Science.gov

Sample records for additional stabilizing interactions

  1. Non-additive increases in sediment stability are generated by macroinvertebrate species interactions in laboratory streams.

    PubMed

    Albertson, Lindsey K; Cardinale, Bradley J; Sklar, Leonard S

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  2. Non-Additive Increases in Sediment Stability Are Generated by Macroinvertebrate Species Interactions in Laboratory Streams

    PubMed Central

    Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  3. Stabilization of polyaniline solutions through additives

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.

    1996-01-01

    A stabilized non-conductive polyaniline solution comprising from about 1 to bout 10 percent by weight polyaniline or a polyaniline derivative, from about 90 to about 99 percent by weight N-methylpyrrolidone, and from about 0.5 percent by weight to about 15 percent by weight of a solution stabilizing additive selected from the group consisting of hindered amine light stabilizers, polymeric amines, and dialkylamines, percent by weight of additive based on the total weight of polyaniline or polyaniline derivative is provided together with a method for stabilizing a polyaniline solution.

  4. Stabilization of polyaniline solutions through additives

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1996-12-10

    A stabilized non-conductive polyaniline solution comprising from about 1 to about 10 percent by weight polyaniline or a polyaniline derivative, from about 90 to about 99 percent by weight N-methylpyrrolidone, and from about 0.5 percent by weight to about 15 percent by weight of a solution stabilizing additive selected from the group consisting of hindered amine light stabilizers, polymeric amines, and dialkylamines, percent by weight of additive based on the total weight of polyaniline or polyaniline derivative is provided together with a method for stabilizing a polyaniline solution. 4 figs.

  5. Fibrinogen stability under surfactant interaction.

    PubMed

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction.

  6. Mass transport in low Tg azo-polymers: Effect on the surface relief grating induction and stability of additional side chain groups able to generate physical interactions

    NASA Astrophysics Data System (ADS)

    Luca, Alina Raicu; Moleavin, Ioana-Andreea; Hurduc, Nicolae; Hamel, Matthieu; Rocha, Licinio

    2014-01-01

    The nanostructuration ability of low glass transition temperature (Tg) azo-polysiloxanes films is investigated at working temperatures close or higher than the film Tg. The behavior of materials incorporating additional side chain nitrobenzene or naphthalene groups and as a result presenting different Tg is compared in terms of the surface modulation dynamics and stability of the induced topographic modifications. This comparison is carried out under light exposure and in dark environment. We demonstrate the ability to optically generate surface modulations on these materials even at operating temperatures corresponding to the film Tg. Along with a modification of the opto-mechanic properties correlated with the materials chemical structure, a collapse of the surface structures occurring with different dynamics in materials of similar Tg is highlighted. These observations suggest the existence of an additional mechanism rather than a purely thermal redistribution of the polymer chains in the films.

  7. Evaluating Additive Interaction Using Survival Percentiles.

    PubMed

    Bellavia, Andrea; Bottai, Matteo; Orsini, Nicola

    2016-05-01

    Evaluation of statistical interaction in time-to-event analysis is usually limited to the study of multiplicative interaction, via inclusion of a product term in a Cox proportional-hazard model. Measures of additive interaction are available but seldom used. All measures of interaction in survival analysis, whether additive or multiplicative, are in the metric of hazard, usually assuming that the interaction between two predictors of interest is constant during the follow-up period. We introduce a measure to evaluate additive interaction in survival analysis in the metric of time. This measure can be calculated by evaluating survival percentiles, defined as the time points by which different subpopulations reach the same incidence proportion. Using this approach, the probability of the outcome is fixed and the time variable is estimated. We also show that by using a regression model for the evaluation of conditional survival percentiles, including a product term between the two exposures in the model, interaction is evaluated as a deviation from additivity of the effects. In the simple case of two binary exposures, the product term is interpreted as excess/decrease in survival time (i.e., years, months, days) due to the presence of both exposures. This measure of interaction is dependent on the fraction of events being considered, thus allowing evaluation of how interaction changes during the observed follow-up. Evaluation of interaction in the context of survival percentiles allows deriving a measure of additive interaction without assuming a constant effect over time, overcoming two main limitations of commonly used approaches.

  8. Organic additives stabilize RNA aptamer binding of malachite green.

    PubMed

    Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J

    2016-11-01

    Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis.

  9. Organic additives stabilize RNA aptamer binding of malachite green.

    PubMed

    Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J

    2016-11-01

    Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis. PMID:27591602

  10. Additive monitoring and interactions during copper electroprocessing

    NASA Astrophysics Data System (ADS)

    Collins, Dale Wade

    The electrochemical deposition of copper has been a major focus of research for decades. Renewed interest in copper electroplating is not limited to the copper producers but is also a major concern of semiconductor manufacturers. The focus on copper electrochemistry by the semiconductor manufacturers has increased since IBM's announcement in 1997 that copper will be used for metallization in high speed/power semiconductors [1--3]. The desire to use copper instead of aluminum is simply a reflection on copper's superior conductivity (lower RC time constants) and resistance to electromigration (generally proportional to the melting point). This dissertation is the compilation of the research into analytical techniques for monitoring surface-active additives in common sulfuric acid/copper sulfate plating baths. Chronopotentiometric, DC and AC voltammetry were the major analytical techniques used in this research. Several interactions between the additives will also be presented along with their apparent decline in activity. The decline in activity is well known in the industry and is also detected by these methods as presented in chapters 4 and 5. Finally, a systemic approach for monitoring the additive Galactosal, which is commonly used in electrowinning, will be outlined. The monitoring system proposed herein would have to be adjusted for each electrowinning facility because each has a unique chemistry and cell configuration.

  11. How Hofmeister ion interactions affect protein stability.

    PubMed Central

    Baldwin, R L

    1996-01-01

    Model compound studies in the literature show how Hofmeister ion interactions affect protein stability. Although model compound results are typically obtained as salting-out constants, they can be used to find out how the interactions affect protein stability. The null point in the Hofmeister series, which divides protein denaturants from stabilizers, arises from opposite interactions with different classes of groups: Hofmeister ions salt out nonpolar groups and salt in the peptide group. Theories of how Hofmeister ion interactions work need to begin by explaining the mechanisms of these two classes of interactions. Salting-out nonpolar groups has been explained by the cavity model, but its use is controversial. When applied to model compound data, the cavity model 1) uses surface tension increments to predict the observed values of the salting-out constants, within a factor of 3, and 2) predicts that the salting-out constant should increase with the number of carbon atoms in the aliphatic side chain of an amino acid, as observed. The mechanism of interaction between Hofmeister ions and the peptide group is not well understood, and it is controversial whether this interaction is ion-specific, or whether it is nonspecific and the apparent specificity resides in interactions with nearby nonpolar groups. A nonspecific salting-in interaction is known to occur between simple ions and dipolar molecules; it depends on ionic strength, not on position in the Hofmeister series. A theory by Kirkwood predicts the strength of this interaction and indicates that it depends on the first power of the ionic strength. Ions interact with proteins in various ways besides the Hofmeister ion interactions discussed here, especially by charge interactions. Much of what is known about these interactions comes from studies by Serge Timasheff and his co-workers. A general model, suitable for analyzing diverse ion-protein interactions, is provided by the two-domain model of Record and co

  12. Precessing rotating flows with additional shear: Stability analysis

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Ω0 ) and the additional “precessing” Coriolis force (with angular velocity -ɛΩ0 ), normal to it. A “weak” shear flow, with rate 2ɛ of the same order of the Poincaré “small” ratio ɛ , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler’s equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov’s [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré’s [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small ɛ . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet’s theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small ɛ , but significant differences are obtained regarding growth rates and widths of instability bands, if larger ɛ values, up to 0.2, are considered. Finally, both flow cases

  13. Temperature, stability, and the hydrophobic interaction.

    PubMed Central

    Schellman, J A

    1997-01-01

    Changes in free energy are normally used to track the effect of temperature on the stability of proteins and hydrophobic interactions. Use of this procedure on the aqueous solubility of hydrocarbons, a standard representation of the hydrophobic effect, leads to the conclusion that the hydrophobic effect increases in strength as the temperature is raised to approximately 140 degrees C. Acceptance of this interpretation leads to a number of far-reaching conclusions that are at variance with the original conception of the hydrophobic effect and add considerably to the complexity of interpretation. There are two legitimate thermodynamic functions that can be used to look at stability as a function of temperature: the standard Gibbs free energy change, deltaG degrees, and deltaG degrees/T. The latter is proportional to the log of the equilibrium constant and is sometimes called the Massieu-Planck function. Arguments are presented for using deltaG degrees/T rather than deltaG degrees for variations in stability with temperature. This makes a considerable difference in the interpretation of the hydrophobic interaction, but makes little change in the stability profile of proteins. Protein unfolding and the aqueous solubility of benzene are given as examples. The contrast between protein unfolding and the hydration of nonpolar molecules provides a rough estimate of the contribution of other factors that stabilize and destabilize protein structure. PMID:9414210

  14. Uv-Light Stabilization Additive Package For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.; Klemchuk, Peter P.

    2002-03-05

    An ultraviolet light stabilization additive package is used in an encapsulant material that may be used in solar cell modules, laminated glass and a variety of other applications. The ultraviolet light stabilization additive package comprises a first hindered amine light stabilizer and a second hindered amine light stabilizer. The first hindered amine light stabilizer provides thermal oxidative stabilization, and the second hindered amine light stabilizer providing photo-oxidative stabilization.

  15. Impact of excipient interactions on solid dosage form stability.

    PubMed

    Narang, Ajit S; Desai, Divyakant; Badawy, Sherif

    2012-10-01

    Drug-excipient interactions in solid dosage forms can affect drug product stability in physical aspects such as organoleptic changes and dissolution slowdown, or chemically by causing drug degradation. Recent research has allowed the distinction in chemical instability resulting from direct drug-excipient interactions and from drug interactions with excipient impurities. A review of chemical instability in solid dosage forms highlights common mechanistic themes applicable to multiple degradation pathways. These common themes include the role of water and microenvironmental pH. In addition, special aspects of solid-state reactions with excipients and/or excipient impurities add to the complexity in understanding and modeling reaction pathways. This paper discusses mechanistic basis of known drug-excipient interactions with case studies and provides an overview of common underlying themes. Recent developments in the understanding of degradation pathways further impact methodologies used in the pharmaceutical industry for prospective stability assessment. This paper discusses these emerging aspects in terms of limitations of drug-excipient compatibility studies, emerging paradigms in accelerated stability testing, and application of mathematical modeling for prediction of drug product stability.

  16. Stability of Horndeski vector-tensor interactions

    SciTech Connect

    Jiménez, Jose Beltrán; Durrer, Ruth; Heisenberg, Lavinia; Thorsrud, Mikjel E-mail: ruth.durrer@unige.ch E-mail: mikjel.thorsrud@astro.uio.no

    2013-10-01

    We study the Horndeski vector-tensor theory that leads to second order equations of motion and contains a non-minimally coupled abelian gauge vector field. This theory is remarkably simple and consists of only 2 terms for the vector field, namely: the standard Maxwell kinetic term and a coupling to the dual Riemann tensor. Furthermore, the vector sector respects the U(1) gauge symmetry and the theory contains only one free parameter, M{sup 2}, that controls the strength of the non-minimal coupling. We explore the theory in a de Sitter spacetime and study the presence of instabilities and show that it corresponds to an attractor solution in the presence of the vector field. We also investigate the cosmological evolution and stability of perturbations in a general FLRW spacetime. We find that a sufficient condition for the absence of ghosts is M{sup 2} > 0. Moreover, we study further constraints coming from imposing the absence of Laplacian instabilities. Finally, we study the stability of the theory in static and spherically symmetric backgrounds (in particular, Schwarzschild and Reissner-Nordström-de Sitter). We find that the theory, quite generally, do have ghosts or Laplacian instabilities in regions of spacetime where the non-minimal interaction dominates over the Maxwell term. We also calculate the propagation speed in these spacetimes and show that superluminality is a quite generic phenomenon in this theory.

  17. EKylation: Addition of an Alternating-Charge Peptide Stabilizes Proteins.

    PubMed

    Liu, Erik J; Sinclair, Andrew; Keefe, Andrew J; Nannenga, Brent L; Coyle, Brandon L; Baneyx, François; Jiang, Shaoyi

    2015-10-12

    For nearly 40 years, therapeutic proteins have been stabilized by chemical conjugation of polyethylene glycol (PEG), but recently zwitterionic materials have proved to be a more effective substitute. In this work, we demonstrate that genetic fusion of alternating-charge extensions consisting of anionic glutamic acid (E) and cationic lysine (K) is an effective strategy for protein stabilization. This bioinspired "EKylation" method not only confers the stabilizing benefits of poly(zwitterions) but also allows for rapid biosynthesis of target constructs. Poly(EK) peptides of different predetermined lengths were appended to the C-terminus of a native β-lactamase and its destabilized TEM-19 mutant. The EK-modified enzymes retained biological activity and exhibited increased stability to environmental stressors such as high temperature and high-salt solutions. This one-step strategy provides a broadly applicable alternative to synthetic polymer conjugation that is biocompatible and degradable. PMID:26407134

  18. Interactive effects of nutrient additions and predation on infaunal communities

    USGS Publications Warehouse

    Posey, M.H.; Alphin, T.D.; Cahoon, L.; Lindquist, D.; Becker, M.E.

    1999-01-01

    Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa, Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.

  19. Thermal Stability of Fluorinated Polydienes Synthesized by Addition of Difluorocarbene

    SciTech Connect

    Huang, Tianzi; Wang, Xiaojun; Malmgren, Thomas W; Hong, Kunlun; Mays, Jimmy

    2012-01-01

    Linear PCHD and polyisoprenes with different microstructures and molecular weights are synthesized and chemically modified to improve their thermal and chemical stability by forming a three-membered ring structure containing two C-F bonds. Pyrolysis of these fluorinated polydienes proceeds through a two-stage decomposition involving chain scission, crosslinking, dehydrogenation, and dehalogenation. The pyrolysis leads to graphite-like residues, whereas their polydiene precursors decompose completely under the same conditions. The fluorination of PCHD enhances its thermal stability. The stronger C-F bond along with high strain of the three-membered ring structure and formation of relatively stable free radicals play an important role in the thermal stability of fluorinated polydienes.

  20. Additive interaction in survival analysis: use of the additive hazards model.

    PubMed

    Rod, Naja Hulvej; Lange, Theis; Andersen, Ingelise; Marott, Jacob Louis; Diderichsen, Finn

    2012-09-01

    It is a widely held belief in public health and clinical decision-making that interventions or preventive strategies should be aimed at patients or population subgroups where most cases could potentially be prevented. To identify such subgroups, deviation from additivity of absolute effects is the relevant measure of interest. Multiplicative survival models, such as the Cox proportional hazards model, are often used to estimate the association between exposure and risk of disease in prospective studies. In Cox models, deviations from additivity have usually been assessed by surrogate measures of additive interaction derived from multiplicative models-an approach that is both counter-intuitive and sometimes invalid. This paper presents a straightforward and intuitive way of assessing deviation from additivity of effects in survival analysis by use of the additive hazards model. The model directly estimates the absolute size of the deviation from additivity and provides confidence intervals. In addition, the model can accommodate both continuous and categorical exposures and models both exposures and potential confounders on the same underlying scale. To illustrate the approach, we present an empirical example of interaction between education and smoking on risk of lung cancer. We argue that deviations from additivity of effects are important for public health interventions and clinical decision-making, and such estimations should be encouraged in prospective studies on health. A detailed implementation guide of the additive hazards model is provided in the appendix.

  1. Behaviors of Polymer Additives Under EHL and Influences of Interactions Between Additives on Friction Modification

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    Polymer additives have become requisite for the formulation of multigrade engine oils. The behavior of polymethacrylate (PMA)-thickened oils as lubricants in concentrated contacts under nominal rolling and pure sliding conditions was investigated by conventional optical interferometry. The PMA thickened oils behaved differently from the base oil in the formation of elastohydrodynamic (EHL) films. The higher the elastohydrodynamic molecular weight of the PMA contained in the lubricant, the thinner was the oil film under EHL conditions. The film thickness of shear-degraded PMA-thickened oils was also investigated. The behavior of graphite particles dispersed in both the base oil and the PMA-thickened oil was studied under pure sliding by taking photomicrographs. Many kinds of additives are contained in lubricating oil and the interactions between additives are considered. The interactions of zinc-organodithiophosphates (ZDP) with other additives is discussed.

  2. Relative Stabilities of Organic Compounds Using Benson's Additivity Rules.

    ERIC Educational Resources Information Center

    Vitale, Dale E.

    1986-01-01

    Shows how the structure-energy principle can be presented in organic chemistry (without having to resort to quantum mechanics) by use of Benson's Additive Rules. Examples of the application to several major classes of organic compounds are given.

  3. Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-06-15

    This study investigated the potential of gum arabic to improve the stability of anthocyanins that are used in commercial beverages as natural colourants. The degradation of purple carrot anthocyanin in model beverage systems (pH 3.0) containing L-ascorbic acid proceeded with a first-order reaction rate during storage (40 °C for 5 days in light). The addition of gum arabic (0.05-5.0%) significantly enhanced the colour stability of anthocyanin, with the most stable systems observed at intermediate levels (1.5%). A further increase in concentration (>1.5%) reduced its efficacy due to a change in the conformation of the gum arabic molecules that hindered their exposure to the anthocyanins. Fluorescence quenching measurements showed that the anthocyanin could have interacted with the glycoprotein fractions of the gum arabic through hydrogen bonding, resulting in enhanced stability. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using natural ingredients.

  4. Non-additivity of pair interactions in charged colloids.

    PubMed

    Finlayson, Samuel D; Bartlett, Paul

    2016-07-21

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry. PMID:27448904

  5. Non-additivity of pair interactions in charged colloids

    NASA Astrophysics Data System (ADS)

    Finlayson, Samuel D.; Bartlett, Paul

    2016-07-01

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry.

  6. Effects of additives on thermal stability of Li ion cells

    NASA Astrophysics Data System (ADS)

    Doughty, Daniel H.; Roth, E. Peter; Crafts, Chris C.; Nagasubramanian, G.; Henriksen, Gary; Amine, Khalil

    Li ion cells are being developed for high-power applications in hybrid electric vehicles, because these cells offer superior combination of power and energy density over current cell chemistries. Cells using this chemistry are proposed for battery systems in both internal combustion engine and fuel cell-powered hybrid electric vehicles. However, the safety of these cells needs to be understood and improved for eventual widespread commercial applications. The thermal-abuse response of Li ion cells has been improved by the incorporation of more stable anode carbons and electrolyte additives. Electrolyte solutions containing vinyl ethylene carbonate (VEC), triphenyl phosphate (TPP), tris(trifluoroethyl)phosphate (TFP) as well as some proprietary flame-retardant additives were evaluated. Test cells in the 18,650 configuration were built at Sandia National Laboratories using new stable electrode materials and electrolyte additives. A special test fixture was designed to allow determination of self-generated cell heating during a thermal ramp profile. The flammability of vented gas and expelled electrolyte was studied using a novel arrangement of a spark generator placed near the cell to ignite vent gas if a flammable gas mixture was present. Flammability of vent gas was somewhat reduced by the presence of certain additives. Accelerating rate calorimetry (ARC) was also used to characterize 18,650-size test cell heat and gas generation. Gas composition was analyzed by gas chromatography (GC) and was found to consist of CO 2, H 2, CO, methane, ethane, ethylene and small amounts of C1-C4 organic molecules.

  7. The addition of body armor diminishes dynamic postural stability in military soldiers.

    PubMed

    Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M

    2013-01-01

    Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p < 0.05). The addition of body armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.

  8. Predicting Marital Happiness and Stability from Newlywed Interactions.

    ERIC Educational Resources Information Center

    Gottman, John M.; Coan, James; Carrere, Sybil; Swanson, Catherine

    1998-01-01

    Marital interaction processes that are predictive of divorce or marital stability and processes that discriminate between happily and unhappily married stable couples are explored (N=130). Seven types of process models are examined, and results are discussed. Divorce and stability were predicted with 83% accuracy, and satisfaction with 80%…

  9. Soil aggregate stability as affected by clay mineralogy and polyacrylamide addition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of polyacrylamide (PAM) to soil leads to stabilization of existing aggregates and improved bonding between, and aggregation of adjacent soil particles However, the dependence of PAM efficacy as an aggregate stabilizing agent on soil-clay mineralogy has not been studied. Sixteen soil sam...

  10. Ecological Networks: Structure, Interaction Strength, and Stability

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit; Sinha, Somdatta

    The fundamental building blocks of any ecosystem, the food webs, which are assemblages of species through various interconnections, provide a central concept in ecology. The study of a food web allows abstractions of the complexity and interconnectedness of natural communities that transcend the specific details of the underlying systems. For example, Fig. 1 shows a typical food web, where the species are connected through their feeding relationships. The top predator, Heliaster (starfish) feeds on many gastropods like Hexaplex, Morula, Cantharus, etc., some of whom predate on each other [129]. Interactions between species in a food web can be of many types, such as predation, competition, mutualism, commensalism, and ammensalism (see Section 1.1, Fig. 2).

  11. Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives

    NASA Astrophysics Data System (ADS)

    Turkovic, Vida; Engmann, Sebastian; Tsierkezos, Nikos; Hoppe, Harald; Madsen, Morten; Rubahn, Horst-Günter; Ritter, Uwe; Gobsch, Gerhard

    2016-03-01

    Stability of organic solar cells (OPV) remains a big problem on the way to their commercialization. Different approaches are being investigated: development of intrinsically more photochemically stable materials, optimization of encapsulation, and implementation of getter and UV blocking layers. In this study, we investigate stabilization of OPV devices using hydroperoxide decomposers as stabilizing additives. A set of five commercially available additives of organophosphorus, organosulfur, Ni chelate, and blocked thiol type are compared, ternary blended into the active layer, under exposure to aging under ISOS-3 degradation conditions. Improvements in long-term performance of OPV devices were observed upon stabilization with Advapak NEO-1120, lifetime was prolonged by a factor of 1.7, and accumulated power generation increased by a factor of 1.4. The stabilizing mechanisms are discussed using spectroscopic and microscopic measurements.

  12. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin †

    PubMed Central

    Kawamura, Shiho; Colozo, Alejandro T.; Müller, Daniel J.; Park, Paul S.-H.

    2010-01-01

    Rhodopsin is the light receptor that initiates phototransduction in rod photoreceptor cells. The structure and function of rhodopsin is tightly linked to molecular interactions that stabilize and determine the receptor's functional state. Single-molecule force spectroscopy (SMFS) was used to localize and quantify molecular interactions that structurally stabilize bovine and mouse rhodopsin from native disc membranes of rod photoreceptor cells. The mechanical unfolding of bovine and mouse rhodopsin revealed nine major unfolding intermediates, each intermediate defining a structurally stable segment in the receptor. These stable structural segments had similar localization and occurrence in both bovine and mouse samples. For each structural segment, parameters describing their unfolding energy barrier were determined by dynamic SMFS. No major differences were observed between bovine and mouse rhodopsin thereby implying that the structures of both rhodopsins are largely stabilized by similar molecular interactions. PMID:21038881

  13. Design of additive quantum codes via the code-word-stabilized framework

    SciTech Connect

    Kovalev, Alexey A.; Pryadko, Leonid P.; Dumer, Ilya

    2011-12-15

    We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on the framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds on the distance of a generic (additive or nonadditive) CWS code, and the lower Gilbert-Varshamov bound for the existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these codes correspond to a previously unexplored class of single-generator cyclic stabilizer codes. We present several families of simple stabilizer codes with relatively good parameters.

  14. Interaction between Polymeric Additives and Secondary Fluids in Capillary Suspensions.

    PubMed

    Bitsch, Boris; Braunschweig, Björn; Willenbacher, Norbert

    2016-02-16

    Capillary suspensions are ternary systems including a solid and two liquid phases representing a novel formulation platform for pastes with unique processing and end-use properties. Here we have investigated aqueous suspensions of non-Brownian graphite particles including different polymers commonly used as thickening agents or binders in paste formulations. We have studied the interaction between these additives and organic solvents in order to elucidate its effect on the characteristic formation of a particle network structure in corresponding ternary capillary suspension systems. Organic solvents with different polarity have been employed, and in the presence of nonadsorbing poly(ethylene oxide), all of them, whether they preferentially wet the graphite surface or not, induce the formation of a network structure within the suspension as indicated by a strong change in rheological properties. However, when the adsorbing polymers carboxymethylcellulose and poly(vinylpyrrolidone) are included, the drastic change in rheological behavior occurs only when polar organic solvents are used as secondary liquids. Obviously, these solvents can form pendular bridges, finally resulting in a sample-spanning particle network. Vibrational sum frequency spectroscopy provides evidence that these polar liquids remove the adsorbed polymer from the graphite particles. In contrast, nonpolar and nonwetting solvents do not force polymer desorption. In these cases, the formation of a percolating network structure within the suspensions is presumably prevented by the strong steric repulsion among graphite particles, not allowing for the formation of particle clusters encapsulating the secondary liquid. Accordingly, polymeric additives and secondary fluids have to be carefully selected in capillary suspension formulations, then offering a new pathway to customize paste formulations. The polymer may serve to adjust an appropriate viscosity level, and the capillary bridging induces the

  15. Competitive interactions between components in surfactant-cosurfactant-additive systems.

    PubMed

    Chaghi, Radhouane; de Ménorval, Louis-Charles; Charnay, Clarence; Zajac, Jerzy

    2010-04-15

    Complex interactions of phenol (PhOH), heptanol (HeOH) and heptanoic acid (HeOIC) with micellar aggregates of hexadecyltrimethylammonium bromide (HTAB) in aqueous solutions at surfactant concentrations close to the CMC, HeOH or HeOIC content of 0.5 mmol kg(-1), and phenol molality of 1, 5, or 10 mmol kg(-1) have been investigated at 303 K by means of (1)H NMR spectroscopy, titration calorimetry and solution conductimetry. The analysis of the composition-dependence of the (1)H chemical shifts assigned to selected protons in the surfactant and additive units revealed the location of PhOH both within the hydrophobic micelle core and in the vicinity of the quaternary ammonium groups, the phenol penetration being somewhat deeper in the presence of HeOIC. The phenomenon was globally more exothermic with increasing extent of PhOH solubilization and it was accompanied by a gradual decrease in the positive entropy of micellization. The solubilization was competitive for high phenol contents in the aqueous phase, with some HeOH and HeOIC units being displaced progressively towards the aqueous phase.

  16. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries

    SciTech Connect

    Zhang, Jianlu; Li, Liyu; Nie, Zimin; Chen, Baowei; Vijayakumar, M.; Kim, Soowhan; Wang, Wei; Schwenzer, Birgit; Liu, Jun; Yang, Zhenguo

    2011-10-01

    The stability of the electrolytes for all-vanadium redox flow battery was investigated with ex-situ heating/cooling treatment and in-situ flow-battery testing methods. The effects of inorganic and organic additives have been studied. The additives containing the ions of potassium, phosphate, and polyphosphate are not suitable stabilizing agents because of their reactions with V(V) ions, forming precipitates of KVSO6 or VOPO4. Of the chemicals studied, polyacrylic acid and its mixture with CH3SO3H are the most promising stabilizing candidates which can stabilize all the four vanadium ions (V2+, V3+, VO2+, and VO2+) in electrolyte solutions up to 1.8 M. However, further effort is needed to obtain a stable electrolyte solution with >1.8 M V5+ at temperatures higher than 40 °C.

  17. Frequency-dependence stabilizes competitive interactions among four annual plants.

    PubMed

    Harpole, W Stanley; Suding, Katharine N

    2007-12-01

    It is the combination of large fitness differences and strong stabilizing mechanisms that often constitute niche-based explanations for species abundance patterns. Despite the importance of this assumption to much of community ecology, empirical evidence is surprisingly limited. Empirical tests are critical because many abundance patterns are also consistent with neutral-based alternatives (that assume no fitness differences or stabilization). We quantified interactions of four annual grassland species in two-species mixtures at varying frequencies. We found evidence of strong negative frequency-dependent stabilization, where scaled population growth rates increased with decreasing frequency for all four species. There was also a consistent competitive hierarchy among these species indicative of strong fitness differences that, in most cases, suggested potential competitive exclusion despite the observed strong stabilization.

  18. Comparison of Temperature and Additives Affecting the Stability of the Probiotic Weissella cibaria

    PubMed Central

    Kang, Mi-Sun; Kim, Youn-Shin; Lee, Hyun-Chul; Lim, Hoi-Soon

    2012-01-01

    Daily use of probiotic chewing gum might have a beneficial effect on oral health, and it is important that the viability of the probiotics be maintained in this food product. In this study, we examined the stability of probiotic chewing gum containing Weissella cibaria. We evaluated the effects of various factors, including temperature and additives, on the survival of freeze-dried probiotic W. cibaria powder. No changes in viability were detected during storage at 4℃ for 5 months, whereas the viability of bacteria stored at 20℃ decreased. The stability of probiotic chewing gum decreased steadily during storage at 20℃ for 4 weeks. The viability of the freeze-dried W. cibaria mixed with various additives, such as xylitol, sorbitol, menthol, sugar ester, magnesium stearate, and vitamin C, was determined over a 4-week storage period at 20℃. Most of the freeze-dried bacteria except for those mixed with menthol and vitamin C were generally stable during a 3-week storage period. Overall, our study showed that W. cibaria was more stable at 4℃ than that at 20℃. In addition, menthol and vitamin C had a detrimental effect on the storage stability of W. cibaria. This is the first study to examine the effects of various chewing gum additives on the stability of W. cibaria. Further studies will be needed to improve the stability of probiotic bacteria for developing a novel probiotic W. cibaria gum. PMID:23323221

  19. Interactions between sealing materials and lubricating oil additives

    SciTech Connect

    Winkenbach, R.; Von Arndt, E.M.; Mindermann, H.

    1987-01-01

    Due to the increasingly higher application demands, engine and transmission manufactures are today using lubrication oils with more and more additives. The result is that seal materials are being damaged when exposed to such conditions and such additives. This paper shows the effects of basic oils with, and without, additives on elastomeric materials such as NBR, ACM, MVQ and FPM.

  20. Interactions of phospholipase D and cytochrome P450 protein stability

    SciTech Connect

    Zangar, Richard C.; Fan, Yang-Yi; Chapkin, Robert S.

    2004-08-01

    Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.

  1. Stability and modal analysis of shock/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2016-06-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  2. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  3. Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1983-01-01

    A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case

  4. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime.

    PubMed

    Samaras, P; Papadimitriou, C A; Haritou, I; Zouboulis, A I

    2008-06-15

    The aim of this work was the examination of stabilization potential of sewage sludge by the addition of fly ash and/or lime and the investigation of the effect of stabilization time on the properties of produced mixtures. Five samples were prepared by mixing fly ash, sewage sludge and lime in various ratios and the mixtures were stabilized for a period of 35 d. The addition of alkaline agents resulted in the increase of sample pH up to 12, the increase of total solids content to about 50% and the reduction of the organic fraction of the solids. The produced samples presented inhibition effects to seed germination and root length growth of three higher plants (one monocotyl and two dicotyls); however, samples with high sludge content resulted in negligible seed germination inhibition at prolonged stabilization times. The standard TCLP leaching procedure was applied in all the produced samples in order to evaluate the extraction potential of certain metallic elements; the content of metals in the eluates was varied, depending upon their speciation and form. Eluates presented significant inhibition to the marine photobacterium Vibrio fischeri bioluminescence, while the lowest inhibition was detected for the samples containing higher sludge content. These samples potentially could be applied as soil amendment, offering an efficient method for the combined utilization of two different solid wastes; however, low dosages of fly ash should be used for the production of a stabilized material presenting negligible effects with respect to its phytotoxic and ecotoxic properties. PMID:18093729

  5. Improved physical stability of amorphous state through acid base interactions.

    PubMed

    Telang, Chitra; Mujumdar, Siddharthya; Mathew, Michael

    2009-06-01

    To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.

  6. Effect of stabilizing additives on the structure and hydration of proteins: a study involving monoclinic lysozyme.

    PubMed

    Saraswathi, N T; Sankaranarayanan, R; Vijayan, M

    2002-07-01

    In pursuance of a long-range programme on the hydration, mobility and action of proteins, the structural basis of the stabilizing effect of sugars and polyols is being investigated. With two crystallographically independent molecules with slightly different packing environments in the crystal, monoclinic lysozyme constitutes an ideal system for exploring the problem. The differences in the structure and hydration of the two molecules provide a framework for examining the changes caused by stabilizing additives. Monoclinic crystals were grown under native conditions and also in the presence of 10% sucrose, 15% trehalose, 10% trehalose, 10% sorbitol and 5% glycerol. The crystal structures were refined at resolutions ranging from 1.8 to 2.1 A. The average B values, and hence the mobility of the structure, are lower in the presence of additives than in the native crystals. However, a comparison of the structures indicates that the effect of the additives on the structure and the hydration shell around the protein molecule is considerably less than that caused by differences in packing. It is also less than that caused by the replacement of NaNO(3) by NaCl as the precipitant in the crystallization experiments. This result is not in conformity with the commonly held belief that additives exert their stabilizing effect through the reorganization of the hydration shell, at least as far as the ordered water molecules are concerned.

  7. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  8. Effects of potential additives to promote seal swelling on the thermal stability of synthetic jet fuels

    SciTech Connect

    Lind, D.D.; Gormley, R.G.; Zandhuis, P.H.; Baltrus, J.P.

    2007-10-01

    Synthetic fuels derived from the Fischer-Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering of ground vehicles, aircraft and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. These additives can include oxygenates and compounds containing other heteroatoms that may adversely affect thermal stability. In order to understand what additives will be the most beneficial, a comprehensive experimental and computational study of conventional and additized fuels has been undertaken. The experimental approach includes analysis of the trace oxygenate and nitrogen-containing compounds present in conventional petroleum-derived fuels and trying to relate their presence (or absence) to changes in the desired properties of the fuels. This paper describes the results of efforts to test the thermal stability of synthetic fuels and surrogate fuels containing single-component additives that have been identified in earlier research as the best potential additives for promoting seal swelling in synthetic fuels, as well as mixtures of synthetic and petroleum-derived fuels.

  9. Analysis of protein stability and ligand interactions by thermal shift assay.

    PubMed

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye.

  10. New Stabilization for Dynamical System with Two Additive Time-Varying Delays

    PubMed Central

    Yang, Fan; Chen, Xiaozhou

    2014-01-01

    This paper provides a new delay-dependent stabilization criterion for systems with two additive time-varying delays. The novel functional is constructed, a tighter upper bound of the derivative of the Lyapunov functional is obtained. These results have advantages over some existing ones because the combination of the delay decomposition technique and the reciprocally convex approach. Two examples are provided to demonstrate the less conservatism and effectiveness of the results in this paper. PMID:24701159

  11. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates.

    PubMed

    Miller, Joseph B; Dandu, Naveen; Velizhanin, Kirill A; Anthony, Rebecca J; Kortshagen, Uwe R; Kroll, Daniel M; Kilina, Svetlana; Hobbie, Erik K

    2015-10-27

    Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from "bright" nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.

  12. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction

    PubMed Central

    Matsui, Takeshi; Ehrenreich, Ian M.

    2016-01-01

    How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C (‘E37’), a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose) and temperature (37°C as opposed to 30°C). Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose) and temperature (30 or 37°C) in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur. PMID:27437938

  13. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    DOE PAGES

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have notmore » been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.« less

  14. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    SciTech Connect

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have not been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.

  15. The additive effect of harmonics on conservative and dissipative interactions

    NASA Astrophysics Data System (ADS)

    Santos, Sergio; Gadelrab, Karim R.; Barcons, Victor; Font, Josep; Stefancich, Marco; Chiesa, Matteo

    2012-12-01

    Multifrequency atomic force microscopy holds promise as a tool for chemical and topological imaging with nanoscale resolution. Here, we solve the equation of motion exactly for the fundamental mode in terms of the cantilever mean deflection, the fundamental frequency of oscillation, and the higher harmonic amplitudes and phases. The fundamental frequency provides information about the mean force, dissipation, and variations in the magnitude of the attractive and the repulsive force components during an oscillation cycle. The contributions of the higher harmonics to the position, velocity, and acceleration can be added gradually where the details of the true instantaneous force are recovered only when tens of harmonics are included. A formalism is developed here to decouple and quantify the viscous term of the force in the short and long range. It is also shown that the viscosity independent paths on tip approach and tip retraction can also be decoupled by simply acquiring a FFT at two different cantilever separations. The two paths correspond to tip distances at which metastability is present as, for example, in the presence of capillary interactions and where there is surface energy hysteresis.

  16. Phase stability of thermal barrier oxides based on t'-zirconia with trivalent oxide additions

    NASA Astrophysics Data System (ADS)

    Rebollo Franco, Noemi Rosa

    Zirconia stabilized with 7+/-1 wt.% addition of yttria (7YSZ) is widely used for thermal barrier coatings (TBC's) on actively cooled gas turbine components, selected partly because of its superior durability under thermal cyclic conditions. As deposited, 7YSZ occurs as a metastable single-phase tetragonal solid solution (t') that is thermodynamically stable against the deleterious transformation to monoclinic upon cooling. However, at high temperatures t' is driven to decompose diffusionally into an equilibrium mixture of high-Y cubic and low-Y tetragonal; the latter becomes transformable to monoclinic compromising the mechanical integrity of the system. This dissertation explores the effects of trivalent stabilizers, including Y, Sc and selected rare-earth oxides (REO's), on the phase stability of the resulting solid solutions in zirconia. The REO additions are of interest because they can potentially enhance the insulation efficiency on the coating allowing higher operating temperatures. However, understanding of their effects on phase stability and potentially on cyclic durability at the projected use temperature in next generation engines (1200-1400°C) is insufficient to guide the design of coatings with the desirable combination of lower thermal conductivity and acceptable durability. Sc was also investigated because of previous reports on the higher phase stability of materials doped with Sc, and Y served as the baseline. The experimental approach is based on powders synthesized by reverse co-precipitation of precursor solutions, usually compacted and then subjected to a variety of heat treatments, following their evolution by means of X-ray diffractometry, dilatometry, transmission electron microscopy and Raman spectroscopy. The use of powders facilitated the synthesis of a wider range of compositions that would not have been possible by coating deposition approaches, and because the synthesis occurs at low temperature, it also enabled the starting

  17. Static interactions and stability of matter in Rindler space

    SciTech Connect

    Lenz, F.; Ohta, K.; Yazaki, K.

    2011-03-15

    Dynamical issues associated with quantum fields in Rindler space are addressed in a study of the interaction between two sources at rest generated by the exchange of scalar particles, photons, and gravitons. These static interaction energies in Rindler space are shown to be scale invariant, complex quantities. The imaginary part will be seen to have its quantum mechanical origin in the presence of an infinity of zero modes in uniformly accelerated frames which in turn are related to the radiation observed in inertial frames. The impact of a uniform acceleration on the stability of matter and the properties of particles is discussed, and estimates are presented of the instability of hydrogen atoms when approaching the horizon.

  18. Influence of defatted soy flour addition on the quality and stability of pretzel type product.

    PubMed

    Naik, Haroon Rashid; Sekhon, K S

    2014-03-01

    Effect of soya flour addition to 70% extraction bread wheat flour (PBW-343) at (0, 5, 10, 20 & 30%) was investigated for physico-chemical, dough handling and pretzel making properties. Results revealed that with increasing DSF addition, farinogram characteristics; water absorption, arrival time, dough development time and dough stability increased while mixing tolerance index and degree of softening decreased. Amylogram characteristics gelatinization temperature, peak viscosity, peak temperature and viscosity at 95 °C decreased with extended rate of DSF addition. Pretzels developed with different levels of DSF addition observed decrease in moisture, fat, non reducing sugars and starch where as ash, protein, reducing and total sugars increased compared to control. Calories calculated from proximate composition showed lower values than control due to high protein and low fat soy flour addition. Minerals increased significantly with increased levels of defatted soy flour addition. Organoleptic evaluation revealed that 5% level of soy flour blended pretzels were found best with respect to texture, colour and flavor on the basis of mean acceptability scores. Pretzels recorded shelf life of 90 days in laminated pouches irrespective of the level of DSF addition. PMID:24587534

  19. Potential Additives to Promote Seal Swell in Synthetic Fuels and Their Effect on Thermal Stability

    SciTech Connect

    Link, Dirk D.; Gormley, Robert J.; Baltrus, John P.; Anderson, Richard R.; Zandhuis, Paul H.

    2008-03-01

    Synthetic, fuels derived from the Fischer-Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering ground vehicles, aircraft, and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. Using both experimental and computational studies, the propensity of certain species to enhance the seal swell characteristics of synthetic fuels and surrogates has been determined, and promising additives have been identified. Important structural characteristics for potential additives, namely an aromatic ring along with a polar constituent, are described. The thermal stability of synthetic and surrogate fuels containing the single-component additive benzyl alcohol, which is representative of this structural class, has been determined by batch stressing of the mixtures at 350º C for up to 12 h. Synthetic fuels spiked with benzyl alcohol at concentrations (vol%) of 1.0, 0.75, and 0.5 have demonstrated the ability to swell nitrile rubber o-rings to a comparable degree as petroleum jet fuel. Further, batch reactor studies have shown that addition of benzyl alcohol does not degrade the thermal oxidative stability of the fuel based on gravimetric analysis of the solid deposits after stressing. GC-MS was used to characterize the products from thermal stressing of neat and additized surrogate jet fuel, and their compositions were compared with respect to the creation of certain species and their potential effect on deposition.

  20. Potential Additives to Promote Seal Swell in Synthetic Fuels and Their Effect on Thermal Stability

    SciTech Connect

    Link, D.D.; Gormley, R.J.; Baltrus, J.P.; Anderson, R.R.; Zandhuis, P.H.

    2008-03-01

    Synthetic fuels derived from the Fischer–Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering ground vehicles, aircraft, and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. Using both experimental and computational studies, the propensity of certain species to enhance the seal swell characteristics of synthetic fuels and surrogates has been determined, and promising additives have been identified. Important structural characteristics for potential additives, namely an aromatic ring along with a polar constituent, are described. The thermal stability of synthetic and surrogate fuels containing the single-component additive benzyl alcohol, which is representative of this structural class, has been determined by batch stressing of the mixtures at 350 °C for up to 12 h. Synthetic fuels spiked with benzyl alcohol at concentrations (vol %) of 1.0, 0.75, and 0.5 have demonstrated the ability to swell nitrile rubber o-rings to a comparable degree as petroleum jet fuel. Further, batch reactor studies have shown that addition of benzyl alcohol does not degrade the thermal oxidative stability of the fuel based on gravimetric analysis of the solid deposits after stressing. GC-MS was used to characterize the products from thermal stressing of neat and additized surrogate jet fuel, and their compositions were compared with respect to the creation of certain species and their potential effect on deposition.

  1. Stochastic Identification of Stability of Competitive Interactions in Ecosystems

    PubMed Central

    Vach, Marek; Vachová, Pavla

    2016-01-01

    The problem of finding an optimum within a set of possibilities that represent the varying successfulness of numerous subjects competing with one another is highly relevant in the field of ecosystem interactions. We propose a method for solving this problem by the application of the Nash equilibrium concept, which is frequently used in ecology. The proposed model is based on the transformation of the initial payoff vectors of subjects that interact in different situations into a statistical set of symmetrical game matrices that consist of permutations of payoff values. The equilibrium solution is expressed as values of the probability of Nash equilibrium occurrence with uniform distribution over all possible permutations based on uncertainty of positions of payoff values in the matrix. We assume that this equilibrium solution provides information on the distribution of the degree of stability among individual situations and interacting subjects. In this paper, we validate this assumption and demonstrate its application to a dataset that represents interspecies interactions in plant ecology. We propose that the use of the Nash equilibrium in the analysis of datasets formalized according to the Pareto optimality scheme is applicable in numerous other contexts. PMID:27171283

  2. Stochastic Identification of Stability of Competitive Interactions in Ecosystems.

    PubMed

    Vach, Marek; Vachová, Pavla

    2016-01-01

    The problem of finding an optimum within a set of possibilities that represent the varying successfulness of numerous subjects competing with one another is highly relevant in the field of ecosystem interactions. We propose a method for solving this problem by the application of the Nash equilibrium concept, which is frequently used in ecology. The proposed model is based on the transformation of the initial payoff vectors of subjects that interact in different situations into a statistical set of symmetrical game matrices that consist of permutations of payoff values. The equilibrium solution is expressed as values of the probability of Nash equilibrium occurrence with uniform distribution over all possible permutations based on uncertainty of positions of payoff values in the matrix. We assume that this equilibrium solution provides information on the distribution of the degree of stability among individual situations and interacting subjects. In this paper, we validate this assumption and demonstrate its application to a dataset that represents interspecies interactions in plant ecology. We propose that the use of the Nash equilibrium in the analysis of datasets formalized according to the Pareto optimality scheme is applicable in numerous other contexts. PMID:27171283

  3. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability.

    PubMed

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-05-27

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices.

  4. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability

    NASA Astrophysics Data System (ADS)

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-05-01

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices.

  5. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability

    PubMed Central

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-01-01

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices. PMID:27230981

  6. The roles of amensalistic and commensalistic interactions in large ecological network stability

    PubMed Central

    Mougi, Akihiko

    2016-01-01

    Ecological communities comprise diverse species and their interactions. Notably, ecological and evolutionary studies have revealed that reciprocal interactions such as predator–prey, competition, and mutualism, are key drivers of community dynamics. However, there is an argument that many species interactions are asymmetric, where one species unilaterally affects another species (amensalism or commensalism). This raises the unanswered question of what is the role of unilateral interactions in community dynamics. Here I use a theoretical approach to demonstrate that unilateral interactions greatly enhance community stability. The results suggested that amensalism and commensalism were more stabilizing than symmetrical interactions, such as competition and mutualism, but they were less stabilizing than an asymmetric antagonistic interaction. A mix of unilateral interactions increased stability. Furthermore, in communities with all interaction types, unilateral interactions tended to increase stability. This study suggests that unilateral interactions play a major role in maintaining communities, underlining the need to further investigate their roles in ecosystem dynamics. PMID:27406267

  7. Tuning protein-protein interactions using cosolvents: specific effects of ionic and non-ionic additives on protein phase behavior.

    PubMed

    Hansen, Jan; Platten, Florian; Wagner, Dana; Egelhaaf, Stefan U

    2016-04-21

    Cosolvents are routinely used to modulate the (thermal) stability of proteins and, hence, their interactions with proteins have been studied intensely. However, less is known about their specific effects on protein-protein interactions, which we characterize in terms of the protein phase behavior. We analyze the phase behavior of lysozyme solutions in the presence of sodium chloride (NaCl), guanidine hydrochloride (GuHCl), glycerol, and dimethyl sulfoxide (DMSO). We experimentally determined the crystallization boundary (XB) and, in combination with data on the cloud-point temperatures (CPTs), the crystallization gap. In agreement with other studies, our data indicate that the additives might affect the protein phase behavior through electrostatic screening and additive-specific contributions. At high salt concentrations, where electrostatic interactions are screened, both the CPT and the XB are found to be linear functions of the additive concentration. Their slopes quantify the additive-specific changes of the phase behavior and thus of the protein-protein interactions. While the specific effect of NaCl is to induce attractions between proteins, DMSO, glycerol and GuHCl (with increasing strength) weaken attractions and/or induce repulsions. Except for DMSO, changes of the CPT are stronger than those of the XB. Furthermore, the crystallization gap widens in the case of GuHCl and glycerol and narrows in the case of NaCl. We relate these changes to colloidal interaction models, namely square-well and patchy interactions. PMID:27020538

  8. Growth and stability of interacting surface flaws of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Murakami, Y.; Nemat-Nasser, S.

    1983-01-01

    Growth regimes of interacting surface flaws of arbitrary shape are analyzed with the aid of the body force method, and the stability of the process is assessed on the basis of the variation of the load during the growth. It is shown that irregularly shaped flaws are often associated with very high stress intensity factors locally, which tend to change as the flaws grow into more regular shapes. Several examples of various flaw shapes are worked out for illustration, and it is shown that a simple formula seems to provide an accurate estimate of the maximum stress intensity factor for surface flaws of various shapes, which are not very slender. The formula involves the overall maximum tension, as well as the area of the projection of the flaw on the plane normal to the maximum tension.

  9. Dicopper double-strand helicates held together by additional π-π interactions.

    PubMed

    Boiocchi, Massimo; Brega, Valentina; Ciarrocchi, Carlo; Fabbrizzi, Luigi; Pallavicini, Piersandro

    2013-09-16

    The bis-bidentate ligand, obtained from Schiff base condensation of RR-1,2-cyclohexanediamine and 8-naphthylmethoxyquinoline-2-carbaldehyde (L-L), forms with [Cu(I)(MeCN)4]ClO4 a double strand helicate complex, made especially stable by the presence of four definite interstrand π-π interactions involving a quinoline subunit and a naphthylmethoxy substituent of the two strands. The [Cu(I)2(L-L)2](2+) complex, which does not decompose even on excess addition of either L-L or Cu(I), undergoes a two electron oxidation in MeCN, through two one-electron fully reversible steps, separated by 260 mV, as shown by cyclic voltammetry (CV) studies. The high stability of the mixed valence complex [Cu(I)Cu(II)(L-L)2](3+) with respect to disproportionation to [Cu(I)2(L-L)2](2+) and [Cu(II)2(L-L)2](4+) is essentially due to a favorable electrostatic term. Cu(II) forms with L-L a stable species, with a 1:1 stoichiometric ratio, but, in the absence of crystallographic data, it was impossible to assess whether it is of mono- or dinuclear nature. However, CV studies on an MeCN solution containing equimolar amounts of Cu(II) and L-L showed the presence in the reduction scan of two fully reversible waves, separated by about 250 mV, which indicated the presence in solution of a dicopper(II) double strand helicate complex, [Cu(II)2(L-L)2](4+). This work demonstrates that additional interstrand π-π interactions can favor the formation of unusually stable dicopper(I) and dicopper(II) helicate complexes. PMID:24003965

  10. Lumenal interactions in nuclear pore complex assembly and stability

    PubMed Central

    Yewdell, William T.; Colombi, Paolo; Makhnevych, Taras; Lusk, C. Patrick

    2011-01-01

    Nuclear pore complexes (NPCs) provide a gateway for the selective transport of macromolecules across the nuclear envelope (NE). Although we have a solid understanding of NPC composition and structure, we do not have a clear grasp of the mechanism of NPC assembly. Here, we demonstrate specific defects in nucleoporin distribution in strains lacking Heh1p and Heh2p—two conserved members of the LEM (Lap2, emerin, MAN1) family of integral inner nuclear membrane proteins. These effects on nucleoporin localization are likely of functional importance as we have defined specific genetic interaction networks between HEH1 and HEH2, and genes encoding nucleoporins in the membrane, inner, and outer ring complexes of the NPC. Interestingly, expression of a domain of Heh1p that resides in the NE lumen is sufficient to suppress both the nucleoporin mislocalization and growth defects in heh1Δpom34Δ strains. We further demonstrate a specific physical interaction between the Heh1p lumenal domain and the massive cadherin-like lumenal domain of the membrane nucleoporin Pom152p. These findings support a role for Heh1p in the assembly or stability of the NPC, potentially through the formation of a lumenal bridge with Pom152p. PMID:21346187

  11. Stability of Glutamate-Aspartate Cardioplegia Additive Solution in Polyolefin IV Bags

    PubMed Central

    Rush, Steven D.; Kim, Stephanie E.; Hughes, Susan E.; Gilbert, Justine M.; Ciancaglini, Peter P.

    2015-01-01

    Objective: Glutamate-aspartate cardioplegia additive solution (GACAS) is used to enhance myocardial preservation and left ventricular function during some cardiac surgeries. This study was designed to evaluate the stability of compounded GACAS stored in sterile polyolefin intravenous (IV) bags. The goal is to extend the default USP beyond-use date (BUD) and reduce unnecessary inventory waste. Methods: GACAS was compounded and packaged in sterile polyolefin 250 mL IV bags. The concentration was 232 mM for each amino acid. The samples were stored under refrigeration (2°C-8°C) and analyzed at 0, 1, and 2 months. At each time point, the samples were evaluated by pH measurement and visual inspection for color, clarity, and particulates. The samples were also analyzed by high-performance liquid chromatography (HPLC) for potency and degradation products. Due to the lack of ultraviolet (UV) chromophores of glutamate and aspartate, the samples were derivatized by ortho-phthalaldehyde prior to HPLC analysis. Results: The time zero samples of GACAS passed the physical, chemical, and microbiological tests. Over 2 months of storage, there was no significant change in pH or visual appearance for any of the stability samples. The HPLC results also indicated that the samples retained 101% to 103% of the label claim strengths for both amino acids. Conclusion: The physical and chemical stability of extemporaneously prepared GACAS has been confirmed for up to 2 months in polyolefin IV bags stored under refrigeration. With proper sterile compounding practice and microbiology testing, the BUD of this product can be extended to 2 months. PMID:26405344

  12. Phase diagrams for the adsorption of monomers with non-additive interactions

    NASA Astrophysics Data System (ADS)

    Pinto, O. A.; Ramirez-Pastor, A. J.; Nieto, F.

    2016-09-01

    In several experimental systems phase diagrams coverage-temperature show a strong asymmetry. This behavior can be reproduced by including non-additive lateral interactions. In this work a Monte Carlo study on the canonical assembly of the criticality of monomer adsorption with non-additive interactions is presented. Traditional pairwise energies were replaced by other more general ones where the lateral interaction between two ad-atoms depends on the coverage at first sphere of coordination. This kind of energies includes multibody interactions like three-body interactions and four-body interactions, etc. These energies induce the formation of several non-additive ordered structures. Finite size scaling method was used to classify the order of phase transition of each non-additive phase. On the other hand, the corresponding phase diagrams are formed naturally, in which case the diagrams show strong asymmetries.

  13. Further results on delay-range-dependent stability with additive time-varying delay systems.

    PubMed

    Liu, Pin-Lin

    2014-03-01

    In this paper, new conditions for the delay-range-dependent stability analysis of time-varying delay systems are proposed in a Lyapunov-Krasovskii framework. Time delay is considered to be time-varying and has lower and upper bounds. A new method is first presented for a system with two time delays, integral inequality approach (IIA) used to express relationships among terms of Leibniz-Newton formula. Constructing a novel Lyapunov-Krasovskii functional includes information belonging to a given range; new delay-range-dependent criterion is established in term of linear matrix inequality (LMI). The advantage of that criterion lies in its simplicity and less conservative. This paper also presents a new result of stability analysis for continuous systems with two additive time-variant components representing a general class of delay with strong application background in network-based control systems. Resulting criteria are then expressed in terms of convex optimization with LMI constraints, allowing for use of efficient solvers. Finally, three numerical examples show these methods reducing conservatism and improving maximal allowable delay.

  14. Additional disulfide bonds in insulin: Prediction, recombinant expression, receptor binding affinity, and stability

    PubMed Central

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Sørensen, Anders; Jensen, Knud J; Kjeldsen, Thomas; Hubalek, František

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. PMID:25627966

  15. Layered growth of crayfish gastrolith: about the stability of amorphous calcium carbonate and role of additives.

    PubMed

    Habraken, Wouter J E M; Masic, Admir; Bertinetti, Luca; Al-Sawalmih, Ali; Glazer, Lilah; Bentov, Shmuel; Fratzl, Peter; Sagi, Amir; Aichmayer, Barbara; Berman, Amir

    2015-01-01

    Previous studies on pre-molt gastroliths have shown a typical onion-like morphology of layers of amorphous mineral (mostly calcium carbonate) and chitin, resulting from the continuous deposition and densification of amorphous mineral spheres on a chitin-matrix during time. To investigate the consequences of this layered growth on the local structure and composition of the gastrolith, we performed spatially-resolved Raman, X-ray and SEM-EDS analysis on complete pre-molt gastrolith cross-sections. Results show that especially the abundance of inorganic phosphate, phosphoenolpyruvate (PEP)/citrate and proteins is not uniform throughout the organ but changes from layer to layer. Based on these results we can conclude that ACC stabilization in the gastrolith takes place by more than one compound and not by only one of these additives.

  16. Dispersion interactions of carbohydrates with condensate aromatic moieties: theoretical study on the CH-π interaction additive properties.

    PubMed

    Kozmon, Stanislav; Matuška, Radek; Spiwok, Vojtěch; Koča, Jaroslav

    2011-08-21

    In this article we present the first systematic study of the additive properties (i.e. degree of additivity) of the carbohydrate-aromatic moiety CH-π dispersion interaction. The additive properties were studied on the β-D-glucopyranose, β-D-mannopyranose and α-L-fucopyranose complexes with the naphthalene molecule by comparing the monodentate (single CH-π) and bidentate (two CH-π) complexes. All model complexes were optimized using the DFT-D approach, at the BP/def2-TZVPP level of theory. The interaction energies were refined using single point calculations at highly correlated ab initio methods at the CCSD(T)/CBS level, calculated as E + (E(CCSD(T))-E(MP2))(Small Basis). Bidentate complexes show very strong interactions in the range from -10.79 up to -7.15 and -8.20 up to -6.14 kcal mol(-1) for the DFT-D and CCSD(T)/CBS level, respectively. These values were compared with the sum of interaction energies of the appropriate monodentate carbohydrate-naphthalene complexes. The comparison reveals that the bidentate complex interaction energy is higher (interaction is weaker) than the sum of monodentate complex interaction energies. Bidentate complex interaction energy corresponds to 2/3 of the sum of the appropriate monodentate complex interaction energies (averaging over all modeled carbohydrate complexes). The observed interaction energies were also compared with the sum of interaction energies of the corresponding previously published carbohydrate-benzene complexes. Also in this case the interaction energy of the bidentate complex was higher (i.e. weaker interaction) than the sum of interaction energies of the corresponding benzene complexes. However, the obtained difference is lower than before, while the bidentate complex interaction energy corresponds to 4/5 of the sum of interaction energy of the benzene complexes, averaged over all structures. The mentioned comparison might aid protein engineering efforts where amino acid residues phenylalanine or

  17. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR

    PubMed Central

    Thelin, William R.; Chen, Yun; Gentzsch, Martina; Kreda, Silvia M.; Sallee, Jennifer L.; Scarlett, Cameron O.; Borchers, Christoph H.; Jacobson, Ken; Stutts, M. Jackson; Milgram, Sharon L.

    2007-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation. PMID:17235394

  18. Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces

    SciTech Connect

    Xu Tianzhou; Rassias, John Michael; Xu Wanxin

    2010-09-15

    We establish some stability results concerning the general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. In addition, we establish some results of approximately general mixed additive-cubic mappings in non-Archimedean fuzzy normed spaces. The results improve and extend some recent results.

  19. Reactive Additive Stabilization Process (RASP) for hazardous and mixed waste vitrification

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1993-07-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site (SRS) for (1) nickel plating line (F006) sludges and (2) incinerator wastes. Vitrification of these wastes using high surface area additives, the Reactive Additive Stabilization Process (RASP), has been determined to greatly enhance the dissolution and retention of hazardous, mixed, and heavy metal species in glass. RASP lowers melt temperatures (typically 1050-- 1150{degrees}C), thereby minimizing volatility concerns during vitrification. RASP maximizes waste loading (typically 50--75 wt% on a dry oxide basis) by taking advantage of the glass forming potential of the waste. RASP vitrification thereby minimizes waste disposal volume (typically 86--97 vol. %), and maximizes cost savings. Solidification of the F006 plating line sludges containing depleted uranium has been achieved in both soda-lime-silica (SLS) and borosilicate glasses at 1150{degrees}C up to waste loadings of 75 wt%. Solidification of incinerator blowdown and mixtures of incinerator blowdown and bottom kiln ash have been achieved in SLS glass at 1150{degrees}C up to waste loadings of 50% using RASP. These waste loadings correspond to volume reductions of 86 and 94 volume %, respectively, with large associated savings in storage costs.

  20. Single Crystal Fibers of Yttria-Stabilized Cubic Zirconia with Ternary Oxide Additions

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Yun, H. M.; Miner, R. V.

    1997-01-01

    Single crystal fibers of yttria (Y2O3)-stabilized cubic zirconia, (ZrO2) with ternary oxide additions were grown using the laser float zone fiber processing technique. Ternary additions to the ZrO2-Y2O3 binary system were studied aimed at increasing strength while maintaining the high coefficient of thermal expansion of the binary system. Statistical methods aided in identifying the most promising ternary oxide candidate (Ta2O5, Sc2O3, and HfO2) and optimum composition. The yttria, range investigated was 14 to 24 mol % and the ternary oxide component ranged from 1 to 5 mol %. Hafnium oxide was the most promising ternary oxide component based on 816 C tensile strength results and ease of fabrication. The optimum composition for development was 81 ZrO2-14 Y203-5 HfO2 based upon the same elevated temperature strength tests. Preliminary results indicate process improvements could improve the fiber performance. We also investigated the effect of crystal orientation on strength.

  1. Bright Solitary Matter Waves: Formation, Stability and Interactions

    NASA Astrophysics Data System (ADS)

    Billam, T. P.; Marchant, A. L.; Cornish, S. L.; Gardiner, S. A.; Parker, N. G.

    In recent years, bright soliton-like structures composed of gaseous Bose-Einstein condensates have been generated at ultracold temperature. The experimental capacity to precisely engineer the nonlinearity and potential landscape experienced by these solitary waves offers an attractive platform for fundamental study of solitonic structures. The presence of three spatial dimensions and trapping implies that these are strictly distinct objects to the true soliton solutions. Working within the zero-temperature mean-field description, we explore the solutions and stability of bright solitary waves, as well as their interactions. Emphasis is placed on elucidating their similarities and differences to the true bright soliton. The rich behaviour introduced in the bright solitary waves includes the collapse instability and asymmetric collisions. We review the experimental formation and observation of bright solitary matter waves to date, and compare to theoretical predictions. Finally we discuss some topical aspects, including beyond-mean-field descriptions, symmetry breaking, exotic bright solitary waves, and proposals to exploit bright solitary waves in interferometry and as surface probes.

  2. Relative stability of the FCC and HCP polymorphs with interacting polymers.

    PubMed

    Mahynski, Nathan A; Kumar, Sanat K; Panagiotopoulos, Athanassios Z

    2015-01-14

    Recent work [Mahynski et al., Nat. Commun., 2014, 5, 4472] has demonstrated that the addition of long linear homopolymers thermodynamically biases crystallizing hard-sphere colloids to produce the hexagonal close-packed (HCP) polymorph over the closely related face-centered cubic (FCC) structure when the polymers and colloids are purely repulsive. In this report, we investigate the effects of thermal interactions on each crystal polymorph to explore the possibility of stabilizing the FCC crystal structure over the HCP. We find that the HCP polymorph remains at least as stable as its FCC counterpart across the entire range of interactions we explored, where interactions were quantified by the reduced second virial coefficient, -1.50 < B < 1.01. This metric conveniently characterizes the crossover from entropically to energetically dominated systems at B ≈ 0. While the HCP relies on its octahedral void arrangement for enhanced stability when B > 0, its tetrahedral voids produce a similar effect when B < 0 (i.e. when energetics dominate). Starting from this, we derive a mean-field expression for the free energy of an infinitely-dilute polymer adsorbed in the crystal phase for nonzero B. Our results reveal that co-solute biasing of a single polymorph can still be observed in experimentally realizable scenarios when the colloids and polymers have attractive interactions, and provide a possible explanation for the experimental finding that pure FCC crystals are elusive in these binary mixtures.

  3. effect of hydrogen addition and burner diameter on the stability and structure of lean, premixed flames

    NASA Astrophysics Data System (ADS)

    Kaufman, Kelsey Leigh

    Low swirl burners (LSBs) have gained popularity in heating and gas power generation industries, in part due to their proven capacity for reducing the production of NOx, which in addition to reacting to form smog and acid rain, plays a central role in the formation of the tropospheric ozone layer. With lean operating conditions, LSBs are susceptible to combustion instability, which can result in flame extinction or equipment failure. Extensive work has been performed to understand the nature of LSB combustion, but scaling trends between laboratory- and industrial-sized burners have not been established. Using hydrogen addition as the primary method of flame stabilization, the current work presents results for a 2.54 cm LSB to investigate potential effects of burner outlet diameter on the nature of flame stability, with focus on flashback and lean blowout conditions. In the lean regime, the onset of instability and flame extinction have been shown to occur at similar equivalence ratios for both the 2.54 cm and a 3.81 cm LSB and depend on the resolution of equivalence ratios incremented. Investigations into flame structures are also performed. Discussion begins with a derivation for properties in a multicomponent gas mixture used to determine the Reynolds number (Re) to develop a condition for turbulent intensity similarity in differently-sized LSBs. Based on this requirement, operating conditions are chosen such that the global Reynolds number for the 2.54 cm LSB is within 2% of the Re for the 3.81 cm burner. With similarity obtained, flame structure investigations focus on flame front curvature and flame surface density (FSD). As flame structure results of the current 2.54 cm LSB work are compared to results for the 3.81 cm LSB, no apparent relationship is shown to exist between burner diameter and the distribution of flame surface density. However, burner diameter is shown to have a definite effect on the flame front curvature. In corresponding flow conditions, a

  4. An additional role for the Brønsted acid-base catalysts of mandelate racemase in transition state stabilization.

    PubMed

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R → S reaction direction. In the S → R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ΔCp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ∼2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-π/NH-π interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-π/NH-π interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R

  5. An additional role for the Brønsted acid-base catalysts of mandelate racemase in transition state stabilization.

    PubMed

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R → S reaction direction. In the S → R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ΔCp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ∼2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-π/NH-π interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-π/NH-π interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R

  6. Different stabilities of liposomes containing saturated and unsaturated lipids toward the addition of cyclodextrins.

    PubMed

    Ikeda, Atsushi; Funada, Rikushi; Sugikawa, Kouta

    2016-06-14

    Liposomes composed of unsaturated lipids were more stable than those containing saturated lipids toward DMe-β-CDx, DMe-α-CDx and DMe-β-CDx. The Hill coefficient values (n) indicated that the saturated lipid·DMe-CDx complexes had stoichiometric ratios in the range of 1 : 3-1 : 4, while the unsaturated lipid·DMe-CDx complexes had ratios in the range of 1 : 1.5-1 : 3. That is, a cis alkene group in the unsaturated lipids prevented complexation with a second DMe-CDx in the direction toward each acyl chain. Furthermore, the liposomes composed of the unsaturated lipids were much slower to form precipitates upon the addition of α-CDx than those of the saturated lipids. To the best of our knowledge, this is the first example showing that CDxs interact with unsaturated lipids. PMID:27181919

  7. Glassy slags for minimum additive waste stabilization. Interim progress report, May 1993--February 1994

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W.

    1994-05-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE`s environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings.

  8. Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant.

    PubMed

    Liu, Y; Dusevich, V; Wang, Y

    2014-08-01

    Previous studies found that grape seed extract (GSE), which is rich in proanthocyanidins, could protect demineralized dentin collagen from collagenolytic activities following clinically relevant treatment. Because of proanthocyanidin's adverse interference to resin polymerization, it was believed that GSE should be applied and then rinsed off in a separate step, which in effect increases the complexity of the bonding procedure. The present study aimed to investigate the feasibility of combining GSE treatment with phosphoric acid etching to address the issue. It is also the first attempt to formulate collagen-cross-linking dental etchants. Based on Fourier-transformed infrared spectroscopy and digestion assay, it was established that in the presence of 20% to 5% phosphoric acid, 30 sec of GSE treatment rendered demineralized dentin collagen inert to bacterial collagenase digestion. Based on this positive result, the simultaneous dentin etching and collagen protecting of GSE-containing phosphoric acid was evaluated on the premise of a 30-second etching time. According to micro-Raman spectroscopy, the formulation containing 20% phosphoric acid was found to lead to overetching. Based on scanning and transmission electronic microscopy, this same formulation exhibited unsynchronized phosphoric acid and GSE penetration. Therefore, addition of GSE did render phosphoric acid a collagen-stabilizing etchant, but the preferable phosphoric acid concentration should be <20%. PMID:24935065

  9. [Solidification/Stabilization (S/S) of sludge using calcium-bentonite as additive].

    PubMed

    Zhu, Wei; Lin, Cheng; Li, Lei; Ohki, T

    2007-05-01

    Cement-based S/S of sludge confronted the problems of consuming the large amount of cement and high pH leaching from solidified sludge. This research utilized calcium-bentonite as additive to assist cement-based S/S of sludge. Unconfined compressive strength (UCS) test and leach test were conducted to assess its effect by measuring UCS of the solidified sludge, leaching ratio of heavy metal, COD and pH of leachate from the solidified sludge. The results show that compressive strength of the solidified sludge increases remarkably after adding calcium-bentonite, and when half of cement content of 0.4 (to sludge by weight) is replaced by bentonite, strength of the solidified sludge increases nearly 6 times. Furthermore, volume of the solidified sludge after adding bentonite changes small. With calcium-bentonite adding, leaching Zn, Pb and pH from the solidified sludge appears in a declining trend, zinc and lead leaching ratios decrease from 6.9% to 0.25%, 9.6% to 5% respectively and pH decreases from 12.3 to 12.1. Copper would be leached out as organics dissolve at high pH or natural drying conditions, which increases leaching ratio of copper from sludge. However, bentonite can reduce these bad influences and improve stability of copper stable in the solidified sludge. PMID:17633173

  10. Hearing (rivaling) lips and seeing voices: how audiovisual interactions modulate perceptual stabilization in binocular rivalry

    PubMed Central

    Vidal, Manuel; Barrès, Victor

    2014-01-01

    In binocular rivalry (BR), sensory input remains the same yet subjective experience fluctuates irremediably between two mutually exclusive representations. We investigated the perceptual stabilization effect of an additional sound on the BR dynamics using speech stimuli known to involve robust audiovisual (AV) interactions at several cortical levels. Subjects sensitive to the McGurk effect were presented looping videos of rivaling faces uttering /aba/ and /aga/, respectively, while synchronously hearing the voice /aba/. They reported continuously the dominant percept, either observing passively or trying actively to promote one of the faces. The few studies that investigated the influence of information from an external modality on perceptual competition reported results that seem at first sight inconsistent. Since these differences could stem from how well the modalities matched, we addressed this by comparing two levels of AV congruence: real (/aba/ viseme) vs. illusory (/aga/ viseme producing the /ada/ McGurk fusion). First, adding the voice /aba/ stabilized both real and illusory congruent lips percept. Second, real congruence of the added voice improved volitional control whereas illusory congruence did not, suggesting a graded contribution to the top-down sensitivity control of selective attention. In conclusion, a congruent sound enhanced considerably attentional control over the perceptual outcome selection; however, differences between passive stabilization and active control according to AV congruency suggest these are governed by two distinct mechanisms. Based on existing theoretical models of BR, selective attention and AV interaction in speech perception, we provide a general interpretation of our findings. PMID:25237302

  11. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    PubMed

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.

  12. Modulation of Additive and Interactive Effects in Lexical Decision by Trial History

    ERIC Educational Resources Information Center

    Masson, Michael E. J.; Kliegl, Reinhold

    2013-01-01

    Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model…

  13. Parental Anxiety and Child Symptomatology: An Examination of Additive and Interactive Effects of Parent Psychopathology

    ERIC Educational Resources Information Center

    Burstein, Marcy; Ginsburg, Golda S.; Tein, Jenn-Yun

    2010-01-01

    The current study examined relations between parent anxiety and child anxiety, depression, and externalizing symptoms. In addition, the study tested the additive and interactive effects of parent anxiety with parent depression and externalizing symptoms in relation to child symptoms. Forty-eight parents with anxiety disorders and 49 parents…

  14. Minimum Additive Waste Stabilization (MAWS), Phase I: Soil washing final report

    SciTech Connect

    1995-08-01

    As a result of the U.S. Department of Energy`s environmental restoration and technology development activities, GTS Duratek, Inc., and its subcontractors have demonstrated an integrated thermal waste treatment system at Fernald, OH, as part the Minimum Additive Waste Stabilization (MAWS) Program. Specifically, MAWS integrates soil washing, vitrification of mixed waste streams, and ion exchange to recycle and remediate process water to achieve, through a synergistic effect, a reduction in waste volume, increased waste loading, and production of a durable, leach-resistant, stable waste form suitable for disposal. This report summarizes the results of the demonstration/testing of the soil washing component of the MAWS system installed at Fernald (Plant 9). The soil washing system was designed to (1) process contaminated soil at a rate of 0.25 cubic yards per hour; (2) reduce overall waste volume and provide consistent-quality silica sand and contaminant concentrates as raw material for vitrification; and (3) release clean soil with uranium levels below 35 pCi/g. Volume reductions expected ranged from 50-80 percent; the actual volume reduction achieved during the demonstration reached 66.5 percent. The activity level of clean soil was reduced to as low as 6 pCi/g from an initial average soil activity level of 17.6 pCi/g (the highest initial level of soil provided for testing was 41 pCi/g). Although the throughput of the soil washing system was inconsistent throughout the testing period, the system was online for sufficient periods to conclude that a rate equivalent to 0.25 cubic yards per hour was achieved.

  15. Effects of Al/sub 2/O/sub 3/ additions on resistivity and microstructure of yttria-stabilized zirconia

    SciTech Connect

    Miyayama, M.; Yanagida, A.; Asada, A.

    1986-04-01

    Stabilized zirconia is a well-known oxygen ionic conductor which acts over a wide range of oxygen partial pressure. Hence the material has been developed for use in a variety of electrical applications such as oxygen sensors, oxygen pumps, and fuel cells. Since zirconia has a high melting point (approx. =2680/sup 0/C), temperatures in excess of 1600/sup 0/C are generally required for traditional fabrication techniques. Sintering agents and/or fine zirconia powders are required for producing dense, impermeable and mechanically strong stabilized zirconia ceramics. However, in most cases, sintering agents have a negative effect on the conduction behavior of stabilized zirconia. Small additions of SiO/sub 2/ are particularly effective for the densification of CaO-stabilized ZrO/sub 2/ (CSZ), but they cause a large increase in resistivity of Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ (YSZ) at low temperatures. Additions of TiO/sub 2/ to CSZ, and of Fe/sub 2/O/sub 3/ and Bi/sub 2/O/sub 3/ to YSZ, are also reported to aid densification and cause moderate increases in resistivity. The effect of Al/sub 2/O/sub 3/ additions on the resistivity of stabilized zirconia is rather complicated.

  16. Role of Dispersion Interactions in the Polymorphism and Entropic Stabilization of the Aspirin Crystal

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony M.; Tkatchenko, Alexandre

    2014-08-01

    Aspirin has been used and studied for over a century but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  17. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiangsheng; Huang, Haoyuan; Liu, Gongyan; Zhou, Wenbo; Chen, Yangjun; Jin, Qiao; Ji, Jian

    2013-04-01

    Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt

  18. Stabilization of FGD gypsum for its disposal in landfills using amorphous aluminium oxide as a fluoride retention additive.

    PubMed

    Alvarez-Ayuso, E; Querol, X

    2007-09-01

    The applicability of amorphous aluminium oxide as a fluoride retention additive to flue gas desulphurisation (FGD) gypsum was studied as a way of stabilizing this by-product for its disposal in landfills. Using a batch method the sorption behaviour of amorphous aluminium oxide was evaluated at the pH (about 6.5) and background electrolyte conditions (high chloride and sulphate concentrations) found in FGD gypsum leachates. It was found that fluoride sorption on amorphous aluminium oxide was a very fast process with equilibrium attained within the first half an hour of interaction. The sorption process was well described by the Langmuir model, offering a maximum fluoride sorption capacity of 61.7 mg g(-1). Fluoride sorption was unaffected by chloride co-existing ions, while slightly decreased (about 20%) by competing sulphate ions. The use of amorphous aluminium oxide in the stabilization of FGD gypsum proved to greatly decreased its fluoride leachable content (in the range 5-75% for amorphous aluminium oxide doses of 0.1-2%, as determined by the European standard EN 12457-4 [EN-12457-4 Characterization of waste-leaching-compliance test for leaching of granular waste materials and sludges-Part 4: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10mm (without or with size reduction)]), assuring the characterization of this by-product as a waste acceptable at landfills of non-hazardous wastes according to the Council Decision 2003/33/EC [Council Decision 2003/33/EC of 19 December 2002. Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC] on landfill of wastes. Furthermore, as derived from column leaching studies, the proposed stabilization system proved to be highly effective in simulated conditions of disposal, displaying a fluoride leaching reduction value about 81% for an amorphous aluminium oxide added amount of 2%.

  19. Stabilization and Destabilization of Soil Carbon with Nitrogen Additions in Two Tropical Forests

    NASA Astrophysics Data System (ADS)

    Cusack, D. F.; Silver, W.; Torn, M.; McDowell, W. H.

    2008-12-01

    Nitrogen (N) deposition is known to effect carbon (C) cycling in temperate ecosystems, but less is known about the effects of added N in tropical forests, where N is not generally limiting to plant growth. We examined changes in soil C dynamics with N fertilization in two tropical forest types (lower elevation and montane) in the Luquillo Mountains, Puerto Rico. We hypothesized that increased N would accelerate the decomposition of labile C pools, while decreasing losses of more recalcitrant C compounds. We measured C and C:N in bulk soil C and C fractions (free light, occluded light, and heavy fractions) as measures of C content and chemical properties in fertilized and control plots. To address our hypotheses, we conducted several measures of microbial activity, including extracellular enzyme activities and respiration during a long-term soil incubation. We included measurements of 14C of CO2 respired during the soil incubation to determine whether added N changed the age of respired C. After 3.5 years of N fertilization, plots with added N had higher C content (42.3 ± 6.8 and 40.7 ± 4.7 g/cm2, lower elevation and montane respectively) than control plots (34.2 ± 5.9 and 34.3 ± 1.3 g/cm2) at 0 - 10 cm depth. While the labile fraction of C declined with added N as a proportion of total soil weight, the C concentration of the heavy fraction increased in fertilized plots (2.9 ± 0.3 and 4.0 ± 0.7%) relative to control plots (2.6 ± 0.4 and 2.8 ± 0.5 %), helping explain the increase in bulk soil C content. The soil incubation revealed changes in microbial respiration with added N, and a trend toward higher 14C of CO2 in fertilized plots for the lower elevation forest. Together, these results indicate that rates of C stabilization in the heavy fraction exceeded the increase in respiration of older C with N additions.

  20. Interactional processes for stabilizing conceptual coherences in physics

    NASA Astrophysics Data System (ADS)

    Frank, Brian W.; Scherr, Rachel E.

    2012-12-01

    Research in student knowledge and learning of science has typically focused on explaining conceptual change. Recent research, however, documents the great degree to which student thinking is dynamic and context-sensitive, implicitly calling for explanations not only of change but also of stability. In other words, when a pattern of student reasoning is sustained in specific moments and settings, what mechanisms contribute to sustaining it? We characterize student understanding and behavior in terms of multiple local coherences in that they may be variable yet still exhibit local stabilities. We attribute stability in local conceptual coherences to real-time activities that sustain these coherences. For example, particular conceptual understandings may be stabilized by the linguistic features of a worksheet question or by feedback from the students’ spatial arrangement and orientation. We document a group of university students who engage in multiple local conceptual coherences while thinking about motion during a collaborative learning activity. As the students shift their thinking several times, we describe mechanisms that may contribute to local stability of their reasoning and behavior.

  1. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    SciTech Connect

    Bowers, J.S.; Anson, S.M.; Painter, S.M.

    1995-09-01

    Stabilization is a best demonstrated available technology, or BDAT, as defined by the U.S. Environmental Protection Agency (EPA) in Title 40, part 268, of the Code of Federal Regulations (40 CFR 268). This technology traps toxic contaminants (usually both chemically and physically) in a matrix so that they do not. leach into the environment. Typical contaminants that are trapped by stabilization are metals (mostly transition metals) that exhibit the characteristic of toxicity as defined by 40 CFR part 261. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. They are inexpensive, easy to use, and effective for wastes containing low concentrations of toxic materials. At the Lawrence Livermore National Laboratory (LLNL), additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens) when formulating a stabilization matrix, and they have a neutral pH. By using these clays and additives, LLNL`s highly concentrated wastewater treatment sludges have passed the TCLP and STLC tests. The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements.

  2. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  3. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    2001-08-01

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  4. Communication: Non-additivity of van der Waals interactions between nanostructures

    SciTech Connect

    Tao, Jianmin; Perdew, John P.

    2014-10-14

    Due to size-dependent non-additivity, the van der Waals interaction (vdW) between nanostructures remains elusive. Here we first develop a model dynamic multipole polarizability for an inhomogeneous system that allows for a cavity. The model recovers the exact zero- and high-frequency limits and respects the paradigms of condensed matter physics (slowly varying density) and quantum chemistry (one- and two-electron densities). We find that the model can generate accurate vdW coefficients for both spherical and non-spherical clusters, with an overall mean absolute relative error of 4%, without any fitting. Based on this model, we study the non-additivity of vdW interactions. We find that there is strong non-additivity of vdW interactions between nanostructures, arising from electron delocalization, inequivalent contributions of atoms, and non-additive many-body interactions. Furthermore, we find that the non-additivity can have increasing size dependence as well as decreasing size dependence with cluster size.

  5. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  6. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    PubMed Central

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-01-01

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail. PMID:26610529

  7. Stability analysis of an interactive system of wave equation and heat equation with memory

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong

    2014-10-01

    This paper is devoted to the stability analysis of an interaction system comprised of a wave equation and a heat equation with memory, where the hereditary heat conduction is due to Gurtin-Pipkin law or Coleman-Gurtin law. First, we show the strong asymptotic stability of solutions to this system. Then, the exponential stability of the interaction system is obtained when the hereditary heat conduction is of Gurtin-Pipkin type. Further, we show the lack of uniform decay of the interaction system when the heat conduction law is of Coleman-Gurtin type.

  8. Interactional Processes for Stabilizing Conceptual Coherences in Physics

    ERIC Educational Resources Information Center

    Frank, Brian W.; Scherr, Rachel E.

    2012-01-01

    Research in student knowledge and learning of science has typically focused on explaining conceptual change. Recent research, however, documents the great degree to which student thinking is dynamic and context-sensitive, implicitly calling for explanations not only of change but also of stability. In other words, when a pattern of student…

  9. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  10. Appendix to the Brophy-Good Dyadic Interaction Coding Manual. Additional Coding Categories and Procedures.

    ERIC Educational Resources Information Center

    Brophy, Jere E.; Good Thomas L.

    This paper contains optional modifications and additions to the Brophy-Good Dyadic Interaction Coding Manual (ED 042 688). Included are 1) suggestions for changes in the way level-of-question is coded; 2) modifications of the child's answer categories for simplification or expansion; 3) new distinctions for coding the teacher's feedback following…

  11. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases.

    PubMed

    Lenz, Tobias L; Deutsch, Aaron J; Han, Buhm; Hu, Xinli; Okada, Yukinori; Eyre, Stephen; Knapp, Michael; Zhernakova, Alexandra; Huizinga, Tom W J; Abecasis, Gonçalo; Becker, Jessica; Boeckxstaens, Guy E; Chen, Wei-Min; Franke, Andre; Gladman, Dafna D; Gockel, Ines; Gutierrez-Achury, Javier; Martin, Javier; Nair, Rajan P; Nöthen, Markus M; Onengut-Gumuscu, Suna; Rahman, Proton; Rantapää-Dahlqvist, Solbritt; Stuart, Philip E; Tsoi, Lam C; van Heel, David A; Worthington, Jane; Wouters, Mira M; Klareskog, Lars; Elder, James T; Gregersen, Peter K; Schumacher, Johannes; Rich, Stephen S; Wijmenga, Cisca; Sunyaev, Shamil R; de Bakker, Paul I W; Raychaudhuri, Soumya

    2015-09-01

    Human leukocyte antigen (HLA) genes confer substantial risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen-binding repertoires between a heterozygote's two expressed HLA variants might result in additional non-additive risk effects. We tested the non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (ncases = 5,337), type 1 diabetes (T1D; ncases = 5,567), psoriasis vulgaris (ncases = 3,089), idiopathic achalasia (ncases = 727) and celiac disease (ncases = 11,115). In four of the five diseases, we observed highly significant, non-additive dominance effects (rheumatoid arthritis, P = 2.5 × 10(-12); T1D, P = 2.4 × 10(-10); psoriasis, P = 5.9 × 10(-6); celiac disease, P = 1.2 × 10(-87)). In three of these diseases, the non-additive dominance effects were explained by interactions between specific classical HLA alleles (rheumatoid arthritis, P = 1.8 × 10(-3); T1D, P = 8.6 × 10(-27); celiac disease, P = 6.0 × 10(-100)). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (rheumatoid arthritis, 1.4%; T1D, 4.0%; celiac disease, 4.1%) beyond a simple additive model. PMID:26258845

  12. Defect Interactions and Ionic Transport in Scandia Stabilized Zirconia

    SciTech Connect

    Devanathan, Ramaswami; Thevuthasan, Suntharampillai; Gale, Julian D.

    2009-06-24

    Atomistic simulation has been used to study ionic transport in scandia-stabilized zirconia, as well as scandia and yttria-co-doped zirconia, as a function of temperature and composition. The oxygen diffusion coefficient shows a peak at a composition of 6 mole % Sc2O3. Oxygen vacancies prefer to be second nearest neighbours to yttrium ions, but have little preference between first and second neighbour positions with respect to scandium ions. The Sc-O bond length is about 2.17 Å compared to 2.28 Å for the Y-O bond. Oxygen migration between cation tetrahedra is impeded less effectively by Sc-Sc edges than by Y-Y edges. A neutral cluster of two scandium ions with an oxygen vacancy in the common first neighbour position has a binding energy of -0.56 eV. The formation of such clusters may contribute to conductivity degradation of stabilized zirconia at elevated temperature.

  13. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media

    NASA Astrophysics Data System (ADS)

    Subramaniam, D. N.; Egodawatta, P.; Mather, P.; Rajapakse, J. P.

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter.

  14. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media.

    PubMed

    Subramaniam, D N; Egodawatta, P; Mather, P; Rajapakse, J P

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter.

  15. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media.

    PubMed

    Subramaniam, D N; Egodawatta, P; Mather, P; Rajapakse, J P

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter. PMID:25971737

  16. Stabilization of solid-supported phospholipid multilayer against water by gramicidin addition.

    PubMed

    Han, Won Bae; Kim, Yongdeok; An, Hyeun Hwan; Kim, Hee-Soo; Yoon, Chong Seung

    2014-03-20

    It was demonstrated that hydrophobicity of solid supported planar dipalmitoyl phosphatidylcholine (DPPC) phospholipid multilayer can be greatly increased by incorporating a transmembrane protein, gramicidin, into the DPPC membrane. The contact angle of deionized water droplet on the gramicidin-modified DPPC membrane increased from 0° (complete wetting) without gramicidin to 55° after adding 15 mol % gramicidin. The increased hydrophobicity of the gramicidin-modified DPPC membrane allowed the membrane to remain stable at the air/water interface as well as underwater. The Au nanoparticles deposited on the gramicidin-modified DPPC membrane reproduced the characteristic surface plasmon resonance peak after being kept underwater or in phosphate-buffered saline solution for 5 days, attesting to the membrane stability in an aqueous environment. The enhanced underwater stability of the lipid multilayer substantially broadens the potential application of the lipid multilayer which includes biosensing, enzymatic fuel cell, surface enhanced Raman spectroscopy substrate.

  17. Thermal stability of kudzu root (Pueraria Radix) isoflavones as additives to beef patties.

    PubMed

    Kumari, S; Raines, J M; Martin, J M; Rodriguez, J M

    2015-03-01

    Kudzu root, Pueraria radix, extracts are a rich source of isoflavones. This study investigates the thermal stability of Pueraria radix extracts as a natural nutraceutical supplement in beef patties. The extract contained puerarin, diadzin, genistin, ononin, daidzein, glycitein, calycosin, genistein, formononetin and biochanin A; however, puerarin, daidzein and glycitein were the main components. The isoflavones concentrations in the spiked beef patties with kudzu root extracts were unaffected by cooking. PMID:25745227

  18. The effect of an additional phosphite stabilizer on the properties of radiation cross-linked vitamin E blends of UHMWPE.

    PubMed

    Oral, Ebru; Neils, Andrew; Yabannavar, Pooja; Muratoglu, Orhun K

    2014-06-01

    Antioxidant stabilization of radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been introduced to improve the oxidative stability of total joint implant bearing surfaces. Blending of an antioxidant with UHMWPE resin powder followed by consolidation and radiation cross-linking has been cleared by the FDA for use in both total hips and total knees for designs incorporating two antioxidants, namely vitamin E and Covernox™ (a medical grade version of Irganox™ 1010). The antioxidants in the polymer are expected to protect the polymer during consolidation, during radiation cross-linking, on the shelf before implantation, and in vivo after implantation. To maximize the protection of the polymer afforded by the antioxidant in vivo, a novel approach may be the use of multiple antioxidants, especially to protect the primary antioxidant for a longer period of time. We hypothesized that the addition of a phosphite stabilizer (Irgafos 168™) commonly used in conjunction with hindered phenolic antioxidants in polymer processing could improve the oxidative stability of radiation cross-linked blends of vitamin E. To test our hypothesis, we prepared UHMWPE blends with 0.05 wt% Irgafos and 0.05 wt% vitamin E and compared its cross-link density, wear resistance, tensile properties, and impact strength to control blends containing only vitamin E. Our hypothesis was not supported; the cross-link density of UHMWPE was significantly decreased by the additive without additional benefit to oxidative stability. To our knowledge, this was the first attempt at using multiple stabilizers in medical grade UHMWPE.

  19. Interaction of environmental moisture with powdered green tea formulations: effect on catechin chemical stability.

    PubMed

    Ortiz, J; Ferruzzi, M G; Taylor, L S; Mauer, L J

    2008-06-11

    Green tea and tea catechins must be stable in finished products to deliver health benefits; however, they may be adversely affected by tea processing/storage conditions and the presence of other components. The objective of this study was to determine the effects of storage relative humidity (RH) and addition of other ingredients on catechin stability in simulated dry beverage mixtures. Samples of green tea powder alone and mixed with sucrose, citric acid, and/or ascorbic acid were prepared and stored in desiccators at 22 degrees C and 0-85% RH for up to 3 months. Epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate were determined by high-performance liquid chromatography (HPLC). Formulation and the interaction of formulation and RH significantly promoted catechin degradation ( P < 0.0001). The chemical degradation of total and individual catechins in green tea powder formulations was significantly increased ( P < 0.0001) by exposure to increasing RH, and the degradation was exacerbated at > or = 58% RH by the presence of powdered citric acid and at > or = 75% RH by the presence of ascorbic acid. Catechins degraded the most in formulations containing both acids. Although catechin chemical stability was maintained at < or = 43% RH in all samples stored at 22 degrees C for 3 months, caking was observed in samples at these relative humidities. These results are the first to demonstrate that addition of other dry components to tea powders may affect catechin stability in finished dry blends and highlight the importance of considering the complex interplay between a multicomponent system and its environment for developing stable products.

  20. Interaction of environmental moisture with powdered green tea formulations: effect on catechin chemical stability.

    PubMed

    Ortiz, J; Ferruzzi, M G; Taylor, L S; Mauer, L J

    2008-06-11

    Green tea and tea catechins must be stable in finished products to deliver health benefits; however, they may be adversely affected by tea processing/storage conditions and the presence of other components. The objective of this study was to determine the effects of storage relative humidity (RH) and addition of other ingredients on catechin stability in simulated dry beverage mixtures. Samples of green tea powder alone and mixed with sucrose, citric acid, and/or ascorbic acid were prepared and stored in desiccators at 22 degrees C and 0-85% RH for up to 3 months. Epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate were determined by high-performance liquid chromatography (HPLC). Formulation and the interaction of formulation and RH significantly promoted catechin degradation ( P < 0.0001). The chemical degradation of total and individual catechins in green tea powder formulations was significantly increased ( P < 0.0001) by exposure to increasing RH, and the degradation was exacerbated at > or = 58% RH by the presence of powdered citric acid and at > or = 75% RH by the presence of ascorbic acid. Catechins degraded the most in formulations containing both acids. Although catechin chemical stability was maintained at < or = 43% RH in all samples stored at 22 degrees C for 3 months, caking was observed in samples at these relative humidities. These results are the first to demonstrate that addition of other dry components to tea powders may affect catechin stability in finished dry blends and highlight the importance of considering the complex interplay between a multicomponent system and its environment for developing stable products. PMID:18489105

  1. Stabilized helical peptides: a strategy to target protein-protein interactions.

    PubMed

    Klein, Mark A

    2014-08-14

    Protein-protein interactions are critical for cell proliferation, differentiation, and function. Peptides hold great promise for clinical applications focused on targeting protein-protein interactions. Advantages of peptides include a large chemical space and potential diversity of sequences and structures. However, peptides do present well-known challenges for drug development. Progress has been made in the development of stabilizing alpha helices for potential therapeutic applications. Advantages and disadvantages of different methods of helical peptide stabilization are discussed.

  2. IQGAP1 interacts with Aurora-A and enhances its stability and its role in cancer

    SciTech Connect

    Yin, Ning; Shi, Ji; Wang, Dapeng; Tong, Tong; Wang, Mingrong; Fan, Feiyue; Zhan, Qimin

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer IQGAP1 interacts with Aurora-A through its RGCt domain. Black-Right-Pointing-Pointer Overexpression of IQGAP1 prevents ubiquitination of Aurora-A. Black-Right-Pointing-Pointer Overexpression of IQGAP1 enhances the protein stability of Aurora-A. Black-Right-Pointing-Pointer Overexpression of IQGAP1 promotes the kinase activity of Aurora-A. -- Abstract: IQGAP1, a ubiquitously expressed scaffold protein, has been identified in a wide range of organisms. It participates in multiple aspects of cellular events by binding to and regulating numerous interacting proteins. In our present study, we identified a new IQGAP1 binding protein named Aurora-A which is an oncogenic protein and overexpressed in various types of human tumors. In vitro analysis with GST-Aurora-A fusion proteins showed a physical interaction between Aurora-A and IQGAP1. Moreover, the binding also occurred in HeLa cells as endogenous Aurora-A co-immunoprecipitated with IQGAP1 from the cell lysates. Overexpression of IQGAP1 resulted in an elevation of both expression and activity of Aurora-A kinase. Endogenous IQGAP1 knockdown by siRNA promoted Aurora-A degradation whereas IQGAP1 overexpression enhanced the stability of Aurora-A. Additionally, we documented that the IQGAP1-induced cell proliferation was suppressed by knocking down Aurora-A expression. Taken together, our results showed an unidentified relationship between Aurora-A and IQGAP1, and provided a new insight into the molecular mechanism by which IQGAP1 played a regulatory role in cancer.

  3. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases

    PubMed Central

    Lenz, Tobias L.; Deutsch, Aaron J.; Han, Buhm; Hu, Xinli; Okada, Yukinori; Eyre, Stephen; Knapp, Michael; Zhernakova, Alexandra; Huizinga, Tom W.J.; Abecasis, Goncalo; Becker, Jessica; Boeckxstaens, Guy E.; Chen, Wei-Min; Franke, Andre; Gladman, Dafna D.; Gockel, Ines; Gutierrez-Achury, Javier; Martin, Javier; Nair, Rajan P.; Nöthen, Markus M.; Onengut-Gumuscu, Suna; Rahman, Proton; Rantapää-Dahlqvist, Solbritt; Stuart, Philip E.; Tsoi, Lam C.; Van Heel, David A.; Worthington, Jane; Wouters, Mira M.; Klareskog, Lars; Elder, James T.; Gregersen, Peter K.; Schumacher, Johannes; Rich, Stephen S.; Wijmenga, Cisca; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Raychaudhuri, Soumya

    2015-01-01

    Human leukocyte antigen (HLA) genes confer strong risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen binding repertoires between a heterozygote’s two expressed HLA variants may result in additional non-additive risk effects. We tested non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (RA, Ncases=5,337), type 1 diabetes (T1D, Ncases=5,567), psoriasis vulgaris (Ncases=3,089), idiopathic achalasia (Ncases=727), and celiac disease (Ncases=11,115). In four out of five diseases, we observed highly significant non-additive dominance effects (RA: P=2.5×1012; T1D: P=2.4×10−10; psoriasis: P=5.9×10−6; celiac disease: P=1.2×10−87). In three of these diseases, the dominance effects were explained by interactions between specific classical HLA alleles (RA: P=1.8×10−3; T1D: P=8.6×1027; celiac disease: P=6.0×10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (RA: 1.4%, T1D: 4.0%, and celiac disease: 4.1%, beyond a simple additive model). PMID:26258845

  4. Synergistic interactions between commonly used food additives in a developmental neurotoxicity test.

    PubMed

    Lau, Karen; McLean, W Graham; Williams, Dominic P; Howard, C Vyvyan

    2006-03-01

    Exposure to non-nutritional food additives during the critical development window has been implicated in the induction and severity of behavioral disorders such as attention deficit hyperactivity disorder (ADHD). Although the use of single food additives at their regulated concentrations is believed to be relatively safe in terms of neuronal development, their combined effects remain unclear. We therefore examined the neurotoxic effects of four common food additives in combinations of two (Brilliant Blue and L-glutamic acid, Quinoline Yellow and aspartame) to assess potential interactions. Mouse NB2a neuroblastoma cells were induced to differentiate and grow neurites in the presence of additives. After 24 h, cells were fixed and stained and neurite length measured by light microscopy with computerized image analysis. Neurotoxicity was measured as an inhibition of neurite outgrowth. Two independent models were used to analyze combination effects: effect additivity and dose additivity. Significant synergy was observed between combinations of Brilliant Blue with L-glutamic acid, and Quinoline Yellow with aspartame, in both models. Involvement of N-methyl-D-aspartate (NMDA) receptors in food additive-induced neurite inhibition was assessed with a NMDA antagonist, CNS-1102. L-glutamic acid- and aspartame-induced neurotoxicity was reduced in the presence of CNS-1102; however, the antagonist did not prevent food color-induced neurotoxicity. Theoretical exposure to additives was calculated based on analysis of content in foodstuff, and estimated percentage absorption from the gut. Inhibition of neurite outgrowth was found at concentrations of additives theoretically achievable in plasma by ingestion of a typical snack and drink. In addition, Trypan Blue dye exclusion was used to evaluate the cellular toxicity of food additives on cell viability of NB2a cells; both combinations had a straightforward additive effect on cytotoxicity. These data have implications for the

  5. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    SciTech Connect

    Bowers, J.S.; Anson, J.R.; Painter, S.M.

    1995-12-31

    Stabilization is a best demonstrated available technology, or BDAT. This technology traps toxic contaminants in a matrix so that they do not leach into the environment. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP the federal leach test) or the Soluble Threshold Leachate Concentration (STLC the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California`s and EPA`s, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. The concentration in the leachate is approximately ten times higher for the STLC procedure than the TCLP. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory (LLNL), additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens) when formulating a stabilization matrix, and they have a neutral pH. By using these clays and additives, LLNL`s highly concentrated wastewater treatment sludges have passed the TCLP and STLC tests. The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements.

  6. Effect and interactions of commercial additives and chloride ion in copper electrowinning

    NASA Astrophysics Data System (ADS)

    Cui, Wenyuan

    This thesis is to understand and compare the effects and interactions of modified polysaccharide (HydroStar), polyacrylamide (Cyquest N-900) and chloride ion on copper electrowinning. A study of the nucleation and growth was conducted in a synthetic electrolyte (40 g/L Cu, 160 g/L H2SO 4, 20 mg/L Cl-) with the addition of HydroStar or Cyquest N-900 using potential step measurements. The current responses generated were compared to theoretical models of nucleation and growth mechanisms. The nucleation and growth mechanism changed as function of potential and the presence of organic additives. The nucleation and growth mechanisms were confirmed using scanning electron microscopy (SEM). At low overpotentials, electrodeposition from the electrolyte without additives proceeded by progressive nucleation with three-dimensional (3-D) growth. The addition of HydroStar produced smaller nuclei and changed the mechanism to progressive nucleation and 2-D growth. Cyquest N-900 used there appeared to be progressive nucleation with 2-D growth and polarize the cathodes. In addition, instantaneous nucleation under diffusion control occurred at high overpotentials. Chloride ion and its interaction with HydroStar and Cyquest N-900 were further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The trends observed from Nyquist plots and equivalent circuit models were consistent with the CV results. Chloride, on its own, depolarized copper electrodeposition, while chloride ion associated with Cyquest N-900 inhibited the reaction. It is proposed that Cl- acted as a bridging ligand between copper and Cyquest N-900. The addition of HydroStar depolarized copper deposition, but it did not interact with.

  7. Leach testing of in situ stabilization grouts containing additives to sequester contaminants

    SciTech Connect

    Serne, R.J.; Ames, L.L.; Martin, P.F.C.; LeGore, V.L.; Lindenmeier, C.W. ); Phillips, S.J. )

    1993-04-01

    This document discusses laboratory testing performed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) of special grout formulations that incorporate specific sequestering agents to help improve the ability of the cement to resist contaminant leaching. To enhance the sequestering of contaminants we chose five additives to introduce (singly) to the control cement. The additives were Florida pebble phosphate, clinoptilolite (a natural zeolite), ferrous sulfide (a reductant), a mixed bed organic ion exchange resin and a proprietary anion-adsorbing mixed metal oxide. These additives were added one per test to the standard formulation and used to encapsulate a diluted high-salt alkaline liquid waste that is produced after various processes to remove uranium and plutonium from spent nuclear fuel. This report documents the testing of these additives.

  8. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn.

    PubMed

    Da Silva, T C; Smith, M L; Barnard, A M; Kung, L

    2015-12-01

    The objective of this experiment was to evaluate the effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn (HMC). Ground HMC (~63% dry matter) was untreated, or treated with an additive containing sodium benzoate, potassium sorbate, and sodium nitrite as active ingredients, at 0, 2, 3, or 4 L/t of fresh matter. Laboratory silos (7.5 L) were prepared and ensiled for 21 and 90d (4 silos/treatment per d of ensiling). Small bag silos were prepared for untreated HMC and HMC treated with 4 L/t of the additive and analyzed for nitrate-N and nitrite-N after 0, 3, and 7d of ensiling. The concentration of nitrate-N was similar between these 2 treatments and was below levels considered problematic for ruminants. Nitrite-N was greater in HMC treated with the high level of additive but was also very low for both treatments. Numbers of yeasts were similar among treatments in fresh HMC and decreased substantially after ensiling. Numbers of yeasts were similar among treatments after 21d of ensiling but after 90d they were lower in treated versus untreated HMC. Concentrations of organic acids (lactic, acetic, and propionic) and pH were not different among treatments at any time of ensiling. In contrast, treatment with the additive markedly decreased the concentration of ethanol in HMC after 21 and 90d when compared with untreated HMC. Treatment with all levels of the additive markedly improved the aerobic stability and improved the recovery of dry matter compared with untreated HMC. Overall, our findings suggest that the chemical additive used in this study has the potential to improve the fermentation and aerobic stability of HMC after a relatively short period (21d) and after a moderate length (90d) of ensiling. PMID:26454298

  9. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery. PMID:26981849

  10. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.

  11. Stability and magnetic interactions between magnetite nanoparticles dispersed in zeolite as studied using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Herojit singh, L.; Govindaraj, R.; Mythili, R.; Amarendra, G.

    2016-11-01

    Stability of superparamagnetic magnetite nanoparticles as formed in Zeolite has been addressed in a detailed manner based on isochronal annealing studies using Mössbauer spectroscopy. A strong binding of these nanoparticles in Zeolite has been deduced as the coarsening of the nanoparticles is observed following annealing treatments beyond 825 K. In addition, the magnetic interactions between these superparamagnetic magnetite nanoparticles in the as dispersed condition in Zeolite have been elucidated by means of low temperature Mössbauer studies. A strong dependence of the dipole-dipole interactions between superparamagnetic particles of cubic iron oxides is deduced based on this study.

  12. Predicted weakening of the spin-orbit interaction with the addition of neutrons

    SciTech Connect

    Hemalatha, M.; Gambhir, Y. K.; Haider, W.; Kailas, S.

    2009-05-15

    The fully microscopic p-nucleus optical potential has been calculated in the framework of the first order Brueckner theory employing Urbana V14, soft-core internucleon interaction along with the relativistic mean field densities both for protons and neutrons. It is observed that the volume integral per nucleon, of the real part of the spin-orbit interaction calculated for Zr (A=76-110) and Sn (A=96-136) isotopes, decreases with the increase in neutron number. The present optical model calculation satisfactorily reproduces the experimental (where available) cross sections and analyzing power. Further the magnitude of the first maximum (minimum) in the calculated analyzing power decreases (increases) with the addition of neutrons both for Zr and Sn isotopes reflecting the weakening of the spin-orbit interaction.

  13. Vortex induction via anisotropy stabilized light-matter interaction.

    PubMed

    Barboza, R; Bortolozzo, U; Assanto, G; Vidal-Henriquez, E; Clerc, M G; Residori, S

    2012-10-01

    By sending circularly polarized light beams onto a homeotropic nematic liquid crystal cell with a photosensitive wall, we are able to locally induce spontaneous matter vortices that remain, each, stable and trapped at the chosen location. We discuss the dual light-matter nature of the created vortices and demonstrate the ability of the system to create optical vortices with opposite topological charges that, consistent with angular momentum conservation, both derive from the same defect created in the liquid crystal texture. Theoretically, we identify a self-stabilizing mechanism for the matter vortex, which is provided by the concurrency of light-induced gradients and anisotropy of the elastic constants that characterize the deformation of the liquid crystal medium.

  14. Stability of ZnO quantum dots tuned by controlled addition of ethylene glycol during their growth

    NASA Astrophysics Data System (ADS)

    Zimmermann, Lizandra M.; Baldissera, Paulo V.; Bechtold, Ivan H.

    2016-07-01

    ZnO quantum dots were prepared via a sol–gel route from zinc acetate and sodium hydroxide. The influence of ethylene glycol addition during the first stages of reaction (1–5 min) as a stabilizer, as well as the influence of its concentration in 2-propanol were investigated. The optimization led to particles with enough stability and homogeneity around 3.7 nm of diameter to allow for quantum confinement effect. Spectroscopic UV–vis absorption measurements allowed to explore the underlying mechanism of nucleation and growth and to have the control of it. The emission of the ZnO nanoparticles was explored under experimental perturbations with addition of small amounts of water to investigate the interplay between surface defects and the excitonic effect. The results suggest that the water interferes directly on the defects first and later on the excitonic recombination. Their morphology was determined with transmission electron microscopy.

  15. Stability of ZnO quantum dots tuned by controlled addition of ethylene glycol during their growth

    NASA Astrophysics Data System (ADS)

    Zimmermann, Lizandra M.; Baldissera, Paulo V.; Bechtold, Ivan H.

    2016-07-01

    ZnO quantum dots were prepared via a sol-gel route from zinc acetate and sodium hydroxide. The influence of ethylene glycol addition during the first stages of reaction (1-5 min) as a stabilizer, as well as the influence of its concentration in 2-propanol were investigated. The optimization led to particles with enough stability and homogeneity around 3.7 nm of diameter to allow for quantum confinement effect. Spectroscopic UV-vis absorption measurements allowed to explore the underlying mechanism of nucleation and growth and to have the control of it. The emission of the ZnO nanoparticles was explored under experimental perturbations with addition of small amounts of water to investigate the interplay between surface defects and the excitonic effect. The results suggest that the water interferes directly on the defects first and later on the excitonic recombination. Their morphology was determined with transmission electron microscopy.

  16. Flame retardancy and thermal stability of polyurethane foam composites containing carbon additives

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Lee, Geesoo; Han, San Wook; Kim, Hyunchul; Lee, Ki-Dong; Han, Joo-Kwon

    2016-03-01

    Polyurethane (PU) is an important class of polymers that have wide application in a number of different industrial sectors. The goal of this work was the synthesis of flame-retarded PU foam with expandable graphite (EG) or commercial graphene. The flame retardancy and thermal stability of the foams has been studied through cone calorimeter analysis, the limited oxygen index and thermal conductivity. The presence of expandable graphite brings an improvement in fire behavior. In particular, the limited oxygen index increases in a linear way and the highest limited oxygen index values are obtained for EG-PU foams. The results from the cone calorimeter are in agreement with those of oxygen index; EG filled foams show a considerable decrease of maximum-heat release rate (M-HRR) with respect to unfilled foams. The results of thermal conductivity show that an increase in expandable graphite amount in PU foams lead to an increased conductivity.

  17. Solid breeder/structure mechanical interaction and thermal stability

    SciTech Connect

    Liu, Y.Y.; Billone, M.C.; Taghavi, K.

    1985-04-01

    Solid breeder/structure mechanical interaction (BSMI) during fusion reactor blanket operation is a potential failure mode which could limit the lifetime of the blanket. The severity of BSMI will generally depend on the materials, specific blanket designs, and blanket operating conditions. Thermomechanical analyses performed for a helium-cooled blanket employing Li/sub 2/O/HT-9 plates indicate that BSMI could be a serious concern for this blanket.

  18. Comments on 'Improved delay-dependent stability criteria for continuous systems with two additive time-varying delay components'

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, K.; Venkatachalam, V.; Ray, G.

    2015-07-01

    In this write-up, comments on the omission of few important inequality conditions (or constraints) in the LMI optimization problem stated as delay-dependent stability criterion for a class of linear systems with two additive time-varying state-delays in Cheng et al. (2014) is reported. The omission paves way to incorrectness of the published result. The consequence of the omission, and the revised result are presented in the sequel.

  19. Silver(I)-Catalyzed Addition of Phenols to Alkyne Cobalt Cluster Stabilized Carbocations.

    PubMed

    Valderas, Carolina; Casarrubios, Luis; Lledos, Agusti; Ortuño, Manuel A; de la Torre, María C; Sierra, Miguel A

    2016-06-20

    A smooth catalytic method to use phenols as the nucleophilic partner in the Nicholas reaction has been developed. The method uses either Ag(I) or Au(I) catalysts with AgClO4 or AgBF4 as the most efficient catalysts tested. Neither additional additives nor cocatalysts were required and the formation of the corresponding phenol adducts occurred in excellent yields. The process has the single limitation of the inability of less nucleophilic phenols (4-nitrophenol) to generate the corresponding adducts. Additionally, the reaction is highly diastereoselective. DFT calculations allow a catalytic cycle to be proposed that involves trimetallic intermediates; the rate-determining step of the reaction is hydroxy-group elimination in a cobalt-silver trimetallic intermediate. PMID:27187529

  20. Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function.

    PubMed

    George, S J; Sherbone, J; Hinz, C; Tibbett, M

    2011-10-01

    Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.

  1. Silver(I)-Catalyzed Addition of Phenols to Alkyne Cobalt Cluster Stabilized Carbocations.

    PubMed

    Valderas, Carolina; Casarrubios, Luis; Lledos, Agusti; Ortuño, Manuel A; de la Torre, María C; Sierra, Miguel A

    2016-06-20

    A smooth catalytic method to use phenols as the nucleophilic partner in the Nicholas reaction has been developed. The method uses either Ag(I) or Au(I) catalysts with AgClO4 or AgBF4 as the most efficient catalysts tested. Neither additional additives nor cocatalysts were required and the formation of the corresponding phenol adducts occurred in excellent yields. The process has the single limitation of the inability of less nucleophilic phenols (4-nitrophenol) to generate the corresponding adducts. Additionally, the reaction is highly diastereoselective. DFT calculations allow a catalytic cycle to be proposed that involves trimetallic intermediates; the rate-determining step of the reaction is hydroxy-group elimination in a cobalt-silver trimetallic intermediate.

  2. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers.

    PubMed

    Burt, Sara A; Vlielander, René; Haagsman, Henk P; Veldhuizen, Edwin J A

    2005-05-01

    The major components of oregano and thyme essential oils that had previously been shown to inhibit Escherichia coli O157:H7 were determined by high-performance liquid chromatography with UV detection and liquid chromatographic tandem mass spectrometry. The MICs and MBCs of carvacrol, thymol, p-cymene, and gamma-terpinene against a strain of E. coli O157: H7 phage type 34 isolated from bovine feces were determined by microdilution assay. The constituents were then tested in checkerboard assays to detect possible interactions. Carvacrol and thymol displayed bacteriostatic and bactericidal properties with MICs of 1.2 mmol/liter and were additive in combination. p-Cymene and gamma-terpinene displayed no measurable antibacterial activity up to 50 mmol/liter, and neither influenced the activity of carvacrol or thymol. Growth curves in the presence of nonlethal concentrations of carvacrol with the addition of agar (0.05%, wt/vol) or carrageenan (0.125%, wt/vol) as stabilizer were produced by optical density measurement. The stabilizers agar and carrageenan both significantly improved the effectiveness of carvacrol in broth, possibly because of a delay in the separation of the hydrophobic substrate from the aqueous phase of the medium. When carvacrol was dissolved in ethanol before addition to broth, stabilizers were not needed. Carvacrol and thymol, particularly when used in combination with a stabilizer or in an ethanol solution, may be effective in reducing the number or preventing growth of E. coli O157:H7 in liquid foods. PMID:15895722

  3. Phase stability of cubic pyrochlore rare earth tantalate pinning additives in YBa2Cu3O7- superconductor

    SciTech Connect

    Wee, Sung Hun; Cantoni, Claudia; Zuev, Yuri L; Specht, Eliot D; Goyal, Amit

    2012-01-01

    Phase stability of cubic-pyrochlore-structured RE3TaO7 (RTO, where RE = rare earth elements) pinning additives in YBa2Cu3O7- (YBCO) superconductor and the pinning properties influenced by RTO addition into YBCO films were investigated. RTO completely reacts with YBCO and is converted to cubic-double-perovskite-structured Ba2RETaO6 (BRETO), a more thermodynamically stable tantalate phase within YBCO. In RTO-doped YBCO films, BRETO self-assembled nanocolumnns align along the c-axis of the film and play a major role in the improvement of flux pinning and Jc performance over wide magnetic field and angular ranges.

  4. Stability of Numerical Interface Conditions for Fluid/Structure Interaction

    SciTech Connect

    Banks, J W; Sjogreen, B

    2009-08-13

    In multi physics computations, where a compressible fluid is coupled with a linearly elastic solid, it is standard to enforce continuity of the normal velocities and of the normal stresses at the interface between the fluid and the solid. In a numerical scheme, there are many ways that the velocity- and stress-continuity can be enforced in the discrete approximation. This paper performs a normal mode analysis to investigate the stability of different numerical interface conditions for a model problem approximated by upwind type of finite difference schemes. The analysis shows that depending on the ratio of densities between the solid and the fluid, some numerical interface conditions are stable up to the maximal CFL-limit, while other numerical interface conditions suffer from a severe reduction of the stable CFL-limit. The paper also presents a new interface condition, obtained as a simplified charcteristic boundary condition, that is proved to not suffer from any reduction of the stable CFL-limit. Numerical experiments in one space dimension show that the new interface condition is stable also for computations with the non-linear Euler equations of compressible fluid flow coupled with a linearly elastic solid.

  5. Quaternary climate - Terrestrial Biosphere Interaction: amplifying or stabilizing?

    NASA Astrophysics Data System (ADS)

    Claussen, Martin

    2016-04-01

    According to the Gaia hypothesis, interaction between climate and biological processes tend to homeostatically maintain, on a global scale, conditions favourable for life. Does the idea of homeostatic interaction between terrestrial biosphere and climate hold for the Quaternary glacial - interglacial changes? Interpretation of palaeoclimate and palaeobotanic evidence by using climate and Earth system models yields an interesting picture. The synergy between the sea-ice albedo - climate feedback and the taiga-tundra - climate feedback is suggested to amplify the orbitally forced climatic precession. This effect seems to be strong at regional scale, but small at global scale. Various simulations indicate that biogeophysical processes amplify the difference of some 4 to 6 K in global mean temperature between glacial and interglacial climate by some 10 percent. The combined effect of biogeophysical and biogeochemical processes, i.e. processes with involve carbon stored in biomass and soil, is less clear. Theoretical studies suggest that in pre-industrial, interglacial climate, a reduction in boreal and extratropical forests tend to cool the climate and a reduction in tropical forest, to warm the climate. Recent estimates in changes in organic carbon stored under ice sheets and in permafrost point at the possibility that the sum of all terrestrial biogeochemical processes might almost "carbon neutral" to the climate system. If corroborated, this observation would favour the assumption of a dominance of biogeophysical processes amplifying orbitally forced Quaternary climate variations.

  6. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    PubMed

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour. PMID:25113518

  7. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    PubMed

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour.

  8. Catalase addition to vitrification solutions maintains goat ovarian preantral follicles stability.

    PubMed

    Carvalho, A A; Faustino, L R; Silva, C M G; Castro, S V; Lobo, C H; Santos, F W; Santos, R R; Campello, C C; Bordignon, V; Figueiredo, J R; Rodrigues, A P R

    2014-08-01

    The aim of this study was to verify whether the addition of catalase (20 IU/mL) at different steps of goat ovarian tissue vitrification affects ROS levels, follicular morphology and viability, stromal cell density, apoptosis and the expression of proteins related to DNA-damage signaling (γH2AX) and repair (53BP1). Goat ovarian tissues were analyzed fresh (control) or after vitrification: without catalase (VS-/WS-), with catalase in vitrification solutions (VS+/WS-), with catalase in washing solutions (VS-/WS+) or with catalase in both solutions (VS+/WS+). The vitrification without catalase had higher ROS levels than the control. The catalase, regardless the step of addition, maintained ROS levels similar to the control. There were no difference between treatments regarding follicular viability, stromal cell density and detection of γH2AX and 53BP1. There was no difference in follicular morphology and DNA fragmentation between groups vitrified. In conclusion, catalase addition to vitrification solutions prevents ROS formation in cryopreserved goat ovarian tissues.

  9. The effects of zinc addition on the environmental stability of Al-Li alloys

    NASA Technical Reports Server (NTRS)

    Kilmer, Raymond J.; Stoner, Glenn E.

    1990-01-01

    It was found that relatively small addition of Zn can improve the stress corrosion cracking (SCC) resistance of Al-Li alloys. However, the mechanism by which this is accomplished is unclear. The role that Zn plays in altering the behavior of Alloy 8090 is investigated. Early results suggest that Zn additions increase the volume fraction of delta(Al3Li) precipitation and differential scanning calorimetry (DSC) on these alloys confirms this. The four alloys studied each had initial compositions lying in the 8090 window and had varying amounts of Zn added to them. Alloy 8090, like other Al-Li alloys, displays a delta' precipitate free zone (PFZ) upon artificial aging along the grain and subgrain boundaries. However Zn additions greatly decreased or eliminated a delta' PFZ after 100 hours at 160 C. This implies that the subgrain boundary precipitation kinetics are being altered and suppressed. Furthermore, there appears to be a window of Zn concentration above which a delta ' PFZ can reappear with the nucleation and growth of a currently unidentified precipitate on the boundaries. Polarization experiments were performed and the results presented. The experiments were performed in deaerated 3.5 w/o NaCl in both as received (T3) condition and at peak aging of 100 hours at 160 C. The aging profile was determined via Vickers Hardness tests.

  10. Catalase addition to vitrification solutions maintains goat ovarian preantral follicles stability.

    PubMed

    Carvalho, A A; Faustino, L R; Silva, C M G; Castro, S V; Lobo, C H; Santos, F W; Santos, R R; Campello, C C; Bordignon, V; Figueiredo, J R; Rodrigues, A P R

    2014-08-01

    The aim of this study was to verify whether the addition of catalase (20 IU/mL) at different steps of goat ovarian tissue vitrification affects ROS levels, follicular morphology and viability, stromal cell density, apoptosis and the expression of proteins related to DNA-damage signaling (γH2AX) and repair (53BP1). Goat ovarian tissues were analyzed fresh (control) or after vitrification: without catalase (VS-/WS-), with catalase in vitrification solutions (VS+/WS-), with catalase in washing solutions (VS-/WS+) or with catalase in both solutions (VS+/WS+). The vitrification without catalase had higher ROS levels than the control. The catalase, regardless the step of addition, maintained ROS levels similar to the control. There were no difference between treatments regarding follicular viability, stromal cell density and detection of γH2AX and 53BP1. There was no difference in follicular morphology and DNA fragmentation between groups vitrified. In conclusion, catalase addition to vitrification solutions prevents ROS formation in cryopreserved goat ovarian tissues. PMID:24972862

  11. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability

    PubMed Central

    Zhang, Ling; Lubin, Abigail; Chen, Hua; Sun, Zhongyi; Gong, Feng

    2012-01-01

    Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability. PMID:23159851

  12. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-05-30

    The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine. PMID:24742664

  13. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-05-30

    The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine.

  14. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    SciTech Connect

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D. Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M.; Bednarcik, J.; Michalikova, J.

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  15. A novel approach for stabilizing fresh urine by calcium hydroxide addition

    PubMed Central

    Randall, Dyllon G.; Krähenbühl, Manuel; Köpping, Isabell; Larsen, Tove A.; Udert, Kai M.

    2016-01-01

    In this study, we investigated the prevention of enzymatic urea hydrolysis in fresh urine by increasing the pH with calcium hydroxide (Ca(OH)2) powder. The amount of Ca(OH)2 dissolving in fresh urine depends significantly on the composition of the urine. The different urine compositions used in our simulations showed that between 4.3 and 5.8 g Ca(OH)2 dissolved in 1 L of urine at 25 °C. At this temperature, the pH at saturation is 12.5 and is far above the pH of 11, which we identified as the upper limit for enzymatic urea hydrolysis. However, temperature has a strong effect on the saturation pH, with higher values being achieved at lower temperatures. Based on our results, we recommend a dosage of 10 g Ca(OH)2 L−1 of fresh urine to ensure solid Ca(OH)2 always remains in the urine reactor which ensures sufficiently high pH values. Besides providing sufficient Ca(OH)2, the temperature has to be kept in a certain range to prevent chemical urea hydrolysis. At temperatures below 14 °C, the saturation pH is higher than 13, which favors chemical urea hydrolysis. We chose a precautionary upper temperature of 40 °C because the rate of chemical urea hydrolysis increases at higher temperatures but this should be confirmed with kinetic studies. By considering the boundaries for pH and temperature developed in this study, urine can be stabilized effectively with Ca(OH)2 thereby simplifying later treatment processes or making direct use easier. PMID:27055084

  16. A novel approach for stabilizing fresh urine by calcium hydroxide addition.

    PubMed

    Randall, Dyllon G; Krähenbühl, Manuel; Köpping, Isabell; Larsen, Tove A; Udert, Kai M

    2016-05-15

    In this study, we investigated the prevention of enzymatic urea hydrolysis in fresh urine by increasing the pH with calcium hydroxide (Ca(OH)2) powder. The amount of Ca(OH)2 dissolving in fresh urine depends significantly on the composition of the urine. The different urine compositions used in our simulations showed that between 4.3 and 5.8 g Ca(OH)2 dissolved in 1 L of urine at 25 °C. At this temperature, the pH at saturation is 12.5 and is far above the pH of 11, which we identified as the upper limit for enzymatic urea hydrolysis. However, temperature has a strong effect on the saturation pH, with higher values being achieved at lower temperatures. Based on our results, we recommend a dosage of 10 g Ca(OH)2 L(-1) of fresh urine to ensure solid Ca(OH)2 always remains in the urine reactor which ensures sufficiently high pH values. Besides providing sufficient Ca(OH)2, the temperature has to be kept in a certain range to prevent chemical urea hydrolysis. At temperatures below 14 °C, the saturation pH is higher than 13, which favors chemical urea hydrolysis. We chose a precautionary upper temperature of 40 °C because the rate of chemical urea hydrolysis increases at higher temperatures but this should be confirmed with kinetic studies. By considering the boundaries for pH and temperature developed in this study, urine can be stabilized effectively with Ca(OH)2 thereby simplifying later treatment processes or making direct use easier. PMID:27055084

  17. Multi-spectroscopic DNA interaction studies of sunset yellow food additive.

    PubMed

    Kashanian, Soheila; Heidary Zeidali, Sahar; Omidfar, Kobra; Shahabadi, Nahid

    2012-12-01

    The use of food dyes is at least controversial due to their essential role. Synthetic color food additives occupy an important place in the food industry. Moreover many of them have been related to health problems mainly in children that are considered the most vulnerable group. The purpose of this work is to present spectrophotometric methods to analyze the interaction of native calf thymus DNA (CT-DNA) with sunset yellow (SY) at physiological pH. Considerable hyperchromism and no red shift with an intrinsic binding constant of 7 × 10(4 )M(-1) were observed in UV absorption band of SY. Binding constants of DNA with complex were calculated at different temperatures. Slow increase in specific viscosity of DNA, induced circular dichroism spectral changes, and no significant changes in the fluorescence of neutral red-DNA solutions in the presence of SY suggest that this molecule interacts with CT-DNA via groove binding mode. Furthermore, the enthalpy and entropy of the reaction between SY and CT-DNA showed that the reaction is exothermic and enthalpy favored (∆H = -58.19 kJ mol(-1); ΔS = -274.36 kJ mol(-1) ) which are other evidences to indicate that van der Waals interactions and hydrogen bonding are the main running forces in the binding of the mentioned molecule and mode of interaction with DNA.

  18. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium–organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  19. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions.

    PubMed

    Lee, KyungA; Silverio, Daniel L; Torker, Sebastian; Robbins, Daniel W; Haeffner, Fredrik; van der Mei, Farid W; Hoveyda, Amir H

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  20. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions.

    PubMed

    Lee, KyungA; Silverio, Daniel L; Torker, Sebastian; Robbins, Daniel W; Haeffner, Fredrik; van der Mei, Farid W; Hoveyda, Amir H

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities. PMID:27442282

  1. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  2. Impact of bentonite additions during vinification on protein stability and volatile compounds of Albariño wines.

    PubMed

    Lira, Eugenio; Rodríguez-Bencomo, Juan José; Salazar, Fernando N; Orriols, Ignacio; Fornos, Daniel; López, Francisco

    2015-03-25

    Today, bentonite continues to be one of the most used products to remove proteins in white wines in order to avoid their precipitation in bottles. However, excessive use of bentonite has negative effects on the aroma of final wine, so the optimization of the dose and the time of its application are important for winemakers. This paper analyzes how applying an equal dose of bentonite at different stages (must clarification; beginning, middle, and end of fermentation) affects the macromolecular profile, protein stability, physical-chemical characteristics and aromatic profile of the wine obtained. The results showed the addition during fermentation (especially in the middle and at the end) reduced the total dose required for protein stabilization of Albariño wines and maintained the sensory characteristics of this variety. PMID:25751284

  3. Controlled Field and Laboratory Experiments to Investigate soil-root Interactions and Streambank Stability.

    NASA Astrophysics Data System (ADS)

    Pollen, N. L.; Simon, A.

    2002-12-01

    Riparian vegetation has a number of mechanical and hydrologic effects on streambank stability, some of which are positive and some of which are negative. The mechanical reinforcement provided by root networks is one of the most important stabilizing factors, as roots are strong in tension but weak in compression and conversely soil is strong in compression but weak in tension. A soil that contains roots therefore has increased shear strength due to the production of a reinforced matrix, which is stronger than the soil or roots separately (Thorne, 1990). Quantification and understanding of the way the soil and roots interact individually and as a complete matrix is important if we are to predict the reinforcing effects of different types of riparian vegetation in streambank stabilizing schemes. Previous estimates of the contribution of root networks to soil strength have been attained either by using equations that sum root tensile and the soil shear strengths (eg. Wu et al., 1979), or by carrying out shear tests of root-permeated soils. However, neither of these methods alone allows a full investigation and understanding of the interactions that take place between the soil and the roots as a soil is sheared. These interactions are complex, and the simple addition of root tensile and soil shear strengths may therefore lead to overestimation of the increased strength provided to the soil by the roots, as the rate of mobilization of stress in the roots may not be the same as that of the soil (Waldron and Dakessian, 1981; Pollen et al., 2002). This paper describes a series of experiments that were carried out to test the material properties of roots, and soil samples from a streambank along Goodwin Creek, N. Mississippi. Results from field experiments carried out to measure root-tensile strengths, and stress-displacement characteristics of roots, were compared with laboratory shear tests of soil samples from Goodwin Creek. It was shown that the roots of different

  4. Numerical simulation of fluid-structure interactions with stabilized finite element method

    NASA Astrophysics Data System (ADS)

    Sváček, Petr

    2016-03-01

    This paper is interested to the interactions of the incompressible flow with a flexibly supported airfoil. The bending and the torsion modes are considered. The problem is mathematically described. The numerical method is based on the finite element method. A combination of the streamline-upwind/Petrov-Galerkin and pressure stabilizing/Petrov-Galerkin method is used for the stabilization of the finite element method. The numerical results for a three-dimensional problem of flow over an airfoil are shown.

  5. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    SciTech Connect

    Bowers, J.S.; Anson, J.R.; Painter, S.M.; Maitino, R.E.

    1995-03-01

    Stabilization traps toxic contaminants (usually both chemically and physically) in a matrix so that they do not leach into the environment. Typical contaminants are metals (mostly transition metals) that exhibit the characteristic of toxicity. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP-the federal leach test) or the Soluble Threshold Leachate Concentration (STLC-the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California`s and EPA`s, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory, additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens). The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements.

  6. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  7. Investigation on the photostability of a tretinoin lotion and stabilization with additives.

    PubMed

    Brisaert, M; Plaizier-Vercammen, J

    2000-04-10

    Tretinoin, a drug that is used in topical preparations for the treatment of acne vulgaris, is known to be very susceptible to degradation under daylight. The objective of this work was to investigate the degradation of a tretinoin lotion placed in front of a xenon lamp. Analysis was performed with HPLC. The tretinoin lotion was degraded to about 20% of its initial concentration within 30 min. Incorporation of tretinoin in beta-cyclodextrin or in some surfactants (Brij(R)s) did not have any effect on the photodegradation of tretinoin. Neither could a UV-B sunscreen retard the photodegradation of tretinoin while a UV-A sunscreen had very little effect. Irradiation with selected wavelengths revealed that 420 nm seemed to be the most harmful wavelength for the degradation of tretinoin and not the wavelength of maximum absorption (350 nm) as expected. Then the addition of the yellow colourants chrysoin and fast yellow, absorbing in the region of 420 nm, was tested. These colourants did indeed retard the photo-degradation of tretinoin more or less depending on the concentration of the dye. Finally we only had to select a concentration that was still effective but that did not colour the skin.

  8. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.

    PubMed

    Kumar, Rakesh; Singh, Ranvir; Kaur, Jagdeep

    2014-05-16

    Thermostable lipases are of high priority for industrial applications. In the present study, targeted improvement of the thermostability of a lipase from metagenomic origin was examined by using a combinatorial protein engineering approach exploring additive effects of single amino acid substitutions. A variant (LipR5) was generated after combination of two thermostabilizing mutations (R214C & N355K). Thermostability of the variant enzyme was analyzed by half-life measurement and circular dichroism (CD). To assess whether catalytic properties were affected by mutation, the optimal reaction conditions were determined. The protein LipR5, displayed optimum activity at 50°C and pH 8.0. It showed two fold enhancement in thermostability (at 60°C) as compared to LipR3 (R214C) and nearly 168 fold enhancement as compared to parent enzyme (LipR1). Circular dichroism and fluorescence study suggest that the protein structure had become more rigid and stable to denaturation. Study of 3D model suggested that Lys355 was involved in formation of a Hydrogen bond with OE1 of Glu284. Lys355 was also making salt bridge with OE2 of Glu284. PMID:24751523

  9. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste.

    PubMed

    Moestedt, J; Nordell, E; Shakeri Yekta, S; Lundgren, J; Martí, M; Sundberg, C; Ejlertsson, J; Svensson, B H; Björn, A

    2016-01-01

    This study used semi-continuous laboratory scale biogas reactors to simulate the effects of trace-element addition in different combinations, while degrading the organic fraction of municipal solid waste and slaughterhouse waste. The results show that the combined addition of Fe, Co and Ni was superior to the addition of only Fe, Fe and Co or Fe and Ni. However, the addition of only Fe resulted in a more stable process than the combined addition of Fe and Co, perhaps indicating a too efficient acidogenesis and/or homoacetogenesis in relation to a Ni-deprived methanogenic population. The results were observed in terms of higher biogas production (+9%), biogas production rates (+35%) and reduced VFA concentration for combined addition compared to only Fe and Ni. The higher stability was supported by observations of differences in viscosity, intraday VFA- and biogas kinetics as well as by the 16S rRNA gene and 16S rRNA of the methanogens.

  10. Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability

    NASA Astrophysics Data System (ADS)

    Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.

    2016-08-01

    Specific DNA-protein interactions are fundamental processes of living cells. We propose a new model of DNA-protein interactions to explain the site specificity of the interactions. The hydrogen bonds between DNA base pairs and between DNA-protein peptide groups play a significant role in determination of the specific binding site. We adopt the Morse potential with coupling terms to construct the Hamiltonian of coupled oscillators representing the hydrogen bonds in which the depth of the potentials vary in the DNA chain. In this paper we investigate the stability of the model to determine the conditions satisfying the biological circumstances of the DNA-protein interactions.

  11. Contribution of temperament to eating disorder symptoms in emerging adulthood: Additive and interactive effects.

    PubMed

    Burt, Nicole M; Boddy, Lauren E; Bridgett, David J

    2015-08-01

    Temperament characteristics, such as higher negative emotionality (NE) and lower effortful control (EC), are individual difference risk factors for developmental psychopathology. Research has also noted relations between temperament and more specific manifestations of psychopathology, such as eating disorders (EDs). Although work is emerging that indicates that NE and EC may additively contribute to risk for ED symptoms, no studies have considered the interactive effects of NE and EC in relation to ED symptoms. In the current investigation, we hypothesized that (1) low EC would be associated with increased ED symptoms, (2) high NE would be associated with increased ED symptoms, and (3) these temperament traits would interact, such that the relationship between NE and ED symptoms would be strongest in the presence of low EC. After controlling for gender and child trauma history, emerging adults' (N=160) lower EC (i.e., more difficulties with self-regulation) was associated with more ED symptoms. NE did not emerge as a direct predictor of ED symptoms. However, the anticipated interaction of these temperament characteristics on ED symptoms was found. The association between NE and ED symptoms was only significant in the context of low EC. These findings provide evidence that elevated NE may only be a risk factor for the development of eating disorders when individuals also have self-regulation difficulties. The implications of these findings for research and interventions are discussed.

  12. Nested species interactions promote feasibility over stability during the assembly of a pollinator community.

    PubMed

    Saavedra, Serguei; Rohr, Rudolf P; Olesen, Jens M; Bascompte, Jordi

    2016-02-01

    The foundational concepts behind the persistence of ecological communities have been based on two ecological properties: dynamical stability and feasibility. The former is typically regarded as the capacity of a community to return to an original equilibrium state after a perturbation in species abundances and is usually linked to the strength of interspecific interactions. The latter is the capacity to sustain positive abundances on all its constituent species and is linked to both interspecific interactions and species demographic characteristics. Over the last 40 years, theoretical research in ecology has emphasized the search for conditions leading to the dynamical stability of ecological communities, while the conditions leading to feasibility have been overlooked. However, thus far, we have no evidence of whether species interactions are more conditioned by the community's need to be stable or feasible. Here, we introduce novel quantitative methods and use empirical data to investigate the consequences of species interactions on the dynamical stability and feasibility of mutualistic communities. First, we demonstrate that the more nested the species interactions in a community are, the lower the mutualistic strength that the community can tolerate without losing dynamical stability. Second, we show that high feasibility in a community can be reached either with high mutualistic strength or with highly nested species interactions. Third, we find that during the assembly process of a seasonal pollinator community located at The Zackenberg Research Station (northeastern Greenland), a high feasibility is reached through the nested species interactions established between newcomer and resident species. Our findings imply that nested mutualistic communities promote feasibility over stability, which may suggest that the former can be key for community persistence. PMID:26941941

  13. Alterations of Nonconserved Residues Affect Protein Stability and Folding Dynamics through Charge-Charge Interactions.

    PubMed

    Tripathi, Swarnendu; Garcìa, Angel E; Makhatadze, George I

    2015-10-15

    Charge-charge interactions play an important role in thermal stability of proteins. We employed an all-atom, native-topology-based model with non-native electrostatics to explore the interplay between folding dynamics and stability of TNfn3 (the third fibronectin type III domain from tenascin-C). Our study elucidates the role of charge-charge interactions in modulating the folding energy landscape. In particular, we found that incorporation of explicit charge-charge interactions in the WT TNfn3 induces energetic frustration due to the presence of residual structure in the unfolded state. Moreover, optimization of the surface charge-charge interactions by altering the evolutionarily nonconserved residues not only increases the thermal stability (in agreement with previous experimental study) but also reduces the formation of residual structure and hence minimizes the energetic frustration along the folding route. We concluded that charge-charge interaction in the rationally designed TNfn3 plays an important role not only in enhancing the stability but also in assisting folding. PMID:26413861

  14. Addition of subunit γ, K⁺ ions, and lipid restores the thermal stability of solubilized Na,K-ATPase.

    PubMed

    Yoneda, Juliana Sakamoto; Rigos, Carolina Fortes; Ciancaglini, Pietro

    2013-02-15

    Differential scanning calorimetry (DSC) was applied to ascertain the effect caused by K⁺, Na⁺, ATP, detergent, DPPC, DPPE, and subunit γ on the thermostability of Na,K-ATPase. The enthalpy variation (ΔH) for the thermal denaturation of the membrane-bound is twice the ΔH value obtained for solubilized Na,K-ATPase. Denaturation occurs in five steps for membrane-bound against three steps for the solubilized enzyme, therefore a multi-step unfolding process. In the presence of Na⁺, the melting temperature is 61.6°C, and the ΔH is lower as compared with the ΔH obtained in the presence or in the absence of K⁺. Addition of ATP does not alter the transition temperatures significantly, but the shape of the curve is modified. Subunit γ probably stabilizes Na,K-ATPase in the beginning of thermal unfolding, and different amounts of detergents in the solubilized sample change the protein stability. Reconstitution of Na,K-ATPase into a liposome shows that lipids exert a protector effect. These results reveal differences on the thermostability depending on the conformation of Na,K-ATPase. They are relevant because it allows a comparison with future studies, e.g. how the composition of the membrane interferes on the stability of Na, K-ATPase, elucidating the importance of the lipid type contained in cell membrane.

  15. Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Xiang-Bin, Li; Shuo, Liu; Xue-Jing, Cao; Bei-Bei, Zhou; Ling, Chen; A-Ru, Yan; Gao-Lin, Yan

    2016-07-01

    To increase coercivity and thermal stability of sintered Nd-Fe-B magnets for high-temperature applications, a novel terbium sulfide powder is added into (Pr0.25Nd0.75)30.6Cu0.15FebalB1 (wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd-Fe-B magnets are investigated. The experimental results show that by adding 3 wt.% Tb2S3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer (EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of H A, which accounts for the coercivity enhancement. Moreover, compared with Tb2S3-free magnets, the reversible temperature coefficients of remanence (α) and coercivity (β) and the irreversible flux loss of magnetic flow (h irr) values of Tb2S3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved. Project supported by the Science Funds from the Ministry of Science and Technology, China (Grant Nos. 2014DFB50130 and 2011CB612304) and the National Natural Science Foundation of China (Grant Nos. 51172168 and 51072139).

  16. Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2015-05-15

    The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation. PMID:25577062

  17. Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2015-05-15

    The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation.

  18. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization.

    PubMed

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability.

  19. Effects of antioxidants and additional emulsifiers on the stability of emulsified milk fat in the photo/radical oxidation system.

    PubMed

    Yamamoto, Yukihiro; Hiyama, Shinichiro; Takase, Yoshihiko; Kadowaki, Akio; Hara, Setsuko

    2014-01-01

    The effects of antioxidants on the oxidative deterioration of emulsified oils and fats differ depending on the oxidation conditions, oils and fats used, and type of emulsifier. In this study, milk fat was emulsified to obtain water-oil (O/W) emulsion using Tween20 as emulsifier. The antioxidative effects of several antioxidants with various lipophilic properties, such as δ-tocopherol (Toc), epigallocatechin gallate (EGCg), quercetin (Qu), green tea extract (GTE), and rooibos tea extract (RTE) were investigated, the effects of additional emulsifiers such as polyglycerol and sucrose esters of fatty acids on the oxidation stability of the emulsion were also investigated. Under oxidative conditions of 30°C in 650 lx, Toc was more effective than GTE in suppressing the increase of the peroxide value (PV, meq/kg) of the emulsified milk fat. Under these oxidative conditions, the antioxidative effect of GTE was enhanced by the addition of polyglycerol and sucrose esters of fatty acids. Under the oxidative conditions at 40°C in dark with 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) or 2,2'-azobis (2,4-dimethylvaleronitrile) (AMVN), Toc showed the most antioxidative effect on suppression of the increase of PV and anisidine value (AnV) of the emulsified milk fat. Furthermore, additional emulsifiers also showed suppressive effects on the increase of the PV and AnV of the emulsified milk fat even without any antioxidants. The effects of additional emulsifiers on the oxidative stability of O/W emulsions were enhanced with antioxidants such as Toc, EGCg, and Qu.

  20. Volume exclusion and soft interaction effects on protein stability under crowded conditions.

    PubMed

    Miklos, Andrew C; Li, Conggang; Sharaf, Naima G; Pielak, Gary J

    2010-08-24

    Most proteins function in nature under crowded conditions, and crowding can change protein properties. Quantification of crowding effects, however, is difficult because solutions containing hundreds of grams of macromolecules per liter often interfere with the observation of the protein being studied. Models for macromolecular crowding tend to focus on the steric effects of crowders, neglecting potential chemical interactions between the crowder and the test protein. Here, we report the first systematic, quantitative, residue-level study of crowding effects on the equilibrium stability of a globular protein. We used a system comprising poly(vinylpyrrolidone)s (PVPs) of varying molecular weights as crowding agents and chymotrypsin inhibitor 2 (CI2) as a small globular test protein. Stability was quantified with NMR-detected amide (1)H exchange. We analyzed the data in terms of hard particle exclusion, confinement, and soft interactions. For all crowded conditions, nearly every observed residue experiences a stabilizing effect. The exceptions are residues for which stabilities are unchanged. At a PVP concentration of 100 g/L, the data are consistent with theories of hard particle exclusion. At higher concentrations, the data are more consistent with confinement. The data show that the crowder also stabilizes the test protein by weakly binding its native state. We conclude that the role of native-state binding and other soft interactions needs to be seriously considered when applying both theory and experiment to studies of macromolecular crowding.

  1. Theoretical and experimental studies of the stability of drug-drug interact

    NASA Astrophysics Data System (ADS)

    Soares, Monica F. R.; Alves, Lariza D. S.; Nadvorny, Daniela; Soares-Sobrinho, José L.; Rolim-Neto, Pedro J.

    2016-11-01

    Several factors can intervene in the molecular properties and consequently in the stability of drugs. The molecular complexes formation often occur due to favor the formation of hydrogen bonds, leading the system to configuration more energy stable. This work we aim to investigate through theoretical and experimental methods the relation between stability and properties of molecular complexes the molecular complex formed between the drugs, efavirenz (EFV), lamivudine (3TC) and zidovudine (AZT). With this study was possible determining the most stable complex formed between the compounds evaluated. In addition the energy and structural properties of the complex formed in relation to its individual components allowed us to evaluate the stability of the same.

  2. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage.

    PubMed

    Weiss, K; Kroschewski, B; Auerbach, H

    2016-10-01

    Ensiling conditions strongly influence fermentation characteristics, yeast count, and aerobic stability. Numerous volatile organic compounds including esters are produced, which may negatively affect feed intake and animal performance and air quality. In addition to a farm survey, 3 laboratory experiments were carried out to study the effects of air (by delayed sealing or by air infiltration during anaerobic storage), temperature (20 and 35°C), and various types of additives [blends of either sodium benzoate and sodium propionate (SBSP) or of sodium benzoate and potassium sorbate (SBPS); buffered mixture of formic and propionic acids (FAPA); homofermentative inoculant (LAB)]. After additive treatment, chopped whole corn plants were packed into 1.5-L glass jars and stored for several months. For treatments with air infiltration, glass jars with holes in the lid and body were used. The farm survey in 2009 revealed large variation in lactate, acetate, ethanol, n-propanol, and 1,2-propanediol concentrations. Whereas ethyl esters were detected in all silages, the mean ethyl lactate concentrations were higher than those for ethyl acetate (474 vs. 38mg/kg of dry matter). In the ensiling experiments, few unequivocal effects of the tested factors on the analyzed parameters were observed due to many interactions. Delayed ensiling without additives decreased lactic acid production but, in one trial, increased acetic acid and had no effect on ethanol. The effect of delayed sealing on yeast counts and aerobic stability differed widely among experiments. Air infiltration during fermentation tested in one trial did not alter lactic acid production, but resulted in more acetic acid in delayed and more ethanol than in promptly sealed untreated silages. Greater ethanol production was associated with increased yeast numbers. Storage at high temperature resulted in lower lactic acid and n-propanol, and a trend toward reduced ethanol production was observed. The additive FAPA

  3. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage.

    PubMed

    Weiss, K; Kroschewski, B; Auerbach, H

    2016-10-01

    Ensiling conditions strongly influence fermentation characteristics, yeast count, and aerobic stability. Numerous volatile organic compounds including esters are produced, which may negatively affect feed intake and animal performance and air quality. In addition to a farm survey, 3 laboratory experiments were carried out to study the effects of air (by delayed sealing or by air infiltration during anaerobic storage), temperature (20 and 35°C), and various types of additives [blends of either sodium benzoate and sodium propionate (SBSP) or of sodium benzoate and potassium sorbate (SBPS); buffered mixture of formic and propionic acids (FAPA); homofermentative inoculant (LAB)]. After additive treatment, chopped whole corn plants were packed into 1.5-L glass jars and stored for several months. For treatments with air infiltration, glass jars with holes in the lid and body were used. The farm survey in 2009 revealed large variation in lactate, acetate, ethanol, n-propanol, and 1,2-propanediol concentrations. Whereas ethyl esters were detected in all silages, the mean ethyl lactate concentrations were higher than those for ethyl acetate (474 vs. 38mg/kg of dry matter). In the ensiling experiments, few unequivocal effects of the tested factors on the analyzed parameters were observed due to many interactions. Delayed ensiling without additives decreased lactic acid production but, in one trial, increased acetic acid and had no effect on ethanol. The effect of delayed sealing on yeast counts and aerobic stability differed widely among experiments. Air infiltration during fermentation tested in one trial did not alter lactic acid production, but resulted in more acetic acid in delayed and more ethanol than in promptly sealed untreated silages. Greater ethanol production was associated with increased yeast numbers. Storage at high temperature resulted in lower lactic acid and n-propanol, and a trend toward reduced ethanol production was observed. The additive FAPA

  4. Origin of molecular conformational stability: perspectives from molecular orbital interactions and density functional reactivity theory.

    PubMed

    Liu, Shubin; Schauer, Cynthia K

    2015-02-01

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability.

  5. Origin of molecular conformational stability: Perspectives from molecular orbital interactions and density functional reactivity theory

    SciTech Connect

    Liu, Shubin E-mail: schauer@unc.edu; Schauer, Cynthia K. E-mail: schauer@unc.edu

    2015-02-07

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability.

  6. Stability of Maternal Discipline Practices and the Quality of Mother-Child Interaction during Toddlerhood

    ERIC Educational Resources Information Center

    Huang, Keng-Yen; Caughy, Margaret O'Brien; Lee, Li-Ching; Miller, Therese; Genevro, Janice

    2008-01-01

    This study examined the stability of maternal punitive/high-power discipline (PD) and inductive/authoritative discipline (ID) over the second and third years of life and the effect of maternal discipline on quality of mother-child interactions. Data from a longitudinal sample with 179 mother-toddler dyads were analyzed, and selected factors (i.e.,…

  7. Gaze and Feet as Additional Input Modalities for Interacting with Geospatial Interfaces

    NASA Astrophysics Data System (ADS)

    Çöltekin, A.; Hempel, J.; Brychtova, A.; Giannopoulos, I.; Stellmach, S.; Dachselt, R.

    2016-06-01

    Geographic Information Systems (GIS) are complex software environments and we often work with multiple tasks and multiple displays when we work with GIS. However, user input is still limited to mouse and keyboard in most workplace settings. In this project, we demonstrate how the use of gaze and feet as additional input modalities can overcome time-consuming and annoying mode switches between frequently performed tasks. In an iterative design process, we developed gaze- and foot-based methods for zooming and panning of map visualizations. We first collected appropriate gestures in a preliminary user study with a small group of experts, and designed two interaction concepts based on their input. After the implementation, we evaluated the two concepts comparatively in another user study to identify strengths and shortcomings in both. We found that continuous foot input combined with implicit gaze input is promising for supportive tasks.

  8. Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; He, Zhi; Yao, Chun-Mei

    2015-04-01

    We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. Supported by the National Natural Science Foundation of China under Grant Nos. 61475045 and 11347142, the Natural Science Foundation of Hunan Province, China under Grant No. 2015JJ3092

  9. Stringent test for non-additive, non-interacting, kinetic energy functionals

    NASA Astrophysics Data System (ADS)

    Jiang, Kaili; Nafziger, Jonathan; Wasserman, Adam

    Partition Density Functional Theory (PDFT) provides an ideal framework for testing and developing new approximations to the non-additive and non-interacting kinetic energy functional (Tsnadd [ {nα } ]), understood as a functional of the set of fragment ground-state densities. We present our progress on both of these fronts: (1) Systematic comparison of the performance of various existing approximations to Tsnadd [ {nα } ] ; and (2) Development of new approximations. We find that a re-parametrization of the GGA enhancement factor employed for the construction of Tsnadd [ {nα } ] through the conjointness conjecture captures essential features of the functional derivatives of Tsnadd [ {nα } ] . A physically-motivated two-orbital approximation for Tsnadd [ {nα } ] is shown to outperform most other approximations for the case of He2, and an intriguing one-parameter formula makes this approximation accurate for all noble-gas diatomics.

  10. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  11. Stabilization of protein crystals by electrostatic interactions as revealed by a numerical approach.

    PubMed

    Takahashi, T; Endo, S; Nagayama, K

    1993-11-20

    We developed a novel algorithm to solve numerically the Poisson-Boltzmann equations under a periodic boundary condition. By employing this algorithm to calculate the electrostatic potentials in two different types of protein crystals, a bovine pancreatic trypsin inhibitor (BPTI) orthorhombic crystal and a pig-insulin cubic crystal, the energy contributions of the electrostatic interactions to the crystals' stability were evaluated. At a high ionic strength, the condensed state of proteins in the crystal was stabilized electrostatically compared with that isolated in dilute solution because the attractive electrostatic interactions between neighboring protein molecules overcame the repulsive forces that originated from the same net charges of the equivalent protein molecules. On the other hand, at a low ionic strength the electrostatic interactions destabilized the crystalline state of both proteins, although a different dependence on the ionic strength was found between them. Here, the insulin crystal was more stable than the BPTI one because of the higher charge density in the BPTI crystal. In all of the solvent ionic strengths investigated, the attractive electrostatic interactions between charge pairs separated by less than 5 A on the respective protein molecules prominently stabilize the protein crystals. Therefore, two protein molecules in the crystals are oriented to compensate each other for their opposite charges on the surfaces. We also found a specific role for bound phosphate ions in the stabilization of the BPTI crystal, based on comparison of the electrostatic energies of the two crystals with and without the ions. By determining the contribution of each atomic charge in the crystals to the electrostatic energy, it was revealed that several electrostatic pairs specifically contributed to the crystal's stability. On the basis of our numerical calculation results, we propose a new method to design protein molecules that adopt stable crystals by replacing

  12. Additive Genetic Risk from Five Serotonin System Polymorphisms Interacts with Interpersonal Stress to Predict Depression

    PubMed Central

    Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Zinbarg, Richard E.; Adam, Emma K.; Redei, Eva E.; Hammen, Constance; Craske, Michelle G.

    2016-01-01

    Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (GxE). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a GxE predicting depression, we created an additive multilocus profile score from five serotonin system polymorphisms (one each in the genes HTR1A, HTR2A, HTR2C, and two in TPH2). Analyses focused on two forms of interpersonal stress as environmental risk factors. Using five years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (HR = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The GxE effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the GxE effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. PMID:26595467

  13. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye.

    PubMed

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza

    2016-06-01

    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer.

  14. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye.

    PubMed

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza

    2016-06-01

    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer. PMID:27152751

  15. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    SciTech Connect

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.

  16. Pomegranate and mint syrup addition to green tea beverage stabilized its polyphenolic content and biofunctional potentials during refrigerated storage.

    PubMed

    Dhaouadi, Karima; Belkhir, Manel; Raboudi, Faten; Mecha, Elsa; Ghommeme, Imen; Bronze, Maria Do Rosario; Ammar, Hajer; Fattouch, Sami

    2016-02-01

    The chemical stability of the green tea (GT) preparation during refrigerated storage was investigated following the addition of mint (MS) or pomegranate (PS) syrups, a common habit in the Mediterranean countries that improves the savor of this popular beverage. The supernatants recovered by centrifuging GT supplemented or not with mint (GTMS) or pomegranate (GTPS) syrup were examined for their polyphenolic profiles using the high performance liquid chromatography with diode array detection and electrospray ionization-mass spectrometry. Following storage at 4 °C for 15 days, not-supplemented GT showed a significant decrease (≈92 %) of its phenolic content. However, the decrease was relatively lesser in GTPS (≈36 %) and in GTMS (≈40 %). The observed slight increase of the extractable polyphenolics in PS and MS during the storage might explain in part the relatively limited decrease of GTPS and GTMS total phenolic content. However, chromatographic examination proved that some tea compounds, particularly caffeine, were preserved following PS and MS supplementation. Likewise, syrups'addition to GT significantly (P < 0.5) limited the reduction of its antioxidant capacity as revealed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-(3-ethylbenz-thialzoline-6-sulfonic acid)) assays. As expected, the antimicrobial trials showed that Gram (+) Staphylococcus aureus and Staphylococcus epidermidis were the most sensitive strains to tea polyphenols. The syrups supplementation noticeably preserved the tea bacteriostatic and bactericide activities during storage. The obtained analytical results demonstrate that MS or PS addition to green tea beverage stabilized its polyphenolic content and biofunctional properties during refrigerated storage, thus, scientifically supporting this popular practice in the Mediterranean countries. PMID:27162396

  17. Stability of an attractive bosonic cloud with van der Waals interaction

    SciTech Connect

    Biswas, Anindya; Das, Tapan Kumar; Salasnich, Luca; Chakrabarti, Barnali

    2010-10-15

    We investigate the structure and stability of Bose-Einstein condensates of {sup 7}Li atoms with realistic van der Waals interactions by using the potential harmonic expansion method. Besides the known low-density metastable solution with a contact {delta}-function interaction, we find a stable branch at a higher density which corresponds to the formation of an atomic cluster. Comparison with the results of a nonlocal effective interaction is also presented. We analyze the effect of trap size on the transition between the two branches of solutions. We also compute the loss rate of a Bose condensate due to two- and three-body collisions.

  18. Stability and anomalous compressibility of Bose gases near resonance: The scale-dependent interactions and thermal effects

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Jian; Zhou, Fei

    2015-07-01

    The stability of Bose gases near resonance has been a puzzling problem in recent years. In this article, we demonstrate that in addition to generating thermal pressure, thermal atoms enhance the repulsiveness of the scale-dependent interactions between condensed atoms due to a renormalization effect and further stabilize the Bose gases. Consequently, we find that, as a precursor of instability, the compressibility develops an anomalous structure as a function of scattering length and is drastically reduced compared with the mean-field value. Furthermore, the density profile of a Bose gas in a harmonic trap is found to develop a flat top near the center. This is due to the anomalous behavior of compressibility and can be a potential smoking gun for probing such an effect.

  19. Interaction between soil mineralogy and the application of crop residues on aggregate stability and hydraulic conductivity of the soil

    NASA Astrophysics Data System (ADS)

    Lado, M.; Kiptoon, R.; Bar-Tal, A.; Wakindiki, I. I. C.; Ben-Hur, M.

    2012-04-01

    One of the main goals of modern agriculture is to achieve sustainability by maintaining crop productivity while avoiding soil degradation. Intensive cultivation could lead to a reduction in soil organic matter that could affect the structure stability and hydraulic conductivity of the soil. Moreover, crops extract nutrients from the soil that are taken away from the field when harvested, and as a consequence, the addition of fertilizers to the soil is necessary to maintain crop productivity. One way to deal with these problems is to incorporate crop residues into the soil after harvest. Crop residues are a source of organic matter that could improve soil physical properties, such as aggregate stability and soil hydraulic conductivity. However, this effect could vary according to other soil properties, such as clay content, clay mineralogy, and the presence of other cementing materials in the soil (mainly carbonates and aluminum and iron oxides). In the present work, the interaction between the addition of chickpea crop residues to the soil and clay mineralogy on aggregate stability and saturated hydraulic conductivity were studied. Chickpea plant residues were added at a rate of 0.5% (w/w) to smectitic, kaolinitic, illitic and non-phyllosilicate soils from different regions. The soils without (control) and with chickpea residues were incubated for 0, 3, 7 and 30 days, and the saturated hydraulic conductivity of the soils was measured in columns after each incubation time. The response of hydraulic conductivity to the addition of residues and incubation time was different in the soils with various mineralogies, although in general, the addition of chickpea residues increased the saturated hydraulic conductivity as compared with the control soils. This positive effect of crop residues on hydraulic conductivity was mainly a result of improved aggregate stability and resistance to slaking during wetting.

  20. Distinguishability and chiral stability in solution: Effects of decoherence and intermolecular interactions

    SciTech Connect

    Han, Heekyung; Wardlaw, David M.; Frolov, Alexei M.

    2014-05-28

    We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation for a system, intermolecular interactions are introduced by a mean-field theory, and interaction between a system and an environment is modeled by a continuous measurement of a population difference between the two chiral states. The resultant equations are explored for various parameters, with emphasis on the combined effects of the initial condition of the system, the chiral discrimination energies, and the decoherence in determining: the distinguishability as measured by a population difference between the initially pure and mixed states, and the decoherence process; the chiral stability as measured by the purity decay; and the stationary state of the system at times long relative to the time scales of the system dynamics and of the environmental effects.

  1. Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals

    PubMed Central

    Wheeler, Lance M.; Neale, Nathan R.; Chen, Ting; Kortshagen, Uwe R.

    2013-01-01

    Colloidal semiconductor nanocrystals have attracted attention for cost-effective, solution-based deposition of quantum-confined thin films for optoelectronics. However, two significant challenges must be addressed before practical nanocrystal-based devices can be realized. The first is coping with the ligands that terminate the nanocrystal surfaces. Though ligands provide the colloidal stability needed to cast thin films from solution, these ligands dramatically hinder charge carrier transport in the resulting film. Second, after a conductive film is achieved, doping has proven difficult for further control of the optoelectronic properties of the film. Here we report the ability to confront both of these challenges by exploiting the ability of silicon to engage in hypervalent interactions with hard donor molecules. For the first time, we demonstrate the significant potential of applying the interaction to the nanocrystal surface. In this study, hypervalent interactions are shown to provide colloidal stability as well as doping of silicon nanocrystals. PMID:23893292

  2. Quantifying the stabilizing effects of protein–ligand interactions in the gas phase

    PubMed Central

    Allison, Timothy M.; Reading, Eamonn; Liko, Idlir; Baldwin, Andrew J.; Laganowsky, Arthur; Robinson, Carol V.

    2015-01-01

    The effects of protein–ligand interactions on protein stability are typically monitored by a number of established solution-phase assays. Few translate readily to membrane proteins. We have developed an ion-mobility mass spectrometry approach, which discerns ligand binding to both soluble and membrane proteins directly via both changes in mass and ion mobility, and assesses the effects of these interactions on protein stability through measuring resistance to unfolding. Protein unfolding is induced through collisional activation, which causes changes in protein structure and consequently gas-phase mobility. This enables detailed characterization of the ligand-binding effects on the protein with unprecedented sensitivity. Here we describe the method and software required to extract from ion mobility data the parameters that enable a quantitative analysis of individual binding events. This methodology holds great promise for investigating biologically significant interactions between membrane proteins and both drugs and lipids that are recalcitrant to characterization by other means. PMID:26440106

  3. Dynamic stability and slider-lubricant interactions in hard disk drives

    NASA Astrophysics Data System (ADS)

    Ambekar, Rohit Pradeep

    2007-12-01

    Hard disk drives (HDD) have played a significant role in the current information age and have become the backbone of storage. The soaring demand for mass data storage drives the necessity for increasing capacity of the drives and hence the areal density on the disks as well as the reliability of the HDD. To achieve greater areal density in hard disk drives, the flying height of the airbearing slider continually decreases. Different proximity forces and interactions influence the air bearing slider resulting in fly height modulation and instability. This poses several challenges to increasing the areal density (current goal is 2Tb/in.2) as well as making the head-disk interface (HDI) more reliable. Identifying and characterizing these forces or interactions has become important for achieving a stable fly height at proximity and realizing the goals of areal density and reliability. Several proximity forces or interactions influencing the slider are identified through the study of touchdown-takeoff hysteresis. Slider-lubricant interaction which causes meniscus force between the slider and disk as well as airbearing surface contamination seems to be the most important factor affecting stability and reliability at proximity. In addition, intermolecular forces and disk topography are identified as important factors. Disk-to-slider lubricant transfer leads to lubricant pickup on the slider and also causes depletion of lubricant on the disk, affecting stability and reliability of the HDI. Experimental and numerical investigation as well as a parametric study of the process of lubricant transfer has been done using a half-delubed disk. In the first part of this parametric study, dependence on the disk lubricant thickness, lubricant type and slider ABS design has been investigated. It is concluded that the lubricant transfer can occur without slider-disk contact and there can be more than one timescale associated with the transfer. Further, the transfer increases non

  4. Reactivity of Dazomet, a Hydraulic Fracturing Additive: Hydrolysis and Interaction with Pyrite

    NASA Astrophysics Data System (ADS)

    Consolazio, N.; Lowry, G. V.; Karamalidis, A.; Hakala, A.

    2015-12-01

    reaction products. Our results indicate the need to determine specific mineral-additive interactions to evaluate the potential risks of chemical use in hydraulic fracturing.

  5. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.

    PubMed

    Poloznikov, A A; Zakharova, G S; Chubar, T A; Hushpulian, D M; Tishkov, V I; Gazaryan, I G

    2015-08-01

    Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis.

  6. Dynamics of noncovalent interactions in all-α and all-β class proteins: implications for the stability of amyloid aggregates.

    PubMed

    Jain, Alok; Sankararamakrishnan, Ramasubbu

    2011-12-27

    results clearly indicate that the weak C-H···O interactions between the main-chain atoms are the distinguishing factor between the all-α and all-β class of proteins, and these interstrand interactions can provide additional stability to all-β protein structures. Based on these results, we hypothesize that such weak C-H···O interstrand interactions could play a major role in providing stability to amyloid type of aggregates that are responsible for the pathological state of many proteins.

  7. Study of stability and thermodynamic properties of water-in-diesel nanoemulsion fuels with nano-Al additive

    NASA Astrophysics Data System (ADS)

    Mehta, Rakhi N.; More, Utkarsh; Malek, Naved; Chakraborty, Mousumi; Parikh, Parimal A.

    2015-11-01

    The present work addresses the formation of water-in-diesel (W/D) nanoemulsion by blending different percentages of water along with nano-Al additive in various propositions to enhance the combustion characteristics. The roles of various surfactants such as Sorbitan monooleate (Span 80), Triton X-100, Tetradecyltrimethylammonium bromide, and newly synthesized and characterized dicationic surfactants were discussed based upon their ability to stabilize the nanoemulsions. Surface active properties of the surfactants were determined by measuring their interfacial tension and subsequently by measuring the critical micelle concentration of the surfactants. Triton X-100 was found to be the most efficient surfactant for the current water-in-diesel nanoemulsion as it stabilized the suspensions for more than 8 h. Particle size analysis proved emulsion size to be in the order of nanometer, and zeta potential values were found to have neutral behavior at water-diesel interface. Experimental studies confirmed that that blends W/D [1 % (vol.) water] and W/DA [1 % (vol.) water, 0.1 % (wt.) nano-Al] were thermodynamically stable.

  8. Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols

    NASA Astrophysics Data System (ADS)

    Kőrösi, László; Papp, Szilvia; Hornok, Viktória; Oszkó, Albert; Petrik, Péter; Patko, Daniel; Horvath, Robert; Dékány, Imre

    2012-08-01

    Titanate nanotubes were synthesized from TiO2 in alkaline medium by a conventional hydrothermal method (150 °C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H3PO4 aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N2-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative results of using two kinds of acids shed light on the superior thermal stability of the H3PO4-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low (˜0.5 at%) concentration of P. After calcination at 500 °C, the specific surface areas of the HCl- and H3PO4-treated samples were 153 and 244 m2 g-1, respectively. The effects of H3PO4 treatment on the structure, morphology and porosity of titanate nanotubes are discussed.

  9. Kinetics of the addition of olefins to Si-centered radicals: the critical role of dispersion interactions revealed by theory and experiment.

    PubMed

    Johnson, Erin R; Clarkin, Owen J; Dale, Stephen G; DiLabio, Gino A

    2015-06-01

    Solution-phase rate constants for the addition of selected olefins to the triethylsilyl and tris(trimethylsilyl)silyl radicals are measured using laser-flash photolysis and competition kinetics. The results are compared with predictions from density functional theory (DFT) calculations, both with and without dispersion corrections obtained from the exchange-hole dipole moment (XDM) model. Without a dispersion correction, the rate constants are consistently underestimated; the errors increase with system size, up to 10(6) s(-1) for the largest system considered. Dispersion interactions preferentially stabilize the transition states relative to the separated reactants and bring the DFT-calculated rate constants into excellent agreement with experiment. Thus, dispersion interactions are found to play a key role in determining the kinetics for addition reactions, particularly those involving sterically bulky functional groups.

  10. Interactions between cocoa flavanols and inorganic nitrate: additive effects on endothelial function at achievable dietary amounts.

    PubMed

    Rodriguez-Mateos, Ana; Hezel, Michael; Aydin, Hilal; Kelm, Malte; Lundberg, Jon O; Weitzberg, Eddie; Spencer, Jeremy P E; Heiss, Christian

    2015-03-01

    Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial

  11. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-01

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876

  12. The role of drug-polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions.

    PubMed

    Kothari, Khushboo; Ragoonanan, Vishard; Suryanarayanan, Raj

    2015-01-01

    We investigated the influence of drug-polymer hydrogen bonding interactions on molecular mobility and the physical stability in solid dispersions of nifedipine with each of the polymers polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMCAS), and poly(acrylic acid) (PAA). The drug-polymer interactions were monitored by FT-IR spectroscopy, the molecular mobility was characterized using broadband dielectric spectroscopy, and the crystallization kinetics was evaluated by powder X-ray diffractometry. The strength of drug-polymer hydrogen bonding, the structural relaxation time, and the crystallization kinetics were rank ordered as PVP > HPMCAS > PAA. At a fixed polymer concentration, the fraction of the drug bonded to the polymer was the highest with PVP. Addition of 20% w/w polymer resulted in ∼65-fold increase in the relaxation time in the PVP dispersion and only ∼5-fold increase in HPMCAS dispersion. In the PAA dispersions, there was no evidence of drug-polymer interactions and the polymer addition did not influence the relaxation time. Thus, the strongest drug-polymer hydrogen bonding interactions in PVP solid dispersions translated to the longest structural relaxation times and the highest resistance to drug crystallization.

  13. The Stability and Formation of Native Proteins from Unfolded Monomers Is Increased through Interactions with Unrelated Proteins

    PubMed Central

    Rodríguez-Almazán, Claudia; Torner, Francisco J.; Costas, Miguel; Pérez-Montfort, Ruy; de Gómez-Puyou, Marieta Tuena; Puyou, Armando Gómez

    2007-01-01

    The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins. PMID:17551578

  14. Disentangling nature, strength and stability issues in the characterization of population interactions.

    PubMed

    Hernandez, Maria-Josefina

    2009-11-01

    Many recent reviews discuss the adequacy of definitions and metrics for the strength of population interactions. However, the discussion on the beneficial or detrimental nature of interactions is clearly absent, or at the most, inadvertently merged into the strength debate. This deficiency is emerging with the increasing interest in theoretical studies of interactions that shift in their nature; e.g. associations that present a mixture of mutualistic and antagonistic aspects, such as pollination; or species with changes in role, such as mutualistic ants that predate on aphid partners. By exploring these models, major controversies are revealed underlying some traditional perspectives: the original Levins'community matrix reformulated into interaction and jacobian matrices, that is, interaction coefficients reinterpreted as partial derivatives, fail to recognize the ecological context of interactions. The 'effect of one species on the other' is not necessarily quantified by 'the effect of varying species densities'; and shifts in the signs of jacobian elements do not correspond to shifts in types of interaction but to stability properties. Thus, the generalised use of these approaches must be revised. On the other hand, the comparison of ultimate performances of populations when growing alone or in association, here referred to as the relative performance approach, conceptually represents the original meaning of the community matrix. This conception, although measured at population levels, is a reflection of properties at the individual level. This article inspects and discusses the formalities and ecological contexts of these approaches to characterization by means of known population interaction models: linear and non-linear, variable and non-variable; aiming to disentangle crucial conceptions that are usually mingled in the literature: the strength (magnitude) and the nature (detrimental or beneficial) of the interaction, which are sometimes used interchangeably

  15. Estimation and Inference in Generalized Additive Coefficient Models for Nonlinear Interactions with High-Dimensional Covariates

    PubMed Central

    Shujie, MA; Carroll, Raymond J.; Liang, Hua; Xu, Shizhong

    2015-01-01

    In the low-dimensional case, the generalized additive coefficient model (GACM) proposed by Xue and Yang [Statist. Sinica 16 (2006) 1423–1446] has been demonstrated to be a powerful tool for studying nonlinear interaction effects of variables. In this paper, we propose estimation and inference procedures for the GACM when the dimension of the variables is high. Specifically, we propose a groupwise penalization based procedure to distinguish significant covariates for the “large p small n” setting. The procedure is shown to be consistent for model structure identification. Further, we construct simultaneous confidence bands for the coefficient functions in the selected model based on a refined two-step spline estimator. We also discuss how to choose the tuning parameters. To estimate the standard deviation of the functional estimator, we adopt the smoothed bootstrap method. We conduct simulation experiments to evaluate the numerical performance of the proposed methods and analyze an obesity data set from a genome-wide association study as an illustration. PMID:26412908

  16. Protein stability in mixed solvents: a balance of contact interaction and excluded volume.

    PubMed

    Schellman, John A

    2003-07-01

    Changes in excluded volume and contact interaction with the surface of a protein have been suggested as mechanisms for the changes in stability induced by cosolvents. The aim of the present paper is to present an analysis that combines both effects in a quantitative manner. The result is that both processes are present in both stabilizing and destabilizing interactions and neither can be ignored. Excluded volume was estimated using accessible surface area calculations of the kind introduced by Lee and Richards. The change in excluded volume on unfolding, deltaX, is quite large. For example, deltaX for ribonuclease is 6.7 L in urea and approximately 16 L in sucrose. The latter number is greater than the molar volume of the protein. Direct interaction with the protein is represented as the solvent exchange mechanism, which differs from ordinary association theory because of the weakness of the interaction and the high concentrations of cosolvents. The balance between the two effects and their contribution to overall stability are most simply presented as bar diagrams as in Fig. 3. Our finding for five proteins is that excluded volume contributes to the stabilization of the native structure and that contact interaction contributes to destabilization. This is true for five proteins and four cosolvents including both denaturants and osmolytes. Whether a substance stabilizes a protein or destabilizes it depends on the relative size of these two contributions. The constant for the cosolvent contact with the protein is remarkably uniform for four of the proteins, indicating a similarity of groups exposed during unfolding. One protein, staphylococcus nuclease, is anomalous in almost all respects. In general, the strength of the interaction with guanidinium is about twice that of urea, which is about twice that of trimethylamine-N-oxide and sucrose. Arguments are presented for the use of volume fractions in equilibrium equations and the ignoring of activity coefficients of

  17. Stabilizing G-quadruplex DNA by methylazacalix[n]pyridine through shape-complementary interaction.

    PubMed

    Guan, Ai-Jiao; Shen, Meng-Jie; Zhang, En-Xuan; Li, Qian; Wang, Li-Xia; Xu, Li-Jin; Xiang, Jun-Feng; Tang, Ya-Lin

    2016-01-15

    It is found that G-quadruplexes have important functions in biological systems, such as gene expression. Molecules which can stabilize the G-quadruplex structure may have potential application in regulating the expression of gene. A series of methylazacalix[n]pyridine (n=4, 6, 7, 8, 9) has been tested to stabilize the intermolecular human telomeric G-quadruplex (T12 and H12), intramolecular TBA, c-kit and bcl-2 G-quadruplex by CD denaturation experiments. The results showed that only methylazacalix[6]pyridine (MACP6) can stabilize the intermolecular G-quadruplex formed from the 12bp human telomere. Further studies evidenced that the shape-complementary binding mode was what contributed to the interaction between MACP6 and T12 G-quadruplex.

  18. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-01

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  19. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin.

    PubMed

    Muiznieks, Lisa D; Cirulis, Judith T; van der Horst, Astrid; Reinhardt, Dieter P; Wuite, Gijs J L; Pomès, Régis; Keeley, Fred W

    2014-06-01

    Elastin self-assembles from monomers into polymer networks that display elasticity and resilience. The first major step in assembly is a liquid-liquid phase separation known as coacervation. This process represents a continuum of stages from initial phase separation to early growth of droplets by coalescence and later "maturation" leading to fiber formation. Assembly of tropoelastin-rich globules is on pathway for fiber formation in vivo. However, little is known about these intermediates beyond their size distribution. Here we investigate the contribution of sequence and structural motifs from full-length tropoelastin and a set of elastin-like polypeptides to the maturation of coacervate assemblies, observing their growth, stability and interaction behavior, and polypeptide alignment within matured globules. We conclude that maturation is driven by surface properties, leading to stabilization of the interface between the hydrophobic interior and aqueous solvent, potentially through structural motifs, and discuss implications for droplet interactions in fiber formation.

  20. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends*

    PubMed Central

    Izumi, Takashi; Shimizu, Shigeomi

    2016-01-01

    Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends. PMID:27514743

  1. The Drosophila selectin furrowed mediates intercellular planar cell polarity interactions via frizzled stabilization.

    PubMed

    Chin, Mei-Ling; Mlodzik, Marek

    2013-09-16

    Establishment of planar cell polarity (PCP) in a tissue requires coordination of directional signals from cell to cell. It is thought that this is mediated by the core PCP factors, which include cell-adhesion molecules. Here, we demonstrate that furrowed, the Drosophila selectin, is required for PCP generation. Disruption of PCP in furrowed-deficient flies results from a primary defect in Fz levels and cell adhesion. Furrowed localizes at or near apical junctions, largely colocalizing with Frizzled and Flamingo (Fmi). It physically interacts with and stabilizes Frizzled, and it mediates intercellular Frizzled-Van Gogh (Vang)/Strabismus interactions, similarly to Fmi. Furrowed does so through a homophilic cell-adhesion role that is distinct from its known carbohydrate-binding function described during vertebrate blood-cell/endothelial cell interactions. Importantly, the carbohydrate function is dispensable for PCP establishment. In vivo studies suggest that Furrowed functions partially redundantly with Fmi, mediating intercellular Frizzled-Vang interactions between neighboring cells.

  2. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    PubMed

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems.

  3. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    PubMed

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. PMID:25420573

  4. Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.

    PubMed

    Zhang, Hui; Liu, Jinyin; Zhao, Guanqi; Gao, Yongjun; Tyliszczak, Tolek; Glans, Per-Anders; Guo, Jinghua; Ma, Ding; Sun, Xu-Hui; Zhong, Jun

    2015-04-22

    We have stabilized the iron oxide nanoparticles (NPs) of various sizes on layered carbon materials (Fe-oxide/C) that show excellent catalytic performance. From the characterization of X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), scanning transmission X-ray microscopy (STXM) and X-ray magnetic circular dichroism spectroscopy (XMCD), a strong interfacial interaction in the Fe-oxide/C hybrids has been observed between the small iron oxide NPs and layered carbon in contrast to the weak interaction in the large iron oxide NPs. The interfacial interaction between the NPs and layered carbon is found to link with the improved catalytic performance. In addition, the Fe L-edge XMCD spectra show that the large iron oxide NPs are mainly γ-Fe2O3 with a strong ferromagnetic property, whereas the small iron oxide NPs with strong interfacial interaction are mainly α-Fe2O3 or amorphous Fe2O3 with a nonmagnetic property. The results strongly suggest that the interfacial interaction plays a key role for the catalytic performance, and the experimental findings may provide guidance toward rational design of high-performance catalysts. PMID:25839786

  5. Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.

    PubMed

    Zhang, Hui; Liu, Jinyin; Zhao, Guanqi; Gao, Yongjun; Tyliszczak, Tolek; Glans, Per-Anders; Guo, Jinghua; Ma, Ding; Sun, Xu-Hui; Zhong, Jun

    2015-04-22

    We have stabilized the iron oxide nanoparticles (NPs) of various sizes on layered carbon materials (Fe-oxide/C) that show excellent catalytic performance. From the characterization of X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), scanning transmission X-ray microscopy (STXM) and X-ray magnetic circular dichroism spectroscopy (XMCD), a strong interfacial interaction in the Fe-oxide/C hybrids has been observed between the small iron oxide NPs and layered carbon in contrast to the weak interaction in the large iron oxide NPs. The interfacial interaction between the NPs and layered carbon is found to link with the improved catalytic performance. In addition, the Fe L-edge XMCD spectra show that the large iron oxide NPs are mainly γ-Fe2O3 with a strong ferromagnetic property, whereas the small iron oxide NPs with strong interfacial interaction are mainly α-Fe2O3 or amorphous Fe2O3 with a nonmagnetic property. The results strongly suggest that the interfacial interaction plays a key role for the catalytic performance, and the experimental findings may provide guidance toward rational design of high-performance catalysts.

  6. Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse

    NASA Astrophysics Data System (ADS)

    D'Orsogna, M. R.; Chuang, Y. L.; Bertozzi, A. L.; Chayes, L. S.

    2006-03-01

    Understanding collective properties of driven particle systems is significant for naturally occurring aggregates and because the knowledge gained can be used as building blocks for the design of artificial ones. We model self-propelling biological or artificial individuals interacting through pairwise attractive and repulsive forces. For the first time, we are able to predict stability and morphology of organization starting from the shape of the two-body interaction. We present a coherent theory, based on fundamental statistical mechanics, for all possible phases of collective motion.

  7. Self-propelled particles with soft-core interactions: patterns, stability, and collapse.

    PubMed

    D' Orsogna, M R; Chuang, Y L; Bertozzi, A L; Chayes, L S

    2006-03-17

    Understanding collective properties of driven particle systems is significant for naturally occurring aggregates and because the knowledge gained can be used as building blocks for the design of artificial ones. We model self-propelling biological or artificial individuals interacting through pairwise attractive and repulsive forces. For the first time, we are able to predict stability and morphology of organization starting from the shape of the two-body interaction. We present a coherent theory, based on fundamental statistical mechanics, for all possible phases of collective motion. PMID:16605738

  8. Stability of a strongly anisotropic thin epitaxial film in a wetting interaction with elastic substrate

    NASA Astrophysics Data System (ADS)

    Khenner, M.; Tekalign, W. T.; Levine, M. S.

    2011-01-01

    The linear dispersion relation for surface perturbations, as derived by Levine et al., Phys. Rev. B, 75 (2007) 205312, is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained solid films.

  9. Triethanolamine Stabilization of Methotrexate-β-Cyclodextrin Interactions in Ternary Complexes

    PubMed Central

    Barbosa, Jahamunna A. A.; Zoppi, Ariana; Quevedo, Mario A.; de Melo, Polyanne N.; de Medeiros, Arthur S. A.; Streck, Letícia; de Oliveira, Alice R.; Fernandes-Pedrosa, Matheus F.; Longhi, Marcela R.; da Silva-Júnior, Arnóbio A.

    2014-01-01

    The interaction of methotrexate (MTX) with beta-cyclodextrin (β-CD) in the presence of triethanolamine (TEA) was investigated with the aim to elucidate the mechanism whereby self-assembly cyclodextrin systems work in association with this third component. Solubility diagram studies showed synergic increment of the MTX solubility to be about thirty-fold. Experiments using 2D ROESY and molecular modeling studies revealed the inclusion of aromatic ring III of the drug into β-CD cavity, in which TEA contributes by intensifying MTX interaction with β-CD and stabilizes MTX:β-CD:TEA ternary complex by electrostatic interaction. The maintenance of these interactions in solid phase was also studied in ternary MTX:β-CD:TEA and comparisons were made with freeze dried binary MTX:β-CD and physical mixtures. FTIR studies evidenced that MTX–β-CD interaction remained in solid ternary complexes, which was also supported by thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TG)/first derivative of TG analysis (DTG) and C,N,H elementary analysis) and structural (X-ray diffraction analysis, (XRD)) studies, mainly regarding the increment of drug stability. The efficient in vitro drug dissolution studies successfully demonstrated the contribution of ternary complexes, which highlights the importance of this possible new raw material for further applications in drug delivery systems. PMID:25257529

  10. A polarization stabilizer up to 12.6 krad/s with an additional function of stable state of polarization transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Guang; Fang, Guang-Qing; Zhao, Xin-Yuan; Zhang, Wen-Bo; Xi, Li-Xia; Xiong, Qian-Jin; Li, Xi-Xiang; Zhang, Guang-Yong

    2010-04-01

    This paper reports on an experiment about a novel method of polarization stabilization. The polarization stabilizer proposed here has an additional function of polarization transformation from any state of polarization into any others. The particle swarm optimization is introduced as a control algorithm in the process of either searching or endless tracking. The tracking speed of the stabilizer is obtained up to 12.6 krad/s by using hardware we have in the laboratory, which means that we can achieve a higher speed practical polarization stabilizer if we have faster hardware.

  11. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

    PubMed Central

    Bouchet, Benjamin P; Gough, Rosemarie E; Ammon, York-Christoph; van de Willige, Dieudonnée; Post, Harm; Jacquemet, Guillaume; Altelaar, AF Maarten; Heck, Albert JR; Goult, Benjamin T; Akhmanova, Anna

    2016-01-01

    The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI: http://dx.doi.org/10.7554/eLife.18124.001 PMID:27410476

  12. Mor-Dalphos-Pd (II) oxidative addition complexes and related NH3 adducts: Insights into bonding and nonbonding interactions

    NASA Astrophysics Data System (ADS)

    de Lima Batista, Ana P.; Braga, Ataualpa A. C.

    2016-09-01

    The stabilizing effects and bonding properties of the Pd metallic center in [(κ2 -P,N-Mor-Dalphos)Pd(Ar)Cl] complexes and related NH3 adducts were investigated by density functional theory (DFT), the intrinsic bond orbital (IBO) approach and the Su-Li energy decomposition method (Su-Li EDA). The IBO analysis showed that the P atom from the P,N-Mor-Dalphos structure has stabilizing contributions in all Pd-Cl and Pd-NH3 bonds in the complexes. According to the Su-Li energy decomposition analysis, the main energy that drives the interaction between the [Mor-Dalphos-Pd(Ar)] moiety and Cl- is the electrostatic term, therefore, the electrostatic energy interaction between them might be an important factor for taking into account when designing other [Mor-Dalphos-Pd(Ar)]-Cl precatalysts.

  13. Theoretical and experimental studies of the stability of drug-drug interact.

    PubMed

    Soares, Monica F R; Alves, Lariza D S; Nadvorny, Daniela; Soares-Sobrinho, José L; Rolim-Neto, Pedro J

    2016-11-01

    Several factors can intervene in the molecular properties and consequently in the stability of drugs. The molecular complexes formation often occur due to favor the formation of hydrogen bonds, leading the system to configuration more energy stable. This work we aim to investigate through theoretical and experimental methods the relation between stability and properties of molecular complexes the molecular complex formed between the drugs, efavirenz (EFV), lamivudine (3TC) and zidovudine (AZT). With this study was possible determining the most stable complex formed between the compounds evaluated. In addition the energy and structural properties of the complex formed in relation to its individual components allowed us to evaluate the stability of the same. PMID:27267283

  14. Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains.

    PubMed

    Yang, Zhengrong; Wang, Chi; Zhou, Qingxian; An, Jianli; Hildebrandt, Ellen; Aleksandrov, Luba A; Kappes, John C; DeLucas, Lawrence J; Riordan, John R; Urbatsch, Ina L; Hunt, John F; Brouillette, Christie G

    2014-06-01

    Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide-binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full-length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification.

  15. Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains

    PubMed Central

    Yang, Zhengrong; Wang, Chi; Zhou, Qingxian; An, Jianli; Hildebrandt, Ellen; Aleksandrov, Luba A; Kappes, John C; DeLucas, Lawrence J; Riordan, John R; Urbatsch, Ina L; Hunt, John F; Brouillette, Christie G

    2014-01-01

    Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide-binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full-length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification. PMID:24652590

  16. Improving cyclic stability of lithium nickel manganese oxide cathode at elevated temperature by using dimethyl phenylphosphonite as electrolyte additive

    NASA Astrophysics Data System (ADS)

    Mai, Shaowei; Xu, Mengqing; Liao, Xiaolin; Xing, Lidan; Li, Weishan

    2015-01-01

    A novel electrolyte additive, dimethyl phenylphosphonite (DMPP), is reported in this paper to be able to improve significantly the cyclic stability of LiNi0.5Mn1.5O4 cathode of high voltage lithium ion battery at elevated temperature. When experiencing charge/discharge cycling at 50 °C with 1C (1C = 146.7 mAh g-1) rate in a standard (STD) electrolyte (1.0 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC), EC/DMC = 1/2 in volume), LiNi0.5Mn1.5O4 suffers serious discharge capacity decaying, with a capacity retention of 42% after 100 cycles. With adding 0.5% DMPP into the STD electrolyte, the capacity retention is increased to 91%. This improvement can be ascribed to the preferential oxidation of DMPP to the STD electrolyte and the subsequent formation of a protective film on LiNi0.5Mn1.5O4, which suppresses the electrolyte decomposition and protects LiNi0.5Mn1.5O4 from destruction. Theoretical calculations together with voltammetric analyses demonstrate the preferential oxidation of DMPP and the consequent suppression of electrolyte decomposition, while the observations from scanning electron microscopy, X-ray photoelectronic spectroscopy and Fourier transform infrared spectroscopy confirm the protection that DMPP provides for LiNi0.5Mn1.5O4.

  17. Effect of shock interactions on the attitude stability of a toroidal ballute for reentry vehicles

    NASA Astrophysics Data System (ADS)

    Otsu, Hirotaka; Abe, Takashi

    2016-03-01

    The effect of shock interactions on the attitude stability of a reentry vehicle system with a toroidal ballute was investigated. The hypersonic wind tunnel experimental results showed that when the shock interaction occurred near or outside the ballute, an unstable oscillation of the ballute was observed. This was caused by the local high-pressure region on the ballute surface created by the shock interaction between the shock from the reentry capsule and the shock from the ballute. To avoid this unstable oscillation, the radius of the ballute should be designed to be large enough so that the shock from the capsule will be located inside the ballute, which can avoid the local high-pressure region on the ballute surface.

  18. INPP5E interacts with AURKA, linking phosphoinositide signaling to primary cilium stability

    PubMed Central

    Plotnikova, Olga V.; Seo, Seongjin; Cottle, Denny L.; Conduit, Sarah; Hakim, Sandra; Dyson, Jennifer M.; Mitchell, Christina A.; Smyth, Ian M.

    2015-01-01

    ABSTRACT Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) cause the ciliopathies known as Joubert and MORM syndromes; however, the role of INPP5E in ciliary biology is not well understood. Here, we describe an interaction between INPP5E and AURKA, a centrosomal kinase that regulates mitosis and ciliary disassembly, and we show that this interaction is important for the stability of primary cilia. Furthermore, AURKA phosphorylates INPP5E and thereby increases its 5-phosphatase activity, which in turn promotes transcriptional downregulation of AURKA, partly through an AKT-dependent mechanism. These findings establish the first direct link between AURKA and phosphoinositide signaling and suggest that the function of INPP5E in cilia is at least partly mediated by its interactions with AURKA. PMID:25395580

  19. Structural and thermal stability of β-lactoglobulin as a result of interacting with sugar beet pectin.

    PubMed

    Qi, Phoebe X; Wickham, Edward D; Garcia, Rafael A

    2014-07-30

    Changes in the structural and thermal stability of β-lactoglobulin (β-LG) induced by interacting with sugar beet pectin (SBP) have been studied by circular dichroism (CD), Fourier transform infrared, and steady-state as well as time-resolved fluorescence spectroscopic techniques. It has been demonstrated that SBP not only is capable of binding to native β-LG but also causes a significant loss in antiparallel β-sheet, ∼10%, accompanied by an increase in either random coil or turn structures. In addition, the interaction also disrupted the environments of all aromatic residues including Trp, Phe, and Tyr of β-LG as evidenced by near-UV CD and fluorescence. When preheated β-LG was combined with SBP, the secondary structure of β-LG was partially recovered, ∼4% gain in antiparallel β-sheet, and Trp19 fluorescence was recovered slightly. Although forming complexes with SBP did not significantly impact the thermal stability of individual secondary structural elements of β-LG, the environment of Trp19 was protected considerably.

  20. The role of aromatic-aromatic interactions in strand-strand stabilization of β-sheets

    PubMed Central

    Budyak, Ivan L.; Zhuravleva, Anastasia; Gierasch, Lila M.

    2013-01-01

    Aromatic-aromatic interactions have long been believed to play key roles in protein structure, folding, and binding functions. Yet we still lack full understanding of the contributions of aromatic-aromatic interactions to protein stability and the timing of their formation during folding. Here, using as a case study an aromatic ladder in the β-barrel protein, cellular retinoic acid binding protein 1 (CRABP1), we find aromatic π stacking plays a greater role in the Phe65-Phe71 cross-strand pair while in another pair, Phe50-Phe65, hydrophobic interactions are dominant. The Phe65/Phe71 pair spans β-strands 4 and 5 in the β-barrel, which lack interstrand hydrogen bonding, and we speculate that it compensates energetically for the absence of strand-strand backbone interactions. Using perturbation analysis, we find that both aromatic-aromatic pairs form after the transition state for folding of CRABP1, thus playing a role in the final stabilization of the β-sheet rather than in its nucleation as had been earlier proposed. The aromatic interaction between strands 4–5 in CRABP1 is highly conserved in the intracellular lipid-binding protein (iLBP) family, and several lines of evidence combine to support a model wherein it acts to maintain barrel structure while allowing the dynamic opening that is necessary for ligand entry. Lastly, we carried out a bioinformatic analysis and found 51 examples of aromatic-aromatic interactions across non-hydrogen-bonded β-strands outside the iLBPs, arguing for the generality of the role played by this structural motif. PMID:23810905

  1. Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols

    SciTech Connect

    Koroesi, Laszlo; Papp, Szilvia; Hornok, Viktoria; Oszko, Albert; Petrik, Peter; Patko, Daniel; Horvath, Robert; Dekany, Imre

    2012-08-15

    Titanate nanotubes were synthesized from TiO{sub 2} in alkaline medium by a conventional hydrothermal method (150 Degree-Sign C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H{sub 3}PO{sub 4} aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N{sub 2}-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative results of using two kinds of acids shed light on the superior thermal stability of the H{sub 3}PO{sub 4}-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low ({approx}0.5 at%) concentration of P. After calcination at 500 Degree-Sign C, the specific surface areas of the HCl- and H{sub 3}PO{sub 4}-treated samples were 153 and 244 m{sup 2} g{sup -1}, respectively. The effects of H{sub 3}PO{sub 4} treatment on the structure, morphology and porosity of titanate nanotubes are discussed. - Graphical Abstract: TEM picture (left) shows P-TNTs with diameters about 5-6 nm. Inset shows a stable titanate nanotube sol illuminated by a 532 nm laser beam. Due to the presence of the nanoparticles the way of the light is visible in the sol. Cross sectional SEM picture (right) as well as ellipsometry revealed the formation of optical quality P-TNT films with thicknesses below 50 nm. Highlights: Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} treatment led to TNTs with high surface area even after calcination at 500 Degree-Sign C. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4}-treated TNTs preserved their nanotube morphology up to 500

  2. Probing Bio-Nano Interactions between Blood Proteins and Monolayer-Stabilized Graphene Sheets.

    PubMed

    Gan, Shiyu; Zhong, Lijie; Han, Dongxue; Niu, Li; Chi, Qijin

    2015-11-18

    Meeting proteins is regarded as the starting event for nanostructures to enter biological systems. Understanding their interactions is thus essential for a newly emerging field, nanomedicine. Chemically converted graphene (CCG) is a wonderful two-dimensional (2D) material for nanomedicine, but its stability in biological environments is limited. Systematic probing on the binding of proteins to CCG is currently lacking. Herein, we report a comprehensive study on the interactions between blood proteins and stabilized CCG (sCCG). CCG nanosheets are functionalized by monolayers of perylene leading to significant improvement in their resistance to electrolyte salts and long-term stability, but retain their core structural characteristics. Five types of model human blood proteins including human fibrinogen, γ-globulin, bovine serum albumin (BSA), insulin, and histone are tested. The main driving forces for blood protein binding involve the π-π interacations between the π-plane of sCCG and surface aromatic amonic acid (sAA) residues of proteins. Several key binding parameters including the binding amount, Hill coefficient, and binding constant are determined. Through a detailed analysis of key controlling factors, we conclude that the protein binding to sCCG is determined mainly by the protein size, the number, and the density of the sAA.

  3. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    PubMed Central

    Noda, Yuki; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours. PMID:24441566

  4. Skyrmion bubble stability in thin films with strong Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Caretta, Lucas; Bauer, Uwe; Churikova, Alexandra; Mann, Maxwell; Beach, Geoffrey

    The Dzyaloshinskii-Moriya interaction (DMI) at heavy-metal/FM interfaces stabilizes chiral spin textures, such as magnetic skyrmions. Magnetic skyrmions are applicable to energy efficient spintronics. However, room temperature stability of skyrmion bubbles (SBs) has not been quantified experimentally. We show when the ratio of the DMI effective field to the perpendicular anisotropy field is large, expanding bubble domains leave behind fine-scale dendritic structure, consisting of coupled 360 degree domain walls (DW). Dendritic structures are manipulated to form stable SBs. We imaged SBs in Pt(3nm)/Co(0.9nm)/Gd(1nm)/GdOx(30nm) films using Kerr microscopy to characterize the stability of SBs. We show that the field stability of SBs is a strong function of the applied in-plane field. Increasing in-plane field reduces the annihilation threshold of the skyrmions. The SB annihilation field becomes deterministic at in-plane fields near the DMI effective field. Simulations show Bloch points are formed in the SB DW at high in-plane fields, leading to the deterministic collapse of the bubbles.

  5. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  6. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    PubMed

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-01

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc.

  7. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    PubMed

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-01

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc. PMID:27241227

  8. Investigation of Nozzle Stability for the First Ovalization Mode by Numerical Solution of the Fluid Structure Interaction Problem

    NASA Astrophysics Data System (ADS)

    Schwane, R.; Zia, Y.

    2005-02-01

    The present paper validates results from numerical simulations for side load generation in rocket nozzles against related data from analytical models that are presently used for rocket engine nozzle design activities. Key words: Nozzle stability; nozzle ovalization; flow structure interaction.

  9. Stabilization of intermediate density states in globular proteins by homogeneous intramolecular attractive interactions.

    PubMed Central

    Bahar, I; Jernigan, R L

    1994-01-01

    On-lattice simulations of two-dimensional self-avoiding chains subject to homogeneous intramolecular attractive interactions were performed as a model for studying various density regimes in globular proteins. For short chains of less than 15 units, all conformations were generated and classified by density. The range of intramolecular interactions was found to increase uniformly with density, and the average number of topological contacts is directly proportional to density. The uniform interaction energy increases the probability of high density states but does not necessarily lead to dominance of the highest density state. Typically, several large peaks appear in the probability distribution of packing densities, their location and amplitude being determined by the balance between entropic effects enhancing more expanded conformations and attractive interactions favoring compact forms. Also, the homogeneous interaction energy affects the distribution of most probable interacting points in favor of the longer range interactions over the short range ones, but in addition it introduces some more detailed preferences even among short range interactions. There are some implications about the characteristics of the intermediate density states and also for the likelihood that the native state does not correspond completely to the lowest energy conformation. Images FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 PMID:8161699

  10. Developing Interactional Competence by Using TV Series in "English as an Additional Language" Classrooms

    ERIC Educational Resources Information Center

    Sert, Olcay

    2009-01-01

    This paper uses a combined methodology to analyse the conversations in supplementary audio-visual materials to be implemented in language teaching classrooms in order to enhance the Interactional Competence (IC) of the learners. Based on a corpus of 90.000 words (Coupling Corpus), the author tries to reveal the potentials of using TV series in …

  11. The BRCA1-interacting protein, Abraxas, is required for genomic stability and tumor suppression

    PubMed Central

    Castillo, Andy; Paul, Atanu; Sun, Baohua; Huang, Ting Hsiang; Wang, Yucai; Yazinski, Stephanie A.; Tyler, Jessica; Li, Lei; You, M James; Zou, Lee; Yao, Jun; Wang, Bin

    2014-01-01

    Summary Germline mutations of BRCA1 confer hereditary susceptibility to breast and ovarian cancer. However, somatic mutation of BRCA1 is infrequent in sporadic breast cancers. The BRCA1 protein C-terminus BRCT domains interact with multiple proteins and are required for BRCA1's tumor suppressor function. In this study, we demonstrated that Abraxas, a BRCA1 BRCT domain-interacting protein, plays a role in tumor suppression. Abraxas exerts its function through binding to BRCA1 to regulate DNA repair and maintain genome stability. Both homozygous and heterozygous Abraxas knockout mice exhibited decreased survival and increased tumor incidence. The gene encoding Abraxas suffers from gene copy loss and somatic mutations in multiple human cancers including breast, ovarian, and endometrial cancers, suggesting that mutation and loss of function of Abraxas may contribute to tumor development in human patients. PMID:25066119

  12. Protein-Protein Interaction Analysis Highlights Additional Loci of Interest for Multiple Sclerosis

    PubMed Central

    Ragnedda, Giammario; Disanto, Giulio; Giovannoni, Gavin; Ebers, George C.; Sotgiu, Stefano; Ramagopalan, Sreeram V.

    2012-01-01

    Genetic factors play an important role in determining the risk of multiple sclerosis (MS). The strongest genetic association in MS is located within the major histocompatibility complex class II region (MHC), but more than 50 MS loci of modest effect located outside the MHC have now been identified. However, the relative candidate genes that underlie these associations and their functions are largely unknown. We conducted a protein-protein interaction (PPI) analysis of gene products coded in loci recently reported to be MS associated at the genome-wide significance level and in loci suggestive of MS association. Our aim was to identify which suggestive regions are more likely to be truly associated, which genes are mostly implicated in the PPI network and their expression profile. From three recent independent association studies, SNPs were considered and divided into significant and suggestive depending on the strength of the statistical association. Using the Disease Association Protein-Protein Link Evaluator tool we found that direct interactions among genetic products were significantly higher than expected by chance when considering both significant regions alone (p<0.0002) and significant plus suggestive (p<0.007). The number of genes involved in the network was 43. Of these, 23 were located within suggestive regions and many of them directly interacted with proteins coded within significant regions. These included genes such as SYK, IL-6, CSF2RB, FCLR3, EIF4EBP2 and CHST12. Using the gene portal BioGPS, we tested the expression of these genes in 24 different tissues and found the highest values among immune-related cells as compared to non-immune tissues (p<0.001). A gene ontology analysis confirmed the immune-related functions of these genes. In conclusion, loci currently suggestive of MS association interact with and have similar expression profiles and function as those significantly associated, highlighting the fact that more common variants remain to be

  13. Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes

    SciTech Connect

    Baird, Nathan J.; Inglese, James; Ferré-D’Amaré, Adrian R.

    2015-12-07

    The structure and biological properties of RNAs are a function of changing cellular conditions, but comprehensive, simultaneous investigation of the effect of multiple interacting environmental variables is not easily achieved. We have developed an efficient, high-throughput method to characterize RNA structure and thermodynamic stability as a function of multiplexed solution conditions using Förster resonance energy transfer (FRET). In a single FRET experiment using conventional quantitative PCR instrumentation, 19,400 conditions of MgCl2, ligand and temperature are analysed to generate detailed empirical conformational and stability landscapes of the cyclic diguanylate (c-di-GMP) riboswitch. This method allows rapid comparison of RNA structure modulation by cognate and non-cognate ligands. Landscape analysis reveals that kanamycin B stabilizes a non-native, idiosyncratic conformation of the riboswitch that inhibits c-di-GMP binding. Our research demonstrates that allosteric control of folding, rather than direct competition with cognate effectors, is a viable approach for pharmacologically targeting riboswitches and other structured RNA molecules.

  14. Interacting closed string tachyon with modified Chaplygin gas and its stability

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.; Escamilla-Rivera, Celia; Faghani, H. R.

    2013-12-01

    In this paper, we have considered a closed string tachyon model with a constant dilaton field and interacted it with Chaplygin gas for evaluating cosmology parameters. The model has been studied in 26 dimensions, with 22 dimensions related to compactification on an internal nonflat space and its other 4 dimensions related to the Friedmann-Lemaître-Robertson-Walker metric. By taking the internal curvature as a negative constant, we reconstructed the closed string tachyon potential in terms of tachyon field as a quartic equation. The tachyon field and the scale factor have been achieved as a function of time evolution and geometry of curved space where the behavior of the scale factor describes an accelerated expansion of the Universe. Next, we discussed the stability of our model by introducing a sound speed factor, which must be, in our case, a positive function. By drawing sound speed against time evolution, we investigated stability conditions for a nonflat universe in its three stages: early, late, and future time. As a result we shall see that in these cases there remains an instability at early time and a stability point at late time.

  15. Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes

    NASA Astrophysics Data System (ADS)

    Baird, Nathan J.; Inglese, James; Ferré-D'Amaré, Adrian R.

    2015-12-01

    The structure and biological properties of RNAs are a function of changing cellular conditions, but comprehensive, simultaneous investigation of the effect of multiple interacting environmental variables is not easily achieved. We have developed an efficient, high-throughput method to characterize RNA structure and thermodynamic stability as a function of multiplexed solution conditions using Förster resonance energy transfer (FRET). In a single FRET experiment using conventional quantitative PCR instrumentation, 19,400 conditions of MgCl2, ligand and temperature are analysed to generate detailed empirical conformational and stability landscapes of the cyclic diguanylate (c-di-GMP) riboswitch. The method allows rapid comparison of RNA structure modulation by cognate and non-cognate ligands. Landscape analysis reveals that kanamycin B stabilizes a non-native, idiosyncratic conformation of the riboswitch that inhibits c-di-GMP binding. This demonstrates that allosteric control of folding, rather than direct competition with cognate effectors, is a viable approach for pharmacologically targeting riboswitches and other structured RNA molecules.

  16. Breadth versus depth: Interactions that stabilize particle assemblies to changes in density or temperature

    NASA Astrophysics Data System (ADS)

    Piñeros, William D.; Baldea, Michael; Truskett, Thomas M.

    2016-02-01

    We use inverse methods of statistical mechanics to explore trade-offs associated with designing interactions to stabilize self-assembled structures against changes in density or temperature. Specifically, we find isotropic, convex-repulsive pair potentials that maximize the density range for which a two-dimensional square lattice is the stable ground state subject to a constraint on the chemical potential advantage it exhibits over competing structures (i.e., "depth" of the associated minimum on the chemical potential hypersurface). We formulate the design problem as a nonlinear program, which we solve numerically. This allows us to efficiently find optimized interactions for a wide range of possible chemical potential constraints. We find that assemblies designed to exhibit a large chemical potential advantage at a specified density have a smaller overall range of densities for which they are stable. This trend can be understood by considering the separation-dependent features of the pair potential and its gradient required to enhance the stability of the target structure relative to competitors. Using molecular dynamics simulations, we further show that potentials designed with larger chemical potential advantages exhibit higher melting temperatures.

  17. Direct osmolyte-macromolecule interactions confer entropic stability to folded states.

    PubMed

    Rodríguez-Ropero, Francisco; van der Vegt, Nico F A

    2014-07-01

    Protective osmolytes are chemical compounds that shift the protein folding/unfolding equilibrium toward the folded state under osmotic stresses. The most widely considered protection mechanism assumes that osmolytes are depleted from the protein's first solvation shell, leading to entropic stabilization of the folded state. However, recent theoretical and experimental studies suggest that protective osmolytes may directly interact with the macromolecule. As an exemplary and experimentally well-characterized system, we herein discuss poly(N-isopropylacrylamide) (PNiPAM) in water whose folding/unfolding equilibrium shifts toward the folded state in the presence of urea. On the basis of molecular dynamics simulations of this specific system, we propose a new microscopic mechanism that explains how direct osmolyte-macromolecule interactions confer stability to folded states. We show that urea molecules preferentially accumulate in the first solvation shell of PNiPAM driven by attractive van der Waals dispersion forces with the hydrophobic isopropyl groups, leading to the formation of low entropy urea clouds. These clouds provide an entropic driving force for folding, resulting in preferential urea binding to the folded state and a decrease of the lower folding temperature in agreement with experiment. The simulations further indicate that thermodynamic nonideality of the bulk solvent opposes this driving force and may lead to denaturation, as illustrated by simulations of PNiPAM in aqueous solutions with dimethylurea. The proposed mechanism provides a new angle on relations between the properties of protecting and denaturing osmolytes, salting-in or salting-out effects, and solvent nonidealities.

  18. Strong nonlocal interaction stabilizes cavity solitons with a varying size plateau

    NASA Astrophysics Data System (ADS)

    Fernandez-Oto, Cristian; Tlidi, Mustapha; Escaff, Daniel; Clerc, Marcel; Kockaert, Pascal

    2014-05-01

    Cavity solitons are localized light peaks in the transverse section of nonlinear resonators. These structures are usually formed under a coexistence condition between a homogeneous background of radiation and a self- organized patterns resulting from a Turing type of instabilities. In this issue, most of studies have been realized ignoring the nonlocal effects. Non-local effects can play an important role in the formation of cavity solitons in optics, population dynamics and plant ecology. Depending on the choice of the nonlocal interaction function, the nonlocal coupling can be strong or weak. When the nonlocal coupling is strong, the interaction between fronts is controlled by the whole non-local interaction function. Recently it has shown that this type of nonlocal coupling strongly affects the dynamics of fronts connecting two homogeneous steady states and leads to the stabilization of cavity solitons with a varying size plateau. Here, we consider a ring passive cavity filled with a Kerr medium like a liquid crystal or left-handed materials and driven by a coherent injected beam. We show that cavity solitons resulting for strong front interaction are stable in one and two-dimensional setting out of any type of Turing instability. Their spatial profile is characterized by a varying size plateau. Our results can apply to large class of spatially extended systems with strong nonlocal coupling.

  19. Additive and Interactive Effects on Response Time Distributions in Visual Word Recognition

    ERIC Educational Resources Information Center

    Yap, Melvin J.; Balota, David A.

    2007-01-01

    Across 3 different word recognition tasks, distributional analyses were used to examine the joint effects of stimulus quality and word frequency on underlying response time distributions. Consistent with the extant literature, stimulus quality and word frequency produced additive effects in lexical decision, not only in the means but also in the…

  20. The emotion potential of simple sentences: additive or interactive effects of nouns and adjectives?

    PubMed Central

    Lüdtke, Jana; Jacobs, Arthur M.

    2015-01-01

    The vast majority of studies on affective processes in reading focus on single words. The most robust finding is a processing advantage for positively valenced words, which has been replicated in the rare studies investigating effects of affective features of words during sentence or story comprehension. Here we were interested in how the different valences of words in a sentence influence its processing and supralexical affective evaluation. Using a sentence verification task we investigated how comprehension of simple declarative sentences containing a noun and an adjective depends on the valences of both words. The results are in line with the assumed general processing advantage for positive words. We also observed a clear interaction effect, as can be expected from the affective priming literature: sentences with emotionally congruent words (e.g., The grandpa is clever) were verified faster than sentences containing emotionally incongruent words (e.g., The grandpa is lonely). The priming effect was most prominent for sentences with positive words suggesting that both, early processing as well as later meaning integration and situation model construction, is modulated by affective processing. In a second rating task we investigated how the emotion potential of supralexical units depends on word valence. The simplest hypothesis predicts that the supralexical affective structure is a linear combination of the valences of the nouns and adjectives (Bestgen, 1994). Overall, our results do not support this: The observed clear interaction effect on ratings indicate that especially negative adjectives dominated supralexical evaluation, i.e., a sort of negativity bias in sentence evaluation. Future models of sentence processing thus should take interactive affective effects into account. PMID:26321975

  1. The addition of a hydroxyapatite coating changes the immediate postoperative stability of a plasma-sprayed femoral stem.

    PubMed

    Race, Amos; Heffernan, Christopher D; Sharkey, Peter F

    2011-02-01

    Nonbiologic and mechanical effects of hydroxyapatite coatings have received little evaluation. Hydroxyapatite coatings give porous metal the appearance of decreased roughness. We hypothesized that this apparent decrease in surface roughness would result in diminished initial implant stability. We measured the initial stability of titanium plasma sprayed press-fit femoral stems with and without HA. Stems were implanted into cadaver and synthetic femora and subjected to aggressive stair-climbing loads. Migrations (retroversion and subsidence) and cyclic motions were recorded. Hydroxyapatite coating significantly reduced retroversion (P = .0007) and cyclic subsidence (P = .0086). Scanning electron microscopy imaging revealed that HA coating appeared to have reduced roughness on a millimeter scale but increased roughness on a micrometer scale. We concluded that HA coating improves initial stability through mechanical means, before biological action.

  2. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  3. The First Residue of the PWWP Motif Modulates HATH Domain Binding, Stability, and Protein-Protein Interaction.

    PubMed

    Hung, Yi-Lin; Lee, Hsia-Ju; Jiang, Ingjye; Lin, Shang-Chi; Lo, Wei-Cheng; Lin, Yi-Jan; Sue, Shih-Che

    2015-07-01

    Hepatoma-derived growth factor (hHDGF) and HDGF-related proteins (HRPs) contain conserved N-terminal HATH domains with a characteristic structural motif, namely the PWWP motif. The HATH domain has attracted attention because of its ability to bind with heparin/heparan sulfate, DNA, and methylated histone peptide. Depending on the sequence of the PWWP motif, HRP HATHs are classified into P-type (Pro-His-Trp-Pro) and A-type (Ala-His-Trp-Pro) forms. A-type HATH is highly unstable and tends to precipitate in solution. We replaced the Pro residue in P-type HATHHDGF with Ala and evaluated the influence on structure, dynamics, and ligand binding. Nuclear magnetic resonance (NMR) hydrogen/deuterium exchange and circular dichroism (CD) measurements revealed reduced stability. Analysis of NMR backbone (15)N relaxations (R1, R2, and nuclear Overhauser effect) revealed additional backbone dynamics in the interface between the β-barrel and the C-terminal helix bundle. The β1-β2 loop, where the AHWP sequence is located, has great structural flexibility, which aids HATH-HATH interaction through the loop. A-type HATH, therefore, shows a stronger tendency to aggregate when binding with heparin and DNA oligomers. This study defines the role of the first residue of the PWWP motif in modulating HATH domain stability and oligomer formation in binding.

  4. Interactions across the interface contribute the stability of homodimeric 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase.

    PubMed

    Hwang, Chi-Ching; Hsu, Chao-Nan; Huang, Tzu-Jung; Chiou, Shean-Jaw; Hong, Yi-Ren

    2009-10-01

    The dimerization of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase was studied by interrupting the salt bridge interactions between D249 and R167 in the dimeric interface. Substitution of alanine, lysine and serine for D249 decreased catalytic efficiency 30, 1400 and 1.4-fold, and lowered the melting temperature 6.9, 5.4 and 7.6 degrees C, respectively. The mutated enzymes have the dimeric species but the equilibrium between monomer and dimer for these mutants varies from each other, implying that these residues might contribute differently to the dimer stability. Thermal and urea-induced unfolding profiles for wild-type and mutant enzymes appeared as a two-state transition and three-state transition, respectively. In addition, mutation on D249 breaks the salt bridges and causes different effects on the loss of enzymatic activity for D249A, D249K and D249S mutants in the urea-induced unfolding profiles. Hence, D249 at the dimeric interface in 3alpha-HSD/CR is essential for conformational stability, oligomeric integrity and enzymatic activity. PMID:19683506

  5. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle.

    PubMed

    Amor, Alvaro J; Schmitz, Karl R; Sello, Jason K; Baker, Tania A; Sauer, Robert T

    2016-06-17

    The ClpXP protease assembles in a reaction in which an ATP-bound ring hexamer of ClpX binds to one or both heptameric rings of the ClpP peptidase. Contacts between ClpX IGF-loops and clefts on a ClpP ring stabilize the complex. How ClpXP stability is maintained during the ATP-hydrolysis cycle that powers mechanical unfolding and translocation of protein substrates is poorly understood. Here, we use a real-time kinetic assay to monitor the effects of nucleotides on the assembly and disassembly of ClpXP. When ATP is present, complexes containing single-chain ClpX assemble via an intermediate and remain intact until transferred into buffers containing ADP or no nucleotides. ATP binding to high-affinity subunits of the ClpX hexamer prevents rapid dissociation, but additional subunits must be occupied to promote assembly. Small-molecule acyldepsipeptides, which compete with the IGF loops of ClpX for ClpP-cleft binding, cause exceptionally rapid dissociation of otherwise stable ClpXP complexes, suggesting that the IGF-loop interactions with ClpP must be highly dynamic. Our results indicate that the ClpX hexamer spends almost no time in an ATP-free state during the ATPase cycle, allowing highly processive degradation of protein substrates.

  6. Reversibly Switching Bilayer Permeability and Release Modules of Photochromic Polymersomes Stabilized by Cooperative Noncovalent Interactions.

    PubMed

    Wang, Xiaorui; Hu, Jinming; Liu, Guhuan; Tian, Jie; Wang, Huijuan; Gong, Ming; Liu, Shiyong

    2015-12-01

    We report on the fabrication of photochromic polymersomes exhibiting photoswitchable and reversible bilayer permeability from newly designed poly(ethylene oxide)-b-PSPA (PEO-b-PSPA) diblock copolymers, where SPA is spiropyran (SP)-based monomer containing a unique carbamate linkage. Upon self-assembling into polymersomes, SP moieties within vesicle bilayers undergo reversible phototriggered isomerization between hydrophobic spiropyran (SP, λ2 > 450 nm irradiation) and zwitterionic merocyanine (MC, λ1 < 420 nm irradiation) states. For both SP and MC polymersomes, their microstructures are stabilized by multiple cooperative noncovalent interactions including hydrophobic, hydrogen bonding, π-π stacking, and paired electrostatic (zwitterionic) interactions, with the latter two types being exclusive for MC polymersomes. Control experiments using analogous block copolymers of hydrophobic SP monomer with a carbonate linkage (SPO) and conventional spiropyran methacrylate monomer (SPMA) containing a single ester functionality were then conducted, revealing that carbamate-incurred hydrogen bonding interactions in PEO-b-PSPA are crucial for polymersome stabilization in the zwitterionic MC state. Moreover, reversible phototriggered SP-to-MC polymersome transition is accompanied by membrane polarity and permeability switching from being nonimpermeable to selectively permeable toward noncharged, charged, and zwitterionic small molecule species below critical molar masses. Intriguingly, UV-actuated MC polymersomes possess two types of release modules: (1) sustained release upon short UV irradiation duration by taking advantage of the unexpectedly slow spontaneous MC-to-SP transition kinetics (t1/2 > 20 h) under dark conditions; (2) on-demand and switchable release under alternated UV-vis light irradiation. We further demonstrate photoswitchable spatiotemporal release of 4',6-diamidino-2-phenylindole (DAPI, cell nuclei-staining dye) within living HeLa cells.

  7. Reversibly Switching Bilayer Permeability and Release Modules of Photochromic Polymersomes Stabilized by Cooperative Noncovalent Interactions.

    PubMed

    Wang, Xiaorui; Hu, Jinming; Liu, Guhuan; Tian, Jie; Wang, Huijuan; Gong, Ming; Liu, Shiyong

    2015-12-01

    We report on the fabrication of photochromic polymersomes exhibiting photoswitchable and reversible bilayer permeability from newly designed poly(ethylene oxide)-b-PSPA (PEO-b-PSPA) diblock copolymers, where SPA is spiropyran (SP)-based monomer containing a unique carbamate linkage. Upon self-assembling into polymersomes, SP moieties within vesicle bilayers undergo reversible phototriggered isomerization between hydrophobic spiropyran (SP, λ2 > 450 nm irradiation) and zwitterionic merocyanine (MC, λ1 < 420 nm irradiation) states. For both SP and MC polymersomes, their microstructures are stabilized by multiple cooperative noncovalent interactions including hydrophobic, hydrogen bonding, π-π stacking, and paired electrostatic (zwitterionic) interactions, with the latter two types being exclusive for MC polymersomes. Control experiments using analogous block copolymers of hydrophobic SP monomer with a carbonate linkage (SPO) and conventional spiropyran methacrylate monomer (SPMA) containing a single ester functionality were then conducted, revealing that carbamate-incurred hydrogen bonding interactions in PEO-b-PSPA are crucial for polymersome stabilization in the zwitterionic MC state. Moreover, reversible phototriggered SP-to-MC polymersome transition is accompanied by membrane polarity and permeability switching from being nonimpermeable to selectively permeable toward noncharged, charged, and zwitterionic small molecule species below critical molar masses. Intriguingly, UV-actuated MC polymersomes possess two types of release modules: (1) sustained release upon short UV irradiation duration by taking advantage of the unexpectedly slow spontaneous MC-to-SP transition kinetics (t1/2 > 20 h) under dark conditions; (2) on-demand and switchable release under alternated UV-vis light irradiation. We further demonstrate photoswitchable spatiotemporal release of 4',6-diamidino-2-phenylindole (DAPI, cell nuclei-staining dye) within living HeLa cells. PMID:26583385

  8. Pursuing Financial Stability: A Resource Dependence Perspective on Interactions between Pro-Vice Chancellors in a Network of Universities

    ERIC Educational Resources Information Center

    Pilbeam, Colin

    2012-01-01

    In resource-constrained environments universities increasingly must interact collaboratively and competitively to ensure financial stability. Such interactions are supported by the actions of senior university managers. This study investigated the extent and purpose of the interconnections between members of two groups of pro-vice chancellors…

  9. The influence of additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys.

    PubMed

    Gebhardt, T; Music, D; Ekholm, M; Abrikosov, I A; Vitos, L; Dick, A; Hickel, T; Neugebauer, J; Schneider, J M

    2011-06-22

    We have studied the influence of additions of Al and Si on the lattice stability of face-centred-cubic (fcc) versus hexagonal-closed-packed (hcp) Fe-Mn random alloys, considering the influence of magnetism below and above the fcc Néel temperature. Employing two different ab initio approaches with respect to basis sets and treatment of magnetic and chemical disorder, we are able to quantify the predictive power of the ab initio methods. We find that the addition of Al strongly stabilizes the fcc lattice independent of the regarded magnetic states. For Si a much stronger dependence on magnetism is observed. Compared to Al, almost no volume change is observed as Si is added to Fe-Mn, indicating that the electronic contributions are responsible for stabilization/destabilization of the fcc phase.

  10. The Development of Mathematical Prediction Model to Predict Resilient Modulus for Natural Soil Stabilized by Pofa-Opc Additive for the Use in Unpaved Road Design

    NASA Astrophysics Data System (ADS)

    Gamil, Y. M. R.; Bakar, I. H.

    2016-07-01

    Resilient Modulus (Mr) is considered one of the most important parameters in the design of road structure. This paper describes the development of the mathematical model to predict resilient modulus of organic soil stabilized by the mix of Palm Oil Fuel Ash - Ordinary Portland Cement (POFA-OPC) soil stabilization additives. It aims to optimize the use of the use of POFA in soil stabilization. The optimization models enable to eliminate the arbitrary selection and its associated disadvantages in determination of the optimum additive proportion. The model was developed based on Scheffe regression theory. The mix proportions of the samples in the experiment were adopted from similar studies reported in the literature Twenty five samples were designed, prepared and then characterized for each mix proportion based on the MR in 28 days curing. The results are used to develop the mathematical prediction model. The model was statistically analyzed and verified for its adequacy and validity using F-test.

  11. Additive effect of repeated bouts of individualized frequency whole body vibration on postural stability in young adults.

    PubMed

    Dickin, D Clark; Heath, Jacqueline E

    2014-08-01

    Whole body vibration (WBV) has been shown to improve force and power output as well as flexibility and speed, with improvements suggested to result from reduced electromechanical delays, improved rate of force development, and sensitivity of muscle spindles. Fixed frequency studies on postural control have been somewhat equivocal; however, individualized frequency protocols have shown promising results in other motor tasks. To assess this, 18 healthy young adults experienced three 4-minute WBV sessions with postural control assessed before vibration, after multiple exposures, and during recovery, with altered levels of sensory information available to the participants. Sway velocity, sway path length, and sway area were assessed in each environment. Study findings revealed that stability was impacted following WBV, with more challenging environments eliciting improvements persisting for 20 minutes. When the environment was less challenging, postural stability was impaired; however, the effects dissipated quickly (10-20 min). It was determined that exposure to individualized frequency WBV served to impair postural control when the challenge was low, but resulted in heightened stability when the overall challenge was high and vestibular information was needed for stability.

  12. Polar interactions trump hydrophobicity in stabilizing the self-inserting membrane protein Mistic.

    PubMed

    Broecker, Jana; Fiedler, Sebastian; Gimpl, Katharina; Keller, Sandro

    2014-10-01

    Canonical integral membrane proteins are attached to lipid bilayers through hydrophobic transmembrane helices, whose topogenesis requires sophisticated insertion machineries. By contrast, membrane proteins that, for evolutionary or functional reasons, cannot rely on these machineries need to resort to driving forces other than hydrophobicity. A striking example is the self-inserting Bacillus subtilis protein Mistic, which is involved in biofilm formation and has found application as a fusion tag supporting the recombinant production and bilayer insertion of other membrane proteins. Although this unusual protein contains numerous polar and charged residues and lacks characteristic membrane-interaction motifs, it is tightly bound to membranes in vivo and membrane-mimetic systems in vitro. Therefore, we set out to quantify the contributions from polar and nonpolar interactions to the coupled folding and insertion of Mistic. To this end, we defined conditions under which the protein can be unfolded completely and reversibly from various detergent micelles by urea in a two-state equilibrium and where the unfolded state is independent of the detergent used for solubilizing the folded state. This enabled equilibrium unfolding experiments previously used for soluble and β-barrel membrane proteins, revealing that polar interactions with ionic and zwitterionic headgroups and, presumably, the interfacial dipole potential stabilize the protein much more efficiently than nonpolar interactions with the micelle core. These findings unveil the forces that allow a protein to tightly interact with a membrane-mimetic environment without major hydrophobic contributions and rationalize the differential suitability of detergents for the extraction and solubilization of Mistic-tagged membrane proteins.

  13. Nature of aryl-tyrosine interactions contribute to β-hairpin scaffold stability: NMR evidence for alternate ring geometry.

    PubMed

    Makwana, Kamlesh Madhusudan; Mahalakshmi, Radhakrishnan

    2015-02-14

    The specific contribution of the acidic-aromatic β-sheet favouring amino acid tyrosine to the stability of short octapeptide β-hairpin structures is presented here. Solution NMR analysis in near-apolar environments suggests the energetically favourable mode of interaction to be T-shaped face-to-edge (FtE) and that a Trp-Tyr interacting pair is the most stabilizing. Alternate aryl geometries also exist in solution, which readily equilibrate between a preferred π···π conformation to an aromatic-amide conformation, without any change in the backbone structure. While the phenolic ring is readily accommodated at the "edge" of FtE aryl interactions, it exhibits an overall lowered contribution to scaffold stability in the "face" orientation. Such differential tyrosine interactions are key to its dual nature in proteins.

  14. Stabilization of Long-Range Order by Additional Anisotropic Spins in Two-Dimensional Isotropic Heisenberg Antiferromagnets —A Possible Model of an Organic Compound with Magnetic Anions—

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi; Ito, Kazuhiro

    2014-11-01

    We examine a two-dimensional (2D) coupled antiferromagnetic (AF) Heisenberg model that consists of two subsystems: an isotropic S = 1/2 spin subsystem with strong AF exchange interactions (main system), and a uniaxial S = 5/2 spin subsystem with weak exchange interactions. This model is an example in which additional semiclassical degrees of freedom affect a quantum system; it also describes a possible stabilization mechanism of AF long-range order (LRO) in the 2D organic compound λ-(BETS)2FeCl4, where BETS stands for bis(ethylenedithio)tetraselenafulvalene. Previous experimental studies have revealed that 3d spins on FeCl4 anions passively follow the AF LRO of the π-electron system in the BETS layers, although the AF LRO is stabilized by the 3d spins themselves. To explain this paradoxical behavior, we examine a scenario in which the uniaxial anisotropy of the 3d spins stabilizes the AF LRO on an isotropic 2D π-spin system. We extend Green's function theory, called the Tyablikov approximation, to the present system, which describes spin-wave excitations and is consistent with the Mermin-Wagner theorem. It is shown that even extremely weak interactions with the uniaxial subsystem efficiently stabilize the AF LRO in the main system, even in the absence of AF exchange interactions in the uniaxial subsystem. The AF LRO is triggered by the uniaxial subsystem, but the sublattice magnetization remains smaller than that of the main system in the high-temperature region. These results are consistent with experimental data for λ-(BETS)2FeCl4 and λ-(BETS)2GaCl4; the latter does not have the 3d spins and does not exhibit the AF LRO.

  15. Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities

    SciTech Connect

    Itasse, Maxime Brazier, Jean-Philippe Léon, Olivier Casalis, Grégoire

    2015-08-15

    Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.

  16. RNA polymerase pausing regulates translation initiation by providing additional time for TRAP-RNA interaction.

    PubMed

    Yakhnin, Alexander V; Yakhnin, Helen; Babitzke, Paul

    2006-11-17

    RNA polymerase (RNAP) pause sites have been identified in several prokaryotic genes. Although the presumed biological function of RNAP pausing is to allow synchronization of RNAP position with regulatory factor binding and/or RNA folding, a direct causal link between pausing and changes in gene expression has been difficult to establish. RNAP pauses at two sites in the Bacillus subtilis trpEDCFBA operon leader. Pausing at U107 and U144 participates in transcription attenuation and trpE translation control mechanisms, respectively. Substitution of U144 caused a substantial pausing defect in vitro and in vivo. These mutations led to increased trp operon expression that was suppressed by overproduction of TRAP, indicating that pausing at U144 provides additional time for TRAP to bind to the nascent transcript and promote formation of an RNA structure that blocks translation of trpE. These results establish that pausing is capable of playing a role in regulating translation in bacteria. PMID:17114058

  17. Violation of fluctuation-dissipation theorem in the off-equilibrium dynamics of a system with non additive interactions

    SciTech Connect

    Pinto, O. A.; Ramirez-Pastor, A. J.; Nieto, F.; Roma, F.

    2011-03-24

    In this work we study the critical equilibrium properties and the off-equilibrium dynamics of an Ising system with non additive interactions. The traditional assumption of additivity is modified for one more general, where the energy of exchange J between two spins depends on their neighbourhood. First, for several non additive situations, we calculated the critical temperature T{sub c} by using paralell tempering Monte Carlo in the canonical assemble and standard finite-size scaling techniques. Then, we carry out a quench from infinite temperature to a low temperature below T{sub c}(off-equilibrium dynamics protocol) and we compute two-time correlation and response functions. We find a violation of fluctuation-dissipation theorem like coarsening systems. All this was done for several waiting time and several non additive situations. Finally, we analyze the scaling of correlation and response functions for a critical quench from infinite temperature.

  18. Addition of Small Electrophiles to N-Heterocyclic-Carbene-Stabilized Disilicon(0): A Revisit of the Isolobal Concept in Low-Valent Silicon Chemistry.

    PubMed

    Arz, Marius I; Straßmann, Martin; Geiß, Daniel; Schnakenburg, Gregor; Filippou, Alexander C

    2016-04-01

    Protonation and alkylation of (Idipp)Si═Si(Idipp) (1) afforded the mixed-valent disilicon(I)-borates [(Idipp)(R)Si(II)═Si(0)(Idipp)][B(Ar(F))4] (1R[B(Ar(F))4]; R = H, Me, Et; Ar(F) = C6H3-3,5-(CF3)2; Idipp = C[N(C6H3-2,6-iPr2)CH]2) as red to orange colored, highly air-sensitive solids, which were characterized by single-crystal X-ray diffraction, IR spectroscopy and multinuclear NMR spectroscopy. Dynamic NMR studies in solution revealed a degenerate isomerization (topomerization) of the "σ-bonded" tautomers of 1H[B(Ar(F))4], which proceeds according to quantum chemical calculations via a NHC-stabilized (NHC = N-heterocyclic carbene) disilahydronium ion ("π-bonded" isomer) and is reminiscent of the degenerate rearrangement of carbenium ions formed upon protonation of olefins. The topomerization of 1H[B(Ar(F))4] provides the first example of a reversible 1,2-H migration along a Si═Si bond observed in a molecular system. In contrast, 1Me[B(Ar(F))4] adopts a "rigid" structure in solution due to the higher energy required for the interconversion of the "σ-bonded" isomer into a putative NHC-stabilized disilamethonium ion. Addition of alkali metal borates to 1 afforded the alkali metal disilicon(0) borates 1M[BAr4] (M = Li, Ar = C6F5; M = Na, Ar = Ar(F)) as brown, air-sensitive solids. Single-crystal X-ray diffraction analyses and NMR spectroscopic studies of 1M[BAr4] suggest in concert with quantum chemical calculations that encapsulation of the alkali metal cations in the cavity of 1 predominantly occurs via electrostatic cation-π interactions with the Si═Si π-bond and the peripheral NHC aryl rings. Displacement of the [Si(NHC)] fragments by the isolobal fragments [PR] and [SiR](-) interrelates the cations [(NHC)(R)Si═Si(NHC)](+) to a series of familiar, multiply bonded Si and P compounds as verified by analyses of their electronic structures.

  19. Addition of Small Electrophiles to N-Heterocyclic-Carbene-Stabilized Disilicon(0): A Revisit of the Isolobal Concept in Low-Valent Silicon Chemistry.

    PubMed

    Arz, Marius I; Straßmann, Martin; Geiß, Daniel; Schnakenburg, Gregor; Filippou, Alexander C

    2016-04-01

    Protonation and alkylation of (Idipp)Si═Si(Idipp) (1) afforded the mixed-valent disilicon(I)-borates [(Idipp)(R)Si(II)═Si(0)(Idipp)][B(Ar(F))4] (1R[B(Ar(F))4]; R = H, Me, Et; Ar(F) = C6H3-3,5-(CF3)2; Idipp = C[N(C6H3-2,6-iPr2)CH]2) as red to orange colored, highly air-sensitive solids, which were characterized by single-crystal X-ray diffraction, IR spectroscopy and multinuclear NMR spectroscopy. Dynamic NMR studies in solution revealed a degenerate isomerization (topomerization) of the "σ-bonded" tautomers of 1H[B(Ar(F))4], which proceeds according to quantum chemical calculations via a NHC-stabilized (NHC = N-heterocyclic carbene) disilahydronium ion ("π-bonded" isomer) and is reminiscent of the degenerate rearrangement of carbenium ions formed upon protonation of olefins. The topomerization of 1H[B(Ar(F))4] provides the first example of a reversible 1,2-H migration along a Si═Si bond observed in a molecular system. In contrast, 1Me[B(Ar(F))4] adopts a "rigid" structure in solution due to the higher energy required for the interconversion of the "σ-bonded" isomer into a putative NHC-stabilized disilamethonium ion. Addition of alkali metal borates to 1 afforded the alkali metal disilicon(0) borates 1M[BAr4] (M = Li, Ar = C6F5; M = Na, Ar = Ar(F)) as brown, air-sensitive solids. Single-crystal X-ray diffraction analyses and NMR spectroscopic studies of 1M[BAr4] suggest in concert with quantum chemical calculations that encapsulation of the alkali metal cations in the cavity of 1 predominantly occurs via electrostatic cation-π interactions with the Si═Si π-bond and the peripheral NHC aryl rings. Displacement of the [Si(NHC)] fragments by the isolobal fragments [PR] and [SiR](-) interrelates the cations [(NHC)(R)Si═Si(NHC)](+) to a series of familiar, multiply bonded Si and P compounds as verified by analyses of their electronic structures. PMID:26978031

  20. Development and testing of the Minimum Additive Waste Stabilization (MAWS) system for Fernald wastes. Phase 1, Final report

    SciTech Connect

    Fu, S.S.; Matlack, K.S.; Mohr, R.K.; Brandys, M. Hojaji, H.; Bennett, S.; Ruller, J.; Pegg, I.L.

    1994-12-01

    This report presents results of a treatability study for the evaluation of the MAWS process for wastes stored at the Fernald Environmental Management Project (FEMP) site. Wastes included in the study were FEMP Pit 5 sludges, soil-wash fractions, and ion exchange media from a water treatment system supporting a soil washing system. MAWS offers potential for treating a variety of waste streams to produce a more leach resistant waste form at a lower cost than, say, cement stabilization.

  1. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).

    PubMed

    Nsa, Imade Y; Kareem, Kehinde T

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar "White" and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar "White" was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures. PMID:26483824

  2. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).

    PubMed

    Nsa, Imade Y; Kareem, Kehinde T

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar "White" and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar "White" was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures.

  3. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp)

    PubMed Central

    Nsa, Imade Y.; Kareem, Kehinde T.

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar “White” and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar “White” was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures. PMID:26483824

  4. Wuho Is a New Member in Maintaining Genome Stability through its Interaction with Flap Endonuclease 1

    PubMed Central

    Cheng, I-Cheng; Chen, Betty Chamay; Shuai, Hung-Hsun; Chien, Fan-Ching; Chen, Peilin; Hsieh, Tao-shih

    2016-01-01

    Replication forks are vulnerable to wayward nuclease activities. We report here our discovery of a new member in guarding genome stability at replication forks. We previously isolated a Drosophila mutation, wuho (wh, no progeny), characterized by a severe fertility defect and affecting expression of a protein (WH) in a family of conserved proteins with multiple WD40 repeats. Knockdown of WH by siRNA in Drosophila, mouse, and human cultured cells results in DNA damage with strand breaks and apoptosis through ATM/Chk2/p53 signaling pathway. Mice with mWh knockout are early embryonic lethal and display DNA damage. We identify that the flap endonuclease 1 (FEN1) is one of the interacting proteins. Fluorescence microscopy showed the localization of WH at the site of nascent DNA synthesis along with other replication proteins, including FEN1 and PCNA. We show that WH is able to modulate FEN1’s endonucleolytic activities depending on the substrate DNA structure. The stimulatory or inhibitory effects of WH on FEN1’s flap versus gap endonuclease activities are consistent with the proposed WH’s functions in protecting the integrity of replication fork. These results suggest that wh is a new member of the guardians of genome stability because it regulates FEN1’s potential DNA cleavage threat near the site of replication. PMID:26751069

  5. Enhanced thermal stability and pH behavior of glucose oxidase on electrostatic interaction with polyethylenimine.

    PubMed

    Padilla-Martínez, Silvia G; Martínez-Jothar, Lucía; Sampedro, José G; Tristan, Ferdinando; Pérez, Elías

    2015-04-01

    Electrostatic interactions, mediated by ionic-exchange, between polyethylenimine (PEI) and glucose oxidase (GOx) were used to form GOx-PEI macro-complex, which were evaluated for pH and thermal stability of GOx. Under the experimental conditions, the complex had a dominant GOx presence on its surface and a hydrodynamic diameter of 205 ± 16 nm. Activity was evaluated from 40 to 75 °C, and at pH from 2 to 12. GOx activity in complex was maintained up to 70 °C and it was lost at 75 °C. In contrast, free GOx showed a maximum activity at 50 °C, which was completely lost at 70 °C. This difference, observed by fluorescence analysis, was associated with the compact unfolded structure of GOx in the complex. This GOx stability was not observed under pH variations, and complex formation was only possible at pH ≥ 5 where enzymatic activity was diminished by the presence of PEI.

  6. Endophilin A1 regulates dendritic spine morphogenesis and stability through interaction with p140Cap

    PubMed Central

    Yang, Yanrui; Wei, Mengping; Xiong, Ying; Du, Xiangyang; Zhu, Shaoxia; Yang, Lin; Zhang, Chen; Liu, Jia-Jia

    2015-01-01

    Dendritic spines are actin-rich membrane protrusions that are the major sites of excitatory synaptic input in the mammalian brain, and their morphological plasticity provides structural basis for learning and memory. Here we report that endophilin A1, with a well-established role in clathrin-mediated synaptic vesicle endocytosis at the presynaptic terminal, also localizes to dendritic spines and is required for spine morphogenesis, synapse formation and synaptic function. We identify p140Cap, a regulator of cytoskeleton reorganization, as a downstream effector of endophilin A1 and demonstrate that disruption of their interaction impairs spine formation and maturation. Moreover, we demonstrate that knockdown of endophilin A1 or p140Cap impairs spine stabilization and synaptic function. We further show that endophilin A1 regulates the distribution of p140Cap and its downstream effector, the F-actin-binding protein cortactin as well as F-actin enrichment in dendritic spines. Together, these results reveal a novel function of postsynaptic endophilin A1 in spine morphogenesis, stabilization and synaptic function through the regulation of p140Cap. PMID:25771685

  7. Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface.

    PubMed

    Gao, Junfeng; Zhao, Jijun

    2012-01-01

    Using ab initio methods, we have investigated the structures and stabilities of Si(N) clusters (N ≤ 24) on Ag(111) surface as the initial stage of silicene growth. Unlike the dome-shaped graphene clusters, Si clusters prefer nearly flat structures with low buckling, more stable than directly deposition of the 3D freestanding Si clusters on Ag surface. The p-d hybridization between Ag and Si is revealed as well as sp(2) characteristics in Si(N)@Ag(111). Three types of silicene superstructures on Ag(111) surface have been considered and the simulated STM images are compared with experimental observations. Molecular dynamic simulations show high thermal stability of silicene on Ag(111) surfaces, contrast to that on Rh(111). The present theoretical results constitute a comprehensive picture about the interaction mechanism of silicene on Ag(111) surface and explain the superiority of Ag substrate for silicene growth, which would be helpful for improving the experimentally epitaxial growth of silicene.

  8. Direct osmolyte-macromolecule interactions confer entropic stability to folded states.

    PubMed

    Rodríguez-Ropero, Francisco; van der Vegt, Nico F A

    2014-07-01

    Protective osmolytes are chemical compounds that shift the protein folding/unfolding equilibrium toward the folded state under osmotic stresses. The most widely considered protection mechanism assumes that osmolytes are depleted from the protein's first solvation shell, leading to entropic stabilization of the folded state. However, recent theoretical and experimental studies suggest that protective osmolytes may directly interact with the macromolecule. As an exemplary and experimentally well-characterized system, we herein discuss poly(N-isopropylacrylamide) (PNiPAM) in water whose folding/unfolding equilibrium shifts toward the folded state in the presence of urea. On the basis of molecular dynamics simulations of this specific system, we propose a new microscopic mechanism that explains how direct osmolyte-macromolecule interactions confer stability to folded states. We show that urea molecules preferentially accumulate in the first solvation shell of PNiPAM driven by attractive van der Waals dispersion forces with the hydrophobic isopropyl groups, leading to the formation of low entropy urea clouds. These clouds provide an entropic driving force for folding, resulting in preferential urea binding to the folded state and a decrease of the lower folding temperature in agreement with experiment. The simulations further indicate that thermodynamic nonideality of the bulk solvent opposes this driving force and may lead to denaturation, as illustrated by simulations of PNiPAM in aqueous solutions with dimethylurea. The proposed mechanism provides a new angle on relations between the properties of protecting and denaturing osmolytes, salting-in or salting-out effects, and solvent nonidealities. PMID:24927256

  9. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities.

  10. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  11. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  12. Interactions of Carbon Gain and Nitrogen Addition in a Temperate Forest

    NASA Astrophysics Data System (ADS)

    Bazzaz, F. A.

    2001-12-01

    In plants, carbon and nitrogen are intimately related. The plant gains carbon using nitrogen because it is a major constituent of both the light reaction (chlorophyll) and dark reaction (Rubisco and PEP carboxylase). The plant also gains more nitrogen by using carbon to grow roots that can forage for nitrogen, especially the less mobile (NH4+). Rising CO2 and increased nitrogen deposition are important elements of global change, both of which may affect ecosystem structure and function. They may cause a particularly large shift in species composition in systems where contrasting groups of species co-occur, e.g. evergreen coniferous and deciduous broad-leaved tree species. We studied the impact of nitrogen deposition in a mixed forest in central Massachusetts (Harvard Forest). We found that the early-successional broad-leaved species, yellow birch (Betula alleghaniensis) and red maple (Acer rubrum), both showed large increases in biomass, while the late successional species sugar maple (Acer saccharum) and all the coniferous species, hemlock (Tsuga canadensis), red spruce (Picea rubens) and white pine (Pinus strobus), only showed slight increases. As a result, when these species wre grown together, there was a decrease in species diversity. There was a significant correlation between species growth rate and the growth enhancement following nitrogen addition. We used SORTIE, a spatially explicit forest model to speculate about the future of this community. In both hemlock and red oak stands, nitrogen deposition led to shift in forest composition towards further dominance of young forests by yellow birch. We conclude that seedling physiological and demographic responses to increased nitrogen availability will scale up to exaggerate successional dynamics in mixed temperate forests in the future

  13. Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability

    PubMed Central

    Neutel, Anje-Margriet; Thorne, Michael AS

    2014-01-01

    The strength of interactions is crucial to the stability of ecological networks. However, the patterns of interaction strengths in mathematical models of ecosystems have not yet been based upon independent observations of balanced material fluxes. Here we analyse two Antarctic ecosystems for which the interaction strengths are obtained: (1) directly, from independently measured material fluxes, (2) for the complete ecosystem and (3) with a close match between species and ‘trophic groups’. We analyse the role of recycling, predation and competition and find that ecosystem stability can be estimated by the strengths of the shortest positive and negative predator-prey feedbacks in the network. We show the generality of our explanation with another 21 observed food webs, comparing random-type parameterisations of interaction strengths with empirical ones. Our results show how functional relationships dominate over average-network topology. They make clear that the classic complexity-instability paradox is essentially an artificial interaction-strength result. PMID:24636521

  14. Stability enhancement of haptic interaction by analog input shaper and its application to scaled teleoperation

    NASA Astrophysics Data System (ADS)

    Lim, Yo-An; Kim, Jong-Phil; Ryu, Jeha

    2007-12-01

    This paper addresses an analog input shaper introduced in haptic control to improve the stability when interacting with virtual environments. High frequency inputs to a haptic device, which can occur in collision with a virtual wall with high stiffness, can bring limit cycle oscillations and instabilities. In order to reduce the high frequency input to an haptic device an analog input shaper is added to the control system. Since the input shaper acts as a low-pass filter, when a haptic pointer leaves the virtual wall with high stiffness, a user may feel slow decrease of impedance, moreover there may be negative impedance as if the wall is pulling. In order to prevent this, we add half-wave rectifiers which allow fast decrease of impedance and no negative input to a haptic device. The input shaper reduces the total energy supplied to a haptic device by preventing inputs with high frequency from flowing into a haptic device. Therefore it can be regarded as an artificial damping element. In order to apply the Energy-Bounding Algorithm (EBA),1 which can guarantee the stable haptic interaction, to a scaled teleoperation in a virtual nano-environment two scaling factors (velocity and force) are incorporated into EBA. By applying the analog input shaper to EBA in scaled teleoperation, the range of virtual wall stiffness which can be stably rendered by a haptic device is significantly extended.

  15. Direct Osmolyte-Macromolecule Interactions Confer Entropic Stability to Folded States

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ropero, Francisco; van der Vegt, Nico F. A.

    2015-03-01

    Protective osmolytes are chemical compounds that shift the (bio)macromolecule folding/unfolding equilibrium toward the folded state under osmotic stresses. Traditionally it has been considered that omolytes are depleted from the macromolecule first solvation shell, leading to entropic stabilization of the folded state. Recent theoretical and experimental studies suggest that protective osmolytes may directly interact with the macromolecule. As an exemplary and experimentally well-characterized system, we herein discuss poly(N-isopropylacrylamide) (PNiPAM) in water whose folding/unfolding equilibrium shifts toward the folded state in the presence of urea. Based on Molecular Dynamics simulations we show that urea preferentially accumulates in the first solvation shell of PNiPAM driven by attractive van der Waals dispersion forces leading to the formation of urea clouds around the polymer. Solvation thermodynamics analysis of the folded and unfolded states discards direct urea/macromolecule interactions as driving force of the folding mechanism. Our data shows that entropic penalization of unfolded polymer chains upon increasing urea concentration drives the collapse of the polymer chain. German Research Foundation (DFG), Cluster of Excellence 259 ``Smart Interfaces - Understanding and Designing Fluid Boundaries.''

  16. Reduced native state stability in crowded cellular environment due to protein-protein interactions.

    PubMed

    Harada, Ryuhei; Tochio, Naoya; Kigawa, Takanori; Sugita, Yuji; Feig, Michael

    2013-03-01

    The effect of cellular crowding environments on protein structure and stability is a key issue in molecular and cellular biology. The classical view of crowding emphasizes the volume exclusion effect that generally favors compact, native states. Here, results from molecular dynamics simulations and NMR experiments show that protein crowders may destabilize native states via protein-protein interactions. In the model system considered here, mixtures of villin head piece and protein G at high concentrations, villin structures become increasingly destabilized upon increasing crowder concentrations. The denatured states observed in the simulation involve partial unfolding as well as more subtle conformational shifts. The unfolded states remain overall compact and only partially overlap with unfolded ensembles at high temperature and in the presence of urea. NMR measurements on the same systems confirm structural changes upon crowding based on changes of chemical shifts relative to dilute conditions. An analysis of protein-protein interactions and energetic aspects suggests the importance of enthalpic and solvation contributions to the crowding free energies that challenge an entropic-centered view of crowding effects.

  17. A direct proofreader–clamp interaction stabilizes the Pol III replicase in the polymerization mode

    PubMed Central

    Jergic, Slobodan; Horan, Nicholas P; Elshenawy, Mohamed M; Mason, Claire E; Urathamakul, Thitima; Ozawa, Kiyoshi; Robinson, Andrew; Goudsmits, Joris M H; Wang, Yao; Pan, Xuefeng; Beck, Jennifer L; van Oijen, Antoine M; Huber, Thomas; Hamdan, Samir M; Dixon, Nicholas E

    2013-01-01

    Processive DNA synthesis by the αɛθ core of the Escherichia coli Pol III replicase requires it to be bound to the β2 clamp via a site in the α polymerase subunit. How the ɛ proofreading exonuclease subunit influences DNA synthesis by α was not previously understood. In this work, bulk assays of DNA replication were used to uncover a non-proofreading activity of ɛ. Combination of mutagenesis with biophysical studies and single-molecule leading-strand replication assays traced this activity to a novel β-binding site in ɛ that, in conjunction with the site in α, maintains a closed state of the αɛθ–β2 replicase in the polymerization mode of DNA synthesis. The ɛ–β interaction, selected during evolution to be weak and thus suited for transient disruption to enable access of alternate polymerases and other clamp binding proteins, therefore makes an important contribution to the network of protein–protein interactions that finely tune stability of the replicase on the DNA template in its various conformational states. PMID:23435564

  18. Slip casting and extruding shapes of rhemium with metal oxide additives. Part 2: Development of grain stabilized rhenium parts for resistojets

    NASA Technical Reports Server (NTRS)

    Barr, Francis A.; Page, Russell J.

    1987-01-01

    The adaptation of the powdered particle process used for pure metal oxides to the coprocessing of rhenium oxides suitable to produce pure miniature resistojet hardware has been successful. Both slip casting and extrusion processes were used. The metal oxide ZrO2 was stabilized into the cubic phase with Y2O3, for use as a potentially grain stabilizing additive to rhenium. Straight meter long tubing in two sizes are reported. Tubing suitable for resistojet ohmic heater use of fully fired dimensions of nominally 3.8 mm o.d. x 2.2 mm i.d.. and 1.26 mm o.d. x .45 mm i.d. with 0, 0.5, 1.0 and 5.0% zirconia additives were produced for further study. Photomicrographs of these are discussed. The addition of the metal oxide zirconia to rhenium resulted in more dense and less porous parts. The additions of phase stabilized zirconia most likely act as a sintering aid. Tubes of varying diameter were slip cast which were representative of miniature pressure cases.

  19. Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials.

    PubMed

    Guseinov, Israfil

    2003-06-01

    By the use of complete orthonormal sets of psi(alpha)-ETOs (alpha=1, 0, m1, m2,...) introduced by the author, new addition theorems are derived for STOs and arbitrary central and noncentral interaction potentials (CIPs and NCIPs). The expansion coefficients in these addition theorems are expressed through the Gaunt and Gegenbauer coefficients. Using the addition theorems obtained for STOs and potentials, general formulae in terms of three-center overlap integrals are established for the multicenter t-electron integrals of CIPs and NCIPs that arise in the solution of the N-electron atomic and molecular problem (2hthN) when a Hylleraas approximation in Hartree-Fock-Roothaan theory is employed. With the help of expansion formulae for translation of STOs, the three-center overlap integrals are expressed through the two-center overlap integrals. The formulae obtained are valid for arbitrary quantum numbers, screening constants and location of orbitals. PMID:12750966

  20. NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability

    PubMed Central

    Padan, Etana; Danieli, Tsafi; Keren, Yael; Alkoby, Dudu; Masrati, Gal; Haliloglu, Turkan; Ben-Tal, Nir; Rimon, Abraham

    2015-01-01

    The Escherichia coli Na+/H+ antiporter (Ec-NhaA) is the best-characterized of all pH-regulated Na+/H+ exchangers that control cellular Na+ and H+ homeostasis. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from other antiporters that share the Ec-NhaA structural fold. This α-hairpin is located in the dimer interface of the Ec-NhaA homodimer together with a β-sheet. Here we examine computationally and experimentally the role of the α-hairpin in the stability, dimerization, transport, and pH regulation of Ec-NhaA. Evolutionary analysis (ConSurf) indicates that the VI–VII helical hairpin is much less conserved than the remaining transmembrane region. Moreover, normal mode analysis also shows that intact NhaA and a variant, deleted of the α-hairpin, share similar dynamics, suggesting that the structure may be dispensable. Thus, two truncated Ec-NhaA mutants were constructed, one deleted of the α-hairpin and another also lacking the β-sheet. The mutants were studied at physiological pH in the membrane and in detergent micelles. The findings demonstrate that the truncated mutants retain significant activity and regulatory properties but are defective in the assembly/stability of the Ec-NhaA dimer. PMID:26417087

  1. The interaction of sterically stabilized magnetic nanoparticles with fresh human red blood cells

    PubMed Central

    Pham, Binh TT; Jain, Nirmesh; Kuchel, Philip W; Chapman, Bogdan E; Bickley, Stephanie A; Jones, Stephen K; Hawkett, Brian S

    2015-01-01

    Sterically stabilized superparamagnetic iron oxide nanoparticles (SPIONs) were incubated with fresh human erythrocytes (red blood cells [RBCs]) to explore their potential application as magnetic resonance imaging contrast agents. The chemical shift and linewidth of 133Cs+ resonances from inside and outside the RBCs in 133Cs nuclear magnetic resonance spectra were monitored as a function of time. Thus, we investigated whether SPIONs of two different core sizes and with three different types of polymeric stabilizers entered metabolically active RBCs, consuming glucose at 37°C. The SPIONs broadened the extracellular 133Cs+ nuclear magnetic resonance, and brought about a small change in its chemical shift to a higher frequency; while the intracellular resonance remained unchanged in both amplitude and chemical shift. This situation pertained over incubation times of up to 90 minutes. If the SPIONs had entered the RBCs, the intracellular resonance would have become broader and possibly even shifted. Therefore, we concluded that our SPIONs did not enter the RBCs. In addition, the T2 relaxivity of the small and large particles was 368 and 953 mM−1 s−1, respectively (three and nine times that of the most effective commercially available samples). This suggests that these new SPIONs will provide a superior performance to any others reported thus far as magnetic resonance imaging contrast agents. PMID:26604741

  2. The interaction of sterically stabilized magnetic nanoparticles with fresh human red blood cells.

    PubMed

    Pham, Binh T T; Jain, Nirmesh; Kuchel, Philip W; Chapman, Bogdan E; Bickley, Stephanie A; Jones, Stephen K; Hawkett, Brian S

    2015-01-01

    Sterically stabilized superparamagnetic iron oxide nanoparticles (SPIONs) were incubated with fresh human erythrocytes (red blood cells [RBCs]) to explore their potential application as magnetic resonance imaging contrast agents. The chemical shift and linewidth of (133)Cs(+) resonances from inside and outside the RBCs in (133)Cs nuclear magnetic resonance spectra were monitored as a function of time. Thus, we investigated whether SPIONs of two different core sizes and with three different types of polymeric stabilizers entered metabolically active RBCs, consuming glucose at 37°C. The SPIONs broadened the extracellular (133)Cs(+) nuclear magnetic resonance, and brought about a small change in its chemical shift to a higher frequency; while the intracellular resonance remained unchanged in both amplitude and chemical shift. This situation pertained over incubation times of up to 90 minutes. If the SPIONs had entered the RBCs, the intracellular resonance would have become broader and possibly even shifted. Therefore, we concluded that our SPIONs did not enter the RBCs. In addition, the T 2 relaxivity of the small and large particles was 368 and 953 mM(-1) s(-1), respectively (three and nine times that of the most effective commercially available samples). This suggests that these new SPIONs will provide a superior performance to any others reported thus far as magnetic resonance imaging contrast agents. PMID:26604741

  3. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability.

    PubMed

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L

    2014-01-01

    IN THE PRESENT WORK, SEVERAL FATTY ACID METHYL ESTERS (FAME) HAVE BEEN SYNTHESIZED FROM VARIOUS FATTY ACID FEEDSTOCKS: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed.

  4. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimetoxiphenol and cathecol as biodiesel additives on oxidation stability

    NASA Astrophysics Data System (ADS)

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sanchez, Jose Luis

    2014-07-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP) and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimetoxiphenol and cathecol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using cathecol. Adding cathecol loads as low as 0.05 % (m/m) in blends with soybean biodiesel and as low as 0.10 % (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard.An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either cathecol or 4-allyl-2,6-dimetoxiphenol as additives affects the correlation observed.

  5. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability

    PubMed Central

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L.

    2014-01-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed. PMID:25101258

  6. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability.

    PubMed

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L

    2014-01-01

    IN THE PRESENT WORK, SEVERAL FATTY ACID METHYL ESTERS (FAME) HAVE BEEN SYNTHESIZED FROM VARIOUS FATTY ACID FEEDSTOCKS: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed. PMID:25101258

  7. Diversity of Stability, Localization, Interaction and Control of Downstream Gene Activity in the Maize Aux/IAA Protein Family

    PubMed Central

    Ludwig, Yvonne; Berendzen, Kenneth W.; Xu, Changzheng; Piepho, Hans-Peter; Hochholdinger, Frank

    2014-01-01

    AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are central regulators of auxin signal transduction. They control many aspects of plant development, share a conserved domain structure and are localized in the nucleus. In the present study, five maize Aux/IAA proteins (ZmIAA2, ZmIAA11, ZmIAA15, ZmIAA20 and ZmIAA33) representing the evolutionary, phylogenetic and expression diversity of this gene family were characterized. Subcellular localization studies revealed that ZmIAA2, ZmIAA11 and ZmIAA15 are confined to the nucleus while ZmIAA20 and ZmIAA33 are localized in both the nucleus and the cytoplasm. Introduction of specific point mutations in the degron sequence (VGWPPV) of domain II by substituting the first proline by serine or the second proline by leucine stabilized the Aux/IAA proteins. While protein half-life times between ∼11 min (ZmIAA2) to ∼120 min (ZmIAA15) were observed in wild-type proteins, the mutated forms of all five proteins were almost as stable as GFP control proteins. Moreover, all five maize Aux/IAA proteins repressed downstream gene expression in luciferase assays to different degrees. In addition, bimolecular fluorescence complementation (BiFC) analyses demonstrated interaction of all five Aux/IAA proteins with RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1, ZmIAA10) while only ZmIAA15 and ZmIAA33 interacted with the RUM1 paralog RUL1 (RUM-LIKE 1, ZmIAA29). Moreover, ZmIAA11, ZmIAA15 ZmIAA33 displayed homotypic interaction. Hence, despite their conserved domain structure, maize Aux/IAA proteins display a significant variability in their molecular characteristics which is likely associated with the wide spectrum of their developmental functions. PMID:25203637

  8. Protein interactions central to stabilizing the K[superscript +] channel selectivity filter in a four-sited configuration for selective K[superscript +] permeation

    SciTech Connect

    Sauer, David B.; Zeng, Weizhong; Raghunathan, Srinivasan; Jiang, Youxing

    2011-11-18

    The structural and functional conversion of the nonselective NaK channel to a K{sup +} selective channel (NaK2K) allows us to identify two key residues, Tyr and Asp in the filter sequence of TVGYGD, that participate in interactions central to stabilizing the K{sup +} channel selectivity filter. By using protein crystallography and channel electrophysiology, we demonstrate that the K{sup +} channel filter exists as an energetically strained structure and requires these key protein interactions working in concert to hold the filter in the precisely defined four-sited configuration that is essential for selective K{sup +} permeation. Disruption of either interaction, as tested on both the NaK2K and eukaryotic K{sub v}1.6 channels, can reduce or completely abolish K{sup +} selectivity and in some cases may also lead to channel inactivation due to conformational changes at the filter. Additionally, on the scaffold of NaK we recapitulate the protein interactions found in the filter of the Kir channel family, which uses a distinct interaction network to achieve similar stabilization of the filter.

  9. The supra-additive hyperactivity caused by an amphetamine-chlordiazepoxide mixture exhibits an inverted-U dose response: negative implications for the use of a model in screening for mood stabilizers.

    PubMed

    Kelly, Michele P; Logue, Sheree F; Dwyer, Jason M; Beyer, Chad E; Majchrowski, Heather; Cai, Zhang; Liu, Zhi; Adedoyin, Adedayo; Rosenzweig-Lipson, Sharon; Comery, Thomas A

    2009-06-01

    One of the few preclinical models used to identify mood stabilizers is an assay in which amphetamine-induced hyperactivity (AMPH) is potentiated by the benzodiazepine chlordiazepoxide (CDP), an effect purportedly blocked by mood stabilizers. Our data here challenge this standard interpretation of the AMPH-CDP model. We show that the potentiating effects of AMPH-CDP are not explained by a pharmacokinetic interaction as both drugs have similar brain and plasma exposures whether administered alone or in combination. Of concern, however, we find that combining CDP (1-12 mg/kg) with AMPH (3 mg/kg) results in an inverted-U dose response in outbred CD-1 as well as inbred C57Bl/6N and 129S6 mice (peak hyperactivity at 3 mg/kg CDP+3 mg/kg AMPH). Such an inverted-U dose response complicates interpreting whether a reduction in hyperactivity produced by a mood stabilizer reflects a "blockade" or a "potentiation" of the mixture. In fact, we show that the prototypical mood stabilizer valproic acid augments the effects of CDP on hypolocomotion and anxiolytic-like behavior (increases punished crossings by Swiss-Webster mice in the four-plate test). We argue that these data, in addition to other practical and theoretical concerns surrounding the model, limit the utility of the AMPH-CDP mixture model in drug discovery. PMID:19303035

  10. TopBP1 Interacts with BLM to Maintain Genome Stability but Is Dispensable for Preventing BLM Degradation

    PubMed Central

    Blackford, Andrew N.; Nieminuszczy, Jadwiga; Schwab, Rebekka A.; Galanty, Yaron; Jackson, Stephen P.; Niedzwiedz, Wojciech

    2015-01-01

    Summary The Bloom syndrome helicase BLM and topoisomerase-IIβ-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network. PMID:25794620

  11. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    NASA Astrophysics Data System (ADS)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  12. [Effect of phosphate and organic acid addition on passivation of simulated Pb contaminated soil and the stability of the product].

    PubMed

    Zuo, Ji-Chao; Gao, Ting-Ting; Su, Xiao-Juan; Wan, Tian-Ying; Hu, Hong-Qing

    2014-10-01

    Organic acids can improve the phosphorus availability, influence the immobilization of heavy metals in soil, and has very complicated function in phosphorus activation and heavy metal passivation. This research took simulated Pb contaminated soil as material, phosphate and citric acid as remediation matter, adopted BCR continuous extraction, 0.01 mol · L(-1) CaCl2 and toxicity characteristic leaching procedure (TCLP) to evaluate the remediation effect. Besides, malic acid and NaNO3 were taken as desorption reagents to discuss the stability of the phosphorus-citric acid-Pb system. The results showed that: in the absence of citric acid, the amount of acid extracted Pb decreased along with the increase of P concentration; when the P concentration was 100 and 400 mg · kg(-1), acid extractable Pb increased with the increasing of citric acid concentration. However, residual Pb changed in the opposite direction from acid extractable Pb. The phenomenon showed that P improved the bioavailability of Pb, while citric acid had the opposite effect. With a certain organic acid concentration, extractable Pb contents extracted by 0.01 mol · L(-1) CaCl2 and TCLP both decreased with the increasing P concentration, therefore, P had immobilization effect on Pb in contaminated soil. But at a fixed P concentration, extractable Pb contents by 0.01 mol · L(-1) CaCl2 and TCLP changed in the opposite trend with the increasing citric acid concentration. The desorption rate of Pb in soil increased with the increasing malic acid concentration, the decreasing pH and the increasing ionic strength. The desorption extent of Pb in soil with P only was lower than that with both P and citric acid. But the stability of Pb passivated by the former was higher. PMID:25693396

  13. Folding Properties of Cytosine Monophosphate Kinase from E. coli Indicate Stabilization through an Additional Insert in the NMP Binding Domain

    PubMed Central

    Beitlich, Thorsten; Lorenz, Thorsten; Reinstein, Jochen

    2013-01-01

    The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found α/β topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (Nc) and equilibrates with its trans-isomer in the unfolded state (Uc - Ut). Under refolding conditions, at least the Ut species and possibly also the Uc species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with α/β topology. PMID:24205218

  14. [Effect of phosphate and organic acid addition on passivation of simulated Pb contaminated soil and the stability of the product].

    PubMed

    Zuo, Ji-Chao; Gao, Ting-Ting; Su, Xiao-Juan; Wan, Tian-Ying; Hu, Hong-Qing

    2014-10-01

    Organic acids can improve the phosphorus availability, influence the immobilization of heavy metals in soil, and has very complicated function in phosphorus activation and heavy metal passivation. This research took simulated Pb contaminated soil as material, phosphate and citric acid as remediation matter, adopted BCR continuous extraction, 0.01 mol · L(-1) CaCl2 and toxicity characteristic leaching procedure (TCLP) to evaluate the remediation effect. Besides, malic acid and NaNO3 were taken as desorption reagents to discuss the stability of the phosphorus-citric acid-Pb system. The results showed that: in the absence of citric acid, the amount of acid extracted Pb decreased along with the increase of P concentration; when the P concentration was 100 and 400 mg · kg(-1), acid extractable Pb increased with the increasing of citric acid concentration. However, residual Pb changed in the opposite direction from acid extractable Pb. The phenomenon showed that P improved the bioavailability of Pb, while citric acid had the opposite effect. With a certain organic acid concentration, extractable Pb contents extracted by 0.01 mol · L(-1) CaCl2 and TCLP both decreased with the increasing P concentration, therefore, P had immobilization effect on Pb in contaminated soil. But at a fixed P concentration, extractable Pb contents by 0.01 mol · L(-1) CaCl2 and TCLP changed in the opposite trend with the increasing citric acid concentration. The desorption rate of Pb in soil increased with the increasing malic acid concentration, the decreasing pH and the increasing ionic strength. The desorption extent of Pb in soil with P only was lower than that with both P and citric acid. But the stability of Pb passivated by the former was higher.

  15. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  16. Effect of SrO additions on the grain-boundary microstructure and mechanical properties of magnesia-partially-stabilized zirconia

    SciTech Connect

    Drennan, J.; Hannik, R.H.J.

    1986-07-01

    Improvements in the mechanical properties of magnesia-partially-stabilized zirconia are obtained by the addition of SrO. Evidence is presented which indicates that the added SrO effectively neutralizes the detrimental effect of SiO/sub 2/ contaminant by forming a glass phase which is effected from the bulk of the ceramic during sintering. this combined effect results in the retardation of the subeutectoid decomposition reaction while minimizing retention of glass phases at the grain boundaries.

  17. Heat treatment and the use of additives to improve the stability of paralytic shellfish poisoning toxins in shellfish tissue reference materials for internal quality control and proficiency testing.

    PubMed

    Burrell, Stephen; Clion, Valentin; Auroy, Virginie; Foley, Barry; Turner, Andrew D

    2015-06-01

    The need for homogenous reference materials stable for paralytic shellfish toxins is vital for the monitoring and quality assurance of these potent neurotoxins in shellfish. Two stabilisation techniques were investigated, heat treatment through autoclaving and the addition of preserving additives into the tissue matrix. Short and long-term stability experiments as well as homogeneity determination were conducted on materials prepared by both techniques in comparison with an untreated control using two LC-FLD methods. Both techniques improved the stability of the matrix and the PSP toxins present compared to the controls. A material was prepared using the combined techniques of heat treatment followed by spiking with additives and data is presented from this optimised reference material as used over a two year period in the Irish national monitoring program and in a development exercise as part of a proficiency testing scheme operated by QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in Europe) since 2011. The results were indicative of the long-term stability of the material as evidenced through consistent assigned values in the case of the proficiency testing scheme and a low relative standard deviation of 10.5% for total toxicity data generated over 24 months.

  18. Surface-supported Ag islands stabilized by a quantum size effect: Their interaction with small molecules relevant to ethylene epoxidation

    SciTech Connect

    Shao, Dahai

    2013-05-15

    This dissertation focuses on how QSE-stabilized, surface-supported Ag nanoclusters will interact with ethylene or oxygen. Experiments are performed to determine whether the QSE-mediated Ag islands react differently toward adsorption of ethylene or oxygen, or whether the adsorption of these small molecules will affect the QSE-mediated stability of Ag islands. Studies of the interaction of oxygen with Ag/Si(111)-7×7 were previously reported, but these studies were performed at a low Ag coverage where 3D Ag islands were not formed. So the study of such a system at a higher Ag coverage will be a subject of this work. The interaction of ethylene with Ag/Si(111)-7×7, as well as the interaction of oxygen with Ag/NiAl(110) are also important parts of this study.

  19. Influence of perylenediimide–pyrene supramolecular interactions on the stability of DNA-based hybrids: Importance of electrostatic complementarity

    PubMed Central

    Winiger, Christian B; Langenegger, Simon M; Khorev, Oleg

    2014-01-01

    Summary Aromatic π–π stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic π–π stacking interactions. PMID:25161715

  20. Combining long term field experiments and nanoscale analysis to enhance process understanding of root litter stabilization by mineral interactions

    NASA Astrophysics Data System (ADS)

    Chabbi, Abad; Baumann, Karen; Remusat, Laurent; Barre, Pierre; Dignac, Marie-France; Rumpel, Cornelia

    2015-04-01

    stabilised OM may consist primarily of microbial cells. Thus our study is consistent with the microbial efficiency-matrix stabilisation (MEMS) hypothesis (Cotrufo et al., 2013), which says that microbial use efficiency determines stabilisation through interaction with the mineral phase. It also shows the importance of using long term field observations in addition to short term laboratory studies. Reference Cotrufo, M.F., Wallenstein, M.D., Boot, C., Denef, K., Paul, E., 2013. The microbial efficiency-matrix stabilisation (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable organic matter? Global Change Biology, 19, 988-995.

  1. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    NASA Astrophysics Data System (ADS)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  2. Mixed O/W emulsions stabilized by solid particles: a model system for controlled mass transfer triggered by surfactant addition.

    PubMed

    Drelich, Audrey; Grossiord, Jean-Louis; Gomez, François; Clausse, Danièle; Pezron, Isabelle

    2012-11-15

    This article deals with a model mixed oil-in-water (O/W) emulsion system developed to study the effect of surfactants on mass transfer between dispersed oil droplets of different composition. In this purpose, our goal was to formulate O/W emulsions without any surface active agents as stabilizer, which was achieved by replacing surfactants by a mixture of hydrophilic/hydrophobic silica particles. Then, to study the specific role of surfactants in the oil transfer process, different types and concentrations of surfactants were added to the mixed emulsion after its preparation. In such a way, the same original emulsion can be used for all experiments and the influence of various surface active molecules on the oil transfer mechanism can be directly studied. The model mixed emulsion used consists of a mixture of hexadecane-in-water and tetradecane-in-water emulsions. The transfer between tetradecane and hexadecane droplets was monitored by using differential scanning calorimetry, which allows the detection of freezing and melting signals characteristic of the composition of the dispersed oil droplets. The results obtained showed that it is possible to trigger the transfer of tetradecane towards hexadecane droplets by adding surfactants at concentrations above their critical micellar concentration, measured in presence of solid particles, through micellar transport mechanism. PMID:22909967

  3. Improvement of stability and carotenoids fraction of virgin olive oils by addition of microalgae Scenedesmus almeriensis extracts.

    PubMed

    Limón, Piedad; Malheiro, Ricardo; Casal, Susana; Acién-Fernández, F Gabriel; Fernández-Sevilla, José M; Rodrigues, Nuno; Cruz, Rebeca; Bermejo, Ruperto; Pereira, José Alberto

    2015-05-15

    Humans are not capable of synthesizing carotenoids de novo and thus, their presence in human tissues is entirely of dietary origin. Consumption of essential carotenoids is reduced due to the lower intake of fruits and vegetables. Microalgae are a good source of carotenoids that can be exploited. In the present work, carotenoids rich extracts from Scenedesmus almeriensis were added to extra-virgin olive oils at different concentrations (0.1 and 0.21 mg/mL) in order to enhance the consumption of these bioactives. Extracts brought changes in olive oils color, turning them orange-reddish. Quality of olive oils was improved, since peroxidation was inhibited. Olive oils fatty acids and tocopherols were not affected. β-carotene and lutein contents increase considerably, as well as oxidative stability, improving olive oils shelf-life and nutritional value. Inclusion of S. almeriensis extracts is a good strategy to improve and enhance the consumption of carotenoids, since olive oil consumption is increasing.

  4. Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp.

    PubMed

    Anese, Monica; Bot, Francesca; Panozzo, Agnese; Mirolo, Giorgio; Lippe, Giovanna

    2015-04-01

    This study was performed to investigate the influence of ultrasound processing on tomato pulp containing no sunflower oil, or increasing amounts (i.e. 2.5%, 5% and 10%), on lycopene concentration and in vitro bioaccessibility at time zero and during storage at 5 °C. Results confirmed previous findings in that ultrasonication was responsible for cell breakage and subsequent lycopene release in a highly viscous matrix. Neither the ultrasound process nor oil addition affected lycopene concentration. A decrease of approximately 35% lycopene content occurred at storage times longer than 15 days, due to isomerisation and oxidation reactions. No differences in lycopene in vitro bioaccessibility were found between the untreated and ultrasonically treated samples; this parameter decreased as a consequence of oil addition. Losses of lycopene in vitro bioaccessibility ranging between 50% and 80% occurred in the untreated and ultrasonically treated tomato pulps with and without oil during storage, mainly due to carotenoid degradation. PMID:25442608

  5. Interactive wiimote gaze stabilization exercise training system for patients with vestibular hypofunction

    PubMed Central

    2012-01-01

    Background Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects’ head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Methods Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. Results After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA) were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Conclusion Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients’ balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners. PMID:23043886

  6. Transition states and energetics of nucleophilic additions of thiols to substituted α,β-unsaturated ketones: substituent effects involve enone stabilization, product branching, and solvation.

    PubMed

    Krenske, Elizabeth H; Petter, Russell C; Zhu, Zhendong; Houk, K N

    2011-06-17

    CBS-QB3 enthalpies of reaction have been computed for the conjugate additions of MeSH to six α,β-unsaturated ketones. Compared with addition to methyl vinyl ketone, the reaction becomes 1-3 kcal mol(-1) less exothermic when an α-Me, β-Me, or β-Ph substituent is present on the C=C bond. The lower exothermicity for the substituted enones occurs because the substituted reactant is stabilized more by hyperconjugation or conjugation than the product is stabilized by branching. Substituent effects on the activation energies for the rate-determining step of the thiol addition (reaction of the enone with MeS(-)) were also computed. Loss of reactant stabilization, and not steric hindrance, is the main factor responsible for controlling the relative activation energies in the gas phase. The substituent effects are further magnified in solution; in water (simulated by CPCM calculations), the addition of MeS(-) to an enone is disfavored by 2-6 kcal mol(-1) when one or two methyl groups are present on the C=C bond (ΔΔG(‡)). The use of CBS-QB3 gas-phase energies in conjunction with CPCM solvation corrections provides kinetic data in good agreement with experimental substituent effects. When the energetics of the thiol additions were calculated with several popular density functional theory and ab initio methods (B3LYP, MPW1PW91, B1B95, PBE0, B2PLYP, and MP2), some substantial inaccuracies were noted. However, M06-2X (with a large basis set), B2PLYP-D, and SCS-MP2 gave results within 1 kcal mol(-1) of the CBS-QB3 benchmark values.

  7. Structural and thermal stability of beta-lactoglobulin as a result of interacting with sugar beet pectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of interaction on the structure and stability of beta-lactoglobulin (beta-LG) with beta-sugar beet pectin (beta-SBP) has been studied by circular dichroism (CD), infrared spectroscopy (FT-IR) and steady-state as well as time-resolved fluorescence spectroscopy at pH 6.75, and low ionic str...

  8. Exploring the Stability of Gold Nanoparticles by Experimenting with Adsorption Interactions of Nanomaterials in an Undergraduate Lab

    ERIC Educational Resources Information Center

    Lee, Chi-Feng; You, Pei-Yun; Lin, Ying-Chiao; Hsu, Tsai-Ling; Cheng, Pi-Yun; Wu, Yu-Xuan; Tseng, Chi-Shun; Chen, Sheng-Wen; Chang, Huey-Por; Lin, Yang-Wei

    2015-01-01

    The proposed experiment can help students to understand the factors involved in the stability of gold nanoparticles (Au NPs) by exploring the adsorption interaction between Au NPs and various substances. The students in this study found that the surface plasmon resonance band of Au NP solutions underwent a red shift (i.e., from 520 to 650 nm)…

  9. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper - Phytophthora capsici Leonian.

    PubMed

    Lefebvre, V; Palloix, A

    1996-09-01

    To study the resistance of pepper to Phytophthora capsici, we analyzed 94 doubled-haploid (DH) lines derived from the intraspecific F1 hybrid obtained from a cross between Perennial, an Indian pungent resistant line, and Yolo Wonder, an American bell-pepper susceptible line, with 119 DNA markers. Four different criteria were used to evaluate the resistance, corresponding to different steps or mechanisms of the host-pathogen interaction: root-rot index, receptivity, inducibility and stability. Three distinct ANOVA models between DNA marker genotypes and the four disease criteria identified 13 genomic regions, distributed across several linkage groups or unlinked markers, affecting the resistance of pepper to P. capsici. Some QTLs were criterion specific, whereas others affect several criteria, so that the four resistance criteria were controlled by different combinations of QTLs. The QTLs were very different in their quantitative effect (R(2) values), including major QTLs which explained 41-55% of the phenotypic variance, intermediate QTLs with additive or/and epistatic action (17-28% of the variance explained) and minor QTLs. Favourable alleles of some minor QTLs were carried in the susceptible parent. The total phenotypic variation accounted for by QTLs reached up to 90% for receptivity, with an important part due to epistasis effects between QTLs (with or without additive effects). The relative impact of resistance QTLs in disease response is discussed. PMID:24162341

  10. Understanding the effects of a multi-functionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials

    NASA Astrophysics Data System (ADS)

    Yim, Taeeun; Kang, Kyoung Seok; Mun, Junyoung; Lim, Sang Hoo; Woo, Sang-Gil; Kim, Ki Jae; Park, Min-Sik; Cho, Woosuk; Song, Jun Ho; Han, Young-Kyu; Yu, Ji-Sang; Kim, Young-Jun

    2016-01-01

    Nickel-rich lithium nickel cobalt manganese oxides have received considerable attention as a promising cathode material, however, they have suffered from poor interfacial stability, especially at high temperature. Here, we suggest a bi-functionalized divinyl sulfone that enhances the applicability of a nickel-rich cathode via stabilization of the electrolyte-electrode interface. The divinyl sulfone forms a protective layer on the cathode surface by electrochemical oxidation reactions and this greatly decreases the internal pressure of the cell via stabilization of the Ni-rich cathode-electrolyte interface. The cell controlled with divinyl sulfone shows remarkable cycling performance with 91.9% capacity retention at elevated temperature even after 100 cycles. Additional electrode analyses and first-principles calculations provide critical spectroscopic evidences to demonstrate the combined effects of the sulfone and vinyl functional groups. Once the divinyl sulfone is electrochemically oxidized, the vinyl functional groups readily participate in further stabilizing sulfone-based solid electrolyte interphase intermediates and afford a durable protective layer on the nickel-rich electrode surface.

  11. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    PubMed

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.

  12. Manipulation of the magnetic exchange interaction in SmCo films with high thermal stability by controlling phase transformation

    NASA Astrophysics Data System (ADS)

    Feng, Chun; Li, Ning; Li, Shuai; Huo, Qianming; Li, Minghua; Zhan, Qian; Li, Baohe H.; Yin, Jinhua; Jiang, Yong; Yu, Guanghua

    2012-01-01

    High thermal stability and tunable magnetic exchange interaction (MEI) in SmCo materials have been the critical problem in applications to magnetic recording media and nanocomposite permanent magnets. We constructed SmCo films with a high thermal stability and tunable MEI by controlling the phase transformation through properly increasing the Sm concentration (20.5-37.7 at.%) and controlling the annealing process. Microstructure studies show that the SmCo5 phases ensure that the film has a high thermal stability. Moreover, we manipulated the MEI in the film with non-magnetic precipitated SmCo2 particles in the vicinity of SmCo5 particles. These results provide a novel way to tune the MEI in SmCo materials while maintaining a high thermal stability.

  13. Enhancement of the Thermal Stability and Mechanical Hardness of Zr-Al-Co Amorphous Alloys by Ag Addition

    NASA Astrophysics Data System (ADS)

    Wang, Yongyong; Dong, Xiao; Song, Xiaohui; Wang, Jinfeng; Li, Gong; Liu, Riping

    2016-05-01

    The thermal and mechanical properties of Zr57Al15Co28- X Ag X ( X = 0 and 8) amorphous alloys were investigated using differential scanning calorimetry, in situ high-pressure angle dispersive X-ray diffraction measurements with synchrotron radiation, and nanoindentation. Results show that Ag doping improves effective activation energy, nanohardness, elastic modulus, and bulk modulus. Ag addition enhances topological and chemical short-range orderings, which can improve local packing efficiency and restrain long-range atom diffusion. This approach has implications for the design of the microstructure- and property-controllable functional materials for various applications.

  14. Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree.

    PubMed

    Nowicka, Paulina; Wojdyło, Aneta

    2016-04-01

    The aim of this study was to describe the changes in phenolic compounds, antioxidant activity and colour of sour cherry puree supplemented with different natural sweeteners (sucrose, palm sugar, erythritol, xylitol, steviol glycoside, Luo Han Kuo), and natural prebiotic (inulin). A total of 18 types of polyphenolic compounds were assessed in the following sour cherry puree by LC-MS-QTof analysis, before and after 6 months of storage at 4 °C and 30 °C. Total phenolics determined by UPLC-PDA-FL was 1179.6 mg/100 g dm. In samples with addition of sweeteners the content of phenolic compounds ranged from 1133.1 (puree with steviol glycoside) to 725.6 mg/100 g dm (puree with erythritol), and the content of these compounds strongly affected on antioxidant activity. After 6-month storage, protective effects of some additives (palm sugar, erythritol, steviol glycoside, xylitol and inulin) on the polyphenol content, especially on anthocyanins and consequently on colour, and antioxidant activity were noticed. The results showed that some natural sweeteners might be interesting from a nutritional as well as commercial and pharmaceutical perspective. PMID:26593574

  15. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge.

    PubMed

    Abbott, Timothy; Eskicioglu, Cigdem

    2015-12-01

    Anaerobic digestion (AD) is an effective way to recover energy and nutrients from organic waste; however, several issues including the solubilization of bound nutrients and the production of corrosive, highly odorous and toxic volatile sulfur compounds (VSCs) in AD biogas can limit its wider adoption. This study explored the effects of adding two different doses of ferric chloride, aluminum sulfate and magnesium hydroxide directly to the feed of complete mix semi-continuously fed mesophilic ADs on eight of the most odorous VSCs in AD biogas at three different organic loading rates (OLR). Ferric chloride was shown to be extremely effective in reducing VSCs by up to 87%, aluminum sulfate had the opposite effect and increased VSC levels by up to 920%, while magnesium hydroxide was not shown to have any significant impact. Ferric chloride, aluminum sulfate and magnesium hydroxide were effective in reducing the concentration of orthophosphate in AD effluent although both levels of alum addition caused digester failure at elevated OLRs. Extensive foaming was observed within the magnesium hydroxide dosed digesters, particularly at higher doses and high OLRs. Certain metal salt additions may be a valuable tool in overcoming barriers to AD and to meet regulatory targets. PMID:26260964

  16. Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree.

    PubMed

    Nowicka, Paulina; Wojdyło, Aneta

    2016-04-01

    The aim of this study was to describe the changes in phenolic compounds, antioxidant activity and colour of sour cherry puree supplemented with different natural sweeteners (sucrose, palm sugar, erythritol, xylitol, steviol glycoside, Luo Han Kuo), and natural prebiotic (inulin). A total of 18 types of polyphenolic compounds were assessed in the following sour cherry puree by LC-MS-QTof analysis, before and after 6 months of storage at 4 °C and 30 °C. Total phenolics determined by UPLC-PDA-FL was 1179.6 mg/100 g dm. In samples with addition of sweeteners the content of phenolic compounds ranged from 1133.1 (puree with steviol glycoside) to 725.6 mg/100 g dm (puree with erythritol), and the content of these compounds strongly affected on antioxidant activity. After 6-month storage, protective effects of some additives (palm sugar, erythritol, steviol glycoside, xylitol and inulin) on the polyphenol content, especially on anthocyanins and consequently on colour, and antioxidant activity were noticed. The results showed that some natural sweeteners might be interesting from a nutritional as well as commercial and pharmaceutical perspective.

  17. Coercivity and thermal stability improvement in sintered Nd-Fe-B permanent magnets by intergranular addition of Dy-Mn alloy

    NASA Astrophysics Data System (ADS)

    Li, Xiangbin; Liu, Shuo; Cao, Xuejing; Zhou, Beibei; Chen, Ling; Yan, Aru; Yan, Gaolin

    2016-06-01

    To increase coercivity and thermal stability of sintered Nd-Fe-B magnets for high temperature applications, Dy88Mn12 (wt%) alloy powders were intergranular added into (Pr0.25Nd0.75)30.6Cu0.15FebalB1 (wt%) starting magnet. The magnetic properties, microstructure and thermal stability of the sintered magnets with different amounts of Dy88Mn12 were investigated. By adding a small amount of Dy88Mn12, the coercivity was significantly increased from 12.56 kOe to 17.49 kOe. Microstructure analysis showed that a optimized microstructure, i.e. continuous, uniform grain boundary phase was achieved with Dy88Mn12 alloy addition, and Dy was enriched in the outer region of the Nd2Fe14B matrix grains during the sintering process, which favored to substitute for Nd in matrix grains to form the (Nd,Dy)2Fe14B core-shell phase. The greatly increased magnetocrystalline anisotropy of the core-shell phase and the improved decoupling by the continuous grain boundary phase accounted for the coercivity enhancement. Furthermore, by adding 0-4 wt% Dy88Mn12, the reversible temperature coefficients of remanence (α) and coercivity (β) of the magnet were improved from -0.115%/ºC to -0.107%/ºC and -0.744%/ºC to -0.696%/ºC in the range of 20-100 °C, respectively. In addition, the irreversible flux loss of magnetic flow (hirr) decreased sharply as Dy88Mn12 addition. The temperature-dependent magnetic properties results indicated that with intergranular addition of Dy88Mn12 alloy, the thermal stability of the magnets was effectively improved.

  18. Multiple Stressors in Agricultural Streams: A Mesocosm Study of Interactions among Raised Water Temperature, Sediment Addition and Nutrient Enrichment

    PubMed Central

    Piggott, Jeremy J.; Lange, Katharina; Townsend, Colin R.; Matthaei, Christoph D.

    2012-01-01

    Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural) and/or sediment (grain size 0.2 mm; high, intermediate, natural) to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor) generally in a negative manner, while nutrient enrichment affected 59% (mostly positive) and raised temperature 59% (mostly positive). More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss) accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer strips, both

  19. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment.

    PubMed

    Piggott, Jeremy J; Lange, Katharina; Townsend, Colin R; Matthaei, Christoph D

    2012-01-01

    Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural) and/or sediment (grain size 0.2 mm; high, intermediate, natural) to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor) generally in a negative manner, while nutrient enrichment affected 59% (mostly positive) and raised temperature 59% (mostly positive). More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss) accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer strips, both

  20. Stability and phase transition of localized modes in Bose–Einstein condensates with both two- and three-body interactions

    SciTech Connect

    Bai, Xiao-Dong; Ai, Qing; Zhang, Mei; Xiong, Jun Yang, Guo-Jian; Deng, Fu-Guo

    2015-09-15

    We investigate the stability and phase transition of localized modes in Bose–Einstein Condensates (BECs) in an optical lattice with the discrete nonlinear Schrödinger model by considering both two- and three-body interactions. We find that there are three types of localized modes, bright discrete breather (DB), discrete kink (DK), and multi-breather (MUB). Moreover, both two- and three-body on-site repulsive interactions can stabilize DB, while on-site attractive three-body interactions destabilize it. There is a critical value for the three-body interaction with which both DK and MUB become the most stable ones. We give analytically the energy thresholds for the destabilization of localized states and find that they are unstable (stable) when the total energy of the system is higher (lower) than the thresholds. The stability and dynamics characters of DB and MUB are general for extended lattice systems. Our result is useful for the blocking, filtering, and transfer of the norm in nonlinear lattices for BECs with both two- and three-body interactions.

  1. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  2. Effects of Mo addition on thermal stability and magnetic properties of a ferromagnetic Fe75P10C10B5 metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jia, Xingjie; Li, Yanhui; Fang, Canfeng

    2014-05-01

    The effects of Mo content on the thermal stability, glass-forming ability (GFA), magnetic and mechanical properties of Fe75-xMoxP10C10B5 (x = 0-10) metallic glasses were investigated. The stabilization of supercooled liquid and GFA were significantly enhanced by addition of Mo. Although the saturation magnetization (Is) of the alloys reduced with increasing Mo content, the coercive force (Hc) decreased. The metallic glasses with x = 2.5-7.5 exhibit low glass transition temperature of 733-749 K, large supercooled liquid region of 61-96 K, and high GFA with critical fully glassy sample diameters of 1.5-3.0 mm. They also possess rather high Is of 0.81-1.11 T, low Hc of 2.07-4.87 A/m, high Vicker's hardness of 860-992, high compressive yield strength of over 3000 MPa with a distinct plastic strain.

  3. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.

    PubMed

    Risse, B; Stempfer, G; Rudolph, R; Möllering, H; Jaenicke, R

    1992-12-01

    Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD

  4. Development of Yttrium Stabilized Zirconia (YSZ) diffusion barrier coatings for mitigation of Fuel-Cladding Chemical Interactions

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Brechtl, Jamieson; Wilson, Lucas; Semerau, Brandon; Sridharan, Kumar; Allen, Todd R.

    2013-07-01

    Fuel-Cladding Chemical Interactions (FCCIs) in a nuclear reactor occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials. This can have the detrimental effects of reducing the effective cladding wall thickness and the formation of low melting point eutectic compounds. Deposition of thin diffusion barrier coatings in the inner surface of the cladding can potentially reduce or delay the onset of FCCI. This study examines the feasibility of using nanofluid-based electrophoretic deposition (EPD) process to deposit coatings of Yttrium Stabilized Zirconia (YSZ) as the diffusion barrier coating. The deposition parameters, including the nanofluid solvent, additive, particle size, current, and voltage were optimized using test flat substrates of T91 ferritic-martensitic steel. A post deposition sintering step was also conducted and optimized to improve the bonding and mechanical integrity of the coating. Diffusion characteristics of the coatings were investigated by diffusion couple experiments using cerium as a fuel fission product responsible for solid state FCCI. These diffusion couple studies performed at 575 °C for 100 h showed that the YSZ coatings significantly reduced the solid state inter-diffusion between cerium and steel. A heat transfer model was developed to simulate the changes in temperature profile inside the fuel cladding by addition of YSZ coating. It was found that even though the temperature can increase in the coated cladding, the temperature falls below the melting point of uranium and eutectic temperature in Fe-U phase diagram. Using a co-axial configuration in conjunction with the EPD process, YSZ was successfully deposited uniformly on the inner surfaces of 12″ length sections of cladding with 4 mm inner diameter. Such a coating is extremely hard to make by conventional coating technologies like thermal spray or vapor deposition.

  5. Notable Stabilization of α-Chymotrypsin by the Protic Ionic Additive, [ch][dhp]: Calorimetric Evidence for a Fine Enthalpy/Entropy Balance.

    PubMed

    Uchaneishvili, Sophio; Makharadze, Maya; Shushanyan, Mikhael; van Eldik, Rudi; Khoshtariya, Dimitri E

    2014-01-01

    An impact of 0.5 to 3 M choline dihydrogen phosphate, [ch][dhp], the biotechnologically relevant ionic substance, on the thermal stability of a model globular protein, α-chymotrypsin (α-CT), has been studied exploiting the highly sensitive differential scanning calorimetry (DSC) technique. The notable overall stabilizing effect of 11 ± 2 K regarding the thermal transition (melting) temperature, T m , has been detected. For this kind of series, for the first time, the calorimetric melting enthalpy (ΔH cal) and transition entropy (ΔS m ) parameters have been determined simultaneously throughout. The first analysis indicated a two-phase impact implying (a) the initial, dramatic drop in both ΔH cal and ΔS m , obviously connected to specific, direct interaction between the [ch][dhp] components and α-CT's charged groups (within 0 to 1 mol/L [ch][dhp]), leading to the essential rearrangement of the interfacial hydrogen-bonded (HB) network; and (b) the follow-up (within 1 to 3.0 mol/L [ch][dhp]), modest changes in ΔH cal and lack of changes in ΔS m , seemingly connected with a subsequent steady strengthening of already reformed HB network, respectively. These changes, presumably, are primarily facilitated by Coulombic interactions between the [dhp] anions and solvent-exposed positively charged amino groups of α-CT.

  6. Interaction Signatures Stabilizing the NAD(P)-Binding Rossmann Fold: A Structure Network Approach

    PubMed Central

    Bhattacharyya, Moitrayee; Upadhyay, Roopali; Vishveshwara, Saraswathi

    2012-01-01

    The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a “spatial motif” and several “fold specific hot spots” that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest. PMID:23284738

  7. Effect of Ta addition of co-sputtered amorphous tantalum indium zinc oxide thin film transistors with bias stability.

    PubMed

    Son, Dae-Ho; Kim, Dae-Hwan; Park, Si-Nae; Sung, Shi-Joon; Kang, Jin-Kyu

    2014-11-01

    In this work, we have fabricated thin film transistors (TFTs) using amorphous tantalum indium zinc oxide (a-TaInZnO) channels by the co-sputtering process. The effects of incorporating tantalum on the InZnO material were investigated using Hall-effect measurement results, and electrical characteristics. We also found that the carrier densities of thin films and the transistor on-off currents were greatly influenced by the composition of tantalum addition. Ta ions have strong affinity to oxygen and so suppress the formation of free electron carriers inthin films; they play an important role in enhancing the electrical characteristic due to their high oxygen bonding ability. The electrical characteristics of the optimized TFTs shows a field effect mobility of 3.67 cm2 V(-1) s(-1), a threshold voltage of 1.28 V, an on/off ratio of 1.1 x 10(8), and a subthreshold swing of 480 mV/dec. Under gate bias stress conditions, the TaInZnO TFTs showed lower shift in threshold voltage shifts. PMID:25958492

  8. The Interplay of Disulfide Bonds, α-Helicity, and Hydrophobic Interactions Leads to Ultrahigh Proteolytic Stability of Peptides.

    PubMed

    Chen, Yaqi; Yang, Chaoqiong; Li, Tao; Zhang, Miao; Liu, Yang; Gauthier, Marc A; Zhao, Yibing; Wu, Chuanliu

    2015-08-10

    The contribution of noncovalent interactions to the stability of naturally occurring peptides and proteins has been generally acknowledged, though how these can be rationally manipulated to improve the proteolytic stability of synthetic peptides remains to be explored. In this study, a platform to enhance the proteolytic stability of peptides was developed by controllably dimerizing them into α-helical dimers, connected by two disulfide bonds. This platform not only directs peptides toward an α-helical conformation but permits control of the interfacial hydrophobic interactions between the peptides of the dimer. Using two model dimeric systems constructed from the N-terminal α-helix of RNase A and known inhibitors for the E3 ubiquitin ligase MDM2 (and its homologue MDMX), a deeper understanding into the interplay of disulfide bonds, α-helicity, and hydrophobic interactions on enhanced proteolytic stability was sought out. Results reveal that all three parameters play an important role on attaining ultrahigh proteolytic resistance, a concept that can be exploited for the development of future peptide therapeutics. The understanding gained through this study will enable this strategy to be tailored to new peptides because the proposed strategy displays substantial tolerance to sequence permutation. It thus appears promising for conveniently creating prodrugs composed entirely of the therapeutic peptide itself (i.e., in the form of a dimer).

  9. AOCS Performance and Stability Validation for a 160-m Solar Sail with Control-Structure Interactions

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Murphy, David

    2005-01-01

    Future solar sail missions, such as NASA's Solar Polar Imager Vision, will require sails with dimensions on the order of 50-500 m. We are examining a square sail design with moving mass (trim control mass, TCM) and quadrant rotation primary actuators plus pulsed plasma thrusters (PPTs) at the mast tips for backup attitude control. Quadrant rotation is achieved via roll stabilizer bars (RSB) at the mast tips. At these sizes, given the gossamer nature of the sail supporting structures, flexible modes may be low enough to interact with the control system, especially as these actuators are located on the flexible structure itself and not on the rigid core. This paper develops a practical analysis of the flexible interactions using state-space systems and modal data from finite element models of the system. Torsion and bending of the masts during maneuvers could significantly affect the function of the actuators while activation of the membrane modes could adversely affect the thrust vector direction and magnitude. Analysis of the RSB and TCM dynamics for developing high-fidelity simulations is included. For control analysis of the flexible system, standard finite-element models of the flexible sail body are loaded and the modal data is used to create a modal coordinate state-space system. Key parameters include which modes to include, which nodes are of interest for force inputs and displacement outputs, connecting nodes through which external forces and torques are applied from the flex body to the core, any nominal momentum in the system, and any steady rates. The system is linearized about the nominal attitude and rate. The state-space plant can then be analyzed with a state-space controller, and Bode, Nyquist, step and impulse responses generated. The approach is general for any rigid core with a flexible appendage. This paper develops a compensator for a simple two-mass flex system and extrapolates the results to the solar sail. A finite element model of the 20 m

  10. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on high-voltage stability.

    PubMed

    Qu, Weiguo; Dorjpalam, Enkhtuvshin; Rajagopalan, Ramakrishnan; Randall, Clive A

    2014-04-01

    The in situ modification of a lithium hexafluorophosphate-based electrolyte using a molybdenum oxide catalyst and small amount of water (1 vol %) yields hydrolysis products such as mono-, di-, and alkylfluorophosphates. The electrochemical stability of ultrahigh-purity, high-surface-area carbon electrodes derived from polyfurfuryl alcohol was tested using the modified electrolyte. Favorable modification of the solid electrolyte interface (SEI) layer on the activated carbon electrode increased the cyclable electrochemical voltage window (4.8-1.2 V vs. Li/Li(+)). The chemical modification of the SEI layer induced by electrolyte additives was characterized by using X-ray photoelectron spectroscopy.

  11. The effect of zinc additions on the environmental stability of Alloy 8090 (Al-Li-Cu-Mg-Zr)

    NASA Technical Reports Server (NTRS)

    Kilmer, Raymond J.; Stoner, G. E.

    1991-01-01

    Stress corrosion cracking (SCC) remains a problem in both Al-Li and conventional Al heat treatable alloys. It has recently been found that relatively small additions (less than or approximately 1 wt-percent) of Zn can dramatically improve the SCC performance of alloy 8090 (Al-Li-Cu-Mg-Zr). Constant load time to failure experiments using cylindrical tensile samples loaded between 30 and 85 percent of TYS indicate improvements of orders of magnitude over the baseline 8090 for the Zn-containing alloys under certain aging conditions. However, the toughnesses of the alloys were noticeably degraded due to the formation of second phase particles which primarily reside on grain and subgrain boundaries. EDS revealed that these intermetallic particles were Cu and Zn rich. The particles were present in the T3 condition and were not found to be the result of quench rate, though their size and distribution were. At 5 hours at 160 C, the alloys displayed the greatest susceptibility to SCC but by 20 hours at 160 C the alloys demonstrated markedly improved TTF lifetimes. Aging past this time did not provide separable TTF results, however, the alloy toughnesses continued to worsen. Initial examination of the alloys microstructures at 5 and 20 hours indicated some changes most notably the S' and delta' distributions. A possible model by which this may occur will be explored. Polarization experiments indicated a change in the trend of E(sub BR) and passive current density at peak aging as compared to the baseline 8090. Initial pitting experiments indicated that the primary pitting mechanism in chloride environments is one occurring at constituent (Al-Fe-Cu) particles and that the Cu and Zn rich boundary precipitates posses a breakaway potential similar to that of the matrix acting neither anodic or cathodic in the first set of aerated 3.5 w/o NaCl experiments. Future work will focus on the identification of the second phase particles, evaluation of K(sub 1SCC) and plateau da/dt via

  12. Autoantibodies that stabilize the molecular interaction of Ku antigen with DNA-dependent protein kinase catalytic subunit.

    PubMed

    Satoh, M; Ajmani, A K; Stojanov, L; Langdon, J J; Ogasawara, T; Wang, J; Dooley, M A; Richards, H B; Winfield, J B; Carter, T H; Reeves, W H

    1996-09-01

    DNA-dependent protein kinase (DNA-PK) consists of a DNA binding subunit (Ku autoantigen), and a catalytic subunit (DNA-PKcs). In the present study, human autoantibodies that recognize novel antigenic determinants of DNA-PK were identified. One type of autoantibody stabilized the interaction of DNA-PKcs with Ku and recognized the DNA-PKcs -Ku complex, but not bio-chemically purified DNA-PKcs. Another type recognized purified DNA-PKcs. Autoantibodies to Ku (p70/p80 heterodimer), 'stabilizing' antibodies, and antibodies to DNA-PKcs comprise a linked autoantibody set, since antibodies recognizing purified DNA-PKcs were strongly associated with stabilizing antibodies, whereas stabilizing antibodies were strongly associated with anti-Ku. This hierarchical pattern of autoantibodies specific for components of DNA-PK (anti-Ku > stabilizing antibodies > anti-DNA-PKcs) may have implications for the pathogenesis of autoimmunity to DNA-PK and other chromatin particles. The data raise the possibility that altered antigen processing and/or stabilization of the DNA-PKcs-Ku complex due to autoantibody binding could play a role in spreading autoimmunity from Ku to the weakly associated antigen DNA-PKcs.

  13. Super-additive interaction of the reinforcing effects of cocaine and H1-antihistamines in rhesus monkeys.

    PubMed

    Wang, Zhixia; Woolverton, William L

    2009-02-01

    Histamine H1 receptor antagonists can be sedating and have behavioral effects, including reinforcing and discriminative stimulus effects in non-humans, that predict abuse liability. Previous research has suggested that antihistamines can enhance the effects of some drugs of abuse. We have reported a synergistic interaction between cocaine and diphenhydramine (DPH) in a self-administration assay with monkeys. The present study was designed to extend those findings to other combinations of cocaine and DPH, and to the mixture of cocaine and another H1-antihistamine, pyrilamine. Rhesus monkeys were prepared with chronic i.v. catheters and allowed to self-administer cocaine, DPH or pyrilamine alone or as mixtures under a progressive-ratio schedule of reinforcement. Cocaine, DPH and pyrilamine alone maintained self-administration and cocaine was the stronger reinforcer. When cocaine was combined with DPH or pyrilamine in a 1:1, 1:2 or 2:1 ratio of the ED(50)s, the combinations were super-additive as reinforcers. Reinforcing strength of the combinations was greater than that of the antihistamines alone but not greater than cocaine. The data support the prediction that the combination of cocaine and histamine H1 receptor antagonists could have enhanced potential for abuse relative to either drug alone. The interaction may involve dopamine systems in the CNS. PMID:18930758

  14. Saturated fat consumption and the Theory of Planned Behaviour: exploring additive and interactive effects of habit strength.

    PubMed

    de Bruijn, Gert-Jan; Kroeze, Willemieke; Oenema, Anke; Brug, Johannes

    2008-09-01

    The additive and interactive effects of habit strength in the explanation of saturated fat intake were explored within the framework of the Theory of Planned Behaviour (TPB). Cross-sectional data were gathered in a Dutch adult sample (n=764) using self-administered questionnaires and analyzed using hierarchical regression analyses and simple slope analyses. Results showed that habit strength was a significant correlate of fat intake (beta=-0.11) and significantly increased the amount of explained variance in fat intake (R(2-change)=0.01). Furthermore, based on a significant interaction effect (beta=0.11), simple slope analyses revealed that intention was a significant correlate of fat intake for low levels (beta=-0.29) and medium levels (beta=-0.19) of habit strength, but a weaker and non-significant correlate for high levels (beta=-0.07) of habit strength. Higher habit strength may thus make limiting fat intake a non-intentional behaviour. Implications for information and motivation-based interventions are discussed. PMID:18471932

  15. The atom-surface interaction potential for He-NaCl: A model based on pairwise additivity

    NASA Astrophysics Data System (ADS)

    Hutson, Jeremy M.; Fowler, P. W.

    1986-08-01

    The recently developed semi-empirical model of Fowler and Hutson is applied to the He-NaCl atom-surface interaction potential. Ab initio self-consistent field calculations of the repulsive interactions between He atoms and in-crystal Cl - and Na + ions are performed. Dispersion coefficients involving in-crystal ions are also calculated. The atom-surface potential is constructed using a model based on pairwise additivity of atom-ion forces. With a small adjustment of the repulsive part, this potential gives good agreement with the experimental bound state energies obtained from selective adsorption resonances in low-energy atom scattering experiments. Close-coupling calculations of the resonant scattering are performed, and good agreement with the experimental peak positions and intensity patterns is obtained. It is concluded that there are no bound states deeper than those observed in the selective adsorption experiments, and that the well depth of the He-NaCl potential is 6.0 ± 0.2 meV.

  16. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions.

    PubMed Central

    Monera, O. D.; Kay, C. M.; Hodges, R. S.

    1994-01-01

    The objective of this study was to address the question of whether or not urea and guanidine hydrochloride (GdnHCl) give the same estimates of the stability of a particular protein. We previously suspected that the estimates of protein stability from GdnHCl and urea denaturation data might differ depending on the electrostatic interactions stabilizing the proteins. Therefore, 4 coiled-coil analogs were designed, where the number of intrachain and interchain electrostatic attractions (A) were systematically changed to repulsions (R): 20A, 15A5R, 10A10R, and 20R. The GdnHCl denaturation data showed that the 4 coiled-coil analogs, which had electrostatic interactions ranging from 20 attractions to 20 repulsions, had very similar [GdnHCl]1/2 values (average of congruent to 3.5 M) and, as well, their delta delta Gu values were very close to 0 (0.2 kcal/mol). In contrast, urea denaturation showed that the [urea]1/2 values proportionately decreased with the stepwise change from 20 electrostatic attractions to 20 repulsions (20A, 7.4 M; 15A5R, 5.4 M; 10A10R, 3.2 M; and 20R, 1.4 M), and the delta delta Gu values correspondingly increased with the increasing differences in electrostatic interactions (20A-15A5R, 1.5 kcal/mol; 20A-10A10R, 3.7 kcal/mol; and 20A-20R, 5.8 kcal/mol). These results indicate that the ionic nature of GdnHCl masks electrostatic interactions in these model proteins, a phenomenon that was absent when the unchanged urea was used. Thus, GdnHCl and urea denaturations may give vastly different estimates of protein stability, depending on how important electrostatic interactions are to the protein. PMID:7703845

  17. Sulfite and base for the treatment of familial amyloidotic polyneuropathy: two additive approaches to stabilize the conformation of human amyloidogenic transthyretin.

    PubMed

    Altland, Klaus; Winter, Pia; Saraiva, Maria Joao M; Suhr, Ole

    2004-02-01

    Recently, we presented evidence that sulfite protects transthyretin (TTR) from normal human individuals and heterozygotes with amyloidogenic TTR mutations against the decay of tetramers into monomers. In this paper we demonstrate a stabilizing effect of sulfite on TTR tetramers from a familial amyloidotic polyneuropathy (FAP) patient homozygous for the most-common amyloidogenic TTR-V30 M mutation. We compare the conformational stability of partially sulfonated TTR from a heterozygote for normal TTR and amyloidogenic TTR-V30 M with the stability of untreated TTR from a compound heterozygote for amyloidogenic TTR-V30 M and TTR-T119 M known to have only minor or no problems of FAP. Using a combination of polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) gradient PAGE we demonstrate that TTR dimers containing amyloidogenic TTR mutations decay into monomers at pH<7.4. Increasing the pH by some 0.2 units within physiological ranges, i.e., pH 7.0-7.4, and sulfonation of TTR were observed to have additive inhibitory effects on the transition of dimers into monomers. We conclude that mild acidifying episodes in the interstitial volume of tissues at risk for amyloidosis could contribute to the development of FAP. Early and permanent efforts to counteract acidosis by treatment with base could possibly help to delay the onset of the disease. The intake of sulfite could support these efforts.

  18. Insights into the interactions between enzyme and co-solvents: stability and activity of stem bromelain.

    PubMed

    Rani, Anjeeta; Venkatesu, Pannuru

    2015-02-01

    In present study, an attempt is made to elucidate the effects of various naturally occurring osmolytes and denaturants on BM at pH 7.0. The effects of the varying concentrations of glycerol, sorbitol, sucrose, trehalose, urea and guanidinium chloride (GdnHCl) on structure, stability and activity of BM are explored by fluorescence spectroscopy, circular dichroism (CD), UV-vis spectroscopy and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Our experimental observations reveal that glycerol and sorbitol are acting as stabilizers at all concentrations while sucrose and trehalose are found to be destabilizers at lower concentrations, however, acted as stabilizers at higher concentrations. On the other hand, urea and GdnHCl are denaturants except at lower concentrations. There is a direct relationship between activity and conformational stability as the activity data are found to be in accordance with conformational stability parameters (ΔGu, Tm, ΔCp) and BM profile on SDS-PAGE.

  19. Solvation free energy of the peptide group: its model dependence and implications for the additive-transfer free-energy model of protein stability.

    PubMed

    Tomar, Dheeraj S; Asthagiri, D; Weber, Valéry

    2013-09-17

    The group-additive decomposition of the unfolding free energy of a protein in an osmolyte solution relative to that in water poses a fundamental paradox: whereas the decomposition describes the experimental results rather well, theory suggests that a group-additive decomposition of free energies is, in general, not valid. In a step toward resolving this paradox, here we study the peptide-group transfer free energy. We calculate the vacuum-to-solvent (solvation) free energies of (Gly)n and cyclic diglycine (cGG) and analyze the data according to experimental protocol. The solvation free energies of (Gly)n are linear in n, suggesting group additivity. However, the slope interpreted as the free energy of a peptide unit differs from that for cGG scaled by a factor of half, emphasizing the context dependence of solvation. However, the water-to-osmolyte transfer free energies of the peptide unit are relatively independent of the peptide model, as observed experimentally. To understand these observations, a way to assess the contribution to the solvation free energy of solvent-mediated correlation between distinct groups is developed. We show that linearity of solvation free energy with n is a consequence of uniformity of the correlation contributions, with apparent group-additive behavior in the water-to-osmolyte transfer arising due to their cancellation. Implications for inferring molecular mechanisms of solvent effects on protein stability on the basis of the group-additive transfer model are suggested.

  20. Phase stabilization of magnetite (Fe3O4) nanoparticles with B2O3 addition: A significant enhancement on the phase transition temperature

    NASA Astrophysics Data System (ADS)

    Topal, Uğur; Aksan, Mehmet Ali

    2016-05-01

    Magnetite nanoparticles (MNPs) are extensively investigated for biomedical applications, particularly as contrast agents for Magnetic Resonance Imaging and as drug delivery agent and heat mediators for cancer therapy. Tuning the magnetic properties of the magnetite nanoparticles with doping of foreign atoms has a crucial importance for determining the application areas of these materials and so attracts much interests. On the other hand the doping with foreign atoms requires high temperature annealing, and it causes a phase transition to the hematite phase above 400 °C. In this work the phase transition temperature from the magnetite to the hematite phase has been increased by 200 °C, which is the highest enhancement reported in literature. It was achieved by addition of the appropriate amounts of B2O3. Our experiments indicates that the 5.0 wt% of B2O3 addition stabilizes and keeps the existence of single phase magnetite up to 600 °C.

  1. CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge S.; Garces, Hector F.; Ortiz, Angel L.; Dwivedi, Gopal; Sampath, Sanjay; Padture, Nitin P.

    2014-04-01

    The higher operating temperatures in gas-turbine engines made possible by thermal barrier coatings (TBCs) are engendering a new problem: environmentally ingested airborne silicate particles (sand, ash) melt on the hot TBC surfaces and form calcium-magnesium-alumino-silicate (CMAS) glass deposits. The molten CMAS glass degrades the TBCs, leading to their premature failure. Here, we demonstrate the use of a commercially manufactured feedstock powder, in conjunction with air plasma spray process, to deposit CMAS-resistant yttria-stabilized zirconia-based TBCs containing Al3+ and Ti4+ in solid solution. Results from the characterization of these new TBCs and CMAS/TBCs interaction experiments are presented. The CMAS mitigation mechanisms in these new TBCs involve the crystallization of the anorthite phase. Raman microscopy is used to generate large area maps of the anorthite phase in the CMAS-interacted TBCs demonstrating the potential usefulness of this method for studying CMAS/TBCs interactions. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context, the versatility, ease of processing, and low cost offered by the process demonstrated here could benefit the development of these new CMAS-resistant TBCs.

  2. Determinants of Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with Mesotrypsin

    SciTech Connect

    Salameh, M.A.; Soares, A.; Navaneetham, D.; Sinha, D.; Walsh, P. N.; Radisky, E. S.

    2010-11-19

    An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P{sub 1} (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'{sub 2} favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P1 and P'{sub 2} substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin {center_dot} APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.

  3. Determinants of Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with Mesotrypsin

    SciTech Connect

    M Salameh; A Soares; D Navaneetham; D Sinha; P Walsh; E Radisky

    2011-12-31

    An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P{sub 1} (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'{sub 2} favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P{sub 1} and P'{sub 2} substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin-APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.

  4. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs--Part 2: molecular interactions.

    PubMed

    Löbmann, Korbinian; Laitinen, Riikka; Strachan, Clare; Rades, Thomas; Grohganz, Holger

    2013-11-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization and dissolution enhancement. In this regard, Fourier-transform infrared spectroscopy (FTIR) is a valuable tool to analyze the molecular near range order of the compounds in the co-amorphous mixtures. In this study, several co-amorphous drugs--low molecular weight excipient blends--have been analyzed with FTIR spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs by vibrational ball milling. A detailed analysis of the FTIR spectra of these formulations revealed specific peak shifts in the vibrational modes of functional groups of drug and amino acid, as long as one amino acid from the biological target site was present in the blends. These peak shifts indicate that the drugs formed specific molecular interactions (hydrogen bonding and π-π interactions) with the amino acids. In the drug-amino acid mixtures that contained amino acids which were not present at the biological target site, no such interactions were identified. This study shows the potential of amino acids as small molecular weight excipients in co-amorphous formulations to stabilize the amorphous form of a poorly water-soluble drug through strong and specific molecular interactions with the drug.

  5. Molecular insights into the stabilization of protein-protein interactions with small molecule: The FKBP12-rapamycin-FRB case study

    NASA Astrophysics Data System (ADS)

    Chaurasia, Shilpi; Pieraccini, Stefano; De Gonda, Riccardo; Conti, Simone; Sironi, Maurizio

    2013-11-01

    Targetting protein-protein interactions is a challenging task in drug discovery process. Despite the challenges, several studies provided evidences for the development of small molecules modulating protein-protein interactions. Here we consider a typical case of protein-protein interaction stabilization: the complex between FKBP12 and FRB with rapamycin. We have analyzed the stability of the complex and characterized its interactions at the atomic level by performing free energy calculations and computational alanine scanning. It is shown that rapamycin stabilizes the complex by acting as a bridge between the two proteins; and the complex is stable only in the presence of rapamycin.

  6. Crowding in extremophiles: linkage between solvation and weak protein-protein interactions, stability and dynamics, provides insight into molecular adaptation.

    PubMed

    Ebel, Christine; Zaccai, Giuseppe

    2004-01-01

    The study of the molecular adaptation of microorganisms to extreme environments (solvent, temperature, etc.) has provided tools to investigate the complex relationships between protein-solvent and protein-protein interactions, protein stability and protein dynamics, and how they are modulated by the crowded environment of the cell. We have evaluated protein-solvent and protein-protein interactions by solution experiments (analytical ultracentrifugation, small angle neutron and X-ray scattering, density) and crystallography, and protein dynamics by energy resolved neutron scattering. This review concerns work from our laboratory on (i) proteins from extreme halophilic Archaea, and (ii) psychrophile, mesophile, thermophile and hyperthermophile bacterial cells.

  7. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    PubMed

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.

  8. Improvement in chemical and physical stability of fluvastatin drug through hydrogen bonding interactions with different polymer matrices.

    PubMed

    Papageorgiou, G Z; Papadimitriou, S; Karavas, E; Georgarakis, E; Docoslis, A; Bikiaris, D

    2009-01-01

    Solid dispersions of Fluvastatin with polyvinylpyrrolidone (PVP), eudragit RS100 (Eud), and chitosan (CS) as drug carrier matrices, were prepared using different techniques in order to evaluate their effect on Fluvastatin stability during storage. The characterization of the three different systems was performed with the use of differential scanning calorimetry (DSC) and wide angle X-ray diffractometry (WAXD). It was revealed that amorphization of the drug occurred in all of the solid dispersions of Fluvastatin as a result of drug dissolution into polymer matrices and due to physical interactions (hydrogen bonding) between the polymer matrix and Fluvastatin. This was established through the use of FTIR spectroscopy. SEM and micro-Raman spectroscopy showed that Fluvastatin was interspersed to the polymer matrices in the form of molecular dispersion and nanodispersion, too. The finding that completely different polymer matrices, used here as drug carriers, produce completely different dissolution profiles for each one of the solid dispersions, suggests that each matrix follows a different drug release mechanism. Hydrogen bonding interactions as in the case of CS/Fluva solid dispersions lead to controlled release profiles. All formulations were subjected to accelerated aging in order to evaluate Fluvastatin stability. From by-products analysis it was found that Fluvastatin is very unstable during storage and anti-isomer as well as lactones are the main formed by-products. On the other hand, solid dispersions due to the evolved interactions of their reactive groups with Fluvastatin provide a sufficient physical and chemical stability. The extent of interactions seems to play the most important role in the drug stabilization.

  9. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes.

    PubMed

    Mekler, Vladimir; Minakhin, Leonid; Kuznedelov, Konstantin; Mukhamedyarov, Damir; Severinov, Konstantin

    2012-12-01

    Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the -10, -35 and UP promoter elements; the TG motif of the extended -10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP-DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.

  10. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder

    PubMed Central

    Banerjee, Amrita; Sanyal, Sulagna; Kulkarni, Kirti K.; Jana, Kuladip; Roy, Siddhartha; Das, Chandrima; Dasgupta, Dipak

    2014-01-01

    Mithramycin (MTR) is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin – histone proteins – as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode) or both histones and chromosomal DNA (dual binding mode). The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR–DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg2+. As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies. PMID:25473595

  11. Stabilization of Organic Matter by Interactions with Iron Oxides: Relative Importance of Sorption vs. Aggregation

    NASA Astrophysics Data System (ADS)

    Jin, L.; Berhe, A. A.

    2015-12-01

    Persistence of organic matter in soil is largely determined by the environmental conditions that organic compounds encounter in the environment. The most important stabilization mechanisms for carbon in soil include chemical and physical association of organic compounds with soil minerals. However, to date, we don't have a complete understanding of the relative contribution of each process to carbon stabilization, especially under different soil conditions. To develop better process-level understanding of these stabilization mechanisms, the relative importance of chemical vs. physical mechanisms of carbon stabilization facilitated by iron oxides at different soil solution conditions using a variety of advanced approaches including electron microscopy and infrared spectroscopy is determined. Our preliminary results suggest that aggregation may be the dominant process in mineral-organic associations. These results improve our understanding of factors that regulate persistence of organic matter in soil system.

  12. Electrophilic Addition to Alkenes: The Relation between Reactivity and Enthalpy of Hydrogenation: Regioselectivity is Determined by the Stability of the Two Conceivable Products.

    PubMed

    Schnatter, Wayne F K; Rogers, Donald W; Zavitsas, Andreas A

    2015-07-13

    Although electrophilic addition to alkenes has been well studied, some secrets still remain. Halogenations, hydrohalogenations, halohydrin formations, hydrations, epoxidations, other oxidations, carbene additions, and ozonolyses are investigated to elucidate the relation of alkene reactivities with their enthalpies of hydrogenation (ΔHhyd ). For addition of electrophiles to unconjugated hydrocarbon alkenes, ln(k) is a linear function of ΔHhyd , where k is the rate constant. Linear correlation coefficients are about 0.98 or greater. None of the many previously proposed correlations of ln(k) with the properties of alkenes or with linear free-energy relationships match the generality and accuracy of the simple linear relationship found herein. A notable exception is acid-catalyzed hydration in water or in solvents stabilizing relatively stable carbocation intermediates (e.g., tertiary, benzylic, or allylic). (13) C NMR chemical shifts of the two alkene carbons also predict regioselectivity. These effects have not been noted previously and are operative in general, including addition to heteroatom-substituted alkenes.

  13. Complementarity and redundancy of interactions enhance attack rates and spatial stability in host-parasitoid food webs.

    PubMed

    Peralta, Guadalupe; Frost, Carol M; Rand, Tatyana A; Didham, Raphael K; Tylianakis, Jason M

    2014-07-01

    Complementary resource use and redundancy of species that fulfill the same ecological role are two mechanisms that can respectively increase and stabilize process rates in ecosystems. For example, predator complementarity and redundancy can determine prey consumption rates and their stability, yet few studies take into account the multiple predator species attacking multiple prey at different rates in natural communities. Thus, it remains unclear whether these biodiversity mechanisms are important determinants of consumption in entire predator-prey assemblages, such that food-web interaction structure determines community-wide consumption and stability. Here, we use empirical quantitative food webs to study the community-wide effects of functional complementarity and redundancy of consumers (parasitoids) on herbivore control in temperate forests. We find that complementarity in host resource use by parasitoids was a strong predictor of absolute parasitism rates at the community level and that redundancy in host-use patterns stabilized community-wide parasitism rates in space, but not through time. These effects can potentially explain previous contradictory results from predator diversity research. Phylogenetic diversity (measured using taxonomic distance) did not explain functional complementarity or parasitism rates, so could not serve as a surrogate measure for functional complementarity. Our study shows that known mechanisms underpinning predator diversity effects on both functioning and stability can easily be extended to link food webs to ecosystem functioning.

  14. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability.

    PubMed

    Sarode, Ashish L; Sandhu, Harpreet; Shah, Navnit; Malick, Waseem; Zia, Hossein

    2013-10-01

    Hot melt extrudates (HMEs) of indomethacin (IND) with Eudragit EPO and Kollidon VA 64 and those of itraconazole (ITZ) with HPMCAS-LF and Kollidon VA 64 were manufactured using a Leistritz twin screw extruder. The milled HMEs were stored at controlled temperature and humidity conditions. The samples were collected after specified time periods for 3 months. The stability of amorphous HMEs was assessed using moisture analysis, thermal evaluation, powder X-ray diffraction, FTIR, HPLC, and dissolution study. In general, the moisture content increased with time, temperature, and humidity levels. Amorphous ITZ was physically unstable at very high temperature and humidity levels, and its recrystallization was detected in the HMEs manufactured using Kollidon VA 64. Although physical stability of IND was better sustained by both Eudragit EPO and Kollidon VA 64, chemical degradation of the drug was identified in the stability samples of HMEs with Eudragit EPO stored at 50 °C. The dissolution rates and the supersaturation levels were significantly decreased for the stability samples in which crystallization was detected. Interestingly, the supersaturation was improved for the stability samples of IND:Eudragit EPO and ITZ:HPMCAS-LF, in which no physical or chemical instability was observed. This enhancement in supersaturation was attributed to the temperature and moisture activated electrostatic interactions between the drugs and their counterionic polymers. PMID:23961978

  15. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  16. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide. PMID:27206792

  17. Investigations on the role of CH…O interactions and its impact on stability and specificity of penicillin binding proteins.

    PubMed

    Lavanya, P; Ramaiah, Sudha; Singh, Harpeet; Bahadur, Renu; Anbarasu, Anand

    2015-10-01

    Penicillin binding proteins are recognized as important antibacterial targets because of their crucial role in the cell wall synthesis of bacteria. Alteration in the binding site of penicillin binding proteins is one of the major problems for beta lactam antibiotics to exert its effect. In the present study the influence of CH…O interactions in the conformational stability of penicillin binding proteins were analyzed in both Gram positive and Gram negative bacteria. CH…O interactions constitute about 20 to 25% of total hydrogen bonds and act as an important driving force in ligand selectivity. From our analysis we observed a total of 13,398 CH…O interactions in Gram positive bacteria and 10,855 CH…O interactions in Gram negative bacteria. It was interesting to observe that CH…O interactions were higher in Gram positive bacteria than in Gram negative bacteria, which augurs well for the discrepancy in cell wall of the bacteria. CH…O interactions are classified into four types depending on the interaction of acceptor residues with the back bone or side chain of CH groups. From our results we observed that major contribution to penicillin binding proteins was observed from side chain atoms of donor residues and back bone atoms of acceptor residues [SM CH…O] in both Gram positive and Gram negative bacteria. Conformational preference of Gram positive bacteria indicated that amino acids lacking side chain and the cyclized amino acids preferred to be in turn regions, whereas aromatic amino acids dominated in Gram negative bacteria. Our analysis gives detailed information about the principles involved in the conformational stability of penicillin binding proteins and the results will be useful for researchers exploring penicillin binding proteins. PMID:26298489

  18. Interactive control of minerals, wildfire, and erosion on soil carbon stabilization in conifer ecosystems of the western U.S.

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.

    2014-12-01

    Answering the question of what controls the fate and stabilization of organic carbon in forest soils is central to understanding the role of western US ecosystems in mitigating climate change, optimizing forest management, and quantifying local and regional terrestrial carbon budgets. Over half of forest soil C is stored belowground, stabilized by a number of separate, but interacting physical, chemical and biological mechanisms. Here we synthesize data from a series of field and laboratory studies focused on identifying mineral, physical, and landscape position controls on belowground C stabilization mechanisms in western U.S. conifer ecosystems. Results from these studies demonstrate an important for role for short-range-order Fe- and Al-oxyhydroxides and Al-humus complexes in C stabilization, and that the soil mineral assemblage moderates C cycling via control on partitioning of C into physical fractions ("free", "occluded", "mineral") with varying MRT and chemistry. Measures of occluded fraction chemical composition by 13C-NMR indicate this fraction is 2-5 times more enriched in pyrogenic C than the bulk soil and that this fraction is on the order of ~25 to 65% charred materials. Radiocarbon analyses of a large set of conifer soil samples from California and Arizona further indicate the occluded fraction is generally older than either the free light or mineral fraction. In particular, soil C in convergent, water and sediment gathering portions of the landscape are enriched in long MRT charred materials. These results indicate an important role for the interaction of soil mineral assemblage, wildfire, and erosion in controlling belowground C storage and stabilization in western conifer forests. Drought and wildfire are expected to increase with climate change and thus may exert significant control on belowground C storage directly through biochemical and physical changes in aboveground biomass, production of charred materials, and indirectly via post

  19. NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions

    PubMed Central

    Seldin, Lindsey; Poulson, Nicholas D.; Foote, Henry P.; Lechler, Terry

    2013-01-01

    The epidermis is a multilayered epithelium that requires asymmetric divisions for stratification. A conserved cortical protein complex, including LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin, plays a key role in establishing proper spindle orientation during asymmetric divisions. The requirements for the cortical recruitment of these proteins, however, remain unclear. In this work, we show that NuMA is required to recruit dynactin to the cell cortex of keratinocytes. NuMA's cortical recruitment requires LGN; however, LGN interactions are not sufficient for this localization. Using fluorescence recovery after photobleaching, we find that the 4.1-binding domain of NuMA is important for stabilizing its interaction with the cell cortex. This is functionally important, as loss of 4.1/NuMA interaction results in spindle orientation defects, using two distinct assays. Furthermore, we observe an increase in cortical NuMA localization as cells enter anaphase. Inhibition of Cdk1 or mutation of a single residue in NuMA mimics this effect. NuMA's anaphase localization is independent of LGN and 4.1 interactions, revealing two distinct mechanisms responsible for NuMA cortical recruitment at different stages of mitosis. This work highlights the complexity of NuMA localization and reveals the importance of NuMA cortical stability for productive force generation during spindle orientation. PMID:24109598

  20. The interplay between chromosome stability and cell cycle control explored through gene–gene interaction and computational simulation

    PubMed Central

    Frumkin, Jesse P.; Patra, Biranchi N.; Sevold, Anthony; Ganguly, Kumkum; Patel, Chaya; Yoon, Stephanie; Schmid, Molly B.; Ray, Animesh

    2016-01-01

    Chromosome stability models are usually qualitative models derived from molecular-genetic mechanisms for DNA repair, DNA synthesis, and cell division. While qualitative models are informative, they are also challenging to reformulate as precise quantitative models. In this report we explore how (A) laboratory experiments, (B) quantitative simulation, and (C) seriation algorithms can inform models of chromosome stability. Laboratory experiments were used to identify 19 genes that when over-expressed cause chromosome instability in the yeast Saccharomyces cerevisiae. To better understand the molecular mechanisms by which these genes act, we explored their genetic interactions with 18 deletion mutations known to cause chromosome instability. Quantitative simulations based on a mathematical model of the cell cycle were used to predict the consequences of several genetic interactions. These simulations lead us to suspect that the chromosome instability genes cause cell-cycle perturbations. Cell-cycle involvement was confirmed using a seriation algorithm, which was used to analyze the genetic interaction matrix to reveal an underlying cyclical pattern. The seriation algorithm searched over 1014 possible arrangements of rows and columns to find one optimal arrangement, which correctly reflects events during cell cycle phases. To conclude, we illustrate how the molecular mechanisms behind these cell cycle events are consistent with established molecular interaction maps. PMID:27530428

  1. The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation.

    PubMed

    Frumkin, Jesse P; Patra, Biranchi N; Sevold, Anthony; Ganguly, Kumkum; Patel, Chaya; Yoon, Stephanie; Schmid, Molly B; Ray, Animesh

    2016-09-30

    Chromosome stability models are usually qualitative models derived from molecular-genetic mechanisms for DNA repair, DNA synthesis, and cell division. While qualitative models are informative, they are also challenging to reformulate as precise quantitative models. In this report we explore how (A) laboratory experiments, (B) quantitative simulation, and (C) seriation algorithms can inform models of chromosome stability. Laboratory experiments were used to identify 19 genes that when over-expressed cause chromosome instability in the yeast Saccharomyces cerevisiae To better understand the molecular mechanisms by which these genes act, we explored their genetic interactions with 18 deletion mutations known to cause chromosome instability. Quantitative simulations based on a mathematical model of the cell cycle were used to predict the consequences of several genetic interactions. These simulations lead us to suspect that the chromosome instability genes cause cell-cycle perturbations. Cell-cycle involvement was confirmed using a seriation algorithm, which was used to analyze the genetic interaction matrix to reveal an underlying cyclical pattern. The seriation algorithm searched over 10(14) possible arrangements of rows and columns to find one optimal arrangement, which correctly reflects events during cell cycle phases. To conclude, we illustrate how the molecular mechanisms behind these cell cycle events are consistent with established molecular interaction maps. PMID:27530428

  2. [Introduction of additional thiol groups into glucoamylase in Aspergillus awamori and their effect on the thermal stability and catalytic activity of the enzyme].

    PubMed

    Surzhik, M A; Shmidt, A E; Glazunov, E A; Firsov, D L; Petukhov, M G

    2014-01-01

    Five mutant forms of glucoamylase (GA) from the filamentous fungus Aspergillus awamori with artificial disulfide bonds (4D-G137A\\A14C, 6D-A14C\\Y419C\\G137A, 10D-V13C\\G396C, 11D-V13C\\G396C\\A14C\\Y419C\\G137A, and 20D-G137A\\A246C\\A14C) were constructed using computer simulation and experimentally tested for thermostability. The introduction of two additional disulfide bonds between its first and thirteenth alpha-helices and that of the loop located close to a catalytic residue--E400--made it possible to assess the effects of disulfide bridges on protein thermostability. The mutant proteins with combined amino acid substitutions G137A\\A14C, V13C\\G396C\\A14C\\Y419C\\G137A, and G137A\\A246C\\A14C showed higher thermal stability as compared to the wild-type protein. At the same time, new disulfide bridges in the mutant A14C\\Y419C\\G137A and V13C\\G396C proteins led to the destabilization of their structure and the loss of thermal stability.

  3. In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives.

    PubMed

    Qian, Guangren; Chen, Wei; Lim, Teik Thye; Chui, Pengcheong

    2009-10-30

    Three additives were evaluated for their effectiveness in the attenuation of Pb2+, Zn2+, Cu2+, Cd2+, Ni2+ in contaminated sediments. Apatite, ferrihydrite and their composite were applied to the sediments. For the remediation, BCR, SEM/AVS and TCLP were adopted as the evaluating method and comparison of their results were used for the first time to test in-situ stabilization effect. The results showed that after 5 months composite treatment, more than 70% Pb2+, 40% Zn2+, 90% Cu2+, 50% Cd2+ and 80% Ni2+ was immobilized in oxidizable and residual phases, respectively. Compared to untreated sediment, Pb2+, Zn2+, Cu2+, Cd2+ in residual fraction increased 20%, 10%, 10%, 10% with composite treatment after 5 months, respectively. SigmaSEM/AVS ratio declined from 12.6 to 9.3, in addition, composite treatments reduced the leaching of Pb2+ and Zn2+ from 10.6 mg L(-1) and 42.5 mg L(-1) to 5.4 mg L(-1) and 24.1 mg L(-1) in the sediment by TCLP evaluation. Meanwhile, apatite and ferrihydrite composite additives lowered the bioavailability and toxicity of sediments as well. Ferrihydrite had a positive effect in controlling the bioavailability and toxicity of heavy metals because it effectively retarded the oxidation of AVS in sediment. PMID:19564075

  4. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules.

    PubMed

    Dammermann, Alexander; Maddox, Paul S; Desai, Arshad; Oegema, Karen

    2008-02-25

    Centrioles are surrounded by pericentriolar material (PCM), which is proposed to promote new centriole assembly by concentrating gamma-tubulin. Here, we quantitatively monitor new centriole assembly in living Caenorhabditis elegans embryos, focusing on the conserved components SAS-4 and SAS-6. We show that SAS-4 and SAS-6 are coordinately recruited to the site of new centriole assembly and reach their maximum levels during S phase. Centriolar SAS-6 is subsequently reduced by a mechanism intrinsic to the early assembly pathway that does not require progression into mitosis. Centriolar SAS-4 remains in dynamic equilibrium with the cytoplasmic pool until late prophase, when it is stably incorporated in a step that requires gamma-tubulin and microtubule assembly. These results indicate that gamma-tubulin in the PCM stabilizes the nascent daughter centriole by promoting microtubule addition to its outer wall. Such a mechanism may help restrict new centriole assembly to the vicinity of preexisting parent centrioles that recruit PCM.

  5. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution.

    PubMed

    He, Yi-Ming; Ma, Bin-Guang

    2016-01-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions. PMID:27220911

  6. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    NASA Astrophysics Data System (ADS)

    He, Yi-Ming; Ma, Bin-Guang

    2016-05-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.

  7. Stability of higher-order Bragg interactions in active periodic media

    NASA Technical Reports Server (NTRS)

    Jaggard, D. L.

    1977-01-01

    The stability of waves in unbounded, longitudinally periodic media is studied for index and gain coupling. Time-independent periodic media are found to support both stable and absolutely unstable waves. The wave characteristics depend upon average gain or loss, coupling type, and Bragg order. The extended coupled waves equations provide explicit values of threshold, frequency, and temporal growth rate for instabilities at all Bragg resonances through the dispersion relation. Applications to multiharmonic periodicities and complex couplings are briefly discussed with particular note taken of possible reductions of the stability thresholds and removal of threshold degeneracies. Comparisons are made to the longitudinally bounded case of distributed feedback lasers.

  8. Host-guest interaction between pinocembrin and cyclodextrins: Characterization, solubilization and stability

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Ya; Ma, Shui-Xian; Cheng, Hui-Lin; Yang, Li-Juan; Chen, Wen; Yin, Yan-Qing; Shi, Yi-Min; Yang, Xiao-Dong

    2014-01-01

    The inclusion complexation behavior, characterization and binding ability of pinocembrin with β-cyclodextrin (β-CD) and its derivative 2-hydroxypropyl-β-cyclodextrin (HPβCD) were investigated in both solution and the solid state by means of XRD, DSC, 1H and 2D NMR and UV-vis spectroscopy. The results showed that the water solubility and thermal stability of pinocembrin were obviously increased in the inclusion complex with cyclodextrins. This satisfactory water solubility and high stability of the pinocembrin/CD complexes will be potentially useful for their application as herbal medicines or healthcare products.

  9. Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta-catenin/Arm and stimulation of target gene expression.

    PubMed

    Lee, Wendy; Swarup, Sharan; Chen, Joanna; Ishitani, Tohru; Verheyen, Esther M

    2009-01-01

    The Wnt/Wingless (Wg) pathway represents a conserved signaling cascade involved in diverse biological processes. Misregulation of Wnt/Wg signal transduction has profound effects on development. Homeodomain-interacting protein kinases (Hipks) represent a novel family of serine/threonine kinases. Members of this group (in particular Hipk2) are implicated as important factors in transcriptional regulation to control cell growth, apoptosis and development. Here, we provide genetic and phenotypic evidence that the sole Drosophila member of this family, Hipk, functions as a positive regulator in the Wg pathway. Expression of hipk in the wing rescues loss of the Wg signal, whereas loss of hipk can enhance decreased wg signaling phenotypes. Furthermore, loss of hipk leads to diminished Arm protein levels, whereas overexpression of hipk promotes the Wg signal by stabilizing Arm, resulting in activation of Wg responsive targets. In Wg transcriptional assays, Hipk enhanced Tcf/Arm-mediated gene expression in a kinase-dependent manner. In addition, Hipk can bind to Arm and Drosophila Tcf, and phosphorylate Arm. Using both in vitro and in vivo assays, Hipk was found to promote the stabilization of Arm. We observe similar molecular interactions between Lef1/beta-catenin and vertebrate Hipk2, suggesting a direct and conserved role for Hipk proteins in promoting Wnt signaling. PMID:19088090

  10. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia.

    PubMed

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-15

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 10(4)M(-1), this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer.

  11. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-01

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 104 M-1, this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer.

  12. Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia.

    PubMed

    Ayaz Ahmed, Khan Behlol; Mohammed, Ansari Sulthan; Veerappan, Anbazhagan

    2015-06-15

    The advances in nanomedicine demonstrate the anticancer properties of silver nanoparticles (AgNPs) and considered as an alternative to the available chemotherapeutic agents. Owing to the preferential interaction of Artocarpus integrifolia lectin (jacalin) with Galβ1-3GalNAcα (a chemically well-defined tumor associated antigen), a study was undertaken to understand the interaction mechanism of AgNPs with jacalin in presence of specific sugar, galactose. Fluorescence spectroscopic analysis revealed that the AgNPs binding significantly quenched the intrinsic fluorescence of jacalin through a static quenching mechanism, and a non-radiative energy transfer occurred within the molecules. Association constants obtained from the interaction of different sugar-stabilized AgNPs with jacalin are in the order of 10(4)M(-1), this is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one AgNPs, and the stoichiometry was unaffected by the presence of the specific sugar, galactose. Hemagglutination assay shows that sugar stabilized AgNPs interacts to jacalin at a site that is different from the saccharide-binding site. Analysis of the FTIR spectra of jacalin indicates that the binding of AgNPs does not alter the secondary structure of jacalin. More importantly, AgNPs exists in nano form even after interacting with the lectin. These results suggest that the development of lectin-AgNPs conjugate would be possible for diagnosis and treatment of cancer. PMID:25770933

  13. Effect of physical damage to ears of corn before harvest and treatment with various additives on the concentration of mycotoxins, silage fermentation, and aerobic stability of corn silage.

    PubMed

    Teller, R S; Schmidt, R J; Whitlow, L W; Kung, L

    2012-03-01

    We studied the effects of damaging ears of corn in the field prior to harvest and the use of various additives on the production of selected mycotoxins, silage fermentation, and aerobic stability of whole plant corn. In experiment 1, ears of corn were undamaged or were slashed with a knife 7 d before harvesting, exposing damaged kernels to the environment. Corn plants were harvested (about 35% DM) and treated in a 2 × 2 factorial arrangement of treatments. Treatments were undamaged or damaged plants, untreated or treated with Lactobacillus buchneri 40788 (400,000 cfu/g of fresh forage) and Pediococcus pentosaceus (100,000 cfu/g). Damaging ears prior to harvest increased the amount of fumonisin but decreased the amount of starch in harvested corn plants. After ensiling, corn silage made from plants damaged before harvest had lower starch but greater concentrations of deoxynivalenol and fumonisin than silage made from plants that were undamaged. Microbial inoculation resulted in fewer yeasts and lower concentrations of zearalenone in silage when compared to uninoculated silage. Inoculated silage also had more acetic acid and 1,2-propanediol than did uninoculated silage. In experiment 2, ears of corn were undamaged or were slashed with a knife 27 d or 9 d before harvesting for corn silage. Whole plants were harvested at about 36% DM in a 2 × 3 factorial arrangement of treatments. Factors were time of damaging the ears (27 d, 9 d, or no damage) relative to harvest and no additive or 0.1% (fresh weight) potassium sorbate. Damaging plants 9 d prior to harvest did not affect the concentrations of deoxynivalenol, fumonisin, and zearalenone in plants at harvest. However, concentrations of deoxynivalenol and fumonisin were increased in fresh forage that had ears damaged at 27 d when compared to corn plants that were undamaged. Corn plants damaged for 27 d prior to harvest also had a lower concentration of starch than corn damaged for 9 d but was higher in acid detergent

  14. Psychological Stability of a Personality and Capability of Tolerant Interaction as Diverse Manifestations of Tolerance

    ERIC Educational Resources Information Center

    Belasheva, Irina Valeryevna; Petrova, Nina Fedorovna

    2016-01-01

    Present article addresses studying tolerance as a factor of personality stability, which manifests on the level of interpersonal relationships and on the level of intra-personal system of stressors resistance. The article includes theoretical analysis of the tolerance construct as an integrative personality formation. It explores the question of…

  15. Global stability for an inverse problem in soil–structure interaction

    PubMed Central

    Alessandrini, G.; Morassi, A.; Rosset, E.; Vessella, S.

    2015-01-01

    We consider the inverse problem of determining the Winkler subgrade reaction coefficient of a slab foundation modelled as a thin elastic plate clamped at the boundary. The plate is loaded by a concentrated force and its transversal deflection is measured at the interior points. We prove a global Hölder stability estimate under (mild) regularity assumptions on the unknown coefficient. PMID:26345082

  16. Explicit Instructional Interactions: Observed Stability and Predictive Validity during Early Literacy and Beginning Mathematics Instruction

    ERIC Educational Resources Information Center

    Doabler, Christian T.; Nelson-Walker, Nancy; Kosty, Derek; Baker, Scott K.; Smolkowski, Keith; Fien, Hank

    2013-01-01

    In this study, the authors conceptualize teaching episodes such as an integrated set of observable student-teacher interactions. Instructional interactions that take place between teachers and students around critical academic content are a defining characteristic of classroom instruction and a component carefully defined in many education…

  17. Stability and Change in Early Childhood Classroom Interactions during the First Two Hours of a Day

    ERIC Educational Resources Information Center

    Curby, Timothy W.; Grimm, Kevin J.; Pianta, Robert C.

    2010-01-01

    Early childhood classrooms support children's learning in a variety of ways. Of critical importance are the interactions teachers have with children. The type and quality of classroom interactions vary and can be grouped into three domains: instructional, organizational, and emotional. The purpose of this study is to examine the extent to which…

  18. Electron Beam-Target Interaction and Spot Size Stabilization in Flash X-Ray Radiography*

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas J. T.

    1999-11-01

    The Dual Axis Radiographic Hydro-Test (DARHT) facility is one of the most important capabilities in science based stockpile stewardship program of the US Department of Energy. DARHT uses an intense relativistic electron beam (20 MeV, 2-4 kA) to provide the necessary dose and a very small radiation spot size ( 1 mm) to achieve the desired optical resolution. Linear induction accelerator technology and electron beam diode technology can produce beams with the desirable characteristics. However, the high current densities at the converter target will cause strong nonlinear effects, which can adversely influence the radiographic performance. Over a time scale of tens of nanoseconds, intense space charge fields of the electron beam will extract positively charged ions from the vaporized target. These ions will partially neutralize the electron beam, reducing its Coulomb self-repulsive force. Initially the beam will pinch near the target, giving a favorable reduction in spot size but possibly degrading the beam quality. The ion column will then propagate upstream, moving the location of the pinch away from the target. The beam will pinch on axis and expand, producing a progressive increase in spot size as the pinch migrates upstream. This phenomenon can severely degrade resolution. In multiple-pulse applications where longer time scale phenomena become important, the expanding plasma plume of the vaporized target material can cause disruption of subsequent electron beam pulses. In this study, we investigate the physics of beam transport and explore methods for mitigating the undesirable effects. Theoretical models have been developed and validated against available experimental data from the Los Alamos Integrated Test Stand (ITS). It is shown that ion propagation can be suppressed by applying a negative bias potential to the target. The ions then become trapped in the target vicinity and actually reduce the spot size rather than increasing it due to the additional ion

  19. Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque

    NASA Astrophysics Data System (ADS)

    Siracusano, G.; Tomasello, R.; Giordano, A.; Puliafito, V.; Azzerboni, B.; Ozatay, O.; Carpentieri, M.; Finocchio, G.

    2016-08-01

    Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5 <|S |<1 ) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 106 A /cm2 . The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations.

  20. Effect of axial ligation or pi-pi-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates.

    PubMed

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; Zandler, Melvin E; McCarty, Amy L; Sandanayaka, Atula S D; Araki, Yasuyaki; Ito, Osamu

    2005-07-18

    Two types of structurally well-defined, self-assembled zinc porphyrin-fullerene conjugates were formed by "two-point" binding strategies to probe the effect of axial ligation or pi-pi-type interactions on the photochemical charge stabilization in the supramolecular dyads. To achieve this, meso-tetraphenylporphyrin was functionalized to possess one or four [18]crown-6 moieties at different locations on the porphyrin macrocycle while fullerene was functionalized to possess an alkyl ammonium cation, and a pyridine or phenyl entities. As a result of the crown ether-ammonium cation complexation, and zinc-pyridine coordination or pi-pi-type interactions, stable zinc porphyrin-fullerene conjugates with defined distance and orientation were formed. Evidence for the zinc-pyridine complexation or pi-pi-type interactions was obtained from the spectral and computational studies. Steady-state and time-resolved emission studies revealed efficient quenching of the zinc-porphyrin singlet excited state in these dyads, and the measured rates of charge separation, k(CS) were found to be slightly better in the case of the dyads held by axial coordination and crown ether-cation complexation. Nanosecond transient absorption studies provided evidence for the electron transfer reactions, and these studies also revealed charge stabilization in these dyads. The lifetimes of the radical ion pairs were found to depend upon the type of porphyrins utilized to form the dyads, that is, porphyrin possessing the crown ether moiety at the ortho position of one of the phenyl rings yielded prolonged charge stabilized states. Addition of pyridine to the supramolecular dyads eliminated the zinc-pyridine coordination or pi-pi-type interactions of the "two-point" bound systems due to the formation of a new zinc-pyridine axial bond thus giving a unique opportunity to probe the effect of axial coordination or pi-pi interactions on k(CS) and k(CR). Under these conditions, the measured electron transfer rates

  1. Interactions of benzotriazole UV stabilizers with human serum albumin: Atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations.

    PubMed

    Zhuang, Shulin; Wang, Haifei; Ding, Keke; Wang, Jiaying; Pan, Liumeng; Lu, Yanli; Liu, Qingjun; Zhang, Chunlong

    2016-02-01

    Benzotriazole UV stabilizers (BZTs) belong to one prominent group of ultraviolet (UV) stabilizers and are widely used in various plastics materials. Their large production volumes, frequent detections in the environment and potential toxicities have raised increasing public concern. BZTs can be transported in vivo by transport proteins in plasma and the binding association to transport proteins may serve as a significant parameter to evaluate the bioaccumulative potential. We utilized a novel HSA biosensor, circular dichroism spectroscopy, fluorescence spectroscopy to detect the dynamic interactions of six BZTs (UV-326, UV-327, UV-328, UV-329, UV-P, and BZT) with human serum albumin (HSA), and characterized the corresponding structure-activity relationships (SAR) by molecular dynamics simulations. All test BZTs potently bind at Sudlow site I of HSA with a binding constant of 10(4) L/mol at 298 K. Minor changes in the moieties of BZTs affect their interactions with HSA and differently induce conformations of HSA. Their binding reduced electrochemical impedance spectra and α-helix content of HSA, caused slight red-shifted emission, and changed fluorescence lifetime components of HSA in a concentration-dependent mode. UV-327 and UV-329 form hydrogen bonds with HSA, while UV-329, UV-P and BZT bind HSA with more favorable electrostatic interactions. Our in vitro and in silico study offered a significant framework toward the understanding of risk assessment of BZTs and provides guide for future design of environmental benign BZTs-related materials.

  2. Interactions of benzotriazole UV stabilizers with human serum albumin: Atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations.

    PubMed

    Zhuang, Shulin; Wang, Haifei; Ding, Keke; Wang, Jiaying; Pan, Liumeng; Lu, Yanli; Liu, Qingjun; Zhang, Chunlong

    2016-02-01

    Benzotriazole UV stabilizers (BZTs) belong to one prominent group of ultraviolet (UV) stabilizers and are widely used in various plastics materials. Their large production volumes, frequent detections in the environment and potential toxicities have raised increasing public concern. BZTs can be transported in vivo by transport proteins in plasma and the binding association to transport proteins may serve as a significant parameter to evaluate the bioaccumulative potential. We utilized a novel HSA biosensor, circular dichroism spectroscopy, fluorescence spectroscopy to detect the dynamic interactions of six BZTs (UV-326, UV-327, UV-328, UV-329, UV-P, and BZT) with human serum albumin (HSA), and characterized the corresponding structure-activity relationships (SAR) by molecular dynamics simulations. All test BZTs potently bind at Sudlow site I of HSA with a binding constant of 10(4) L/mol at 298 K. Minor changes in the moieties of BZTs affect their interactions with HSA and differently induce conformations of HSA. Their binding reduced electrochemical impedance spectra and α-helix content of HSA, caused slight red-shifted emission, and changed fluorescence lifetime components of HSA in a concentration-dependent mode. UV-327 and UV-329 form hydrogen bonds with HSA, while UV-329, UV-P and BZT bind HSA with more favorable electrostatic interactions. Our in vitro and in silico study offered a significant framework toward the understanding of risk assessment of BZTs and provides guide for future design of environmental benign BZTs-related materials. PMID:26454115

  3. The role of weakly polar and H-bonding interactions in the stabilization of the conformers of FGG, WGG, and YGG: an aqueous phase computational study.

    PubMed

    Csontos, József; Murphy, Richard F; Lovas, Sándor

    2008-11-01

    The energetics of intramolecular interactions on the conformational potential energy surface of the terminally protected N-Ac-Phe-Gly-Gly-NHMe (FGG), N-Ac-Trp-Gly-Gly-NHMe (WGG), and N-Ac-Tyr-Gly-Gly-NHMe (YGG) tripeptides was investigated. To identify the representative conformations, simulated annealing molecular dynamics (MD) and density functional theory (DFT) methods were used. The interaction energies were calculated at the BHandHLYP/aug-cc-pVTZ level of theory. In the global minima, 10%, 31%, and 10% of the stabilization energy come from weakly polar interactions, respectively, in FGG, WGG, and YGG. In the prominent cases 46%, 62%, and 46% of the stabilization energy is from the weakly polar interactions, respectively, in FGG, WGG, and YGG. On average, weakly polar interactions account for 15%, 34%, and 9% of the stabilization energies of the FGG, WGG, and YGG conformers, respectively. Thus, weakly polar interactions can make an important energetic contribution to protein structure and function.

  4. Influence of salt bridge interactions on the gas-phase stability of DNA/peptide complexes

    NASA Astrophysics Data System (ADS)

    Alves, Sandra; Woods, Amina; Delvolvé, Alice; Tabet, Jean Claude

    2008-12-01

    Negative ion mode electrospray ionization mass spectrometry was used to study DNA duplexes-peptide interaction. In the present study, we show that peptides that contain two adjacent basic residues interact noncovalently with DNA single strand or duplex. Fragmentation of the complexes between peptides containing basic residues and DNA were studied under collisions and showed unexpected dissociation pathways, as previously reported for peptide-peptide interactions. The binary complexes are dissociated either along fragmentation of the covalent bonds of the peptide backbone and/or along the single DNA strand backbone cleavage without disruption of noncovalent interaction, which demonstrates the strong binding of peptide to the DNA strand. Sequential MS/MS and MSn were further performed on ternary complexes formed between duplexes and peptides to investigate the nature of interaction. The CID spectra showed as major pathway the disruption of the noncovalent interactions and the formation of binary complexes and single-strand ions, directed by the nucleic acid gas-phase acidity. Indeed, a preferential formation of complexes with thymidine containing single strands is observed. An alternative pathway is also detected, in which complexes are dissociated along the covalent bond of the peptide and/or DNA according to the basicity. Our experimental data suggest the presence of strong salt bridge interactions between DNA and peptides containing basic residues.

  5. The ANAMMOX reactor under transient-state conditions: process stability with fluctuations of the nitrogen concentration, inflow rate, pH and sodium chloride addition.

    PubMed

    Yu, Jin-Jin; Jin, Ren-Cun

    2012-09-01

    The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions.

  6. Single-Photon-Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-Number States.

    PubMed

    Holland, E T; Vlastakis, B; Heeres, R W; Reagor, M J; Vool, U; Leghtas, Z; Frunzio, L; Kirchmair, G; Devoret, M H; Mirrahimi, M; Schoelkopf, R J

    2015-10-30

    Quantum states can be stabilized in the presence of intrinsic and environmental losses by either applying an active feedback condition on an ancillary system or through reservoir engineering. Reservoir engineering maintains a desired quantum state through a combination of drives and designed entropy evacuation. We propose and implement a quantum-reservoir engineering protocol that stabilizes Fock states in a microwave cavity. This protocol is realized with a circuit quantum electrodynamics platform where a Josephson junction provides direct, nonlinear coupling between two superconducting waveguide cavities. The nonlinear coupling results in a single-photon-resolved cross-Kerr effect between the two cavities enabling a photon-number-dependent coupling to a lossy environment. The quantum state of the microwave cavity is discussed in terms of a net polarization and is analyzed by a measurement of its steady state Wigner function. PMID:26565448

  7. The role of duplex stability for wavelength-shifting fluorescent DNA probes: energy transfer vs. exciton interactions in DNA "traffic lights".

    PubMed

    Barrois, Sebastian; Wörner, Samantha; Wagenknecht, Hans-Achim

    2014-08-01

    Exciton interactions between thiazole orange and thiazole red as nucleotide substitutes in DNA hairpins interfere with efficient energy transfer and fluorescence color change as readout. This interference can be tuned by two structural parameters that control the hairpin duplex stability.

  8. Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li(2)IrO(3).

    PubMed

    Biffin, A; Johnson, R D; Kimchi, I; Morris, R; Bombardi, A; Analytis, J G; Vishwanath, A; Coldea, R

    2014-11-01

    Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have long been searched for, as the resulting frustration effects are predicted to stabilize novel forms of magnetic order or quantum spin liquids. Here, we explore the magnetism of γ-Li(2)IrO(3), which has the topology of a three-dimensional Kitaev lattice of interconnected Ir honeycombs. Using magnetic resonant x-ray diffraction, we find a complex, yet highly symmetric incommensurate magnetic structure with noncoplanar and counterrotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamiltonian that naturally accounts for all key features of the observed magnetic structure. Our results provide strong evidence that γ-Li(2)IrO(3) realizes a spin Hamiltonian with dominant Kitaev interactions.

  9. Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction

    SciTech Connect

    King, Lauren E.; Dornan, Edward S.; Donaldson, Mary M.; Morgan, Iain M.

    2011-05-25

    Human papillomavirus 16 E1 and E2 interact with cellular factors to replicate the viral genome. E2 forms homodimers and binds to 12 bp palindromic sequences adjacent to the viral origin and recruits E1 to the origin. E1 forms a di-hexameric helicase complex that replicates the viral genome. This manuscript demonstrates that E1 stabilises the E2 protein, increasing the half life in both C33a and 293 T cells respectively. This stabilisation requires a direct protein--protein interaction. In addition, the E1 protein enhances E2 transcription function in a manner that suggests the E1 protein itself can contribute to transcriptional regulation not simply by E2 stabilisation but by direct stimulation of transcription. This activation of E2 transcription is again dependent upon an interaction with E1. Overall the results suggest that in the viral life cycle, co-expression of E1 with E2 can increase E2 stability and enhance E2 function.

  10. Interaction-free measurements by quantum Zeno stabilization of ultracold atoms.

    PubMed

    Peise, J; Lücke, B; Pezzé, L; Deuretzbacher, F; Ertmer, W; Arlt, J; Smerzi, A; Santos, L; Klempt, C

    2015-04-14

    Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object-realized by a laser beam-prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments.

  11. Interaction-free measurements by quantum Zeno stabilization of ultracold atoms

    PubMed Central

    Peise, J.; Lücke, B.; Pezzé, L.; Deuretzbacher, F.; Ertmer, W.; Arlt, J.; Smerzi, A.; Santos, L.; Klempt, C.

    2015-01-01

    Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object—realized by a laser beam—prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments. PMID:25869121

  12. Density Functional Theory-Derived Group Additivity and Linear Scaling Methods for Prediction of Oxygenate Stability on Metal Catalysts. Adsorption of Open-Ring Alcohol and Polyol Dehydrogenation Intermediates on Pt-Based Metals

    SciTech Connect

    Salciccioli, Michael; Chen, Ying; Vlachos, Dion G.

    2010-11-09

    Semiempirical methods for prediction of thermochemical properties of adsorbed oxygenates are developed. Periodic density functional theory calculations are used to study the relative stability of ethanol, ethylene glycol, isopropyl alcohol, and glycerol dehydrogenation intermediates on Pt(111). For ethylene glycol dehydrogenation intermediates, it is found that the thermodynamically favored intermediates at each level of dehydrogenation are as follows: HOCH2CHOH, HOCHCHOH, HOCHCOH, HOCCOH ≈ HOCHCO, HOCCO, OCCO. Structural and energetic patterns emerge from these C2HxO2 adsorption calculations that lead to the formation of group additive properties for thermochemical property prediction of oxygenates on Pt(111). Finally, linear scaling relationships of atomic binding energy are used to predict the binding energy of the C2HxO2 species on the Ni(111) surface and Ni-Pt-Pt(111) bimetallic surface. It is shown that the linear scaling relationships can accurately predict the binding energy of larger oxygenates as well as of oxygenates on bimetallic catalysts. Corrections for ring strain and weak oxygen-metal and hydrogen-bonding interactions are added to increase the accuracy of group additivity and linear scaling relationships.

  13. Interaction-stabilized steady states in the driven O (N ) model

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Sondhi, S. L.

    2016-05-01

    We study periodically driven bosonic scalar field theories in the infinite N limit. It is well known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has nontrivial correlations and is synchronized with the drive. The O (N ) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.

  14. The stability of the scalar {chi}{sup 2}{phi} interaction

    SciTech Connect

    Franz Gross; Cetin Savkli; John Tjon

    2001-02-16

    A scalar field theory with a {chi}{dagger}{chi}{phi} interaction is known to be unstable. Yet it has been used frequently without any sign of instability in standard text book examples and research articles. In order to reconcile these seemingly conflicting results, we show that the theory is stable if the Fock space of all intermediate states is limited to a finite number of {chi}{bar {chi}} loops associated with field {chi} that appears quadradically in the interaction, and that instability arises only when intermediate states include these loops to all orders.

  15. Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111)Si

    NASA Astrophysics Data System (ADS)

    Mangelinck, D.; Gas, P.; Gay, J. M.; Pichaud, B.; Thomas, O.

    1998-09-01

    We studied the effect of the addition of cobalt, platinum, or gold on the cell parameter of NiSi2 deposited epitaxially on (111)Si. Namely, the formation and the microstructure of NiSi2 films containing one of these elements are compared to those of the pure disilicide. The solubility of Co, Pt, and Au in NiSi2 ranges from a total substitution to nickel in the case of cobalt to a very weak quantity (less than 1%) in the case of platinum. An intermediate behavior was observed for gold which can occupy more than 10% of the metal sites. This important solubility has been confirmed by analysis of bulk Ni(Au) disilicides and is understood as a consequence of the metastability of gold silicides. Cobalt, Pt, and Au additions change the temperature of formation of NiSi2: from 800 °C for reaction with pure nickel, this temperature is lowered to 650 °C by Co and Au additions while it is increased to 950 °C for Pt. These modifications are consistent with the nucleation controlled formation of NiSi2 and the effect of added elements on both the interfacial energy and the stability of the disilicide. Measurements of the cell parameters (perpendicular and parallel) by x-ray diffraction revealed the relaxation state and the cell evolution of NiSi2 films. Platinum addition does not modify the cell in agreement with a very weak incorporation of platinum in NiSi2. The rigid interface model is well adapted to the growth of NiSi2, Ni(Au)Si2, and Ni(Co)Si2 films. According to this model and in spite of a large rhombohedral deformation, the system which better accommodates silicon is Ni(Co)Si2: in this case, there is practically no misfit between the film and the substrate. We also showed that misfit dislocations are generated principally during the NiSi2 formation and that their density evolves very little afterwards.

  16. Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem-apoprotein interactions

    PubMed Central

    Henriksen, Anette; Mirza, Osman; Indiani, Chiara; Teilum, Kaare; Smulevich, Giulietta; Welinder, Karen G.; Gajhede, Michael

    2001-01-01

    Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous glycoprotein, SBP was produced recombinant in Escherichia coli for the present crystallographic study. The three-dimensional structure of SBP shows a bound tris(hydroxymethyl)aminomethane molecule (TRIS). This TRIS molecule has hydrogen bonds to active site residues corresponding to the residues that interact with the small phenolic substrate ferulic acid in the horseradish peroxidase C (HRPC):ferulic acid complex. TRIS is positioned in what has been described as a secondary substrate-binding site in HRPC, and the structure of the SBP:TRIS complex indicates that this secondary substrate-binding site could be of functional importance. SBP has one of the most solvent accessible δ-meso haem edge (the site of electron transfer from reducing substrates to the enzymatic intermediates compound I and II) so far described for a plant peroxidase and structural alignment suggests that the volume of Ile74 is a factor that influences the solvent accessibility of this important site. A contact between haem C8 vinyl and the sulphur atom of Met37 is observed in the SBP structure. This interaction might affect the stability of the haem group by stabilisation/delocalisation of the porphyrin π-cation of compound I. PMID:11266599

  17. Amyloidogenic propensity of a natural variant of human apolipoprotein A-I: stability and interaction with ligands.

    PubMed

    Rosú, Silvana A; Rimoldi, Omar J; Prieto, Eduardo D; Curto, Lucrecia M; Delfino, José M; Ramella, Nahuel A; Tricerri, M Alejandra

    2015-01-01

    A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses. PMID:25950566

  18. Amyloidogenic Propensity of a Natural Variant of Human Apolipoprotein A-I: Stability and Interaction with Ligands

    PubMed Central

    Rosú, Silvana A.; Rimoldi, Omar J.; Prieto, Eduardo D.; Curto, Lucrecia M.; Delfino, José M.

    2015-01-01

    A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses. PMID:25950566

  19. The cis-state of an azobenzene photoswitch is stabilized through specific interactions with a protein surface.

    PubMed

    Korbus, Michael; Backé, Sarah; Meyer-Almes, Franz-Josef

    2015-03-01

    The photocontrol of protein function like enzyme activity has been the subject of many investigations to enable reversible and spatiotemporally defined cascading biochemical reactions without the need for separation in miniaturized and parallelized assay setups for academic and industrial applications. A photoswitchable amidohydrolase variant from Bordetella/Alcaligenes with the longest reported half-life (approximately 30 h) for the cis-state of the attached azobenzene group was chosen as a model system to dissect the underlying mechanism and molecular interactions that caused the enormous deceleration of the thermal cis-to-trans relaxation of the azobenzene photoswitch. A systematic site-directed mutagenesis study on the basis of molecular dynamics simulation data was employed to investigate enzyme and thermal cis-to-trans relaxation kinetics in dependence on selected amino acid substitution, which revealed a prominent histidine and a hydrophobic cluster as molecular determinants for the stabilization of the cis-isomer of the attached azobenzene moiety on the protein surface. The nature of the involved interactions consists of polar, hydrophobic, and possibly aromatic Π-Π contributions. The elucidated principles behind the stabilization of the cis-state of azobenzene derivatives on a protein surface can be exploited to design improved biologically inspired photoswitches. Moreover, the findings open the door to highly long-lived cis-states of azobenzene groups yielding improved bistable photoswitches that can be controlled by single light-pulses rather than continuous irradiation with UV light that causes potential photodamage to the employed biomolecules.

  20. Drosophila Furrowed/Selectin is a homophilic cell adhesion molecule stabilizing Frizzled and intercellular interactions during PCP establishment

    PubMed Central

    Chin, Mei-Ling; Mlodzik, Marek

    2013-01-01

    Summary Establishment of planar cell polarity (PCP) in a tissue requires coordination of directional signals from cell to cell. It is thought that this is mediated by the core PCP factors, which include cell adhesion molecules. Here, we demonstrate that furrowed, the Drosophila Selectin, is required for PCP generation. Disruption of PCP in furrowed-deficient flies results from a primary defect in Fz levels and cell adhesion. Furrowed localizes at/near apical junctions, largely co-localizing with Frizzled and Flamingo (Fmi). It physically interacts with and stabilizes Frizzled, and further, it mediates intercellular Frizzled-Van Gogh (Vang)/Strabismus interactions, similarly to Fmi. Furrowed does so through a homophilic cell adhesion role that is distinct from its known carbohydrate-binding function described during vertebrate blood-cell/endothelial cell interactions. Importantly, the carbohydrate function is dispensable for PCP establishment. In vivo studies suggest that Furrowed functions partially redundantly with Fmi, mediating intercellular Frizzled-Vang interactions between neighboring cells. PMID:23973164

  1. The Stability of Ribosome Biogenesis Factor WBSCR22 Is Regulated by Interaction with TRMT112 via Ubiquitin-Proteasome Pathway

    PubMed Central

    Õunap, Kadri; Leetsi, Lilian; Matsoo, Maarja; Kurg, Reet

    2015-01-01

    The human WBSCR22 protein is a 18S rRNA methyltransferase involved in pre-rRNA processing and ribosome 40S subunit biogenesis. Recent studies have shown that the protein function in ribosome synthesis is independent of its enzymatic activity. In this work, we have studied the WBSCR22 protein interaction partners by SILAC-coupled co-immunoprecipitation assay and identified TRMT112 as the interaction partner of WBSCR22. Knock-down of TRMT112 expression decreased the WBSCR22 protein level in mammalian cells, suggesting that the stability of WBSCR22 is regulated through the interaction with TRMT112. The localization of the TRMT112 protein is determined by WBSCR22, and the WBSCR22-TRMT112 complex is localized in the cell nucleus. We provide evidence that the interaction between WBSCR22/Bud23 and TRMT112/Trm112 is conserved between mammals and yeast, suggesting that the function of TRMT112 as a co-activator of methyltransferases is evolutionarily conserved. Finally, we show that the transiently expressed WBSCR22 protein is ubiquitinated and degraded through the proteasome pathway, revealing the tight control of the WBSCR22 protein level in the cells. PMID:26214185

  2. Hydrophobic Interactions Contribute to Conformational Stabilization of Endoglycoceramidase II by Mechanism-Based Probes.

    PubMed

    Ben Bdira, Fredj; Jiang, Jianbing; Kallemeijn, Wouter; de Haan, Annett; Florea, Bogdan I; Bleijlevens, Boris; Boot, Rolf; Overkleeft, Herman S; Aerts, Johannes M; Ubbink, Marcellus

    2016-08-30

    Small compound active site interactors receive considerable attention for their ability to positively influence the fold of glycosidases. Endoglycoceramidase II (EGCII) from Rhodococcus sp. is an endo-β-glucosidase releasing the complete glycan from ceramide in glycosphingolipids. Cleavage of the β-glycosidic linkage between glucose and ceramide is also catalyzed by glucocerebrosidase (GBA), the exo-β-glucosidase deficient in Gaucher disease. We demonstrate that established β-glucoside-configured cyclophellitol-type activity-based probes (ABPs) for GBA also are effective, mechanism-based, and irreversible inhibitors of EGCII. The stability of EGCII is markedly enhanced by formation of covalent complexes with cyclophellitol ABPs substituted with hydrophobic moieties, as evidenced by an increased melting temperature, resistance against tryptic digestion, changes in (15)N-(1)H transverse relaxation optimized spectroscopy spectra of the [(15)N]Leu-labeled enzyme, and relative hydrophobicity as determined by 8-anilino-1-naphthalenesulfonic acid fluorescence. The stabilization of EGCII conformation correlates with the shape and hydrophobicity of the substituents of the ABPs. We conclude that the amphipathic active site binders with aliphatic moieties act as a "hydrophobic zipper" on the flexible EGCII protein structure. PMID:27455091

  3. Interactive aircraft flight control and aeroelastic stabilization. [forward swept wing flight vehicles

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Schmidt, D. K.

    1981-01-01

    Several examples are presented in which flutter involving interaction between flight mechanics modes and elastic wind bending occurs for a forward swept wing flight vehicle. These results show the basic mechanism by which the instability occurs and form the basis for attempts to actively control such a vehicle.

  4. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions.

    PubMed

    Hynninen, A-P; Dijkstra, M; van Roij, R

    2004-06-01

    We study numerically the effect of attractive triplet interactions on the phase behavior of suspensions of highly charged colloidal particles at low salinity. In our computer simulations, we employ the pair and triplet potentials that were obtained from a numerical Poisson-Boltzmann study [Phys. Rev. E 66, 011402 (2002)

  5. Addition of microbially-treated sugar beet residue and a native bacterium increases structural stability in heavy metal-contaminated Mediterranean soils.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Kohler, J; Roldán, A

    2009-10-15

    A mesocosm experiment was conducted to investigate the effect of the addition of Aspergillus niger-treated sugar beet waste, in the presence of rock phosphate, and inoculation with a native, metal-tolerant bacterium, Bacillus thuringiensis, on the stabilisation of soil aggregates of two mine tailings, with differing pH values, from a semiarid Mediterranean area and on the stimulation of growth of Piptatherum miliaceum. Bacterium combined with organic amendment enhanced structural stability (38% in acidic soil and 106% in neutral soil compared with their corresponding controls). Only the organic amendment increased pH, electrical conductivity, water-soluble C, water-soluble carbohydrates and plant growth, in both soils. While in neutral soil both organic amendment and bacterium increased dehydrogenase activity, only organic amendment had a significant effect in acidic soil. This study demonstrates that the use of P. miliaceum in combination with organic amendment and bacterium is a suitable tool for the stabilisation of the soil structure of degraded mine tailings, although its effectiveness is dependent on soil pH. PMID:19660785

  6. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    PubMed

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package.

  7. Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Xing, Lidan; Zhang, Ruiqin; Chen, Min; Wang, Zaisheng; Xu, Mengqing; Li, Weishan

    2015-07-01

    Tris(trimethylsilyl)borate (TMSB) is used as an electrolyte additive for high voltage lithium-rich oxide cathode of lithium ion battery. The interfacial natures of Li[Li0.2Mn0.54Ni0.13Co0.13]O2/carbonate-based electrolyte are investigated with a combination of electrochemical measurements and physical characterizations. Charge/discharge tests show that the cyclic performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 in a mixed carbonate electrolyte is significantly improved by using TMSB. After 200 cycles between 2 V and 4.8 V (vs. Li/Li+) at 0.5 C rate, the capacity retention of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is only 19% in the blank electrolyte, while it is improved to 74% when 0.5% TMSB is applied. The results from physical characterizations demonstrate that this excellent cyclic performance is attributed to the improved interfacial stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2/electrolyte due to the thin and protective film generated by TMSB.

  8. Zinc-Amyloid Interactions on a Millisecond Time-Scale Stabilize Non-Fibrillar Alzheimer Related Species

    SciTech Connect

    Noy,D.; Solomonov, I.; Sinkevich, O.; Arad, A.; Kjaer, K.; Sagi, I.

    2008-01-01

    The role of zinc, an essential element for normal brain function, in the pathology of Alzheimer's disease (AD) is poorly understood. On one hand, physiological and genetic evidence from transgenic mouse models supports its pathogenic role in promoting the deposition of the amyloid {beta}-protein (A{beta}) in senile plaques. On the other hand, levels of extracellular ('free') zinc in the brain, as inferred by the levels of zinc in cerebrospinal fluid, were found to be too low for inducing A{beta} aggregation. Remarkably, the release of transient high local concentrations of zinc during rapid synaptic events was reported. The role of such free zinc pulses in promoting A{beta} aggregation has never been established. Using a range of time-resolved structural and spectroscopic techniques, we found that zinc, when introduced in millisecond pulses of micromolar concentrations, immediately interacts with A{beta} 1-40 and promotes its aggregation. These interactions specifically stabilize non-fibrillar pathogenic related aggregate forms and prevent the formation of A{beta} fibrils (more benign species) presumably by interfering with the self-assembly process of A{beta}. These in vitro results strongly suggest a significant role for zinc pulses in A{beta} pathology. We further propose that by interfering with A{beta} self-assembly, which leads to insoluble, non-pathological fibrillar forms, zinc stabilizes transient, harmful amyloid forms. This report argues that zinc represents a class of molecular pathogens that effectively perturb the self-assembly of benign A{beta} fibrils, and stabilize harmful non-fibrillar forms.

  9. Effect of additives on protein aggregation.

    PubMed

    Hamada, Hiroyuki; Arakawa, Tsutomu; Shiraki, Kentaro

    2009-06-01

    This paper overviews solution additives that affect protein stability and aggregation during refolding, heating, and freezing processes. Solution additives are mainly grouped into two classes, i.e., protein denaturants and stabilizers. The former includes guanidine, urea, strong ionic detergents, and certain chaotropic salts; the latter includes certain amino acids, sugars, polyhydric alcohols, osmolytes, and kosmotropic salts. However, there are solution additives that are not unambiguously placed into these two classes, including arginine, certain divalent cation salts (e.g., MgCl(2)) and certain polyhydric alcohols (e.g., ethylene glycol). Certain non-ionic or non-detergent surfactants, ionic liquids, amino acid derivatives, polyamines, and certain amphiphilic polymers may belong to this class. They have marginal effects on protein structure and stability, but are able to disrupt protein interactions. Information on additives that do not catalyze chemical reactions nor affect protein functions helps us to design protein solutions for increased stability or reduced aggregation. PMID:19519415

  10. Addition of a clay subsoil to a sandy top soil alters CO2 release and the interactions in residue mixtures.

    PubMed

    Shi, Andong; Marschner, Petra

    2013-11-01

    Addition of clay-rich subsoils to sandy top soils is an agricultural management option to increase water and nutrient retention and may also increase organic carbon sequestration by decreasing the decomposition rates. An incubation experiment was carried out in a loamy sand top soil mixed with a clay-rich subsoil (84% clay) at 0, 10 and 30% (w/w) amended with finely ground mature shoot residues of two native perennial grasses and annual barley individually or in 1:1 mixtures of two residues. Extractable C, microbial biomass C, available N and soil pH were analysed at days 0, 3, 14 and 28. Cumulative respiration after 28 days was highest with barley residue and lowest with Wallaby grass at all clay soil addition rates; 30% clay soil addition reduced cumulative respiration, especially with barley alone. In the mixture of native grasses and barley, the measured respiration was lower than expected at a clay soil addition rate of 10%. A synergistic effect (higher than expected cumulative respiration) was only found in mixture of Kangaroo grass and barley at a clay soil addition rate of 30%. Clay soil addition also decreased extractable C, available N and soil pH. The temporal change in microbial biomass C and available N in residue mixtures differed among clay addition rates. In the mixture of Wallaby grass and Kangaroo grass, microbial biomass C (MBC) decreased from day 0 to day 28 at clay soil addition rates of 0 and 10%, whereas at 30% clay MBC increased from day 0 to day 3 and then decreased. Our study shows that addition of a clay-rich subsoil to a loamy sand soil can increase C sequestration by reducing CO2 release and extractable C which are further modulated by the type of residues present individually or as mixtures.

  11. Interaction of CaO-FeO-SiO[sub 2] slags with partially stabilized zirconia

    SciTech Connect

    Chung, Yau Don; Schlesinger, M.E. . Dept. of Metallurgical Engineering)

    1994-03-01

    Calcia- and magnesia-partially-stabilized zirconia samples were corroded under static and dynamic conditions in three slags from the CaO-FeO-SiO[sub 2] system. Low-basicity and high-FeO slags corroded the samples by leaching magnesia from the cubic phase in the specimen, causing its destabilization and ultimate dissolution. However, a higher-basicity slag which proved the most corrosive of the three promoted bulk dissolution of the cubic phase instead, the rate of which was controlled by the thickness of the adjacent slag boundary layer. The levels of sample corrosion both at and below the slag line are used to illustrate the effects of experimental variables, including slag composition, specimen density, and slag motion.

  12. Arabidopsis  SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity

    PubMed Central

    Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus

    2013-01-01

    The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534

  13. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids.

    PubMed

    San Millan, A; Peña-Miller, R; Toll-Riera, M; Halbert, Z V; McLean, A R; Cooper, B S; MacLean, R C

    2014-10-10

    Plasmids are important drivers of bacterial evolution, but it is challenging to understand how plasmids persist over the long term because plasmid carriage is costly. Classical models predict that horizontal transfer is necessary for plasmid persistence, but recent work shows that almost half of plasmids are non-transmissible. Here we use a combination of mathematical modelling and experimental evolution to investigate how a costly, non-transmissible plasmid, pNUK73, can be maintained in populations of Pseudomonas aeruginosa. Compensatory adaptation increases plasmid stability by eliminating the cost of plasmid carriage. However, positive selection for plasmid-encoded antibiotic resistance is required to maintain the plasmid by offsetting reductions in plasmid frequency due to segregational loss. Crucially, we show that compensatory adaptation and positive selection reinforce each other's effects. Our study provides a new understanding of how plasmids persist in bacterial populations, and it helps to explain why resistance can be maintained after antibiotic use is stopped.

  14. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids

    PubMed Central

    Millan, A. San; Peña-Miller, R.; Toll-Riera, M.; Halbert, Z. V.; McLean, A. R.; Cooper, B. S.; MacLean, R. C.

    2014-01-01

    Plasmids are important drivers of bacterial evolution, but it is challenging to understand how plasmids persist over the long term because plasmid carriage is costly. Classical models predict that horizontal transfer is necessary for plasmid persistence, but recent work shows that almost half of plasmids are non-transmissible. Here we use a combination of mathematical modelling and experimental evolution to investigate how a costly, non-transmissible plasmid, pNUK73, can be maintained in populations of Pseudomonas aeruginosa. Compensatory adaptation increases plasmid stability by eliminating the cost of plasmid carriage. However, positive selection for plasmid-encoded antibiotic resistance is required to maintain the plasmid by offsetting reductions in plasmid frequency due to segregational loss. Crucially, we show that compensatory adaptation and positive selection reinforce each other’s effects. Our study provides a new understanding of how plasmids persist in bacterial populations, and it helps to explain why resistance can be maintained after antibiotic use is stopped. PMID:25302567

  15. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider

    SciTech Connect

    Alexahin, Y.; Ohmi, K.; /KEK, Tsukuba

    2012-05-01

    In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per IP. Such strong beam-beam interaction can be a source of instability if the working point is chosen close to a coherent beam-beam resonance. On the other hand, the beam-beam tunespread can provide a mechanism of suppression of the beam-wall driven instabilities. In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider.

  16. Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability

    PubMed Central

    Knowles, D. B.; LaCroix, Andrew S.; Deines, Nickolas F.; Shkel, Irina; Record, M. Thomas

    2011-01-01

    Small solutes affect protein and nucleic acid processes because of favorable or unfavorable chemical interactions of the solute with the biopolymer surface exposed or buried in the process. Large solutes also exclude volume and affect processes where biopolymer molecularity and/or shape changes. Here, we develop an analysis to separate and interpret or predict excluded volume and chemical effects of a flexible coil polymer on a process. We report a study of the concentration-dependent effects of the full series from monomeric to polymeric PEG on intramolecular hairpin and intermolecular duplex formation by 12-nucleotide DNA strands. We find that chemical effects of PEG on these processes increase in proportion to the product of the amount of DNA surface exposed on melting and the amount of PEG surface that is accessible to this DNA, and these effects are completely described by two interaction terms that quantify the interactions between this DNA surface and PEG end and interior groups. We find that excluded volume effects, once separated from these chemical effects, are quantitatively described by the analytical theory of Hermans, which predicts the excluded volume between a flexible polymer and a rigid molecule. From this analysis, we show that at constant concentration of PEG monomer, increasing PEG size increases the excluded volume effect but decreases the chemical interaction effect, because in a large PEG coil a smaller fraction of the monomers are accessible to the DNA. Volume exclusion by PEG has a much larger effect on intermolecular duplex formation than on intramolecular hairpin formation. PMID:21742980

  17. Ant aggression and evolutionary stability in plant-ant and plant-pollinator mutualistic interactions.

    PubMed

    Oña, L; Lachmann, M

    2011-03-01

    Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically.

  18. Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.

    PubMed

    Stork, Tobias; Thomas, Silke; Rodrigues, Floriano; Silies, Marion; Naffin, Elke; Wenderdel, Stephanie; Klämbt, Christian

    2009-04-01

    Ensheathment of axons by glial membranes is a key feature of complex nervous systems ensuring the separation of single axons or axonal fascicles. Nevertheless, the molecules that mediate the recognition and specific adhesion of glial and axonal membranes are largely unknown. We use the Drosophila midline of the embryonic central nervous system as a model to investigate these neuron glia interactions. During development, the midline glial cells acquire close contact to commissural axons and eventually extend processes into the commissures to wrap individual axon fascicles. Here, we show that this wrapping of axons depends on the interaction of the neuronal transmembrane protein Neurexin IV with the glial Ig-domain protein Wrapper. Although Neurexin IV has been previously described to be an essential component of epithelial septate junctions (SJ), we show that its function in mediating glial wrapping at the CNS midline is independent of SJ formation. Moreover, differential splicing generates two different Neurexin IV isoforms. One mRNA is enriched in septate junction-forming tissues, whereas the other mRNA is expressed by neurons and recruited to the midline by Wrapper. Although both Neurexin IV isoforms are able to bind Wrapper, the neuronal isoform has a higher affinity for Wrapper. We conclude that Neurexin IV can mediate different adhesive cell-cell contacts depending on the isoforms expressed and the context of its interaction partners.

  19. Helical hairpin structure of influenza hemagglutinin fusion peptide stabilized by charge-dipole interactions between the N-terminal amino group and the second helix.

    PubMed

    Lorieau, Justin L; Louis, John M; Bax, Ad

    2011-03-01

    The fusion domain of the influenza coat protein hemagglutinin HA2, bound to dodecyl phosphocholine micelles, was recently shown to adopt a structure consisting of two antiparallel α-helices, packed in an exceptionally tight hairpin configuration. Four interhelical H(α) to C═O aliphatic H-bonds were identified as factors stabilizing this fold. Here, we report evidence for an additional stabilizing force: a strong charge-dipole interaction between the N-terminal Gly(1) amino group and the dipole moment of helix 2. pH titration of the amino-terminal (15)N resonance, using a methylene-TROSY-based 3D NMR experiment, and observation of Gly(1 13)C' show a strongly elevated pK = 8.8, considerably higher than expected for an N-terminal amino group in a lipophilic environment. Chemical shifts of three C-terminal carbonyl carbons of helix 2 titrate with the protonation state of Gly(1)-N, indicative of a close proximity between the N-terminal amino group and the axis of helix 2, providing an optimal charge-dipole stabilization of the antiparallel hairpin fold. pK values of the side-chain carboxylate groups of Glu(11) and Asp(19) are higher by about 1 and 0.5 unit, respectively, than commonly seen for solvent-exposed side chains in water-soluble proteins, indicative of dielectric constants of ε = ∼30 (Glu(11)) and ∼60 (Asp(19)), placing these groups in the headgroup region of the phospholipid micelle.

  20. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt.

    PubMed

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M; Saxena, Deep R; Jain, Yogendra K

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  1. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt

    PubMed Central

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M.; Saxena, Deep R.; Jain, Yogendra K.

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  2. Craton stability and continental lithosphere dynamics during plume-plate interaction

    NASA Astrophysics Data System (ADS)

    Wang, H.; Van Hunen, J.; Pearson, D.

    2013-12-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. A high cratonic root strength is generally considered to be the most important factor. We first perform and discuss new numerical models to investigate craton stability in both Newtonian and non-Newtonian rheology in the stagnant lid regime. The results show that only a modest compositional rheological factor of Δη=10 with non-Newtonian rheology is required for the survival of cratonic roots in a stagnant lid regime. A larger rheological factor (100 or more) is needed to maintain similar craton longevity in a Newtonian rheology environment. Furthermore, chemical buoyancy plays an important role on craton stability and its evolution, but could only work with suitable compositional rheology. During their long lifespan, cratons experienced a suite of dynamic, tectonothermal events, such as nearby subduction and mantle plume activity. Cratonic nuclei are embedded in shorter-lived, more vulnerable continental areas of different thickness, composition and rheology, which would influence the lithosphere dynamic when tectonothermal events happen nearby. South Africa provides a very good example to investigate such dynamic processes as it hosts several cratons and there are many episodic thermal events since the Mesozoic as indicated by a spectrum of magmatic activity. We numerically investigate such an integrated system using the topographic evolution of cratons and surrounding lithosphere as a diagnostic observable. The post-70Ma thinning of pericratonic lithosphere by ~50km around Kaapvaal craton (Mather et al., 2011) is also investigated through our numerical models. The results show that the pericratonic lithosphere cools and grows faster than cratons do, but is also more likely to be effected by episodic thermal events. This leads to surface topography change that is significantly larger around the craton than within

  3. A simple model for the interaction between vertical eddy heat fluxes and static stability

    NASA Technical Reports Server (NTRS)

    Gutowski, W. J., Jr.

    1985-01-01

    A numerical model for studying the interaction of vertical eddy heat fluxes and vertical temperature structure in midlatitude regions is described. The temperature profile for the model was derived from calculations of the equilibrium among heating rates in simplified representations of large-scale vertical eddy heat flux, moist convection and radiation. An eddy flux profile is calculated based on the quasi-geostrophic, liner baroclinic instability of a single wave. Model equilibrium states for summer and winter conditions are compared with observations, and the results are discussed in detail.

  4. Chiral magnetization textures stabilized by the Dzyaloshinskii-Moriya interaction during spin-orbit torque switching

    SciTech Connect

    Perez, N. Martinez, E.; Torres, L.

    2014-03-03

    We study the effect of the Dzyaloshinskii-Moriya interaction (DMI) on current-induced magnetic switching of a perpendicularly magnetized heavy-metal/ferromagnet/oxide trilayer both experimentally and through micromagnetic simulations. We report the generation of stable helical magnetization stripes for a sufficiently large DMI strength in the switching region, giving rise to intermediate states in the magnetization and confirming the essential role of the DMI on switching processes. We compare the simulation and experimental results to a macrospin model, showing the need for a micromagnetic approach. The influence of the temperature on the switching is also discussed.

  5. Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α -Li2IrO3

    NASA Astrophysics Data System (ADS)

    Williams, S. Â. C.; Johnson, R. Â. D.; Freund, F.; Choi, Sungkyun; Jesche, A.; Kimchi, I.; Manni, S.; Bombardi, A.; Manuel, P.; Gegenwart, P.; Coldea, R.

    2016-05-01

    The layered honeycomb magnet α -Li2IrO3 has been theoretically proposed as a candidate to display unconventional magnetic behaviour associated with Kitaev interactions between spin-orbit entangled jeff=1 /2 magnetic moments on a honeycomb lattice. Here we report single crystal magnetic resonant x-ray diffraction combined with powder magnetic neutron diffraction to reveal an incommensurate magnetic order in the honeycomb layers with Ir magnetic moments counterrotating on nearest-neighbor sites. This unexpected type of magnetic structure for a honeycomb magnet cannot be explained by a spin Hamiltonian with dominant isotropic (Heisenberg) couplings. The magnetic structure shares many key features with the magnetic order in the structural polytypes β - and γ -Li2IrO3 , understood theoretically to be stabilized by dominant Kitaev interactions between Ir moments located on the vertices of three-dimensional hyperhoneycomb and stripyhoneycomb lattices, respectively. Based on this analogy and a theoretical soft-spin analysis of magnetic ground states for candidate spin Hamiltonians, we propose that Kitaev interactions also dominate in α -Li2IrO3 , indicative of universal Kitaev physics across all three members of the harmonic honeycomb family of Li2IrO3 polytypes.

  6. 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1

    PubMed Central

    Shang, Zeng-Fu; Yu, Lan; Li, Bing; Tu, Wen-Zhi; Wang, Yu; Liu, Xiao-Dan; Guan, Hua; Huang, Bo; Rang, Wei-Qing; Zhou, Ping-Kun

    2012-01-01

    The essential function of eIF4E-binding protein 1 (4E-BP1) in translation initiation has been well established; however, the role of 4E-BP1 in normal cell cycle progression is coming to attention. Here, we revealed the role of 4E-BP1 on mitotic regulation and chromosomal DNA dynamics during mitosis. First, we have observed the co-localization of the phosphorylated 4E-BP1 at T37/46 with Polo-like kinase 1 (PLK1) at the centrosomes during. Depression of 4E-BP1 by small interfering RNA in HepG2 or HeLa cells resulted in an increased outcome of polyploidy and aberrant mitosis, including chromosomal DNA misaligned and multi-polar spindles or multiple centrosomes. We observed that 4E-BP1 interacted with PLK1 directly in vitro and in vivo in mitotic cells, and the C-terminal aa 77–118 of 4E-BP1 mediates its interaction with PLK1. PLK1 can phosphorylate 4E-BP1 in vitro. Furthermore, the depletion of 4E-BP1 sensitized HepG2 and HeLa cells to the microtubule disruption agent paclitaxel. These results demonstrate that 4E-BP1, beyond its role in translation regulation, can function as a regulator of mitosis via interacting with PLK1, and possibly plays a role in genomic stability maintaining. PMID:22918237

  7. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    PubMed

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis. PMID:27206858

  8. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    PubMed

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.

  9. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    PubMed

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  10. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-01

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.

  11. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity.

    PubMed

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-28

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs. PMID:27369533

  12. Protein lipid interaction in bile: effects of biliary proteins on the stability of cholesterol-lecithin vesicles.

    PubMed

    Luk, A S; Kaler, E W; Lee, S P

    1998-02-23

    The nucleation of cholesterol crystals is an obligatory precursor to cholesterol gallstone formation. Nucleation, in turn, is believed to be preceded by aggregation and fusion of cholesterol-rich vesicles. We have investigated the effects of two putative pro-nucleating proteins, a concanavalin A-binding protein fraction and a calcium-binding protein, on the stability of sonicated small unilamellar cholesterol-lecithin vesicles. Vesicle aggregation is followed by monitoring absorbance, and upon addition of the concanavalin A-binding protein fraction the absorbance of a vesicle dispersion increases continuously with time. Vesicle fusion is probed by a fluorescence contents-mixing assay. Vesicles apparently fuse slowly after the addition of the concanavalin A-binding protein, although inner filter effects confound the quantitative measurement of fusion rates. The rates of change of absorbance and fluorescence increase with the concentration of the protein, and the second-order dimerization rate constant increases with both the protein concentration and the cholesterol content of the vesicles. On the other hand, the calcium-binding protein has no effect on the stability of the vesicle dispersion. This protein may therefore affect cholesterol crystal formation not by promoting the nucleation process, but by enhancing crystal growth and packaging. Our results demonstrate that biliary proteins can destabilize lipid vesicles and that different proteins play different roles in the mechanism of cholesterol gallstone formation.

  13. Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential.

    PubMed

    Dey, Soma; Sherly, M Caroline Diana; Rekha, M R; Sreenivasan, K

    2016-01-20

    This work delineates the synthesis of curcumin (Ccm) and methotrexate (MTX) conjugated biopolymer stabilized AuNPs (MP@Alg-Ccm AuNPs). The dual drug conjugated nano-vector was characterized by FTIR, (1)H NMR and UV-vis spectroscopic techniques. Hydrodynamic diameter and surface charge of the AuNPs were determined by DLS analysis and the spherical particles were visualized by TEM. MP@Alg-Ccm AuNPs exhibited improved cytotoxic potential against C6 glioma and MCF-7 cancer cell lines and was found to be highly hemocompatible. MP@Alg-Ccm AuNPs also exhibited active targeting efficiency against MCF-7 cancer cells due to the presence of "antifolate" drug MTX. Thus MP@Alg-Ccm AuNPs may find potential application in targeted combination chemotherapy for the treatment of cancer. The study is also interesting from the synthetic point of view because, here generation of AuNPs was done using "green chemical" alginate and dual drug conjugated AuNPs were created in two simple reaction steps using "green solvent" water. PMID:26572330

  14. Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential.

    PubMed

    Dey, Soma; Sherly, M Caroline Diana; Rekha, M R; Sreenivasan, K

    2016-01-20

    This work delineates the synthesis of curcumin (Ccm) and methotrexate (MTX) conjugated biopolymer stabilized AuNPs (MP@Alg-Ccm AuNPs). The dual drug conjugated nano-vector was characterized by FTIR, (1)H NMR and UV-vis spectroscopic techniques. Hydrodynamic diameter and surface charge of the AuNPs were determined by DLS analysis and the spherical particles were visualized by TEM. MP@Alg-Ccm AuNPs exhibited improved cytotoxic potential against C6 glioma and MCF-7 cancer cell lines and was found to be highly hemocompatible. MP@Alg-Ccm AuNPs also exhibited active targeting efficiency against MCF-7 cancer cells due to the presence of "antifolate" drug MTX. Thus MP@Alg-Ccm AuNPs may find potential application in targeted combination chemotherapy for the treatment of cancer. The study is also interesting from the synthetic point of view because, here generation of AuNPs was done using "green chemical" alginate and dual drug conjugated AuNPs were created in two simple reaction steps using "green solvent" water.

  15. CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation

    SciTech Connect

    Draheim, Kyle M.; Li, Xiaofeng; Zhang, Rong; Fisher, Oriana S.; Villari, Giulia; Boggon, Titus J.; Calderwood, David A.

    2015-04-21

    Mutations in the essential adaptor proteins CCM2 or CCM3 lead to cerebral cavernous malformations (CCM), vascular lesions that most frequently occur in the brain and are strongly associated with hemorrhagic stroke, seizures, and other neurological disorders. CCM2 binds CCM3, but the molecular basis of this interaction, and its functional significance, have not been elucidated. Here, we used x-ray crystallography and structure-guided mutagenesis to show that an α-helical LD-like motif within CCM2 binds the highly conserved “HP1” pocket of the CCM3 focal adhesion targeting (FAT) homology domain. By knocking down CCM2 or CCM3 and rescuing with binding-deficient mutants, we establish that CCM2–CCM3 interactions protect CCM2 and CCM3 proteins from proteasomal degradation and show that both CCM2 and CCM3 are required for normal endothelial cell network formation. However, CCM3 expression in the absence of CCM2 is sufficient to support normal cell growth, revealing complex-independent roles for CCM3.

  16. Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.

  17. CCM2–CCM3 interaction stabilizes their protein expression and permits endothelial network formation

    PubMed Central

    Draheim, Kyle M.; Li, Xiaofeng; Zhang, Rong; Fisher, Oriana S.; Villari, Giulia

    2015-01-01

    Mutations in the essential adaptor proteins CCM2 or CCM3 lead to cerebral cavernous malformations (CCM), vascular lesions that most frequently occur in the brain and are strongly associated with hemorrhagic stroke, seizures, and other neurological disorders. CCM2 binds CCM3, but the molecular basis of this interaction, and its functional significance, have not been elucidated. Here, we used x-ray crystallography and structure-guided mutagenesis to show that an α-helical LD-like motif within CCM2 binds the highly conserved “HP1” pocket of the CCM3 focal adhesion targeting (FAT) homology domain. By knocking down CCM2 or CCM3 and rescuing with binding-deficient mutants, we establish that CCM2–CCM3 interactions protect CCM2 and CCM3 proteins from proteasomal degradation and show that both CCM2 and CCM3 are required for normal endothelial cell network formation. However, CCM3 expression in the absence of CCM2 is sufficient to support normal cell growth, revealing complex-independent roles for CCM3. PMID:25825518

  18. Nonlocal interactions stabilize compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor.

    PubMed

    Gottfried, D S; Haas, E

    1992-12-15

    To further our understanding of the protein folding process, it is desirable to examine the structural intermediates (equilibrium and kinetic) that are populated between the statistical coil state and the folded molecule. X-ray crystallography and NMR structural studies are unable to determine long-range distances in proteins under denaturing solution conditions. Nonradiative (Förster) energy transfer, however, has been shown to be a spectroscopic ruler for the measurement of distance distributions and diffusion between selected sites in proteins under a range of different solution conditions. The distributions of distances between a donor probe at the N-terminal residue and an acceptor attached to one of the four lysine residues (15, 26, 41, 46) of reduced and unfolded (in 6 M guanidine hydrochloride and 20 mM dithiothreitol) bovine pancreatic trypsin inhibitor (BPTI) were measured as a function of temperature. Even in strong denaturant and reducing agent, BPTI does not exist as a statistical coil polypeptide. It appears that nonlocal (long-range) interactions are already beginning to "fold" the protein toward a more compact, native conformation. As the temperature is increased under these conditions, hydrophobic interactions lead to an even more compact structure consistent with the predictions of phase diagrams for globular proteins. PMID:1281424

  19. Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure-affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids.

    PubMed

    Cao, Hui; Jia, Xueping; Shi, Jian; Xiao, Jianbo; Chen, Xiaoqing

    2016-07-01

    Dietary stilbenoids are associated with many benefits for human health, which depend on their bioavailability and bioaccessibility. The stilbenoid-human serum albumin (HSA) interactions are investigated to explore the structure-affinity relationship and influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. The structure-affinity relationship of the stilbenoids-HSA interaction was found as: (1) the methoxylation enhanced the affinity, (2) an additional hydroxyl group increases the affinity and (3) the glycosylation significantly weakened the affinity. HSA obviously masked the free radical scavenging potential of stilbenoids. The stabilities of stilbenoids in different medium were determined as: HSA solution>human plasma>Dulbecco's modified Eagle's medium. It appears that the milk enhanced the cell uptake of stilbenoids with multi-hydroxyl groups and weakened the cell uptake of stilbenoids with methoxyl group on EA.hy 926 endothelial cells. The stilbenoids are hardly absorbed by human umbilical vein endothelial cells in the presence of milk.

  20. Modeling of Interactions between Surface properties, DC Self Bias and Plasma Stability in PECVD Tools

    NASA Astrophysics Data System (ADS)

    Galli, Federico; Keil, Douglas; Augustyniak, Edward

    2011-10-01

    PECVD tools employing capacitively coupled plasma (CCP) sources are widely used in the semiconductor industry to deposit low-k dielectric materials. Power coupling in a CCP reactor is dominated by the plasma-sheath-surface dynamics. The properties of the electrode and other plasma-bounding surfaces, as well as the amount and type of material deposited thereon, affect such dynamics by modifying locally the plasma density, the electron temperature, and the DC self bias. Because PECVD tools are depositing tools, changes to the plasma properties due to surface modification are intrinsic of the process and unavoidable. The purpose of this work is to study these interactions between surface properties, secondary electron emission, DC self bias, plasma density and electron temperature by means of a fluid-type plasma model. Furthermore, the correlation between modeling results and some experimental results as a function of process parameters and chamber conditioning are reported and discussed.

  1. Stabilization of cancer-specific gene carrier via hydrophobic interaction for a clear-cut response to cancer signaling.

    PubMed

    Kim, Chan Woo; Toita, Riki; Kang, Jeong-Hun; Li, Kai; Lee, Eun Kyung; Zhao, Guo Xi; Funamoto, Daiki; Nobori, Takanobu; Nakamura, Yuta; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2013-09-28

    Here, we developed a new gene carrier, comprising a linear polyethylenimine (LPEI) grafted with a hydrophobically modified cationic peptide containing a long alkyl chain, for use in cancer-specific gene delivery. The cationic peptide is a substrate of protein kinase Cα (PKCα), which is known to be activated specifically in cancer cells. The hydrophobically modified LPEI-peptide conjugate (LPEI-C10-peptide) could form a polyplex with DNA through electrostatic and hydrophobic interactions between the anionic DNA strands and the cationic peptide substrate. The hydrophobic modification of the peptide did not affect the reactivity of the peptide toward PKCα, while the polyplex showed improved intracellular uptake. Because of the efficient endosomal escape and enhanced stability, the polyplex significantly improved the transgene regulation responding to intracellular PKCα activity.

  2. An unusual conformation of gabapentin (Gpn) in Pyr-Gpn-NH-NH-Pyr stabilized by weak interactions.

    PubMed

    Wani, Naiem Ahmad; Gupta, Vivek Kumar; Kant, Rajni; Aravinda, Subrayashastry; Rai, Rajkishor

    2014-08-01

    The crystal structure of N-[(1-{2-oxo-2-[2-(pyrazin-2-ylcarbonyl)hydrazin-1-yl]ethyl}cyclohexyl)methyl]pyrazine-2-carboxamide monohydrate (Pyr-Gpn-NN-NH-Pyr·H2O), C19H23N7O3·H2O, reveals an unusual trans-gauche (tg(-)) conformation for the gabapentin (Gpn) residue around the C(γ)-C(β) (θ1) and C(β)-C(α) (θ2) bonds. The molecular conformation is stabilized by intramolecular N-H...N hydrogen bonds and weak C-H...O interactions. The packing of the molecules in the crystal lattice shows a network of strong N-H...O and O-H...O hydrogen bonds together with weak C-H...O and π-π inteactions.

  3. HDAC1/2-Dependent P0 Expression Maintains Paranodal and Nodal Integrity Independently of Myelin Stability through Interactions with Neurofascins

    PubMed Central

    Brügger, Valérie; Engler, Stefanie; Pereira, Jorge A.; Ruff, Sophie; Horn, Michael; Welzl, Hans; Münger, Emmanuelle; Vaquié, Adrien; Sidiropoulos, Páris N. M.; Egger, Boris; Yotovski, Peter; Filgueira, Luis; Somandin, Christian; Lühmann, Tessa C.; D’Antonio, Maurizio; Yamaguchi, Teppei; Matthias, Patrick; Suter, Ueli; Jacob, Claire

    2015-01-01

    The pathogenesis of peripheral neuropathies in adults is linked to maintenance mechanisms that are not well understood. Here, we elucidate a novel critical maintenance mechanism for Schwann cell (SC)–axon interaction. Using mouse genetics, ablation of the transcriptional regulators histone deacetylases 1 and 2 (HDAC1/2) in adult SCs severely affected paranodal and nodal integrity and led to demyelination/remyelination. Expression levels of the HDAC1/2 target gene myelin protein zero (P0) were reduced by half, accompanied by altered localization and stability of neurofascin (NFasc)155, NFasc186, and loss of Caspr and septate-like junctions. We identify P0 as a novel binding partner of NFasc155 and NFasc186, both in vivo and by in vitro adhesion assay. Furthermore, we demonstrate that HDAC1/2-dependent P0 expression is crucial for the maintenance of paranodal/nodal integrity and axonal function through interaction of P0 with neurofascins. In addition, we show that the latter mechanism is impaired by some P0 mutations that lead to late onset Charcot-Marie-Tooth disease. PMID:26406915

  4. Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach.

    PubMed

    Canales, Angeles; Rodríguez-Salarichs, Javier; Trigili, Chiara; Nieto, Lidia; Coderch, Claire; Andreu, José Manuel; Paterson, Ian; Jiménez-Barbero, Jesús; Díaz, J Fernando

    2011-08-19

    The binding interactions of two antitumor agents that target the paclitaxel site, docetaxel and discodermolide, to unassembled α/β-tubulin heterodimers and microtubules have been studied using biochemical and NMR techniques. The use of discodermolide as a water-soluble paclitaxel biomimetic and extensive NMR experiments allowed the detection of binding of microtubule-stabilizing agents to unassembled tubulin α/β-heterodimers. The bioactive 3D structures of docetaxel and discodermolide bound to α/β-heterodimers were elucidated and compared to those bound to microtubules, where subtle changes in the conformations of docetaxel in its different bound states were evident. Moreover, the combination of experimental TR-NOE and STD NMR data with CORCEMA-ST calculations indicate that docetaxel and discodermolide target an additional binding site at the pore of the microtubules, which is different from the internal binding site at the lumen previously determined by electron crystallography. Binding to this pore site can then be considered as the first ligand-protein recognition event that takes place in advance of the drug internalization process and interaction with the lumen of the microtubules.

  5. HDAC1/2-Dependent P0 Expression Maintains Paranodal and Nodal Integrity Independently of Myelin Stability through Interactions with Neurofascins.

    PubMed

    Brügger, Valérie; Engler, Stefanie; Pereira, Jorge A; Ruff, Sophie; Horn, Michael; Welzl, Hans; Münger, Emmanuelle; Vaquié, Adrien; Sidiropoulos, Páris N M; Egger, Boris; Yotovski, Peter; Filgueira, Luis; Somandin, Christian; Lühmann, Tessa C; D'Antonio, Maurizio; Yamaguchi, Teppei; Matthias, Patrick; Suter, Ueli; Jacob, Claire

    2015-01-01

    The pathogenesis of peripheral neuropathies in adults is linked to maintenance mechanisms that are not well understood. Here, we elucidate a novel critical maintenance mechanism for Schwann cell (SC)-axon interaction. Using mouse genetics, ablation of the transcriptional regulators histone deacetylases 1 and 2 (HDAC1/2) in adult SCs severely affected paranodal and nodal integrity and led to demyelination/remyelination. Expression levels of the HDAC1/2 target gene myelin protein zero (P0) were reduced by half, accompanied by altered localization and stability of neurofascin (NFasc)155, NFasc186, and loss of Caspr and septate-like junctions. We identify P0 as a novel binding partner of NFasc155 and NFasc186, both in vivo and by in vitro adhesion assay. Furthermore, we demonstrate that HDAC1/2-dependent P0 expression is crucial for the maintenance of paranodal/nodal integrity and axonal function through interaction of P0 with neurofascins. In addition, we show that the latter mechanism is impaired by some P0 mutations that lead to late onset Charcot-Marie-Tooth disease. PMID:26406915

  6. Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque.

    PubMed

    Siracusano, G; Tomasello, R; Giordano, A; Puliafito, V; Azzerboni, B; Ozatay, O; Carpentieri, M; Finocchio, G

    2016-08-19

    Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5<|S|<1) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 10^{6}  A/cm^{2}. The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations. PMID:27588879

  7. Dynamic and Static Interactions between p120 Catenin and E-Cadherin Regulate the Stability of Cell-Cell Adhesion

    SciTech Connect

    Ishiyama, Noboru; Lee, Seung-Hye; Liu, Shuang; Li, Guang-Yao; Smith, Matthew J.; Reichardt, Louis F.; Ikura, Mitsuhiko

    2010-04-26

    The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD{sub core}) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD{sub core}. Single-residue mutations within the JMD{sub core}-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete dynamic and static binding sites.

  8. A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study on colour stability of ovine meat.

    PubMed

    Subbaraj, Arvind K; Kim, Yuan H Brad; Fraser, Karl; Farouk, Mustafa M

    2016-07-01

    Meat colour is one of the cues available to the consumer to gauge overall meat quality and wholesomeness. Colour stability of meat is determined by several factors both inherent to the animal and post-slaughter conditions, including ageing, storage/packaging and display times. A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study was undertaken to identify and compare polar metabolites between ovine meat samples that were exposed to different durations of ageing, storage conditions, and display times. Primary metabolites comprising amino acids, sugars, nucleotides, nucleosides, organic acids and their breakdown products were mainly identified as discriminating factors. For the first time, boron complexes of sugar and malic acid were also tentatively identified. As expected, most compounds identified were related to myoglobin chemistry, and compounds with antioxidant properties were found in higher levels in colour stable samples. Supplementary studies identifying semi-polar, non-polar and volatile compounds will provide a holistic understanding of the chemical basis of colour stability in ovine meat. PMID:26986230

  9. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions.

  10. In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity.

    PubMed

    Pires, Douglas E V; Chen, Jing; Blundell, Tom L; Ascher, David B

    2016-01-01

    Despite interest in associating polymorphisms with clinical or experimental phenotypes, functional interpretation of mutation data has lagged behind generation of data from modern high-throughput techniques and the accurate prediction of the molecular impact of a mutation remains a non-trivial task. We present here an integrated knowledge-driven computational workflow designed to evaluate the effects of experimental and disease missense mutations on protein structure and interactions. We exemplify its application with analyses of saturation mutagenesis of DBR1 and Gal4 and show that the experimental phenotypes for over 80% of the mutations correlate well with predicted effects of mutations on protein stability and RNA binding affinity. We also show that analysis of mutations in VHL using our workflow provides valuable insights into the effects of mutations, and their links to the risk of developing renal carcinoma. Taken together the analyses of the three examples demonstrate that structural bioinformatics tools, when applied in a systematic, integrated way, can rapidly analyse a given system to provide a powerful approach for predicting structural and functional effects of thousands of mutations in order to reveal molecular mechanisms leading to a phenotype. Missense or non-synonymous mutations are nucleotide substitutions that alter the amino acid sequence of a protein. Their effects can range from modifying transcription, translation, processing and splicing, localization, changing stability of the protein, altering its dynamics or interactions with other proteins, nucleic acids and ligands, including small molecules and metal ions. The advent of high-throughput techniques including sequencing and saturation mutagenesis has provided large amounts of phenotypic data linked to mutations. However, one of the hurdles has been understanding and quantifying the effects of a particular mutation, and how they translate into a given phenotype. One approach to overcome

  11. HIF1α-Induced by Lysophosphatidic Acid Is Stabilized via Interaction with MIF and CSN5

    PubMed Central

    No, Yi Ran; Lee, Sei-Jung; Kumar, Ajay; Yun, C. Chris

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a cytokine that has broad effects on immune system and inflammatory response. A growing body of evidence implicates the role of MIF in tumor growth and metastasis. Lysophosphatidic acid (LPA), a bioactive lipid mediator, regulates colon cancer cell proliferation, invasion, and survival through LPA2 receptor. Loss of LPA2 results in decreased expression of MIF in a rodent model of colon cancer, but the mechanism of MIF regulation by LPA is yet to be determined. In this study, we show that LPA transcriptionally regulates MIF expression in colon cancer cells. MIF knockdown decreased LPA-mediated proliferation of HCT116 human adenocarcinoma cells without altering the basal proliferation rates. Conversely, extracellular recombinant MIF stimulated cell proliferation, suggesting that the effect of MIF may in part be mediated through activation of surface receptor. We have shown recently that LPA increases hypoxia-inducible factor 1α (HIF1α) expression. We found that MIF regulation by LPA was ablated by knockdown of HIF1α, indicating that MIF is a transcriptional target of HIF1α. Conversely, knockdown of MIF ablated an increase in HIF1α expression in LPA-treated cells, suggesting a reciprocal relationship between HIF1α and MIF. LPA stimulated co-immunoprecipitation of HIF1α and MIF, indicating that their association is necessary for stabilization of HIF1α. It has been shown previously that CSN9 signalosome subunit 5 (CSN5) interacts with HIF1α to stabilize HIF1α under aerobic conditions. We found that LPA did not alter expression of CSN5, but stimulated its interaction with HIF1α and MIF. Depletion of CSN5 mitigated the association between HIF1α and MIF, indicating that CSN5 acts as a physical link. We suggest that HIF1α, MIF, and CSN5 form a ternary complex whose formation is necessary to prevent degradation of HIF1α under aerobic conditions. PMID:26352431

  12. Tactics for modeling multiple salivary analyte data in relation to behavior problems: Additive, ratio, and interaction effects.

    PubMed

    Chen, Frances R; Raine, Adrian; Granger, Douglas A

    2015-01-01

    Individual differences in the psychobiology of the stress response have been linked to behavior problems in youth yet most research has focused on single signaling molecules released by either the hypothalamic-pituitary-adrenal axis or the autonomic nervous system. As our understanding about biobehavioral relationships develops it is clear that multiple signals from the biological stress systems work in coordination to affect behavior problems. Questions are raised as to whether coordinated effects should be statistically represented as ratio or interactive terms. We address this knowledge gap by providing a theoretical overview of the concepts and rationales, and illustrating the analytical tactics. Salivary samples collected from 446 youth aged 11-12 were assayed for salivary alpha-amylase (sAA), dehydroepiandrosterone-sulfate (DHEA-s) and cortisol. Coordinated effect of DHEA-s and cortisol, and coordinated effect of sAA and cortisol on externalizing and internalizing problems (Child Behavior Checklist) were tested with the ratio and the interaction approaches using multi-group path analysis. Findings consistent with previous studies include a positive association between cortisol/DHEA-s ratio and internalizing problems; and a negative association between cortisol and externalizing problems conditional on low levels of sAA. This study highlights the importance of matching analytical strategy with research hypothesis when integrating salivary bioscience into research in behavior problems. Recommendations are made for investigating multiple salivary analytes in relation to behavior problems. PMID:25462892

  13. Tactics for modeling multiple salivary analyte data in relation to behavior problems: Additive, ratio, and interaction effects.

    PubMed

    Chen, Frances R; Raine, Adrian; Granger, Douglas A

    2015-01-01

    Individual differences in the psychobiology of the stress response have been linked to behavior problems in youth yet most research has focused on single signaling molecules released by either the hypothalamic-pituitary-adrenal axis or the autonomic nervous system. As our understanding about biobehavioral relationships develops it is clear that multiple signals from the biological stress systems work in coordination to affect behavior problems. Questions are raised as to whether coordinated effects should be statistically represented as ratio or interactive terms. We address this knowledge gap by providing a theoretical overview of the concepts and rationales, and illustrating the analytical tactics. Salivary samples collected from 446 youth aged 11-12 were assayed for salivary alpha-amylase (sAA), dehydroepiandrosterone-sulfate (DHEA-s) and cortisol. Coordinated effect of DHEA-s and cortisol, and coordinated effect of sAA and cortisol on externalizing and internalizing problems (Child Behavior Checklist) were tested with the ratio and the interaction approaches using multi-group path analysis. Findings consistent with previous studies include a positive association between cortisol/DHEA-s ratio and internalizing problems; and a negative association between cortisol and externalizing problems conditional on low levels of sAA. This study highlights the importance of matching analytical strategy with research hypothesis when integrating salivary bioscience into research in behavior problems. Recommendations are made for investigating multiple salivary analytes in relation to behavior problems.

  14. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces.

    PubMed

    Miros, François N; Zhao, Yingjie; Sargsyan, Gevorg; Pupier, Marion; Besnard, Céline; Beuchat, César; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-02-18

    Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion-π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the (1) H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen-deuterium (H-D) exchange for 11 different examples, excluding controls. The velocity of H-D exchange increases with π acidity (NDI core substituents: SO2 R>SOR>H>OR>OR/NR2 >SR>NR2 ). The H-D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11-13 atoms). Most importantly, H-D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to -18.8 kJ mol(-1) are obtained for H-D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa =10.9 calculates to a ΔpKa =-5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as "impossible" in biology, the found enolate-π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion-π activities can be expected only from

  15. Hanford waste-form release and sediment interaction: A status report with rationale and recommendations for additional studies

    SciTech Connect

    Serne, R.J. ); Wood, M.I. )

    1990-05-01

    This report documents the currently available geochemical data base for release and retardation for actual Hanford Site materials (wastes and/or sediments). The report also recommends specific laboratory tests and presents the rationale for the recommendations. The purpose of this document is threefold: to summarize currently available information, to provide a strategy for generating additional data, and to provide recommendations on specific data collection methods and tests matrices. This report outlines a data collection approach that relies on feedback from performance analyses to ascertain when adequate data have been collected. The data collection scheme emphasizes laboratory testing based on empiricism. 196 refs., 4 figs., 36 tabs.

  16. Dynamic Interaction of TTDA with TFIIH Is Stabilized by Nucleotide Excision Repair in Living Cells

    PubMed Central

    Theil, Arjan F; Mari, Pierre-Olivier; Hoogstraten, Deborah; Ng, Jessica M. Y; Dinant, Christoffel; Hoeijmakers, Jan H. J

    2006-01-01

    Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER. PMID:16669699

  17. Nudel is crucial for the WAVE complex assembly in vivo by selectively promoting subcomplex stability and formation through direct interactions.

    PubMed

    Wu, Shuang; Ma, Li; Wu, Yibo; Zeng, Rong; Zhu, Xueliang

    2012-08-01

    The WAVE regulatory complex (WRC), consisting of WAVE, Sra, Nap, Abi, and HSPC300, activates the Arp2/3 complex to control branched actin polymerization in response to Rac activation. How the WRC is assembled in vivo is not clear. Here we show that Nudel, a protein critical for lamellipodia formation, dramatically stabilized the Sra1-Nap1-Abi1 complex against degradation in cells through a dynamic binding to Sra1, whereas its physical interaction with HSPC300 protected free HSPC300 from the proteasome-mediated degradation and stimulated the HSPC300-WAVE2 complex formation. By contrast, Nudel showed little or no interactions with the Sra1-Nap1-Abi1-WAVE2 and the Sra1-Nap1-Abi1-HSPC300 complexes as well as the mature WRC. Depletion of Nudel by RNAi led to general subunit degradation and markedly attenuated the levels of mature WRC. It also abolished the WRC-dependent actin polymerization in vitro and the Rac1-induced lamellipodial actin network formation during cell spreading. Therefore, Nudel is important for the early steps of the WRC assembly in vivo by antagonizing the instability of certain WRC subunits and subcomplexes. PMID:22453242

  18. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis.

    PubMed

    Shakeel, Shabih; Westerhuis, Brenda M; Domanska, Ausra; Koning, Roman I; Matadeen, Rishi; Koster, Abraham J; Bakker, Arjen Q; Beaumont, Tim; Wolthers, Katja C; Butcher, Sarah J

    2016-01-01

    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation. PMID:27435188

  19. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

    NASA Astrophysics Data System (ADS)

    Shakeel, Shabih; Westerhuis, Brenda M.; Domanska, Ausra; Koning, Roman I.; Matadeen, Rishi; Koster, Abraham J.; Bakker, Arjen Q.; Beaumont, Tim; Wolthers, Katja C.; Butcher, Sarah J.

    2016-07-01

    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.

  20. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

    PubMed Central

    Shakeel, Shabih; Westerhuis, Brenda M.; Domanska, Ausra; Koning, Roman I.; Matadeen, Rishi; Koster, Abraham J.; Bakker, Arjen Q.; Beaumont, Tim; Wolthers, Katja C.; Butcher, Sarah J.

    2016-01-01

    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA–protein interactions and dissection of virus assembly on the basis of RNA nucleation. PMID:27435188

  1. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max.

    PubMed

    Alekseeva, A A; Kargov, I S; Kleimenov, S Yu; Savin, S S; Tishkov, V I

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

  2. Precipitation recycling as a mechanism for ecoclimatological stability through local and non-local interactions

    NASA Astrophysics Data System (ADS)

    Dominguez, Francina

    This study is the first to analyze the mechanisms that drive precipitation recycling variability at the daily to intraseasonal timescale. A new Dynamic Precipitation Recycling model is developed which, unlike previous models, includes the moisture storage term in the equation of conservation of atmospheric moisture. As shown using scaling analysis, the moisture storage term is non-negligible at small time scales, so the new model enables us to analyze precipitation recycling variability at shorter timescales than traditional models. The daily to intraseasonal analysis enables us to uncover key relationships between recycling and the moisture and energy fluxes. In the second phase of this work, a spatiotemporal analysis of daily precipitation recycling is performed over two regions of North America: the Midwestern United States, and the North American Monsoon System (NAMS) region. These regions were chosen because they present contrasting land-atmosphere interactions. Different physical mechanisms drive precipitation recycling in each region. In the Midwestern United States, evapotranspiration is not significantly affected by soil moisture anomalies, and there is a high recycling ratio during periods of reduced total precipitation. The reason is that, during periods of drier atmospheric conditions, transpiration will continue to provide moisture to the overlying atmosphere and contribute to total rainfall. Consequently, precipitation recycling variability in not driven by changes in evapotranspiration. Precipitable water, sensible heat and moisture fluxes are the main drivers of recycling variability in the Midwest. However, the drier soil moisture conditions over the NAMS region limit evapotranspiration, which will drive recycling variability. In this region, evapotranspiration becomes an important contribution to precipitation after Monsoon onset when total precipitation and evapotranspiration are highest. The precipitation recycling process in the NAMS region

  3. Evaluation of calcium and lead interaction, in addition to their impact on thyroid functions in hyper and hypothyroid patients.

    PubMed

    Memon, Nusrat Shahab; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Arain, Sadaf Sadia; Sahito, Oan Muhammad; Baloch, Shahnawaz; Waris, Muhammad

    2016-01-01

    There is compelling evidence in support of interaction between calcium (Ca) and lead (Pb) in thyroid disorders. The aim of present study was to compare the level of Ca and Pb with thyroid hormones such as thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxin (FT4) in serum samples of hyperthyroid (HPRT) and hypothyroid (HPOT) patients of both genders. For comparative purpose, age-matched (25-50 years) subjects having no thyroid disorders were selected as referents/controls. The serum samples were acid-digested prior to analysis by atomic absorption spectrometry. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data indicates that the mean values of Ca in serum samples of HPRT patients were significantly higher than those of referent subjects (p < 0.01), while reverse pattern was observed in the case of HPOT patients. The level of Pb was higher in the serum samples of both types of thyroid patients, but difference was significant in case of HPOT patients as compare to referent subjects (p < 0.01). A negative correlation was observed between serum Ca levels and TSH of HPRT patients (-r = 0.37-0.39, p < 0.01), while FT3 and FT4 have positive correlation (r = 0.49-0.52 and r = 0.46-0.47), p values <0.01. The Pb in serum had positive correlation with TSH (r = 0.48-0.51, p < 0.005), while negative correlation was observed for FT3 and FT4 (-r = 0.55-0.56, 0.5-0.54, p < 0.05) in HPRT patients. On the other hand, a reverse pattern was observed, for correlation of Ca and Pb with thyroid functions in HPOT patients. PMID:26347420

  4. On the formation and stability of O - and O -2 radicals in type a zeolites and demonstration of cation interactions

    NASA Astrophysics Data System (ADS)

    Narayana, M.; Janakiraman, R.; Kevan, Larry

    1982-07-01

    Electron spin resonance studies show tha O - is formed as the major paramagnetic oxygen species in γ-irradiated Ca 6-A zeolite followed by oxygen adsorption. This is a new method to generate this highly reactive catalytic intermediate. O -2 is formed in addition to O - if oxygen is adsorbed prior to irradiation. In Na 12-A zeolite O - is also seen but it transforms to O -2 in several hours. Thus O - appears to be more stable in divalent exchanged zeolites. By electron spin echo modulation spectrometry interactions fo O -2 with Li + have been detected which suggests that oxygen species locations in zeolites can be delineated.

  5. The DenA/DEN1 Interacting Phosphatase DipA Controls Septa Positioning and Phosphorylation-Dependent Stability of Cytoplasmatic DenA/DEN1 during Fungal Development

    PubMed Central

    Schinke, Josua; Kolog Gulko, Miriam; Christmann, Martin; Valerius, Oliver; Stumpf, Sina Kristin; Stirz, Margarita; Braus, Gerhard H.

    2016-01-01

    DenA/DEN1 and the COP9 signalosome (CSN) represent two deneddylases which remove the ubiquitin-like Nedd8 from modified target proteins and are required for distinct fungal developmental programmes. The cellular DenA/DEN1 population is divided into a nuclear and a cytoplasmatic subpopulation which is especially enriched at septa. DenA/DEN1 stability control mechanisms are different for the two cellular subpopulations and depend on different physical interacting proteins and the C-terminal DenA/DEN1 phosphorylation pattern. Nuclear DenA/DEN1 is destabilized during fungal development by five of the eight CSN subunits which target nuclear DenA/DEN1 for degradation. DenA/DEN1 becomes stabilized as a phosphoprotein at S243/S245 during vegetative growth, which is necessary to support further asexual development. After the initial phase of development, the newly identified cytoplasmatic DenA/DEN1 interacting phosphatase DipA and an additional developmental specific C-terminal phosphorylation site at serine S253 destabilize DenA/DEN1. Outside of the nucleus, DipA is co-transported with DenA/DEN1 in the cytoplasm between septa and nuclei. Deletion of dipA resulted in increased DenA/DEN1 stability in a strain which is unresponsive to illumination. The mutant strain is dysregulated in cytokinesis and impaired in asexual development. Our results suggest a dual phosphorylation-dependent DenA/DEN1 stability control with stabilizing and destabilizing modifications and physical interaction partner proteins which function as control points in the nucleus and the cytoplasm. PMID:27010942

  6. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength.

    PubMed

    Delay, Markus; Dolt, Tamara; Woellhaf, Annette; Sembritzki, Reinhard; Frimmel, Fritz H

    2011-07-01

    The rapid development of nanotechnology and the related production and application of nanosized materials such as engineered nanoparticles (ENP) inevitably lead to the emission of these products into environmental systems. So far, little is known about the occurrence and the behaviour of ENP in environmental aquatic systems. In this contribution, the influence of natural organic matter (NOM) and ionic strength on the stability and the interactions of silver nanoparticles (n-Ag) in aqueous suspensions was investigated using UV-vis spectroscopy and asymmetrical flow field-flow fractionation (AF⁴) coupled with UV-vis detection and mass spectrometry (ICP-MS). n-Ag particles were synthesized by chemical reduction of AgNO₃ with NaBH₄ in the liquid phase at different NOM concentrations. It could be observed that the destabilization effect of increasing ionic strength on n-Ag suspensions was significantly decreased in the presence of NOM, leading to a more stable n-Ag particle suspension. The results indicate that this behaviour is due to the adsorption of NOM molecules onto the surface of n-Ag particles ("coating") and the resulting steric stabilization of the particle suspension. The application of AF⁴ coupled with highly sensitive detectors turned out to be a powerful method to follow the aggregation of n-Ag particle suspensions at different physical-chemical conditions and to get meaningful information on their chemical composition and particle size distributions. The method described will also open the door to obtain reliable data on the occurrence and the behaviour of other ENP in environmental aquatic systems.

  7. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    NASA Astrophysics Data System (ADS)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p < 0.0001). FTIR spectral analysis indicated that higher MoM content under aspen was not due to higher concentration of recalcitrant compounds (e.g., aliphatic and aromatic C), but rather to stabilization of simple molecules (e.g., polysaccharides) of plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry

  8. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.

    2016-02-01

    Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.

  9. Self-stability of C60 nanocapsules with radio-iodide content and its interaction with calcium atoms.

    PubMed

    Valderrama, Alejandro; Reynoso, Radamés; Gómez, Raúl W; Marquina, Vivianne

    2016-01-01

    This paper inquires the C60 capabilities to contain radio-iodide ((131)I2) molecules. The encapsulation conditions are investigated applying first principles method to simulate with geometric optimizations and molecular dynamics at 310 K and atmospheric pressure. We find that the n(131)I2@C60 system, where n = 1, 2, 3…, is stable if the content does not exceed three molecules of radio-iodide. The application of density functional theory allows us to determine that, the nanocapsules content limit is related with the amount of charge that is transferred from the iodine (131)I2 molecules to the carbon atoms in the fullerene surface. The Mulliken population analysis reveals that the excess of charge increases the repulsive forces between atoms and the bond length average in the C60 structure. The weakened bonds easily break and will critically damage the encapsulation properties. Additionally, we test the interaction nanocapsules with different amounts of radioactive iodine diatomic molecules content with calcium atoms, and find that only the fullerene containing one radioactive iodine diatomic molecule was able to interact with up to nine atoms of calcium without disrupting or cracking. Other fullerenes with two and three radio iodine diatomic molecules cannot resist the interaction with a single calcium atom without cracking or being broken.

  10. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation

    PubMed Central

    Lambrughi, Matteo; Papaleo, Elena; Testa, Lorenzo; Brocca, Stefania; De Gioia, Luca; Grandori, Rita

    2012-01-01

    Cyclin-dependent kinase inhibitors (CKIs) are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk) activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs), which lack a well-defined and organized three-dimensional (3D) structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs) and collapsed conformations. These structural features can be relevant to protein function in vivo. The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models for compact confor