Science.gov

Sample records for additional specific interactions

  1. Tuning protein-protein interactions using cosolvents: specific effects of ionic and non-ionic additives on protein phase behavior.

    PubMed

    Hansen, Jan; Platten, Florian; Wagner, Dana; Egelhaaf, Stefan U

    2016-04-21

    Cosolvents are routinely used to modulate the (thermal) stability of proteins and, hence, their interactions with proteins have been studied intensely. However, less is known about their specific effects on protein-protein interactions, which we characterize in terms of the protein phase behavior. We analyze the phase behavior of lysozyme solutions in the presence of sodium chloride (NaCl), guanidine hydrochloride (GuHCl), glycerol, and dimethyl sulfoxide (DMSO). We experimentally determined the crystallization boundary (XB) and, in combination with data on the cloud-point temperatures (CPTs), the crystallization gap. In agreement with other studies, our data indicate that the additives might affect the protein phase behavior through electrostatic screening and additive-specific contributions. At high salt concentrations, where electrostatic interactions are screened, both the CPT and the XB are found to be linear functions of the additive concentration. Their slopes quantify the additive-specific changes of the phase behavior and thus of the protein-protein interactions. While the specific effect of NaCl is to induce attractions between proteins, DMSO, glycerol and GuHCl (with increasing strength) weaken attractions and/or induce repulsions. Except for DMSO, changes of the CPT are stronger than those of the XB. Furthermore, the crystallization gap widens in the case of GuHCl and glycerol and narrows in the case of NaCl. We relate these changes to colloidal interaction models, namely square-well and patchy interactions. PMID:27020538

  2. Evaluating Additive Interaction Using Survival Percentiles.

    PubMed

    Bellavia, Andrea; Bottai, Matteo; Orsini, Nicola

    2016-05-01

    Evaluation of statistical interaction in time-to-event analysis is usually limited to the study of multiplicative interaction, via inclusion of a product term in a Cox proportional-hazard model. Measures of additive interaction are available but seldom used. All measures of interaction in survival analysis, whether additive or multiplicative, are in the metric of hazard, usually assuming that the interaction between two predictors of interest is constant during the follow-up period. We introduce a measure to evaluate additive interaction in survival analysis in the metric of time. This measure can be calculated by evaluating survival percentiles, defined as the time points by which different subpopulations reach the same incidence proportion. Using this approach, the probability of the outcome is fixed and the time variable is estimated. We also show that by using a regression model for the evaluation of conditional survival percentiles, including a product term between the two exposures in the model, interaction is evaluated as a deviation from additivity of the effects. In the simple case of two binary exposures, the product term is interpreted as excess/decrease in survival time (i.e., years, months, days) due to the presence of both exposures. This measure of interaction is dependent on the fraction of events being considered, thus allowing evaluation of how interaction changes during the observed follow-up. Evaluation of interaction in the context of survival percentiles allows deriving a measure of additive interaction without assuming a constant effect over time, overcoming two main limitations of commonly used approaches.

  3. Additive monitoring and interactions during copper electroprocessing

    NASA Astrophysics Data System (ADS)

    Collins, Dale Wade

    The electrochemical deposition of copper has been a major focus of research for decades. Renewed interest in copper electroplating is not limited to the copper producers but is also a major concern of semiconductor manufacturers. The focus on copper electrochemistry by the semiconductor manufacturers has increased since IBM's announcement in 1997 that copper will be used for metallization in high speed/power semiconductors [1--3]. The desire to use copper instead of aluminum is simply a reflection on copper's superior conductivity (lower RC time constants) and resistance to electromigration (generally proportional to the melting point). This dissertation is the compilation of the research into analytical techniques for monitoring surface-active additives in common sulfuric acid/copper sulfate plating baths. Chronopotentiometric, DC and AC voltammetry were the major analytical techniques used in this research. Several interactions between the additives will also be presented along with their apparent decline in activity. The decline in activity is well known in the industry and is also detected by these methods as presented in chapters 4 and 5. Finally, a systemic approach for monitoring the additive Galactosal, which is commonly used in electrowinning, will be outlined. The monitoring system proposed herein would have to be adjusted for each electrowinning facility because each has a unique chemistry and cell configuration.

  4. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  5. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  6. Switching specific biomolecular interactions on surfaces under complex biological conditions† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4an01225a Click here for additional data file.

    PubMed Central

    Lashkor, Minhaj; Rawson, Frankie J.; Preece, Jon A.

    2014-01-01

    Herein, electrically switchable mixed self-assembled monolayers based on oligopeptides have been developed and investigated for their suitability in achieving control over biomolecular interactions in the presence of complex biological conditions. Our model system, a biotinylated oligopeptide tethered to gold within a background of tri(ethylene glycol) undecanethiol, is ubiquitous in both switching specific protein interactions in highly fouling media while still offering the non-specific protein-resistance to the surface. Furthermore, the work demonstrated that the performance of the switching on the electro-switchable oligopeptide is sensitive to the characteristics of the media, and in particular, its protein concentration and buffer composition, and thus such aspects should be considered and addressed to assure maximum switching performance. This study lays the foundation for developing more realistic dynamic extracellular matrix models and is certainly applicable in a wide variety of biological and medical applications. PMID:25180245

  7. Specificity of marine microbial surface interactions.

    PubMed Central

    Imam, S H; Bard, R F; Tosteson, T R

    1984-01-01

    The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293

  8. 45 CFR 156.285 - Additional standards specific to SHOP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Additional standards specific to SHOP. 156.285 Section 156.285 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS HEALTH INSURANCE ISSUER STANDARDS UNDER THE AFFORDABLE CARE ACT, INCLUDING...

  9. Non-additive model for specific heat of electrons

    NASA Astrophysics Data System (ADS)

    Anselmo, D. H. A. L.; Vasconcelos, M. S.; Silva, R.; Mello, V. D.

    2016-10-01

    By using non-additive Tsallis entropy we demonstrate numerically that one-dimensional quasicrystals, whose energy spectra are multifractal Cantor sets, are characterized by an entropic parameter, and calculate the electronic specific heat, where we consider a non-additive entropy Sq. In our method we consider an energy spectra calculated using the one-dimensional tight binding Schrödinger equation, and their bands (or levels) are scaled onto the [ 0 , 1 ] interval. The Tsallis' formalism is applied to the energy spectra of Fibonacci and double-period one-dimensional quasiperiodic lattices. We analytically obtain an expression for the specific heat that we consider to be more appropriate to calculate this quantity in those quasiperiodic structures.

  10. Interactive specification acquisition via scenarios: A proposal

    NASA Technical Reports Server (NTRS)

    Hall, Robert J.

    1992-01-01

    Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT.

  11. Interactive effects of nutrient additions and predation on infaunal communities

    USGS Publications Warehouse

    Posey, M.H.; Alphin, T.D.; Cahoon, L.; Lindquist, D.; Becker, M.E.

    1999-01-01

    Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa, Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.

  12. Volatiles in Inter-Specific Bacterial Interactions.

    PubMed

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  13. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  14. Specificity of Intramembrane Protein–Lipid Interactions

    PubMed Central

    Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta

    2011-01-01

    Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707

  15. Additive interaction in survival analysis: use of the additive hazards model.

    PubMed

    Rod, Naja Hulvej; Lange, Theis; Andersen, Ingelise; Marott, Jacob Louis; Diderichsen, Finn

    2012-09-01

    It is a widely held belief in public health and clinical decision-making that interventions or preventive strategies should be aimed at patients or population subgroups where most cases could potentially be prevented. To identify such subgroups, deviation from additivity of absolute effects is the relevant measure of interest. Multiplicative survival models, such as the Cox proportional hazards model, are often used to estimate the association between exposure and risk of disease in prospective studies. In Cox models, deviations from additivity have usually been assessed by surrogate measures of additive interaction derived from multiplicative models-an approach that is both counter-intuitive and sometimes invalid. This paper presents a straightforward and intuitive way of assessing deviation from additivity of effects in survival analysis by use of the additive hazards model. The model directly estimates the absolute size of the deviation from additivity and provides confidence intervals. In addition, the model can accommodate both continuous and categorical exposures and models both exposures and potential confounders on the same underlying scale. To illustrate the approach, we present an empirical example of interaction between education and smoking on risk of lung cancer. We argue that deviations from additivity of effects are important for public health interventions and clinical decision-making, and such estimations should be encouraged in prospective studies on health. A detailed implementation guide of the additive hazards model is provided in the appendix.

  16. Behaviors of Polymer Additives Under EHL and Influences of Interactions Between Additives on Friction Modification

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    Polymer additives have become requisite for the formulation of multigrade engine oils. The behavior of polymethacrylate (PMA)-thickened oils as lubricants in concentrated contacts under nominal rolling and pure sliding conditions was investigated by conventional optical interferometry. The PMA thickened oils behaved differently from the base oil in the formation of elastohydrodynamic (EHL) films. The higher the elastohydrodynamic molecular weight of the PMA contained in the lubricant, the thinner was the oil film under EHL conditions. The film thickness of shear-degraded PMA-thickened oils was also investigated. The behavior of graphite particles dispersed in both the base oil and the PMA-thickened oil was studied under pure sliding by taking photomicrographs. Many kinds of additives are contained in lubricating oil and the interactions between additives are considered. The interactions of zinc-organodithiophosphates (ZDP) with other additives is discussed.

  17. Non-additivity of pair interactions in charged colloids.

    PubMed

    Finlayson, Samuel D; Bartlett, Paul

    2016-07-21

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry. PMID:27448904

  18. Non-additivity of pair interactions in charged colloids

    NASA Astrophysics Data System (ADS)

    Finlayson, Samuel D.; Bartlett, Paul

    2016-07-01

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry.

  19. Contextual Specificity in Peptide-Mediated Protein Interactions

    PubMed Central

    Stein, Amelie; Aloy, Patrick

    2008-01-01

    Most biological processes are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. Although sufficient to ensure binding, these linear motifs alone are usually too short to achieve the high specificity observed, and additional contacts are often encoded in the residues surrounding the motif (i.e. the context). Here, we systematically identified all instances of peptide-mediated protein interactions of known three-dimensional structure and used them to investigate the individual contribution of motif and context to the global binding energy. We found that, on average, the context is responsible for roughly 20% of the binding and plays a crucial role in determining interaction specificity, by either improving the affinity with the native partner or impeding non-native interactions. We also studied and quantified the topological and energetic variability of interaction interfaces, finding a much higher heterogeneity in the context residues than in the consensus binding motifs. Our analysis partially reveals the molecular mechanisms responsible for the dynamic nature of peptide-mediated interactions, and suggests a global evolutionary mechanism to maximise the binding specificity. Finally, we investigated the viability of non-native interactions and highlight cases of potential cross-reaction that might compensate for individual protein failure and establish backup circuits to increase the robustness of cell networks. PMID:18596940

  20. Salt Bridges: Geometrically Specific, Designable Interactions

    PubMed Central

    Donald, Jason E.; Kulp, Daniel W.; DeGrado, William F.

    2010-01-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, cooperativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction upon formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but at close distances there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. PMID:21287621

  1. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.

  2. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction

    PubMed Central

    Matsui, Takeshi; Ehrenreich, Ian M.

    2016-01-01

    How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C (‘E37’), a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose) and temperature (37°C as opposed to 30°C). Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose) and temperature (30 or 37°C) in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur. PMID:27437938

  3. FPGA-specific decimal sign-magnitude addition and subtraction

    NASA Astrophysics Data System (ADS)

    Vázquez, Martín; Todorovich, Elías

    2016-07-01

    The interest in sign-magnitude (SM) representation in decimal numbers lies in the IEEE 754-2008 standard, where the significand in floating-point numbers is coded as SM. However, software implementations do not meet performance constraints in some applications and more development is required in programmable logic, a key technology for hardware acceleration. Thus, in this work, two strategies for SM decimal adder/subtractors are studied and six new Field Programmable Gate Array (FPGA)-specific circuits are derived from these strategies. The first strategy is based on ten's complement (C10) adder/subtractors and the second one is based on parallel computation of an unsigned adder and an unsigned subtractor. Four of these alternative circuits are useful for at least one area-time-trade-off and specific operand size. For example, the fastest SM adder/subtractor for operand sizes of 7 and 16 decimal digits is based on the second proposed strategy with delays of 3.43 and 4.33 ns, respectively, but the fastest circuit for 34-digit operands is one of the three specific implementations based on C10 adder/subtractors with a delay of 4.65 ns.

  4. Aspecific and specific intermolecular interactions in aqueous media.

    PubMed

    van Oss, C J

    1990-06-01

    Aspecific as well as specific interactions involve the same noncovalent forces, consisting of Lifshitz-van der Waals, Lewis acid/base, electrostatic, and thermal or Brownian movement interactions. In vivo, aspecific interactions between, e.g., cells and/or biopolymers usually are repulsive, while specific interactions are always attractive. The differences between the two classes of interactions can be shown to lie in the fact that aspecifically interacting bodies are large, while specifically interacting sites are small, or have a small radius of curvature, and in the fact that aspecifically interacting surfaces are homogeneous, whereas specific sites have a heterogeneous composition.

  5. The specification of personalised insoles using additive manufacturing.

    PubMed

    Salles, André S; Gyi, Diane E

    2012-01-01

    Research has been conducted to explore a process that delivers insoles for personalised footwear for the high street using additive manufacturing (AM) and to evaluate the use of such insoles in terms of discomfort. Therefore, the footwear personalisation process was first identified: (1) foot capture; (2) anthropometric measurements; (3) insole design; and (4) additive manufacturing. In order to explore and evaluate this process, recreational runners were recruited. They had both feet scanned and 15 anthropometric measurements taken. Personalised insoles were designed from the scans and manufactured using AM. Participants were fitted with footwear under two experimental conditions: personalised and control, which were compared in terms of discomfort. The mean ratings for discomfort variables were generally low for both conditions and no significant differences were detected between conditions. In general, the personalisation process showed promise in terms of the scan data, although the foot capture position may not be considered 'gold standard'. Polyamide, the material used for the insoles, demonstrated positive attributes: visual inspection revealed no signs of breaking. The footwear personalisation process described and explored in this study shows potential and can be considered a good starting point for designer and researchers.

  6. Specific interactions in modified chitosan systems.

    PubMed

    Rinaudo, M; Auzely, R; Vallin, C; Mullagaliev, I

    2005-01-01

    This paper concerns the bulk and interfacial properties of a series of alkylated chitosans having different alkyl chain lengths grafted randomly along the main chitosan chain. Chitosan has a low degree of acetylation (5%); on chitosan derivatives, the role of the degree of grafting and of length of the alkyl chains are examined. The optimum alkyl chain length is C12 and the degree of grafting 5% to get physical gelation based on the formation of hydrophobic domains. The cross-linking is essentially controlled by the salt concentration: it is shown that 0.025 M AcONa is needed to screen electrostatic interchain repulsions. Hydrophobic interactions produce highly non-Newtonian behavior with large thinning behavior; this behavior is suppressed in the presence of cyclodextrins able to cap the hydrophobic alkyl chains. The interfacial properties of the chitosan derivatives were tested for the air/aqueous solution interfaces. Specifically, the role of their structure on the kinetic of film formation was examined showing that excess of external salt favors the stabilization of the interfacial film. The derivatives with a higher degree of substitution and longer alkyl chains are more efficient and give a higher elastic modulus compared to the model surfactant as a result of the chain properties. PMID:16153074

  7. Additive manufacturing of patient-specific tubular continuum manipulators

    NASA Astrophysics Data System (ADS)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  8. Computational learning on specificity-determining residue-nucleotide interactions

    PubMed Central

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families. PMID:26527718

  9. Interaction between Polymeric Additives and Secondary Fluids in Capillary Suspensions.

    PubMed

    Bitsch, Boris; Braunschweig, Björn; Willenbacher, Norbert

    2016-02-16

    Capillary suspensions are ternary systems including a solid and two liquid phases representing a novel formulation platform for pastes with unique processing and end-use properties. Here we have investigated aqueous suspensions of non-Brownian graphite particles including different polymers commonly used as thickening agents or binders in paste formulations. We have studied the interaction between these additives and organic solvents in order to elucidate its effect on the characteristic formation of a particle network structure in corresponding ternary capillary suspension systems. Organic solvents with different polarity have been employed, and in the presence of nonadsorbing poly(ethylene oxide), all of them, whether they preferentially wet the graphite surface or not, induce the formation of a network structure within the suspension as indicated by a strong change in rheological properties. However, when the adsorbing polymers carboxymethylcellulose and poly(vinylpyrrolidone) are included, the drastic change in rheological behavior occurs only when polar organic solvents are used as secondary liquids. Obviously, these solvents can form pendular bridges, finally resulting in a sample-spanning particle network. Vibrational sum frequency spectroscopy provides evidence that these polar liquids remove the adsorbed polymer from the graphite particles. In contrast, nonpolar and nonwetting solvents do not force polymer desorption. In these cases, the formation of a percolating network structure within the suspensions is presumably prevented by the strong steric repulsion among graphite particles, not allowing for the formation of particle clusters encapsulating the secondary liquid. Accordingly, polymeric additives and secondary fluids have to be carefully selected in capillary suspension formulations, then offering a new pathway to customize paste formulations. The polymer may serve to adjust an appropriate viscosity level, and the capillary bridging induces the

  10. Competitive interactions between components in surfactant-cosurfactant-additive systems.

    PubMed

    Chaghi, Radhouane; de Ménorval, Louis-Charles; Charnay, Clarence; Zajac, Jerzy

    2010-04-15

    Complex interactions of phenol (PhOH), heptanol (HeOH) and heptanoic acid (HeOIC) with micellar aggregates of hexadecyltrimethylammonium bromide (HTAB) in aqueous solutions at surfactant concentrations close to the CMC, HeOH or HeOIC content of 0.5 mmol kg(-1), and phenol molality of 1, 5, or 10 mmol kg(-1) have been investigated at 303 K by means of (1)H NMR spectroscopy, titration calorimetry and solution conductimetry. The analysis of the composition-dependence of the (1)H chemical shifts assigned to selected protons in the surfactant and additive units revealed the location of PhOH both within the hydrophobic micelle core and in the vicinity of the quaternary ammonium groups, the phenol penetration being somewhat deeper in the presence of HeOIC. The phenomenon was globally more exothermic with increasing extent of PhOH solubilization and it was accompanied by a gradual decrease in the positive entropy of micellization. The solubilization was competitive for high phenol contents in the aqueous phase, with some HeOH and HeOIC units being displaced progressively towards the aqueous phase.

  11. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Nielsen, Michael H.; Lee, Jonathan R. I.; Frandsen, Cathrine; Banfield, Jillian F.; De Yoreo, James J.

    2012-05-01

    The oriented attachment of molecular clusters and nanoparticles in solution is now recognized as an important mechanism of crystal growth in many materials, yet the alignment process and attachment mechanism have not been established. We performed high-resolution transmission electron microscopy using a fluid cell to directly observe oriented attachment of iron oxyhydroxide nanoparticles. The particles undergo continuous rotation and interaction until they find a perfect lattice match. A sudden jump to contact then occurs over less than 1 nanometer, followed by lateral atom-by-atom addition initiated at the contact point. Interface elimination proceeds at a rate consistent with the curvature dependence of the Gibbs free energy. Measured translational and rotational accelerations show that strong, highly direction-specific interactions drive crystal growth via oriented attachment.

  12. Interactions between sealing materials and lubricating oil additives

    SciTech Connect

    Winkenbach, R.; Von Arndt, E.M.; Mindermann, H.

    1987-01-01

    Due to the increasingly higher application demands, engine and transmission manufactures are today using lubrication oils with more and more additives. The result is that seal materials are being damaged when exposed to such conditions and such additives. This paper shows the effects of basic oils with, and without, additives on elastomeric materials such as NBR, ACM, MVQ and FPM.

  13. Extending theories on muon-specific interactions

    DOE PAGES

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  14. Extending theories on muon-specific interactions

    SciTech Connect

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  15. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases.

    PubMed

    Lenz, Tobias L; Deutsch, Aaron J; Han, Buhm; Hu, Xinli; Okada, Yukinori; Eyre, Stephen; Knapp, Michael; Zhernakova, Alexandra; Huizinga, Tom W J; Abecasis, Gonçalo; Becker, Jessica; Boeckxstaens, Guy E; Chen, Wei-Min; Franke, Andre; Gladman, Dafna D; Gockel, Ines; Gutierrez-Achury, Javier; Martin, Javier; Nair, Rajan P; Nöthen, Markus M; Onengut-Gumuscu, Suna; Rahman, Proton; Rantapää-Dahlqvist, Solbritt; Stuart, Philip E; Tsoi, Lam C; van Heel, David A; Worthington, Jane; Wouters, Mira M; Klareskog, Lars; Elder, James T; Gregersen, Peter K; Schumacher, Johannes; Rich, Stephen S; Wijmenga, Cisca; Sunyaev, Shamil R; de Bakker, Paul I W; Raychaudhuri, Soumya

    2015-09-01

    Human leukocyte antigen (HLA) genes confer substantial risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen-binding repertoires between a heterozygote's two expressed HLA variants might result in additional non-additive risk effects. We tested the non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (ncases = 5,337), type 1 diabetes (T1D; ncases = 5,567), psoriasis vulgaris (ncases = 3,089), idiopathic achalasia (ncases = 727) and celiac disease (ncases = 11,115). In four of the five diseases, we observed highly significant, non-additive dominance effects (rheumatoid arthritis, P = 2.5 × 10(-12); T1D, P = 2.4 × 10(-10); psoriasis, P = 5.9 × 10(-6); celiac disease, P = 1.2 × 10(-87)). In three of these diseases, the non-additive dominance effects were explained by interactions between specific classical HLA alleles (rheumatoid arthritis, P = 1.8 × 10(-3); T1D, P = 8.6 × 10(-27); celiac disease, P = 6.0 × 10(-100)). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (rheumatoid arthritis, 1.4%; T1D, 4.0%; celiac disease, 4.1%) beyond a simple additive model. PMID:26258845

  16. Specific biomembrane adhesion -Indirect lateral interactions between bound receptor molecules

    NASA Astrophysics Data System (ADS)

    Maier, C. W.; Behrisch, A.; Kloboucek, A.; Simson, D. A.; Merkel, R.

    We studied biomembrane adhesion using the micropipet aspiration technique. Adhesion was caused by contact site A, a laterally mobile and highly specific cell adhesion molecule from Dictyostelium discoideum, reconstituted in lipid vesicles of DOPC (L-α-dioleoylphosphatidylcholine) with an addition of 5 mol % DOPE-PEG{2000} (1,2-diacyl-sn-glycero-3-phosphatidylethanolamine-N-[poly(ethyleneglycol) 2000]). The "fuzzy" membrane mimics the cellular plasma membrane including the glycocalyx. We found adhesion and subsequent receptor migration into the contact zone. Using membrane tension jumps to probe the equation of state of the two-dimensional "gas" of bound receptor pairs within the contact zone, we found strong, attractive lateral interactions.

  17. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases

    PubMed Central

    Lenz, Tobias L.; Deutsch, Aaron J.; Han, Buhm; Hu, Xinli; Okada, Yukinori; Eyre, Stephen; Knapp, Michael; Zhernakova, Alexandra; Huizinga, Tom W.J.; Abecasis, Goncalo; Becker, Jessica; Boeckxstaens, Guy E.; Chen, Wei-Min; Franke, Andre; Gladman, Dafna D.; Gockel, Ines; Gutierrez-Achury, Javier; Martin, Javier; Nair, Rajan P.; Nöthen, Markus M.; Onengut-Gumuscu, Suna; Rahman, Proton; Rantapää-Dahlqvist, Solbritt; Stuart, Philip E.; Tsoi, Lam C.; Van Heel, David A.; Worthington, Jane; Wouters, Mira M.; Klareskog, Lars; Elder, James T.; Gregersen, Peter K.; Schumacher, Johannes; Rich, Stephen S.; Wijmenga, Cisca; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Raychaudhuri, Soumya

    2015-01-01

    Human leukocyte antigen (HLA) genes confer strong risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen binding repertoires between a heterozygote’s two expressed HLA variants may result in additional non-additive risk effects. We tested non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (RA, Ncases=5,337), type 1 diabetes (T1D, Ncases=5,567), psoriasis vulgaris (Ncases=3,089), idiopathic achalasia (Ncases=727), and celiac disease (Ncases=11,115). In four out of five diseases, we observed highly significant non-additive dominance effects (RA: P=2.5×1012; T1D: P=2.4×10−10; psoriasis: P=5.9×10−6; celiac disease: P=1.2×10−87). In three of these diseases, the dominance effects were explained by interactions between specific classical HLA alleles (RA: P=1.8×10−3; T1D: P=8.6×1027; celiac disease: P=6.0×10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (RA: 1.4%, T1D: 4.0%, and celiac disease: 4.1%, beyond a simple additive model). PMID:26258845

  18. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  19. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scaffolds. 1926.452 Section 1926.452 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  20. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scaffolds. 1926.452 Section 1926.452 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  1. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... scaffolds. 1926.452 Section 1926.452 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  2. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scaffolds. 1926.452 Section 1926.452 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  3. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scaffolds. 1926.452 Section 1926.452 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Scaffolds § 1926.452 Additional requirements applicable to specific types of scaffolds. In addition to the applicable requirements of § 1926.451, the following requirements apply to the specific types of...

  4. The additive effect of harmonics on conservative and dissipative interactions

    NASA Astrophysics Data System (ADS)

    Santos, Sergio; Gadelrab, Karim R.; Barcons, Victor; Font, Josep; Stefancich, Marco; Chiesa, Matteo

    2012-12-01

    Multifrequency atomic force microscopy holds promise as a tool for chemical and topological imaging with nanoscale resolution. Here, we solve the equation of motion exactly for the fundamental mode in terms of the cantilever mean deflection, the fundamental frequency of oscillation, and the higher harmonic amplitudes and phases. The fundamental frequency provides information about the mean force, dissipation, and variations in the magnitude of the attractive and the repulsive force components during an oscillation cycle. The contributions of the higher harmonics to the position, velocity, and acceleration can be added gradually where the details of the true instantaneous force are recovered only when tens of harmonics are included. A formalism is developed here to decouple and quantify the viscous term of the force in the short and long range. It is also shown that the viscosity independent paths on tip approach and tip retraction can also be decoupled by simply acquiring a FFT at two different cantilever separations. The two paths correspond to tip distances at which metastability is present as, for example, in the presence of capillary interactions and where there is surface energy hysteresis.

  5. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    NASA Astrophysics Data System (ADS)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  6. Domain specificity in social interactions, social thought, and social development.

    PubMed

    Turiel, Elliot

    2010-01-01

    J. E. Grusec and M. Davidov (this issue) have taken good steps in formulating a domain-specific view of parent-child interactions. This commentary supports the introduction of domain specificity to analyses of parenting. Their formulation is an advance over formulations that characterized parental practices globally. This commentary calls for inclusion of definitions of the classification system of domain-specific interactions and criteria for each domain. It is also maintained that Grusec and Davidov's domains of social interaction imply that processes of development are involved, along with socialization; that bidirectionality in parent-child relations needs to be extended to include mutual influences and the construction of domains of social thought; and that conflicts and opposition within families coexist with compliance and social harmony.

  7. Multi-spectroscopic DNA interaction studies of sunset yellow food additive.

    PubMed

    Kashanian, Soheila; Heidary Zeidali, Sahar; Omidfar, Kobra; Shahabadi, Nahid

    2012-12-01

    The use of food dyes is at least controversial due to their essential role. Synthetic color food additives occupy an important place in the food industry. Moreover many of them have been related to health problems mainly in children that are considered the most vulnerable group. The purpose of this work is to present spectrophotometric methods to analyze the interaction of native calf thymus DNA (CT-DNA) with sunset yellow (SY) at physiological pH. Considerable hyperchromism and no red shift with an intrinsic binding constant of 7 × 10(4 )M(-1) were observed in UV absorption band of SY. Binding constants of DNA with complex were calculated at different temperatures. Slow increase in specific viscosity of DNA, induced circular dichroism spectral changes, and no significant changes in the fluorescence of neutral red-DNA solutions in the presence of SY suggest that this molecule interacts with CT-DNA via groove binding mode. Furthermore, the enthalpy and entropy of the reaction between SY and CT-DNA showed that the reaction is exothermic and enthalpy favored (∆H = -58.19 kJ mol(-1); ΔS = -274.36 kJ mol(-1) ) which are other evidences to indicate that van der Waals interactions and hydrogen bonding are the main running forces in the binding of the mentioned molecule and mode of interaction with DNA.

  8. Lattice cluster theory for polymer melts with specific interactions

    SciTech Connect

    Xu, Wen-Sheng; Freed, Karl F.

    2014-07-28

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  9. Nonlinear dynamics of specific DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.

    2016-03-01

    Interactions between DNA binding protein and specific base pairs of nucleic acid is critical for biological process. We propose a new model of DNA-protein interactions to depict the dynamics of specific DNA-protein interactions. Hydrogen bonds (H-bonds) are, among the other intermolecular interactions in DNA, the most distinctive in term of specificity of molecular bonds. As H-bonds account for specificity, we only consider the dynamics affected by H-bonds between DNA base pairs and H-bonds connecting protein side chains and DNA. The H-bonds are modelled by Morse potentials and coupling terms in the Hamiltonian of coupled oscillators resembling a coupling between planar DNA chain and a protein molecule. In this paper we give a perturbative approach as an attempt for a soliton solution. The solution is in the form of nonlinear travelling wave having the amplitudes satisfying coupled nonlinear Schrodinger equations and is interpreted as the mediator for nonlocal transmittance of biological information in DNA.

  10. Specific interaction between coronavirus leader RNA and nucleocapsid protein

    SciTech Connect

    Stohlman, S.A.; Baric, R.S.; Nelson, G.N.; Soe, L.H.; Welter, L.M.; Deans, R.J.

    1988-11-01

    Northwestern blot analysis in the presence of competitor RNA was used to examine the interaction between the mouse hepatitis virus (MHV) nucleocapsid protein (N) and virus-specific RNAs. The authors accompanying article demonstrates that anti-N monoclonal antibodies immunoprecipitated all seven MHV-specific RNAs as well as the small leader-containing RNAs from infected cells. In this article the authors report that a Northwestern blotting protocol using radiolabeled viral RNAs in the presence of host cell competitor RNA can be used to demonstrate a high-affinity interaction between the MHV N protein and the virus-specific RNAs. Further, RNA probes prepared by in vitro transcription were used to define the sequences that participate in such high-affinity binding. A specific interaction occurs between the N protein and sequences contained with the leader RNA which is conserved at the 5' end of all MHV RNAs. They have further defined the binding sites to the area of nucleotides 56 to 65 at the 3' end of the leader RNA and suggest that this interaction may play an important role in the discontinuous nonprocessive RNA transcriptional process unique to coronaviruses.

  11. Phase separation in solutions with specific and nonspecific interactions

    SciTech Connect

    Jacobs, William M.; Frenkel, Daan; Oxtoby, David W.

    2014-05-28

    Protein solutions, which tend to be thermodynamically stable under physiological conditions, can demix into protein-enriched and protein-depleted phases when stressed. Using a lattice-gas model of proteins with both isotropic and specific, directional interactions, we calculate the critical conditions for phase separation for model proteins with up to four patches via Monte Carlo simulations and statistical associating fluid theory. Given a fixed specific interaction strength, the critical value of the isotropic energy, which accounts for dispersion forces and nonspecific interactions, measures the stability of the solution with respect to nonspecific interactions. Phase separation is suppressed by the formation of protein complexes, which effectively passivate the strongly associating sites on the monomers. Nevertheless, we find that protein models with three or more patches can form extended aggregates that phase separate despite the assembly of passivated complexes, even in the absence of nonspecific interactions. We present a unified view of the critical behavior of model fluids with anisotropic interactions, and we discuss the implications of these results for the thermodynamic stability of protein solutions.

  12. The specificity of interactions between proteins and sulfated polysaccharides.

    PubMed

    Mulloy, Barbara

    2005-12-01

    Sulfated polysaccharides are capable of binding with proteins at several levels of specificity. As highly acidic macromolecules, they can bind non-specifically to any basic patch on a protein surface at low ionic strength, and such interactions are not likely to be physiologically significant. On the other hand, several systems have been identified in which very specific substructures of sulfated polysaccharides confer high affinity for particular proteins; the best-known example of this is the pentasaccharide in heparin with high affinity for antithrombin, but other examples may be taken from the study of marine invertebrates: the importance of the fine structure of dermatan sulfate (DS) to its interaction with heparin cofactor II (HCII), and the involvement of sea urchin egg-jelly fucans in species specific fertilization. A third, intermediate, kind of specific interaction is described for the cell-surface glycosaminoglycan heparan sulfate (HS), in which patterns of sulfate substitution can show differential affinities for cytokines, growth factors, and morphogens at cell surfaces and in the intracellular matrix. This complex interplay of proteins and glycans is capable of influencing the diffusion of such proteins through tissue, as well as modulating cellular responses to them. PMID:16341442

  13. The specificity of interactions between proteins and sulfated polysaccharides.

    PubMed

    Mulloy, Barbara

    2005-12-01

    Sulfated polysaccharides are capable of binding with proteins at several levels of specificity. As highly acidic macromolecules, they can bind non-specifically to any basic patch on a protein surface at low ionic strength, and such interactions are not likely to be physiologically significant. On the other hand, several systems have been identified in which very specific substructures of sulfated polysaccharides confer high affinity for particular proteins; the best-known example of this is the pentasaccharide in heparin with high affinity for antithrombin, but other examples may be taken from the study of marine invertebrates: the importance of the fine structure of dermatan sulfate (DS) to its interaction with heparin cofactor II (HCII), and the involvement of sea urchin egg-jelly fucans in species specific fertilization. A third, intermediate, kind of specific interaction is described for the cell-surface glycosaminoglycan heparan sulfate (HS), in which patterns of sulfate substitution can show differential affinities for cytokines, growth factors, and morphogens at cell surfaces and in the intracellular matrix. This complex interplay of proteins and glycans is capable of influencing the diffusion of such proteins through tissue, as well as modulating cellular responses to them.

  14. Phase diagrams for the adsorption of monomers with non-additive interactions

    NASA Astrophysics Data System (ADS)

    Pinto, O. A.; Ramirez-Pastor, A. J.; Nieto, F.

    2016-09-01

    In several experimental systems phase diagrams coverage-temperature show a strong asymmetry. This behavior can be reproduced by including non-additive lateral interactions. In this work a Monte Carlo study on the canonical assembly of the criticality of monomer adsorption with non-additive interactions is presented. Traditional pairwise energies were replaced by other more general ones where the lateral interaction between two ad-atoms depends on the coverage at first sphere of coordination. This kind of energies includes multibody interactions like three-body interactions and four-body interactions, etc. These energies induce the formation of several non-additive ordered structures. Finite size scaling method was used to classify the order of phase transition of each non-additive phase. On the other hand, the corresponding phase diagrams are formed naturally, in which case the diagrams show strong asymmetries.

  15. Contribution of temperament to eating disorder symptoms in emerging adulthood: Additive and interactive effects.

    PubMed

    Burt, Nicole M; Boddy, Lauren E; Bridgett, David J

    2015-08-01

    Temperament characteristics, such as higher negative emotionality (NE) and lower effortful control (EC), are individual difference risk factors for developmental psychopathology. Research has also noted relations between temperament and more specific manifestations of psychopathology, such as eating disorders (EDs). Although work is emerging that indicates that NE and EC may additively contribute to risk for ED symptoms, no studies have considered the interactive effects of NE and EC in relation to ED symptoms. In the current investigation, we hypothesized that (1) low EC would be associated with increased ED symptoms, (2) high NE would be associated with increased ED symptoms, and (3) these temperament traits would interact, such that the relationship between NE and ED symptoms would be strongest in the presence of low EC. After controlling for gender and child trauma history, emerging adults' (N=160) lower EC (i.e., more difficulties with self-regulation) was associated with more ED symptoms. NE did not emerge as a direct predictor of ED symptoms. However, the anticipated interaction of these temperament characteristics on ED symptoms was found. The association between NE and ED symptoms was only significant in the context of low EC. These findings provide evidence that elevated NE may only be a risk factor for the development of eating disorders when individuals also have self-regulation difficulties. The implications of these findings for research and interventions are discussed.

  16. Dispersion interactions of carbohydrates with condensate aromatic moieties: theoretical study on the CH-π interaction additive properties.

    PubMed

    Kozmon, Stanislav; Matuška, Radek; Spiwok, Vojtěch; Koča, Jaroslav

    2011-08-21

    In this article we present the first systematic study of the additive properties (i.e. degree of additivity) of the carbohydrate-aromatic moiety CH-π dispersion interaction. The additive properties were studied on the β-D-glucopyranose, β-D-mannopyranose and α-L-fucopyranose complexes with the naphthalene molecule by comparing the monodentate (single CH-π) and bidentate (two CH-π) complexes. All model complexes were optimized using the DFT-D approach, at the BP/def2-TZVPP level of theory. The interaction energies were refined using single point calculations at highly correlated ab initio methods at the CCSD(T)/CBS level, calculated as E + (E(CCSD(T))-E(MP2))(Small Basis). Bidentate complexes show very strong interactions in the range from -10.79 up to -7.15 and -8.20 up to -6.14 kcal mol(-1) for the DFT-D and CCSD(T)/CBS level, respectively. These values were compared with the sum of interaction energies of the appropriate monodentate carbohydrate-naphthalene complexes. The comparison reveals that the bidentate complex interaction energy is higher (interaction is weaker) than the sum of monodentate complex interaction energies. Bidentate complex interaction energy corresponds to 2/3 of the sum of the appropriate monodentate complex interaction energies (averaging over all modeled carbohydrate complexes). The observed interaction energies were also compared with the sum of interaction energies of the corresponding previously published carbohydrate-benzene complexes. Also in this case the interaction energy of the bidentate complex was higher (i.e. weaker interaction) than the sum of interaction energies of the corresponding benzene complexes. However, the obtained difference is lower than before, while the bidentate complex interaction energy corresponds to 4/5 of the sum of interaction energy of the benzene complexes, averaged over all structures. The mentioned comparison might aid protein engineering efforts where amino acid residues phenylalanine or

  17. Specific ion effects via ion hydration: II. Double layer interaction.

    PubMed

    Ruckenstein, Eli; Manciu, Marian

    2003-09-18

    A simple modified Poisson-Boltzmann formalism, which accounts also for those interactions between electrolyte ions and colloidal particles not included in the mean potential, is used to calculate the force between two parallel plates. It is shown that the short-range interactions between ions and plates, such as those due to the change in the hydration free energy of a structure-making/breaking ion that approaches the interface, affect the double layer interaction at large separations through the modification of the surface potential and surface charge density. While at short separations (below the range of the short-range ion-hydration forces) the interaction can be attractive, at larger separations the interaction is always repulsive, as in the traditional theory. When the long-range van der Waals interactions between the ions and the system (ion-dispersion interactions) are accounted for in the modified Poisson-Boltzmann approach, an attractive force between plates can be generated. At sufficiently large separations, this attraction can become even stronger than the traditional van der Waals attraction between plates of finite thickness, thus generating a dominant long-range 'double layer attraction'. At small plate separations, the attraction generated by the ion-dispersion forces combined with the electrostatic repulsion due to the double layers overlap can lead to a variety of interactions, from a weak attraction (which is typically by at least one order of magnitude smaller than the traditional van der Waals attraction between plates) to a strong double layer repulsion (for sufficiently large surface charges). Both types of ion interactions (long-range van der Waals or short-range ionic hydration) strongly affect the magnitude of the double layer interaction, and can account for the specific ion effects observed experimentally. However, they do not affect qualitatively the traditional theory of the colloid stability, which predicts that the colloid is stable

  18. Photoresponsive peptide azobenzene conjugates that specifically interact with platinum surfaces

    NASA Astrophysics Data System (ADS)

    Dinçer, S.; Tamerler, C.; Sarıkaya, M.; Pişkin, E.

    2008-05-01

    The aim of this study is to prepare photoresponsive peptide-azobenzene compounds which interacts with platinum surfaces specifically, in order to create smart surfaces for further novel applications in design of smart biosensors and array platforms. Here, a water-soluble azobenzene molecule, 4-hydroxyazo benzene,4-sulfonic acid was synthesized by diazo coupling reaction. A platinum-specific peptide, originally selected by a phage display technique was chemically synthesized/purchased, and conjugated with the azobenzene compound activated with carbonyldiimidazole. Both azobenzene and its conjugate were characterized (including photoresponsive properties) by FTIR, NMR, and UV-spectrophotometer. The yield of conjugation reaction estimated by ninhydrin assay was about 65%. Peptide incorporation did not restrict the light-sensitivity of azobenzene. Adsorption of both the peptide and its azobenzene conjugate was followed by Quartz Crystal Microbalance (QCM) system. The kinetic evaluations exhibited that both molecules interact platinum surfaces, quite rapidly and strongly.

  19. Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity

    PubMed Central

    Yan, Zhiqiang; Wang, Jin

    2013-01-01

    Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions. PMID:24098651

  20. A search for specificity in DNA-drug interactions.

    PubMed

    Cruciani, G; Goodford, P J

    1994-06-01

    The GRID force field and a principal component analysis have been used in order to predict the interactions of small chemical groups with all 64 different triplet sequences of B-DNA. Factors that favor binding to guanine-cytosine base pairs have been identified, and a dictionary of ligand groups and their locations is presented as a guide to the design of specific DNA ligands. PMID:7918250

  1. A search for specificity in DNA-drug interactions.

    PubMed

    Cruciani, G; Goodford, P J

    1994-06-01

    The GRID force field and a principal component analysis have been used in order to predict the interactions of small chemical groups with all 64 different triplet sequences of B-DNA. Factors that favor binding to guanine-cytosine base pairs have been identified, and a dictionary of ligand groups and their locations is presented as a guide to the design of specific DNA ligands.

  2. Highly specific protein-protein interactions, evolution and negative design.

    PubMed

    Sear, Richard P

    2004-12-01

    We consider highly specific protein-protein interactions in proteomes of simple model proteins. We are inspired by the work of Zarrinpar et al (2003 Nature 426 676). They took a binding domain in a signalling pathway in yeast and replaced it with domains of the same class but from different organisms. They found that the probability of a protein binding to a protein from the proteome of a different organism is rather high, around one half. We calculate the probability of a model protein from one proteome binding to the protein of a different proteome. These proteomes are obtained by sampling the space of functional proteomes uniformly. In agreement with Zarrinpar et al we find that the probability of a protein binding a protein from another proteome is rather high, of order one tenth. Our results, together with those of Zarrinpar et al, suggest that designing, say, a peptide to block or reconstitute a single signalling pathway, without affecting any other pathways, requires knowledge of all the partners of the class of binding domains the peptide is designed to mimic. This knowledge is required to use negative design to explicitly design out interactions of the peptide with proteins other than its target. We also found that patches that are required to bind with high specificity evolve more slowly than those that are required only to not bind to any other patch. This is consistent with some analysis of sequence data for proteins engaged in highly specific interactions.

  3. Cationic lipid membranes—specific interactions with counter-ions

    NASA Astrophysics Data System (ADS)

    Ryhänen, Samppa J.; Säily, V. Matti J.; Kinnunen, Paavo K. J.

    2006-07-01

    Lipids bearing net electric charges in their hydrophilic headgroups are ubiquitous in biological membranes. Recently, the interest in cationic lipids has surged because of their potential as non-viral transfection vectors. In order to utilize cationic lipids in transfer of nucleic acids and to elucidate the role of charged lipids in cellular membranes in general, their complex interactions within the membrane and with the molecules in the surrounding media need to be thoroughly characterized. Yet, even interactions between monovalent counter-ions and charged lipids are inadequately understood. We studied the interactions of the cationic gemini surfactant (2R,3R)-2,3-dimethoxy-1,4- bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide (RR-1) with chloride, bromide, fluoride, and iodide as counter-ions by differential scanning calorimetry and Langmuir balance. Chloride interacts avidly with RR-1, efficiently condensing the monolayer, decreasing the collapse pressure, and elevating the main transition temperature. With bromide and iodide clearly different behaviour was observed, indicating specific interactions between RR-1 and these counter-ions. Moreover, with fluoride as a counter-ion and in pure water identical results were obtained, demonstrating inefficient electrostatic screening of the headgroups of RR-1 and suggesting fluoride being depleted on the surface of RR-1 membranes.

  4. Chromatic patchy particles: Effects of specific interactions on liquid structure

    SciTech Connect

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral and cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.

  5. The pain interactome: connecting pain-specific protein interactions.

    PubMed

    Jamieson, Daniel G; Moss, Andrew; Kennedy, Michael; Jones, Sherrie; Nenadic, Goran; Robertson, David L; Sidders, Ben

    2014-11-01

    Understanding the molecular mechanisms associated with disease is a central goal of modern medical research. As such, many thousands of experiments have been published that detail individual molecular events that contribute to a disease. Here we use a semi-automated text mining approach to accurately and exhaustively curate the primary literature for chronic pain states. In so doing, we create a comprehensive network of 1,002 contextualized protein-protein interactions (PPIs) specifically associated with pain. The PPIs form a highly interconnected and coherent structure, and the resulting network provides an alternative to those derived from connecting genes associated with pain using interactions that have not been shown to occur in a painful state. We exploit the contextual data associated with our interactions to analyse subnetworks specific to inflammatory and neuropathic pain, and to various anatomical regions. Here, we identify potential targets for further study and several drug-repurposing opportunities. Finally, the network provides a framework for the interpretation of new data within the field of pain.

  6. Chromatic patchy particles: Effects of specific interactions on liquid structure

    DOE PAGES

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral andmore » cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.« less

  7. LUMIS Interactive graphics operating instructions and system specifications

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Yu, T. C.; Landini, A. J.

    1976-01-01

    The LUMIS program has designed an integrated geographic information system to assist program managers and planning groups in metropolitan regions. Described is the system designed to interactively interrogate a data base, display graphically a portion of the region enclosed in the data base, and perform cross tabulations of variables within each city block, block group, or census tract. The system is designed to interface with U. S. Census DIME file technology, but can accept alternative districting conventions. The system is described on three levels: (1) introduction to the systems's concept and potential applications; (2) the method of operating the system on an interactive terminal; and (3) a detailed system specification for computer facility personnel.

  8. Specific features of nonvalent interactions in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B.

    2014-07-01

    It is established that isostructural orthorhombic perovskites ABO3 (sp. gr. Pnma in different systems, no. 62, Z = 4), depending on the specificity of nonvalent interactions (which determine the combinatorial-topological type of the Voronoi-Dirichlet polyhedra (VDPs) of four basis atoms), are divided into ten different stereotypes. It is shown by the example of 259 perovskites belonging to the DyCrO3 stereotype that VDP characteristics can be used to quantitatively estimate the distortion of BO6 octahedra, including that caused by the Jahn-Teller effect. It is found that one of the causes of the distortion of the coordination polyhedra of atoms in the structure of orthorhombic perovskites is heteroatomic metal-metal interactions, for which the interatomic distances are much shorter than the sum of the Slater radii of A and B atoms.

  9. Modulation of Additive and Interactive Effects in Lexical Decision by Trial History

    ERIC Educational Resources Information Center

    Masson, Michael E. J.; Kliegl, Reinhold

    2013-01-01

    Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model…

  10. Parental Anxiety and Child Symptomatology: An Examination of Additive and Interactive Effects of Parent Psychopathology

    ERIC Educational Resources Information Center

    Burstein, Marcy; Ginsburg, Golda S.; Tein, Jenn-Yun

    2010-01-01

    The current study examined relations between parent anxiety and child anxiety, depression, and externalizing symptoms. In addition, the study tested the additive and interactive effects of parent anxiety with parent depression and externalizing symptoms in relation to child symptoms. Forty-eight parents with anxiety disorders and 49 parents…

  11. Optimization of the thermophilic anaerobic co-digestion of pig manure, agriculture waste and inorganic additive through specific methanogenic activity.

    PubMed

    Jiménez, J; Cisneros-Ortiz, M E; Guardia-Puebla, Y; Morgan-Sagastume, J M; Noyola, A

    2014-01-01

    The anaerobic co-digestion of three wastes (manure, rice straw and clay residue, an inorganic additive) at different concentration levels and their interactive effects on methanogenic activity were investigated in this work at thermophilic conditions in order to enhance hydrolytic activity and methane production. A central composite design and the response surface methodology were applied for the optimization of specific methanogenic activity (SMA) by assessing their interaction effects with a reduced number of experiments. The results showed a significant interaction among the wastes on the SMA and confirmed that co-digestion enhances methane production. Rice straw apparently did not supply a significant amount of substrate to make a difference in SMA or methane yield. On the other hand, clay residue had a positive effect as an inorganic additive for stimulating the anaerobic process, based on its mineral content and its adsorbent properties for ammonia. Finally, the optimal conditions for achieving a thermophilic SMA value close to 1.4 g CH4-COD/g VSS · d(-1) were 20.3 gVSS/L of manure, 9.8 gVSS/L of rice straw and 3.3 gTSS/L of clay. PMID:24959998

  12. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  13. A novel interaction mode between acrylamide and its specific antibody.

    PubMed

    Zhou, Shuang; Wang, Dan; Zhang, Chen; Zhao, Yunfeng; Zhao, Meiping; Wu, Yongning

    2015-01-01

    Since the discovery of high-level acrylamide (Acr) contamination in food, extensive international studies have focused on its toxicity and detection. By using a novel antigen synthetic strategy, we have successfully obtained a specific antibody towards acrylamide (Acr-Ab). Herein, the Acr-Ab and its interactions with Acr were characterized. Enzyme-linked immunosorbent assay (ELISA) and dynamic light scattering (DLS) investigations revealed that the conformational structure of Acr-Ab was sensitive to buffers. It showed a satisfied immunoreactivity in phosphate buffered saline (PBS), but denatured in water. In natural state, Acr-Ab had a trend of getting aggregation through their complementarity determining regions (CDRs). Adding Acr leaded to their disassembling. While mixed with Acr, Acr-Ab exhibits not only a fast, high-specific, and reversible non covalent binding (by surface plasmon resonance, SPR), but also a covalent alkylation with Acr through cysteine and histidine residues on its surface, as demonstrated by high-performance liquid chromatography (HPLC). Neither of the two reactions involves conformational change in secondary or tertiary structures as shown in circular dichroism spectra (CD). These special properties of Acr-Ab and the entirely new interaction mode with Acr will extend our knowledge of Acr related biosystem and facilitate the development of new detection strategies for Acr.

  14. Species specificity in avian sperm:perivitelline interaction.

    PubMed

    Stewart, Sarah G; Bausek, Nina; Wohlrab, Franz; Schneider, Wolfgang J; Janet Horrocks, A; Wishart, Graham J

    2004-04-01

    The interaction of chicken spermatozoa with the inner perivitelline layer from different avian species in vitro during a 5 min co-incubation was measured as the number of points of hydrolysis produced per unit area of inner perivitelline layer. The average degree of interaction, as a proportion of that between chicken spermatozoa and their homologous inner perivitelline layer, was: equal to or greater than 100% within Galliformes (chicken, turkey, quail, pheasant, peafowl and guineafowl); 44% within Anseriformes (goose, duck); and less than 30% in Passeriformes (Zebra Finch) and Columbiformes (collared-dove). The homologue of the putative chicken sperm-binding proteins, chicken ZP1 and ZP3, were identified by Western blotting with anti-chicken ZP1/ZP3 antibody in the perivitelline layers of all species. The functional cross-reactivity between chicken spermatozoa and heterologous inner perivitelline layer appeared to be linked to known phylogenetic distance between the species, although it was not related to the relative affinity of the different ZP3 homologues for anti-chicken ZP3. This work demonstrates that sperm interaction with the egg investment does not represent such a stringent species-specific barrier in birds as it does in mammals and marine invertebrates. This may be a factor in the frequency of hybrid production in birds.

  15. Species specificity in avian sperm:perivitelline interaction.

    PubMed

    Stewart, Sarah G; Bausek, Nina; Wohlrab, Franz; Schneider, Wolfgang J; Janet Horrocks, A; Wishart, Graham J

    2004-04-01

    The interaction of chicken spermatozoa with the inner perivitelline layer from different avian species in vitro during a 5 min co-incubation was measured as the number of points of hydrolysis produced per unit area of inner perivitelline layer. The average degree of interaction, as a proportion of that between chicken spermatozoa and their homologous inner perivitelline layer, was: equal to or greater than 100% within Galliformes (chicken, turkey, quail, pheasant, peafowl and guineafowl); 44% within Anseriformes (goose, duck); and less than 30% in Passeriformes (Zebra Finch) and Columbiformes (collared-dove). The homologue of the putative chicken sperm-binding proteins, chicken ZP1 and ZP3, were identified by Western blotting with anti-chicken ZP1/ZP3 antibody in the perivitelline layers of all species. The functional cross-reactivity between chicken spermatozoa and heterologous inner perivitelline layer appeared to be linked to known phylogenetic distance between the species, although it was not related to the relative affinity of the different ZP3 homologues for anti-chicken ZP3. This work demonstrates that sperm interaction with the egg investment does not represent such a stringent species-specific barrier in birds as it does in mammals and marine invertebrates. This may be a factor in the frequency of hybrid production in birds. PMID:15123173

  16. Reactivity of Dazomet, a Hydraulic Fracturing Additive: Hydrolysis and Interaction with Pyrite

    NASA Astrophysics Data System (ADS)

    Consolazio, N.; Lowry, G. V.; Karamalidis, A.; Hakala, A.

    2015-12-01

    reaction products. Our results indicate the need to determine specific mineral-additive interactions to evaluate the potential risks of chemical use in hydraulic fracturing.

  17. Estimation and Inference in Generalized Additive Coefficient Models for Nonlinear Interactions with High-Dimensional Covariates

    PubMed Central

    Shujie, MA; Carroll, Raymond J.; Liang, Hua; Xu, Shizhong

    2015-01-01

    In the low-dimensional case, the generalized additive coefficient model (GACM) proposed by Xue and Yang [Statist. Sinica 16 (2006) 1423–1446] has been demonstrated to be a powerful tool for studying nonlinear interaction effects of variables. In this paper, we propose estimation and inference procedures for the GACM when the dimension of the variables is high. Specifically, we propose a groupwise penalization based procedure to distinguish significant covariates for the “large p small n” setting. The procedure is shown to be consistent for model structure identification. Further, we construct simultaneous confidence bands for the coefficient functions in the selected model based on a refined two-step spline estimator. We also discuss how to choose the tuning parameters. To estimate the standard deviation of the functional estimator, we adopt the smoothed bootstrap method. We conduct simulation experiments to evaluate the numerical performance of the proposed methods and analyze an obesity data set from a genome-wide association study as an illustration. PMID:26412908

  18. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  19. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    2001-08-01

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  20. Communication: Non-additivity of van der Waals interactions between nanostructures

    SciTech Connect

    Tao, Jianmin; Perdew, John P.

    2014-10-14

    Due to size-dependent non-additivity, the van der Waals interaction (vdW) between nanostructures remains elusive. Here we first develop a model dynamic multipole polarizability for an inhomogeneous system that allows for a cavity. The model recovers the exact zero- and high-frequency limits and respects the paradigms of condensed matter physics (slowly varying density) and quantum chemistry (one- and two-electron densities). We find that the model can generate accurate vdW coefficients for both spherical and non-spherical clusters, with an overall mean absolute relative error of 4%, without any fitting. Based on this model, we study the non-additivity of vdW interactions. We find that there is strong non-additivity of vdW interactions between nanostructures, arising from electron delocalization, inequivalent contributions of atoms, and non-additive many-body interactions. Furthermore, we find that the non-additivity can have increasing size dependence as well as decreasing size dependence with cluster size.

  1. Observation of Iron Specific Interaction with a Charge Neutral Phospholipid

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren; San Emeterio, Josue; Kuzmenko, Ivan; Nilsen-Hamilton, Marit; Mallapragada, Surya; Vaknin, David

    2015-03-01

    Using surface sensitive X-ray scattering and spectroscopic techniques we show that phosphatidyl choline (PC) head groups attract positively charged iron ions and complexes even at pH values that are lower than 3. DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) is a zwitterionic lipid typically used as a model system for cell membranes. Within a large pH range (3 -11), it carries a negative charge on the phosphate group and a positive charge on the quaternary ammonium cation, thus appears charge neutral. Further lowering the pH, i.e. adding a proton to the phosphate group, results in a positively charged headgroup. Surprisingly, we detect significant enrichment of iron at the interface of the DPPC monolayer and the aqueous subphase with the pH maintained at 3 or even lower. With a supposedly charge neutral or even positive surface, the observation of surface bound, charge positive iron ions or iron hydroxides is counter-intuitive and suggests iron-specific interaction with the phospholipid headgroup, which is not governed by electrostatic interaction. The effect of the integration of Mms6, a membrane protein that promotes the formation of magnetic nanocrystals, into the DPPC monolayer will also be discussed. Research supported by the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.

  2. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  3. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  4. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  5. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  6. 21 CFR 660.54 - Potency tests, specificity tests, tests for heterospecific antibodies, and additional tests for...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... heterospecific antibodies, and additional tests for nonspecific properties. 660.54 Section 660.54 Food and Drugs..., specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties. The...) Specificity tests, tests for heterospecific antibodies, and additional tests for nonspecific properties....

  7. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  8. Appendix to the Brophy-Good Dyadic Interaction Coding Manual. Additional Coding Categories and Procedures.

    ERIC Educational Resources Information Center

    Brophy, Jere E.; Good Thomas L.

    This paper contains optional modifications and additions to the Brophy-Good Dyadic Interaction Coding Manual (ED 042 688). Included are 1) suggestions for changes in the way level-of-question is coded; 2) modifications of the child's answer categories for simplification or expansion; 3) new distinctions for coding the teacher's feedback following…

  9. Just-in-time Design and Additive Manufacture of Patient-specific Medical Implants

    NASA Astrophysics Data System (ADS)

    Shidid, Darpan; Leary, Martin; Choong, Peter; Brandt, Milan

    Recent advances in medical imaging and manufacturing science have enabled the design and production of complex, patient-specific orthopaedic implants. Additive Manufacture (AM) generates three-dimensional structures layer by layer, and is not subject to the constraints associated with traditional manufacturing methods. AM provides significant opportunities for the design of novel geometries and complex lattice structures with enhanced functional performance. However, the design and manufacture of patient-specific AM implant structures requires unique expertise in handling various optimization platforms. Furthermore, the design process for complex structures is computationally intensive. The primary aim of this research is to enable the just-in-time customisation of AM prosthesis; whereby AM implant design and manufacture be completed within the time constraints of a single surgical procedure, while minimising prosthesis mass and optimising the lattice structure to match the stiffness of the surrounding bone tissue. In this research, a design approach using raw CT scan data is applied to the AM manufacture of femoral prosthesis. Using the proposed just-in-time concept, the mass of the prosthesis was rapidly designed and manufactured while satisfying the associated structural requirements. Compressive testing of lattice structures manufactured using proposed method shows that the load carrying capacity of the resected composite bone can be recovered by up to 85% and the compressive stiffness of the AM prosthesis is statistically indistinguishable from the stiffness of the initial bone.

  10. Requirement for additional treatment for dogs with atopic dermatitis undergoing allergen-specific immunotherapy.

    PubMed

    Colombo, S; Hill, P B; Shaw, D J; Thoday, K L

    2007-06-23

    Allergen-specific immunotherapy (ASIT) is one of the main treatments for atopic dermatitis in dogs, but it often requires additional treatments such as antibacterial and antifungal therapy for secondary bacterial and yeast infections, or antipruritic drugs to control the clinical signs or treat the adverse effects of the immunotherapy. Twenty-seven dogs enrolled in a study of ASIT were clinically assessed four times over a period of nine months; their requirement for treatment for secondary bacterial and yeast infections, for the administration of glucocorticoids as additional antipruritic therapy, and for the treatment of any adverse effects of the ASIT were evaluated. Twenty (74 per cent) of the dogs were treated for superficial bacterial pyoderma, 18 (66.6 per cent) required treatment for Malassezia species dermatitis on one or more occasions, eight (29.6 per cent) required treatment for otitis externa due to Malassezia species or bacteria, and eight required glucocorticoids to control their clinical signs. Five (18.5 per cent) of the dogs experienced adverse effects due to the ASIT and two required treatment with antihistamines (H1 receptor antagonists) in order to continue with the ASIT. PMID:17586789

  11. Specificity of peripheral nerve regeneration: interactions at the axon level.

    PubMed

    Allodi, Ilary; Udina, Esther; Navarro, Xavier

    2012-07-01

    Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs. PMID:22609046

  12. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  13. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE PAGES

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  14. Disparity-Specific Spatial Interactions: Evidence from EEG Source Imaging

    PubMed Central

    Cottereau, Benoit R.; McKee, Suzanne P.; Ales, Justin M.; Norcia, Anthony M.

    2012-01-01

    Using cortical source estimation techniques based on high-density EEG and fMRI measurements in humans, we measured how a disparity-defined surround influenced the responses to the changing disparity of a central disk within five visual ROIs: V1, V4, lateral occipital complex (LOC), hMT+, and V3A. The responses in the V1 ROI were not consistently affected either by changes in the characteristics of the surround (correlated or uncorrelated) or by its disparity value, consistent with V1 being responsive only to absolute, not relative, disparity. Correlation in the surround increased the responses in the V4, LOC, and hMT+ ROIs over those measured with the uncorrelated surround. Thus, these extrastriate areas contain neurons that are sensitive to disparity differences. However, their evoked responses did not vary systematically with the surround disparity. Responses in the V3A ROI, in contrast, were increased by correlation in the surround and varied with its disparity. We modeled these V3A responses as attributable to a gain modulation of the absolute disparity response, where the gain amplitude is proportional to the center–surround disparity difference. An additional experiment identified a nonlinear center–surround interaction in V3A that facilitates the responses when center and surround are misaligned but suppresses it when they share the same disparity plane. PMID:22262881

  15. Synergistic interactions between commonly used food additives in a developmental neurotoxicity test.

    PubMed

    Lau, Karen; McLean, W Graham; Williams, Dominic P; Howard, C Vyvyan

    2006-03-01

    Exposure to non-nutritional food additives during the critical development window has been implicated in the induction and severity of behavioral disorders such as attention deficit hyperactivity disorder (ADHD). Although the use of single food additives at their regulated concentrations is believed to be relatively safe in terms of neuronal development, their combined effects remain unclear. We therefore examined the neurotoxic effects of four common food additives in combinations of two (Brilliant Blue and L-glutamic acid, Quinoline Yellow and aspartame) to assess potential interactions. Mouse NB2a neuroblastoma cells were induced to differentiate and grow neurites in the presence of additives. After 24 h, cells were fixed and stained and neurite length measured by light microscopy with computerized image analysis. Neurotoxicity was measured as an inhibition of neurite outgrowth. Two independent models were used to analyze combination effects: effect additivity and dose additivity. Significant synergy was observed between combinations of Brilliant Blue with L-glutamic acid, and Quinoline Yellow with aspartame, in both models. Involvement of N-methyl-D-aspartate (NMDA) receptors in food additive-induced neurite inhibition was assessed with a NMDA antagonist, CNS-1102. L-glutamic acid- and aspartame-induced neurotoxicity was reduced in the presence of CNS-1102; however, the antagonist did not prevent food color-induced neurotoxicity. Theoretical exposure to additives was calculated based on analysis of content in foodstuff, and estimated percentage absorption from the gut. Inhibition of neurite outgrowth was found at concentrations of additives theoretically achievable in plasma by ingestion of a typical snack and drink. In addition, Trypan Blue dye exclusion was used to evaluate the cellular toxicity of food additives on cell viability of NB2a cells; both combinations had a straightforward additive effect on cytotoxicity. These data have implications for the

  16. Effect and interactions of commercial additives and chloride ion in copper electrowinning

    NASA Astrophysics Data System (ADS)

    Cui, Wenyuan

    This thesis is to understand and compare the effects and interactions of modified polysaccharide (HydroStar), polyacrylamide (Cyquest N-900) and chloride ion on copper electrowinning. A study of the nucleation and growth was conducted in a synthetic electrolyte (40 g/L Cu, 160 g/L H2SO 4, 20 mg/L Cl-) with the addition of HydroStar or Cyquest N-900 using potential step measurements. The current responses generated were compared to theoretical models of nucleation and growth mechanisms. The nucleation and growth mechanism changed as function of potential and the presence of organic additives. The nucleation and growth mechanisms were confirmed using scanning electron microscopy (SEM). At low overpotentials, electrodeposition from the electrolyte without additives proceeded by progressive nucleation with three-dimensional (3-D) growth. The addition of HydroStar produced smaller nuclei and changed the mechanism to progressive nucleation and 2-D growth. Cyquest N-900 used there appeared to be progressive nucleation with 2-D growth and polarize the cathodes. In addition, instantaneous nucleation under diffusion control occurred at high overpotentials. Chloride ion and its interaction with HydroStar and Cyquest N-900 were further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The trends observed from Nyquist plots and equivalent circuit models were consistent with the CV results. Chloride, on its own, depolarized copper electrodeposition, while chloride ion associated with Cyquest N-900 inhibited the reaction. It is proposed that Cl- acted as a bridging ligand between copper and Cyquest N-900. The addition of HydroStar depolarized copper deposition, but it did not interact with.

  17. Predicted weakening of the spin-orbit interaction with the addition of neutrons

    SciTech Connect

    Hemalatha, M.; Gambhir, Y. K.; Haider, W.; Kailas, S.

    2009-05-15

    The fully microscopic p-nucleus optical potential has been calculated in the framework of the first order Brueckner theory employing Urbana V14, soft-core internucleon interaction along with the relativistic mean field densities both for protons and neutrons. It is observed that the volume integral per nucleon, of the real part of the spin-orbit interaction calculated for Zr (A=76-110) and Sn (A=96-136) isotopes, decreases with the increase in neutron number. The present optical model calculation satisfactorily reproduces the experimental (where available) cross sections and analyzing power. Further the magnitude of the first maximum (minimum) in the calculated analyzing power decreases (increases) with the addition of neutrons both for Zr and Sn isotopes reflecting the weakening of the spin-orbit interaction.

  18. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy.

    PubMed Central

    Klingler, J; Friedrich, T

    1997-01-01

    We report on the application of fluorescence correlation spectroscopy (FCS) to observe the interaction between thrombin and thrombin inhibitors. Two site-specific fluorescent labels were used to distinguish between inhibitors directed to the active site, the exosite, or both binding sites of thrombin. For several well-known inhibitors of thrombin, the binding sites observed by FCS correspond to previous studies. The interaction of the recently discovered thrombin inhibitor ornithodorin from the tick Ornithodorus moubata with thrombin was investigated. It was found that this inhibitor, like hirudin and rhodniin, binds to both the active site and exosite of thrombin simultaneously. This study shows the feasibility of FCS as a sensitive and selective method for observing protein-ligand interactions. As an additional technique, simultaneous labeling with both fluorescent labels was successfully demonstrated. Images FIGURE 1 PMID:9336216

  19. Generation of an antibody specific to erythritol, a non-immunogenic food additive.

    PubMed

    Sreenath, K; Prabhasankar, P; Venkatesh, Y P

    2006-09-01

    Erythritol, a simple sugar alcohol, is widely used as a food and drug additive owing to its chemical inertness, sweetness and non-toxicity. Adverse reactions to erythritol are rare and only three cases of allergic reactions to foods containing erythritol have been reported. Being inert, erythritol cannot produce an immunological response. In order to explain the mechanism of immunogenicity of erythritol, a method to obtain erythritol epitopes on a carrier protein, which can serve as an immunogen to develop antibodies against erythritol, is described. D-Erythrose was conjugated to bovine serum albumin at pH 8 by reductive amination. The reduction product of the Schiff base of D-erythrose-bovine serum albumin conjugate creates erythritoyl groups. Rabbits immunized with erythritol-bovine serum albumin conjugate (29 haptens/molecule) showed good antibody response (detection of 1 microg antigen, erythritol-keyhole limpet haemocyanin conjugate possessing 50% modified amino groups, at 1 : 50,000 dilution). Anti-erythritol immunoglobulin-G antibodies were purified from the immune serum using hapten-affinity chromatography on an erythritol-keyhole limpet haemocyanin-Sepharose CL-6B affinity matrix. The yield of erythritol-specific antibody was approximately 40 microg ml-1 of rabbit antiserum. Enzyme-linked immunobsorbant assay inhibition studies using sugars, sugar alcohols and L-lysine showed minimal cross-reactivity (approximately 4%) when compared with erythritol; only dithioerythritol showed a cross-reactivity of approximately 33%. D-Threitol and L-threitol (isomers of erythritol) had cross-reactivities of 15 and 11%, respectively. The inhibition studies confirmed the haptenic nature of erythritol and indicated that the erythritoyl group is a single epitope. The reaction scheme outlined here for the generation of erythritol epitopes appears to provide a basis for the immunogenicity of erythritol.

  20. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities.

  1. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  2. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  3. Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues

    PubMed Central

    Yu, Xueping; Lin, Jimmy; Zack, Donald J.; Qian, Jiang

    2006-01-01

    Tissue-specific gene expression is generally regulated by more than a single transcription factor (TF). Multiple TFs work in concert to achieve tissue specificity. In order to explore these complex TF interaction networks, we performed a large-scale analysis of TF interactions for 30 human tissues. We first identified tissue-specific genes for 30 tissues based on gene expression databases. We then evaluated the relationships between TFs using the relative position and co-occurrence of their binding sites in the promoters of tissue-specific genes. The predicted TF–TF interactions were validated by both known protein–protein interactions and co-expression of their target genes. We found that our predictions are enriched in known protein–protein interactions (>80 times that of random expectation). In addition, we found that the target genes show the highest co-expression in the tissue of interest. Our findings demonstrate that non-tissue specific TFs play a large role in regulation of tissue-specific genes. Furthermore, they show that individual TFs can contribute to tissue specificity in different tissues by interacting with distinct TF partners. Lastly, we identified several tissue-specific TF clusters that may play important roles in tissue-specific gene regulation. PMID:16982645

  4. Inositol Pentakisphosphate Isomers Bind PH Domains with Varying Specificity and Inhibit Phosphoinositide Interactions

    SciTech Connect

    S Jackson; S Al-Saigh; C Schultz; M Junop

    2011-12-31

    PH domains represent one of the most common domains in the human proteome. These domains are recognized as important mediators of protein-phosphoinositide and protein-protein interactions. Phosphoinositides are lipid components of the membrane that function as signaling molecules by targeting proteins to their sites of action. Phosphoinositide based signaling pathways govern a diverse range of important cellular processes including membrane remodeling, differentiation, proliferation and survival. Myo-Inositol phosphates are soluble signaling molecules that are structurally similar to the head groups of phosphoinositides. These molecules have been proposed to function, at least in part, by regulating PH domain-phosphoinositide interactions. Given the structural similarity of inositol phosphates we were interested in examining the specificity of PH domains towards the family of myo-inositol pentakisphosphate isomers. In work reported here we demonstrate that the C-terminal PH domain of pleckstrin possesses the specificity required to discriminate between different myo-inositol pentakisphosphate isomers. The structural basis for this specificity was determined using high-resolution crystal structures. Moreover, we show that while the PH domain of Grp1 does not possess this high degree of specificity, the PH domain of protein kinase B does. These results demonstrate that some PH domains possess enough specificity to discriminate between myo-inositol pentakisphosphate isomers allowing for these molecules to differentially regulate interactions with phosphoinositides. Furthermore, this work contributes to the growing body of evidence supporting myo-inositol phosphates as regulators of important PH domain-phosphoinositide interactions. Finally, in addition to expanding our knowledge of cellular signaling, these results provide a basis for developing tools to probe biological pathway.

  5. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification?

    PubMed

    Paul, Anna-Lisa; Denison, Fiona C; Schultz, Eric R; Zupanska, Agata K; Ferl, Robert J

    2012-01-01

    The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question - does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis. PMID:22934100

  6. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium–organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  7. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions.

    PubMed

    Lee, KyungA; Silverio, Daniel L; Torker, Sebastian; Robbins, Daniel W; Haeffner, Fredrik; van der Mei, Farid W; Hoveyda, Amir H

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  8. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions.

    PubMed

    Lee, KyungA; Silverio, Daniel L; Torker, Sebastian; Robbins, Daniel W; Haeffner, Fredrik; van der Mei, Farid W; Hoveyda, Amir H

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities. PMID:27442282

  9. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  10. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  11. 77 FR 58499 - Substitution of Term in a Definition; Addition and Adoption of the Use of Specific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... 51-1 continues to read as follows: Authority: 56 FR 48976, Sept. 26, 1991, unless otherwise noted. 0...; Addition and Adoption of the Use of Specific Interchangeable or Synonymous Terms AGENCY: Committee...

  12. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  13. Fungal serotype-specific differences in bacterial-yeast interactions

    PubMed Central

    Abdulkareem, Asan F; Lee, Hiu Ham; Ahmadi, Mohammed; Martinez, Luis R

    2015-01-01

    Cryptococcus neoformans (Cn) causes meningoencephalitis in immunocompromised individuals. This encapsulated fungus can be found interacting with environmental microbes in soil contaminated with pigeon excrement. Cn survival within polymicrobial and other challenging communities has been shown to affect the evolution of its virulence factors. We compared the survival of 10 serotype A and D strains after interaction with the soil bacterium, Acinetobacter baumannii (Ab). Although co-incubation with Ab stimulated virulence factors production by strains of both cryptococcal serotypes, on average, serotype A strains displayed significantly higher survival rate, number of metabolically active cells within biofilms, and capsular polysaccharide production and release than serotype D strains. Our findings suggest that interactions of Cn with other microorganisms influence the fungus' regulation and production of virulence factors, important elements needed for the successful colonization of the human host. PMID:26132337

  14. Protein assemblies by site-specific avidin-biotin interactions.

    PubMed

    Mori, Yutaro; Minamihata, Kosuke; Abe, Hiroki; Goto, Masahiro; Kamiya, Noriho

    2011-08-21

    Exploiting self-assembly systems with biological building blocks is of significant interest in the fabrication of advanced biomaterials. We assessed the potential use of site-specific ligand labeling of protein building blocks in designing functional protein self-assemblies by combining site-specifically biotinylated bacterial alkaline phosphatase (as a bidentate or tetradentate ligand unit) and streptavidin (as a tetrameric receptor). PMID:21731938

  15. 49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temperature of 55 °C (131 °F) that is greater than permitted. (d) Cylinder pressure at 55 °C (131 °F). The... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For... marked or designated, except as provided in § 173.302a(b). For certain liquefied gases, the pressure...

  16. 49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature of 55 °C (131 °F) that is greater than permitted. (d) Cylinder pressure at 55 °C (131 °F). The... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For... marked or designated, except as provided in § 173.302a(b). For certain liquefied gases, the pressure...

  17. Filamin 2 (FLN2): A muscle-specific sarcoglycan interacting protein.

    PubMed

    Thompson, T G; Chan, Y M; Hack, A A; Brosius, M; Rajala, M; Lidov, H G; McNally, E M; Watkins, S; Kunkel, L M

    2000-01-10

    Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin-glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin-glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a gamma- and delta-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy.

  18. Identification of tissue-specific cis-regulatory modules based on interactions between transcription factors

    PubMed Central

    Yu, Xueping; Lin, Jimmy; Zack, Donald J; Qian, Jiang

    2007-01-01

    Background Evolutionary conservation has been used successfully to help identify cis-acting DNA regions that are important in regulating tissue-specific gene expression. Motivated by increasing evidence that some DNA regulatory regions are not evolutionary conserved, we have developed an approach for cis-regulatory region identification that does not rely upon evolutionary sequence conservation. Results The conservation-independent approach is based on an empirical potential energy between interacting transcription factors (TFs). In this analysis, the potential energy is defined as a function of the number of TF interactions in a genomic region and the strength of the interactions. By identifying sets of interacting TFs, the analysis locates regions enriched with the binding sites of these interacting TFs. We applied this approach to 30 human tissues and identified 6232 putative cis-regulatory modules (CRMs) regulating 2130 tissue-specific genes. Interestingly, some genes appear to be regulated by different CRMs in different tissues. Known regulatory regions are highly enriched in our predicted CRMs. In addition, DNase I hypersensitive sites, which tend to be associated with active regulatory regions, significantly overlap with the predicted CRMs, but not with more conserved regions. We also find that conserved and non-conserved CRMs regulate distinct gene groups. Conserved CRMs control more essential genes and genes involved in fundamental cellular activities such as transcription. In contrast, non-conserved CRMs, in general, regulate more non-essential genes, such as genes related to neural activity. Conclusion These results demonstrate that identifying relevant sets of binding motifs can help in the mapping of DNA regulatory regions, and suggest that non-conserved CRMs play an important role in gene regulation. PMID:17996093

  19. Gaze and Feet as Additional Input Modalities for Interacting with Geospatial Interfaces

    NASA Astrophysics Data System (ADS)

    Çöltekin, A.; Hempel, J.; Brychtova, A.; Giannopoulos, I.; Stellmach, S.; Dachselt, R.

    2016-06-01

    Geographic Information Systems (GIS) are complex software environments and we often work with multiple tasks and multiple displays when we work with GIS. However, user input is still limited to mouse and keyboard in most workplace settings. In this project, we demonstrate how the use of gaze and feet as additional input modalities can overcome time-consuming and annoying mode switches between frequently performed tasks. In an iterative design process, we developed gaze- and foot-based methods for zooming and panning of map visualizations. We first collected appropriate gestures in a preliminary user study with a small group of experts, and designed two interaction concepts based on their input. After the implementation, we evaluated the two concepts comparatively in another user study to identify strengths and shortcomings in both. We found that continuous foot input combined with implicit gaze input is promising for supportive tasks.

  20. Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; He, Zhi; Yao, Chun-Mei

    2015-04-01

    We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. Supported by the National Natural Science Foundation of China under Grant Nos. 61475045 and 11347142, the Natural Science Foundation of Hunan Province, China under Grant No. 2015JJ3092

  1. Stringent test for non-additive, non-interacting, kinetic energy functionals

    NASA Astrophysics Data System (ADS)

    Jiang, Kaili; Nafziger, Jonathan; Wasserman, Adam

    Partition Density Functional Theory (PDFT) provides an ideal framework for testing and developing new approximations to the non-additive and non-interacting kinetic energy functional (Tsnadd [ {nα } ]), understood as a functional of the set of fragment ground-state densities. We present our progress on both of these fronts: (1) Systematic comparison of the performance of various existing approximations to Tsnadd [ {nα } ] ; and (2) Development of new approximations. We find that a re-parametrization of the GGA enhancement factor employed for the construction of Tsnadd [ {nα } ] through the conjointness conjecture captures essential features of the functional derivatives of Tsnadd [ {nα } ] . A physically-motivated two-orbital approximation for Tsnadd [ {nα } ] is shown to outperform most other approximations for the case of He2, and an intriguing one-parameter formula makes this approximation accurate for all noble-gas diatomics.

  2. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  3. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    PubMed

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability.

  4. Species- and cell type-specific interactions between CD47 and human SIRPα

    PubMed Central

    Subramanian, Shyamsundar; Parthasarathy, Ranganath; Sen, Shamik; Boder, Eric T.; Discher, Dennis E.

    2006-01-01

    CD47 on red blood cells (RBCs) reportedly signals “self” by binding SIRPα on phagocytes, at least in mice. Such interactions across and within species, from mouse to human, are not yet clear and neither is the relation to cell adhesion. Using human SIRPα1 as a probe, antibody-inhibitable binding to CD47 was found only with human and pig RBCs (not mouse, rat, or cow). In addition, CD47-mediated adhesion of human and pig RBCs to SIRPα1 surfaces resists sustained forces in centrifugation (as confirmed by atomic force microscopy) but only at SIRPα-coating densities far above those measurable on human neutrophils, monocytes, and THP-1 macrophages. While interactions strengthen with deglycosylation of SIRPα1, low copy numbers explain the absence of RBC adhesion to phagocytes under physiologic conditions and imply that the interaction being studied is not responsible for red cell clearance in humans. Evidence of clustering nonetheless suggests mechanisms of avidity enhancement. Finally, using the same CD47 antibodies and soluble SIRPα1, bone marrow-derived mesenchymal stem cells were assayed and found to display CD47 but not bind SIRPα1 significantly. The results thus demonstrate that SIRPα-CD47 interactions, which reportedly define self, exhibit cell type specificity and limited cross-species reactivity. (Blood. 2006;107:2548-2556) PMID:16291597

  5. Species- and cell type-specific interactions between CD47 and human SIRPalpha.

    PubMed

    Subramanian, Shyamsundar; Parthasarathy, Ranganath; Sen, Shamik; Boder, Eric T; Discher, Dennis E

    2006-03-15

    CD47 on red blood cells (RBCs) reportedly signals "self" by binding SIRPalpha on phagocytes, at least in mice. Such interactions across and within species, from mouse to human, are not yet clear and neither is the relation to cell adhesion. Using human SIRPalpha1 as a probe, antibody-inhibitable binding to CD47 was found only with human and pig RBCs (not mouse, rat, or cow). In addition, CD47-mediated adhesion of human and pig RBCs to SIRPalpha1 surfaces resists sustained forces in centrifugation (as confirmed by atomic force microscopy) but only at SIRPalpha-coating densities far above those measurable on human neutrophils, monocytes, and THP-1 macrophages. While interactions strengthen with deglycosylation of SIRPalpha1, low copy numbers explain the absence of RBC adhesion to phagocytes under physiologic conditions and imply that the interaction being studied is not responsible for red cell clearance in humans. Evidence of clustering nonetheless suggests mechanisms of avidity enhancement. Finally, using the same CD47 antibodies and soluble SIRPalpha1, bone marrow-derived mesenchymal stem cells were assayed and found to display CD47 but not bind SIRPalpha1 significantly. The results thus demonstrate that SIRPalpha-CD47 interactions, which reportedly define self, exhibit cell type specificity and limited cross-species reactivity.

  6. Model-specific tests on variance heterogeneity for detection of potentially interacting genetic loci

    PubMed Central

    2012-01-01

    Background Trait variances among genotype groups at a locus are expected to differ in the presence of an interaction between this locus and another locus or environment. A simple maximum test on variance heterogeneity can thus be used to identify potentially interacting single nucleotide polymorphisms (SNPs). Results We propose a multiple contrast test for variance heterogeneity that compares the mean of Levene residuals for each genotype group with their average as an alternative to a global Levene test. We applied this test to a Bogalusa Heart Study dataset to screen for potentially interacting SNPs across the whole genome that influence a number of quantitative traits. A user-friendly implementation of this method is available in the R statistical software package multcomp. Conclusions We show that the proposed multiple contrast test of model-specific variance heterogeneity can be used to test for potential interactions between SNPs and unknown alleles, loci or covariates and provide valuable additional information compared with traditional tests. Although the test is statistically valid for severely unbalanced designs, care is needed in interpreting the results at loci with low allele frequencies. PMID:22808950

  7. Additive Genetic Risk from Five Serotonin System Polymorphisms Interacts with Interpersonal Stress to Predict Depression

    PubMed Central

    Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Zinbarg, Richard E.; Adam, Emma K.; Redei, Eva E.; Hammen, Constance; Craske, Michelle G.

    2016-01-01

    Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (GxE). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a GxE predicting depression, we created an additive multilocus profile score from five serotonin system polymorphisms (one each in the genes HTR1A, HTR2A, HTR2C, and two in TPH2). Analyses focused on two forms of interpersonal stress as environmental risk factors. Using five years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (HR = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The GxE effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the GxE effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. PMID:26595467

  8. Dicopper double-strand helicates held together by additional π-π interactions.

    PubMed

    Boiocchi, Massimo; Brega, Valentina; Ciarrocchi, Carlo; Fabbrizzi, Luigi; Pallavicini, Piersandro

    2013-09-16

    The bis-bidentate ligand, obtained from Schiff base condensation of RR-1,2-cyclohexanediamine and 8-naphthylmethoxyquinoline-2-carbaldehyde (L-L), forms with [Cu(I)(MeCN)4]ClO4 a double strand helicate complex, made especially stable by the presence of four definite interstrand π-π interactions involving a quinoline subunit and a naphthylmethoxy substituent of the two strands. The [Cu(I)2(L-L)2](2+) complex, which does not decompose even on excess addition of either L-L or Cu(I), undergoes a two electron oxidation in MeCN, through two one-electron fully reversible steps, separated by 260 mV, as shown by cyclic voltammetry (CV) studies. The high stability of the mixed valence complex [Cu(I)Cu(II)(L-L)2](3+) with respect to disproportionation to [Cu(I)2(L-L)2](2+) and [Cu(II)2(L-L)2](4+) is essentially due to a favorable electrostatic term. Cu(II) forms with L-L a stable species, with a 1:1 stoichiometric ratio, but, in the absence of crystallographic data, it was impossible to assess whether it is of mono- or dinuclear nature. However, CV studies on an MeCN solution containing equimolar amounts of Cu(II) and L-L showed the presence in the reduction scan of two fully reversible waves, separated by about 250 mV, which indicated the presence in solution of a dicopper(II) double strand helicate complex, [Cu(II)2(L-L)2](4+). This work demonstrates that additional interstrand π-π interactions can favor the formation of unusually stable dicopper(I) and dicopper(II) helicate complexes. PMID:24003965

  9. Non-additive increases in sediment stability are generated by macroinvertebrate species interactions in laboratory streams.

    PubMed

    Albertson, Lindsey K; Cardinale, Bradley J; Sklar, Leonard S

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  10. Non-Additive Increases in Sediment Stability Are Generated by Macroinvertebrate Species Interactions in Laboratory Streams

    PubMed Central

    Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  11. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye.

    PubMed

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza

    2016-06-01

    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer.

  12. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye.

    PubMed

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza

    2016-06-01

    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer. PMID:27152751

  13. Effect of Operating Parameters and Chemical Additives on Crystal Habit and Specific Cake Resistance of Zinc Hydroxide Precipitates

    SciTech Connect

    Alwin, Jennifer Louise

    1999-08-01

    The effect of process parameters and chemical additives on the specific cake resistance of zinc hydroxide precipitates was investigated. The ability of a slurry to be filtered is dependent upon the particle habit of the solid and the particle habit is influenced by certain process variables. The process variables studied include neutralization temperature, agitation type, and alkalinity source used for neutralization. Several commercially available chemical additives advertised to aid in solid/liquid separation were also examined in conjunction with hydroxide precipitation. A statistical analysis revealed that the neutralization temperature and the source of alkalinity were statistically significant in influencing the specific cake resistance of zinc hydroxide precipitates in this study. The type of agitation did not significantly effect the specific cake resistance of zinc hydroxide precipitates. The use of chemical additives in conjunction with hydroxide precipitation had a favorable effect on the filterability. The morphology of the hydroxide precipitates was analyzed using scanning electron microscopy.

  14. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    SciTech Connect

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  15. Investigating organic multilayers by spectroscopic ellipsometry: specific and non-specific interactions of polyhistidine with NTA self-assembled monolayers

    PubMed Central

    Solano, Ilaria; Parisse, Pietro; Gramazio, Federico; Casalis, Loredana; Canepa, Maurizio

    2016-01-01

    Summary Background: A versatile strategy for protein–surface coupling in biochips exploits the affinity for polyhistidine of the nitrilotriacetic acid (NTA) group loaded with Ni(II). Methods based on optical reflectivity measurements such as spectroscopic ellipsometry (SE) allow for label-free, non-invasive monitoring of molecule adsorption/desorption at surfaces. Results: This paper describes a SE study about the interaction of hexahistidine (His6) on gold substrates functionalized with a thiolate self-assembled monolayer bearing the NTA end group. By systematically applying the difference spectra method, which emphasizes the small changes of the ellipsometry spectral response upon the nanoscale thickening/thinning of the molecular film, we characterized different steps of the process such as the NTA-functionalization of Au, the adsorption of the His6 layer and its eventual displacement after reaction with competitive ligands. The films were investigated in liquid, and ex situ in ambient air. The SE investigation has been complemented by AFM measurements based on nanolithography methods (nanografting mode). Conclusion: Our approach to the SE data, exploiting the full spectroscopic potential of the method and basic optical models, was able to provide a picture of the variation of the film thickness along the process. The combination of δΔi +1 ,i(λ), δΨi +1 ,i(λ) (layer-addition mode) and δΔ† i ', i +1(λ), δΨ† i ', i +1(λ) (layer-removal mode) difference spectra allowed us to clearly disentangle the adsorption of His6 on the Ni-free NTA layer, due to non specific interactions, from the formation of a neatly thicker His6 film induced by the Ni(II)-loading of the NTA SAM. PMID:27335745

  16. A method for interactive specification of multiple-block topologies

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.; Mccann, Karen M.

    1991-01-01

    A method is presented for dealing with the vast amount of topological and other data which must be specified to generate a multiple-block computational grid. Specific uses of the graphical capabilities of a powerful scientific workstation are described which reduce the burden on the user of collecting and formatting such large amounts of data. A program to implement this method, 3DPREP, is described. A plotting transformation algorithm, some useful software tools, notes on programming, and a database organization are also presented. Example grids developed using the method are shown.

  17. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2015-01-01

    Better predictive ability of salt and buffer effects on protein-protein interactions requires separating out contributions due to ionic screening, protein charge neutralization by ion binding, and salting-in(out) behavior. We have carried out a systematic study by measuring protein-protein interactions for a monoclonal antibody over an ionic strength range of 25 to 525 mM at 4 pH values (5, 6.5, 8, and 9) in solutions containing sodium chloride, calcium chloride, sodium sulfate, or sodium thiocyante. The salt ions are chosen so as to represent a range of affinities for protein charged and noncharged groups. The results are compared to effects of various buffers including acetate, citrate, phosphate, histidine, succinate, or tris. In low ionic strength solutions, anion binding affinity is reflected by the ability to reduce protein-protein repulsion, which follows the order thiocyanate > sulfate > chloride. The sulfate specific effect is screened at the same ionic strength required to screen the pH dependence of protein-protein interactions indicating sulfate binding only neutralizes protein charged groups. Thiocyanate specific effects occur over a larger ionic strength range reflecting adsorption to charged and noncharged regions of the protein. The latter leads to salting-in behavior and, at low pH, a nonmonotonic interaction profile with respect to sodium thiocyanate concentration. The effects of thiocyanate can not be rationalized in terms of only neutralizing double layer forces indicating the presence of an additional short-ranged protein-protein attraction at moderate ionic strength. Conversely, buffer specific effects can be explained through a charge neutralization mechanism, where buffers with greater valency are more effective at reducing double layer forces at low pH. Citrate binding at pH 6.5 leads to protein charge inversion and the formation of attractive electrostatic interactions. Throughout the report, we highlight similarities in the measured

  18. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2015-01-01

    Better predictive ability of salt and buffer effects on protein-protein interactions requires separating out contributions due to ionic screening, protein charge neutralization by ion binding, and salting-in(out) behavior. We have carried out a systematic study by measuring protein-protein interactions for a monoclonal antibody over an ionic strength range of 25 to 525 mM at 4 pH values (5, 6.5, 8, and 9) in solutions containing sodium chloride, calcium chloride, sodium sulfate, or sodium thiocyante. The salt ions are chosen so as to represent a range of affinities for protein charged and noncharged groups. The results are compared to effects of various buffers including acetate, citrate, phosphate, histidine, succinate, or tris. In low ionic strength solutions, anion binding affinity is reflected by the ability to reduce protein-protein repulsion, which follows the order thiocyanate > sulfate > chloride. The sulfate specific effect is screened at the same ionic strength required to screen the pH dependence of protein-protein interactions indicating sulfate binding only neutralizes protein charged groups. Thiocyanate specific effects occur over a larger ionic strength range reflecting adsorption to charged and noncharged regions of the protein. The latter leads to salting-in behavior and, at low pH, a nonmonotonic interaction profile with respect to sodium thiocyanate concentration. The effects of thiocyanate can not be rationalized in terms of only neutralizing double layer forces indicating the presence of an additional short-ranged protein-protein attraction at moderate ionic strength. Conversely, buffer specific effects can be explained through a charge neutralization mechanism, where buffers with greater valency are more effective at reducing double layer forces at low pH. Citrate binding at pH 6.5 leads to protein charge inversion and the formation of attractive electrostatic interactions. Throughout the report, we highlight similarities in the measured

  19. Human-display interactions: Context-specific biases

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Proffitt, Dennis R.

    1987-01-01

    Recent developments in computer engineering have greatly enhanced the capabilities of display technology. As displays are no longer limited to simple alphanumeric output, they can present a wide variety of graphic information, using either static or dynamic presentation modes. At the same time that interface designers exploit the increased capabilities of these displays, they must be aware of the inherent limitation of these displays. Generally, these limitations can be divided into those that reflect limitations of the medium (e.g., reducing three-dimensional representations onto a two-dimensional projection) and those reflecting the perceptual and conceptual biases of the operator. The advantages and limitations of static and dynamic graphic displays are considered. Rather than enter into the discussion of whether dynamic or static displays are superior, general advantages and limitations are explored which are contextually specific to each type of display.

  20. Sequence specificity in aflatoxin B1--DNA interactions.

    PubMed Central

    Muench, K F; Misra, R P; Humayun, M Z

    1983-01-01

    The activated form of aflatoxin B1 (AFB1) causes covalent modification primarily of guanine residues, leading to alkali-labile sites in DNA. A simple extension of the Maxam-Gilbert procedure for sequence analysis permits the identification of alkali-labile sites induced by AFB1 and determination of the frequency of alkali-labile AFB1 modifications at particular sites on a DNA fragment of known sequence. Using this strategy, we have investigated the influence of flanking nucleotide sequences on AFB1 modification in a number of DNA fragments of known sequence. Our results show that certain guanine residues in double-stranded DNA are preferentially attacked by AFB1 over others in a manner predictable from a knowledge of vicinal nucleotide sequences. The observed in vitro sequence specificity is independent of a number of tested parameters and is likely to occur in vivo. Images PMID:6218504

  1. MR-05GLIOMA STEM CELL SPECIFIC microRNA-mRNA INTERACTION NETWORK

    PubMed Central

    Singh, Sanjay; Burrell, Kelly; Alamsahebpour, Amir; Koch, Elizabeth; Agnihotri, Sameer; Gumin, Joy; Sulman, Erik; Lang, Frederick; Wouters, Bradley; Aldape, Kenneth; Zadeh, Gelareh

    2014-01-01

    microRNAs have been shown to have oncogenic or tumor suppressor function in glioblastoma (GBM). It has been postulated that there exists an extensive microRNA-mediated RNA-RNA interaction network in GBMs utilizing systems biology approach supporting a competitive endogenous RNA (ce-RNA). MicroRNAs have functional relevance in the regulation of critical genes and pathways implicated in the maintenance of glioma stem cell (GSC) properties. To address this, we have applied biochemical methods to establish direct miRNA-mRNA interaction network relevant and specific to GSCs. To avoid inclusion of the inherent bias of miRNA-target prediction algorithms, we have generated an unbiased global miRNA mediated RNA-RNA interactome by performing RNA-sequencing all RNA species (small and large RNAs) isolated from AGO2-microRNA-induced silencing complex (miRISC) of GSCs and normal human neural stem cells (hNSCs). Additionally, we have also established this interactome after exposure of GSCs and normal hNSCs to hypoxia, a key tumor micro-environmental factor that is known to be pivotal in generating GBM heterogeneity. In all, three independent GSC lines and one NSC line were profiled, and results compared with each other. miRNA-mRNA interaction nodes were determined by RNA read counts from RNA-seq data and combinations of miRNA target prediction softwares. The rank order list of miRNA-mRNA interaction nodes generated from RNA sequence reads reveals that enrichment of specific RNAs in functional AGO2-miRISC is not a direct function of their relative abundance in cells, thus this biochemically generated interactome is distinct from that generated by bioinformatics tools. Our data shows that MYC as one of the key networks targetted by microRNAs specifically in GSCs under hypoxic conditions. We demonstrate that scope and influence of GSC specific miRNA-mRNA network and specific nodes of this interactome varies with hypoxia and tumor region in GBMs

  2. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco–Pseudomonas syringae Interactions

    PubMed Central

    Bozsó, Zoltán; Ott, Péter G.; Kámán-Tóth, Evelin; Bognár, Gábor F.; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco–Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca2+ influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were

  3. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein

    PubMed Central

    Minervini, Giovanni; Mazzotta, Gabriella M.; Masiero, Alessandro; Sartori, Elena; Corrà, Samantha; Potenza, Emilio; Costa, Rodolfo; Tosatto, Silvio C. E.

    2015-01-01

    Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation through complex formation with the p14ARF oncosuppressor. The alternatively spliced pVHL19, missing the first 53 residues, lacks this interaction and suggests an asymmetric function of the two pVHL isoforms. Here, we present an integrative bioinformatics and experimental characterization of the pVHL oncosuppressor isoforms. Predictions of the pVHL30 N-terminus three-dimensional structure suggest that it may exist as an ensemble of structured and disordered forms. The results were used to guide Yeast two hybrid experiments to highlight isoform-specific binding properties. We observed that the physical pVHL/p14ARF interaction is specifically mediated by the 53 residue long pVHL30 N-terminal region, suggesting that this N-terminus acts as a further pVHL interaction interface. Of note, we also observed that the shorter pVHL19 isoform shows an unexpected high tendency to form homodimers, suggesting an additional isoform-specific binding specialization. PMID:26211615

  4. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions.

    PubMed

    Bozsó, Zoltán; Ott, Péter G; Kámán-Tóth, Evelin; Bognár, Gábor F; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were

  5. A predictive modeling approach for cell line-specific long-range regulatory interactions

    PubMed Central

    Roy, Sushmita; Siahpirani, Alireza Fotuhi; Chasman, Deborah; Knaack, Sara; Ay, Ferhat; Stewart, Ron; Wilson, Michael; Sridharan, Rupa

    2015-01-01

    Long range regulatory interactions among distal enhancers and target genes are important for tissue-specific gene expression. Genome-scale identification of these interactions in a cell line-specific manner, especially using the fewest possible datasets, is a significant challenge. We develop a novel computational approach, Regulatory Interaction Prediction for Promoters and Long-range Enhancers (RIPPLE), that integrates published Chromosome Conformation Capture (3C) data sets with a minimal set of regulatory genomic data sets to predict enhancer-promoter interactions in a cell line-specific manner. Our results suggest that CTCF, RAD21, a general transcription factor (TBP) and activating chromatin marks are important determinants of enhancer-promoter interactions. To predict interactions in a new cell line and to generate genome-wide interaction maps, we develop an ensemble version of RIPPLE and apply it to generate interactions in five human cell lines. Computational validation of these predictions using existing ChIA-PET and Hi-C data sets showed that RIPPLE accurately predicts interactions among enhancers and promoters. Enhancer-promoter interactions tend to be organized into subnetworks representing coordinately regulated sets of genes that are enriched for specific biological processes and cis-regulatory elements. Overall, our work provides a systematic approach to predict and interpret enhancer-promoter interactions in a genome-wide cell-type specific manner using a few experimentally tractable measurements. PMID:26338778

  6. Origins of specificity and affinity in antibody–protein interactions

    PubMed Central

    Peng, Hung-Pin; Lee, Kuo Hao; Jian, Jhih-Wei; Yang, An-Suei

    2014-01-01

    Natural antibodies are frequently elicited to recognize diverse protein surfaces, where the sequence features of the epitopes are frequently indistinguishable from those of nonepitope protein surfaces. It is not clearly understood how the paratopes are able to recognize sequence-wise featureless epitopes and how a natural antibody repertoire with limited variants can recognize seemingly unlimited protein antigens foreign to the host immune system. In this work, computational methods were used to predict the functional paratopes with the 3D antibody variable domain structure as input. The predicted functional paratopes were reasonably validated by the hot spot residues known from experimental alanine scanning measurements. The functional paratope (hot spot) predictions on a set of 111 antibody–antigen complex structures indicate that aromatic, mostly tyrosyl, side chains constitute the major part of the predicted functional paratopes, with short-chain hydrophilic residues forming the minor portion of the predicted functional paratopes. These aromatic side chains interact mostly with the epitope main chain atoms and side-chain carbons. The functional paratopes are surrounded by favorable polar atomistic contacts in the structural paratope–epitope interfaces; more that 80% these polar contacts are electrostatically favorable and about 40% of these polar contacts form direct hydrogen bonds across the interfaces. These results indicate that a limited repertoire of antibodies bearing paratopes with diverse structural contours enriched with aromatic side chains among short-chain hydrophilic residues can recognize all sorts of protein surfaces, because the determinants for antibody recognition are common physicochemical features ubiquitously distributed over all protein surfaces. PMID:24938786

  7. Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability

    NASA Astrophysics Data System (ADS)

    Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.

    2016-08-01

    Specific DNA-protein interactions are fundamental processes of living cells. We propose a new model of DNA-protein interactions to explain the site specificity of the interactions. The hydrogen bonds between DNA base pairs and between DNA-protein peptide groups play a significant role in determination of the specific binding site. We adopt the Morse potential with coupling terms to construct the Hamiltonian of coupled oscillators representing the hydrogen bonds in which the depth of the potentials vary in the DNA chain. In this paper we investigate the stability of the model to determine the conditions satisfying the biological circumstances of the DNA-protein interactions.

  8. Investigation of effect of particle size and rumen fluid addition on specific methane yields of high lignocellulose grass silage.

    PubMed

    Wall, D M; Straccialini, B; Allen, E; Nolan, P; Herrmann, C; O'Kiely, P; Murphy, J D

    2015-09-01

    This work examines the digestion of advanced growth stage grass silage. Two variables were investigated: particle size (greater than 3 cm and less than 1cm) and rumen fluid addition. Batch studies indicated particle size and rumen fluid addition had little effect on specific methane yields (SMYs). In continuous digestion of 3 cm silage the SMY was 342 and 343 L CH4 kg(-1)VS, respectively, with and without rumen fluid addition. However, digester operation was significantly affected through silage floating on the liquor surface and its entanglement in the mixing system. Digestion of 1cm silage with no rumen fluid addition struggled; volatile fatty acid concentrations rose and SMYs dropped. The best case was 1cm silage with rumen fluid addition, offering higher SMYs of 371 L CH4 kg(-1)VS and stable operation throughout. Thus, physical and biological treatments benefited continuous digestion of high fibre grass silage.

  9. Interactions between cocoa flavanols and inorganic nitrate: additive effects on endothelial function at achievable dietary amounts.

    PubMed

    Rodriguez-Mateos, Ana; Hezel, Michael; Aydin, Hilal; Kelm, Malte; Lundberg, Jon O; Weitzberg, Eddie; Spencer, Jeremy P E; Heiss, Christian

    2015-03-01

    Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial

  10. Interacting domain-specific languages with biological problem solving environments

    NASA Astrophysics Data System (ADS)

    Cickovski, Trevor M.

    Iteratively developing a biological model and verifying results with lab observations has become standard practice in computational biology. This process is currently facilitated by biological Problem Solving Environments (PSEs), multi-tiered and modular software frameworks which traditionally consist of two layers: a computational layer written in a high level language using design patterns, and a user interface layer which hides its details. Although PSEs have proven effective, they still enforce some communication overhead between biologists refining their models through repeated comparison with experimental observations in vitro or in vivo, and programmers actually implementing model extensions and modifications within the computational layer. I illustrate the use of biological Domain-Specific Languages (DSLs) as a middle-level PSE tier to ameliorate this problem by providing experimentalists with the ability to iteratively test and develop their models using a higher degree of expressive power compared to a graphical interface, while saving the requirement of general purpose programming knowledge. I develop two radically different biological DSLs: XML-based BIOLOGO will model biological morphogenesis using a cell-centered stochastic cellular automaton and translate into C++ modules for an object-oriented PSE C OMPUCELL3D, and MDLab will provide a set of high-level Python libraries for running molecular dynamics simulations, using wrapped functionality from the C++ PSE PROTOMOL. I describe each language in detail, including its its roles within the larger PSE and its expressibility in terms of representable phenomena, and a discussion of observations from users of the languages. Moreover I will use these studies to draw general conclusions about biological DSL development, including dependencies upon the goals of the corresponding PSE, strategies, and tradeoffs.

  11. Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins

    PubMed Central

    Thomae, Andreas W.; Pich, Dagmar; Brocher, Jan; Spindler, Mark-Peter; Berens, Christian; Hock, Robert; Hammerschmidt, Wolfgang; Schepers, Aloys

    2008-01-01

    In all eukaryotic cells, origins of DNA replication are characterized by the binding of the origin recognition complex (ORC). How ORC is positioned to sites where replication initiates is unknown, because metazoan ORC binds DNA without apparent sequence specificity. Thus, additional factors might be involved in ORC positioning. Our experiments indicate that a family member of the high-mobility group proteins, HMGA1a, can specifically target ORC to DNA. Coimmunoprecipitations and imaging studies demonstrate that HMGA1a interacts with different ORC subunits in vitro and in vivo. This interaction occurs mainly in AT-rich heterochromatic regions to which HMGA1a localizes. Fusion proteins of HMGA1a and the DNA-binding domain of the viral factor EBNA1 or the prokaryotic tetracycline repressor, TetR, can recruit ORC to cognate operator sites forming functional origins of DNA replication. When HMGA1a is targeted to plasmid DNA, the prereplicative complex is assembled during G1 and the amount of ORC correlates with the local concentration of HMGA1a. Nascent-strand abundance assays demonstrate that DNA replication initiates at or near HMGA1a-rich sites. Our experiments indicate that chromatin proteins can target ORC to DNA, suggesting they might specify origins of DNA replication in metazoan cells. PMID:18234858

  12. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  13. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Chandra, Amreesh

    2016-05-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs.

  14. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes.

    PubMed

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  15. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  16. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-01

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2‧,3‧-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2‧,3‧-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 105 M-1, which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.

  17. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin.

    PubMed

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-25

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2',3'-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 10(5) M(-1), which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics. PMID:25306128

  18. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin.

    PubMed

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-25

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2',3'-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 10(5) M(-1), which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.

  19. Preliminary Assessment of Various Additives on the Specific Reactivity of Anti- rHBsAg Monoclonal Antibodies

    PubMed Central

    Yazdani, Yaghoub; Mohammadi, Saeed; Yousefi, Mehdi; Shokri, Fazel

    2015-01-01

    Background: Antibodies have a wide application in diagnosis and treatment. In order to maintain optimal stability of various functional parts of antibodies such as antigen binding sites, several approaches have been suggested. Using additives such as polysaccharides and polyols is one of the main methods in protecting antibodies against aggregation or degradation in the formulation. The aim of this study was to evaluate the protective effect of various additives on the specific reactivity of monoclonal antibodies (mAbs) against recombinant HBsAg (rHBsAg) epitopes. Methods: To estimate the protective effect of different additives on the stability of antibody against conformational epitopes (S3 antibody) and linear epitopes (S7 and S11 antibodies) of rHBsAg, heat shock at 37°C was performed in liquid and solid phases. Environmental factors were considered to be constant. The specific reactivity of antibodies was evaluated using ELISA method. The data were analyzed using SPSS software by Mann-Whitney nonparametric test with the confidence interval of 95%. Results: Our results showed that 0.25 M sucrose, 0.04 M trehalose and 0.5% BSA had the most protective effect on maintaining the reactivity of mAbs (S3) against conformational epitopes of rHBsAg. Results obtained from S7 and S11 mAbs against linear characteristics showed minor differences. The most efficient protective additives were 0.04 M trehalose and 1 M sucrose. Conclusion: Nowadays, application of appropriate additives is important for increasing the stability of antibodies. It was concluded that sucrose, trehalose and BSA have considerable effects on the specific reactivity of anti rHBsAg mAbs during long storage. PMID:26605008

  20. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta.

    PubMed

    Cheng, Yu-Qin; Liu, Zhong-Mei; Xu, Jian; Zhou, Tao; Wang, Meng; Chen, Yu-Ting; Li, Huai-Fang; Fan, Zai-Feng

    2008-08-01

    Symptom development of a plant viral disease is a result of molecular interactions between the virus and its host plant; thus, the elucidation of specific interactions is a prerequisite to reveal the mechanism of viral pathogenesis. Here, we show that the chloroplast precursor of ferredoxin-5 (Fd V) from maize (Zea mays) interacts with the multifunctional HC-Pro protein of sugar cane mosaic virus (SCMV) in yeast, Nicotiana benthamiana cells and maize protoplasts. Our results demonstrate that the transit peptide rather than the mature protein of Fd V precursor could interact with both N-terminal (residues 1-100) and C-terminal (residues 301-460) fragments, but not the middle part (residues 101-300), of HC-Pro. In addition, SCMV HC-Pro interacted only with Fd V, and not with the other two photosynthetic ferredoxin isoproteins (Fd I and Fd II) from maize plants. SCMV infection significantly downregulated the level of Fd V mRNA in maize plants; however, no obvious changes were observed in levels of Fd I and Fd II mRNA. These results suggest that SCMV HC-Pro interacts specifically with maize Fd V and that this interaction may disturb the post-translational import of Fd V into maize bundle-sheath cell chloroplasts, which could lead to the perturbation of chloroplast structure and function.

  1. Triple SILAC to Determine Stimulus Specific Interactions in the Wnt Pathway

    PubMed Central

    2011-01-01

    Many important regulatory functions are performed by dynamic multiprotein complexes that adapt their composition and activity in response to different stimuli. Here we employ quantitative affinity purification coupled with mass spectrometry to efficiently separate background from specific interactors but add an additional quantitative dimension to explicitly characterize stimulus-dependent interactions. This is accomplished by SILAC in a triple-labeling format, in which pull-downs with bait, with bait and stimulus, and without bait are quantified against each other. As baits, we use full-length proteins fused to the green fluorescent protein and expressed under endogenous control. We applied this technology to Wnt signaling, which is important in development, tissue homeostasis, and cancer, and investigated interactions of the key components APC, Axin-1, DVL2, and CtBP2 with differential pathway activation. Our screens identify many known Wnt signaling complex components and link novel candidates to Wnt signaling, including FAM83B and Girdin, which we found as interactors to multiple Wnt pathway players. Girdin binds to DVL2 independent of stimulation with the ligand Wnt3a but to Axin-1 and APC in a stimulus-dependent manner. The core destruction complex itself, which regulates beta-catenin stability as the key step in canonical Wnt signaling, remained essentially unchanged. PMID:22011079

  2. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    PubMed

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  3. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  4. Identifying specific protein-DNA interactions using SILAC-based quantitative proteomics.

    PubMed

    Spruijt, Cornelia G; Baymaz, H Irem; Vermeulen, Michiel

    2013-01-01

    A comprehensive identification of protein-DNA interactions that drive processes such as transcription and replication, both in prokaryotic and eukaryotic organisms, remains a major technical challenge. In this chapter, we present a SILAC-based DNA affinity purification method that can be used to identify specific interactions between proteins and functional DNA elements in an unbiased manner.

  5. Design of protein-interaction specificity affords selective bZIP-binding peptides

    PubMed Central

    Grigoryan, Gevorg; Reinke, Aaron W.; Keating, Amy E.

    2009-01-01

    Interaction specificity is a required feature of biological networks and a necessary characteristic of protein or small-molecule reagents and therapeutics. The ability to alter or inhibit protein interactions selectively would advance basic and applied molecular science. Assessing or modelling interaction specificity requires treating multiple competing complexes, which presents computational and experimental challenges. Here we present a computational framework for designing protein interaction specificity and use it to identify specific peptide partners for human bZIP transcription factors. Protein microarrays were used to characterize designed, synthetic ligands for all but one of 20 bZIP families. The bZIP proteins share strong sequence and structural similarities and thus are challenging targets to bind specifically. Yet many of the designs, including examples that bind the oncoproteins cJun, cFos and cMaf, were selective for their targets over all 19 other families. Collectively, the designs exhibit a wide range of novel interaction profiles, demonstrating that human bZIPs have only sparsely sampled the possible interaction space accessible to them. Our computational method provides a way to systematically analyze tradeoffs between stability and specificity and is suitable for use with many types of structure-scoring functions; thus it may prove broadly useful as a tool for protein design. PMID:19370028

  6. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.

    PubMed Central

    Esposito, D; Craigie, R

    1998-01-01

    HIV-1 integrase specifically recognizes and cleaves viral end DNA during the initial step of retroviral integration. The protein and DNA determinants of the specificity of viral end DNA binding have not been clearly identified. We have used mutational analysis of the viral end LTR sequence, in vitro selection of optimal viral end sequences, and specific photocrosslinking to identify regions of integrase that interact with specific bases in the LTR termini. The results highlight the involvement of the disordered loop of the integrase core domain, specifically residues Q148 and Y143, in binding to the terminal portion of the viral DNA ends. Additionally, we have identified positions upstream in the LTR termini which interact with the C-terminal domain of integrase, providing evidence for the role of that domain in stabilization of viral DNA binding. Finally, we have located a region centered 12 bases from the viral DNA terminus which appears essential for viral end DNA binding in the presence of magnesium, but not in the presence of manganese, suggesting a differential effect of divalent cations on sequence-specific binding. These results help to define important regions of contact between integrase and viral DNA, and assist in the formulation of a molecular model of this vital interaction. PMID:9755183

  7. ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis

    PubMed Central

    Veres, Daniel V.; Gyurkó, Dávid M.; Thaler, Benedek; Szalay, Kristóf Z.; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein–protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein–protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein–protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design. PMID:25348397

  8. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins.

    PubMed

    Bécamel, Carine; Gavarini, Sophie; Chanrion, Benjamin; Alonso, Gérard; Galéotti, Nathalie; Dumuis, Aline; Bockaert, Joël; Marin, Philippe

    2004-05-01

    The 5-hydroxytryptamine type 2A (5-HT(2A)) receptor and the 5-HT(2C) receptor are closely related members of the G-protein-coupled receptors activated by serotonin that share very similar pharmacological profiles and cellular signaling pathways. These receptors express a canonical class I PDZ ligand (SXV) at their C-terminal extremity. Here, we have identified proteins that interact with the PDZ ligand of the 5-HT(2A) and 5-HT(2C) receptors by a proteomic approach associating affinity chromatography using immobilized synthetic peptides encompassing the PDZ ligand and mass spectrometry. We report that both receptor C termini interact with specific sets of PDZ proteins in vitro. The 5-HT(2C) receptor but not the 5-HT(2A) receptor binds to the Veli-3.CASK.Mint1 ternary complex and to SAP102. In addition, the 5-HT(2C) receptor binds more strongly to PSD-95 and MPP-3 than the 5-HT(2A) receptor. In contrast, a robust interaction between the 5-HT(2A) receptor and the channel-interacting PDZ protein CIPP was found, whereas CIPP did not significantly associate with the 5-HT(2C) receptor. We also show that residues located at the -1 position and upstream the PDZ ligand in the C terminus of the 5-HT(2A) and 5-HT(2C) receptors are major determinants in their interaction with specific PDZ proteins. Immunofluorescence and electron microscopy studies strongly suggested that these specific interactions also take place in living cells and that the 5-HT(2) receptor-PDZ protein complexes occur in intracellular compartments. The interaction of the 5-HT(2A) and the 5-HT(2C) receptor with specific sets of PDZ proteins may contribute to their different signal transduction properties.

  9. Parenting Behavior Dimensions and Child Psychopathology: Specificity, Task Dependency, and Interactive Relations

    ERIC Educational Resources Information Center

    Caron, Annalise; Weiss, Bahr; Harris, Vicki; Catron, Tom

    2006-01-01

    This study examined the specificity of relations between parent or caregiver behaviors and childhood internalizing and externalizing problems in a sample of 70 fourth-grade children (64% boys, M age = 9.7 years). Specificity was assessed via (a) unique effects, (b) differential effects, and (c) interactive effects. When measured as unique and…

  10. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  11. Developing Interactional Competence by Using TV Series in "English as an Additional Language" Classrooms

    ERIC Educational Resources Information Center

    Sert, Olcay

    2009-01-01

    This paper uses a combined methodology to analyse the conversations in supplementary audio-visual materials to be implemented in language teaching classrooms in order to enhance the Interactional Competence (IC) of the learners. Based on a corpus of 90.000 words (Coupling Corpus), the author tries to reveal the potentials of using TV series in …

  12. Friend or foe: inter-specific interactions and conflicts of interest within the family

    PubMed Central

    De Gasperin, Ornela; Kilner, Rebecca M.

    2015-01-01

    Interactions between species can vary from mutually beneficial to evolutionarily neutral to antagonistic, even when the same two species are involved. Similarly, social interactions between members of the same species can lie on a spectrum from conflict to cooperation. The aim of the present study was to investigate whether variation in the two types of social behaviour are interconnected. Is the fitness of the various classes of social partner within species (such as parent and offspring, or male and female) differently affected by interactions with a second species? Moreover, can inter-specific interactions influence the outcome of social interactions within species? The present experiments focus on the interactions between the burying beetle Nicrophorus vespilloides Herbst and the phoretic mite Poecilochirus carabi G. Canestrini & R. Canestrini. The approach was to measure the fitness of burying beetle mothers, fathers, and offspring after reproduction, which took place either in the presence or absence of mites. We found that male, female, and larval burying beetles derive contrasting fitness costs and benefits from their interactions with the mite, despite sharing a common family environment. From the mite’s perspective, its relationship with the burying beetle can, therefore, be simultaneously antagonistic, neutral, and possibly even mutualistic, depending on the particular family member involved. We also found that mites can potentially change the outcome of evolutionary conflicts within the family. We conclude that inter-specific interactions can explain some of the variation in social interactions seen within species. It is further suggested that intra-specific interactions might contribute to variation in the outcome of interactions between species. PMID:26681822

  13. Evolvability of individual traits in a multivariate context: partitioning the additive genetic variance into common and specific components.

    PubMed

    McGuigan, Katrina; Blows, Mark W

    2010-07-01

    Genetic covariation among multiple traits will bias the direction of evolution. Although a trait's phenotypic context is crucial for understanding evolutionary constraints, the evolutionary potential of one (focal) trait, rather than the whole phenotype, is often of interest. The extent to which a focal trait can evolve independently depends on how much of the genetic variance in that trait is unique. Here, we present a hypothesis-testing framework for estimating the genetic variance in a focal trait that is independent of variance in other traits. We illustrate our analytical approach using two Drosophila bunnanda trait sets: a contact pheromone system comprised of cuticular hydrocarbons (CHCs), and wing shape, characterized by relative warps of vein position coordinates. Only 9% of the additive genetic variation in CHCs was trait specific, suggesting individual traits are unlikely to evolve independently. In contrast, most (72%) of the additive genetic variance in wing shape was trait specific, suggesting relative warp representations of wing shape could evolve independently. The identification of genetic variance in focal traits that is independent of other traits provides a way of studying the evolvability of individual traits within the broader context of the multivariate phenotype.

  14. Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure.

    PubMed

    Marzetti, L; Della Penna, S; Snyder, A Z; Pizzella, V; Nolte, G; de Pasquale, F; Romani, G L; Corbetta, M

    2013-10-01

    Resting state networks (RSNs) are sets of brain regions exhibiting temporally coherent activity fluctuations in the absence of imposed task structure. RSNs have been extensively studied with fMRI in the infra-slow frequency range (nominally <10(-1)Hz). The topography of fMRI RSNs reflects stationary temporal correlation over minutes. However, neuronal communication occurs on a much faster time scale, at frequencies nominally in the range of 10(0)-10(2)Hz. We examined phase-shifted interactions in the delta (2-3.5 Hz), theta (4-7 Hz), alpha (8-12 Hz) and beta (13-30 Hz) frequency bands of resting-state source space MEG signals. These analyses were conducted between nodes of the dorsal attention network (DAN), one of the most robust RSNs, and between the DAN and other networks. Phase shifted interactions were mapped by the multivariate interaction measure (MIM), a measure of true interaction constructed from the maximization of imaginary coherency in the virtual channels comprised of voxel signals in source space. Non-zero-phase interactions occurred between homologous left and right hemisphere regions of the DAN in the delta and alpha frequency bands. Even stronger non-zero-phase interactions were detected between networks. Visual regions bilaterally showed phase-shifted interactions in the alpha band with regions of the DAN. Bilateral somatomotor regions interacted with DAN nodes in the beta band. These results demonstrate the existence of consistent, frequency specific phase-shifted interactions on a millisecond time scale between cortical regions within RSN as well as across RSNs. PMID:23631996

  15. Structural basis for the energetics of jacalin-sugar interactions: promiscuity versus specificity.

    PubMed

    Arockia Jeyaprakash, A; Jayashree, G; Mahanta, S K; Swaminathan, C P; Sekar, K; Surolia, A; Vijayan, M

    2005-03-18

    Jacalin, a tetrameric lectin, is one of the two lectins present in jackfruit (Artocarpus integrifolia) seeds. Its crystal structure revealed, for the first time, the occurrence of the beta-prism I fold in lectins. The structure led to the elucidation of the crucial role of a new N terminus generated by post-translational proteolysis for the lectin's specificity for galactose. Subsequent X-ray studies on other carbohydrate complexes showed that the extended binding site of jacalin consisted of, in addition to the primary binding site, a hydrophobic secondary site A composed of aromatic residues and a secondary site B involved mainly in water-bridges. A recent investigation involving surface plasmon resonance and the X-ray analysis of a methyl-alpha-mannose complex, had led to a suggestion of promiscuity in the lectin's sugar specificity. To explore this suggestion further, detailed isothermal titration calorimetric studies on the interaction of galactose (Gal), mannose (Man), glucose (Glc), Me-alpha-Gal, Me-alpha-Man, Me-alpha-Glc and other mono- and oligosaccharides of biological relevance and crystallographic studies on the jacalin-Me-alpha-Glc complex and a new form of the jacalin-Me-alpha-Man complex, have been carried out. The binding affinity of Me-alpha-Man is 20 times weaker than that of Me-alpha-Gal. The corresponding number is 27, when the binding affinities of Gal and Me-alpha-Gal, and those of Man and Me-alpha-Man are compared. Glucose (Glc) shows no measurable binding, while the binding affinity of Me-alpha-Glc is slightly less than that of Me-alpha-Man. The available crystal structures of jacalin-sugar complexes provide a convincing explanation for the energetics of binding in terms of interactions at the primary binding site and secondary site A. The other sugars used in calorimetric studies show no detectable binding to jacalin. These results and other available evidence suggest that jacalin is specific to O-glycans and its affinity to N-glycans is

  16. General and specific lipid-protein interactions in Na,K-ATPase.

    PubMed

    Cornelius, F; Habeck, M; Kanai, R; Toyoshima, C; Karlish, S J D

    2015-09-01

    The molecular activity of Na,K-ATPase and other P2 ATPases like Ca(2+)-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid-protein interactions. It is a remarkable observation that specific lipid-protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid-protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid-protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled "Lipid-Protein Interactions."

  17. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters

    PubMed Central

    Bailey, Swneke D.; Zhang, Xiaoyang; Desai, Kinjal; Aid, Malika; Corradin, Olivia; Cowper-Sal·lari, Richard; Akhtar-Zaidi, Batool; Scacheri, Peter C.; Haibe-Kains, Benjamin; Lupien, Mathieu

    2015-01-01

    Chromatin interactions connect distal regulatory elements to target gene promoters guiding stimulus- and lineage-specific transcription. Few factors securing chromatin interactions have so far been identified. Here by integrating chromatin interaction maps with the large collection of transcription factor binding profiles provided by the ENCODE project, we demonstrate that the zinc-finger protein ZNF143 preferentially occupies anchors of chromatin interactions connecting promoters with distal regulatory elements. It binds directly to promoters and associates with lineage-specific chromatin interactions and gene expression. Silencing ZNF143 or modulating its DNA-binding affinity using single nucleotide polymorphisms (SNPs) as a surrogate of site-directed mutagenesis reveals the sequence dependency of chromatin interactions at gene promoters. We also find that chromatin interactions alone do not regulate gene expression. Together, our results identify ZNF143 as a novel chromatin-looping factor that contributes to the architectural foundation of the genome by providing sequence specificity at promoters connected with distal regulatory elements. PMID:25645053

  18. Protein-Protein Interaction Analysis Highlights Additional Loci of Interest for Multiple Sclerosis

    PubMed Central

    Ragnedda, Giammario; Disanto, Giulio; Giovannoni, Gavin; Ebers, George C.; Sotgiu, Stefano; Ramagopalan, Sreeram V.

    2012-01-01

    Genetic factors play an important role in determining the risk of multiple sclerosis (MS). The strongest genetic association in MS is located within the major histocompatibility complex class II region (MHC), but more than 50 MS loci of modest effect located outside the MHC have now been identified. However, the relative candidate genes that underlie these associations and their functions are largely unknown. We conducted a protein-protein interaction (PPI) analysis of gene products coded in loci recently reported to be MS associated at the genome-wide significance level and in loci suggestive of MS association. Our aim was to identify which suggestive regions are more likely to be truly associated, which genes are mostly implicated in the PPI network and their expression profile. From three recent independent association studies, SNPs were considered and divided into significant and suggestive depending on the strength of the statistical association. Using the Disease Association Protein-Protein Link Evaluator tool we found that direct interactions among genetic products were significantly higher than expected by chance when considering both significant regions alone (p<0.0002) and significant plus suggestive (p<0.007). The number of genes involved in the network was 43. Of these, 23 were located within suggestive regions and many of them directly interacted with proteins coded within significant regions. These included genes such as SYK, IL-6, CSF2RB, FCLR3, EIF4EBP2 and CHST12. Using the gene portal BioGPS, we tested the expression of these genes in 24 different tissues and found the highest values among immune-related cells as compared to non-immune tissues (p<0.001). A gene ontology analysis confirmed the immune-related functions of these genes. In conclusion, loci currently suggestive of MS association interact with and have similar expression profiles and function as those significantly associated, highlighting the fact that more common variants remain to be

  19. dbx mediates neuronal specification and differentiation through cross-repressive, lineage-specific interactions with eve and hb9.

    PubMed

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2009-10-01

    Individual neurons adopt and maintain defined morphological and physiological phenotypes as a result of the expression of specific combinations of transcription factors. In particular, homeodomain-containing transcription factors play key roles in determining neuronal subtype identity in flies and vertebrates. dbx belongs to the highly divergent H2.0 family of homeobox genes. In vertebrates, Dbx1 and Dbx2 promote the development of a subset of interneurons, some of which help mediate left-right coordination of locomotor activity. Here, we identify and show that the single Drosophila ortholog of Dbx1/2 contributes to the development of specific subsets of interneurons via cross-repressive, lineage-specific interactions with the motoneuron-promoting factors eve and hb9 (exex). dbx is expressed primarily in interneurons of the embryonic, larval and adult central nervous system, and these interneurons tend to extend short axons and be GABAergic. Interestingly, many Dbx(+) interneurons share a sibling relationship with Eve(+) or Hb9(+) motoneurons. The non-overlapping expression of dbx and eve, or dbx and hb9, within pairs of sibling neurons is initially established as a result of Notch/Numb-mediated asymmetric divisions. Cross-repressive interactions between dbx and eve, and dbx and hb9, then help maintain the distinct expression profiles of these genes in their respective pairs of sibling neurons. Strict maintenance of the mutually exclusive expression of dbx relative to that of eve and hb9 in sibling neurons is crucial for proper neuronal specification, as misexpression of dbx in motoneurons dramatically hinders motor axon outgrowth.

  20. Random heteropolymer adsorption on disordered multifunctional surfaces: Effect of specific intersegment interactions

    SciTech Connect

    Srebnik, S.; Chakraborty, A.K.; Bratko, D.

    1998-10-01

    Biopolymers adsorb on cell and virus surfaces with great specificity. Recently, theoretical and computational studies have inquired as to whether there are any universal design strategies that nature employs in order to affect such recognition. Specifically, the efficacy of multifunctionality and quenched disorder as essential design strategies has been explored. It has been found that when random heteropolymers interact with disordered multifunctional surfaces, a sharp transition from weak to strong adsorption occurs when the statistics characterizing the sequence and surface site distributions are related in a special way. The aforementioned studies consider the intersegment interactions to be much weaker than the surface site interactions. In this work we use nondynamic ensemble growth Monte Carlo simulations to study the effect of the competition between frustrating intersegment and segment{endash}surface interactions. We find that as the intersegment interactions become stronger, the transition from weak to strong adsorption occurs at higher surface disorder strengths. This trend is reversed beyond a threshold strength of the intersegment interactions because interactions with the surface are no longer able to {open_quotes}unravel{close_quotes} the dominant conformations favored by the intersegment interactions. {copyright} {ital 1998 American Institute of Physics.}

  1. Random heteropolymer adsorption on disordered multifunctional surfaces: Effect of specific intersegment interactions

    NASA Astrophysics Data System (ADS)

    Srebnik, Simcha; Chakraborty, Arup K.; Bratko, Dusan

    1998-10-01

    Biopolymers adsorb on cell and virus surfaces with great specificity. Recently, theoretical and computational studies have inquired as to whether there are any universal design strategies that nature employs in order to affect such recognition. Specifically, the efficacy of multifunctionality and quenched disorder as essential design strategies has been explored. It has been found that when random heteropolymers interact with disordered multifunctional surfaces, a sharp transition from weak to strong adsorption occurs when the statistics characterizing the sequence and surface site distributions are related in a special way. The aforementioned studies consider the intersegment interactions to be much weaker than the surface site interactions. In this work we use nondynamic ensemble growth Monte Carlo simulations to study the effect of the competition between frustrating intersegment and segment-surface interactions. We find that as the intersegment interactions become stronger, the transition from weak to strong adsorption occurs at higher surface disorder strengths. This trend is reversed beyond a threshold strength of the intersegment interactions because interactions with the surface are no longer able to "unravel" the dominant conformations favored by the intersegment interactions.

  2. Additive and Interactive Effects on Response Time Distributions in Visual Word Recognition

    ERIC Educational Resources Information Center

    Yap, Melvin J.; Balota, David A.

    2007-01-01

    Across 3 different word recognition tasks, distributional analyses were used to examine the joint effects of stimulus quality and word frequency on underlying response time distributions. Consistent with the extant literature, stimulus quality and word frequency produced additive effects in lexical decision, not only in the means but also in the…

  3. The emotion potential of simple sentences: additive or interactive effects of nouns and adjectives?

    PubMed Central

    Lüdtke, Jana; Jacobs, Arthur M.

    2015-01-01

    The vast majority of studies on affective processes in reading focus on single words. The most robust finding is a processing advantage for positively valenced words, which has been replicated in the rare studies investigating effects of affective features of words during sentence or story comprehension. Here we were interested in how the different valences of words in a sentence influence its processing and supralexical affective evaluation. Using a sentence verification task we investigated how comprehension of simple declarative sentences containing a noun and an adjective depends on the valences of both words. The results are in line with the assumed general processing advantage for positive words. We also observed a clear interaction effect, as can be expected from the affective priming literature: sentences with emotionally congruent words (e.g., The grandpa is clever) were verified faster than sentences containing emotionally incongruent words (e.g., The grandpa is lonely). The priming effect was most prominent for sentences with positive words suggesting that both, early processing as well as later meaning integration and situation model construction, is modulated by affective processing. In a second rating task we investigated how the emotion potential of supralexical units depends on word valence. The simplest hypothesis predicts that the supralexical affective structure is a linear combination of the valences of the nouns and adjectives (Bestgen, 1994). Overall, our results do not support this: The observed clear interaction effect on ratings indicate that especially negative adjectives dominated supralexical evaluation, i.e., a sort of negativity bias in sentence evaluation. Future models of sentence processing thus should take interactive affective effects into account. PMID:26321975

  4. Morphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis

    PubMed Central

    Muchová, Katarína; Chromiková, Zuzana; Bradshaw, Niels; Wilkinson, Anthony J.

    2016-01-01

    The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor σF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cell-specific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetric sporulation septum and is a crucial determinant of σF activation. Here we report that the morphogenic protein, RodZ, which is essential for cell shape determination, is additionally required for asymmetric septum formation and sporulation. In cells depleted of RodZ, formation of asymmetric septa is disturbed and σF activation is perturbed. During sporulation, we found that SpoIIE recruits RodZ to the asymmetric septum. Moreover, we detected a direct interaction between SpoIIE and RodZ in vitro and in vivo, indicating that SpoIIE-RodZ may form a complex to coordinate asymmetric septum formation and σF activation. We propose that RodZ could provide a link between the cell shape machinery and the coordinated morphological and developmental transitions required to form a resistant spore. PMID:27415800

  5. Species-specific interaction of Streptococcus pneumoniae with human complement factor H

    PubMed Central

    Lu, Ling; Ma, Zhuo; Jokiranta, T. Sakari; Whitney, Adeline R.; DeLeo, Frank R.; Zhang, Jing-Ren

    2008-01-01

    Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH-binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH but not to the FH proteins of mouse and other animal species tested thus far. Accordingly, deleting the FH-binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid (CSF). Finally, our phagocytosis experiments with human- and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans. PMID:18981135

  6. T Lymphocyte–Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity

    PubMed Central

    Carman, Christopher V.; Martinelli, Roberta

    2015-01-01

    Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses, and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues, and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g., transmigratory cups and invadosome-like protrusions) that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell–cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these “sentinel” roles is the ability of the endothelium to act as a non-hematopoietic “semiprofessional” antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics. PMID:26635815

  7. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-05-30

    The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine. PMID:24742664

  8. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-05-30

    The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine.

  9. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  10. Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin.

    PubMed

    Cloix, Catherine; Jenkins, Gareth I

    2008-01-01

    Arabidopsis UV RESISTANCE LOCUS8 (UVR8) is a UV-B-specific signaling component that regulates expression of a range of genes concerned with UV protection. Here, we investigate the interaction of UVR8 with chromatin. Using antibodies specific to UVR8 in chromatin immunoprecipitation (ChIP) assays with wild-type plants, we show that native UVR8 binds to chromatin in vivo. Similar experiments using an anti-GFP antibody with plants expressing a GFP-UVR8 fusion show that UVR8 associates with a relatively small region of chromatin containing the HY5 gene. UVR8 interacts with chromatin containing the promoter regions of other genes, but not with all the genes it regulates. UV-B is not required for the interaction of UVR8 with chromatin because association with several gene loci is observed in the absence of UV-B. Pull-down assays demonstrate that UVR8 associates with histones in vivo and competition experiments indicate that the interaction is preferentially with histone H2B. ChIP experiments using antibodies that recognize specific histone modifications indicate that the UV-B-stimulated transcription of some genes may be correlated with histone modification. In particular, the ELIP1 promoter showed a significant enrichment of diacetyl histone H3 (K9/K14) following UV-B exposure. These findings increase understanding of the interaction of the key UV-B-specific regulator UVR8 with chromatin.

  11. Designing specific protein–protein interactions using computation, experimental library screening, or integrated methods

    PubMed Central

    Chen, T Scott; Keating, Amy E

    2012-01-01

    Given the importance of protein–protein interactions for nearly all biological processes, the design of protein affinity reagents for use in research, diagnosis or therapy is an important endeavor. Engineered proteins would ideally have high specificities for their intended targets, but achieving interaction specificity by design can be challenging. There are two major approaches to protein design or redesign. Most commonly, proteins and peptides are engineered using experimental library screening and/or in vitro evolution. An alternative approach involves using protein structure and computational modeling to rationally choose sequences predicted to have desirable properties. Computational design has successfully produced novel proteins with enhanced stability, desired interactions and enzymatic function. Here we review the strengths and limitations of experimental library screening and computational structure-based design, giving examples where these methods have been applied to designing protein interaction specificity. We highlight recent studies that demonstrate strategies for combining computational modeling with library screening. The computational methods provide focused libraries predicted to be enriched in sequences with the properties of interest. Such integrated approaches represent a promising way to increase the efficiency of protein design and to engineer complex functionality such as interaction specificity. PMID:22593041

  12. Evolution of domain–peptide interactions to coadapt specificity and affinity to functional diversity

    PubMed Central

    Kelil, Abdellali; Levy, Emmanuel D.; Michnick, Stephen W.

    2016-01-01

    Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain–peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain–peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain–peptide interactions. Thus, domain–peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved. PMID:27317745

  13. Specificity of protein — Nucleic acid interaction and the biochemical evolution

    NASA Astrophysics Data System (ADS)

    Podder, S. K.; Basu, H. S.

    1984-12-01

    The water soluble carbodiimide mediated condensation of dipeptides of the general form Gly-X was carried out in the presence of mono- and poly-nucleotides. The observed yield of the tetrapeptide was found to be higher for peptide-nucleotide system of higher interaction specificity following mainly the anticodon-amino acid relationship (Basu, H.S. & Podder, S.K., 1981, Ind. J. Biochem. Biophys., 19, 251 253). The yield of the condensation product of L-peptide was more because of its higher interaction specificity. The extent of the racemization during the condensation of Gly-L-Phe, Gly-L-Tyr and Gly-D-Phe was found to be dependent on the specificity of the interaction —the higher the specificity, the lesser the racemization. The product formed was shown to have a catalytic effect on the condensation reaction. These data thus provide a mechanism showing how the specific interaction between amino acids/dipeptides and nucleic acids could lead to the formation of the ‘primitive’ translation machinery.

  14. Interactions between DRD4 and Developmentally Specific Environments in Alcohol Dependence Symptoms

    PubMed Central

    Carlson, Marie D.; Harden, K. Paige; Kretsch, Natalie; Corbin, William R.; Fromme, Kim

    2015-01-01

    Social experiences may moderate genetic influences on alcohol dependence (AD) symptoms. Consistent with this hypothesis, Park, Sher, Todorov, and Heath (2011) previously reported interactions between the dopamine D4 receptor gene (DRD4) and developmentally specific environments in the etiology of AD symptoms during emerging and young adulthood. Using a longitudinal cohort of n = 367 White participants followed from ages 18–27 we examine a series of similar interactions between DRD4 and developmentally sensitive contexts including childhood adversity and work and family roles. In contrast to previous results, we observed no significant interactions between DRD4 and childhood adversity. Overall, results further highlight the need for longitudinal studies of gene × environment interaction in the behavioral sciences and the difficulty of identifying candidate gene × environment interaction effects that are consistent across studies. PMID:26595480

  15. The DNase of gammaherpesviruses impairs recognition by virus-specific CD8+ T cells through an additional host shutoff function.

    PubMed

    Zuo, Jianmin; Thomas, Wendy; van Leeuwen, Daphne; Middeldorp, Jaap M; Wiertz, Emmanuel J H J; Ressing, Maaike E; Rowe, Martin

    2008-03-01

    The DNase/alkaline exonuclease (AE) genes are well conserved in all herpesvirus families, but recent studies have shown that the AE proteins of gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exhibit an additional function which shuts down host protein synthesis. One correlate of this additional shutoff function is that levels of cell surface HLA molecules are downregulated, raising the possibility that shutoff/AE genes of gammaherpesviruses might contribute to viral immune evasion. In this study, we show that both BGLF5 (EBV) and SOX (KSHV) shutoff/AE proteins do indeed impair the ability of virus-specific CD8+ T-cell clones to recognize endogenous antigen via HLA class I. Random mutagenesis of the BGLF5 gene enabled us to genetically separate the shutoff and AE functions and to demonstrate that the shutoff function was the critical factor determining whether BGLF5 mutants can impair T-cell recognition. These data provide further evidence that EBV has multiple mechanisms to modulate HLA class I-restricted T-cell responses, thus enabling the virus to replicate and persist in the immune-competent host.

  16. The Subfamily-Specific Interaction between Kv2.1 and Kv6.4 Subunits Is Determined by Interactions between the N- and C-termini

    PubMed Central

    Bocksteins, Elke; Mayeur, Evy; Van Tilborg, Abbi; Regnier, Glenn; Timmermans, Jean-Pierre; Snyders, Dirk J.

    2014-01-01

    The “silent” voltage-gated potassium (KvS) channel subunit Kv6.4 does not form electrically functional homotetramers at the plasma membrane but assembles with Kv2.1 subunits, generating functional Kv2.1/Kv6.4 heterotetramers. The N-terminal T1 domain determines the subfamily-specific assembly of Kv1-4 subunits by preventing interactions between subunits that belong to different subfamilies. For Kv6.4, yeast-two-hybrid experiments showed an interaction of the Kv6.4 N-terminus with the Kv2.1 N-terminus, but unexpectedly also with the Kv3.1 N-terminus. We confirmed this interaction by Fluorescence Resonance Energy Transfer (FRET) and co-immunoprecipitation (co-IP) using N-terminal Kv3.1 and Kv6.4 fragments. However, full-length Kv3.1 and Kv6.4 subunits do not form heterotetramers at the plasma membrane. Therefore, additional interactions between the Kv6.4 and Kv2.1 subunits should be important in the Kv2.1/Kv6.4 subfamily-specificity. Using FRET and co-IP approaches with N- and C-terminal fragments we observed that the Kv6.4 C-terminus physically interacts with the Kv2.1 N-terminus but not with the Kv3.1 N-terminus. The N-terminal amino acid sequence CDD which is conserved between Kv2 and KvS subunits appeared to be a key determinant since charge reversals with arginine substitutions abolished the interaction between the N-terminus of Kv2.1 and the C-terminus of both Kv2.1 and Kv6.4. In addition, the Kv6.4(CKv3.1) chimera in which the C-terminus of Kv6.4 was replaced by the corresponding domain of Kv3.1, disrupted the assembly with Kv2.1. These results indicate that the subfamily-specific Kv2.1/Kv6.4 heterotetramerization is determined by interactions between Kv2.1 and Kv6.4 that involve both the N- and C-termini in which the conserved N-terminal CDD sequence plays a key role. PMID:24901643

  17. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  18. Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2015-05-15

    The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation. PMID:25577062

  19. Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2015-05-15

    The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation.

  20. RNA polymerase pausing regulates translation initiation by providing additional time for TRAP-RNA interaction.

    PubMed

    Yakhnin, Alexander V; Yakhnin, Helen; Babitzke, Paul

    2006-11-17

    RNA polymerase (RNAP) pause sites have been identified in several prokaryotic genes. Although the presumed biological function of RNAP pausing is to allow synchronization of RNAP position with regulatory factor binding and/or RNA folding, a direct causal link between pausing and changes in gene expression has been difficult to establish. RNAP pauses at two sites in the Bacillus subtilis trpEDCFBA operon leader. Pausing at U107 and U144 participates in transcription attenuation and trpE translation control mechanisms, respectively. Substitution of U144 caused a substantial pausing defect in vitro and in vivo. These mutations led to increased trp operon expression that was suppressed by overproduction of TRAP, indicating that pausing at U144 provides additional time for TRAP to bind to the nascent transcript and promote formation of an RNA structure that blocks translation of trpE. These results establish that pausing is capable of playing a role in regulating translation in bacteria. PMID:17114058

  1. Violation of fluctuation-dissipation theorem in the off-equilibrium dynamics of a system with non additive interactions

    SciTech Connect

    Pinto, O. A.; Ramirez-Pastor, A. J.; Nieto, F.; Roma, F.

    2011-03-24

    In this work we study the critical equilibrium properties and the off-equilibrium dynamics of an Ising system with non additive interactions. The traditional assumption of additivity is modified for one more general, where the energy of exchange J between two spins depends on their neighbourhood. First, for several non additive situations, we calculated the critical temperature T{sub c} by using paralell tempering Monte Carlo in the canonical assemble and standard finite-size scaling techniques. Then, we carry out a quench from infinite temperature to a low temperature below T{sub c}(off-equilibrium dynamics protocol) and we compute two-time correlation and response functions. We find a violation of fluctuation-dissipation theorem like coarsening systems. All this was done for several waiting time and several non additive situations. Finally, we analyze the scaling of correlation and response functions for a critical quench from infinite temperature.

  2. Integrated interactions database: tissue-specific view of the human and model organism interactomes.

    PubMed

    Kotlyar, Max; Pastrello, Chiara; Sheahan, Nicholas; Jurisica, Igor

    2016-01-01

    IID (Integrated Interactions Database) is the first database providing tissue-specific protein-protein interactions (PPIs) for model organisms and human. IID covers six species (S. cerevisiae (yeast), C. elegans (worm), D. melonogaster (fly), R. norvegicus (rat), M. musculus (mouse) and H. sapiens (human)) and up to 30 tissues per species. Users query IID by providing a set of proteins or PPIs from any of these organisms, and specifying species and tissues where IID should search for interactions. If query proteins are not from the selected species, IID enables searches across species and tissues automatically by using their orthologs; for example, retrieving interactions in a given tissue, conserved in human and mouse. Interaction data in IID comprises three types of PPI networks: experimentally detected PPIs from major databases, orthologous PPIs and high-confidence computationally predicted PPIs. Interactions are assigned to tissues where their proteins pairs or encoding genes are expressed. IID is a major replacement of the I2D interaction database, with larger PPI networks (a total of 1,566,043 PPIs among 68,831 proteins), tissue annotations for interactions, and new query, analysis and data visualization capabilities. IID is available at http://ophid.utoronto.ca/iid.

  3. Specific interactions in the inclusion complexes of pyronines Y and B with beta-cyclodextrin.

    PubMed

    Reija, Belén; Al-Soufi, Wajih; Novo, Mercedes; Vazquez Tato, José

    2005-02-01

    The aim of this work is to analyze the role of specific interactions in host-guest association processes. The formation of inclusion complexes between pyronines Y and B and beta-cyclodextrin and the nature of the interactions involved have been studied using absorption, steady-state fluorescence, and time-resolved fluorescence spectroscopies. The two pyronines form 1:1 complexes with beta-cyclodextrin, with the association equilibrium constant being much higher in the case of pyronine B. Complexation causes a slight red shift of the emission spectra of the pyronines but decreases significantly their fluorescence quantum yields and lifetimes. To explain this atypical behavior, the photophysical properties of the pyronines in different solvents were determined and compared with those of the complexes. The similarities observed between the pyronines in dioxane and in the interior of the cyclodextrin cavity suggest that there are important specific interactions of the pyronines with the electron-rich oxygens present in these media. A possible explanation for the increase in the nonradiative rate constants in these media involves the existence of a charge-transfer excited state with the location of the positive charge at the xanthene moiety, which would be stabilized by the mentioned interactions. The observed differences between pyronine Y and B can be understood on the basis of these specific interactions.

  4. Determination of the specific interaction between sulfonylurea-incorporated polymer and rat islets.

    PubMed

    Park, Keun-Hong; Song, Soo Chang; Akaike, Toshihiro

    2002-03-01

    A SU derivative, mimicking glibenclamide in chemical structure, was synthesized to incorporate it into a water-soluble polymeric backbone as a biospecific and stimulating polymer for insulin secretion. The ability of insulin secretion was examined with different glucose concentrations (3.3 and 11.6 mM). Although the vinylated SU did not exhibit significant activity compared to the control, the SU-incorporated copolymer could enhance insulin secretion as much as or more than glibenclamide did. In this study, a polymer fluorescence-labeled with rodamine-B isothiocyanate was used to visualize the interactions and we found that the labeled polymer was strongly absorbed to rat islets, probably due to its specific interaction mediated by SU receptors on the cell membrane. To verify the specific interaction between the SU (K+ channel closer)-incorporated copolymer and rat islets, cells were pretreated with diazoxide, an agonist of ATP-sensitive K+ channels (K+ channel opener), before adding the incorporated polymer to the cell culture medium. This treatment suppressed the action of SUs on rat islets. A confocal laser microscopic study further confirmed this interaction. The results of this study provided evidence that the SU-incorporated copolymer stimulates insulin secretion through specific interactions of SU moieties in the polymer with rat islets.

  5. An anticancer drug to probe non-specific protein-DNA interactions.

    PubMed

    Sengupta, Abhigyan; Koninti, Raj Kumar; Gavvala, Krishna; Ballav, Nirmalya; Hazra, Partha

    2014-03-01

    A visible fluorescence switch of an eminent anti-carcinogen, ellipticine has been used to probe non-specific protein-DNA interaction. The unique pattern of protein-DNA complexation is depicted for the first time through field emission scanning electron microscopy (FE-SEM) images and spectroscopic techniques.

  6. Binaural Interaction in Specific Language Impairment: An Auditory Evoked Potential Study

    ERIC Educational Resources Information Center

    Clarke, Elaine M; Adams, Catherine

    2007-01-01

    The aim of the study was to examine whether auditory binaural interaction, defined as any difference between binaurally evoked responses and the sum of monaurally evoked responses, which is thought to index functions involved in the localization and detection of signals in background noise, is atypical in a group of children with specific language…

  7. Interaction of Language Processing and Motor Skill in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    DiDonato Brumbach, Andrea C.; Goffman, Lisa

    2014-01-01

    Purpose: To examine how language production interacts with speech motor and gross and fine motor skill in children with specific language impairment (SLI). Method: Eleven children with SLI and 12 age-matched peers (4-6 years) produced structurally primed sentences containing particles and prepositions. Utterances were analyzed for errors and for…

  8. Specificity of Practice: Interaction between Concurrent Sensory Information and Terminal Feedback

    ERIC Educational Resources Information Center

    Blandin, Yannick; Toussaint, Lucette; Shea, Charles H.

    2008-01-01

    In 2 experiments, the authors investigated a potential interaction involving the processing of concurrent feedback using design features from the specificity of practice literature and the processing of terminal feedback using a manipulation from the guidance hypothesis literature. In Experiment 1, participants produced (198 trials)…

  9. Assessing Student Perceptions of Positive and Negative Social Interactions in Specific School Settings

    ERIC Educational Resources Information Center

    Zumbrunn, Sharon; Doll, Beth; Dooley, Kadie; LeClair, Courtney; Wimmer, Courtney

    2013-01-01

    This study explored the use of student-marked school maps, a practitioner-friendly method for assessing student perceptions of positive and negative peer interactions in specific school settings. Two hundred eighty-two third- through fifth-grade students from a Midwestern U.S. elementary school participated. Descriptive analyses were used to…

  10. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).

    PubMed

    Nsa, Imade Y; Kareem, Kehinde T

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar "White" and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar "White" was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures. PMID:26483824

  11. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).

    PubMed

    Nsa, Imade Y; Kareem, Kehinde T

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar "White" and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar "White" was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures.

  12. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp)

    PubMed Central

    Nsa, Imade Y.; Kareem, Kehinde T.

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar “White” and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar “White” was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures. PMID:26483824

  13. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites.

    PubMed

    Zervos, A S; Gyuris, J; Brent, R

    1993-01-29

    We used the interaction trap to isolate a novel human protein that specifically interacts with Max. This protein, Mxi1 (for Max interactor 1), contains a bHLH-Zip motif that is similar to that found in Myc family proteins. Mxi1 interacts specifically with Max to form heterodimers that efficiently bind to the Myc-Max consensus recognition site. When bound to DNA by a LexA moiety in yeast, Mxi1 does not stimulate transcription. mxi1 mRNA is expressed in many tissues, and its expression is elevated in U-937 myeloid leukemia cells that have been stimulated to differentiate. These facts are consistent with a model in which Mxi1-Max heterodimers indirectly inhibit Myc function in two ways: first, by sequestering Max, thus preventing the formation of Myc-Max heterodimers, and second, by competing with Myc-Max heterodimers for binding to target sites.

  14. Actinomycin D specifically inhibits the interaction between transcription factor Sp1 and its binding site.

    PubMed

    Czyz, M; Gniazdowski, M

    1998-01-01

    The mode of action of many anticancer drugs involves DNA interactions. We here examine the ability of actinomycin D to alter the specific binding of transcription factors Spl and NFkappaB to their DNA sequences. Employing an electrophoretic mobility shift assay, it is shown that actinomycin D inhibits complex formation between nuclear proteins present in the extracts from stimulated human umbilical vein endothelial cells and the Sp1-binding site. Actinomycin D is also able to induce disruption of preformed DNA-protein complexes, pointing to the importance of an equilibrium of three components: actinomycin D, protein and DNA for drug action. The effect of actinomycin D is sequence-specific, since no inhibition is observed for interaction of nuclear proteins with the NFkappaB binding site. The results support the view that DNA-binding drugs displaying high sequence-selectivity can exhibit distinct effects on the interaction between DNA and different DNA-binding proteins. PMID:9701497

  15. A quantitative method to discriminate between non-specific and specific lectin-glycan interactions on silicon-modified surfaces.

    PubMed

    Yang, Jie; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal

    2016-02-15

    Essential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces. An efficient conjugation protocol featuring a key "click"-based coupling step has been developed which ensures the obtention of interfaces with controlled glycan density. The adsorption behavior of these newly developed interfaces with the lectins, Lens culinaris and Peanut agglutinin, has been probed using quantitative IR-ATR and the data interpreted using various isothermal models. The analysis reveals that protein physisorption to the interface is more prevalent than specific chemisorption for the majority of washing protocols investigated. Physisorption can be greatly suppressed through application of a strong surfactinated rinse. The coexistence of chemisorption and physisorption processes is further demonstrated by quantification of the amounts of adsorbed proteins distributed on the surface, in correlation with the results obtained by atomic force microscopy (AFM). Taken together, the data demonstrates that the nonspecific adsorption of proteins to these glycan-terminated surfaces can be effectively eliminated through the proper control of the chemical structure of the surface monolayer combined with the implementation of an appropriate surface-rinse protocol.

  16. SYNZIP Protein Interaction Toolbox: in Vitro and in Vivo Specifications of Heterospecific Coiled-Coil Interaction Domains

    PubMed Central

    2012-01-01

    The synthetic biology toolkit contains a growing number of parts for regulating transcription and translation, but very few that can be used to control protein association. Here we report characterization of 22 previously published heterospecific synthetic coiled-coil peptides called SYNZIPs. We present biophysical analysis of the oligomerization states, helix orientations, and affinities of 27 SYNZIP pairs. SYNZIP pairs were also tested for interaction in two cell-based assays. In a yeast two-hybrid screen, >85% of 253 comparable interactions were consistent with prior in vitro measurements made using coiled-coil microarrays. In a yeast-signaling assay controlled by coiled-coil mediated scaffolding, 12 SYNZIP pairs were successfully used to down-regulate the expression of a reporter gene following treatment with α-factor. Characterization of these interaction modules dramatically increases the number of available protein interaction parts for synthetic biology and should facilitate a wide range of molecular engineering applications. Summary characteristics of 27 SYNZIP peptide pairs are reported in specification sheets available in the Supporting Information and at the SYNZIP Web site [http://keatingweb.mit.edu/SYNZIP/]. PMID:22558529

  17. Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm

    PubMed Central

    Woelke, Anna Lena; von Eichborn, Joachim; Murgueitio, Manuela S.; Worth, Catherine L.; Castiglione, Filippo; Preissner, Robert

    2011-01-01

    Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail. In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy. PMID:21858048

  18. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    SciTech Connect

    Wang, Ruoxiang; He, Hui; Sun, Xiaojuan; Xu, Jianchun; Marshall, Fray F.; Zhau, Haiyen; Chung, Leland W.K.; Fu, Haian; He, Dalin

    2009-11-20

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  19. Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15.

    PubMed

    Mottershead, David G; Ritter, Lesley J; Gilchrist, Robert B

    2012-03-01

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are two proteins selectively expressed in the oocyte which are essential for normal fertility. Both of these proteins are members of the transforming growth factor beta (TGF-β) superfamily and as such are produced as pre-proproteins, existing after proteolytic processing as a complex of the respective pro and mature regions. Previous work has shown that these two proteins interact both at the genetic and cellular signalling levels. In this study, our aim was to determine if the purified mature regions of GDF9 and BMP15 exhibit synergistic interactions on granulosa cells and to determine if such interactions are specific to these two proteins. We have used primary cultures of murine granulosa cells and [(3)H]-thymidine incorporation or transcriptional reporter assays as our readouts. We observed clear synergistic interactions between the mature regions of GDF9 and BMP15 when either DNA synthesis or SMAD3 signalling were examined. GDF9/BMP15 synergistic interactions were specific such that neither factor could be replaced by an analogous TGF-β superfamily member. The GDF9/BMP15 synergistic signalling response was inhibited by the SMAD2/3 phosphorylation inhibitor SB431542, as well as inhibition of the mitogen-activated protein kinase or rous sarcoma oncogene (SRC) signalling pathways, but not the nuclear factor kappa B pathway. In this study, we show that purified mature regions of GDF9 and BMP15 synergistically interact in a specific manner which is not dependent on the presence of a pro-region. This synergistic interaction is targeted at the SMAD3 pathway, and is dependent on ERK1/2 and SRC kinase signalling.

  20. Non-specific protein–DNA interactions control I-CreI target binding and cleavage

    PubMed Central

    Molina, Rafael; Redondo, Pilar; Stella, Stefano; Marenchino, Marco; D’Abramo, Marco; Gervasio, Francesco Luigi; Charles Epinat, Jean; Valton, Julien; Grizot, Silvestre; Duchateau, Phillipe; Prieto, Jesús; Montoya, Guillermo

    2012-01-01

    Homing endonucleases represent protein scaffolds that provide powerful tools for genome manipulation, as these enzymes possess a very low frequency of DNA cleavage in eukaryotic genomes due to their high specificity. The basis of protein–DNA recognition must be understood to generate tailored enzymes that target the DNA at sites of interest. Protein–DNA interaction engineering of homing endonucleases has demonstrated the potential of these approaches to create new specific instruments to target genes for inactivation or repair. Protein–DNA interface studies have been focused mostly on specific contacts between amino acid side chains and bases to redesign the binding interface. However, it has been shown that 4 bp in the central DNA sequence of the 22-bp substrate of a homing endonuclease (I-CreI), which do not show specific protein–DNA interactions, is not devoid of content information. Here, we analyze the mechanism of target discrimination in this substrate region by the I-CreI protein, determining how it can occur independently of the specific protein–DNA interactions. Our data suggest the important role of indirect readout in this substrate region, opening the possibility for a fully rational search of new target sequences, thus improving the development of redesigned enzymes for therapeutic and biotechnological applications. PMID:22495931

  1. Proliferating cell nuclear antigen (PCNA) interacts with a meiosis-specific RecA homologues, Lim15/Dmc1, but does not stimulate its strand transfer activity

    SciTech Connect

    Hamada, Fumika N.; Koshiyama, Akiyo; Namekawa, Satoshi H.; Ishii, Satomi; Iwabata, Kazuki; Sugawara, Hiroko; Nara, Takayuki Y.; Sakaguchi, Kengo . E-mail: kengo@rs.noda.tus.ac.jp; Sawado, Tomoyuki

    2007-01-26

    PCNA is a multi-functional protein that is involved in various nuclear events. Here we show that PCNA participates in events occurring during early meiotic prophase. Analysis of protein-protein interactions using surface plasmon resonance indicates that Coprinus cinereus PCNA (CoPCNA) specifically interacts with a meiotic specific RecA-like factor, C. cinereus Lim15/Dmc1 (CoLim15) in vitro. The binding efficiency increases with addition of Mg{sup 2+} ions, while ATP inhibits the interaction. Co-immunoprecipitation experiments indicate that the CoLim15 protein interacts with the CoPCNA protein in vitro and in the cell extracts. Despite the interaction between these two factors, no enhancement of CoLim15-dependent strand transfer activity by CoPCNA was found in vitro. We propose that the interaction between Lim15/Dmc1 and PCNA mediates the recombination-associated DNA synthesis during meiosis.

  2. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity.

    PubMed

    Chinenov, Y; Kerppola, T K

    2001-04-30

    Fos and Jun family proteins regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with related bZIP proteins and with structurally unrelated transcription factors. These interactions at composite regulatory elements produce nucleoprotein complexes with high sequence-specificity and regulatory selectivity. Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins. The structural properties of Fos-Jun family proteins including opposite orientations of heterodimer binding and the ability to bend DNA can contribute to the assembly and functions of such complexes. The cooperative recruitment of transcription factors, coactivators and chromatin remodeling factors to promoter and enhancer regions generates multiprotein transcription regulatory complexes with cell- and stimulus-specific transcriptional activities. The gene-specific architecture of these complexes can mediate the selective control of transcriptional activity.

  3. Understanding Interactions between Cellular Matrices and Metal Complexes: Methods To Improve Silver Nanodot-Specific Staining.

    PubMed

    Choi, Sungmoon; Yu, Junhua

    2016-08-26

    Metal complexes are frequently used for biological applications due to their special photophysical and chemical characteristics. Due to strong interactions between metals and biomacromolecules, a random staining of cytoplasm or nucleoplasm by the complexes results in a low signal-to-background ratio. In this study, we used luminescent silver nanodots as a model to investigate the major driving force for non-specific staining in cellular matrices. Even though some silver nanodot emitters exhibited excellent specific staining of nucleoli, labeling with nanodots was problematic owing to severe non-specific staining. Binding between silver and sulfhydryl group of proteins appeared to be the major factor that enforced the silver staining. The oxidation of thiol groups in cells with hexacyanoferrate(III) dramatically weakened the silver-cell interaction and consequently significantly improved the efficiency of targeted staining. PMID:27380586

  4. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases

    PubMed Central

    Shin, Sung-Bong; Golovkin, Maxim; Reddy, Anireddy S. N.

    2014-01-01

    Previous genetic studies have revealed that a pollen-specific calmodulin-binding protein, No Pollen Germination 1 (NPG1), is required for pollen germination. However, its mode of action is unknown. Here we report direct interaction of NPG1 with pectate lyase-like proteins (PLLs). A truncated form of AtNPG1 lacking the N-terminal tetratricopeptide repeat 1 (TPR1) failed to interact with PLLs, suggesting that it is essential for NPG1 interaction with PLLs. Localization studies with AtNPG1 fused to a fluorescent reporter driven by its native promoter revealed its presence in the cytosol and cell wall of the pollen grain and the growing pollen tube of plasmolyzed pollen. Together, our data suggest that the function of NPG1 in regulating pollen germination is mediated through its interaction with PLLs, which may modify the pollen cell wall and regulate pollen tube emergence and growth. PMID:24919580

  5. Interactions of Carbon Gain and Nitrogen Addition in a Temperate Forest

    NASA Astrophysics Data System (ADS)

    Bazzaz, F. A.

    2001-12-01

    In plants, carbon and nitrogen are intimately related. The plant gains carbon using nitrogen because it is a major constituent of both the light reaction (chlorophyll) and dark reaction (Rubisco and PEP carboxylase). The plant also gains more nitrogen by using carbon to grow roots that can forage for nitrogen, especially the less mobile (NH4+). Rising CO2 and increased nitrogen deposition are important elements of global change, both of which may affect ecosystem structure and function. They may cause a particularly large shift in species composition in systems where contrasting groups of species co-occur, e.g. evergreen coniferous and deciduous broad-leaved tree species. We studied the impact of nitrogen deposition in a mixed forest in central Massachusetts (Harvard Forest). We found that the early-successional broad-leaved species, yellow birch (Betula alleghaniensis) and red maple (Acer rubrum), both showed large increases in biomass, while the late successional species sugar maple (Acer saccharum) and all the coniferous species, hemlock (Tsuga canadensis), red spruce (Picea rubens) and white pine (Pinus strobus), only showed slight increases. As a result, when these species wre grown together, there was a decrease in species diversity. There was a significant correlation between species growth rate and the growth enhancement following nitrogen addition. We used SORTIE, a spatially explicit forest model to speculate about the future of this community. In both hemlock and red oak stands, nitrogen deposition led to shift in forest composition towards further dominance of young forests by yellow birch. We conclude that seedling physiological and demographic responses to increased nitrogen availability will scale up to exaggerate successional dynamics in mixed temperate forests in the future

  6. Canine parvovirus host range is determined by the specific conformation of an additional region of the capsid.

    PubMed Central

    Parker, J S; Parrish, C R

    1997-01-01

    We analyzed a region of the capsid of canine parvovirus (CPV) which determines the ability of the virus to infect canine cells. This region is distinct from those previously shown to determine the canine host range differences between CPV and feline panleukopenia virus. It lies on a ridge of the threefold spike of the capsid and is comprised of five interacting loops from three capsid protein monomers. We analyzed 12 mutants of CPV which contained amino acid changes in two adjacent loops exposed on the surface of this region. Nine mutants infected and grew in feline cells but were restricted in replication in one or the other of two canine cell lines tested. Three other mutants whose genomes contain mutations which affect one probable interchain bond were nonviable and could not be propagated in either canine or feline cells, although the VP1 and VP2 proteins from those mutants produced empty capsids when expressed from a plasmid vector. Although wild-type and mutant capsids bound to canine and feline cells in similar amounts, infection or viral DNA replication was greatly reduced after inoculation of canine cells with most of the mutants. The viral genomes of two host range-restricted mutants and two nonviable mutants replicated to wild-type levels in both feline and canine cells upon transfection with plasmid clones. The capsids of wild-type CPV and two mutants were similar in susceptibility to heat inactivation, but one of those mutants and one other were more stable against urea denaturation. Most mutations in this structural region altered the ability of monoclonal antibodies to recognize epitopes within a major neutralizing antigenic site, and that site could be subdivided into a number of distinct epitopes. These results argue that a specific structure of this region is required for CPV to retain its canine host range. PMID:9371580

  7. Sex-specific evolutionary potential of pre- and postcopulatory reproductive interactions in the field cricket, Teleogryllus commodus.

    PubMed

    Hall, Matthew D; Lailvaux, Simon P; Brooks, Robert C

    2013-06-01

    Mate choice often depends on the properties of both sexes, such as the preference and responsiveness of the female and the sexual display traits of the male. Quantitative genetic studies, however, traditionally explore the outcome of an interaction between males and females based solely on the genotype of one sex, treating the other sex as a source of environmental variance. Here, we use a half-sib breeding design in the field cricket, Teleogryllus commodus, to estimate the additive genetic contribution of both partners to three steps of the mate choice process: the time taken to mate; the duration of spermatophore attachment; and the intensity of mate guarding. Rather than each sex contributing equally to the interactions, we found that genetic variation for latency to mate and spermatophore attachment was sex-specific, and in the case of mate-guarding intensity, largely absent. For a given interaction, genetic variation in one sex also appears to be largely independent of the other, and is also uncorrelated with the other traits. We discuss how pre- and postcopulatory interactions have the potential to evolve as an interacting phenotype, but that any coevolution between these traits, due to sexual selection or sexual conflict, may be limited.

  8. Interaction of Sesbania Mosaic Virus Movement Protein with VPg and P10: Implication to Specificity of Genome Recognition

    PubMed Central

    Roy Chowdhury, Soumya; Savithri, Handanahal S.

    2011-01-01

    Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 5′ end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement. PMID:21246040

  9. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  10. Effects of magnetic dipolar interactions on the specific time constant in superparamagnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Iacob, N.; Schinteie, G.; Bartha, C.; Palade, P.; Vekas, L.; Kuncser, V.

    2016-07-01

    A quantitative treatment of the effects of magnetic mutual interactions on the specific absorption rate of a superparamagnetic system of iron oxide nanoparticles coated with oleic acid is reported. The nanoparticle concentration of the considered ferrofluid samples varied from a very low (0.005) to a medium (0.16) value of the volume fraction, whereas the amplitude of the exciting AC magnetic field ranged from 14–35 kA m‑1. It was proved that a direct effect of the interparticle interactions resides in the regime of the modified superparamagnetism, dealing, besides the usual increase in the anisotropy energy barrier per nanoparticle, with the decrease in the specific time constant {τ0} of the relaxation law, usually considered as a material constant. Consequently, the increase in the specific absorption rate versus the volume fraction is significantly diminished in the presence of the interparticle interactions compared to the case of non-interacting superparamagnetic nanoparticles, with direct influence on the magnetic hyperthermia efficiency.

  11. Visualization of the specific interaction of sulfonylurea-incorporated polymer with insulinoma cell line MIN6.

    PubMed

    Park, Keun-Hong; Akaike, Toshihiro

    2004-02-01

    A derivative of sulfonylurea (SU) that mimics glibenclamide in chemical structure was synthesized and incorporated into a water-soluble polymeric backbone as a biospecific polymer for stimulating insulin secretion. In this study, a backbone polymer fluorescence-labeled with rodamine-B isothiocyanate was found to be strongly adsorbed onto MIN6 cells, probably due to its specific interaction mediated by SU receptors on the cell membrane. The intensity of fluorescence on the cells was significantly increased by increasing the incubation time and polymer concentration. To verify the specific interaction between the SU (K(+) channel closer)-incorporated copolymer and MIN6 cells, the cells were pretreated with diazoxide, an agonist of the ATP-sensitive K(+) channel (K(+) channel opener), before adding the polymer to the cell culture medium. This treatment suppressed the interaction between SU and MIN6 cells. A confocal laser microscopic study confirmed this effect. The results of this study provide evidence that SU-incorporated copolymer stimulates insulin secretion through the specific interactions of SU moieties in the polymer with MIN6 cells.

  12. Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials.

    PubMed

    Guseinov, Israfil

    2003-06-01

    By the use of complete orthonormal sets of psi(alpha)-ETOs (alpha=1, 0, m1, m2,...) introduced by the author, new addition theorems are derived for STOs and arbitrary central and noncentral interaction potentials (CIPs and NCIPs). The expansion coefficients in these addition theorems are expressed through the Gaunt and Gegenbauer coefficients. Using the addition theorems obtained for STOs and potentials, general formulae in terms of three-center overlap integrals are established for the multicenter t-electron integrals of CIPs and NCIPs that arise in the solution of the N-electron atomic and molecular problem (2hthN) when a Hylleraas approximation in Hartree-Fock-Roothaan theory is employed. With the help of expansion formulae for translation of STOs, the three-center overlap integrals are expressed through the two-center overlap integrals. The formulae obtained are valid for arbitrary quantum numbers, screening constants and location of orbitals. PMID:12750966

  13. Contribution of Physical Interactions to Signaling Specificity between a Diguanylate Cyclase and Its Effector

    PubMed Central

    Dahlstrom, Kurt M.; Giglio, Krista M.; Collins, Alan J.; Sondermann, Holger

    2015-01-01

    ABSTRACT Cyclic diguanylate (c-di-GMP) is a bacterial second messenger that controls multiple cellular processes. c-di-GMP networks have up to dozens of diguanylate cyclases (DGCs) that synthesize c-di-GMP along with many c-di-GMP-responsive target proteins that can bind and respond to this signal. For such networks to have order, a mechanism(s) likely exists that allow DGCs to specifically signal their targets, and it has been suggested that physical interactions might provide such specificity. Our results show a DGC from Pseudomonas fluorescens physically interacting with its target protein at a conserved interface, and this interface can be predictive of DGC-target protein interactions. Furthermore, we demonstrate that physical interaction is necessary for the DGC to maximally signal its target. If such “local signaling” is a theme for even a fraction of the DGCs used by bacteria, it becomes possible to posit a model whereby physical interaction allows a DGC to directly signal its target protein, which in turn may help curtail undesired cross talk with other members of the network. PMID:26670387

  14. Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells.

    PubMed

    Taipale, Mikko; Krykbaeva, Irina; Whitesell, Luke; Santagata, Sandro; Zhang, Jianming; Liu, Qingsong; Gray, Nathanael S; Lindquist, Susan

    2013-07-01

    The interaction between the HSP90 chaperone and its client kinases is sensitive to the conformational status of the kinase, and stabilization of the kinase fold by small molecules strongly decreases chaperone interaction. Here we exploit this observation and assay small-molecule binding to kinases in living cells, using chaperones as 'thermodynamic sensors'. The method allows determination of target specificities of both ATP-competitive and allosteric inhibitors in the kinases' native cellular context in high throughput. We profile target specificities of 30 diverse kinase inhibitors against >300 kinases. Demonstrating the value of the assay, we identify ETV6-NTRK3 as a target of the FDA-approved drug crizotinib (Xalkori). Crizotinib inhibits proliferation of ETV6-NTRK3-dependent tumor cells with nanomolar potency and induces the regression of established tumor xenografts in mice. Finally, we show that our approach is applicable to other chaperone and target classes by assaying HSP70/steroid hormone receptor and CDC37/kinase interactions, suggesting that chaperone interactions will have broad application in detecting drug-target interactions in vivo.

  15. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study

    SciTech Connect

    Tan Ming |; Xia Ming; Cao Sheng; Huang Pengwei; Farkas, Tibor |; Meller, Jarek |; Hegde, Rashmi S. |; Li Xuemei; Rao Zihe; Jiang Xi |

    2008-09-30

    Noroviruses interact with histo-blood group antigen (HBGA) receptors in a strain-specific manner probably detecting subtle structural differences in the carbohydrate receptors. The specific recognition of types A and B antigens by various norovirus strains is a typical example. The only difference between the types A and B antigens is the acetamide linked to the terminal galactose of the A but not to the B antigen. The crystal structure of the P dimer of a GII-4 norovirus (VA387) bound to types A and B trisaccharides has elucidated the A/B binding site on the capsid but did not explain the binding specificity of the two antigens. In this study, using site-directed mutagenesis, we have identified three residues on the VA387 capsid that are sterically close to the acetamide and are required for binding to A but not B antigens, indicating that the acetamide determines the binding specificity between the A and B antigens. Further mutational analysis showed that a nearby open cavity may also be involved in binding specificity to HBGAs. In addition, a systematic mutational analysis of residues in and around the binding interface has identified a group of amino acids that are required for binding but do not have direct contact with the carbohydrate antigens, implying that these residues may be involved in the structural integrity of the receptor binding interface. Taken together, our study provides new insights into the carbohydrate/capsid interactions which are a valuable complement to the atomic structures in understanding the virus/host interaction and in the future design of antiviral agents.

  16. Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP.

    PubMed

    Shimomura, Atsushi; Patel, Dharmeshkumar; Wilson, Sarah M; Koehler, Karl R; Khanna, Rajesh; Hashino, Eri

    2015-01-01

    Nervous system development relies on the generation of precise numbers of excitatory and inhibitory neurons. The homeodomain transcription factor, T-cell leukemia 3 (Tlx3), functions as the master neuronal fate regulator by instructively promoting the specification of glutamatergic excitatory neurons and suppressing the specification of gamma-aminobutyric acid (GABAergic) neurons. However, how Tlx3 promotes glutamatergic neuronal subtype specification is poorly understood. In this study, we found that Tlx3 directly interacts with the epigenetic co-activator cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP) and that the Tlx3 homeodomain is essential for this interaction. The interaction between Tlx3 and CBP was enhanced by the three amino acid loop extension (TALE)-class homeodomain transcription factor, pre-B-cell leukemia transcription factor 3 (Pbx3). Using mouse embryonic stem (ES) cells stably expressing Tlx3, we found that the interaction between Tlx3 and CBP became detectable only after these Tlx3-expressing ES cells were committed to a neural lineage, which coincided with increased Pbx3 expression during neural differentiation from ES cells. Forced expression of mutated Tlx3 lacking the homeodomain in ES cells undergoing neural differentiation resulted in significantly reduced expression of glutamatergic neuronal subtype markers, but had little effect on the expression on pan neural markers. Collectively, our results strongly suggest that functional interplay between Tlx3 and CBP plays a critical role in neuronal subtype specification, providing novel insights into the epigenetic regulatory mechanism that modulates the transcriptional efficacy of a selective set of neuronal subtype-specific genes during differentiation. PMID:26258652

  17. Tlx3 Promotes Glutamatergic Neuronal Subtype Specification through Direct Interactions with the Chromatin Modifier CBP

    PubMed Central

    Shimomura, Atsushi; Patel, Dharmeshkumar; Wilson, Sarah M.; Koehler, Karl R.; Khanna, Rajesh; Hashino, Eri

    2015-01-01

    Nervous system development relies on the generation of precise numbers of excitatory and inhibitory neurons. The homeodomain transcription factor, T-cell leukemia 3 (Tlx3), functions as the master neuronal fate regulator by instructively promoting the specification of glutamatergic excitatory neurons and suppressing the specification of gamma-aminobutyric acid (GABAergic) neurons. However, how Tlx3 promotes glutamatergic neuronal subtype specification is poorly understood. In this study, we found that Tlx3 directly interacts with the epigenetic co-activator cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP) and that the Tlx3 homeodomain is essential for this interaction. The interaction between Tlx3 and CBP was enhanced by the three amino acid loop extension (TALE)-class homeodomain transcription factor, pre-B-cell leukemia transcription factor 3 (Pbx3). Using mouse embryonic stem (ES) cells stably expressing Tlx3, we found that the interaction between Tlx3 and CBP became detectable only after these Tlx3-expressing ES cells were committed to a neural lineage, which coincided with increased Pbx3 expression during neural differentiation from ES cells. Forced expression of mutated Tlx3 lacking the homeodomain in ES cells undergoing neural differentiation resulted in significantly reduced expression of glutamatergic neuronal subtype markers, but had little effect on the expression on pan neural markers. Collectively, our results strongly suggest that functional interplay between Tlx3 and CBP plays a critical role in neuronal subtype specification, providing novel insights into the epigenetic regulatory mechanism that modulates the transcriptional efficacy of a selective set of neuronal subtype-specific genes during differentiation. PMID:26258652

  18. Hanford waste-form release and sediment interaction: A status report with rationale and recommendations for additional studies

    SciTech Connect

    Serne, R.J. ); Wood, M.I. )

    1990-05-01

    This report documents the currently available geochemical data base for release and retardation for actual Hanford Site materials (wastes and/or sediments). The report also recommends specific laboratory tests and presents the rationale for the recommendations. The purpose of this document is threefold: to summarize currently available information, to provide a strategy for generating additional data, and to provide recommendations on specific data collection methods and tests matrices. This report outlines a data collection approach that relies on feedback from performance analyses to ascertain when adequate data have been collected. The data collection scheme emphasizes laboratory testing based on empiricism. 196 refs., 4 figs., 36 tabs.

  19. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  20. Interactions of cryptosin with mammalian cardiac dihydropyridine-specific calcium channels

    SciTech Connect

    Rao, V.R.; Banning, J.W. )

    1990-01-01

    Cryptosin, a new cardenolide, was found to be a potent inhibitor of cardiac Na{sup +} and K{sup +} dependent Adenosinetri-phosphatase. In experiments with dog heart ex vivo, development of inotropic and toxic effect correlated with changes in the cardiac dihydropyridine-specific calcium channels as measured by the binding of {sup 3}(H)PN 200-110. A significant change in the PN 200-110 binding was observed when guinea pig and dog heart sarcolemmal membranes were pre-incubated with cryptosin in vitro. Binding analysis of {sup 3}(H)PN 200-110 (Isradipine), a 1,4-dihydropyridine analog with very specific calcium channel binding properties, in both in vitro and ex vivo studies were consistent and indicated a non-specific type of interaction of cryptosin with mammalian cardiac 1,4-dihydropyridine-specific calcium channels.

  1. Major histocompatibility complex class II molecules can protect from diabetes by positively selecting T cells with additional specificities.

    PubMed

    Lühder, F; Katz, J; Benoist, C; Mathis, D

    1998-02-01

    Insulin-dependent diabetes is heavily influenced by genes encoded within the major histocompatibility complex (MHC), positively by some class II alleles and negatively by others. We have explored the mechanism of MHC class II-mediated protection from diabetes using a mouse model carrying the rearranged T cell receptor (TCR) transgenes from a diabetogenic T cell clone derived from a nonobese diabetic mouse. BDC2.5 TCR transgenics with C57Bl/6 background genes and two doses of the H-2(g7) allele exhibited strong insulitis at approximately 3 wk of age and most developed diabetes a few weeks later. When one of the H-2(g7) alleles was replaced by H-2(b), insulitis was still severe and only slightly delayed, but diabetes was markedly inhibited in both its penetrance and time of onset. The protective effect was mediated by the Abetab gene, and did not merely reflect haplozygosity of the Abetag7 gene. The only differences we observed in the T cell compartments of g7/g7 and g7/b mice were a decrease in CD4(+) cells displaying the transgene-encoded TCR and an increase in cells expressing endogenously encoded TCR alpha-chains. When the synthesis of endogenously encoded alpha-chains was prevented, the g7/b animals were no longer protected from diabetes. g7/b mice did not have a general defect in the production of Ag7-restricted T cells, and antigen-presenting cells from g7/b animals were as effective as those from g7/g7 mice in stimulating Ag7-restricted T cell hybridomas. These results argue against mechanisms of protection involving clonal deletion or anergization of diabetogenic T cells, or one depending on capture of potentially pathogenic Ag7-restricted epitopes by Ab molecules. Rather, they support a mechanism based on MHC class II-mediated positive selection of T cells expressing additional specificities. PMID:9449718

  2. Yeast growth plasticity is regulated by environment-specific multi-QTL interactions.

    PubMed

    Bhatia, Aatish; Yadav, Anupama; Zhu, Chenchen; Gagneur, Julien; Radhakrishnan, Aparna; Steinmetz, Lars M; Bhanot, Gyan; Sinha, Himanshu

    2014-01-28

    For a unicellular, nonmotile organism like Saccharomyces cerevisiae, carbon sources act as nutrients and as signaling molecules; consequently, these sources affect various fitness parameters, including growth. It is therefore advantageous for yeast strains to adapt their growth to carbon source variation. The ability of a given genotype to manifest different phenotypes in varying environments is known as phenotypic plasticity. To identify quantitative trait loci (QTL) that drive plasticity in growth, two growth parameters (growth rate and biomass) were measured for a set of meiotic recombinants of two genetically divergent yeast strains grown in different carbon sources. To identify QTL contributing to plasticity across pairs of environments, gene-environment interaction mapping was performed, which identified several QTL that have a differential effect across environments, some of which act antagonistically across pairs of environments. Multi-QTL analysis identified loci interacting with previously known growth affecting QTL as well as novel two-QTL interactions that affect growth. A QTL that had no significant independent effect was found to alter growth rate and biomass for several carbon sources through two-QTL interactions. Our study demonstrates that environment-specific epistatic interactions contribute to the growth plasticity in yeast. We propose that a targeted scan for epistatic interactions, such as the one described here, can help unravel mechanisms regulating phenotypic plasticity.

  3. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall.

    PubMed

    Bouhss, Ahmed; Al-Dabbagh, Bayan; Vincent, Michel; Odaert, Benoit; Aumont-Nicaise, Magalie; Bressolier, Philippe; Desmadril, Michel; Mengin-Lecreulx, Dominique; Urdaci, Maria C; Gallay, Jacques

    2009-09-01

    We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of approximately 0.3 muM and stoichiometry of approximately 2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C(55)-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target. PMID:19720027

  4. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions.

    PubMed

    Walkiewicz, Katarzyna W; Girault, Jean-Antoine; Arold, Stefan T

    2015-10-01

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein 'nanomachines' to become activated in a site-specific manner.

  5. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  6. Additive effects of levonorgestrel and ethinylestradiol on brain aromatase (cyp19a1b) in zebrafish specific in vitro and in vivo bioassays.

    PubMed

    Hinfray, N; Tebby, C; Garoche, C; Piccini, B; Bourgine, G; Aït-Aïssa, S; Kah, O; Pakdel, F; Brion, F

    2016-09-15

    Estrogens and progestins are widely used in combination in human medicine and both are present in aquatic environment. Despite the joint exposure of aquatic wildlife to estrogens and progestins, very little information is available on their combined effects. In the present study we investigated the effect of ethinylestradiol (EE2) and Levonorgestrel (LNG), alone and in mixtures, on the expression of the brain specific ER-regulated cyp19a1b gene. For that purpose, recently established zebrafish-derived tools were used: (i) an in vitro transient reporter gene assay in a human glial cell line (U251-MG) co-transfected with zebrafish estrogen receptors (zfERs) and the luciferase gene under the control of the zebrafish cyp19a1b gene promoter and (ii) an in vivo bioassay using a transgenic zebrafish expressing GFP under the control of the zebrafish cyp19a1b gene promoter (cyp19a1b-GFP). Concentration-response relationships for single chemicals were modeled and used to design the mixture experiments following a ray design. The results from mixture experiments were analyzed to predict joint effects according to concentration addition and statistical approaches were used to characterize the potential interactions between the components of the mixtures (synergism/antagonism). We confirmed that some progestins could elicit estrogenic effects in fish brain. In mixtures, EE2 and LNG exerted additive estrogenic effects both in vitro and in vivo, suggesting that some environmental progestin could exert effects that will add to those of environmental (xeno-)estrogens. Moreover, our zebrafish specific assays are valuable tools that could be used in risk assessment for both single chemicals and their mixtures. PMID:27491593

  7. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering.

    PubMed

    Bassett, Andrew R; Azzam, Ghows; Wheatley, Lucy; Tibbit, Charlotte; Rajakumar, Timothy; McGowan, Simon; Stanger, Nathan; Ewels, Philip Andrew; Taylor, Stephen; Ponting, Chris P; Liu, Ji-Long; Sauka-Spengler, Tatjana; Fulga, Tudor A

    2014-01-01

    MicroRNA (miRNA) target recognition is largely dictated by short 'seed' sequences, and single miRNAs therefore have the potential to regulate a large number of genes. Understanding the contribution of specific miRNA-target interactions to the regulation of biological processes in vivo remains challenging. Here we use transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technologies to interrogate the functional relevance of predicted miRNA response elements (MREs) to post-transcriptional silencing in zebrafish and Drosophila. We also demonstrate an effective strategy that uses CRISPR-mediated homology-directed repair with short oligonucleotide donors for the assessment of MRE activity in human cells. These methods facilitate analysis of the direct phenotypic consequences resulting from blocking specific miRNA-MRE interactions at any point during development. PMID:25135198

  8. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics.

    PubMed

    Lundby, Alicia; Rossin, Elizabeth J; Steffensen, Annette B; Acha, Moshe Rav; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T; Jukema, J Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W; Krijthe, Bouwe P; Hofman, Albert; Uitterlinden, André G; Stricker, Bruno H; Nathoe, Hendrik M; Spiering, Wilko; Daly, Mark J; Asselbergs, Folkert W; van der Harst, Pim; Milan, David J; de Bakker, Paul I W; Lage, Kasper; Olsen, Jesper V

    2014-08-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  9. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    PubMed Central

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Rav Acha, Moshe; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N.; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T.; Jukema, J.Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Folkert W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I.W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated wtih complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  10. Understanding functional miRNA–target interactions in vivo by site-specific genome engineering

    PubMed Central

    Bassett, Andrew R.; Azzam, Ghows; Wheatley, Lucy; Tibbit, Charlotte; Rajakumar, Timothy; McGowan, Simon; Stanger, Nathan; Ewels, Philip Andrew; Taylor, Stephen; Ponting, Chris P.; Liu, Ji-Long; Sauka-Spengler, Tatjana; Fulga, Tudor A.

    2014-01-01

    MicroRNA (miRNA) target recognition is largely dictated by short ‘seed’ sequences, and single miRNAs therefore have the potential to regulate a large number of genes. Understanding the contribution of specific miRNA–target interactions to the regulation of biological processes in vivo remains challenging. Here we use transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technologies to interrogate the functional relevance of predicted miRNA response elements (MREs) to post-transcriptional silencing in zebrafish and Drosophila. We also demonstrate an effective strategy that uses CRISPR-mediated homology-directed repair with short oligonucleotide donors for the assessment of MRE activity in human cells. These methods facilitate analysis of the direct phenotypic consequences resulting from blocking specific miRNA–MRE interactions at any point during development. PMID:25135198

  11. Structural basis for the specific interaction of chicken haemoglobin with bromophenol blue: a computational analysis

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Wang, Zhanli; Qin, Wenbin; Zhang, Liangren

    2010-01-01

    It has been observed that bromophenol blue interacted specifically with chicken haemoglobin but not with carp haemoglobin during electrophoresis, but the mechanism of interaction is still not well understood. In this computational study, the binding of bromophenol blue to chicken haemoglobin has been investigated using sequence alignment, homology modelling, electrostatic potential distribution and flexible docking methods. Molecular modelling studies reveal that bromophenol blue-binding site, formed by residues Val1α, Leu2α, Ala131α, Thr134α, Ala138α and Arg141α, is located between two α chains of chicken haemoglobin, and the binding is dominated by hydrophobic interactions. Moreover, comparison of chicken and carp haemoglobin structural models provides a structural rationale for the recognition of bromophenol blue by chicken haemoglobin. These principles can in turn be used to study the molecular recognition mechanism and design a mimic of bromophenol blue for the development of new haemoglobin binders.

  12. The Interaction of Language-Specific and Universal Factors During the Acquisition of Morphophonemic Alternations With Exceptions.

    PubMed

    Baer-Henney, Dinah; Kügler, Frank; van de Vijver, Ruben

    2015-09-01

    Using the artificial language paradigm, we studied the acquisition of morphophonemic alternations with exceptions by 160 German adult learners. We tested the acquisition of two types of alternations in two regularity conditions while additionally varying length of training. In the first alternation, a vowel harmony, backness of the stem vowel determines backness of the suffix. This process is grounded in substance (phonetic motivation), and this universal phonetic factor bolsters learning a generalization. In the second alternation, tenseness of the stem vowel determines backness of the suffix vowel. This process is not based in substance, but it reflects a phonotactic property of German and our participants benefit from this language-specific factor. We found that learners use both cues, while substantive bias surfaces mainly in the most unstable situation. We show that language-specific and universal factors interact in learning.

  13. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin; Lan Zijian

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  14. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets.

    PubMed

    Mohan, Nimmy; Sudheesh, A P; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S

    2015-08-18

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing.

  15. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells

    SciTech Connect

    Fibbi, G.; Ziche, M.; Morbidelli, L. ); Magnelli, L.; Del Rosso, M. )

    1988-12-01

    On the basis of {sup 125}I-labeled plasminogen activator binding analysis the authors have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a K{sub d} of 0.8958{times}10{sup {minus}12} M. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.

  16. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets

    PubMed Central

    Mohan, Nimmy; AP, Sudheesh; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S.

    2015-01-01

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3′-end processing. PMID:26138484

  17. Phosphorylation of Sae2 Mediates Forkhead-associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function.

    PubMed

    Liang, Jason; Suhandynata, Raymond T; Zhou, Huilin

    2015-04-24

    Saccharomyces cerevisiae Sae2 and its ortholog CtIP in higher eukaryotes have a conserved role in the initial processing of DNA lesions and influencing their subsequent repair pathways. Sae2 is phosphorylated by the ATR/ATM family kinases Mec1 and Tel1 in response to DNA damage. Among the Mec1/Tel1 consensus phosphorylation sites of Sae2, we found that mutations of Thr-90 and Thr-279 of Sae2 into alanine caused a persistent Rad53 activation in response to a transient DNA damage, similar to the loss of Sae2. To gain insight into the function of this phosphorylation of Sae2, we performed a quantitative proteomics analysis to identify its associated proteins. We found that phosphorylation of Thr-90 of Sae2 mediates its interaction with Rad53, Dun1, Xrs2, Dma1, and Dma2, whereas Rad53 and Dun1 additionally interact with phosphorylated Thr-279 of Sae2. Mutations of the ligand-binding residues of Forkhead-associated (FHA) domains of Rad53, Dun1, Xrs2, Dma1, and Dma2 abolished their interactions with Sae2, revealing the involvement of FHA-specific interactions. Mutations of Thr-90 and Thr-279 of Sae2 caused a synergistic defect when combined with sgs1Δ and exo1Δ and elevated gross chromosomal rearrangements. Likewise, mutations of RAD53 and DUN1 caused a synthetic growth defect with sgs1Δ and elevated gross chromosomal rearrangements. These findings suggest that threonine-specific phosphorylation of Sae2 by Mec1 and Tel1 contributes to DNA repair and genome maintenance via its interactions with Rad53 and Dun1.

  18. Glycan specificity of myelin-associated glycoprotein and sialoadhesin deduced from interactions with synthetic oligosaccharides.

    PubMed

    Strenge, K; Schauer, R; Bovin, N; Hasegawa, A; Ishida, H; Kiso, M; Kelm, S

    1998-12-01

    Myelin-associated glycoprotein (MAG) and sialoadhesin (Sn) bind to sialylated glycans on cell surfaces and are thought to be involved in cell-cell interactions. In order to investigate how the interactions of these proteins are influenced by the glycan structure, we compared the inhibitory potencies of different synthetic monovalent oligosaccharides and polyvalent polyacrylamide derivatives. Using oligosaccharides with modifications in the sialic acid, galactose or N-acetylglucosamine moieties, we could demonstrate that both MAG and Sn bind with high preference to alpha2,3-linked sialic acid and interact at least with the three terminal monosaccharide units. For MAG, contacts with even more distant monosaccharides are likely, since pentasaccharides are bound better than trisaccharides. Also, an additional sialic acid at position six of the third-terminal monosaccharide unit enhances binding to MAG, whereas it does not influence binding to Sn significantly. Modifications of the sialic acid glycerol side chain demonstrated that the hydroxy groups at positions 8 and 9 are required for binding to both proteins. Surprisingly, MAG binds 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid significantly better than N-acetylneuraminic acid, whereas Sn prefers the latter structure. These results indicate that the interactions of MAG and Sn are mainly with sialic acid and that additional contacts with the subterminal galactose and N-acetylglucosamine residues also contribute to the binding strength, although to a lesser degree. PMID:9874234

  19. Cortical EEG alpha rhythms reflect task-specific somatosensory and motor interactions in humans.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Arendt-Nielsen, Lars; Soricelli, Andrea; Romani, Gian Luca; Rossini, Paolo Maria; Capotosto, Paolo

    2014-10-01

    Anticipating sensorimotor events allows adaptive reactions to environment with crucial implications for self-protection and survival. Here we review several studies of our group that aimed to test the hypothesis that the cortical processes preparing the elaboration of sensorimotor interaction is reflected by the reduction of anticipatory electroencephalographic alpha power (about 8-12Hz; event-related desynchronization, ERD), as an index that regulate task-specific sensorimotor processes, accounted by high-alpha sub-band (10-12Hz), rather than a general tonic alertness, accounted by low-alpha sub-band (8-10Hz). In this line, we propose a model for human cortical processes anticipating warned sensorimotor interactions. Overall, we reported a stronger high-alpha ERD before painful than non-painful somatosensory stimuli that is also predictive of the subjective evaluation of pain intensity. Furthermore, we showed that anticipatory high-alpha ERD increased before sensorimotor interactions between non-painful or painful stimuli and motor demands involving opposite hands. In contrast, sensorimotor interactions between painful somatosensory and sensorimotor demands involving the same hand decreased anticipatory high-alpha ERD, due to a sort of sensorimotor "gating" effect. In conclusion, we suggest that anticipatory cortical high-alpha rhythms reflect the central interference and/or integration of ascending (sensory) and descending (motor) signals relative to one or two hands before non-painful and painful sensorimotor interactions. PMID:24929901

  20. The detection of specific biomolecular interactions with micro-Hall magnetic sensors

    NASA Astrophysics Data System (ADS)

    Manandhar, Pradeep; Chen, Kan-Sheng; Aledealat, Khaled; Mihajlović, Goran; Yun, C. Steven; Field, Mark; Sullivan, Gerard J.; Strouse, Geoffrey F.; Bryant Chase, P.; von Molnár, Stephan; Xiong, Peng

    2009-09-01

    The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.

  1. Sequence-specific association in aqueous media by integrating hydrogen bonding and dynamic covalent interactions.

    PubMed

    Li, Minfeng; Yamato, Kazuhiro; Ferguson, Joseph S; Gong, Bing

    2006-10-01

    Oligoamide strands that associate in a sequence-specific fashion into hydrogen-bonded duplexes in nonpolar solvents were converted into disulfide cross-linked duplexes in aqueous media. Thus, by incorporating trityl-protected thiol groups, which allows the reversible formation of disulfide bonds, into the oligoamide strands, only duplexes consisting of complementary hydrogen-bonding sequences were formed in aqueous solution as well as in methanol. The sequence-specific cross-linking of oligoamide strands was confirmed by MALDI-TOF, reverse-phase HPLC, and by isolating a cross-linked duplex. This study demonstrates that the sequence-specificity characteristic of multiply hydrogen-bonded systems can be extended into competitive media through the interplay of H-bonding and reversible covalent interactions, based on which a new class of molecular associating and ligating units that are compatible with both polar and nonpolar environments can be conveniently obtained.

  2. Specific anion effects on the pressure dependence of the protein-protein interaction potential.

    PubMed

    Möller, Johannes; Grobelny, Sebastian; Schulze, Julian; Steffen, Andre; Bieder, Steffen; Paulus, Michael; Tolan, Metin; Winter, Roland

    2014-04-28

    We present a study on ion specific effects on the intermolecular interaction potential V(r) of dense protein solutions under high hydrostatic pressure conditions. Small-angle X-ray scattering in combination with a liquid-state theoretical approach was used to determine the effect of structure breaking/making salt anions (Cl(-), SO4(2-), PO4(3-)) on the intermolecular interaction of lysozyme molecules. It was found that besides the Debye-Hückel charge screening effect, reducing the repulsiveness of the interaction potential V(r) at low salt concentrations, a specific ion effect is observed at high salt concentrations for the multivalent kosmotropic anions, which modulates also the pressure dependence of the protein-protein interaction potential. Whereas sulfate and phosphate strongly influence the pressure dependence of V(r), chloride anions do not. The strong structure-making effect of the multivalent anions, dominating for the triply charged PO4(3-), renders the solution structure less bulk-water-like at high salt concentrations, which leads to an altered behavior of the pressure dependence of V(r). Hence, the particular structural properties of the salt solutions are able to influence the spatial organization and the intermolecular interactions of the proteins, in particular upon compression. These results are of interest for exploring the combined effects of ionic strength, temperature and pressure on the phase behavior of protein solutions, but may also be of relevance for understanding pressure effects on the hydration behavior of biological matter under extreme environmental conditions.

  3. Specific anion effects on the pressure dependence of the protein-protein interaction potential.

    PubMed

    Möller, Johannes; Grobelny, Sebastian; Schulze, Julian; Steffen, Andre; Bieder, Steffen; Paulus, Michael; Tolan, Metin; Winter, Roland

    2014-04-28

    We present a study on ion specific effects on the intermolecular interaction potential V(r) of dense protein solutions under high hydrostatic pressure conditions. Small-angle X-ray scattering in combination with a liquid-state theoretical approach was used to determine the effect of structure breaking/making salt anions (Cl(-), SO4(2-), PO4(3-)) on the intermolecular interaction of lysozyme molecules. It was found that besides the Debye-Hückel charge screening effect, reducing the repulsiveness of the interaction potential V(r) at low salt concentrations, a specific ion effect is observed at high salt concentrations for the multivalent kosmotropic anions, which modulates also the pressure dependence of the protein-protein interaction potential. Whereas sulfate and phosphate strongly influence the pressure dependence of V(r), chloride anions do not. The strong structure-making effect of the multivalent anions, dominating for the triply charged PO4(3-), renders the solution structure less bulk-water-like at high salt concentrations, which leads to an altered behavior of the pressure dependence of V(r). Hence, the particular structural properties of the salt solutions are able to influence the spatial organization and the intermolecular interactions of the proteins, in particular upon compression. These results are of interest for exploring the combined effects of ionic strength, temperature and pressure on the phase behavior of protein solutions, but may also be of relevance for understanding pressure effects on the hydration behavior of biological matter under extreme environmental conditions. PMID:24626853

  4. Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota.

    PubMed

    Massoumou, M; van Tuinen, D; Chatagnier, O; Arnould, C; Brechenmacher, L; Sanchez, L; Selim, S; Gianinazzi, S; Gianinazzi-Pearson, V

    2007-05-01

    Plant genes exhibiting common responses to different arbuscular mycorrhizal (AM) fungi and not induced under other biological conditions have been sought for to identify specific markers for monitoring the AM symbiosis. A subset of 14 candidate Medicago truncatula genes was identified as being potentially mycorrhiza responsive in previous cDNA microarray analyses and exclusive to cDNA libraries derived from mycorrhizal root tissues. Transcriptional activity of the selected plant genes was compared during root interactions with seven AM fungi belonging to different species of Glomus, Acaulospora, Gigaspora, or Scutellospora, and under widely different biological conditions (mycorrhiza, phosphate fertilization, pathogenic/beneficial microbe interactions, incompatible plant genotype). Ten of the M. truncatula genes were commonly induced by all the tested AM fungal species, and all were activated by at least two fungi. Most of the plant genes were transcribed uniquely in mycorrhizal roots, and several were already active at the appressorium stage of fungal development. Novel data provide evidence that common recognition responses to phylogenetically different Glomeromycota exist in plants during events that are unique to mycorrhiza interactions. They indicate that plants should possess a mycorrhiza-specific genetic program which is comodulated by a broad spectrum of AM fungi.

  5. On the Role of Specific Interactions in the Diffusion of Nanoparticles in Aqueous Polymer Solutions

    PubMed Central

    2013-01-01

    Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions. PMID:24354390

  6. PAIRpred: partner-specific prediction of interacting residues from sequence and structure.

    PubMed

    Minhas, Fayyaz ul Amir Afsar; Geiss, Brian J; Ben-Hur, Asa

    2014-07-01

    We present a novel partner-specific protein-protein interaction site prediction method called PAIRpred. Unlike most existing machine learning binding site prediction methods, PAIRpred uses information from both proteins in a protein complex to predict pairs of interacting residues from the two proteins. PAIRpred captures sequence and structure information about residue pairs through pairwise kernels that are used for training a support vector machine classifier. As a result, PAIRpred presents a more detailed model of protein binding, and offers state of the art accuracy in predicting binding sites at the protein level as well as inter-protein residue contacts at the complex level. We demonstrate PAIRpred's performance on Docking Benchmark 4.0 and recent CAPRI targets. We present a detailed performance analysis outlining the contribution of different sequence and structure features, together with a comparison to a variety of existing interface prediction techniques. We have also studied the impact of binding-associated conformational change on prediction accuracy and found PAIRpred to be more robust to such structural changes than existing schemes. As an illustration of the potential applications of PAIRpred, we provide a case study in which PAIRpred is used to analyze the nature and specificity of the interface in the interaction of human ISG15 protein with NS1 protein from influenza A virus. Python code for PAIRpred is available at http://combi.cs.colostate.edu/supplements/pairpred/. PMID:24243399

  7. Multiple Stressors in Agricultural Streams: A Mesocosm Study of Interactions among Raised Water Temperature, Sediment Addition and Nutrient Enrichment

    PubMed Central

    Piggott, Jeremy J.; Lange, Katharina; Townsend, Colin R.; Matthaei, Christoph D.

    2012-01-01

    Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural) and/or sediment (grain size 0.2 mm; high, intermediate, natural) to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor) generally in a negative manner, while nutrient enrichment affected 59% (mostly positive) and raised temperature 59% (mostly positive). More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss) accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer strips, both

  8. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment.

    PubMed

    Piggott, Jeremy J; Lange, Katharina; Townsend, Colin R; Matthaei, Christoph D

    2012-01-01

    Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural) and/or sediment (grain size 0.2 mm; high, intermediate, natural) to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor) generally in a negative manner, while nutrient enrichment affected 59% (mostly positive) and raised temperature 59% (mostly positive). More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss) accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer strips, both

  9. 49 CFR 173.304a - Additional requirements for shipment of liquefied compressed gases in specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... authorized only when transported by motor vehicle, rail car, or cargo-only aircraft. (ii) Additional... dangerous projection of a closing device when exposed to fire. (4) Verification of content. A cylinder...

  10. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  11. Nucleotide binding database NBDB--a collection of sequence motifs with specific protein-ligand interactions.

    PubMed

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand-protein interactions found in crystallized ligand-protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions.

  12. Specific Roles of MicroRNAs in Their Interactions with Environmental Factors

    PubMed Central

    Wang, Juan; Cui, Qinghua

    2012-01-01

    MicroRNAs (miRNAs) have emerged as critical regulators of gene expression by modulating numerous target mRNAs expression at posttranscriptional level. Extensive studies have shown that miRNAs are critical in various important biological processes, including cell growth, proliferation, differentiation, development, and apoptosis. In terms of their importance, miRNA dysfunction has been associated with a broad range of diseases. Increased number of studies have shown that miRNAs can functionally interact with a wide spectrum of environmental factors (EFs) including drugs, industrial materials, virus and bacterial pathogens, cigarette smoking, alcohol, nutrition, sleep, exercise, stress, and radiation. More importantly, the interactions between miRNAs and EFs have been shown to play critical roles in determining abnormal phenotypes and diseases. In this paper, we propose an outline of the current knowledge about specific roles of miRNAs in their interactions with various EFs and analyze the literatures detailing miRNAs-EFs interactions in the context of various of diseases. PMID:23209884

  13. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages.

    PubMed

    Moleón, Marcos; Sánchez-Zapata, José A; Selva, Nuria; Donázar, José A; Owen-Smith, Norman

    2014-11-01

    Predation and scavenging have been classically understood as independent processes, with predator-prey interactions and scavenger-carrion relationships occurring separately. However, the mere recognition that most predators also scavenge at variable rates, which has been traditionally ignored in food-web and community ecology, leads to a number of emergent interaction routes linking predation and scavenging. The general goal of this review is to draw attention to the main inter-specific interactions connecting predators (particularly, large mammalian carnivores), their live prey (mainly ungulates), vultures and carrion production in terrestrial assemblages of vertebrates. Overall, we report an intricate network of both direct (competition, facilitation) and indirect (hyperpredation, hypopredation) processes, and provide a conceptual framework for the future development of this promising topic in ecological, evolutionary and biodiversity conservation research. The classic view that scavenging does not affect the population dynamics of consumed organisms is questioned, as multiple indirect top-down effects emerge when considering carrion and its facultative consumption by predators as fundamental and dynamic components of food webs. Stimulating although challenging research opportunities arise from the study of the interactions among living and detrital or non-living resource pools in food webs. PMID:24602047

  14. Novel evidence for the specific interaction between cholesterol and α-haemolysin of Escherichia coli.

    PubMed

    Vazquez, Romina F; Maté, Sabina M; Bakás, Laura S; Fernández, Marisa M; Malchiodi, Emilio L; Herlax, Vanesa S

    2014-03-15

    Several toxins that act on animal cells present different, but specific, interactions with cholesterol or sphingomyelin. In the present study we demonstrate that HlyA (α-haemolysin) of Escherichia coli interacts directly with cholesterol. We have recently reported that HlyA became associated with detergent-resistant membranes enriched in cholesterol and sphingomyelin; moreover, toxin oligomerization, and hence haemolytic activity, diminishes in cholesterol-depleted erythrocytes. Considering these results, we studied the insertion process, an essential step in the lytic mechanism, by the monolayer technique, finding that HlyA insertion is favoured in cholesterol- and sphingomyelin-containing membranes. On the basis of this result, we studied the direct interaction with either of the lipids by lipid dot blotting, lysis inhibition and SPR (surface plasmon resonance) assays. The results of the present study demonstrated that an interaction between cholesterol and HlyA exists that seems to favour a conformational state of the protein that allows its correct insertion into the membrane and its further oligomerization to form pores. PMID:24351077

  15. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis.

    PubMed

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors. PMID:21695044

  16. Nucleotide binding database NBDB--a collection of sequence motifs with specific protein-ligand interactions.

    PubMed

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand-protein interactions found in crystallized ligand-protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  17. Interactions of the Algicidal Bacterium Kordia algicida with Diatoms: Regulated Protease Excretion for Specific Algal Lysis

    PubMed Central

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors. PMID:21695044

  18. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    PubMed

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (P<0.01). Our results suggest that both the absolute and specific enzyme activities could be used as sensitive soil quality indicators that provide useful linkages with the microbial community structures and environmental factors. To maintain microbial activity and to minimize environmental impacts, P should be applied as a combination of inorganic and organic forms, and total P fertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1). PMID:26196069

  19. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    PubMed

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (P<0.01). Our results suggest that both the absolute and specific enzyme activities could be used as sensitive soil quality indicators that provide useful linkages with the microbial community structures and environmental factors. To maintain microbial activity and to minimize environmental impacts, P should be applied as a combination of inorganic and organic forms, and total P fertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1).

  20. Accessing the applicability of polarized protein-specific charge in linear interaction energy analysis.

    PubMed

    Jia, Xiangyu; Zeng, Juan; Zhang, John Z H; Mei, Ye

    2014-04-01

    The reliability of the linear interaction energy (LIE) depends on the atomic charge model used to delineate the Coulomb interaction between the ligand and its environment. In this work, the polarized protein-specific charge (PPC) implementing a recently proposed fitting scheme has been examined in the LIE calculations of the binding affinities for avidin and β-secretase binding complexes. This charge fitting scheme, termed delta restrained electrostatic potential, bypasses the prevalent numerical difficulty of rank deficiency in electrostatic-potential-based charge fitting methods via a dual-step fitting strategy. A remarkable consistency between the predicted binding affinities and the experimental measurement has been observed. This work serves as a direct evidence of PPC's applicability in rational drug design.

  1. Sex-specific variation in the interaction between Distichlis spicata (Poaceae) and mycorrhizal fungi.

    PubMed

    Eppley, Sarah M; Mercer, Charlene A; Haaning, Christian; Graves, Camille B

    2009-11-01

    Associations between mycorrhizal fungi and plants can influence intraspecific competition and shape plant population structure. While variation in plant genotypes is known to affect mycorrhizal colonization in crop systems, little is known about how genotypes affect colonization in natural plant populations or how plant sex might influence colonization with mycorrhizal fungi in plant species with dimorphic sexual systems. In this study, we analyzed mycorrhizal colonization in males and females of the wetland dioecious grass Distichlis spicata, which has spatially segregated sexes. Our results suggest that D. spicata males and females interact with mycorrhizal fungi differently. We discuss the implications for the role of this sex-specific symbiotic interaction in the maintenance of the within-population sex ratio bias of D. spicata.

  2. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  3. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  4. Interaction between Major Nitrogen Regulatory Protein NIT2 and Pathway-Specific Regulatory Factor NIT4 Is Required for Their Synergistic Activation of Gene Expression in Neurospora crassa

    PubMed Central

    Feng, Bo; Marzluf, George A.

    1998-01-01

    In Neurospora crassa, the major nitrogen regulatory protein, NIT2, a member of the GATA family of transcription factors, controls positively the expression of numerous genes which specify nitrogen catabolic enzymes. Expression of the highly regulated structural gene nit-3, which encodes nitrate reductase, is dependent upon a synergistic interaction of NIT2 with a pathway-specific control protein, NIT4, a member of the GAL4 family of fungal regulatory factors. The NIT2 and NIT4 proteins both bind at specific recognition elements in the nit-3 promoter, but, in addition, we show that a direct protein-protein interaction between NIT2 and NIT4 is essential for optimal expression of the nit-3 structural gene. Neurospora possesses at least five different GATA factors which control different areas of cellular function, but which have a similar DNA binding specificity. Significantly, only NIT2, of the several Neurospora GATA factors examined, interacts with NIT4. We propose that protein-protein interactions of the individual GATA factors with additional pathway-specific regulatory factors determine each of their specific regulatory functions. PMID:9632783

  5. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers

    PubMed Central

    Groner, William D.; Christy, Megan E.; Kreiner, Catherine M.; Liljegren, Sarah J.

    2016-01-01

    An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  6. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules.

    PubMed

    Han, Huijong; Myllykoski, Matti; Ruskamo, Salla; Wang, Chaozhan; Kursula, Petri

    2013-01-01

    The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.

  7. Revealing the specific solute-solvent interactions via the measurements of the NMR spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Shahkhatuni, Astghik A.; Shahkhatuni, Aleksan G.; Minasyan, Nune S.; Panosyan, Henry A.; Sahakyan, Aleksandr B.

    2015-03-01

    The solvent induced changes of one-bond spin-spin coupling constants (SSCCs) are investigated for a set of substituted methanes in solvents with various ε dielectric constants. Solute-solvent systems with varying types of ε-dependences for the solute SSCCs are outlined. Aliphatic hydrocarbon solvents and their halogen-substituted derivatives comprise the subset, where the SSCC is linearly dependent on the solvent reaction field, f(ε) = 2(ε - 1)/(2ε + 1), hence indicating the absence of specific solute-solvent interactions. In such solvents, SSCCs depend only on bulk dielectric properties of the medium, and, the magnitudes of the solvent sensitivities of SSCCs are fully determined by the initial values of "pure" SSCCs that correspond to the isolated solute molecules. The solvents involved in the second subset have a relatively chaotic distribution of the SSCC/f(ε) relationship, with possible groupings by their chemical nature. There, the conventional linear SSCC/f(ε) dependence is perturbed by additional interactions, such as hydrogen bonding, specific association processes, lone electron pairs, and conjugation.

  8. Ion permeation inside microgel particles induced by specific interactions: from charge inversion to overcharging.

    PubMed

    Moncho-Jordá, A; Adroher-Benítez, I

    2014-08-21

    In this work we have performed a theoretical study of a system formed by ionic microgels in the presence of monovalent salt with the help of Ornstein-Zernike integral equations within the hypernetted-chain (HNC) approximation. We focus in particular on analysing the role that the short-range specific interactions between the polymer fibres of the microgel and the incoming ions have on the equilibrium ion distribution inside and outside the microgel. For this purpose, a theoretical model based on the equilibrium partitioning effect is developed to determine the interaction between the microgel particle and a single ion. The results indicate that when counterions are specifically attracted to the polymer fibres of the microgel, an enhanced counterion accumulation occurs that induces the charge inversion of the microgel and a strong increase of the microgel net charge (or overcharging). In the case of coions, the specific attraction is also able to provoke the coion adsorption even though they are electrostatically repelled, and so increasing the microgel charge (true overcharging). Moreover, we show that ion adsorption onto the microgel particle is very different in swollen and shrunken states due to the competition between specific attraction and steric repulsion. In particular, ion adsorption occurs preferentially in the internal core of the particle for swollen states, whereas it is mainly concentrated in the external shell for de-swollen configurations. Finally, we observe the existence of a critical salt concentration, where the net charge of the microgels vanishes; above this inversion point the net charge of the microgels increases again, thus leading to reentrant stability of microgel suspensions.

  9. Specificity and cooperativity at [beta]-lactamase position 104 in TEM-1/BLIP and SHV-1/BLIP interactions

    SciTech Connect

    Hanes, Melinda S.; Reynolds, Kimberly A.; McNamara, Case; Ghosh, Partho; Bonomo, Robert A.; Kirsch, Jack F.; Handel, Tracy M.

    2011-11-02

    Establishing a quantitative understanding of the determinants of affinity in protein-protein interactions remains challenging. For example, TEM-1/{beta}-lactamase inhibitor protein (BLIP) and SHV-1/BLIP are homologous {beta}-lactamase/{beta}-lactamase inhibitor protein complexes with disparate K{sub d} values (3 nM and 2 {mu}M, respectively), and a single substitution, D104E in SHV-1, results in a 1000-fold enhancement in binding affinity. In TEM-1, E104 participates in a salt bridge with BLIP K74, whereas the corresponding SHV-1 D104 does not in the wild type SHV-1/BLIP co-structure. Here, we present a 1.6 {angstrom} crystal structure of the SHV-1 D104E/BLIP complex that demonstrates that this point mutation restores this salt bridge. Additionally, mutation of a neighboring residue, BLIP E73M, results in salt bridge formation between SHV-1 D104 and BLIP K74 and a 400-fold increase in binding affinity. To understand how this salt bridge contributes to complex affinity, the cooperativity between the E/K or D/K salt bridge pair and a neighboring hot spot residue (BLIP F142) was investigated using double mutant cycle analyses in the background of the E73M mutation. We find that BLIP F142 cooperatively stabilizes both interactions, illustrating how a single mutation at a hot spot position can drive large perturbations in interface stability and specificity through a cooperative interaction network.

  10. Super-additive interaction of the reinforcing effects of cocaine and H1-antihistamines in rhesus monkeys.

    PubMed

    Wang, Zhixia; Woolverton, William L

    2009-02-01

    Histamine H1 receptor antagonists can be sedating and have behavioral effects, including reinforcing and discriminative stimulus effects in non-humans, that predict abuse liability. Previous research has suggested that antihistamines can enhance the effects of some drugs of abuse. We have reported a synergistic interaction between cocaine and diphenhydramine (DPH) in a self-administration assay with monkeys. The present study was designed to extend those findings to other combinations of cocaine and DPH, and to the mixture of cocaine and another H1-antihistamine, pyrilamine. Rhesus monkeys were prepared with chronic i.v. catheters and allowed to self-administer cocaine, DPH or pyrilamine alone or as mixtures under a progressive-ratio schedule of reinforcement. Cocaine, DPH and pyrilamine alone maintained self-administration and cocaine was the stronger reinforcer. When cocaine was combined with DPH or pyrilamine in a 1:1, 1:2 or 2:1 ratio of the ED(50)s, the combinations were super-additive as reinforcers. Reinforcing strength of the combinations was greater than that of the antihistamines alone but not greater than cocaine. The data support the prediction that the combination of cocaine and histamine H1 receptor antagonists could have enhanced potential for abuse relative to either drug alone. The interaction may involve dopamine systems in the CNS. PMID:18930758

  11. Saturated fat consumption and the Theory of Planned Behaviour: exploring additive and interactive effects of habit strength.

    PubMed

    de Bruijn, Gert-Jan; Kroeze, Willemieke; Oenema, Anke; Brug, Johannes

    2008-09-01

    The additive and interactive effects of habit strength in the explanation of saturated fat intake were explored within the framework of the Theory of Planned Behaviour (TPB). Cross-sectional data were gathered in a Dutch adult sample (n=764) using self-administered questionnaires and analyzed using hierarchical regression analyses and simple slope analyses. Results showed that habit strength was a significant correlate of fat intake (beta=-0.11) and significantly increased the amount of explained variance in fat intake (R(2-change)=0.01). Furthermore, based on a significant interaction effect (beta=0.11), simple slope analyses revealed that intention was a significant correlate of fat intake for low levels (beta=-0.29) and medium levels (beta=-0.19) of habit strength, but a weaker and non-significant correlate for high levels (beta=-0.07) of habit strength. Higher habit strength may thus make limiting fat intake a non-intentional behaviour. Implications for information and motivation-based interventions are discussed. PMID:18471932

  12. The atom-surface interaction potential for He-NaCl: A model based on pairwise additivity

    NASA Astrophysics Data System (ADS)

    Hutson, Jeremy M.; Fowler, P. W.

    1986-08-01

    The recently developed semi-empirical model of Fowler and Hutson is applied to the He-NaCl atom-surface interaction potential. Ab initio self-consistent field calculations of the repulsive interactions between He atoms and in-crystal Cl - and Na + ions are performed. Dispersion coefficients involving in-crystal ions are also calculated. The atom-surface potential is constructed using a model based on pairwise additivity of atom-ion forces. With a small adjustment of the repulsive part, this potential gives good agreement with the experimental bound state energies obtained from selective adsorption resonances in low-energy atom scattering experiments. Close-coupling calculations of the resonant scattering are performed, and good agreement with the experimental peak positions and intensity patterns is obtained. It is concluded that there are no bound states deeper than those observed in the selective adsorption experiments, and that the well depth of the He-NaCl potential is 6.0 ± 0.2 meV.

  13. MHC/Peptide-Specific Interaction of the Humoral Immune System: A New Category of Antibodies.

    PubMed

    Held, Gerhard; Luescher, Immanuel F; Neumann, Frank; Papaioannou, Chrysostomos; Schirrmann, Thomas; Sester, Martina; Smola, Sigrun; Pfreundschuh, Michael

    2015-11-01

    Abs bind to unprocessed Ags, whereas cytotoxic CD8(+) T cells recognize peptides derived from endogenously processed Ags presented in the context of class I MHC complexes. We screened, by ELISA, human sera for Abs reacting specifically with the influenza matrix protein (IMP)-derived peptide(58-66) displayed by HLA-A*0201 complexes. Among 653 healthy volunteers, blood donors, and women on delivery, high-titered HLA-A*0201/IMP(58-66) complex-specific IgG Abs were detected in 11 females with a history of pregnancies and in 1 male, all HLA-A*0201(-). These Abs had the same specificity as HLA-A*0201/IMP(58-66)-specific cytotoxic T cells and bound neither to HLA-A*0201 nor the peptide alone. No such Abs were detected in HLA-A*0201(+) volunteers. These Abs were not cross-reactive to other self-MHC class I alleles displaying IMP(58-66), but bound to MHC class I complexes of an HLA nonidentical offspring. HLA-A*0201/IMP(58-66) Abs were also detected in the cord blood of newborns, indicating that HLA-A*0201/IMP(58-66) Abs are produced in HLA-A*0201(-) mothers and enter the fetal blood system. That Abs can bind to peptides derived from endogenous Ags presented by MHC complexes opens new perspectives on interactions between the cellular and humoral immune system. PMID:26416277

  14. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent.

    PubMed

    Whelan, J A; Dunbar, P R; Price, D A; Purbhoo, M A; Lechner, F; Ogg, G S; Griffiths, G; Phillips, R E; Cerundolo, V; Sewell, A K

    1999-10-15

    Tetrameric peptide-MHC class I complexes ("tetramers") are proving invaluable as reagents for characterizing immune responses involving CTLs. However, because the TCR can exhibit a degree of promiscuity for binding peptide-MHC class I ligands, there is potential for cross-reactivity. Recent reports showing that the TCR/peptide-MHC interaction is dramatically dependent upon temperature led us to investigate the effects of incubation temperature on tetramer staining. We find that tetramers rapidly stain CTLs with high intensity at 37 degrees C. We examine the fine specificity of tetramer staining using a well-characterized set of natural epitope variants. Peptide variants that elicit little or no functional cellular response from CTLs can stain these cells at 4 degrees C but not at 37 degrees C when incorporated into tetramers. These results suggest that some studies reporting tetramer incubations at 4 degrees C could detect cross-reactive populations of CTLs with minimal avidity for the tetramer peptide, especially in the tetramer-low population. For identifying specific CTLs among polyclonal cell populations such as PBLs, incubation with tetramers at 37 degrees C improves the staining intensity of specific CTLs, resulting in improved separation of tetramer-high CD8+ cells. Confocal microscopy reveals that tetramers incubated at 37 degrees C can be rapidly internalized by specific CTLs into vesicles that overlap with the early endocytic compartment. This TCR-specific internalization suggests that coupling of tetramers or analogues with toxins, which are activated only after receptor internalization, may create immunotoxins capable of killing CTLs of single specificities.

  15. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https

  16. Allele Workbench: Transcriptome Pipeline and Interactive Graphics for Allele-Specific Expression

    PubMed Central

    Soderlund, Carol A.; Nelson, William M.; Goff, Stephen A.

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https

  17. Multivalent drug design and inhibition of cholera toxin by specific and transient protein-ligand interactions.

    PubMed

    Liu, Jiyun; Begley, Darren; Mitchell, Daniel D; Verlinde, Christophe L M J; Varani, Gabriele; Fan, Erkang

    2008-05-01

    Multivalent inhibitors of the cholera toxin B pentamer are potential therapeutic drugs for treating cholera and serve as models for demonstrating multivalent ligand effects through a structure-based approach. A crucial yet often overlooked aspect of multivalent drug design is the length, rigidity and chemical composition of the linker used to connect multiple binding moieties. To specifically study the role of chemical linkers in multivalent ligand design, we have synthesized a series of compounds with one and two binding motifs connected by several different linkers. These compounds have affinity for and potency against the cholera toxin B pentamer despite the fact that none can simultaneously bind two toxin receptor sites. Results from saturation transfer difference NMR reveal transient, non-specific interactions between the cholera toxin and linker groups contribute significantly to overall binding affinity of monovalent compounds. However, the same random protein-ligand interactions do not appear to affect binding of bivalent molecules. Moreover, the binding affinities and potencies of these 'non-spanning' bivalent ligands appear to be wholly independent of linker length. Our detailed analysis identifies multiple effects that account for the improved inhibitory potencies of bivalent ligands and suggest approaches to further improve the activity of this class of compounds.

  18. Interaction of Helicobacter pylori with C-Type Lectin Dendritic Cell-Specific ICAM Grabbing Nonintegrin

    PubMed Central

    Miszczyk, Eliza; Rudnicka, Karolina; Moran, Anthony P.; Fol, Marek; Kowalewicz-Kulbat, Magdalena; Druszczyńska, Magdalena; Matusiak, Agnieszka; Walencka, Maria; Rudnicka, Wiesława; Chmiela, Magdalena

    2012-01-01

    In this study we asked whether Helicobacter pylori whole cells and lipopolysaccharide (LPS) utilize sugar moieties of Lewis (Le) antigenic determinants to interact with DC-SIGN (dendritic cell specific ICAM grabbing nonintegrin) receptor on dendritic cells (DCs). For this purpose the soluble DC-SIGN/Fc adhesion assay and the THP-1 leukemia cells with induced expression of DC-SIGN were used. We showed that the binding specificity of DC-SIGN with H. pylori LeX/Y positive whole cells and H. pylori LPS of LeX/Y type was fucose dependent, whereas in LeXY negative H. pylori strains and LPS preparations without Lewis determinants, this binding was galactose dependent. The binding of soluble synthetic LeX and LeY to the DC-SIGN-like receptor on THP-1 cells was also observed. In conclusion, the LeXY dependent as well as independent binding of H. pylori whole cells and H. pylori LPS to DC-SIGN was described. Moreover, we demonstrated that THP-1 cells may serve as an in vitro model for the assessment of H. pylori-DC-SIGN interactions mediated by LeX and LeY determinants. PMID:22550396

  19. Use of specific glycosidases to probe cellular interactions in the sea urchin embryo.

    PubMed

    Idoni, Brian; Ghazarian, Haike; Metzenberg, Stan; Hutchins-Carroll, Virginia; Oppenheimer, Steven B; Carroll, Edward J

    2010-08-01

    We present an unusual and novel model for initial investigations of a putative role for specifically conformed glycans in cellular interactions. We have used alpha- and ss-amylase and alpha- and ss-glucosidase in dose-response experiments evaluating their effects on archenteron organization using the NIH designated sea urchin embryo model. In quantitative dose-response experiments, we show that defined activity levels of alpha-glucosidase and ss-amylase inhibited archenteron organization in living Lytechinus pictus gastrula embryos, whereas all concentrations of ss-glucosidase and alpha-amylase were without substantial effects on development. Product inhibition studies suggested that the enzymes were acting by their specific glycosidase activities and polyacrylamide gel electrophoresis suggested that there was no detectable protease contamination in the active enzyme samples. The results provide evidence for a role of glycans in sea urchin embryo cellular interactions with special reference to the possible structural conformation of these glycans based on the differential activities of the alpha- and ss-glycosidases. PMID:20435035

  20. Modified inoculation and disease assessment methods reveal host specificity in Erwinia tracheiphila-Cucurbitaceae interactions.

    PubMed

    Nazareno, Eric S; Dumenyo, C Korsi

    2015-12-01

    We conducted a greenhouse trial to determine specific compatible interactions between Erwinia tracheiphila strains and cucurbit host species. Using a modified inoculation system, E. tracheiphila strains HCa1-5N, UnisCu1-1N, and MISpSq-N were inoculated to cucumber (Cucumis sativus) cv. 'Sweet Burpless', melon (Cucumis melo) cv. 'Athena Hybrid', and squash (Cucubita pepo) cv. 'Early Summer Crookneck'. We observed symptoms and disease progression for 30 days; recorded the number of days to wilting of the inoculated leaf (DWIL), days to wilting of the whole plant (DWWP), and days to death of the plant (DDP). We found significant interactions between host cultivar and pathogen strains, which imply host specificity. Pathogen strains HCa1-5N and UnisCu1-1N isolated from Cucumis species exhibited more virulence in cucumber and melon than in squash, while the reverse was true for strain MISpSq-N, an isolate from Cucurbita spp. Our observations confirm a previous finding that E. tracheiphila strains isolated from Cucumis species were more virulent on Cucumis hosts and those from Cucubita were more virulent on Cucubita hosts. This confirmation helps in better understanding the pathosystem and provides baseline information for the subsequent development of new disease management strategies for bacterial wilt. We also demonstrated the efficiency of our modified inoculation and disease scoring methods.

  1. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  2. Evolution of an insect-specific GROUCHO-interaction motif in the ENGRAILED selector protein.

    PubMed

    Hittinger, Chris Todd; Carroll, Sean B

    2008-01-01

    Animal morphology evolves through alterations in the genetic regulatory networks that control development. Regulatory connections are commonly added, subtracted, or modified via mutations in cis-regulatory elements, but several cases are also known where transcription factors have gained or lost activity-modulating peptide motifs. In order to better assess the role of novel transcription factor peptide motifs in evolution, we searched for synapomorphic motifs in the homeotic selectors of Drosophila melanogaster and related insects. Here, we describe an evolutionarily novel GROUCHO (GRO)-interaction motif in the ENGRAILED (EN) selector protein. This "ehIFRPF" motif is not homologous to the previously characterized "engrailed homology 1" (eh1) GRO-interaction motif of EN. This second motif is an insect-specific "WRPW"-type motif that has been maintained by purifying selection in at least the dipteran/lepidopteran lineage. We demonstrate that this motif contributes to in vivo repression of the wingless (wg) target gene and to interaction with GRO in vitro. The acquisition and conservation of this auxiliary peptide motif shows how the number and activity of short peptide motifs can evolve in transcription factors while existing regulatory functions are maintained.

  3. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    SciTech Connect

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  4. Anticoagulant activity of a sulfated galactan: serpin-independent effect and specific interaction with factor Xa.

    PubMed

    Glauser, Bianca F; Rezende, Ricardo M; Melo, Fabio R; Pereira, Mariana S; Francischetti, Ivo M B; Monteiro, Robson Q; Rezaie, Alireza R; Mourão, Paulo A S

    2009-12-01

    An algal sulfated galactan has high anticoagulant and antithrombotic activities. Its serpin-dependent anticoagulant action is due to promoting thrombin and factor (F)Xa inhibition by antithrombin and heparin cofactor II. Here, we evaluated the anticoagulant effect of the algal sulfated galactan using serpin-free plasma. In contrast to heparin, the sulfated galactan is still able to prolong coagulation time and delay thrombin and FXa generation in serpin-free plasma. We further investigated this effect using purified blood coagulation proteins, discovering that sulfated galactan inhibits the intrinsic tenase and prothrombinase complexes, which are critical for FXa and thrombin generation, respectively. We also investigated the mechanism by which sulfated galactan promotes FXa inhibition by antithrombin using specific recombinant mutants of the protease. We show that sulfated galactan interacts with the heparin-binding exosite of FXa and Arg-236 and Lys-240 of this site are critical residues for this interaction, as observed for heparin. Thus, sulfated galactan and heparin have similar high-affinity and specificity for interaction with FXa, though they have differences in their chemical structures. Similar to heparin, the ability of sulfated galactan to potentiate FXa inhibition by antithrombin is calcium-dependent. However, in contrast to heparin, this effect is not entirely dependent on the conformation of the gamma-carboxyglutamic acid-rich domain of the protease. In conclusion, sulfated galactan and heparin have some similar effects on blood coagulation, but also differ significantly at the molecular level. This sulfated galactan opens new perspective for the development of antithrombotic drugs.

  5. Anticoagulant activity of a sulfated galactan: serpin-independent effect and specific interaction with factor Xa

    PubMed Central

    Glauser, Bianca F.; Rezende, Ricardo M.; Melo, Fabio R.; Pereira, Mariana S.; Francischetti, Ivo M. B.; Monteiro, Robson Q.; Rezaie, Alireza R.; Mourão, Paulo A.S.

    2009-01-01

    Summary An algal sulfated galactan has high anticoagulant and antithrombotic activities. Its serpin-dependent anticoagulant action is due to promoting thrombin and factor Xa inhibition by antithrombin and heparin cofactor II. Here, we evaluated the anticoagulant effect of the algal sulfated galactan using serpin-free plasma. In contrast to heparin, the sulfated galactan is still able to prolong coagulation time and delay thrombin and factor Xa generation in serpin-free plasma. We further investigated this effect using purified blood coagulation proteins, discovering that sulfated galactan inhibits the intrinsic tenase and prothrombinase complexes, which are critical for factor Xa and thrombin generation, respectively. We also investigated the mechanism by which sulfated galactan promotes factor Xa inhibition by antithrombin using specific recombinant mutants of the protease. We show that sulfated galactan interacts with the heparin-binding exosite of factor Xa and Arg-236 and Lys-240 of this site are critical residues for this interaction, as observed for heparin. Thus, sulfated galactan and heparin have similar high-affinity and specificity for interaction with factor Xa, though they have differences in their chemical structures. Similar to heparin, the ability of sulfated galactan to potentiate factor Xa inhibition by antithrombin is calcium-dependent. However, in contrast to heparin, this effect is not entirely dependent on the conformation of the γ-carboxyglutamic acid-rich domain of the protease. In conclusion, sulfated galactan and heparin have some similar effects on blood coagulation, but also differ significantly at the molecular level. This sulfated galactan opens new perspective for the development of antithrombotic drugs. PMID:19967150

  6. Mass-action equilibrium and non-specific interactions in protein binding networks

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei

    2009-03-01

    Large-scale protein binding networks serve as a paradigm of complex properties of living cells. These networks are naturally weighted with edges characterized by binding strength and protein-nodes -- by their concentrations. However, the state-of-the-art high-throughput experimental techniques generate just a binary (yes or no) information about individual interactions. As a result, most of the previous research concentrated just on topology of these networks. In a series of recent publications [1-4] my collaborators and I went beyond purely topological studies and calculated the mass-action equilibrium of a genome-wide binding network using experimentally determined protein concentrations, localizations, and reliable binding interactions in baker's yeast. We then studied how this equilibrium responds to large perturbations [1-2] and noise [3] in concentrations of proteins. We demonstrated that the change in the equilibrium concentration of a protein exponentially decays (and sign-alternates) with its network distance away from the perturbed node. This explains why, despite a globally connected topology, individual functional modules in such networks are able to operate fairly independently. In a separate study [4] we quantified the interplay between specific and non-specific binding interactions under crowded conditions inside living cells. We show how the need to limit the waste of resources constrains the number of types and concentrations of proteins that are present at the same time and at the same place in yeast cells. [1] S Maslov, I. Ispolatov, PNAS 104:13655 (2007). [2] S. Maslov, K. Sneppen, I. Ispolatov, New J. of Phys. 9: 273 (2007). [3] K-K. Yan, D. Walker, S. Maslov, PRL accepted (2008). [4] J. Zhang, S. Maslov, and E. I. Shakhnovich, Mol Syst Biol 4, 210 (2008).

  7. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti

  8. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    PubMed

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  9. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity

    PubMed Central

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-01-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory

  10. Solubility-insolubility interconversion of sophoragrin, a mannose/glucose-specific lectin in Sophora japonica (Japanese pagoda tree) bark, regulated by the sugar-specific interaction.

    PubMed

    Ueda, Haruko; Fukushima, Hisako; Hatanaka, Yasumaru; Ogawa, Haruko

    2004-09-15

    Sophoragrin, a mannose/glucose-specific lectin in Sophora japonica (Japanese pagoda tree) bark, was the first lectin found to show self-aggregation that is dependent on the sugar concentration accompanying the interconversion between solubility and insolubility [Ueno, Ogawa, Matsumoto and Seno (1991) J. Biol. Chem. 266, 3146-3153]. The interconversion is regulated by the concentrations of Ca(2+) and specific sugars: mannose, glucose or sucrose. The specific glycotopes for sophoragrin were found in the sophoragrin subunit and an endogenous galactose-specific lectin, B-SJA-I (bark S. japonica agglutinin I), and the lectin subunit that binds to the glycotope was identified by photoaffinity glycan probes. Remarkably, the insoluble polymer of sophoragrin is dissociated by interaction with B-SJA-I into various soluble complexes. Based on these results, self-aggregation of sophoragrin was shown to be a unique homopolymerization due to the sugar-specific interaction. An immunostaining study indicated that sophoragrin localizes mainly in vacuoles of parenchymal cells coincidently with B-SJA-I. These results indicate that sophoragrin can sequester endogenous glycoprotein ligands via sugar-specific interactions, thus providing new insights into the occurrence and significance of the intravacuolar interaction shown by a legume lectin. PMID:15222880

  11. Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): specificity and interaction with membrane lipid rafts.

    PubMed

    Patra, S K; Rizzi, F; Silva, A; Rugina, D O; Bettuzzi, S

    2008-12-01

    Proteomic studies on anticancer activity of Green Tea Catechins (specifically EGCG) are suggesting a large set of protein targets that may directly interact with EGCG and alter the physiology of diseased cells, including cancer. Of notice, benign cells are usually left untouched. Lipid rafts have been recently recognized as signal processing hubs and suggested to be involved in drug uptake by means of endocytosis. These findings are suggesting new insights on the molecular mechanisms of anticancer drugs action. In the membrane, EGCG is hijacked by the laminin receptor (LamR), a lipid raft protein. Similar to aplidin and edelfosin, EGCG alters membrane domains composition also preventing EGF binding to EGFR, imerization of EGFR and relocation of phosphorylated EGFR to lipid rafts. In vitro studies have recently shown that EGCG also binds both DNA and RNA in GpC-rich regions. This event may importantly affect genes function. Moreover, EGCG was shown to inhibit telomerase, topoisomerase II and DNA methyltransferase 1 (DNMT1), thus ultimately affecting chromatin maintenance and remodeling. But another important alternative pathway besides interaction with specific proteins may play an important role in EGCG action: direct targeting of bioactive membrane platforms, lipid rafts. Structural alteration of the platforms deeply impact (and often inactivates) important pathways involving MAP kinases. The key issue is that, important and specific differences in lipid rafts composition have been found in transformed versus benign cells and apoptotic versus non-apoptotic cells. We suggest here that the anticancer activity of Green Tea Catechins against different kind of cancers may find an explanation in direct targeting of lipid rafts by EGCG. PMID:19261982

  12. Bovine Lhx8, a Germ Cell-Specific Nuclear Factor, Interacts with Figla

    PubMed Central

    Fu, Liyuan; Zhang, Mingxiang; Mastrantoni, Kristen; Perfetto, Mark; Wei, Shuo; Yao, Jianbo

    2016-01-01

    LIM homeobox 8 (Lhx8) is a germ cell-specific transcription factor essential for the development of oocytes during early oogenesis. In mice, Lhx8 deficiency causes postnatal oocyte loss and affects the expression of many oocyte-specific genes. The aims of this study were to characterize the bovine Lhx8 gene, determine its mRNA expression during oocyte development and early embryogenesis, and evaluate its interactions with other oocyte-specific transcription factors. The bovine Lhx8 gene encodes a protein of 377 amino acids. A splice variant of Lhx8 (Lhx8_v1) was also identified. The predicted bovine Lhx8 protein contains two LIM domains and one homeobox domain. However, one of the LIM domains in Lhx8_v1 is incomplete due to deletion of 83 amino acids near the N terminus. Both Lhx8 and Lhx8_v1 transcripts were only detected in the gonads but none of the somatic tissues examined. The expression of Lhx8 and Lhx8_v1 appears to be restricted to oocytes as none of the transcripts was detectable in granulosa or theca cells. The maternal Lhx8 transcript is abundant in GV and MII stage oocytes as well as in early embryos but disappear by morula stage. A nuclear localization signal that is required for the import of Lhx8 into nucleus was identified, and Lhx8 is predominantly localized in the nucleus when ectopically expressed in mammalian cells. Finally, a novel interaction between Lhx8 and Figla, another transcription factor essential for oogenesis, was detected. The results provide new information for studying the mechanisms of action for Lhx8 in oocyte development and early embryogenesis. PMID:27716808

  13. Interactions of phenol with cationic micelles of hexadecyltrimethylammonium bromide studied by titration calorimetry, conductimetry, and 1H NMR in the range of low additive and surfactant concentrations.

    PubMed

    Chaghi, Radhouane; de Ménorval, Louis-Charles; Charnay, Clarence; Derrien, Gaëlle; Zajac, Jerzy

    2008-10-01

    Interactions of phenol (PhOH) with micellar aggregates of hexadecyltrimethylammonium bromide (HTAB) in aqueous solutions at surfactant concentrations close to the CMC and phenol contents of 1, 5, or 10 mmol kg(-1) have been investigated at 303 K by means of titration calorimetry, solution conductimetry, and (1)H NMR spectroscopy. Estimates of the main thermodynamic parameters related to HTAB micellization were made for PhOH/HTAB/H(2)O systems based on the specific conductivity measurements and calorimetric determination of the cumulative enthalpy of dilution as functions of the surfactant concentration at a fixed additive content. The combined analysis of the results obtained in H(2)O solutions pointed to the preferential location of PhOH in the outer micelle parts by an enthalpy-driven mechanism. Additional PhOH molecules were located increasingly deeper within the micelle core. The (1)H NMR study of PhOH solubilization by 1.5 mmol kg(-1) HTAB solutions in D(2)O indicated that the two categories of the solubilization site became saturated with the solubilizate already at the lowest additive content. Dissimilar amounts of the solubilized material in H(2)O and D(2)O solutions were ascribed to the difference in the initial micelle structures formed in the two solvents, as inferred from calorimetry and (1)H NMR studies of the HTAB micellization in D(2)O and H(2)O.

  14. Domain–domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy

    PubMed Central

    Bista, Michal; Freund, Stefan M.; Fersht, Alan R.

    2012-01-01

    The tumor suppressor p53 is a homotetramer of 4 × 393 residues. Its core domain and tetramerization domain are linked and flanked by intrinsically disordered sequences, which hinder its full structural characterization. There is an outstanding problem of the state of the tetramerization domain. Structural studies on the isolated tetramerization domain show it is in a folded tetrameric conformation, but there are conflicting models from electron microscopy of the full-length protein, one of which proposes that the domain is not tetramerically folded and the tetrameric protein is stabilized by interactions between the N and C termini. Here, we present methyl-transverse relaxation optimized NMR spectroscopy (methyl-TROSY) investigations on the full-length and separate domains of the protein with its methionine residues enriched with 13C to probe its quaternary structure. We obtained high-quality spectra of both the full-length tetrameric p53 and its DNA complex, observing the environment at 11 specific methyl sites. The tetramerization domain was as tetramerically folded in the full-length constructs as in the isolated domain. The N and C termini were intrinsically disordered in both the full-length protein and its complex with a 20-residue specific DNA sequence. Additionally, we detected in the interface of the core (DNA-binding) and N-terminal parts of the protein a slow conformational exchange process that was modulated by specific recognition of DNA, indicating allosteric processes. PMID:22972749

  15. Characterization of the heterogeneity and specificity of interpolypeptide interactions in amyloid protofibrils by measurement of site-specific fluorescence anisotropy decay kinetics.

    PubMed

    Jha, Anjali; Udgaonkar, Jayant B; Krishnamoorthy, G

    2009-10-30

    The aggregation of proteins often results in highly ordered fibrillar structures. While significant insights have been obtained on structural aspects of amyloid fibrils, little is known about the structures of protofibrils, which are presumed to be the precursors of fibrils. An understanding of the molecular mechanism of the formation of protofibrils and fibrils requires information on the landscape of interpeptide interactions. This work addresses this question by using, as a model protein, barstar, which forms protofibrils and fibrils at low (<3) pH. Use was made of the heterogeneity of aggregate populations encountered during fibril formation. Population heterogeneity was scored through rotational dynamics monitored by time-resolved fluorescence anisotropy of an environment-sensitive fluorophore, 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (1,5-IAEDANS), attached to specific locations in the protein. Firstly, it was observed that barstar, when labeled at certain locations with 1,5-IAEDANS, did not form mixed protofibrils with the corresponding unlabeled protein. Labeled and unlabeled proteins formed protofibrils as separate populations. A two-population model of fluorescence anisotropy decay kinetics exhibiting a 'dip-and-rise' behavior was the main readout in arriving at this conclusion. Additional support for this conclusion came from the fluorescence lifetime of the probe 1,5-IAEDANS. Subsequently, the location of the fluorophore was moved along the length of the protein in nine mutant proteins, and the capability to form mixed fibrils was assessed. The results revealed that about two-thirds of the protein sequence at the C-terminal end of the protein was intimately involved in the formation of ordered protofibrils, probably forming the core, while the remaining one-third of the protein (i.e., the N-terminal region) remained largely noninteractive and flexible. This methodology can be used as a general strategy to identify regions of a

  16. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM

    PubMed Central

    Zhu, Yuwen; Yao, Sheng; Augustine, Mathew M.; Xu, Haiying; Wang, Jun; Sun, Jingwei; Broadwater, Megan; Ruff, William; Luo, Liqun; Zhu, Gefeng; Tamada, Koji; Chen, Lieping

    2016-01-01

    The central nervous system (CNS) is an immune-privileged organ with the capacity to prevent excessive inflammation. Aside from the blood-brain barrier, active immunosuppressive mechanisms remain largely unknown. We report that a neuron-specific molecule, synaptic adhesion-like molecule 5 (SALM5), is a crucial contributor to CNS immune privilege. We found that SALM5 suppressed lipopolysaccharide-induced inflammatory responses in the CNS and that a SALM-specific monoclonal antibody promoted inflammation in the CNS, and thereby aggravated clinical symptoms of mouse experimental autoimmune encephalomyelitis. In addition, we identified herpes virus entry mediator as a functional receptor that mediates SALM5’s suppressive function. Our findings reveal a molecular link between the neuronal system and the immune system, and provide potential therapeutic targets for the control of CNS diseases. PMID:27152329

  17. Specific interaction of tissue-type plasminogen activator (t-PA) with annexin II on the membrane of pancreatic cancer cells activates plasminogen and promotes invasion in vitro

    PubMed Central

    Díaz, V M; Hurtado, M; Thomson, T M; Reventós, J; Paciucci, R

    2004-01-01

    Background: Overexpression of tissue plasminogen activator (t-PA) in pancreatic cancer cells promotes invasion and proliferation in vitro and tumour growth and angiogenesis in vivo. Aims: To understand the mechanisms by which t-PA favours cancer progression, we analysed the surface membrane proteins responsible for binding specifically t-PA and studied the contribution of this interaction to the t-PA promoted invasion of pancreatic cancer cells. Methods: The ability of t-PA to activate plasmin and a fluorogenic plasmin substrate was used to analyse the nature of the binding of active t-PA to cell surfaces. Specific binding was determined in two pancreatic cancer cell lines (SK-PC-1 and PANC-1), and complex formation analysed by co-immunoprecipitation experiments and co-immunolocalisation in tumours. The functional role of the interaction was studied in Matrigel invasion assays. Results: t-PA bound to PANC-1 and SK-PC-1 cells in a specific and saturable manner while maintaining its activity. This binding was competitively inhibited by specific peptides interfering with the interaction of t-PA with annexin II. The t-PA/annexin II interaction on pancreatic cancer cells was also supported by co-immunoprecipitation assays using anti-t-PA antibodies and, reciprocally, with antiannexin II antibodies. In addition, confocal microscopy showed t-PA and annexin II colocalisation in tumour tissues. Finally, disruption of the t-PA/annexin II interaction by a specific hexapeptide significantly decreased the invasive capacity of SK-PC-1 cells in vitro. Conclusion: t-PA specifically binds to annexin II on the extracellular membrane of pancreatic cancer cells where it activates local plasmin production and tumour cell invasion. These findings may be clinically relevant for future therapeutic strategies based on specific drugs that counteract the activity of t-PA or its receptor annexin II, or their interaction at the surface level. PMID:15194650

  18. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder

    PubMed Central

    Banerjee, Amrita; Sanyal, Sulagna; Kulkarni, Kirti K.; Jana, Kuladip; Roy, Siddhartha; Das, Chandrima; Dasgupta, Dipak

    2014-01-01

    Mithramycin (MTR) is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin – histone proteins – as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode) or both histones and chromosomal DNA (dual binding mode). The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR–DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg2+. As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies. PMID:25473595

  19. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  20. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide. PMID:27206792

  1. Rapid amyloid fibril formation by a winter flounder antifreeze protein requires specific interaction with ice.

    PubMed

    Dubé, André; Leggiadro, Cindy; Ewart, Kathryn Vanya

    2016-05-01

    A typically α-helical antifreeze protein (wflAFP-6) from winter flounder, Pseudopleuronectes americanus, forms amyloid fibrils during freezing. In this study, the effects of distinct components of the freezing process were examined. Freezing of wflAFP-6 in the presence of template ice was shown to be necessary for rapid conversion to an amyloid conformation. Neither subfreezing temperature nor phase change was sufficient. Thus, specific interaction with the ice surface was essential. The ice-induced formation of amyloid appeared to be unique to this helical antifreeze, it required high concentrations of protein and it occurred over a range of pH values. These results define a method for rapid formation of amyloid by wflAFP-6 on demand under physiological conditions. PMID:27086686

  2. Sex-specific gene interactions in the patterning of insect genitalia.

    PubMed

    Aspiras, Ariel C; Smith, Frank W; Angelini, David R

    2011-12-15

    Genitalia play an important role in the life histories of insects, as in other animals. These sexually dimorphic structures evolve rapidly and derive from multiple body segments. Despite the importance of insect genitalia, descriptions of their genetic patterning have been limited to fruit flies. In this study, we report the functions, interactions and regulation of appendage patterning genes (e.g. homothorax, dachshund, and Distal-less) in two insects: the milkweed bug Oncopeltus fasciatus, and the red flour beetle Tribolium castaneum. These species differ in the anatomical complexity of their genitalia. Females of T. castaneum have a terminal ovipositor ending in short styli, while O. fasciatus have a multi-jointed subterminal ovipositor. Male O. fasciatus have a genital capsule consisting of large gonocoxopodites and claspers; T. castaneum males have relatively simple genitalia. The requirement of appendage-patterning genes in males differed between the two species: No defects were observed in T. castaneum male genitalia, and while the male claspers of O. fasciatus were affected by depletion of appendage-patterning genes, the proximal gonocoxopodite was not, suggesting a non-appendicular origin for this structure. Only the styli of the T. castaneum ovipositor were affected by RNAi depletion of appendage-patterning genes (14 genes in all). The posterior Hox genes (abdominal-A and Abdominal-B) were required for proper genital development in O. fasciatus and regulated Distal-less and homothorax similarly in both sexes. Distal-less and dachshund were regulated differently in male and female O. fasciatus. Knockdown of the sex determination gene intersex produced a partial female-to-male transformation of abdominal and genital anatomy and also resulted in abrogation of female-specific regulation of these genes. These results provide developmental genetic support for specific anatomical hypotheses of serial homology. Importantly, these gene functions and interactions

  3. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

    PubMed Central

    Mossman, Jim A.; Tross, Jennifer G.; Li, Nan; Wu, Zhijin; Rand, David M.

    2016-01-01

    The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses. PMID:27558138

  4. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues.

  5. Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase.

    PubMed

    Mládková, Jana; Hladílková, Jana; Diamond, Carrie E; Tryon, Katherine; Yamada, Kazuhiro; Garrow, Timothy A; Jungwirth, Pavel; Koutmos, Markos; Jiráček, Jiří

    2014-10-01

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S-adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent K(M) for K⁺ of about 100 µM. The presence of potassium ions lowers the apparent K(M) of the enzyme for homocysteine, but it does not affect the apparent K(M) for betaine or the apparent k(cat) for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K⁺ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K⁺ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26-Gly27-Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site-specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme.

  6. Sex-specific gene interactions in the patterning of insect genitalia.

    PubMed

    Aspiras, Ariel C; Smith, Frank W; Angelini, David R

    2011-12-15

    Genitalia play an important role in the life histories of insects, as in other animals. These sexually dimorphic structures evolve rapidly and derive from multiple body segments. Despite the importance of insect genitalia, descriptions of their genetic patterning have been limited to fruit flies. In this study, we report the functions, interactions and regulation of appendage patterning genes (e.g. homothorax, dachshund, and Distal-less) in two insects: the milkweed bug Oncopeltus fasciatus, and the red flour beetle Tribolium castaneum. These species differ in the anatomical complexity of their genitalia. Females of T. castaneum have a terminal ovipositor ending in short styli, while O. fasciatus have a multi-jointed subterminal ovipositor. Male O. fasciatus have a genital capsule consisting of large gonocoxopodites and claspers; T. castaneum males have relatively simple genitalia. The requirement of appendage-patterning genes in males differed between the two species: No defects were observed in T. castaneum male genitalia, and while the male claspers of O. fasciatus were affected by depletion of appendage-patterning genes, the proximal gonocoxopodite was not, suggesting a non-appendicular origin for this structure. Only the styli of the T. castaneum ovipositor were affected by RNAi depletion of appendage-patterning genes (14 genes in all). The posterior Hox genes (abdominal-A and Abdominal-B) were required for proper genital development in O. fasciatus and regulated Distal-less and homothorax similarly in both sexes. Distal-less and dachshund were regulated differently in male and female O. fasciatus. Knockdown of the sex determination gene intersex produced a partial female-to-male transformation of abdominal and genital anatomy and also resulted in abrogation of female-specific regulation of these genes. These results provide developmental genetic support for specific anatomical hypotheses of serial homology. Importantly, these gene functions and interactions

  7. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    PubMed

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.

  8. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    PubMed

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming. PMID:23504827

  9. Specificity of Amyloid Precursor-like Protein 2 Interactions with MHC Class I Molecules

    PubMed Central

    Tuli, Amit; Sharma, Mahak; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.

    2008-01-01

    The ubiquitously expressed amyloid precursor-like protein 2 (APLP2) has been previously found to regulate cell surface expression of the MHC class I molecule Kd and bind strongly to Kd. In the study reported here, we demonstrated that APLP2 binds, in varied degrees, to several other mouse MHC class I allotypes, and that the ability of APLP2 to affect cell surface expression of an MHC class I molecule is not limited to Kd. Ld, like Kd, was found associated with APLP2 in the Golgi, but Kd was also associated with APLP2 within intracellular vesicular structures. We also investigated the effect of β2m on APLP2/MHC interaction, and found that human β2m transfection increased the association of APLP2 with mouse MHC class I molecules, likely by affecting H2 class I heavy chain conformation. APLP2 was demonstrated to bind specifically to the conformation of Ld having folded outer domains, consistent with our previous results with Kd and indicating APLP2 interacts with the α1α2 region on each of these H2 class I molecules. Furthermore, we observed that binding to APLP2 involved the MHC α3/transmembrane/cytoplasmic region, suggesting that conserved as well as polymorphic regions of the H2 class I molecule may participate in interaction with APLP2. In summary, we demonstrated that APLP2′s binding, co-localization pattern, and functional impact vary among H2 class I molecules, and that APLP2/MHC association is influenced by multiple domains of the MHC class I heavy chain and by β2m’s effects on the conformation of the heavy chain. PMID:18452037

  10. INTERACTION OF VISCID MATERIAL OF STAPHYLOCOCCUS AUREUS WITH SPECIFIC IMMUNE SERUM.

    PubMed

    MUDD, S; DECOURCY, S J

    1965-03-01

    Mudd, Stuart (U.S. Veterans Administration Hospital, Philadelphia, Pa.), and Samuel J. DeCourcy, Jr. Interaction of viscid material of Staphylococcus aureus with specific immune serum. J. Bacteriol. 89:874-879. 1965.-Re-examination of the phenomenon of Price and Kneeland and of Wiley revealed the following. (i) The prototype "wound strain" of Wiley, and viscid-colony strains obtained by aging and selection of laboratory or field strains, differed in growth characteristics in liquid and solid media from the Smith encapsulated strain and from ordinary, unselected laboratory and field strains of coagulase-positive staphylococci. (ii) The wound strain and ordinary unselected strains, unlike the Smith encapsulated strain, did not exhibit capsules when examined in thin films of Pelikan Waterproof Drawing Ink. (iii) The phenomenon of Price and Kneeland and of Wiley is exhibited when the wound strain and other viscid-colony strains interact with anti-Wiley immune sera or various human sera. In our experience, this phenomenon was not exhibited by the Smith or by ordinary, unselected strains. (iv) The staphylococcal polysaccharide antigen previously characterized as the capsular substance of a Smith-like strain was completely different chemically and serologically from extracellular material prepared from the Wiley wound strain. We conclude that the viscid-colony strains are not, in fact, encapsulated, and that the phenomenon in question is a precipitation of extracellular material about the periphery of the cells. PMID:14273673

  11. Molecular dynamics of spermine-DNA interactions: sequence specificity and DNA bending for a simple ligand.

    PubMed Central

    Feuerstein, B G; Pattabiraman, N; Marton, L J

    1989-01-01

    We used molecular dynamics to model interactions between the physiologically important polyamine spermine and two B-DNA oligomers, the homopolymer (dG)10-(dC)10 and the heteropolymer (dGdC)5-(dGdC)5. Water and counterions were included in the simulation. Starting coordinates for spermine-DNA complexes were structures obtained by molecular mechanics modeling of spermine with the two oligomers; in these models, spermine binding induced a bend in the heteropolymer but not in the homopolymer. During approximately 40 psec of molecular dynamics simulation, spermine moves away from the floor of the major groove and interacts nospecifically with d(G)10-d(C)10. In contrast, a spermine-induced bend in the helix of (dGdC)5-(dGdC)5 is maintained throughout the simulation and spermine remains closely associated with the major groove. These results provide further evidence that the binding of spermine to nucleic acids can be sequence specific and that bending of alternating purine-pyrimidine sequences may be a physiologically important result of spermine binding. PMID:2780313

  12. DUF581 Is Plant Specific FCS-Like Zinc Finger Involved in Protein-Protein Interaction

    PubMed Central

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction. PMID:24901469

  13. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    PubMed

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  14. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.

    PubMed

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2013-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma-dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  15. Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale.

    PubMed

    Utzig, Thomas; Stock, Philipp; Valtiner, Markus

    2016-08-01

    The adhesive system of mussels evolved into a powerful and adaptive system with affinity to a wide range of surfaces. It is widely known that thereby 3,4-dihydroxyphenylalanine (Dopa) plays a central role. However underlying binding energies remain unknown at the single molecular scale. Here, we use single-molecule force spectroscopy to estimate binding energies of single catechols with a large range of opposing chemical functionalities. Our data demonstrate significant interactions of Dopa with all functionalities, yet most interactions fall within the medium-strong range of 10-20 kB T. Only bidentate binding to TiO2 surfaces exhibits a higher binding energy of 29 kB T. Our data also demonstrate at the single-molecule level that oxidized Dopa and amines exhibit interaction energies in the range of covalent bonds, confirming the important role of Dopa for cross-linking in the bulk mussel adhesive. We anticipate that our approach and data will further advance the understanding of biologic and technologic adhesives. PMID:27374053

  16. Interactions between specific parameters of MDMA use and cognitive and psychopathological measures.

    PubMed

    Wagner, Daniel; Adolph, Sophia; Koester, Philip; Becker, Benjamin; Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2015-04-01

    The aim of the present study was to investigate the relevance of different parameters of 3,4-methylenedioxymethamphetamine (MDMA) use, including age of first use, cumulative lifetime dose and highest daily dose for predicting cognitive performance and self-reported psychopathology. Moreover, interactions between those parameters were examined. Ninety-six new MDMA users were interviewed to assess their drug use, and they completed a battery of cognitive tests concerning attention and information processing speed, episodic memory and executive functioning and self-reported psychopathology. Subjects participated again after 1year to provide follow-up data. Significant associations between age of first use and cumulative lifetime dose have been found for attention and information processing speed. Furthermore, the results showed a significant effect of age of first use on the recognition performance of the episodic memory. The findings of the current study provide a first estimation of the interactions between different MDMA use parameters. Future research should focus upon additional parameters of drug use and concentrate on consequent follow-up effects.

  17. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.

    PubMed

    Glasfeld, A; Koehler, A N; Schumacher, M A; Brennan, R G

    1999-08-13

    der Waals interactions with the operator, and, with the loss of the general electrostatic interaction between the phosphate backbone and the ammonium group of lysine, K55A binds each operator weakly. However, the mutation leads to a swap of specificity of PurR for the base at position 8, with K55A exhibiting a twofold preference for guanine over adenine. In addition to defining the role of Lys55 in PurR minor groove binding, these studies provide structural insight into the minor groove binding specificities of other LacI/GalR family members that have either alanine (e.g. LacI, GalR, CcpA) or a basic residue (e.g. RafR, ScrR, RbtR) at the comparable position.

  18. Improved affinity at the cost of decreased specificity: a recurring theme in PDZ-peptide interactions

    PubMed Central

    Karlsson, O. Andreas; Sundell, Gustav N.; Andersson, Eva; Ivarsson, Ylva; Jemth, Per

    2016-01-01

    The E6 protein from human papillomavirus (HPV) plays an important role during productive infection and is a potential drug target. We have previously designed a high affinity bivalent protein binder for the E6 protein, a fusion between a helix from the E6 associated protein and PDZØ9, an engineered variant (L391F/K392M) of the second PDZ domain from synapse associated protein 97 (SAP97 PDZ2). How the substitutions improve the affinity of SAP97 PDZ2 for HPV E6 is not clear and it is not known to what extent they affect the specificity for cellular targets. Here, we explore the specificity of wild type SAP97 PDZ2 and PDZØ9 through proteomic peptide phage display. In addition, we employ a double mutant cycle of SAP97 PDZ2 in which the binding kinetics for nine identified potential cellular peptide ligands are measured and compared with those for the C-terminal E6 peptide. The results demonstrate that PDZØ9 has an increased affinity for all peptides, but at the cost of specificity. Furthermore, there is a peptide dependent coupling free energy between the side chains at positions 391 and 392. This corroborates our previous allosteric model for PDZ domains, involving sampling of intramolecular energetic pathways. PMID:27694853

  19. Structural insights into interactions between ubiquitin specific protease 5 and its polyubiquitin substrates by mass spectrometry and ion mobility spectrometry

    PubMed Central

    Scott, Daniel; Layfield, Robert; Oldham, Neil J

    2015-01-01

    Nanoelectrospray ionization-mass spectrometry and ion mobility-mass spectrometry have been used to study the interactions of the large, multidomain, and conformationally flexible deubiquitinating enzyme ubiquitin specific protease 5 (USP5) with mono- and poly-ubiquitin (Ub) substrates. Employing a C335A active site mutant, mass spectrometry was able to detect the stable and cooperative binding of two mono-Ub molecules at the Zinc-finger ubiquitin binding protein (ZnF-UBP) and catalytic site domains of USP5. Tetra-ubiquitin, in contrast, bound to USP5 with a stoichiometry of 1 : 1, and formed additional interactions with USP5's two ubiquitin associated domains (UBAs). Charge-state distribution and ion mobility analysis revealed that both mono- and tetra-ubiquitin bound to the compact conformation of USP5 only, and that tetra-ubiquitin binding was able to shift the conformational distribution of USP5 from a mixture of extended and compact forms to a completely compact conformation. PMID:25970461

  20. Category-specific naming deficit in Alzheimer's disease: the effect of a display by domain interaction.

    PubMed

    Zannino, Gian Daniele; Perri, Roberta; Caltagirone, Carlo; Carlesimo, Giovanni A

    2007-04-01

    A category-specific naming effect penalizing living things has often been reported in patients suffering from Alzheimer's disease (AD) and in other brain damaged populations, while the opposite dissociation (i.e., lower accuracy in naming nonliving than living things) is much rarer. In this study, we investigated whether the use of line drawings (rather than color photographs) in picture-naming tasks could be a relevant factor in the emergence of a category effect penalizing living things and found evidence in favor of this hypothesis. We administered the same naming tasks comprising living and nonliving items to 10 subjects suffering from AD and 10 normal controls. Once the stimuli were line drawings and once color photographs. A reliable Group x Semantic domain interaction, indicating a disproportionate impairment for living things in the AD group, was only found when line drawings were presented. Results are discussed with reference to two competing approaches to category-specificity in brain damaged people. One assumes that category effects are due to the differential involvement of dedicated neural subsystems, the other emphasizes the role of cross domains imbalances in processing demands. We conclude that our findings lead support to the latter approach. PMID:17266996

  1. Deletion of antigen-specific immature thymocytes by dendritic cells requires LFA-1/ICAM interactions.

    PubMed

    Carlow, D A; van Oers, N S; Teh, S J; Teh, H S

    1992-03-15

    An in vitro assay was used for assessing the participation of various cell surface molecules and the efficacy of various cell types in the deletion of Ag-specific immature thymocytes. Thymocytes from mice expressing a transgenic TCR specific for the male Ag presented by the H-2Db class I MHC molecule were used as a target for deletion. In H-2d transgenic mice, cells bearing the transgenic TCR are not subjected to thymic selection as a consequence of the absence of the restricting H-2Db molecule but, nevertheless, express this TCR on the vast majority of immature CD4+8+ thymocytes. In this report we show that CD4+8+ thymocytes from H-2d TCR-transgenic mice are preferentially killed upon in vitro culture with male APC; DC were particularly effective in mediating in vitro deletion when compared with either B cells or T cells. Deletion of CD4+8+ thymocytes by DC was H-2b restricted and could be inhibited by mAb to either LFA-1 alpha or CD8. Partial inhibition was observed with mAb to ICAM-1, whereas mAb to CD4 and LFA-1 beta were without effect. These results are the first direct evidence of LFA-1 involvement in negative selection and provide further direct support for the participation of CD8/class I MHC interactions in this process. Like the requirements for deletion, activation of mature male-specific CD4-8+ T cells from female H-2b TCR-transgenic mice was also largely dependent on Ag presentation by DC and required both LFA-1/ICAM and CD8/class I MHC interactions; these results support the view that activation and deletion may represent maturation stage-dependent consequences of T cells encountering the same APC. Finally, our results also support the hypothesis that negative selection (deletion) does not require previous positive selection because deletion was observed under conditions where positive selection had not occurred.

  2. [Parametabolism as Non-Specific Modifier of Supramolecular Interactions in Living Systems].

    PubMed

    Kozlov, V A; Sapozhnikov, S P; Sheptuhina, A I; Golenkov, A V

    2015-01-01

    As it became known recently, in addition to the enzyme (enzymes and/or ribozymes) in living organisms occur a large number of ordinary chemical reactions without the participation of biological catalysts. These reactions are distinguished by low speed and, as a rule, the irreversibility. For example, along with diabetes mellitus, glycation and fructosilation of proteins are observed resulted in posttranslational modification with the low- or nonfunctioning protein formation which is poorly exposed to enzymatic proteolysis and therefore accumulates in the body. In addition, the known processes such as the nonenzymatic carbomoylation, pyridoxylation and thiamiation proteins. There is a reasonable basis to believe that alcoholic injury also realized through parametabolic secondary metabolites synthesis such as acetaldehyde. At the same time, the progress in supramolecular chemistry proves that in biological objects there is another large group ofparametabolic reactions caused by the formation of supramolecular complexes. Obviously, known parameterizes interactions can modify the formation of supramolecular complexes in living objects. These processes are of considerable interest for fundamental biology and fundamental and practical medicine, but they remain unexplored due to a lack of awareness of a wide range of researchers. PMID:26710520

  3. Context-Specific Protein Network Miner – An Online System for Exploring Context-Specific Protein Interaction Networks from the Literature

    PubMed Central

    Chowdhary, Rajesh; Tan, Sin Lam; Zhang, Jinfeng; Karnik, Shreyas; Bajic, Vladimir B.; Liu, Jun S.

    2012-01-01

    Background Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. Results We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. Conclusions CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/. PMID:22493694

  4. [Mechanisms underlying physiological functions of food factors via non-specific interactions with biological proteins].

    PubMed

    Murakami, Akira

    2015-01-01

      We previously reported that zerumbone, a sesquiterpene found in Zingiber zerumbet SMITH, showed notable cancer preventive effects in various organs of experimental rodents. This agent up-regulated nuclear factor-E2-related factor (Nrf2)-dependent expressions of anti-oxidative and xenobiotics-metabolizing enzymes, leading to an increased self-defense capacity. On the other hand, zerumbone markedly suppressed the expression of cyclooxygenase-2, an inducible pro-inflammatory enzyme, by disrupting mRNA stabilizing processes. Binding experiments using a biotin derivative of zerumbone demonstrated that Keap1, an Nrf2 repressive protein, is one of its major binding proteins that promotes their dissociation for inducing Nrf2 transactivation. We then generated a specific antibody against zerumbone-modified proteins and found that zerumbone modified numerous cellular proteins in a non-specific manner, with global distribution of the modified proteins seen not only in cytoplasm but also the nucleus. Based on those observations, zerumbone was speculated to cause proteo-stress, a notion supported by previous findings that it increased the C-terminus of Hsc70 interacting protein-dependent protein ubiquitination and also promoted aggresome formation. Interestingly, zerumbone counteracted proteo-stress and heat stress via up-regulation of the protein quality control systems (PQCs), e.g., heat shock proteins (HSPs), ubiquitin-proteasome, and autophagy. Meanwhile, several phytochemicals, including ursolic acid and curcumin, were identified as marked HSP70 inducers, whereas most nutrients tested were scarcely active. Recent studies have revealed that PQCs play important roles in the prevention of many lifestyle related diseases, such as cancer, thus non-specific binding of phytochemicals to cellular proteins may be a novel and unique mechanism underlying their physiological activities.

  5. Hepadnavirus infection requires interaction between the viral pre-S domain and a specific hepatocellular receptor.

    PubMed

    Klingmüller, U; Schaller, H

    1993-12-01

    To better define the molecules involved in the initial interaction between hepadnaviruses and hepatocytes, we performed binding and infectivity studies with the duck hepatitis B virus (DHBV) and cultured primary duck hepatocytes. In competition experiments with naturally occurring subviral particles containing DHBV surface proteins, these DNA-free particles were found to interfere with viral infectivity if used at sufficiently high concentrations. In direct binding saturation experiments with radiolabelled subviral particles, a biphasic titration curve containing a saturable component was obtained. Quantitative evaluation of both the binding and the infectivity data indicates that the duck hepatocyte presents about 10(4) high-affinity binding sites for viral and subviral particles. Binding to these productive sites may be preceded by reversible virus attachment to a large number of less specific, nonsaturable primary binding sites. To identify which of the viral envelope proteins is responsible for hepatocyte-specific attachment, subviral particles containing only one of the two DHBV surface proteins were produced in Saccharomyces cerevisiae. In infectivity competition experiments, only particles containing the large pre-S/S protein were found to markedly reduce the efficiency of DHBV infection, while particles containing the small S protein had only a minor effect. Similarly, physical binding of radiolabelled serum-derived subviral particles to primary duck hepatocytes was inhibited well only by the yeast-derived pre-S/S particles. Together, these results strongly support the notion that hepadnaviral infection is initiated by specific attachment of the pre-S domain of the large DHBV envelope protein to a limited number of hepatocellular binding sites.

  6. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper - Phytophthora capsici Leonian.

    PubMed

    Lefebvre, V; Palloix, A

    1996-09-01

    To study the resistance of pepper to Phytophthora capsici, we analyzed 94 doubled-haploid (DH) lines derived from the intraspecific F1 hybrid obtained from a cross between Perennial, an Indian pungent resistant line, and Yolo Wonder, an American bell-pepper susceptible line, with 119 DNA markers. Four different criteria were used to evaluate the resistance, corresponding to different steps or mechanisms of the host-pathogen interaction: root-rot index, receptivity, inducibility and stability. Three distinct ANOVA models between DNA marker genotypes and the four disease criteria identified 13 genomic regions, distributed across several linkage groups or unlinked markers, affecting the resistance of pepper to P. capsici. Some QTLs were criterion specific, whereas others affect several criteria, so that the four resistance criteria were controlled by different combinations of QTLs. The QTLs were very different in their quantitative effect (R(2) values), including major QTLs which explained 41-55% of the phenotypic variance, intermediate QTLs with additive or/and epistatic action (17-28% of the variance explained) and minor QTLs. Favourable alleles of some minor QTLs were carried in the susceptible parent. The total phenotypic variation accounted for by QTLs reached up to 90% for receptivity, with an important part due to epistasis effects between QTLs (with or without additive effects). The relative impact of resistance QTLs in disease response is discussed. PMID:24162341

  7. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    SciTech Connect

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A.

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.

  8. Getting down to specifics: profiling gene expression and protein-DNA interactions in a cell type-specific manner

    PubMed Central

    McClure, Colin D.; Southall, Tony D.

    2015-01-01

    The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique, and how their individual characteristics are attributed, are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e. only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features. PMID:26410031

  9. The Development and Application of a Quantitative Peptide Microarray Based Approach to Protein Interaction Domain Specificity Space*

    PubMed Central

    Engelmann, Brett W.; Kim, Yohan; Wang, Miaoyan; Peters, Bjoern; Rock, Ronald S.; Nash, Piers D.

    2014-01-01

    Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology. PMID:25135669

  10. Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies.

    PubMed

    Zhang, Wei-Jie; Luo, Xiao; Liu, Ya-Li; Shao, Xiao-Xia; Wade, John D; Bathgate, Ross A D; Guo, Zhan-Yun

    2012-08-01

    Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It has putative roles in the regulation of stress responses, food intake, and reproduction by activation of its cognate G-protein-coupled receptor RXFP3. It also binds and activates the relaxin family peptide receptors RXFP1 and RXFP4 in vitro. To obtain a europium-labeled relaxin-3 as tracer for studying the interaction of these receptors with various ligands, in the present work we propose a novel site-specific labeling strategy for the recombinant human relaxin-3 that has been previously prepared in our laboratory. First, the N-terminal 6 × His-tag of the single-chain relaxin-3 precursor was removed by Aeromonas aminopeptidase and all of the primary amines of the resultant peptide were reversibly blocked by citroconic anhydride. Second, the A-chain N-terminus of the blocked peptide was released by endoproteinase Asp-N cleavage that removed the linker peptide between the B- and A-chains. Third, an alkyne moiety was introduced to the newly released A-chain N-terminus by reaction with the highly active primary amine-specific N-hydroxysuccinimide ester. Fourth, after removal of the reversible blockage under mild acidic condition, europium-loaded DOTA with an azide moiety was introduced to the two-chain relaxin-3 carrying the alkyne moiety through click chemistry. Using this site-specific labeling strategy, homogeneous monoeuropium-labeled human relaxin-3 could be obtained with good overall yield. In contrast, conventional random labeling resulted in a complex mixture that was poorly resolved because human relaxin-3 has four primary amine moieties that all react with the modification reagent. Both saturation and competition binding assays demonstrated that the DOTA/Eu(3+)-labeled relaxin-3 retained high binding affinity for human RXFP3, RXFP4, and RXFP1 and was therefore a suitable non-radioactive and stable tracer to study the interaction of various

  11. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    NASA Astrophysics Data System (ADS)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  12. Specific interactions of sticholysin I with model membranes: an NMR study.

    PubMed

    Castrillo, Inés; Araujo, Nelson A; Alegre-Cebollada, Jorge; Gavilanes, José G; Martínez-del-Pozo, Alvaro; Bruix, Marta

    2010-06-01

    Sticholysin I (StnI) is an actinoporin produced by the sea anemone Stichodactyla helianthus that binds biological and model membranes forming oligomeric pores. Both a surface cluster of aromatic rings and the N-terminal region are involved in pore formation. To characterize the membrane binding by StnI, we have studied by (1)H-NMR the environment of these regions in water and in the presence of membrane-mimicking micelles. Unlike other peptides from homologous actinoporins, the synthetic peptide corresponding to residues 1-30 tends to form helix in water and is more helical in either trifluoroethanol or dodecylphosphocholine (DPC) micelles. In these environments, it forms a helix-turn-helix motif with the last alpha-helical segment matching the native helix-alpha(1) (residues 14-24) present in the complete protein. The first helix (residues 4-9) is less populated and is not present in the water-soluble protein structure. The characterization of wild-type StnI structure in micelles shows that the helix-alpha(1) is maintained in its native structure and that this micellar environment does not provoke its detachment from the protein core. Finally, the study of the aromatic resonances has shown that the motional flexibility of specific rings is perturbed in the presence of micelles. On these bases, the implication of the aromatic rings of Trp-111, Tyr-112, Trp-115, Tyr-132, Tyr-136, and Tyr-137, in the interaction between StnI and the micelle is discussed. Based on all the findings, a revised model for StnI interaction with membranes is proposed, which accounts for differences in its behavior as compared with other highly homologous sticholysins.

  13. Specific interactions of sticholysin I with model membranes: an NMR study.

    PubMed

    Castrillo, Inés; Araujo, Nelson A; Alegre-Cebollada, Jorge; Gavilanes, José G; Martínez-del-Pozo, Alvaro; Bruix, Marta

    2010-06-01

    Sticholysin I (StnI) is an actinoporin produced by the sea anemone Stichodactyla helianthus that binds biological and model membranes forming oligomeric pores. Both a surface cluster of aromatic rings and the N-terminal region are involved in pore formation. To characterize the membrane binding by StnI, we have studied by (1)H-NMR the environment of these regions in water and in the presence of membrane-mimicking micelles. Unlike other peptides from homologous actinoporins, the synthetic peptide corresponding to residues 1-30 tends to form helix in water and is more helical in either trifluoroethanol or dodecylphosphocholine (DPC) micelles. In these environments, it forms a helix-turn-helix motif with the last alpha-helical segment matching the native helix-alpha(1) (residues 14-24) present in the complete protein. The first helix (residues 4-9) is less populated and is not present in the water-soluble protein structure. The characterization of wild-type StnI structure in micelles shows that the helix-alpha(1) is maintained in its native structure and that this micellar environment does not provoke its detachment from the protein core. Finally, the study of the aromatic resonances has shown that the motional flexibility of specific rings is perturbed in the presence of micelles. On these bases, the implication of the aromatic rings of Trp-111, Tyr-112, Trp-115, Tyr-132, Tyr-136, and Tyr-137, in the interaction between StnI and the micelle is discussed. Based on all the findings, a revised model for StnI interaction with membranes is proposed, which accounts for differences in its behavior as compared with other highly homologous sticholysins. PMID:20408172

  14. Specific and non-specific interactions of integration host factor with DNA: thermodynamic evidence for disruption of multiple IHF surface salt-bridges coupled to DNA binding.

    PubMed

    Holbrook, J A; Tsodikov, O V; Saecker, R M; Record, M T

    2001-07-01

    Site-specific DNA binding of architectural protein integration host factor (IHF) is involved in formation of functional multiprotein-DNA assemblies in Escherichia coli, while non-specific binding of IHF and other histone-like proteins serves to structure the nucleoid. Here, we report an isothermal titration calorimetry study of the thermodynamics of binding IHF to a 34 bp fragment composed entirely of the specific H' site from lambda-phage DNA. At low to moderate [K(+)] (60-100 mM), strong competition is observed between specific and non-specific binding as a result of a low specificity ratio (approximately 10(2)) and a very small non-specific site size. In this [K(+)] range, both specific and non-specific binding are enthalpy-driven, with large negative enthalpy, entropy and heat capacity changes and binding constants that are insensitive to [K(+)]. Above 100 mM K(+), only specific binding is observed, and both the binding constant and the magnitudes of enthalpy, entropy and heat capacity changes all decrease strongly with increasing [K(+)]. When interpreted in the context of the structure of the specific complex, the thermodynamics provide compelling evidence for a previously unrecognized design principle by which proteins that form extensive binding interfaces with nucleic acids control binding constants, binding site sizes and effects of temperature and ion concentrations on stability and specificity. We propose that up to 22 of the 23 IHF cationic side-chains that are located within 6 A of DNA phosphate oxygen atoms in the complex, are masked in the absence of DNA by pairing with anionic carboxylate groups in intramolecular salt-bridges (dehydrated ion-pairs). These salt-bridges increase in stability with increasing temperature and decreasing [K(+)]. To explain the unusual thermodynamics of IHF-DNA interactions, we propose that both specific and non-specific binding at low [K(+)] require disruption of salt-bridges (as many as 18 for specific binding) whereupon

  15. Tryptophan probes reveal residue-specific phospholipid interactions of apolipoprotein C-III.

    PubMed

    Pfefferkorn, Candace M; Walker, Robert L; He, Yi; Gruschus, James M; Lee, Jennifer C

    2015-11-01

    Apolipoproteins are essential human proteins for lipid metabolism. Together with phospholipids, they constitute lipoproteins, nm to μm sized particles responsible for transporting cholesterol and triglycerides throughout the body. To investigate specific protein-lipid interactions, we produced and characterized three single-Trp containing apolipoprotein C-III (ApoCIII) variants (W42 (W54F/W65F), W54 (W42F/W65F), W65 (W42F/W54F)). Upon binding to phospholipid vesicles, wild-type ApoCIII adopts an α-helical conformation (50% helicity) as determined by circular dichroism spectroscopy with an approximate apparent partition constant of 3×10(4) M(-1). Steady-state and time-resolved fluorescence measurements reveal distinct residue-specific behaviors with W54 experiencing the most hydrophobic environment followed by W42 and W65. Interestingly, time-resolved anisotropy measurements show a converse trend for relative Trp mobility with position 54 being the least immobile. To determine the relative insertion depths of W42, W54, and W65 in the bilayer, fluorescence quenching experiments were performed using three different brominated lipids. W65 had a clear preference for residing near the headgroup while W54 and W42 sample the range of depths ~8-11 Å from the bilayer center. On average, W54 is slightly more embedded than W42. Based on Trp spectral differences between ApoCIII binding to phospholipid vesicles and sodium dodecyl sulfate micelles, we suggest that ApoCIII adopts an alternate helical conformation on the bilayer which could have functional implications.

  16. Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits.

    PubMed

    Wen, Zhifeng; Yang, Yazhou; Zhang, Jinjin; Wang, Xiping; Singer, Stacy; Liu, Zhongchi; Yang, Yingjun; Yan, Guohua; Liu, Zongrang

    2014-09-01

    Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co-existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer-promoter and promoter-promoter interactions in transgenic plants and demonstrated that three of four flower-specific enhancer/promoters were capable of distantly activating a pollen- and stigma-specific Pps promoter (fused to the cytotoxic DT-A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen- and carpel-specific DT-A expression, thus resulting in tissue ablation in an orientation-independent manner; this activation was completely abolished by the insertion of an enhancer-blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue-specific DT-A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant-derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue-specific engineering of multiple traits using a single-vector stacking approach. Therefore, our work highlights the importance of adopting enhancer-blocking insulators in transformation vectors to minimize promoter-promoter interactions. The practical and fundamental significance of these findings will be discussed.

  17. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction.

    PubMed

    Sugimoto, Shinya; Iwamoto, Takeo; Takada, Koji; Okuda, Ken-Ichi; Tajima, Akiko; Iwase, Tadayuki; Mizunoe, Yoshimitsu

    2013-04-01

    Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (Esp(S235A)) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction.

  18. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    USGS Publications Warehouse

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  19. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    SciTech Connect

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  20. Rheological investigation of specific interactions in Na Alginate and Na MMT suspension.

    PubMed

    Zlopasa, Jure; Norder, Ben; Koenders, Eduard A B; Picken, Stephen J

    2016-10-20

    Here we report on a study of a rheological behavior of sodium alginate and montmorillonite suspension. We find that viscoelastic behavior of this suspension is dramatically affected with increasing volume fraction of montmorillonite platelets. Addition of montmorillonite generally leads to gel formation, which is attributed to interactions of montmorillonite and alginate via H-bonding and attraction between the positive edges of the platelets and the anionic backbone of the biopolymer. A critical concentration for the measured system was observed at 20wt.% montmorillonite, where a crossover to a gel-like structure was detected. The observed gel has a rubber plateau, which develops further with higher montmorillonite concentration. In this physical gel the relaxation maximum was detected, which is associated with the breaking and reformation of the bonds between the platelets and the biopolymer. For this transient behavior, we find that a Maxwell type viscoelasticity quite well describes the relaxation time and the observed G'-G" crossover. We believe that this gel-like behavior plays an important role in formation of highly ordered nanostructures that develop during the drying of these bio-nanocomposite suspensions. PMID:27474553

  1. Self-Specific Stimuli Interact Differently than Non-Self-Specific Stimuli with Eyes-Open Versus Eyes-Closed Spontaneous Activity in Auditory Cortex

    PubMed Central

    Qin, Pengmin; Grimm, Simone; Duncan, Niall W.; Holland, Giles; Guo, Jia shen; Fan, Yan; Weigand, Anne; Baudewig, Juergen; Bajbouj, Malek; Northoff, Georg

    2013-01-01

    Previous studies suggest that there may be a distinct relationship between spontaneous neural activity and subsequent or concurrent self-specific stimulus-induced activity. This study aims to test the impact of spontaneous activity as recorded in an eyes-open (EO) resting state as opposed to eyes-closed (EC) on self-specific versus non-self-specific auditory stimulus-induced activity in fMRI. In our first experiment we used self-specific stimuli comprised of the subject’s own name and non-self-specific stimuli comprised of a friend’s name and an unknown name, presented during EO versus EC baselines in a 3 name condition × 2 baseline design. In Experiment 2 we directly measured spontaneous activity in the absence of stimuli during EO versus EC to confirm a modulatory effect of the two baseline conditions in the regions found to show an interaction effect in Experiment 1. Spontaneous activity during EO was significantly higher than during EC in bilateral auditory cortex and non-self-specific names yielded stronger signal changes relative to EO baseline than to EC. In contrast, there was no difference in response to self-specific names relative to EO baseline than to EC despite the difference between spontaneous activity levels. These results support an impact of spontaneous activity on stimulus-induced activity, moreover an impact that depends on the high-level stimulus characteristic of self-specificity. PMID:23908625

  2. Possible Role of Mother-Daughter Vocal Interactions on the Development of Species-Specific Song in Gibbons

    PubMed Central

    Koda, Hiroki; Lemasson, Alban; Oyakawa, Chisako; Rizaldi; Pamungkas, Joko; Masataka, Nobuo

    2013-01-01

    Mother-infant vocal interactions play a crucial role in the development of human language. However, comparatively little is known about the maternal role during vocal development in nonhuman primates. Here, we report the first evidence of mother-daughter vocal interactions contributing to vocal development in gibbons, a singing and monogamous ape species. Gibbons are well known for their species-specific duets sung between mates, yet little is known about the role of intergenerational duets in gibbon song development. We observed singing interactions between free-ranging mothers and their sub-adult daughters prior to emigration. Daughters sang simultaneously with their mothers at different rates. First, we observed significant acoustic variation between daughters. Co-singing rates between mother and daughter were negatively correlated with the temporal precision of the song’s synchronization. In addition, songs of daughters who co-sang less with their mothers were acoustically more similar to the maternal song than any other adult female’s song. All variables have been reported to be influenced by social relationships of pairs. Therefore those correlations would be mediated by mother-daughter social relationship, which would be modifiable in daughter’s development. Here we hypothesized that daughters who co-sing less often, well-synchronize, and converge acoustically with the maternal acoustic pattern would be at a more advanced stage of social independence in sub-adult females prior to emigration. Second, we observed acoustic matching between mothers and daughters when co-singing, suggesting short-term vocal flexibility. Third, we found that mothers adjusted songs to a more stereotyped pattern when co-singing than when singing alone. This vocal adjustment was stronger for mothers with daughters who co-sang less. These results indicate the presence of socially mediated vocal flexibility in gibbon sub-adults and adults, and that mother-daughter co

  3. S-Nitrosylation: Specificity, Occupancy, and Interaction with Other Post-Translational Modifications

    PubMed Central

    Kohr, Mark J.; Murphy, Elizabeth

    2013-01-01

    Abstract Significance: S-nitrosylation (SNO) has been identified throughout the body as an important signaling modification both in physiology and a variety of diseases. SNO is a multifaceted post-translational modification, in that it can either act as a signaling molecule itself or as an intermediate to other modifications. Recent Advances and Critical Issues: Through extensive SNO research, we have made progress toward understanding the importance of single cysteine-SNO sites; however, we are just beginning to explore the importance of specific SNO within the context of other SNO sites and post-translational modifications. Additionally, compartmentalization and SNO occupancy may play an important role in the consequences of the SNO modification. Future Directions: In this review, we will consider the context of SNO signaling and discuss how the transient nature of SNO, its role as an oxidative intermediate, and the pattern of SNO, should be considered when determining the impact of SNO signaling. Antioxid. Redox Signal. 19, 1209–1219. PMID:23157187

  4. ICRF Specific Plasma Wall Interactions in JET with the ITER-Like Wall

    SciTech Connect

    Bobkov, V.; Arnoux, G.; Brezinsek, S.; Coenen, J. W.; Colas, L.; Clever, M.; Czarnecka, A.; Braun, F.; Dux, R.; Huber, Alexander; Lerche, E.; Maggi, C.; Marcotte, F.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Meigs, A. G.; Monakhov, I.; Putterich, Th.; Rimini, F.; Rooj, G. Van; Sergienko, G.; Van Eester, D.

    2013-01-01

    A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q95-scans, and intensification of those for the 90 phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall.

  5. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions.

    PubMed

    Weber, Daniel N; Hoffmann, Raymond G; Hoke, Elizabeth S; Tanguay, Robert L

    2015-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1, or 1 μM) or one of two control compounds (0.1 μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into three computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1-3 (= AM) and 5-8 (= PM) h postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, percent of time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced nonmonotonic effects (response curve changes direction within range of concentrations examined) on male percent of time at mirror only in AM. All treatments produced increased percent of time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions, and time of day of observation affected results. PMID:25424546

  6. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  7. A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4.

    PubMed

    Martinez-Noel, G; Niedenthal, R; Tamura, T; Harbers, K

    1999-07-01

    The ubiquitin-conjugating enzyme UbcM4 was previously shown to be necessary for normal mouse development. As a first step in identifying target proteins or proteins involved in the specificity of UbcM4-mediated ubiquitylation, we have isolated seven cDNAs encoding proteins that specifically interact with UbcM4 but with none of the other Ubcs tested. This interaction was observed in yeast as well as in mammalian cells. With one exception, all UbcM4-interacting proteins (UIPs) belong to a family of proteins that contain a RING finger motif. As they are structurally related to RING finger proteins that have recently been shown to play an essential role in protein ubiquitylation and degradation, the possibility is discussed that UIPs are involved in the specific recognition of substrate proteins of UbcM4.

  8. Interaction studies of the human and Arabidopsis thaliana Med25-ACID proteins with the herpes simplex virus VP16- and plant-specific Dreb2a transcription factors.

    PubMed

    Aguilar, Ximena; Blomberg, Jeanette; Brännström, Kristoffer; Olofsson, Anders; Schleucher, Jürgen; Björklund, Stefan

    2014-01-01

    Mediator is an evolutionary conserved multi-protein complex present in all eukaryotes. It functions as a transcriptional co-regulator by conveying signals from activators and repressors to the RNA polymerase II transcription machinery. The Arabidopsis thaliana Med25 (aMed25) ACtivation Interaction Domain (ACID) interacts with the Dreb2a activator which is involved in plant stress response pathways, while Human Med25-ACID (hMed25) interacts with the herpes simplex virus VP16 activator. Despite low sequence similarity, hMed25-ACID also interacts with the plant-specific Dreb2a transcriptional activator protein. We have used GST pull-down-, surface plasmon resonance-, isothermal titration calorimetry and NMR chemical shift experiments to characterize interactions between Dreb2a and VP16, with the hMed25 and aMed25-ACIDs. We found that VP16 interacts with aMed25-ACID with similar affinity as with hMed25-ACID and that the binding surface on aMed25-ACID overlaps with the binding site for Dreb2a. We also show that the Dreb2a interaction region in hMed25-ACID overlaps with the earlier reported VP16 binding site. In addition, we show that hMed25-ACID/Dreb2a and aMed25-ACID/Dreb2a display similar binding affinities but different binding energetics. Our results therefore indicate that interaction between transcriptional regulators and their target proteins in Mediator are less dependent on the primary sequences in the interaction domains but that these domains fold into similar structures upon interaction.

  9. Enhanced specificity of mint geranyl pyrophosphate synthase by modifying the R-loop interactions.

    PubMed

    Hsieh, Fu-Lien; Chang, Tao-Hsin; Ko, Tzu-Ping; Wang, Andrew H-J

    2010-12-17

    Isoprenoids, most of them synthesized by prenyltransferases (PTSs), are a class of important biologically active compounds with diverse functions. The mint geranyl pyrophosphate synthase (GPPS) is a heterotetramer composed of two LSU·SSU (large/small subunit) dimers. In addition to C(10)-GPP, the enzyme also produces geranylgeranyl pyrophosphate (C(20)-GGPP) in vitro, probably because of the conserved active-site structures between the LSU of mint GPPS and the homodimeric GGPP synthase from mustard. By contrast, the SSU lacks the conserved aspartate-rich motifs for catalysis. A major active-site cavity loop in the LSU and other trans-type PTSs is replaced by the regulatory R-loop in the SSU. Only C(10)-GPP, but not C(20)-GGPP, was produced when intersubunit interactions of the R-loop were disrupted by either deletion or multiple point mutations. The structure of the deletion mutant, determined in two different crystal forms, shows an intact (LSU·SSU)(2) heterotetramer, as previously observed in the wild-type enzyme. The active-site of LSU remains largely unaltered, except being slightly more open to the bulk solvent. The R-loop of SSU acts by regulating the product release from LSU, just as does its equivalent loop in a homodimeric PTS, which prevents the early reaction intermediates from escaping the active site of the other subunit. In this way, the product-retaining function of R-loop provides a more stringent control for chain-length determination, complementary to the well-established molecular ruler mechanism. We conclude that the R-loop may be used not only to conserve the GPPS activity but also to produce portions of C(20)-GGPP in mint.

  10. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus

    PubMed Central

    Smith, Emily M.; Lajoie, Bryan R.; Jain, Gaurav; Dekker, Job

    2016-01-01

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519

  11. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

    PubMed

    Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2016-01-01

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519

  12. Combining subject-specific and low-order modeling techniques to study fluid-structure interaction of rabbit phonation

    NASA Astrophysics Data System (ADS)

    Chang, Siyuan; Luo, Haoxiang; Novaleski, Carolyn; Rousseau, Bernard

    2014-11-01

    A subject-specific computational model has been developed to simulate flow-induced vocal fold vibration for evoked rabbit phonation. A freshly excised larynx was scanned using micro magnetic resonance imaging. Images were segmented to identify the vocal fold tissue and lumen surface. The 3D fluid-structure interaction (FSI) model was then constructed with experimentally measured flow parameters as input. The tissue deformation is assumed to be finite, and a previously developed FSI solver is used to simulate the coupled flow and nonlinear tissue mechanics. In addition, a one-dimensional flow model based on heuristic estimate of the flow separation point is used as an efficient tool to guide the full 3D simulation. This low-order model is motivated by presence of uncertainties in the tissue properties and boundary conditions, and it has proven to be very useful in our study. Similarities and differences in the vibration characteristics of the vocal fold predicted by these two models will be discussed.

  13. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    PubMed Central

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A.

    2014-01-01

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic non-coding RNAs (lincRNAs). While lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here, we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA Gas5, which regulates steroid-mediated transcriptional regulation, growth arrest, and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions. PMID:25377354

  14. Liver specific transcription factors of the HNF3-, C/EBP- and LFB1-families interact with the A-activator binding site.

    PubMed Central

    Drewes, T; Klein-Hitpass, L; Ryffel, G U

    1991-01-01

    The A-activator binding site (AABS), present in the Xenopus A2 vitellogenin gene and several mammalian liver specifically expressed genes, interacts with different liver specific transcription factors including LFB1- and C/EBP-isobinders. We have now isolated some additional proteins interacting with AABS and show that they are HNF3-isobinders. The interactions between AABS and members of the HNF3 family are confirmed by binding studies using bacterially made HNF3-alpha protein. Thus a short DNA module of 24 bp is able to bind proteins of three different families of liver specific transcription factors. Competition experiments in the cell free in vitro transcription show that AABS dependent transcriptional activation is mediated by transcription factors belonging to at least two different families, the C/EBP- and the HNF3-isobinders. Being able to mediate the action of several distinct transactivators, AABS may thus be a prototype for a novel kind of tissue specific promoter modules with unique regulatory capacities. Images PMID:1754374

  15. Addition of a clay subsoil to a sandy top soil alters CO2 release and the interactions in residue mixtures.

    PubMed

    Shi, Andong; Marschner, Petra

    2013-11-01

    Addition of clay-rich subsoils to sandy top soils is an agricultural management option to increase water and nutrient retention and may also increase organic carbon sequestration by decreasing the decomposition rates. An incubation experiment was carried out in a loamy sand top soil mixed with a clay-rich subsoil (84% clay) at 0, 10 and 30% (w/w) amended with finely ground mature shoot residues of two native perennial grasses and annual barley individually or in 1:1 mixtures of two residues. Extractable C, microbial biomass C, available N and soil pH were analysed at days 0, 3, 14 and 28. Cumulative respiration after 28 days was highest with barley residue and lowest with Wallaby grass at all clay soil addition rates; 30% clay soil addition reduced cumulative respiration, especially with barley alone. In the mixture of native grasses and barley, the measured respiration was lower than expected at a clay soil addition rate of 10%. A synergistic effect (higher than expected cumulative respiration) was only found in mixture of Kangaroo grass and barley at a clay soil addition rate of 30%. Clay soil addition also decreased extractable C, available N and soil pH. The temporal change in microbial biomass C and available N in residue mixtures differed among clay addition rates. In the mixture of Wallaby grass and Kangaroo grass, microbial biomass C (MBC) decreased from day 0 to day 28 at clay soil addition rates of 0 and 10%, whereas at 30% clay MBC increased from day 0 to day 3 and then decreased. Our study shows that addition of a clay-rich subsoil to a loamy sand soil can increase C sequestration by reducing CO2 release and extractable C which are further modulated by the type of residues present individually or as mixtures.

  16. Differential expression and interaction specificity of the heterotrimeric G-protein family in Brassica nigra reveal their developmental- and condition-specific roles.

    PubMed

    Kumar, Roshan; Arya, Gulab C; Bisht, Naveen C

    2014-11-01

    Heterotrimeric G-proteins, comprised of α, β and γ subunits, are important signal transducers across phyla. The G-proteins are well characterized in the model plants Arabidopsis and rice, and their inventories are possible from a few other plant species; however, information about the roles played by G-proteins in regulating various growth and developmental traits particularly from polyploid crops is still awaited. In this study, we have isolated one Gα (BniB.Gα1), three Gβ (BniB.Gβ1-BniB.Gβ3) and four Gγ (BniB.Gγ1-BniB.Gγ4) coding sequences from the paleopolyploid Brassica nigra, a major condiment crop of the Brassicaceae family. Sequence and phylogenetic analysis revealed that whole-genome triplication events in the Brassica lineage had proportionally increased the inventory of the Gβ subunit, but not of the Gα and Gγ subunits in B. nigra. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that members of the G-protein subunit genes have distinct temporal and spatial expression patterns and were differentially altered in response to various stress and phytohormone treatments, thereby suggesting differential transcriptional regulation of G-protein genes in B. nigra. Interestingly, specific members of G-protein subunits were co-expressed across plant developmental stages, and in response to different elicitor treatments. Yeast-based interaction screens further predicted that the B. nigra G-protein subunits interacted in most of the possible combinations, although showing a high degree of interaction specificity between different G-protein subunits. Our data on physical interactions coupled with the co-expression pattern of the multiple G-protein subunit genes suggested that tissue- and condition-specific functional combinations of Gαβγ heterotrimers may exist in paleopolyploid B. nigra, to control diverse growth and development processes. PMID:25231958

  17. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes.

    PubMed

    Kühlmann, U C; Pommer, A J; Moore, G R; James, R; Kleanthous, C

    2000-09-01

    Bacteria producing endonuclease colicins are protected against their cytotoxic activity by virtue of a small immunity protein that binds with high affinity and specificity to inactivate the endonuclease. DNase binding by the immunity protein occurs through a "dual recognition" mechanism in which conserved residues from helix III act as the binding-site anchor, while variable residues from helix II define specificity. We now report the 1.7 A crystal structure of the 24.5 kDa complex formed between the endonuclease domain of colicin E9 and its cognate immunity protein Im9, which provides a molecular rationale for this mechanism. Conserved residues of Im9 form a binding-energy hotspot through a combination of backbone hydrogen bonds to the endonuclease, many via buried solvent molecules, and hydrophobic interactions at the core of the interface, while the specificity-determining residues interact with corresponding specificity side-chains on the enzyme. Comparison between the present structure and that reported recently for the colicin E7 endonuclease domain in complex with Im7 highlights how specificity is achieved by very different interactions in the two complexes, predominantly hydrophobic in nature in the E9-Im9 complex but charged in the E7-Im7 complex. A key feature of both complexes is the contact between a conserved tyrosine residue from the immunity proteins (Im9 Tyr54) with a specificity residue on the endonuclease directing it toward the specificity sites of the immunity protein. Remarkably, this tyrosine residue and its neighbour (Im9 Tyr55) are the pivots of a 19 degrees rigid-body rotation that relates the positions of Im7 and Im9 in the two complexes. This rotation does not affect conserved immunity protein interactions with the endonuclease but results in different regions of the specificity helix being presented to the enzyme.

  18. Gender-Specific Perceptions of Four Dimensions of the Work/Family Interaction

    ERIC Educational Resources Information Center

    Innstrand, Siw Tone; Langballe, Ellen Melbye; Falkum, Erik; Espnes, Geir Arild; Aasland, Olaf Gjerlow

    2009-01-01

    The aim of this study was twofold. The first intention was to examine the factorial validity of a work/family interaction in terms of the direction of influence (work-to-family vs. family-to-work) and type of effect (conflict vs. facilitation). Second, gender differences along these four dimensions of work/family interaction were explored. Data…

  19. Understanding the Specificity and Random Collision of Enzyme-Substrate Interaction

    ERIC Educational Resources Information Center

    Kin, Ng Hong; Ling, Tan Aik

    2016-01-01

    The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…

  20. Bimolecular complementation affinity purification (BiCAP) reveals dimer-specific protein interactions for ERBB2 dimers.

    PubMed

    Croucher, David R; Iconomou, Mary; Hastings, Jordan F; Kennedy, Sean P; Han, Jeremy Z R; Shearer, Robert F; McKenna, Jessie; Wan, Adrian; Lau, Joseph; Aparicio, Samuel; Saunders, Darren N

    2016-01-01

    The dynamic assembly of multiprotein complexes is a central mechanism of many cell signaling pathways. This process is key to maintaining the spatiotemporal specificity required for an accurate, yet adaptive, response to rapidly changing cellular conditions. We describe a technique for the specific isolation and downstream proteomic characterization of any two interacting proteins, to the exclusion of their individual moieties and competing binding partners. We termed the approach bimolecular complementation affinity purification (BiCAP) because it combines the use of conformation-specific nanobodies with a protein-fragment complementation assay with affinity purification. Using BiCAP, we characterized the specific interactome of the epidermal growth factor receptor (EGFR) family member ERBB2 when in the form of a homodimer or when in the form of a heterodimer with either EGFR or ERBB3. We identified dimer-specific interaction patterns for key adaptor proteins and identified a number of previously unknown interacting partners. Functional analysis for one of these newly identified partners revealed a noncanonical mechanism of extracellular signal-regulated kinase (ERK) activation that is specific to the ERBB2:ERBB3 heterodimer and acts through the adaptor protein FAM59A in breast cancer cells. PMID:27405979

  1. Enzymatic Mechanism of Leishmania major Peroxidase and the Critical Role of Specific Ionic Interactions

    PubMed Central

    Chreifi, Georges; Hollingsworth, Scott A.; Li, Huiying; Tripathi, Sarvind; Arce, Anton P.; Magaña-Garcia, Hugo I.; Poulos, Thomas L.

    2015-01-01

    Leishmania major peroxidase (LmP) is very similar to the well-known yeast cytochrome c peroxidase (CcP). Both enzymes catalyze the peroxidation of cytochrome c. Like CcP, LmP reacts with H2O2 to form Compound I, which consists of a ferryl heme and a Trp radical, FeIV= O;Trp•+. Cytochrome c (Cytc) reduces the Trp radical to give Compound II, FeIV= O;Trp, which is followed by an intramolecular electron transfer to give FeIII–OH;Trp•+, and in the last step, Cytc reduces the Trp radical. In this study, we have used steady-state and single-turnover kinetics to improve our understanding of the overall mechanism of LmP catalysis. While the activity of CcP greatly increases with ionic strength, the kcat for LmP remains relatively constant at all ionic strengths tested. Therefore, unlike CcP, where dissociation of oxidized Cytc is limiting at low ionic strengths, association/dissociation reactions are not limiting at any ionic strength in LmP. We conclude that in LmP, the intramolecular electron transfer reaction, FeIV= O;Trp to FeIII–OH;Trp•+, is limiting at all ionic strengths. Unlike CcP, LmP depends on key intermolecular ion pairs to form the electron transfer competent complex. Mutating these sites causes the initial rate of association to decrease by 2 orders of magnitude and a substantial decrease in kcat. The drop in kcat is due to a switch in the rate-limiting step of the mutants from intramolecular electron transfer to the rate of association in forming the LmP–LmCytc complex. These studies show that while LmP and CcP form very similar complexes and exhibit similar activities, they substantially differ in how their activity changes as a function of ionic strength. This difference is primarily due to the heavy reliance of LmP on highly specific intermolecular ion pairs, while CcP relies mainly on nonpolar interactions. PMID:25941976

  2. Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications

    NASA Astrophysics Data System (ADS)

    Brandl, E.; Baufeld, B.; Leyens, C.; Gault, R.

    In this paper, the results of two different wire based additive-layer-manufacturing systems are compared: in one system Ti-6Al4V is deposited by a Nd:YAG laser beam, in the other by an arc beam (tungsten inert gas process). Mechanical properties of the deposits and of plate material are presented and evaluated with respect to aerospace material specifications. The mechanical tests including static tension and high cycle fatigue were performed in as-built, stress-relieved and annealed conditions. Generally, the mechanical properties of the components are competitive to cast and even wrought material properties and can attain properties suitable for space or aerospace applications.

  3. Mor-Dalphos-Pd (II) oxidative addition complexes and related NH3 adducts: Insights into bonding and nonbonding interactions

    NASA Astrophysics Data System (ADS)

    de Lima Batista, Ana P.; Braga, Ataualpa A. C.

    2016-09-01

    The stabilizing effects and bonding properties of the Pd metallic center in [(κ2 -P,N-Mor-Dalphos)Pd(Ar)Cl] complexes and related NH3 adducts were investigated by density functional theory (DFT), the intrinsic bond orbital (IBO) approach and the Su-Li energy decomposition method (Su-Li EDA). The IBO analysis showed that the P atom from the P,N-Mor-Dalphos structure has stabilizing contributions in all Pd-Cl and Pd-NH3 bonds in the complexes. According to the Su-Li energy decomposition analysis, the main energy that drives the interaction between the [Mor-Dalphos-Pd(Ar)] moiety and Cl- is the electrostatic term, therefore, the electrostatic energy interaction between them might be an important factor for taking into account when designing other [Mor-Dalphos-Pd(Ar)]-Cl precatalysts.

  4. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-01

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.

  5. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity.

    PubMed

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-28

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs. PMID:27369533

  6. Site-specific proteolysis of the transcriptional coactivator HCF-1 can regulate its interaction with protein cofactors.

    PubMed

    Vogel, Jodi L; Kristie, Thomas M

    2006-05-01

    Limited proteolytic processing is an important transcriptional regulatory mechanism. In various contexts, proteolysis controls the cytoplasmic-to-nuclear transport of important transcription factors or removes domains to produce factors with altered activities. The transcriptional coactivator host cell factor-1 (HCF-1) is proteolytically processed within a unique domain consisting of 20-aa reiterations. Site-specific cleavage within one or more repeats generates a family of amino- and carboxyl-terminal subunits that remain tightly associated. However, the consequences of HCF-1 processing have been undefined. In this study, it was determined that the HCF-1-processing domain interacts with several proteins including the transcriptional coactivator/corepressor four-and-a-half LIM domain-2 (FHL2). Analysis of this interaction has uncovered specificity with both sequence and context determinants within the reiterations of this processing domain. In cells, FHL2 interacts exclusively with the nonprocessed coactivator and costimulates transcription of an HCF-1-dependent target gene. The functional interaction of HCF-1 with FHL2 supports a model in which site-specific proteolysis regulates the interaction of HCF-1 with protein partners and thus can modulate the activity of this coactivator. This paradigm expands the biological significance of limited proteolytic processing as a regulatory mechanism in gene transcription.

  7. Genetic relationships between race-nonspecific and race-specific interactions in the wheat-Pyrenophora tritici-repentis pathosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tan spot, caused by the fungus Pyrenophora tritici-repentis, is a destructive disease of wheat worldwide. The disease system is known to include inverse gene-for-gene, race specific interactions involving the recognition of fungal-produced necrotrophic effectors (NEs) by corresponding host sensitiv...

  8. Detection of subtle differences in analogous viral capsid proteins by allowing unrestricted specific interaction in solution competition ELISA.

    PubMed

    Cao, Lu; Wang, Xin; Fang, Mujin; Xia, Ningshao; Zhao, Qinjian

    2016-10-01

    Assay artifacts were reported in plate-based immuoassays during the assessment of specific molecular interactions owing to the surface induced aggregation/conformational changes. To circumvent surface adsorption and associated artifacts, we used a solution competition ELISA by allowing unrestricted interaction between binding partners to occur in solution for better discrimination between epitopes with subtle differences. A difference of two orders of magnitude in binding to neutralizing antibodies for two truncated versions of the hepatitis E virus capsid protein was observed, while other assays showed comparable antigenicity with the same monoclonal antibodies. Discrimination of epitopes with high degree resemblance in analogous viral capsid proteins was demonstrated quantitatively based on their specific interactions. Therefore, the solution competition ELISA is a method of choice when the detection of subtle differences of two highly analogous proteins is desired. PMID:27321427

  9. Proteomic Studies of Syk-Interacting Proteins Using a Novel Amine-Specific Isotope Tag and GFP Nanotrap

    NASA Astrophysics Data System (ADS)

    Galan, Jacob A.; Paris, Leela L.; Zhang, Hua-jie; Adler, Jacob; Geahlen, Robert L.; Tao, W. Andy

    2011-02-01

    Green fluorescent protein (GFP) and variants have become powerful tools to study protein localization, interactions, and dynamics. We present here a mass spectrometry-based proteomics strategy to examine protein-protein interactions using anti-GFP single-chain antibody VHH in a combination with a novel stable isotopic labeling reagent, isotope tag on amino groups (iTAG). We demonstrate that the single-chain VHH (GFP nanotrap) allows us to identify interacting partners of the Syk protein-tyrosine kinase bearing a GFP epitope tag with high efficiency and high specificity. Interacting proteins identified include CrkL, BLNK, α- and β-tubulin, Csk, RanBP5 and DJ-1. The iTAG reagents were prepared with simple procedures and characterized with high accuracy in the determination of peptides in model peptide mixtures and as well as in complex mixture. Applications of the iTAG method and GFP nanotrap to an analysis of the nucleocytoplasmic trafficking of Syk led to the identification of location-specific associations between Syk and multiple proteins. While the results reveal that the new quantitative proteomic strategy is generally applicable to integrate protein interaction data with subcellular localization, extra caution should be taken in evaluating the results obtained by such affinity purification strategies as many interactions appear to occur following cell lysis.

  10. Identification of a novel factor that interacts with an immunoglobulin heavy-chain promoter and stimulates transcription in conjunction with the lymphoid cell-specific factor OTF2.

    PubMed Central

    Yoza, B K; Roeder, R G

    1990-01-01

    The tissue-specific expression of the MOPC 141 immunoglobulin heavy-chain gene was studied by using in vitro transcription. B-cell-specific transcription of this gene was dependent on the octamer element 5'-ATGCAAAG-3', located in the upstream region of this promoter and in the promoters of all other immunoglobulin heavy- and light-chain genes. The interaction of purified octamer transcription factors 1 and 2 (OTF1 and OTF2) with the MOPC 141 promoter was studied by using electrophoretic mobility shift assays and DNase I footprinting. Purified OTF1 from HeLa cells and OTF1 and OTF2 from B cells bound to identical sequences within the heavy-chain promoter. The OTF interactions we observed extended over the heptamer element 5'-CTCAGGA-3', and it seems likely that the binding of the purified factors involves cooperation between octamer and heptamer sites in this promoter. In addition to these elements, we identified a second regulatory element, the N element with the sequence 5'-GGAACCTCCCCC-3'. The N element could independently mediate low levels of transcription in both B-cell and HeLa-cell extracts, and, in conjunction with the octamer element, it can promote high levels of transcription in B-cell extracts. The N element bound a transcription factor, NTF, that is ubiquitous in cell-type distribution, and NTF was distinct from any of the previously described proteins that bind to similar sequences. Based on these results, we propose that NTF and OTF2 interactions (both with their cognate DNA elements and possibly at the protein-protein level) may be critical to B-cell-specific expression and that these interactions provide additional pathways for regulating gene expression. Images PMID:2109187

  11. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.

    PubMed

    Holland, Joseph G; Malin, Jessica N; Jordan, David S; Morales, Esmeralda; Geiger, Franz M

    2011-03-01

    This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.

  12. Establishment of a Protein Frequency Library and Its Application in the Reliable Identification of Specific Protein Interaction Partners*

    PubMed Central

    Boulon, Séverine; Ahmad, Yasmeen; Trinkle-Mulcahy, Laura; Verheggen, Céline; Cobley, Andy; Gregor, Peter; Bertrand, Edouard; Whitehorn, Mark; Lamond, Angus I.

    2010-01-01

    The reliable identification of protein interaction partners and how such interactions change in response to physiological or pathological perturbations is a key goal in most areas of cell biology. Stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry has been shown to provide a powerful strategy for characterizing protein complexes and identifying specific interactions. Here, we show how SILAC can be combined with computational methods drawn from the business intelligence field for multidimensional data analysis to improve the discrimination between specific and nonspecific protein associations and to analyze dynamic protein complexes. A strategy is shown for developing a protein frequency library (PFL) that improves on previous use of static “bead proteomes.” The PFL annotates the frequency of detection in co-immunoprecipitation and pulldown experiments for all proteins in the human proteome. It can provide a flexible and objective filter for discriminating between contaminants and specifically bound proteins and can be used to normalize data values and facilitate comparisons between data obtained in separate experiments. The PFL is a dynamic tool that can be filtered for specific experimental parameters to generate a customized library. It will be continuously updated as data from each new experiment are added to the library, thereby progressively enhancing its utility. The application of the PFL to pulldown experiments is especially helpful in identifying either lower abundance or less tightly bound specific components of protein complexes that are otherwise lost among the large, nonspecific background. PMID:20023298

  13. Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions.

    PubMed

    Dunn, Barnaby D; Stefanovitch, Iolanta; Evans, Davy; Oliver, Clare; Hawkins, Amy; Dalgleish, Tim

    2010-11-01

    Delineating the differential effects of anxiety versus depression on patterns of information processing has proved challenging. The tripartite model of mood disorders (Clark & Watson, 1991) suggests that one way forward is to adopt a dimensional rather than categorical approach, making it possible to explore the main and interaction effects of depression- and anxiety-specific symptoms on a given cognitive-affective process. Here we examined how the interplay of anxiety-specific arousal and depression-specific anhedonia symptoms in the same individuals relate to interoceptive (bodily) awareness. 113 participants with varying levels of mood disorder symptoms completed a heartbeat perception task to assess interoceptive accuracy. Superior interoception was associated with anxiety-specific arousal symptoms, and this relationship held when controlling for depression-specific anhedonia symptoms and shared general distress symptoms. This main effect was qualified by an interaction between anhedonia and arousal. As anhedonia symptoms increased in severity, the relationship between arousal and interoceptive accuracy became less strong. These results further validate the tripartite framework, help clarify the mixed existing literature on interoception in mood disorders, and suggest that considering the unique and interactive effects of different symptom dimensions is a useful strategy to help identify the cognitive-affective profiles associated with anxiety and depression. PMID:20692645

  14. Mutualism favours higher host specificity than does antagonism in plant–herbivore interaction

    PubMed Central

    Kawakita, Atsushi; Okamoto, Tomoko; Goto, Ryutaro; Kato, Makoto

    2010-01-01

    Coevolved mutualisms often exhibit high levels of partner specificity. Obligate pollination mutualisms, such as the fig–fig wasp and yucca–yucca moth systems, represent remarkable examples of such highly species-specific associations; however, the evolutionary processes underlying these patterns are poorly understood. The prevailing hypothesis suggests that the high degree of specificity in pollinating seed parasites is the fortuitous result of specialization in their ancestors because these insects are derived from endophytic herbivores that are themselves highly host-specific. Conversely, we show that in the Glochidion–Epicephala obligate pollination mutualism, pollinators are more host-specific than are closely related endophytic leaf-feeding taxa, which co-occur with Epicephala on the same Glochidion hosts. This difference is probably not because of shifts in larval diet (i.e. from leaf- to seed-feeding), because seed-eating lepidopterans other than Epicephala do not show the same degree of host specificity as Epicephala. Species of a tentative sister group of Epicephala each attack several distantly related plants, suggesting that the evolution of strict host specificity is tied to the evolution of pollinator habit. These results suggest that mutualists can attain higher host specificity than that of their parasitic ancestors and that coevolutionary selection can be a strong promoter of extreme reciprocal specialization in mutualisms. PMID:20427340

  15. Tactics for modeling multiple salivary analyte data in relation to behavior problems: Additive, ratio, and interaction effects.

    PubMed

    Chen, Frances R; Raine, Adrian; Granger, Douglas A

    2015-01-01

    Individual differences in the psychobiology of the stress response have been linked to behavior problems in youth yet most research has focused on single signaling molecules released by either the hypothalamic-pituitary-adrenal axis or the autonomic nervous system. As our understanding about biobehavioral relationships develops it is clear that multiple signals from the biological stress systems work in coordination to affect behavior problems. Questions are raised as to whether coordinated effects should be statistically represented as ratio or interactive terms. We address this knowledge gap by providing a theoretical overview of the concepts and rationales, and illustrating the analytical tactics. Salivary samples collected from 446 youth aged 11-12 were assayed for salivary alpha-amylase (sAA), dehydroepiandrosterone-sulfate (DHEA-s) and cortisol. Coordinated effect of DHEA-s and cortisol, and coordinated effect of sAA and cortisol on externalizing and internalizing problems (Child Behavior Checklist) were tested with the ratio and the interaction approaches using multi-group path analysis. Findings consistent with previous studies include a positive association between cortisol/DHEA-s ratio and internalizing problems; and a negative association between cortisol and externalizing problems conditional on low levels of sAA. This study highlights the importance of matching analytical strategy with research hypothesis when integrating salivary bioscience into research in behavior problems. Recommendations are made for investigating multiple salivary analytes in relation to behavior problems. PMID:25462892

  16. Tactics for modeling multiple salivary analyte data in relation to behavior problems: Additive, ratio, and interaction effects.

    PubMed

    Chen, Frances R; Raine, Adrian; Granger, Douglas A

    2015-01-01

    Individual differences in the psychobiology of the stress response have been linked to behavior problems in youth yet most research has focused on single signaling molecules released by either the hypothalamic-pituitary-adrenal axis or the autonomic nervous system. As our understanding about biobehavioral relationships develops it is clear that multiple signals from the biological stress systems work in coordination to affect behavior problems. Questions are raised as to whether coordinated effects should be statistically represented as ratio or interactive terms. We address this knowledge gap by providing a theoretical overview of the concepts and rationales, and illustrating the analytical tactics. Salivary samples collected from 446 youth aged 11-12 were assayed for salivary alpha-amylase (sAA), dehydroepiandrosterone-sulfate (DHEA-s) and cortisol. Coordinated effect of DHEA-s and cortisol, and coordinated effect of sAA and cortisol on externalizing and internalizing problems (Child Behavior Checklist) were tested with the ratio and the interaction approaches using multi-group path analysis. Findings consistent with previous studies include a positive association between cortisol/DHEA-s ratio and internalizing problems; and a negative association between cortisol and externalizing problems conditional on low levels of sAA. This study highlights the importance of matching analytical strategy with research hypothesis when integrating salivary bioscience into research in behavior problems. Recommendations are made for investigating multiple salivary analytes in relation to behavior problems.

  17. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    PubMed

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  18. Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25.

    PubMed Central

    Rettig, J; Sheng, Z H; Kim, D K; Hodson, C D; Snutch, T P; Catterall, W A

    1996-01-01

    Presynaptic Ca2+ channels are crucial elements in neuronal excitation-secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. Here we report isoform-specific, stoichiometric interaction of the BI and rbA isoforms of the alpha1A subunit of P/Q-type Ca2+ channels with the presynaptic membrane proteins syntaxin and SNAP-25 in vitro and in rat brain membranes. The BI isoform binds to both proteins, while only interaction with SNAP-25 can be detected in vitro for the rbA isoform. The synaptic protein interaction ("synprint") site involves two adjacent segments of the intracellular loop connecting domains II and III between amino acid residues 722 and 1036 of the BI sequence. This interaction is competitively blocked by the corresponding region of the N-type Ca2+ channel, indicating that these two channels bind to overlapping regions of syntaxin and SNAP-25. Our results provide a molecular basis for a physical link between Ca2+ influx into nerve terminals and subsequent exocytosis of neurotransmitters at synapses that have presynaptic Ca2+ channels containing alpha1A subunits. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8692999

  19. Daphnia magna's sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity.

    PubMed

    Gust, Kurt A; Kennedy, Alan J; Melby, Nicolas L; Wilbanks, Mitchell S; Laird, Jennifer; Meeks, Barbara; Muller, Erik B; Nisbet, Roger M; Perkins, Edward J

    2016-08-01

    This work investigates whether the scale-up to multi-animal exposures that is commonly applied in genomics studies provides equivalent toxicity outcomes to single-animal experiments of standard Daphnia magna toxicity assays. Specifically, we tested the null hypothesis that intraspecific interactions (ISI) among D. magna have neither effect on the life history strategies of this species, nor impact toxicological outcomes in exposure experiments with Cu and Pb. The results show that ISI significantly increased mortality of D. magna in both Cu and Pb exposure experiments, decreasing 14 day LC50 s and 95 % confidence intervals from 14.5 (10.9-148.3) to 8.4 (8.2-8.7) µg Cu/L and from 232 (156-4810) to 68 (63-73) µg Pb/L. Additionally, ISI potentiated Pb impacts on reproduction eliciting a nearly 10-fold decrease in the no-observed effect concentration (from 236 to 25 µg/L). As an indication of environmental relevance, the effects of ISI on both mortality and reproduction in Pb exposures were sustained at both high and low food rations. Furthermore, even with a single pair of Daphnia, ISI significantly increased (p < 0.05) neonate production in control conditions, demonstrating that ISI can affect life history strategy. Given these results we reject the null hypothesis and conclude that results from scale-up assays cannot be directly applied to observations from single-animal assessments in D. magna. We postulate that D. magna senses chemical signatures of conspecifics which elicits changes in life history strategies that ultimately increase susceptibility to metal toxicity. PMID:27151402

  20. The hypervariable region of K-Ras4B is responsible for its specific interactions with Calmodulin

    PubMed Central

    Abraham, Sherwin J.; Nolet, Ryan P.; Calvert, Richard J.; Anderson, Lucy M.; Gaponenko, Vadim

    2009-01-01

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival and motility. The p21 Ras proteins such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry we demonstrate that the hypervariable region of K-Ras contributes in a major way to the interaction with calmodulin while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca2+-loaded calmodulin with micromolar affinity, while the GTP-γ-S loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin. PMID:19583261

  1. Does high-mobility-group non-histone protein HMG 1 interact specifically with histone H1 subfractions?

    PubMed Central

    Cary, P D; Shooter, K V; Goodwin, G H; Johns, E W; Olayemi, J Y; Hartman, P G; Bradbury, E M

    1979-01-01

    The interaction of the non-histone chromosomal protein HMG (high-mobility group) 1 with histone H1 subfractions was investigated by equilibrium sedimentation and n.m.r. sectroscopy. In contrast with a previous report [Smerdon & Isenberg (1976) Biochemistry 15, 4242--4247], it was found, by using equilibrium-sedimentation analysis, that protein HMG 1 binds to all three histone H1 subfractions CTL1, CTL2, and CTL3, arguing against there being a specific interaction between protein HMG 1 and only two of the subfractions, CTL1 and CTL2. Raising the ionic strength of the solutions prevents binding of protein HMG 1 to total histone H1 and the three subfractions, suggesting that the binding in vitro is simply a non-specific ionic interaction between acidic regions of the non-histone protein and the basic regions of the histone. Protein HMG 1 binds to histone H5 also, supporting this view. The above conclusions are supported by n.m.r. studies of protein HMG 1/histone H1 subfraction mixtures. When the two proteins were mixed, there was little perturbation of the n.m.r. spectra and there was no evidence for specific interaction of protein HMG 1 with any of the subfractions. It therefore remains an open question as to whether protein HMG 1 and histone H1 are complexed together in chromatin. PMID:540037

  2. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.

    PubMed

    Abraham, Sherwin J; Nolet, Ryan P; Calvert, Richard J; Anderson, Lucy M; Gaponenko, Vadim

    2009-08-18

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival, and motility. The p21 Ras proteins, such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry, we demonstrate that the hypervariable region of K-Ras4B contributes in a major way to the interaction with calmodulin, while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca(2+)-loaded calmodulin with micromolar affinity, while the GTP-gamma-S-loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin.

  3. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production

    PubMed Central

    Wang, Junfeng; Lu, Rui; Yang, Jian; Li, Hongyu; He, Zhuohao; Jing, Naihe; Wang, Xiaomin; Wang, Yizheng

    2015-01-01

    Generation of β-amyloid (Aβ) peptide in Alzheimer's disease involves cleavage of amyloid precursor protein (APP) by γ-secretase, a protease known to cleave several substrates, including Notch. Finding specific modulators for γ-secretase could be a potential avenue to treat the disease. Here, we report that transient receptor potential canonical (TRPC) 6 specifically interacts with APP leading to inhibition of its cleavage by γ-secretase and reduction in Aβ production. TRPC6 interacts with APP (C99), but not with Notch, and prevents C99 interaction with presenilin 1 (PS1). A fusion peptide derived from TRPC6 also reduces Aβ levels without effect on Notch cleavage. Crossing APP/PS1 mice with TRPC6 transgenic mice leads to a marked reduction in both plaque load and Aβ levels, and improvement in structural and behavioural impairment. Thus, TRPC6 specifically modulates γ-secretase cleavage of APP and preventing APP (C99) interaction with PS1 via TRPC6 could be a novel strategy to reduce Aβ formation. PMID:26581893

  4. Switching assay as a novel approach for specific antigen- antibody interaction analysis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Parr, M.; Illarionov, R.; Marchenko, Y.; Yakovleva, L.; Nikolaev, B.; Ischenko, A.; Shevtsov, M.

    2016-08-01

    Switching assay was applied for the detection of antigen-antibody interaction between 70-kDa heat shock protein (Hsp70) and anti-Hsp70 monoclonal antibodies in water solutions using conjugates with magnetic iron oxide nanoparticles (MNPs). Hsp70 is a ubiquitous intracellular protein that plays a crucial role in cancerogenesis and many other pathologies. Detection of the Hsp70 level in the biological fluids might have a prognostic and diagnostic value in clinic. The developed switch assay for the detection of Hsp70 demonstrated high sensitivity for antigen-antibody interaction analysis thus proving its potential for further preclinical and clinical studies.

  5. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.

    PubMed

    Su, Ji Guo; Han, Xiao Ming; Zhang, Xiao; Hou, Yan Xue; Zhu, Jian Zhuo; Wu, Yi Dong

    2016-01-01

    Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.

  6. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    SciTech Connect

    Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu; Lee, Jae-Ran

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.

  7. Job demands × job control interaction effects: do occupation-specific job demands increase their occurrence?

    PubMed

    Brough, Paula; Biggs, Amanda

    2015-04-01

    Despite evidence that the accurate assessment of occupational health should include measures of both generic job demands and occupation-specific job demands, most research includes only generic job demands. The inclusion of more focused occupation-specific job demands is suggested to explain a larger proportion of variance for both direct effects and job demands × job control/support interaction effects, as compared with the inclusion of generic job demands. This research tested these two propositions via a self-report survey assessing key psychological job characteristics administered twice to a sample of correctional workers (N = 746). The research clearly identified that the assessment of correctional-specific job demands (CJD) was more strongly associated with job satisfaction, work engagement, turnover intentions and psychological strain, as compared with an assessment of generic job demands. However, the CJD did not produce a greater proportion of significant job demands × job control/support interaction effects, as compared with the generic job demands measure. The results thereby provide further support for the acknowledged 'elusiveness' of these theoretical interactions. Overall, however, the results did support the inclusion of occupation-specific measures of job demands for the accurate assessment of the health and job performance of high-risk workers. The implications for theoretical discussions that describe how high job demands are moderated by job resources are discussed. PMID:24123665

  8. The Influence of Context-Specific and Dispositional Achievement Goals on Children's Paired Collaborative Interaction

    ERIC Educational Resources Information Center

    Harris, Amanda; Yuill, Nicola; Luckin, Rosemary

    2008-01-01

    Background: Research has demonstrated that working collaboratively can have positive effects on children's learning. While key factors have been identified which influence the quality of these interactions, little research has addressed the influence of children's achievement goals on collaborative behaviour. Aims: This paper investigates the…

  9. Specificity of root-bacterial interactions for drought stress tolerance in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants cope with drought stress by a variety of mechanisms that occur above- and below-ground. Below the soil surface, root architecture and interactions with beneficial bacteria, including aminocyclopropane carboxylic acid deaminase-positive (ACC+) bacteria, may contribute to differences in drought...

  10. Specific interactions of the wing domains of FOXA1 transcription factor with DNA.

    PubMed

    Cirillo, Lisa A; Zaret, Kenneth S

    2007-02-23

    FOX (forkhead box) transcription factors have diverse regulatory roles in development, signaling, and longevity, as well as being able to bind stably to target sites in silent chromatin. Crystal structure analysis showed that the FOXA DNA binding domain folds into a helix-turn-helix (HTH) motif flanked on either side by "wings" of polypeptide chain. The wings have the potential to interact with the DNA minor groove along the long axis of the DNA helix, flanking the HTH interactions with the major groove. Diverse FOX family homologs exist, and structural studies with certain DNA target sites suggest that neither of the wing regions are well ordered or provide a stable contribution to DNA target site binding. However, FOXA1 binds certain DNA target sites with high affinity, and as a monomer. To determine whether the wing domains contribute to stable DNA binding, we assessed complexes of FOXA with high and lower affinity DNA target sites by hydroxyl radical footprinting and site-directed mutagenesis. The data revealed clear protections predicted for wing interactions at the high affinity target, but less so at the lower affinity target, indicating that the wing domains stably interact with high affinity DNA sites for FOXA proteins.

  11. Effects of eye movement desensitization and reprocessing (EMDR) on non-specific chronic back pain: a randomized controlled trial with additional exploration of the underlying mechanisms

    PubMed Central

    2013-01-01

    Background Non-specific chronic back pain (CBP) is often accompanied by psychological trauma, but treatment for this associated condition is often insufficient. Nevertheless, despite the common co-occurrence of pain and psychological trauma, a specific trauma-focused approach for treating CBP has been neglected to date. Accordingly, eye movement desensitization and reprocessing (EMDR), originally developed as a treatment approach for posttraumatic stress disorders, is a promising approach for treating CBP in patients who have experienced psychological trauma. Thus, the aim of this study is to determine whether a standardized, short-term EMDR intervention added to treatment as usual (TAU) reduces pain intensity in CBP patients with psychological trauma vs. TAU alone. Methods/design The study will recruit 40 non-specific CBP patients who have experienced psychological trauma. After a baseline assessment, the patients will be randomized to either an intervention group (n = 20) or a control group (n = 20). Individuals in the EMDR group will receive ten 90-minute sessions of EMDR fortnightly in addition to TAU. The control group will receive TAU alone. The post-treatment assessments will take place two weeks after the last EMDR session and six months later. The primary outcome will be the change in the intensity of CBP within the last four weeks (numeric rating scale 0–10) from the pre-treatment assessment to the post-treatment assessment two weeks after the completion of treatment. In addition, the patients will undergo a thorough assessment of the change in the experience of pain, disability, trauma-associated distress, mental co-morbidities, resilience, and quality of life to explore distinct treatment effects. To explore the mechanisms of action that are involved, changes in pain perception and pain processing (quantitative sensory testing, conditioned pain modulation) will also be assessed. The statistical analysis of the primary outcome will be performed

  12. RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites

    PubMed Central

    Engreitz, Jesse M.; Sirokman, Klara; McDonel, Patrick; Shishkin, Alexander; Surka, Christine; Russell, Pamela; Grossman, Sharon R.; Chow, Amy Y.; Guttman, Mitchell; Lander, Eric S.

    2014-01-01

    Summary Intermolecular RNA-RNA interactions are used by many noncoding RNAs (ncRNAs) to achieve their diverse functions. To aid in identifying these contacts, we developed a method based on RNA Antisense Purification to systematically map RNA-RNA interactions (RAP-RNA) and applied it to investigate two ncRNAs implicated in RNA processing: U1 snRNA, a component of the spliceosome, and Malat1, a lncRNA that localizes to nuclear speckles. U1 and Malat1 interact with nascent transcripts through distinct targeting mechanisms. Using differential crosslinking, we confirmed that U1 directly hybridizes to both 5’ splice sites and 5’-splice-site motifs throughout introns and found that Malat1 interacts with pre-mRNAs indirectly through protein intermediates. Interactions with nascent pre-mRNAs cause U1 and Malat1 to localize proximally to chromatin at active genes, demonstrating that ncRNAs can use RNA-RNA interactions to target specific pre-mRNAs and genomic sites. RAP-RNA is sensitive to lower abundance RNAs as well, making it generally applicable for investigating ncRNAs. PMID:25259926

  13. Size limits of self-assembled colloidal structures made using specific interactions

    PubMed Central

    Zeravcic, Zorana; Brenner, Michael P.

    2014-01-01

    We establish size limitations for assembling structures of controlled size and shape out of colloidal particles with short-ranged interactions. Through simulations we show that structures with highly variable shapes made out of dozens of particles can form with high yield, as long as each particle in the structure binds only to the particles in their local environment. To understand this, we identify the excited states that compete with the ground-state structure and demonstrate that these excited states have a completely topological characterization, valid when the interparticle interactions are short-ranged. This allows complete enumeration of the energy landscape and gives bounds on how large a colloidal structure can assemble with high yield. For large structures the yield can be significant, even with hundreds of particles. PMID:25349380

  14. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    SciTech Connect

    Bhuvanakantham, Raghavan; Chong, Mun-Keat; Ng, Mah-Lee

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  15. Evaluation of calcium and lead interaction, in addition to their impact on thyroid functions in hyper and hypothyroid patients.

    PubMed

    Memon, Nusrat Shahab; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Arain, Sadaf Sadia; Sahito, Oan Muhammad; Baloch, Shahnawaz; Waris, Muhammad

    2016-01-01

    There is compelling evidence in support of interaction between calcium (Ca) and lead (Pb) in thyroid disorders. The aim of present study was to compare the level of Ca and Pb with thyroid hormones such as thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxin (FT4) in serum samples of hyperthyroid (HPRT) and hypothyroid (HPOT) patients of both genders. For comparative purpose, age-matched (25-50 years) subjects having no thyroid disorders were selected as referents/controls. The serum samples were acid-digested prior to analysis by atomic absorption spectrometry. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data indicates that the mean values of Ca in serum samples of HPRT patients were significantly higher than those of referent subjects (p < 0.01), while reverse pattern was observed in the case of HPOT patients. The level of Pb was higher in the serum samples of both types of thyroid patients, but difference was significant in case of HPOT patients as compare to referent subjects (p < 0.01). A negative correlation was observed between serum Ca levels and TSH of HPRT patients (-r = 0.37-0.39, p < 0.01), while FT3 and FT4 have positive correlation (r = 0.49-0.52 and r = 0.46-0.47), p values <0.01. The Pb in serum had positive correlation with TSH (r = 0.48-0.51, p < 0.005), while negative correlation was observed for FT3 and FT4 (-r = 0.55-0.56, 0.5-0.54, p < 0.05) in HPRT patients. On the other hand, a reverse pattern was observed, for correlation of Ca and Pb with thyroid functions in HPOT patients. PMID:26347420

  16. Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association

    PubMed Central

    2015-01-01

    Some frequently encountered deficiencies in all-atom molecular simulations, such as nonspecific protein–protein interactions being too strong, and unfolded or disordered states being too collapsed, suggest that proteins are insufficiently well solvated in simulations using current state-of-the-art force fields. To address these issues, we make the simplest possible change, by modifying the short-range protein–water pair interactions, and leaving all the water–water and protein–protein parameters unchanged. We find that a modest strengthening of protein–water interactions is sufficient to recover the correct dimensions of intrinsically disordered or unfolded proteins, as determined by direct comparison with small-angle X-ray scattering (SAXS) and Förster resonance energy transfer (FRET) data. The modification also results in more realistic protein-protein affinities, and average solvation free energies of model compounds which are more consistent with experiment. Most importantly, we show that this scaling is small enough not to affect adversely the stability of the folded state, with only a modest effect on the stability of model peptides forming α-helix and β-sheet structures. The proposed adjustment opens the way to more accurate atomistic simulations of proteins, particularly for intrinsically disordered proteins, protein–protein association, and crowded cellular environments. PMID:25400522

  17. Tissue-specific interactions between nuclear proteins and the aminopeptidase N promoter.

    PubMed

    Olsen, J; Laustsen, L; Kärnström, U; Sjöström, H; Norén, O

    1991-09-25

    Aminopeptidase N/CD13 is a metallopeptidase found in many tissues. Aminopeptidase N activity is high in the small intestinal mucosa, moderate in the liver, and low in the spleen. Using DNase I footprinting and electrophoretic mobility shift assays with nuclear extracts from these tissues, three cis elements (DF, LF-B1, UF) were identified in the aminopeptidase N promoter. The DF region (-53 to -30) interacts with the ubiquitously expressed transcription factor Sp1. The LF-B1 region (-85 to -58) interacts with the liver transcription factor LF-B1 (HNF-1) which was detected as well in nuclei from small intestinal mucosa. The UF region (-112 to -90) interacts with nuclear factors which seem to be expressed differentially in the liver and the small intestine. Transfection of promoter deletions into HepG2 cells showed that the LF-B1 region is necessary for high expression of the aminopeptidase N gene in liver cells. LF-B1 could not be detected in spleen nuclei. In accordance with this, RNA analysis demonstrated that the aminopeptidase N promoter operating in the small intestine and in the liver is inactive in the spleen. In this tissue initiation of transcription from the aminopeptidase N gene occurs from an upstream promoter.

  18. Real-Time Analysis of Specific Protein-DNA Interactions with Surface Plasmon Resonance

    PubMed Central

    Ritzefeld, Markus; Sewald, Norbert

    2012-01-01

    Several proteins, like transcription factors, bind to certain DNA sequences, thereby regulating biochemical pathways that determine the fate of the corresponding cell. Due to these key positions, it is indispensable to analyze protein-DNA interactions and to identify their mode of action. Surface plasmon resonance is a label-free method that facilitates the elucidation of real-time kinetics of biomolecular interactions. In this article, we focus on this biosensor-based method and provide a detailed guide how SPR can be utilized to study binding of proteins to oligonucleotides. After a description of the physical phenomenon and the instrumental realization including fiber-optic-based SPR and SPR imaging, we will continue with a survey of immobilization methods. Subsequently, we will focus on the optimization of the experiment, expose pitfalls, and introduce how data should be analyzed and published. Finally, we summarize several interesting publications of the last decades dealing with protein-DNA and RNA interaction analysis by SPR. PMID:22500214

  19. Molecular interactions and trafficking of influenza A virus polymerase proteins analyzed by specific monoclonal antibodies

    SciTech Connect

    MacDonald, Leslie A.; Aggarwal, Shilpa; Bussey, Kendra A.; Desmet, Emily A.; Kim, Baek; Takimoto, Toru

    2012-04-25

    The influenza polymerase complex composed of PA, PB1 and PB2, plays a key role in viral replication and pathogenicity. Newly synthesized components must be translocated to the nucleus, where replication and transcription of viral genomes take place. Previous studies suggest that while PB2 is translocated to the nucleus independently, PA and PB1 subunits could not localize to the nucleus unless in a PA-PB1 complex. To further determine the molecular interactions between the components, we created a panel of 16 hybridoma cell lines, which produce monoclonal antibodies (mAbs) against each polymerase component. We showed that, although PB1 interacts with both PA and PB2 individually, nuclear localization of PB1 is enhanced only when co-expressed with PA. Interestingly, one of the anti-PA mAbs reacted much more strongly with PA when co-expressed with PB1. These results suggest that PA-PB1 interactions induce a conformational change in PA, which could be required for its nuclear translocation.

  20. Sequence-specific DNA interactions with calixarene-based langmuir monolayers.

    PubMed

    Rullaud, Vanessa; Moridi, Negar; Shahgaldian, Patrick

    2014-07-29

    The interactions of an amphiphilic calixarene, namely p-guanidino-dodecyloxy-calix[4]arene, 1, self-assembled as Langmuir monolayers, with short double stranded DNA, were investigated by surface pressure-area (π-A) isotherms, surface ellipsometry and Brewster angle microscopy (BAM). Three DNA 30mers were used as models, poly(AT), poly(GC) and a random DNA sequence with 50% of G:C base pairs. The interactions of these model DNA duplexes with 1-based Langmuir monolayers were studied by measuring compression isotherms using increasing DNA concentrations (10(-6), 10(-5), 10(-4), and 5 × 10(-4) g L(-1)) in the aqueous subphase. The isotherms of 1 showed an expansion of the monolayer with, interestingly, significant differences depending on the duplex DNA sequence studied. Indeed, the interactions of 1-based monolayers with poly(AT) led to an expansion of the monolayer that was significantly more pronounced that for monolayers on subphases of poly(GC) and the random DNA sequence. The structure and thickness of 1-based Langmuir monolayers were investigated by BAM and surface ellipsometry that showed differences in thickness and structure between a monolayer formed on pure water or on a DNA subphase, with here again relevant dissimilarities depending on the DNA composition.

  1. Kinetics of the addition of olefins to Si-centered radicals: the critical role of dispersion interactions revealed by theory and experiment.

    PubMed

    Johnson, Erin R; Clarkin, Owen J; Dale, Stephen G; DiLabio, Gino A

    2015-06-01

    Solution-phase rate constants for the addition of selected olefins to the triethylsilyl and tris(trimethylsilyl)silyl radicals are measured using laser-flash photolysis and competition kinetics. The results are compared with predictions from density functional theory (DFT) calculations, both with and without dispersion corrections obtained from the exchange-hole dipole moment (XDM) model. Without a dispersion correction, the rate constants are consistently underestimated; the errors increase with system size, up to 10(6) s(-1) for the largest system considered. Dispersion interactions preferentially stabilize the transition states relative to the separated reactants and bring the DFT-calculated rate constants into excellent agreement with experiment. Thus, dispersion interactions are found to play a key role in determining the kinetics for addition reactions, particularly those involving sterically bulky functional groups.

  2. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    PubMed

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition. PMID:25345650

  3. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    PubMed

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition.

  4. Specific Inhibition of DNMT3A/ISGF3γ Interaction Increases the Temozolomide Efficiency to Reduce Tumor Growth

    PubMed Central

    Cheray, Mathilde; Pacaud, Romain; Nadaradjane, Arulraj; Oliver, Lisa; Vallette, François M; Cartron, Pierre-François

    2016-01-01

    DNA methylation is a fundamental feature of genomes and is a candidate for pharmacological manipulation that might have important therapeutic advantage. Thus, DNA methyltransferases (DNMTs) appear to be ideal targets for drug intervention. By focusing on interactions existing between DNMT3A and DNMT3A-binding protein (D3A-BP), our work identifies the DNMT3A/ISGF3γ interaction such as a biomarker whose the presence level is associated with a poor survival prognosis and with a poor prognosis of response to the conventional chemotherapeutic treatment of glioblastoma multiforme (radiation plus temozolomide). Our data also demonstrates that the disruption of DNMT3A/ISGF3γ interactions increases the efficiency of chemotherapeutic treatment on established tumors in mice. Thus, our data opens a promising and innovative alternative to the development of specific DNMT inhibitors. PMID:27698935

  5. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics].

    PubMed

    Liebig, L; Grasshoff, C; Hentschke, H

    2016-08-01

    Acetylcholine is a neuromodulator which is released throughout the central nervous system and plays an essential role in consciousness and cognitive processes including attention and learning. Due to its 'activating' effect on the neuronal and behavioral level its interaction with anesthetics has long been of interest to anesthesiologists. It is widely held that a reduction of the release of acetylcholine by general anesthetics constitutes part of the anesthetic effect. This notion is backed by numerous human and animal studies, but is also in seeming contradiction to findings that acetylcholine activates specific classes of inhibitory neurons: if acetylcholine excites elements within the neuronal network responsible for the release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), its withdrawal should diminish, not enhance, the effect of anesthetics.Focusing on cortical circuits, we present an overview of recent advances in cellular neurophysiology, particularly the interactions between inhibitory neuron classes, which provide insights on the interaction between acetylcholine and GABA.

  6. Specific Inhibition of DNMT3A/ISGF3γ Interaction Increases the Temozolomide Efficiency to Reduce Tumor Growth

    PubMed Central

    Cheray, Mathilde; Pacaud, Romain; Nadaradjane, Arulraj; Oliver, Lisa; Vallette, François M; Cartron, Pierre-François

    2016-01-01

    DNA methylation is a fundamental feature of genomes and is a candidate for pharmacological manipulation that might have important therapeutic advantage. Thus, DNA methyltransferases (DNMTs) appear to be ideal targets for drug intervention. By focusing on interactions existing between DNMT3A and DNMT3A-binding protein (D3A-BP), our work identifies the DNMT3A/ISGF3γ interaction such as a biomarker whose the presence level is associated with a poor survival prognosis and with a poor prognosis of response to the conventional chemotherapeutic treatment of glioblastoma multiforme (radiation plus temozolomide). Our data also demonstrates that the disruption of DNMT3A/ISGF3γ interactions increases the efficiency of chemotherapeutic treatment on established tumors in mice. Thus, our data opens a promising and innovative alternative to the development of specific DNMT inhibitors.

  7. Effect of the spin-orbit interaction on the thermodynamic properties of crystals: specific heat of bismuth.

    PubMed

    Díaz-Sánchez, L E; Romero, A H; Cardona, M; Kremer, R K; Gonze, X

    2007-10-19

    We discuss measurements and ab initio calculations of the specific heat for crystalline bismuth, strictly speaking, a semimetal but in the temperature region accessible to us (T>2 K) acting as a semiconductor. We extend experimental data available in the literature and notice that the ab initio calculations without spin-orbit interaction exhibit a maximum at approximately 8 K, about 20% lower than the measured one. Inclusion of spin-orbit interaction decreases the discrepancy markedly: the maximum of C(T) is now only 7% larger than the measured one. Exact agreement is obtained if the strength of the spin-orbit Hamiltonian is reduced by a factor of approximately 0.9. We also discuss the dependence of the lattice parameter and the cohesive energy on spin-orbit interaction.

  8. Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection.

    PubMed Central

    Purohit, P; Dupont, S; Stevenson, M; Green, M R

    2001-01-01

    The human immunodeficiency virus type-1 matrix protein (HIV-1 MA) is a multifunctional structural protein synthesized as part of the Pr55 gag polyprotein. We have used in vitro genetic selection to identify an RNA consensus sequence that specifically interacts with MA (Kd = 5 x 10(-7) M). This 13-nt MA binding consensus sequence bears a high degree of homology (77%) to a region (nt 1433-1446) within the POL open reading frame of the HIV-1 genome (consensus sequence from 38 HIV-1 strains). Chemical interference experiments identified the nucleotides within the MA binding consensus sequence involved in direct contact with MA. We further demonstrate that this RNA-protein interaction is mediated through a stretch of basic amino acids within MA. Mutations that disrupt the interaction between MA and its RNA binding site within the HIV-1 genome resulted in a measurable decrease in viral replication. PMID:11345436

  9. The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2.

    PubMed

    Keestra, A Marijke; de Zoete, Marcel R; van Aubel, Rémon A M H; van Putten, Jos P M

    2007-06-01

    The ligand specificity of human TLR (hTLR) 2 is determined through the formation of functional heterodimers with either hTLR1 or hTLR6. The chicken carries two TLR (chTLR) 2 isoforms, type 1 and type 2 (chTLR2t1 and chTLR2t2), and one putative TLR1/6/10 homologue (chTLR16) of unknown function. In this study, we report that transfection of HeLa cells with the various chicken receptors yields potent NF-kappaB activation for the receptor combination of chTLR2t2 and chTLR16 only. The sensitivity of this complex was strongly enhanced by human CD14. The functional chTLR16/chTLR2t2 complex responded toward both the hTLR2/6-specific diacylated peptide S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) and the hTLR2/1 specific triacylated peptide tripalmitoyl-S-(bis(palmitoyloxy)propyl)-Cys-Ser-(Lys)(3)-Lys (Pam(3)CSK(4)), indicating that chTLR16 covers the functions of both mammalian TLR1 and TLR6. Dissection of the species specificity of TLR2 and its coreceptors showed functional chTLR16 complex formation with chTLR2t2 but not hTLR2. Conversely, chTLR2t2 did not function in combination with hTLR1 or hTLR6. The use of constructed chimeric receptors in which the defined domains of chTLR16 and hTLR1 or hTLR6 had been exchanged revealed that the transfer of leucine-rich repeats (LRR) 6-16 of chTLR16 into hTLR6 was sufficient to confer dual ligand specificity to the human receptor and to establish species-specific interaction with chTLR2t2. Collectively, our data indicate that diversification of the central LRR region of the TLR2 coreceptors during evolution has put constraints on both their ligand specificity and their ability to form functional complexes with TLR2. PMID:17513760

  10. Category-Specific Naming Deficit in Alzheimer's Disease: The Effect of a Display by Domain Interaction

    ERIC Educational Resources Information Center

    Zannino, Gian Daniele; Perri, Roberta; Caltagirone, Carlo; Carlesimo, Giovanni A.

    2007-01-01

    A category-specific naming effect penalizing living things has often been reported in patients suffering from Alzheimer's disease (AD) and in other brain damaged populations, while the opposite dissociation (i.e., lower accuracy in naming nonliving than living things) is much rarer. In this study, we investigated whether the use of line drawings…

  11. Specificity rendering 'hot-spots' for aurora kinase inhibitor design: the role of non-covalent interactions and conformational transitions.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2014-01-01

    The present study examines the conformational transitions occurring among the major structural motifs of Aurora kinase (AK) concomitant with the DFG-flip and deciphers the role of non-covalent interactions in rendering specificity. Multiple sequence alignment, docking and structural analysis of a repertoire of 56 crystal structures of AK from Protein Data Bank (PDB) has been carried out. The crystal structures were systematically categorized based on the conformational disposition of the DFG-loop [in (DI) 42, out (DO) 5 and out-up (DOU) 9], G-loop [extended (GE) 53 and folded (GF) 3] and αC-helix [in (CI) 42 and out (CO) 14]. The overlapping subsets on categorization show the inter-dependency among structural motifs. Therefore, the four distinct possibilities a) 2W1C (DI, CI, GE) b) 3E5A (DI, CI, GF) c) 3DJ6 (DI, CO, GF) d) 3UNZ (DOU, CO, GF) along with their co-crystals and apo-forms were subjected to molecular dynamics simulations of 40 ns each to evaluate the variations of individual residues and their impact on forming interactions. The non-covalent interactions formed by the 157 AK co-crystals with different regions of the binding site were initially studied with the docked complexes and structure interaction fingerprints. The frequency of the most prominent interactions was gauged in the AK inhibitors from PDB and the four representative conformations during 40 ns. Based on this study, seven major non-covalent interactions and their complementary sites in AK capable of rendering specificity have been prioritized for the design of different classes of inhibitors. PMID:25485544

  12. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia.

    PubMed

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-15

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 10(4)M(-1), this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer.

  13. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-01

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 104 M-1, this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer.

  14. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia.

    PubMed

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-15

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 10(4)M(-1), this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer. PMID:25770933

  15. Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly

    PubMed Central

    Wawrzycka, Aleksandra; Gross, Marta; Wasaznik, Anna; Konieczny, Igor

    2015-01-01

    Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined. PMID:26195759

  16. Iron-Sulfur Cluster Biogenesis Chaperones: Evidence for Emergence of Mutational Robustness of a Highly Specific Protein-Protein Interaction.

    PubMed

    Delewski, Wojciech; Paterkiewicz, Bogumiła; Manicki, Mateusz; Schilke, Brenda; Tomiczek, Bartłomiej; Ciesielski, Szymon J; Nierzwicki, Lukasz; Czub, Jacek; Dutkiewicz, Rafal; Craig, Elizabeth A; Marszalek, Jaroslaw

    2016-03-01

    Biogenesis of iron-sulfur clusters (FeS) is a highly conserved process involving Hsp70 and J-protein chaperones. However, Hsp70 specialization differs among species. In most eukaryotes, including Schizosaccharomyces pombe, FeS biogenesis involves interaction between the J-protein Jac1 and the multifunctional Hsp70 Ssc1. But, in Saccharomyces cerevisiae and closely related species, Jac1 interacts with the specialized Hsp70 Ssq1, which emerged through duplication of SSC1. As little is known about how gene duplicates affect the robustness of their protein interaction partners, we analyzed the functional and evolutionary consequences of Ssq1 specialization on the ubiquitous J-protein cochaperone Jac1, by comparing S. cerevisiae and S. pombe. Although deletion of JAC1 is lethal in both species, alanine substitutions within the conserved His-Pro-Asp (HPD) motif, which is critical for Jac1:Hsp70 interaction, have species-specific effects. They are lethal in S. pombe, but not in S. cerevisiae. These in vivo differences correlated with in vitro biochemical measurements. Charged residues present in the J-domain of S. cerevisiae Jac1, but absent in S. pombe Jac1, are important for tolerance of S. cerevisiae Jac1 to HPD alterations. Moreover, Jac1 orthologs from species that encode Ssq1 have a higher sequence divergence. The simplest interpretation of our results is that Ssq1's coevolution with Jac1 resulted in expansion of their binding interface, thus increasing the efficiency of their interaction. Such an expansion could in turn compensate for negative effects of HPD substitutions. Thus, our results support the idea that the robustness of Jac1 emerged as consequence of its highly efficient and specific interaction with Ssq1.

  17. Repulsive interactions induced by specific adsorption: Anomalous step diffusivity and inadequacy of nearest-neighbor Ising model. (part I experimental)

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo; Ibach, Harald; Beltramo, Guillermo L.; Giesen, Margret

    2016-09-01

    This is Part I of two closely related papers, where we show that the specific adsorption of anions leads to a failure of the nearest-neighbor Ising model to describe island perimeter curvatures on Au(100) electrodes in dilute KBr, HCl and H2SO4 electrolytes and the therewith derived step diffusivity vs. step orientation. This result has major consequences for theoretical studies aiming at the understanding of growth, diffusion and degradation phenomena. Part I focuses on the experimental data. As shown theoretically in detail in Part II (doi:10.1016/j.susc.2016.03.022), a set of nearest-neighbor and next-nearest-neighbor interaction energies (ɛNN, ɛNNN) can uniquely be derived from the diffusivity of steps along <100> and <110>. We find strong repulsive next-nearest neighbor (NNN) interaction in KBr and HCl, whereas NNN interaction is negligibly for H2SO4. The NNN repulsive interaction energy ɛNNN therefore correlates positively with the Gibbs adsorption energy of the anions. We find furthermore that ɛNNN increases with increasing Br- and Cl- coverage. The results for ɛNN and ɛNNN are quantitatively consistent with the coverage dependence of the step line tension. We thereby establish a sound experimental base for theoretical studies on the energetics of steps in the presence of specific adsorption.

  18. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II

    PubMed Central

    Bharati, Akhilendra Pratap; Singh, Neha; Kumar, Vikash; Kashif, Md.; Singh, Amit Kumar; Singh, Priyanka; Singh, Sudhir Kumar; Siddiqi, Mohammad Imran; Tripathi, Timir; Akhtar, Md. Sohail

    2016-01-01

    RNA Polymerase II (RNAPII) uniquely possesses an extended carboxy terminal domain (CTD) on its largest subunit, Rpb1, comprising a repetitive Tyr1Ser2Pro3Thr4 Ser5Pro6Ser7 motif with potential phosphorylation sites. The phosphorylation of the CTD serves as a signal for the binding of various transcription regulators for mRNA biogenesis including the mRNA capping complex. In eukaryotes, the 5 prime capping of the nascent transcript is the first detectable mRNA processing event, and is crucial for the productive transcript elongation. The binding of capping enzyme, RNA guanylyltransferases to the transcribing RNAPII is known to be primarily facilitated by the CTD, phosphorylated at Ser5 (Ser5P). Here we report that the Saccharomyces cerevesiae RNA guanylyltransferase (Ceg1) has dual specificity and interacts not only with Ser5P but also with Ser7P of the CTD. The Ser7 of CTD is essential for the unconditional growth and efficient priming of the mRNA capping complex. The Arg159 and Arg185 of Ceg1 are the key residues that interact with the Ser5P, while the Lys175 with Ser7P of CTD. These interactions appear to be in a specific pattern of Ser5PSer7PSer5P in a tri-heptad CTD (YSPTSPPS YSPTSPSP YSPTSPPS) and provide molecular insights into the Ceg1-CTD interaction for mRNA transcription. PMID:27503426

  19. Estimation of medium effects on equilibrium constants in moderate and high ionic strength solutions at elevated temperatures by using specific interaction theory (SIT): interaction coefficients involving Cl, OH- and Ac- up to 200 degrees C and 400 bars.

    PubMed

    Xiong, Yongliang

    2006-01-01

    In this study, a series of interaction coefficients of the Brønsted-Guggenheim-Scatchard specific interaction theory (SIT) have been estimated up to 200 degrees C and 400 bars. The interaction coefficients involving Cl- estimated include epsilon(H+, Cl-), epsilon(Na+, Cl-), epsilon(Ag+, Cl-), epsilon(Na+, AgCl2 -), epsilon(Mg2+, Cl-), epsilon(Ca2+, Cl-), epsilon(Sr2+, Cl-), epsilon(Ba2+, Cl-), epsilon(Sm3+, Cl-), epsilon(Eu3+, Cl-), epsilon(Gd3+, Cl-), and epsilon(GdAc2+, Cl-). The interaction coefficients involving OH- estimated include epsilon(Li+, OH-), epsilon(K+, OH-), epsilon(Na+, OH-), epsilon(Cs+, OH-), epsilon(Sr2+, OH-), and epsilon(Ba2+, OH-). In addition, the interaction coefficients of epsilon(Na+, Ac-) and epsilon(Ca2+, Ac-) have also been estimated. The bulk of interaction coefficients presented in this study has been evaluated from the mean activity coefficients. A few of them have been estimated from the potentiometric and solubility studies. The above interaction coefficients are tested against both experimental mean activity coefficients and equilibrium quotients. Predicted mean activity coefficients are in satisfactory agreement with experimental data. Predicted equilibrium quotients are in very good agreement with experimental values. Based upon its relatively rapid attainment of equilibrium and the ease of determining magnesium concentrations, this study also proposes that the solubility of brucite can be used as a pH (pcH) buffer/sensor for experimental systems in NaCl solutions up to 200 degrees C by employing the predicted solubility quotients of brucite in conjunction with the dissociation quotients of water and the first hydrolysis quotients of Mg2+, all in NaCl solutions.

  20. Generalized theory on the mechanism of site-specific DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Niranjani, G.; Murugan, R.

    2016-05-01

    We develop a generalized theoretical framework on the binding of transcription factor proteins (TFs) with specific sites on DNA that takes into account the interplay of various factors regarding overall electrostatic potential at the DNA-protein interface, occurrence of kinetic traps along the DNA sequence, presence of other roadblock protein molecules along DNA and crowded environment, conformational fluctuations in the DNA binding domains (DBDs) of TFs, and the conformational state of the DNA. Starting from a Smolochowski type theoretical framework on site-specific binding of TFs we logically build our model by adding the effects of these factors one by one. Our generalized two-step model suggests that the electrostatic attractive forces present inbetween the positively charged DBDs of TFs and the negatively charged phosphate backbone of DNA, along with the counteracting shielding effects of solvent ions, is the core factor that creates a fluidic type environment at the DNA-protein interface. This in turn facilitates various one-dimensional diffusion (1Dd) processes such as sliding, hopping and intersegmental transfers. These facilitating processes as well as flipping dynamics of conformational states of DBDs of TFs between stationary and mobile states can enhance the 1Dd coefficient on a par with three-dimensional diffusion (3Dd). The random coil conformation of DNA also plays critical roles in enhancing the site-specific association rate. The extent of enhancement over the 3Dd controlled rate seems to be directly proportional to the maximum possible 1Dd length. We show that the overall site-specific binding rate scales with the length of DNA in an asymptotic way. For relaxed DNA, the specific binding rate will be independent of the length of DNA as length increases towards infinity. For condensed DNA as in in vivo conditions, the specific binding rate depends on the length of DNA in a turnover way with a maximum. This maximum rate seems to scale with the

  1. Generalized theory on the mechanism of site-specific DNA–protein interactions

    NASA Astrophysics Data System (ADS)

    Niranjani, G.; Murugan, R.

    2016-05-01

    We develop a generalized theoretical framework on the binding of transcription factor proteins (TFs) with specific sites on DNA that takes into account the interplay of various factors regarding overall electrostatic potential at the DNA–protein interface, occurrence of kinetic traps along the DNA sequence, presence of other roadblock protein molecules along DNA and crowded environment, conformational fluctuations in the DNA binding domains (DBDs) of TFs, and the conformational state of the DNA. Starting from a Smolochowski type theoretical framework on site-specific binding of TFs we logically build our model by adding the effects of these factors one by one. Our generalized two-step model suggests that the electrostatic attractive forces present inbetween the positively charged DBDs of TFs and the negatively charged phosphate backbone of DNA, along with the counteracting shielding effects of solvent ions, is the core factor that creates a fluidic type environment at the DNA–protein interface. This in turn facilitates various one-dimensional diffusion (1Dd) processes such as sliding, hopping and intersegmental transfers. These facilitating processes as well as flipping dynamics of conformational states of DBDs of TFs between stationary and mobile states can enhance the 1Dd coefficient on a par with three-dimensional diffusion (3Dd). The random coil conformation of DNA also plays critical roles in enhancing the site-specific association rate. The extent of enhancement over the 3Dd controlled rate seems to be directly proportional to the maximum possible 1Dd length. We show that the overall site-specific binding rate scales with the length of DNA in an asymptotic way. For relaxed DNA, the specific binding rate will be independent of the length of DNA as length increases towards infinity. For condensed DNA as in in vivo conditions, the specific binding rate depends on the length of DNA in a turnover way with a maximum. This maximum rate seems to scale with the

  2. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    PubMed

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-01

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc.

  3. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    PubMed

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-01

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc. PMID:27241227

  4. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    SciTech Connect

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean; Isern, Nancy G.; Chen, Yuan

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We have solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.

  5. Interaction of amphiphilic molecules with biological membranes. A model for nonspecific and specific drug effects with membranes.

    PubMed

    Herbette, L; Napolitano, C A; Messineo, F C; Katz, A M

    1985-01-01

    The nonspecific interactions of propranolol, timolol, and ethanol with model and sarcoplasmic reticulum membranes were determined utilizing radioisotopic association differential scanning calorimetry, and neutron diffraction. Differential scanning calorimetry performed on mixtures of these amphiphilic compounds and model membrane bilayers composed of dimyristoyllecithin showed that propranolol was approximately 25 times more lipid-soluble than timolol and at least 100 times more lipid-soluble than ethanol. Neutron diffraction showed that the solvation of propranolol was within the fatty acyl chain region of the lipid bilayer. This solvation correlated with the effect of propranolol to inhibit ATP-dependent calcium transport in isolated rabbit skeletal muscle sarcoplasmic reticulum, a membrane that lacks beta-adrenergic receptors. In contrast, the major site of interaction of ethanol was within the aqueous compartment hydrating the sarcoplasmic reticulum membrane. A model for nonspecific drug interaction with the sarcoplasmic reticulum membrane based on the site of interaction of these amphiphiles and their relative potencies to inhibit calcium transport by these membranes is proposed. In principle, this model could be extended to specific drug interactions with membranes.

  6. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites.

    PubMed

    Hughes, S; Kelly, P

    2006-11-01

    1. Clinical malnutrition is a heterogenous group of disorders including macronutrient deficiencies leading to body cell mass depletion and micronutrient deficiencies, and these often coexist with infectious and inflammatory processes and environmental problems. 2. There is good evidence that specific micronutrients influence immunity, particularly zinc and vitamin A. Iron may have both beneficial and deleterious effects depending on circumstances. 3. There is surprisingly slender good evidence that immunity to parasites is dependent on macronutrient intake or body composition.

  7. Nutrimetabonomics:applications for nutritional sciences, with specific reference to gut microbial interactions.

    PubMed

    Claus, Sandrine P; Swann, Jonathan R

    2013-01-01

    Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.

  8. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.

    PubMed

    Vedelek, Balázs; Blastyák, András; Boros, Imre M

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.

  9. Tuning the adsorption interactions of imidazole derivatives with specific metal cations.

    PubMed

    Liu, Haining; Bara, Jason E; Turner, C Heath

    2014-06-01

    In this work, we report a computational study of the interactions between metal cations and imidazole derivatives in the gas phase. We first performed a systematic assessment of various density functionals and basis sets for predicting the binding energies between metal cations and the imidazoles. We find that the M11L functional in combination with the 6-311++G(d,p) basis set provides the best compromise between accuracy and computational cost with our metal···imidazole complexes. We then evaluated the binding of a series of metal cations, including Li(+), Na(+), K(+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Ba(2+), Hg(2+), and Pb(2+), with several substituted imidazole derivatives. We find that electron-donating groups increase the metal-binding energy, whereas electron-withdrawing groups decrease the metal-binding energy. Furthermore, the binding energy trends can be rationalized by the hardness of the metal cations and imidazole derivatives, providing a quick way to estimate the metal···imidazole binding strength. This insight can enable efficient screening protocols for identifying effective imidazole-based solvents and membranes for metal adsorption and provide a framework for understanding metal···imidazole interactions in biological systems.

  10. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction.

    PubMed

    Tiwari, Prabhat; Kumar, Arun; Das, Rudra Nayan; Malhotra, Vivek; VijayRaghavan, K

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  11. Ionic profiles close to dielectric discontinuities: Specific ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Markovich, Tomer; Andelman, David; Orland, Henri

    2016-10-01

    We study, by incorporating short-range ion-surface interactions, ionic profiles of electrolyte solutions close to a non-charged interface between two dielectric media. In order to account for important correlation effects close to the interface, the ionic profiles are calculated beyond mean-field theory, using the loop expansion of the free energy. We show that how it is possible to overcome the well-known deficiency of the regular loop expansion close to the dielectric jump and treat the non-linear boundary conditions within the framework of field theory. The ionic profiles are obtained analytically to one-loop order in the free energy, and their dependence on different ion-surface interactions is investigated. The Gibbs adsorption isotherm as well as the ionic profiles is used to calculate the surface tension, in agreement with the reverse Hofmeister series. Consequently, from the experimentally measured surface tension, one can extract a single adhesivity parameter, which can be used within our model to quantitatively predict hard to measure ionic profiles.

  12. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins

    PubMed Central

    Vedelek, Balázs; Blastyák, András; Boros, Imre M.

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction. PMID:26566042

  13. Identification of mammalin cytosolic proteins that can interact specifically with FACC

    SciTech Connect

    Youssoufian, H.; Lu, C.; Verlander, P.

    1994-09-01

    Fanconi`s anemia is an autosomal recessive disorder characterized by congenital anomalies and chromosomal instability. Although the gene defective in complementation group C (FACC) has been isolated, the biochemical function of the FACC-encoded polypeptide is poorly understood. We have shown previously that this protein resides predominantly in the cytoplasm of mammalian cells, and is thus unlikely to play a direct role in DNA repair. The intracellular interactions of FACC could help to elucidate its function. In order to search for cellular proteins that potentially interact with FACC, we have screened a number of nuclear and cytosolic extracts with a chimeric FACC-immunoglobulin affinity reagent bound to protein A-agarose beads. We identified at least three such proteins from cytosolic, but not nuclear, extracts of multiple human and other mammalian cell lines. These proteins failed to bind to other chimeric immunoglobulin molecules. We conclude that mammalian cells contain a family of proteins that have readily detectable FACC-binding activity. The identity of these proteins could shed light on the function of FACC.

  14. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions.

    PubMed

    Bardwell, A Jane; Bardwell, Lee

    2015-10-30

    MAPKs bind to many of their upstream regulators and downstream substrates via a short docking motif (the D-site) on their binding partner. MAPKs that are in different families (e.g. ERK, JNK, and p38) can bind selectively to D-sites in their authentic substrates and regulators while discriminating against D-sites in other pathways. Here we demonstrate that the short hydrophobic region at the distal end of the D-site plays a critical role in determining the high selectivity of JNK MAPKs for docking sites in their cognate MAPK kinases. Changing just 1 or 2 key hydrophobic residues in this submotif is sufficient to turn a weak JNK-binding D-site into a strong one, or vice versa. These specificity-determining differences are also found in the D-sites of the ETS family transcription factors Elk-1 and Net. Moreover, swapping two hydrophobic residues between these D-sites switches the relative efficiency of Elk-1 and Net as substrates for ERK versus JNK, as predicted. These results provide new insights into docking specificity and suggest that this specificity can evolve rapidly by changes to just 1 or 2 amino acids.

  15. Hemodynamics and flow-vessel interaction in patient-specific aorta using unified lattice Boltzmann computation and simulation

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Wang, Zhiqiang; Zhao, Ye; Teague, Shawn D.

    2013-11-01

    Patient-specific blood flow simulation is mainly relying on the utilization of commercial software. Geometrical simplification and approximation are usually made thus weaken the capability to aid clinical diagnose and assessment. We develop a unified computing platform to simulate patient-specific hemodynamics and flow-vessel interaction using lattice Boltzmann method (LBM), which tightly integrates anatomical-structure extraction from imaging data and numerical simulation in one computation mesh structure, where the LBM solves level set equation for image segmentation and Navier-Stokes equation for fluid dynamics respectively. The patient-specific vessel geometry, volumetric ratio of solid versus fluid, and the orientation of the boundary obtained with high accuracy seamlessly feed to the numerical simulation needs. In order to better treat the complex geometry, we specifically develop volumetric lattice Boltzmann scheme which strictly satisfies mass conservation when boundary moves. Validation study is on hemodynamics and flow-vessel interaction in healthy and diseased aortas. Flow rate and structure, pressure and vorticity distribution, as well as wall normal and shear stresses, are revealed in both cases.

  16. Specific trans-synaptic interaction with inhibitory interneuronal neurexin underlies differential ability of neuroligins to induce functional inhibitory synapses.

    PubMed

    Futai, Kensuke; Doty, Christopher D; Baek, Brian; Ryu, Jubin; Sheng, Morgan

    2013-02-20

    Synaptic transmission depends on the matching and alignment of presynaptically released transmitters and postsynaptic neurotransmitter receptors. Neuroligin (NL) and Neurexin (Nrxn) proteins are trans-synaptic adhesion molecules that are important in validation and maturation of specific synapses. NL isoforms NL1 and NL2 have specific functional roles in excitatory and inhibitory synapses, respectively, but the molecular basis behind this distinction is still unclear. We show here that the extracellular domain of NL2 confers its unique ability to enhance inhibitory synaptic function when overexpressed in rat hippocampal pyramidal neurons, whereas NL1 normally only promotes excitatory synapses. This specificity is conferred by presynaptic Nrxn isoforms, as NL1 can also induce functional inhibitory synapse connections when the presynaptic interneurons ectopically express an Nrxn isoform that binds to NL1. Our results indicate that trans-synaptic interaction with differentially expressed presynaptic Nrxns underlies the distinct functions of NL1 and NL2, and is sufficient to induce functional inhibitory synapse formation.

  17. Identification of the Isoform-specific Interactions between the Tail and the Head of Class V Myosin.

    PubMed

    Yao, Lin-Lin; Shen, Mei; Lu, Zekuan; Ikebe, Mitsuo; Li, Xiang-dong

    2016-04-01

    Vertebrates have three isoforms of class V myosin (Myo5), Myo5a, Myo5b, and Myo5c, which are involved in transport of multiple cargoes. It is well established that the motor functions of Myo5a and Myo5b are regulated by a tail inhibition mechanism. Here we found that the motor function of Myo5c was also inhibited by its globular tail domain (GTD), and this inhibition was abolished by high Ca(2+), indicating that the tail inhibition mechanism is conserved in vertebrate Myo5. Interestingly, we found that Myo5a-GTD and Myo5c-GTD were not interchangeable in terms of inhibition of motor function, indicating isoform-specific interactions between the GTD and the head of Myo5. To identify the isoform-specific interactions, we produced a number of Myo5 chimeras by swapping the corresponding regions of Myo5a and Myo5c. We found that Myo5a-GTD, with its H11-H12 loop being substituted with that of Myo5c, was able to inhibit the ATPase activity of Myo5c and that Myo5a-GTD was able to inhibit the ATPase activity of Myo5c-S1 and Myo5c-HMM only when their IQ1 motif was substituted with that of Myo5a. Those results indicate that the H11-H12 loop in the GTD and the IQ1 motif in the head dictate the isoform-specific interactions between the GTD and head of Myo5. Because the IQ1 motif is wrapped by calmodulin, whose conformation is influenced by the sequence of the IQ1 motif, we proposed that the calmodulin bound to the IQ1 motif interacts with the H11-H12 loop of the GTD in the inhibited state of Myo5. PMID:26912658

  18. Cell-type specific adhesive interactions of skeletal myoblasts with thrombospondin-1.

    PubMed Central

    Adams, J C; Lawler, J

    1994-01-01

    Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein that may play important roles in the morphogenesis and repair of skeletal muscle. To begin to explore the role of thrombospondin-1 in this tissue, we have examined the interactions of three rodent skeletal muscle cell lines, C2C12, G8, and H9c2, with platelet TSP-1. The cells secrete thrombospondin and incorporate it into the cell layer in a distribution distinct from that of fibronectin. Myoblasts attach and spread on fibronectin- or thrombospondin-coated substrates with similar time and concentration dependencies. Whereas cells adherent on fibronectin organize actin stress fibers, cells adherent on TSP-1 display prominent membrane ruffles and lamellae that contain radial actin microspikes. Attachment to thrombospondin-1 or the 140-kDa tryptic fragment is mediated by interactions with the type 1 repeats and the carboxy-terminal globular domain. Attachment is not inhibited by heparin, GRGDSP peptide, or VTCG peptide but is inhibited by chondroitin sulphate A. Integrins of the beta 1 or alpha V subgroups do not appear to be involved in myoblast attachment to TSP-1; instead, this process depends in part on cell surface chondroitin sulphate proteoglycans. Whereas the central 70-kDa chymotryptic fragment of TSP-1 does not support myoblast attachment, the carboxy-terminal domain of TSP-1 expressed as a fusion protein in the bacterial expression vector, pGEX, supported myoblast attachment to 30% the level of intact TSP-1. Thrombospondin-4 (TSP-4) is also present in skeletal muscle and a fusion protein containing the carboxy-terminal domain of TSP-4 also supported myoblast adhesion, although this protein was less active on a molar basis than the TSP-1 fusion protein. Thus, the carboxyterminal domain of TSP-1 appears to contain a primary attachment site for myoblasts, and this activity is present in a second member of the thrombospondin family. Images PMID:7519904

  19. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction

    PubMed Central

    Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    Background MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Methods and Results Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. Conclusions These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results. PMID

  20. Childhood Adversity Increases Risk for Nicotine Dependence and Interacts with α5 Nicotinic Acetylcholine Receptor Genotype Specifically in Males

    PubMed Central

    Xie, Pingxing; Kranzler, Henry R; Zhang, Huiping; Oslin, David; Anton, Raymond F; Farrer, Lindsay A; Gelernter, Joel

    2012-01-01

    The relative importance of specific genetic and environmental factors in regulating nicotine dependence (ND) risk, including the effects on specific forms of childhood adversity on smoking risk, have been understudied. Genome-wide association studies and rodent models have demonstrated that the α5 nicotinic acetylcholine receptor gene (CHRNA5) is important in regulating nicotine intake. Childhood adversity increases the methylation level of the CHRNA5 promoter region in European Americans (EAs), an effect that was observed only in males (Zhang et al, submitted for publication). In view of this potential sex difference in the effects of early life experience on smoking, we investigated the presence of a sex-specific gene-by-environment effect of this marker on ND risk. A nonsynonymous SNP in CHRNA5 previously associated to ND and several related traits, rs16969968, was genotyped in 2206 EAs (1301 men and 905 women). The main and interactive effects of childhood adversity and rs16969968 genotype on diagnosis of ND and ND defined by dichotomized Fagerstrom test for ND (FTND) scores were explored. Men and women were analyzed separately to test for sex differences. Childhood adversity significantly increased ND risk in both sexes, and the effect in women was twice than that in men. Significant interactive effects of childhood adversity and rs16969968 genotype were observed in men (ND: OR=1.80, 95% CI=1.18–2.73, P=0.0044; FTND: OR=1.79, 95% CI=1.11–2.88, P=0.012). No interaction was found in women. This study provides evidence of a sex-specific gene × environment effect of CHRNA5 and childhood adversity on the risk for ND. PMID:22012472

  1. Fluid Structure Interaction simulation of heart prosthesis in patient-specific left-ventricle/aorta anatomies

    NASA Astrophysics Data System (ADS)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2009-11-01

    In order to test and optimize heart valve prosthesis and enable virtual implantation of other biomedical devices it is essential to develop and validate high-resolution FSI-CFD codes for carrying out simulations in patient-specific geometries. We have developed a powerful numerical methodology for carrying out FSI simulations of cardiovascular flows based on the CURVIB approach (Borazjani, L. Ge, and F. Sotiropoulos, Journal of Computational physics, vol. 227, pp. 7587-7620 2008). We have extended our FSI method to overset grids to handle efficiently more complicated geometries e.g. simulating an MHV implanted in an anatomically realistic aorta and left-ventricle. A compliant, anatomic left-ventricle is modeled using prescribed motion in one domain. The mechanical heart valve is placed inside the second domain i.e. the body-fitted curvilinear mesh of the anatomic aorta. The simulations of an MHV with a left-ventricle model underscore the importance of inflow conditions and ventricular compliance for such simulations and demonstrate the potential of our method as a powerful tool for patient-specific simulations.

  2. Fuzzy logic algorithm to extract specific interaction forces from atomic force microscopy data

    NASA Astrophysics Data System (ADS)

    Kasas, Sandor; Riederer, Beat M.; Catsicas, Stefan; Cappella, Brunero; Dietler, Giovanni

    2000-05-01

    The atomic force microscope is not only a very convenient tool for studying the topography of different samples, but it can also be used to measure specific binding forces between molecules. For this purpose, one type of molecule is attached to the tip and the other one to the substrate. Approaching the tip to the substrate allows the molecules to bind together. Retracting the tip breaks the newly formed bond. The rupture of a specific bond appears in the force-distance curves as a spike from which the binding force can be deduced. In this article we present an algorithm to automatically process force-distance curves in order to obtain bond strength histograms. The algorithm is based on a fuzzy logic approach that permits an evaluation of "quality" for every event and makes the detection procedure much faster compared to a manual selection. In this article, the software has been applied to measure the binding strength between tubuline and microtubuline associated proteins.

  3. A specific property of electromagnetic waves interacting with dust-laden plasma

    SciTech Connect

    Tsintsadze, N. L.; Ehsan, Z.; Shah, H. A.; Murtaza, G.

    2006-07-15

    The propagation pattern of electromagnetic waves (EMWs) in dusty plasmas is quite different from that in electron-ion plasmas. For instance, here the ponderomotive force acts on dust grains as a negative pressure, and a nonlinear Schroedinger equation with an additional nonlinear term is obtained. Based on this equation, the modulation instability is examined and it is shown that the growth rate becomes maximum when that additional term compensates the diffraction term. The main part of this work is devoted to the localization of the grains by the EMW. Considering both subsonic and supersonic regimes, it has been shown that under certain conditions the grains are localized and the ions circumnavigate the grains, whereas the electrons escape from the region of localization. Further, the localization of grains by the EMW is found to be shape-dependent of the pulse. Comparing pancake and light bullet shaped pulses in the supersonic regime, and it is shown that only the light bullet shape leads to the compression of grains. Finally, investigating nonstationary solution, it is shown that for some parameters, the nonlinear wave breaking and the formation of a shock wave can take place.

  4. Specific interactions between lactose repressor protein and DNA affected by ligand binding: ab initio molecular orbital calculations.

    PubMed

    Ohyama, Tatsuya; Hayakawa, Masato; Nishikawa, Shin; Kurita, Noriyuki

    2011-06-01

    Transcription mechanisms of gene information from DNA to mRNA are essentially controlled by regulatory proteins such as a lactose repressor (LacR) protein and ligand molecules. Biochemical experiments elucidated that a ligand binding to LacR drastically changes the mechanism controlled by LacR, although the effect of ligand binding has not been clarified at atomic and electronic levels. We here investigated the effect of ligand binding on the specific interactions between LacR and operator DNA by the molecular simulations combined with classical molecular mechanics and ab initio fragment molecular orbital methods. The results indicate that the binding of anti-inducer ligand strengthens the interaction between LacR and DNA, which is consistent with the fact that the binding of anti-inducer enhances the repression of gene transcription by LacR. It was also elucidated that hydrating water molecules existing between LacR and DNA contribute to the specific interactions between LacR and DNA. PMID:21328406

  5. Gγ recruitment systems specifically select PPI and affinity-enhanced candidate proteins that interact with membrane protein targets.

    PubMed

    Kaishima, Misato; Ishii, Jun; Fukuda, Nobuo; Kondo, Akihiko

    2015-11-19

    Protein-protein interactions (PPIs) are crucial for the vast majority of biological processes. We previously constructed a Gγ recruitment system to screen PPI candidate proteins and desirable affinity-altered (affinity-enhanced and affinity-attenuated) protein variants. The methods utilized a target protein fused to a mutated G-protein γ subunit (Gγcyto) lacking the ability to localize to the inner leaflet of the plasma membrane. However, the previous systems were adapted to use only soluble cytosolic proteins as targets. Recently, membrane proteins have been found to form the principal nodes of signaling involved in diseases and have attracted a great deal of interest as primary drug targets. Here, we describe new protocols for the Gγ recruitment systems that are specifically designed to use membrane proteins as targets to overcome previous limitations. These systems represent an attractive approach to exploring novel interacting candidates and affinity-altered protein variants and their interactions with proteins on the inner side of the plasma membrane, with high specificity and selectivity.

  6. Fluorescence spectroscopy as a specific tool for the interaction study of two surfactants with natural and synthetic organic compounds

    NASA Astrophysics Data System (ADS)

    Jung, Aude-Valérie; Frochot, Céline; Bersillon, Jean-Luc

    2016-04-01

    Four different techniques were used to study the binding of cationic cetyltrimethylammonium bromide (CTAB) and non-ionic nonylphenylethoxyl (NPE) surfactants to three synthetic organic components that mimic humic-like aggregates and to two natural aggregated humic substances (HS) extracted from aquatic suspended matter. The composition of synthetic organic components were chosen to be similar to high molecular weight highly processed terrigenous HS and low and high molecular weight less processed terrigenous (or aquatic terrigenous) HS. The natural HS were extracted under two different meteorological conditions (rainy and dry periods). No significant interaction between the non-ionic surfactant and any of the studied compounds was found. Concerning CTAB; pH, conductivity and turbidity measurements, along with fluorescence spectroscopy were combined to provide a better understanding of interactions between organic aggregates and the surfactant. The spectroscopic data show that a "highly processed terrigenous HS" fluorophore interacts in a different way with the cationic surfactant than an "aquatic terrigenous (or less processed terrigenous) HS" fluorophore does. Under similar conditions, some spectral changes in the fluorescence signal are correlated to changes in non-specific physical-chemical parameters (pH, turbidity, conductivity) for the organic compounds tested. The complexation mechanism is essentially governed by charge neutralization, which can be monitored specifically by the fluorescence of the organic moieties.

  7. Gγ recruitment systems specifically select PPI and affinity-enhanced candidate proteins that interact with membrane protein targets

    PubMed Central

    Kaishima, Misato; Ishii, Jun; Fukuda, Nobuo; Kondo, Akihiko

    2015-01-01

    Protein-protein interactions (PPIs) are crucial for the vast majority of biological processes. We previously constructed a Gγ recruitment system to screen PPI candidate proteins and desirable affinity-altered (affinity-enhanced and affinity-attenuated) protein variants. The methods utilized a target protein fused to a mutated G-protein γ subunit (Gγcyto) lacking the ability to localize to the inner leaflet of the plasma membrane. However, the previous systems were adapted to use only soluble cytosolic proteins as targets. Recently, membrane proteins have been found to form the principal nodes of signaling involved in diseases and have attracted a great deal of interest as primary drug targets. Here, we describe new protocols for the Gγ recruitment systems that are specifically designed to use membrane proteins as targets to overcome previous limitations. These systems represent an attractive approach to exploring novel interacting candidates and affinity-altered protein variants and their interactions with proteins on the inner side of the plasma membrane, with high specificity and selectivity. PMID:26581329

  8. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    NASA Astrophysics Data System (ADS)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second

  9. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion

    PubMed Central

    Dang, Tuyen T.; Prechtl, Amanda M.; Pearson, Gray W.

    2011-01-01

    Most ductal breast carcinoma cells are weakly invasive in vitro and in vivo, suggesting that components of their microenvironment may facilitate a transition from in situ to invasive stages during progression. Here we report that co-culture of mammary fibroblasts specifically triggers invasive behavior in basal-type breast cancer cells through a ligand independent mechanism. When cultured alone in organotypic culture, both basal and luminal-type breast cancer cells formed noninvasive spheroids with characteristics of ductal carcinoma in situ (DCIS). In contrast, when co-cultured with mammary fibroblasts, basal-type spheroids exhibited invasive character whereas the luminal-type spheroids retained a benign and noninvasive duct-like architecture. Real-time imaging and functional studies revealed that the specificity of invasion was linked to a unique capacity of basal-type breast cancer cells to move within spheroids. Mammary fibroblasts induced invasion by triggering basal-type breast cancer cells to convert from a noninvasive program of mammary epithelial morphogenesis, to an invasive program of sprouting endothelial angiogenesis. Contrary to existing invasion models, soluble ligands produced by the fibroblasts were not sufficient to trigger invasion. Instead, basal-type invasion relied upon a Cdc42-dependent reorganization of collagen fibers in the extracellular matrix by fibroblasts. Inhibiting basal-type cell movement with clinically relevant drugs blocked invasion in organotypic culture and in animals, suggesting a new treatment strategy for early-stage patients. Together our findings establish that fibroblast recruitment by basal-type breast cancer cells into early-stage tumors is sufficient to trigger their conversion from a benign, non-invasive DCIS-like stage to a malignant invasive stage. Further, our findings suggest that different subtypes of breast cancer may require distinct types of contributions from the microenvironment to undergo malignant

  10. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion.

    PubMed

    Dang, Tuyen T; Prechtl, Amanda M; Pearson, Gray W

    2011-11-01

    Most ductal breast carcinoma cells are weakly invasive in vitro and in vivo, suggesting that components of their microenvironment may facilitate a transition from in situ to invasive stages during progression. Here, we report that coculture of mammary fibroblasts specifically triggers invasive behavior in basal-type breast cancer cells through a ligand independent mechanism. When cultured alone in organotypic culture, both basal- and luminal-type breast cancer cells formed noninvasive spheroids with characteristics of ductal carcinoma in situ (DCIS). In contrast, when cocultured with mammary fibroblasts, basal-type spheroids exhibited invasive character whereas the luminal-type spheroids retained a benign and noninvasive duct-like architecture. Real-time imaging and functional studies revealed that the specificity of invasion was linked to a unique capacity of basal-type breast cancer cells to move within spheroids. Mammary fibroblasts induced invasion by triggering basal-type breast cancer cells to convert from a noninvasive program of mammary epithelial morphogenesis to an invasive program of sprouting endothelial angiogenesis. Contrary to the existing invasion models, soluble ligands produced by the fibroblasts were not sufficient to trigger invasion. Instead, basal-type invasion relied upon a Cdc42-dependent reorganization of collagen fibers in the extracellular matrix by fibroblasts. Inhibiting basal-type cell movement with clinically relevant drugs blocked invasion both in organotypic culture and in animals, suggesting a new treatment strategy for early-stage patients. Together our findings establish that fibroblast recruitment by basal-type breast cancer cells into early-stage tumors is sufficient to trigger their conversion from a benign, noninvasive DCIS-like stage to a malignant invasive stage. Furthermore, our findings suggest that different subtypes of breast cancer may require distinct types of contributions from the microenvironment to undergo

  11. Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico)

    PubMed Central

    Gérard, Emmanuelle; Ménez, Bénédicte; Couradeau, Estelle; Moreira, David; Benzerara, Karim; Tavera, Rosaluz; López-García, Purificación

    2013-01-01

    The role of microorganisms in microbialite formation remains unresolved: do they induce mineral precipitation (microbes first) or do they colonize and/or entrap abiotic mineral precipitates (minerals first)? Does this role vary from one species to another? And what is the impact of mineral precipitation on microbial ecology? To explore potential biogenic carbonate precipitation, we studied cyanobacteria–carbonate assemblages in modern hydromagnesite-dominated microbialites from the alkaline Lake Alchichica (Mexico), by coupling three-dimensional imaging of molecular fluorescence emitted by microorganisms, using confocal laser scanning microscopy, and Raman scattering/spectrometry from the associated minerals at a microscale level. Both hydromagnesite and aragonite precipitate within a complex biofilm composed of photosynthetic and other microorganisms. Morphology and pigment-content analysis of dominant photosynthetic microorganisms revealed up to six different cyanobacterial morphotypes belonging to Oscillatoriales, Chroococcales, Nostocales and Pleurocapsales, as well as several diatoms and other eukaryotic microalgae. Interestingly, one of these morphotypes, Pleurocapsa-like, appeared specifically associated with aragonite minerals, the oldest parts of actively growing Pleurocapsa-like colonies being always aragonite-encrusted. We hypothesize that actively growing cells of Pleurocapsales modify local environmental conditions favoring aragonite precipitation at the expense of hydromagnesite, which precipitates at seemingly random locations within the biofilm. Therefore, at least part of the mineral precipitation in Alchichica microbialites is most likely biogenic and the type of biominerals formed depends on the nature of the phylogenetic lineage involved. This observation may provide clues to identify lineage-specific biosignatures in fossil stromatolites from modern to Precambrian times. PMID:23804151

  12. Specific carbonate-microbe interactions in the modern microbialites of Lake Alchichica (Mexico).

    PubMed

    Gérard, Emmanuelle; Ménez, Bénédicte; Couradeau, Estelle; Moreira, David; Benzerara, Karim; Tavera, Rosaluz; López-García, Purificación

    2013-10-01

    The role of microorganisms in microbialite formation remains unresolved: do they induce mineral precipitation (microbes first) or do they colonize and/or entrap abiotic mineral precipitates (minerals first)? Does this role vary from one species to another? And what is the impact of mineral precipitation on microbial ecology? To explore potential biogenic carbonate precipitation, we studied cyanobacteria-carbonate assemblages in modern hydromagnesite-dominated microbialites from the alkaline Lake Alchichica (Mexico), by coupling three-dimensional imaging of molecular fluorescence emitted by microorganisms, using confocal laser scanning microscopy, and Raman scattering/spectrometry from the associated minerals at a microscale level. Both hydromagnesite and aragonite precipitate within a complex biofilm composed of photosynthetic and other microorganisms. Morphology and pigment-content analysis of dominant photosynthetic microorganisms revealed up to six different cyanobacterial morphotypes belonging to Oscillatoriales, Chroococcales, Nostocales and Pleurocapsales, as well as several diatoms and other eukaryotic microalgae. Interestingly, one of these morphotypes, Pleurocapsa-like, appeared specifically associated with aragonite minerals, the oldest parts of actively growing Pleurocapsa-like colonies being always aragonite-encrusted. We hypothesize that actively growing cells of Pleurocapsales modify local environmental conditions favoring aragonite precipitation at the expense of hydromagnesite, which precipitates at seemingly random locations within the biofilm. Therefore, at least part of the mineral precipitation in Alchichica microbialites is most likely biogenic and the type of biominerals formed depends on the nature of the phylogenetic lineage involved. This observation may provide clues to identify lineage-specific biosignatures in fossil stromatolites from modern to Precambrian times. PMID:23804151

  13. Multi-alphabet consensus algorithm for identification of low specificity protein-DNA interactions.

    PubMed Central

    Ulyanov, A V; Stormo, G D

    1995-01-01

    A method for the identification and characterization of protein-DNA interactions is presented. We have developed an approach for finding unknown multiple patterns that occur imperfectly in a set of several sequences. The pattern may contain letters from the nucleotide alphabet (A, C, G and T) including ambiguous characters (A/C, A/G, A/T; A/C/G, etc.). This method reveals weak DNA signals on an unaligned set of DNA fragments known to be functionally related and assumes no prior information on the sequences' alignment. It determines the locations of the signals from only the information intrinsic to the sequences themselves. We have applied this method to analyze the binding sites of cAMP receptor protein (CRP). The consensus based on these data are discussed and a comparison of the consensus with the crystal structure of CAP-DNA complex is presented. We further show that in a mixture of DNA sequences, containing binding sites for two different proteins, both classes of binding sites can be discovered simultaneously by this method. The DNA sequences of nucleosome cores from chicken erythrocyte and a set of the other known nucleosomal sequences show existence of symmetrical features in nucleosome-binding DNA sequences. We also show multi-alphabet patterns that can play a role in the phasing signal on the nucleosome DNA molecule and have compared the results with existing models of nucleosome positioning. PMID:7753637

  14. Behavior specificities of the plasma in the REB - polymeric anode interactions.

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Dan'ko, S. A.; Kazakov, E. D.; Kalinin, Yu G.; Kurilo, A. A.; Strizhakov, M. G.

    2016-09-01

    To study Relativistic Electron Beam (REB) interaction with a set of polymeric targets we have made experiments for the investigation of the plasma dynamics in high-voltage diode of high-current generator. It is necessary for applied goals, such as correction of mathematical models of high power density deposition in the matter, for testing materials reaction under the powerful impulse of ionizing radiation, etc. An electron-optical streak camera (EOC) was used to measure the velocity of the visible light border of the plasma glowing. It was estimated to be from 10 to 35 km/s at the energy-release density in range of 200 - 800 J/cm2. In a few of experiments, besides regular motion of contrast border in the direction from electrodes to the middle of the diode, the motion from the middle to the periphery of the high-voltage diode with velocity up to 500 km/s was observed. It was by an order of magnitude greater than regular one.

  15. Glycocalyx-Mimicking Nanoparticles for Stimulation and Polarization of Macrophages via Specific Interactions.

    PubMed

    Su, Lu; Zhang, Weiyi; Wu, Xiulong; Zhang, Yufei; Chen, Xi; Liu, Guangwei; Chen, Guosong; Jiang, Ming

    2015-09-01

    Malignant tumors develop multiple mechanisms to impair and escape from antitumor immune responses, of which tumor-associated macrophages that often show immunosuppressive phenotype (M2), play a critical role in tumor-induced immunosuppression. Therefore, strategies that can reverse M2 phenotype and even enhance immune-stimulation function of macrophage would benefit tumor immunotherapy. In this paper, self-assembled glyco-nanoparticles (glyco-NPs), as artificial glycocalyx, have been found to be able to successfully induce the polarization of mouse primary peritoneal macrophages from M2 to inflammatory type (M1). The polarization change was evidenced by the decreased expression of cell surface signaling molecules CD206 and CD23, and the increased expression of CD86. Meanwhile, secretion of cytokines supported this polarization change as well. More importantly, this phenomenon is observed not only in vitro, but also in vivo. As far as we known, this is the first report about macrophage polarization being induced by synthetic nanomaterials. Moreover, preparation, characterization of these glyco-NPs and their interaction with the macrophages are also demonstrated.

  16. Glycocalyx-Mimicking Nanoparticles for Stimulation and Polarization of Macrophages via Specific Interactions.

    PubMed

    Su, Lu; Zhang, Weiyi; Wu, Xiulong; Zhang, Yufei; Chen, Xi; Liu, Guangwei; Chen, Guosong; Jiang, Ming

    2015-09-01

    Malignant tumors develop multiple mechanisms to impair and escape from antitumor immune responses, of which tumor-associated macrophages that often show immunosuppressive phenotype (M2), play a critical role in tumor-induced immunosuppression. Therefore, strategies that can reverse M2 phenotype and even enhance immune-stimulation function of macrophage would benefit tumor immunotherapy. In this paper, self-assembled glyco-nanoparticles (glyco-NPs), as artificial glycocalyx, have been found to be able to successfully induce the polarization of mouse primary peritoneal macrophages from M2 to inflammatory type (M1). The polarization change was evidenced by the decreased expression of cell surface signaling molecules CD206 and CD23, and the increased