation mesh structure, where the LBM solves level set equation for image segmentation and Navier-Stokes equation for fluid dynamics respectively. The patient-specific vessel geometry, volumetric ratio of solid versus fluid, and the orientation of the boundary obtained with high accuracy seamlessly feed to the numerical simulation needs. In order to better treat the complex geometry, we specifically develop volumetric lattice Boltzmann scheme which strictly satisfies mass conservation when boundary moves. Validation study is on hemodynamics and flow-vessel interaction in healthy and diseased aortas. Flow rate and structure, pressure and vorticity distribution, as well as wall normal and shear stresses, are revealed in both cases.

  10. Energetics of galactose- and glucose-aromatic amino acid interactions: implications for binding in galactose-specific proteins.

    PubMed

    Sujatha, Mannargudi S; Sasidhar, Yellamraju U; Balaji, Petety V

    2004-09-01

    An aromatic amino acid is present in the binding site of a number of sugar binding proteins. The interaction of the saccharide with the aromatic residue is determined by their relative position as well as orientation. The position-orientation of the saccharide relative to the aromatic residue was found to vary in different sugar-binding proteins. In the present study, interaction energies of the complexes of galactose (Gal) and of glucose (Glc) with aromatic residue analogs have been calculated by ab initio density functional (U-B3LYP/ 6-31G**) theory. The position-orientations of the saccharide with respect to the aromatic residue observed in various Gal-, Glc-, and mannose-protein complexes were chosen for the interaction energy calculations. The results of these calculations show that galactose can interact with the aromatic residue with similar interaction energies in a number of position-orientations. The interaction energy of Gal-aromatic residue analog complex in position-orientations observed for the bound saccharide in Glc/Man-protein complexes is comparable to the Glc-aromatic residue analog complex in the same position-orientation. In contrast, there is a large variation in interaction energies of complexes of Glc- and of Gal- with the aromatic residue analog in position-orientations observed in Gal-protein complexes. Furthermore, the conformation wherein the O6 atom is away from the aromatic residue is preferred for the exocyclic -CH2OH group in Gal-aromatic residue analog complexes. The implications of these results for saccharide binding in Gal-specific proteins and the possible role of the aromatic amino acid to ensure proper positioning and orientation of galactose in the binding site have been discussed.

  11. WWOX gene and gene product: tumor suppression through specific protein interactions.

    PubMed

    Salah, Zaidoun; Aqeilan, Rami; Huebner, Kay

    2010-02-01

    The WWOX gene, an archetypal fragile gene, encompasses a chromosomal fragile site at 16q23.2, and encodes the approximately 46-kDa Wwox protein, with WW domains that interact with a growing list of interesting proteins. If the function of a protein is defined by the company it keeps, then Wwox is involved in numerous important signal pathways for bone and germ-cell development, cellular and animal growth and death, transcriptional control and suppression of cancer development. Because alterations to genes at fragile sites are exquisitely sensitive to replication stress-induced DNA damage, there has been an ongoing scientific discussion questioning whether such gene expression alterations provide a selective advantage for clonal expansion of neoplastic cells, and a parallel discussion on why important genes would be present at sites that are susceptible to inactivation. We offer some answers through a description of known WWOX functions.

  12. Determinants of Interaction Specificity of the Bacillus subtilis GlcT Antitermination Protein

    PubMed Central

    Himmel, Sebastian; Zschiedrich, Christopher P.; Becker, Stefan; Hsiao, He-Hsuan; Wolff, Sebastian; Diethmaier, Christine; Urlaub, Henning; Lee, Donghan; Griesinger, Christian; Stülke, Jörg

    2012-01-01

    The control of several catabolic operons in bacteria by transcription antitermination is mediated by RNA-binding proteins that consist of an RNA-binding domain and two reiterated phosphotransferase system regulation domains (PRDs). The Bacillus subtilis GlcT antitermination protein regulates the expression of the ptsG gene, encoding the glucose-specific enzyme II of the phosphotransferase system. In the absence of glucose, GlcT becomes inactivated by enzyme II-dependent phosphorylation at its PRD1, whereas the phosphotransferase HPr phosphorylates PRD2. However, here we demonstrate by NMR analysis and mass spectrometry that HPr also phosphorylates PRD1 in vitro but with low efficiency. Size exclusion chromatography revealed that non-phosphorylated PRD1 forms dimers that dissociate upon phosphorylation. The effect of HPr on PRD1 was also investigated in vivo. For this purpose, we used GlcT variants with altered domain arrangements or domain deletions. Our results demonstrate that HPr can target PRD1 when this domain is placed at the C terminus of the protein. In agreement with the in vitro data, HPr exerts a negative control on PRD1. This work provides the first insights into how specificity is achieved in a regulator that contains duplicated regulatory domains with distinct dimerization properties that are controlled by phosphorylation by different phosphate donors. Moreover, the results suggest that the domain arrangement of the PRD-containing antitermination proteins is under selective pressure to ensure the proper regulatory output, i.e. transcription antitermination of the target genes specifically in the presence of the corresponding sugar. PMID:22722928

  13. Theory for the Development of Neuron Selectivity: Orientation Specificity and Binocular Interaction in Visual Cortex.

    DTIC Science & Technology

    1981-06-05

    orientation tuning were found in the kittens that could see all orientations,or at least horizontal and vertical, than in the kittens that had...experimental data This brief summary is restricted to area 17 of kitten’s cortex. Most kittens first open their eyes at the end of the first week after birth...remain somewhat driven by the closed ) As another example, a kitten dark-reared to the age of about 42 days (when there remain few or no specific cells

  14. Peripheral nerve injury induces loss of nociceptive neuron-specific Gαi-interacting protein in neuropathic pain rat

    PubMed Central

    Liu, Zhen; Wang, Fei; Fischer, Gregory; Hogan, Quinn H.

    2016-01-01

    Background Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Results Immunolabeling with validated antibody revealed GINIP expression in ∼40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ∼80% of IB4-positive (nonpeptidergic) and ∼30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Conclusion Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain. PMID:27145804

  15. A Vast Repertoire of Dscam Binding Specificities Arises from Modular Interactions of Variable Ig Domains

    PubMed Central

    Wojtowicz, Woj M.; Wu, Wei; Andre, Ingemar; Qian, Bin; Baker, David; Zipursky, S. Lawrence

    2009-01-01

    Summary Dscam encodes a family of cell surface proteins required for establishing neural circuits in Drosophila. Alternative splicing of Drosophila Dscam can generate 19,008 distinct extracellular domains containing different combinations of three variable immunoglobulin domains. To test the binding properties of many Dscam isoforms, we developed a high-throughput ELISA-based binding assay. We provide evidence that 95% (>18,000) of Dscam isoforms exhibit striking isoform-specific homophilic binding. We demonstrate that each of the three variable domains binds to the same variable domain in an opposing isoform and identify the structural elements that mediate this self-binding of each domain. These studies demonstrate that self-binding domains can assemble in different combinations to generate an enormous family of homophilic binding proteins. We propose that this vast repertoire of Dscam recognition molecules is sufficient to provide each neuron with a unique identity and homotypic binding specificity, thereby allowing neuronal processes to distinguish between self and non-self. PMID:17889655

  16. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica.

    PubMed

    Gerlach, Roman G; Hensel, Michael

    2007-01-01

    Salmonella enterica is a pathogen highly successful in causing a variety of gastrointestinal and systemic diseases in animals and humans. While some serovars of S. enterica are able to infect a broad range of host organisms, other serovars are highly restricted to specific host species. The colonization of hosts by S. enterica depends on the function of a large number of virulence determinants. The molecular analyses of virulence genes demonstrated that most of these loci are clustered within Salmonella Pathogenicity Islands (SPI). SPI1 and SPI2 each encode type III secretion systems (T355) that confer main virulence traits of S. enterica, i.e. invasion, enteropathogenesis and intracellular survival and proliferation. Further SPI encode factors that contribute to intracellular survival, different types of adhesins, or effector proteins of the SPI1-T3SS or SPI2-T3SS. The availability of genome sequences of several serovars of S. enterica also revealed serovar-specific SPI. In this review, the main characteristics of the currently known SPI are summarized with focus on their roles in various animal hosts and putative functions in human infections.

  17. Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions.

    PubMed

    Motokura, Ken; Tanaka, Satoka; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-10-19

    We report the first tunable bifunctional surface of silica-alumina-supported tertiary amines (SA-NEt(2)) active for catalytic 1,4-addition reactions of nitroalkanes and thiols to electron-deficient alkenes. The 1,4-addition reaction of nitroalkanes to electron-deficient alkenes is one of the most useful carbon-carbon bond-forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA-supported amine (SA-NEt(2)) catalyst enabled selective formation of a double-alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA-NEt(2) catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA-NEt(2) catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron-deficient alkenes. The solid-state magic-angle spinning (MAS) NMR spectroscopic analyses, including variable-contact-time (13)C cross-polarization (CP)/MAS NMR spectroscopy, revealed that acid-base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid-base interactions.

  18. Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction.

    PubMed

    King, Dustin T; Barnes, Mark; Thomsen, Dana; Lee, Chow H

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.

  19. Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein.

    PubMed

    Sugimoto, Yoichiro; Chakrabarti, Anob M; Luscombe, Nicholas M; Ule, Jernej

    2017-03-01

    The structure of RNA molecules has a critical role in regulating gene expression, largely through influencing their interactions with RNA-binding proteins (RBPs). RNA hybrid and individual-nucleotide resolution UV cross-linking and immunoprecipitation (hiCLIP) is a transcriptome-wide method of monitoring these interactions by identifying RNA duplexes bound by a specific RBP. The hiCLIP protocol consists of the following steps: in vivo cross-linking of RBPs to their bound RNAs; partial RNA digestion and purification of RNA duplexes interacting with the specific RBP using immunoprecipitation; ligation of the two arms of RNA duplexes via a linker; reverse transcription; cDNA library amplification; and finally high-throughput DNA sequencing. Mapping of the sequenced arms to a reference transcriptome identifies the exact locations of duplexes. hiCLIP data can directly identify all types of RNA duplexes bound by RBPs, including those that are challenging to predict computationally, such as intermolecular and long-range intramolecular duplexes. Moreover, the use of an adaptor that links the two arms of the RNA duplex permits hiCLIP to unambiguously identify the duplexes. Here we describe in detail the procedure for a hiCLIP experiment and the subsequent streamlined data analysis with an R package, 'hiclipr' (https://github.com/luslab/hiclipr/). Preparation of the library for high-throughput DNA sequencing takes ∼7 d and the basic bioinformatic pipeline takes 1 d.

  20. Fluorescence spectroscopy as a specific tool for the interaction study of two surfactants with natural and synthetic organic compounds

    NASA Astrophysics Data System (ADS)

    Jung, Aude-Valérie; Frochot, Céline; Bersillon, Jean-Luc

    2016-04-01

    Four different techniques were used to study the binding of cationic cetyltrimethylammonium bromide (CTAB) and non-ionic nonylphenylethoxyl (NPE) surfactants to three synthetic organic components that mimic humic-like aggregates and to two natural aggregated humic substances (HS) extracted from aquatic suspended matter. The composition of synthetic organic components were chosen to be similar to high molecular weight highly processed terrigenous HS and low and high molecular weight less processed terrigenous (or aquatic terrigenous) HS. The natural HS were extracted under two different meteorological conditions (rainy and dry periods). No significant interaction between the non-ionic surfactant and any of the studied compounds was found. Concerning CTAB; pH, conductivity and turbidity measurements, along with fluorescence spectroscopy were combined to provide a better understanding of interactions between organic aggregates and the surfactant. The spectroscopic data show that a "highly processed terrigenous HS" fluorophore interacts in a different way with the cationic surfactant than an "aquatic terrigenous (or less processed terrigenous) HS" fluorophore does. Under similar conditions, some spectral changes in the fluorescence signal are correlated to changes in non-specific physical-chemical parameters (pH, turbidity, conductivity) for the organic compounds tested. The complexation mechanism is essentially governed by charge neutralization, which can be monitored specifically by the fluorescence of the organic moieties.

  1. High mannose-specific lectin Msl mediates key interactions of the vaginal Lactobacillus plantarum isolate CMPG5300

    PubMed Central

    Malik, Shweta; Petrova, Mariya I.; Imholz, Nicole C. E.; Verhoeven, Tine L. A.; Noppen, Sam; Van Damme, Els J. M.; Liekens, Sandra; Balzarini, Jan; Schols, Dominique; Vanderleyden, Jos; Lebeer, Sarah

    2016-01-01

    To characterize the interaction potential of the human vaginal isolate Lactobacillus plantarum CMPG5300, its genome was mined for genes encoding lectin-like proteins. cmpg5300.05_29 was identified as the gene encoding a putative mannose-binding lectin. Phenotypic analysis of a gene knock-out mutant of cmpg5300.05_29 showed that expression of this gene is important for auto-aggregation, adhesion to the vaginal epithelial cells, biofilm formation and binding to mannosylated glycans. Purification of the predicted lectin domain of Cmpg5300.05_29 and characterization of its sugar binding capacity confirmed the specificity of the lectin for high- mannose glycans. Therefore, we renamed Cmpg5300.05_29 as a mannose-specific lectin (Msl). The purified lectin domain of Msl could efficiently bind to HIV-1 glycoprotein gp120 and Candida albicans, and showed an inhibitory activity against biofilm formation of uropathogenic Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Thus, using a combination of molecular lectin characterization and functional assays, we could show that lectin-sugar interactions play a key role in host and pathogen interactions of a prototype isolate of the vaginal Lactobacillus microbiota. PMID:27853317

  2. GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions.

    PubMed

    Agudo, Judith; Ruzo, Albert; Park, Eun Sook; Sweeney, Robert; Kana, Veronika; Wu, Meng; Zhao, Yong; Egli, Dieter; Merad, Miriam; Brown, Brian D

    2015-12-01

    There are numerous cell types with scarcely under