Science.gov

Sample records for additional state variables

  1. The Variable Transition State in Polar Additions to Pi Bonds

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2010-01-01

    A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…

  2. Paced Auditory Serial Addition Test: adult norms and moderator variables.

    PubMed

    Wiens, A N; Fuller, K H; Crossen, J R

    1997-08-01

    This study examined the performance of a sample of 821 healthy job applicants on the Paced Auditory Serial Addition Test (PASAT). Subjects had previously passed basic academic skills tests and physical examinations and were deemed free of cognitive impairment and medical illness. They were also motivated to perform well on cognitive tests. Gender, ethnicity, and education were not significant moderator variables in our subjects. Age and IQ did significantly affect PASAT test results. Normative data are stratified by age and WAIS-R Full Scale IQ scores to be useful to those who administer the PASAT in clinical practice. PMID:9342683

  3. Bounds on internal state variables in viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1993-01-01

    A typical viscoplastic model will introduce up to three types of internal state variables in order to properly describe transient material behavior; they are as follows: the back stress, the yield stress, and the drag strength. Different models employ different combinations of these internal variables--their selection and description of evolution being largely dependent on application and material selection. Under steady-state conditions, the internal variables cease to evolve and therefore become related to the external variables (stress and temperature) through simple functional relationships. A physically motivated hypothesis is presented that links the kinetic equation of viscoplasticity with that of creep under steady-state conditions. From this hypothesis one determines how the internal variables relate to one another at steady state, but most importantly, one obtains bounds on the magnitudes of stress and back stress, and on the yield stress and drag strength.

  4. Brainstem response and state-trait variables

    NASA Technical Reports Server (NTRS)

    Gilliland, Kirby

    1988-01-01

    A series of investigations are summarized from a personality research program that have relevance for mental state estimation. Of particular concern are those personality variables that are believed to have either a biological or perceptual basis and their relationship to human task performance and psychophysiology. These variables are among the most robust personality measures and include such dimensions as extraversion-introversion, sensation seeking, and impulsiveness. These dimensions also have the most distinct link to performance and psychophysiology. Through the course of many of these investigations two issues have emerged repeatedly: these personality dimensions appear to mediate mental state, and mental state appears to influence measures of performance or psychophysiology.

  5. Variable torque prescription: state of art.

    PubMed

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R; Teresa, Dinoi M; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the "timeline changes" in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  6. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  7. Flexible quantum circuits using scalable continuous-variable cluster states

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Menicucci, Nicolas C.

    2016-06-01

    We show that measurement-based quantum computation on scalable continuous-variable (CV) cluster states admits more quantum-circuit flexibility and compactness than similar protocols for standard square-lattice CV cluster states. This advantage is a direct result of the macronode structure of these states—that is, a lattice structure in which each graph node actually consists of several physical modes. These extra modes provide additional measurement degrees of freedom at each graph location, which can be used to manipulate the flow and processing of quantum information more robustly and with additional flexibility that is not available on an ordinary lattice.

  8. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED State Supplementation Provisions; Agreement;...

  9. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED State Supplementation Provisions; Agreement;...

  10. Teleportation of continuous variable multimode Greeberger Horne Zeilinger entangled states

    NASA Astrophysics Data System (ADS)

    He, Guangqiang; Zhang, Jingtao; Zeng, Guihua

    2008-11-01

    Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).

  11. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    PubMed

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition. PMID:26216200

  12. Testing quantum contextuality of continuous-variable states

    SciTech Connect

    McKeown, Gerard; Paternostro, Mauro; Paris, Matteo G. A.

    2011-06-15

    We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudospin observables and a generalized quasiprobability function.

  13. Heart rate variability predicts the emotional state in dogs.

    PubMed

    Katayama, Maki; Kubo, Takatomi; Mogi, Kazutaka; Ikeda, Kazushi; Nagasawa, Miho; Kikusui, Takefumi

    2016-07-01

    Although it is known that heart rate variability (HRV) is a useful indicator of emotional states in animals, there are few reports of research in dogs. Thus, we investigated the relationship between HRV and emotional states in dogs. The electrocardiogram and behavior in two situations that elicited a positive and negative emotion, in addition to baseline (when dogs were not presented any social stimuli), were recorded in 33 healthy house dogs. After testing, we chose 15seconds from each situation and baseline and calculated three HRV parameters: standard deviation of normal-to-normal R-R intervals (SDNN), the root mean square of successive heartbeat interval differences (RMSSD), and mean R-R intervals (mean RRI). In comparing these parameters with baseline, only SDNN was lower in a positive situation. In contrast, only RMSSD was lower in a negative situation. A change in HRV occurred with a stimulus eliciting emotion, and was able to distinguish between positive and negative situations. Thus, HRV is useful for estimating the emotional state in dogs. PMID:27129806

  14. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  15. Numerical implementation of a state variable model for friction

    SciTech Connect

    Korzekwa, D.A.; Boyce, D.E.

    1995-03-01

    A general state variable model for friction has been incorporated into a finite element code for viscoplasticity. A contact area evolution model is used in a finite element model of a sheet forming friction test. The results show that a state variable model can be used to capture complex friction behavior in metal forming simulations. It is proposed that simulations can play an important role in the analysis of friction experiments and the development of friction models.

  16. The biobehavioral family model: testing social support as an additional exogenous variable.

    PubMed

    Woods, Sarah B; Priest, Jacob B; Roush, Tara

    2014-12-01

    This study tests the inclusion of social support as a distinct exogenous variable in the Biobehavioral Family Model (BBFM). The BBFM is a biopsychosocial approach to health that proposes that biobehavioral reactivity (anxiety and depression) mediates the relationship between family emotional climate and disease activity. Data for this study included married, English-speaking adult participants (n = 1,321; 55% female; M age = 45.2 years) from the National Comorbidity Survey Replication, a nationally representative epidemiological study of the frequency of mental disorders in the United States. Participants reported their demographics, marital functioning, social support from friends and relatives, anxiety and depression (biobehavioral reactivity), number of chronic health conditions, and number of prescription medications. Confirmatory factor analyses supported the items used in the measures of negative marital interactions, social support, and biobehavioral reactivity, as well as the use of negative marital interactions, friends' social support, and relatives' social support as distinct factors in the model. Structural equation modeling indicated a good fit of the data to the hypothesized model (χ(2)  = 846.04, p = .000, SRMR = .039, CFI = .924, TLI = .914, RMSEA = .043). Negative marital interactions predicted biobehavioral reactivity (β = .38, p < .001), as did relatives' social support, inversely (β = -.16, p < .001). Biobehavioral reactivity predicted disease activity (β = .40, p < .001) and was demonstrated to be a significant mediator through tests of indirect effects. Findings are consistent with previous tests of the BBFM with adult samples, and suggest the important addition of family social support as a predicting factor in the model. PMID:24981970

  17. Additive manufacturing metrology: State of the art and needs assessment

    NASA Astrophysics Data System (ADS)

    Koester, L.; Taheri, H.; Bond, L. J.; Barnard, D.; Gray, J.

    2016-02-01

    Additive manufacturing (AM) is a technology that first emerged in 1987 with stereolithography (SL) of plastic materials from 3D Systems. It saw light use for rapid prototyping and very low volume production for a number of years. However, in the past few years AM of metallic materials has become a practical fabrication technology, use is rapidly increasing and is projected to continue with double digit growth in coming years. The promise and flexibility shown by AM has spurred efforts to begin standardization of this type of process. This paper provides an assessment of the state of the art for in-situ process monitoring of AM processes with an emphasis on the production of metallic components. It is seen that with the implementation of proper process control there is potential to create reliable and reproducible materials and geometries previously unachievable using metal removal based means of production. A reliable methodology for detection and control of microstructure and defects would be of great value in terms of enabling broader AM utilization.

  18. Explaining finite state machine characteristics using variable structure control

    SciTech Connect

    Feddema, J.T.; Robinett, R.D.; Driessen, B.J.

    1997-10-01

    This paper describes how variable structure control can be used to describe the overall behavior of multiple autonomous robotic vehicles with simple finite state machine rules. The importance of this result is that it allows for the design of provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with variable structure control. The ability to prove convergence to a goal is especially important for applications such as locating military targets or land mines.

  19. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  20. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  1. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    SciTech Connect

    Lee, Su-Yong; Kim, Ho-Joon; Ji, Se-Wan; Nha, Hyunchul

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  2. Universal Continuous-Variable State Orthogonalizer and Qubit Generator

    NASA Astrophysics Data System (ADS)

    Coelho, Antonio S.; Costanzo, Luca S.; Zavatta, Alessandro; Hughes, Catherine; Kim, M. S.; Bellini, Marco

    2016-03-01

    We experimentally demonstrate a universal strategy for producing a quantum state that is orthogonal to an arbitrary, infinite-dimensional, pure input one, even if only a limited amount of information about the latter is available. Arbitrary coherent superpositions of the two mutually orthogonal states are then produced by a simple change in the experimental parameters. We use input coherent states of light to illustrate two variations of the method. However, we show that the scheme works equally well for arbitrary input fields and constitutes a universal procedure, which may thus prove a useful building block for quantum state engineering and quantum information processing with continuous-variable qubits.

  3. Variability in Medical Marijuana Laws in the United States

    PubMed Central

    Bestrashniy, Jessica; Winters, Ken C.

    2015-01-01

    Marijuana use and its distribution raise several complex health, social and legal issues in the United States. Marijuana is prohibited in only 23 states and pro-marijuana laws are likely to be introduced in these states in the future. Increased access to and legalization of medical marijuana may have an impact on recreational marijuana use and perception through increased availability and decreased restrictiveness around the drug. The authors undertook an analysis to characterize the policy features of medical marijuana legislation, including an emphasis on the types of medical conditions that are included in medical marijuana laws. A high degree of variability in terms of allowable medical conditions, limits on cultivation and possession, and restrictiveness of policies was discovered. Further research is needed to determine if this variability impacts recreational use in those states. PMID:26415061

  4. Quantum secret sharing with continuous-variable cluster states

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Weedbrook, Christian

    2013-10-01

    We extend the formalism of cluster-state quantum secret sharing, as presented by Markham and Sanders [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.78.042309 78, 042309 (2008)] and Keet [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.062315 82, 062315 (2010)], to the continuous-variable regime. We show that both classical and quantum information can be shared by distributing continuous-variable cluster states through either public or private channels. We find that the adversary structure is completely denied from the secret if the cluster state is infinitely squeezed, but some secret information would be leaked if a realistic finitely squeezed state is employed. We suggest benchmarks to evaluate the security in the finitely squeezed cases. For the sharing of classical secrets, we borrow techniques from the continuous-variable quantum key distribution to compute the secret-sharing rate. For the sharing of quantum states, we estimate the amount of entanglement distilled for teleportation from each cluster state.

  5. Effects of state recovery on creep buckling under variable loading

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Arnold, S. M.

    1986-01-01

    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time.

  6. A new method for observing the running states of a single-variable nonlinear system.

    PubMed

    Meng, Yu; Chen, Hong; Chen, Cheng

    2015-03-01

    In order to timely grasp a single variable nonlinear system running states, a new method called Scatter Point method is put forward in this paper. It can be used to observe or monitor the running states of a single variable nonlinear system in real-time. In this paper, the definition of the method is given at first, and then its working principle is expounded theoretically, after this, some physical experiments based on Chua's nonlinear system are conducted. At the same time, many scatter point graphs are measured by a general analog oscilloscope. The motion, number, and distribution of these scatter points shown on the oscilloscope screen can directly reflect the current states of the tested system. The experimental results further confirm that the method is effective and practical, in which the system running states are not easily lost. In addition, this method is not only suitable for single variable systems but also for multivariable systems. PMID:25833428

  7. A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States

    NASA Technical Reports Server (NTRS)

    Ryff, Luiz Carlos

    1996-01-01

    A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.

  8. State to State and Charged Particle Kinetic Modeling of Time Filtering and Cs Addition

    SciTech Connect

    Capitelli, M.; Gorse, C.; Longo, S.; Diomede, P.; Pagano, D.

    2007-08-10

    We present here an account on the progress of kinetic simulation of non equilibrium plasmas in conditions of interest for negative ion production by using the 1D Bari code for hydrogen plasma simulation. The model includes the state to state kinetics of the vibrational level population of hydrogen molecules, plus a PIC/MCC module for the multispecies dynamics of charged particles. In particular we present new results for the modeling of two issues of great interest: the time filtering and the Cs addition via surface coverage.

  9. Effects of state recovery on creep buckling under variable loading

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Arnold, S. M.

    1988-01-01

    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading.

  10. Use of generalised additive models to categorise continuous variables in clinical prediction

    PubMed Central

    2013-01-01

    Background In medical practice many, essentially continuous, clinical parameters tend to be categorised by physicians for ease of decision-making. Indeed, categorisation is a common practice both in medical research and in the development of clinical prediction rules, particularly where the ensuing models are to be applied in daily clinical practice to support clinicians in the decision-making process. Since the number of categories into which a continuous predictor must be categorised depends partly on the relationship between the predictor and the outcome, the need for more than two categories must be borne in mind. Methods We propose a categorisation methodology for clinical-prediction models, using Generalised Additive Models (GAMs) with P-spline smoothers to determine the relationship between the continuous predictor and the outcome. The proposed method consists of creating at least one average-risk category along with high- and low-risk categories based on the GAM smooth function. We applied this methodology to a prospective cohort of patients with exacerbated chronic obstructive pulmonary disease. The predictors selected were respiratory rate and partial pressure of carbon dioxide in the blood (PCO2), and the response variable was poor evolution. An additive logistic regression model was used to show the relationship between the covariates and the dichotomous response variable. The proposed categorisation was compared to the continuous predictor as the best option, using the AIC and AUC evaluation parameters. The sample was divided into a derivation (60%) and validation (40%) samples. The first was used to obtain the cut points while the second was used to validate the proposed methodology. Results The three-category proposal for the respiratory rate was ≤ 20;(20,24];> 24, for which the following values were obtained: AIC=314.5 and AUC=0.638. The respective values for the continuous predictor were AIC=317.1 and AUC=0.634, with no statistically

  11. Compact Two-State-Variable Second-Order Memristor Model.

    PubMed

    Kim, Sungho; Kim, Hee-Dong; Choi, Sung-Jin

    2016-06-01

    A key requirement for using memristors in functional circuits is a predictive physical model to capture the resistive switching behavior, which shall be compact enough to be implemented using a circuit simulator. Although a number of memristor models have been developed, most of these models (i.e., first-order memristor models) have utilized only a one-state-variable. However, such simplification is not adequate for accurate modeling because multiple mechanisms are involved in resistive switching. Here, a two-state-variable based second-order memristor model is presented, which considers the axial drift of the charged vacancies in an applied electric field and the radial vacancy motion caused by the thermophoresis and diffusion. In particular, this model emulates the details of the intrinsic short-term dynamics, such as decay and temporal heat summation, and therefore, it accurately predicts the resistive switching characteristics for both DC and AC input signals. PMID:27152649

  12. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  13. Nonexistence of entangled continuous-variable Werner states with positive partial transpose

    NASA Astrophysics Data System (ADS)

    McNulty, Daniel; Tatham, Richard; Mišta, Ladislav

    2014-03-01

    We address an open question about the existence of entangled continuous-variable (CV) Werner states with positive partial transpose (PPT). We prove that no such state exists by showing that all PPT CV Werner states are separable. The separability follows by observing that these CV Werner states can be approximated by truncating the states into a finite-dimensional convex mixture of product states. In addition, the constituents of the product states comprise a generalized non-Gaussian measurement which gives, rather surprisingly, a strictly tighter upper bound on quantum discord than photon counting. These results uncover the presence of only negative partial transpose entanglement and illustrate the complexity of more general nonclassical correlations in this paradigmatic class of genuine non-Gaussian quantum states.

  14. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2006-01-01

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman Kundu Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.

  15. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  16. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  17. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  18. Increased variability of tornado occurrence in the United States

    NASA Astrophysics Data System (ADS)

    Brooks, Harold E.; Carbin, Gregory W.; Marsh, Patrick T.

    2014-10-01

    Whether or not climate change has had an impact on the occurrence of tornadoes in the United States has become a question of high public and scientific interest, but changes in how tornadoes are reported have made it difficult to answer it convincingly. We show that, excluding the weakest tornadoes, the mean annual number of tornadoes has remained relatively constant, but their variability of occurrence has increased since the 1970s. This is due to a decrease in the number of days per year with tornadoes combined with an increase in days with many tornadoes, leading to greater variability on annual and monthly time scales and changes in the timing of the start of the tornado season.

  19. Increased variability of tornado occurrence in the United States.

    PubMed

    Brooks, Harold E; Carbin, Gregory W; Marsh, Patrick T

    2014-10-17

    Whether or not climate change has had an impact on the occurrence of tornadoes in the United States has become a question of high public and scientific interest, but changes in how tornadoes are reported have made it difficult to answer it convincingly. We show that, excluding the weakest tornadoes, the mean annual number of tornadoes has remained relatively constant, but their variability of occurrence has increased since the 1970s. This is due to a decrease in the number of days per year with tornadoes combined with an increase in days with many tornadoes, leading to greater variability on annual and monthly time scales and changes in the timing of the start of the tornado season. PMID:25324388

  20. State-variable friction for the Burridge-Knopoff model

    NASA Astrophysics Data System (ADS)

    Clancy, Ian; Corcoran, David

    2009-07-01

    This work shows the relationship of the state variable rock-friction law proposed by Dieterich to the Carlson and Langer friction law commonly used in the Burridge-Knopoff (BK) model of earthquakes. Further to this, the Dieterich law is modified to allow slip rates of zero magnitude yielding a three parameter friction law that is included in the BK system. Dynamic phases of small scale and large scale events are found with a transition surface in the parameter space. Near this transition surface the event size distribution follows a power law with an exponent that varies as the transition is approached contrasting with the invariant exponent observed using the Carlson and Langer friction. This variability of the power-law exponent is consistent with the range of exponents measured in real earthquake systems and is more selective than the range observed in the Olami-Feder-Christensen model.

  1. A method for linearizing a nonlinear system with six state variables and three control variables

    NASA Technical Reports Server (NTRS)

    Hsia, W. S.

    1986-01-01

    A nonlinear system governed by x = f(x,u) with six state variables and three control variables is considered in this project. A set of transformations from (x,u) - space to (z,v) - space is defined such that the linear tangent model is independent of the operating point in the z-space. Therefore, it is possible to design a control law satisfying all operating points in the transformed space. An algorithm to construct the above transformations and to obtain the associated linearized system is described in this report. This method is applied to a rigid body using pole placement for the control law. Results are verified by numerical simulation. Closed loop poles in x-space using traditional local linearization are compared with those pole placements in the z-space.

  2. Needs (Murray, 1938) and state-variables (Skinner, 1938).

    PubMed

    Meehl, P E

    1992-04-01

    Skinner's concept of drive as a state-variable and his powerful rationale for introducing it agree closely with Murray's treatment of need. Operant behaviorists' usual deprecation of motivation in favor of stimulus control arises partly from features of parameters, insufficiently explored in some regions, of Skinner box research. For human adults on rich reinforcement schedules, response selection is chiefly controlled by the regnant motive. Skinner's life-long interest in inner events and translating psychodynamic concepts into behaviorese was obscured by his metalanguage philosophy of science (behaviorism). PMID:1598366

  3. Quantum frequency up-conversion of continuous variable entangled states

    SciTech Connect

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-07

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  4. Quantum frequency up-conversion of continuous variable entangled states

    NASA Astrophysics Data System (ADS)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-01

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  5. Neural network programming in bioprocess variable estimation and state prediction.

    PubMed

    Linko, P; Zhu, Y H

    1991-12-01

    A neural network program with efficient learning ability for bioprocess variable estimation and state prediction was developed. A 3 layer, feed-forward neural network architecture was used, and the program was written in Quick C ver 2.5 for an IBM compatible computer with a 80486/33 MHz processor. A back propagation training algorithm was used based on learning by pattern and momentum in a combination as used to adjust the connection of weights of the neurons in adjacent layers. The delta rule was applied in a gradient descent search technique to minimize a cost function equal to the mean square difference between the target and the network output. A non-linear, sigmoidal logistic transfer function was used in squashing the weighted sum of the inputs of each neuron to a limited range output. A good neural network prediction model was obtained by training with a sequence of past time course data of a typical bioprocess. The well trained neural network estimated accurately and rapidly the state variables with or without noise even under varying process dynamics. PMID:1367695

  6. 49 CFR 350.345 - How does a State apply for additional variances from the FMCSRs?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false How does a State apply for additional variances... apply for additional variances from the FMCSRs? Any State may apply to the Administrator for a variance from the FMCSRs for intrastate commerce. The variance will be granted only if the State...

  7. Recognition of two additional pine-feeding Neodiprion species (Hymenoptera: Diprionidae) in the eastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA sequence studies revealed two additional species of Neodiprion in eastern United States, and morphological studies support their recognition. One, which is sympatric with and morphologically similar to Neodiprion abbotii (Leach) in southeastern United States, is recognized as Neodiprion fabrici...

  8. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  9. Quantum anonymous voting with unweighted continuous-variable graph states

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Feng, Yanyan; Zeng, Guihua

    2016-08-01

    Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.

  10. Quantum anonymous voting with unweighted continuous-variable graph states

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Feng, Yanyan; Zeng, Guihua

    2016-05-01

    Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.

  11. Arbitrated Quantum Signature Scheme with Continuous-Variable Coherent States

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Feng, Yanyan; Huang, Dazu; Shi, Jinjing

    2016-04-01

    Motivated by the revealing features of the continuous-variable (CV) quantum cryptography, we suggest an arbitrated quantum signature (AQS) protocol with CV coherent states. It involves three participants, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie who is trustworthy by Alice and Bob. Three phases initializing phase, signing phase and verifying phase are included in our protocol. The security of the signature scheme is guaranteed by the generation of the shared keys via the CV-based quantum key distribution (CV-QKD) and the implementation process of the CV-based quantum teleportation as well. Security analysis demonstrates that the signature can be neither forged by anyone nor disavowed by the receiver and signer. Moreover, the authenticity and integrality of the transmitted messages can be ensured. The paper shows that a potential high-speed quantum signature scheme with high detection efficiency and repetition rate can be realized when compared to the discrete-variable (DV) quantum signature scheme attributing to the well characteristics of CV-QKD.

  12. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  13. Phenomenological model for transient deformation based on state variables

    SciTech Connect

    Jackson, M S; Cho, C W; Alexopoulos, P; Mughrabi, H; Li, C Y

    1980-01-01

    The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known, tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.

  14. Spray droplet sizes with additives discharged from an air-assisted variable-rate nozzle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding droplet size distributions is essential to achieve constant spray quality for real-time variable-rate sprayers that synchronize spray outputs with canopy structures. Droplet sizes were measured for a custom-designed, air-assisted, five-port nozzle coupled with a pulse width modulated (...

  15. Characterization of Nighttime Light Variability over the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.

    2015-12-01

    Severe meteorological events such as thunderstorms, tropical cyclones and winter ice storms often produce prolonged, widespread power outages affecting large populations and regions. The spatial impact of these events can extend from relatively rural, small towns (i.e. November 17, 2013 Washington, IL EF-4 tornado) to a series of adjoined states (i.e. April 27, 2011 severe weather outbreak) to entire regions (i.e. 2012 Hurricane Sandy) during their lifespans. As such, affected populations can vary greatly, depending on the event's intensity, location and duration. Actions taken by disaster response agencies like FEMA, the American Red Cross and NOAA to provide support to communities during the recovery process need accurate and timely information on the extent and location(s) of power disruption. This information is often not readily available to these agencies given communication interruptions, independent storm damage reports and other response-inhibiting factors. VIIRS DNB observations which provide daily, nighttime measurements of light sources can be used to detect and monitor power outages caused by these meteorological disaster events. To generate such an outage product, normal nighttime light variability must be analyzed and understood at varying spatial scales (i.e individual pixels, clustered land uses/covers, entire city extents). The southeastern portion of the United States serves as the study area in which the mean, median and standard deviation of nighttime lights are examined over numerous temporal periods (i.e. monthly, seasonally, annually, inter-annually). It is expected that isolated pixels with low population density (rural) will have tremendous variability in which an outage "signal" is difficult to detect. Small towns may have more consistent lighting (over a few pixels), making it easier to identify outages and reductions. Finally, large metropolitan areas may be the most "stable" light source, but the entire area may rarely experience a

  16. Picosecond and steady state, variable intensity and variable temperature emission spectroscopy of bacteriorhodopsin.

    PubMed Central

    Shapiro, S L; Campillo, A J; Lewis, A; Perreault, G J; Spoonhower, J P; Clayton, R K; Stoeckenius, W

    1978-01-01

    The bacteriorhodopsin emission lifetime at 77 degrees K has been obtained for different regions of the emission spectrum with single-pulse excitation. The data under all conditions yield a lifetime of 60 +/- 15 ps. Intensity effects on this lifetime have been ruled out by studying the relative emission amplitude as a function of the excitation pulse energy. We relate our lifetime to previously reported values at other temperatures by studying the relative emission quantum efficiency as a function of temperature. These variable temperature studies have indicated that an excited state with an emission maximum at 670 nm begins to contribute to the spectrum as the temperature is lowered. Within our experimental error the picosecond data seem to suggest that this new emission may arise from a minimum of the same electronic state responsible for the 77 degrees K emission at 720 nm. A correlation is noted between a 1.0-ps formation time observed in absorption by Ippen et al. (Ippen, E.P., C.V. Shank, A. Lewis, and M.A. Marcus. 1978. Subpicosecond spectroscopy of bacteriorhodopsin. Science [wash. D.C.]. 200:1279-1281 and a time extrapolated from relative quantum efficiency measurements and the 77 degrees K fluorescence lifetime that we report. Images FIGURE 3 PMID:698343

  17. The theory of planned behaviour and healthy eating: Examining additive and moderating effects of social influence variables.

    PubMed

    Povey, R; Conner, M; Sparks, P; James, R; Shepherd, R

    2000-11-01

    Abstract This paper examines the additive and moderating effects of social influence variables (injunctive norms, descriptive norms, perceived social support) within the Theory of Planned Behaviour (TPB). The target behaviour is the decision to eat healthily. Questionnaire responses on components of the TPB, descriptive norms, perceived social support, and subsequent healthy eating were obtained from a prospective sample of 235 members of the general public. Good predictions of intentions (42% of variance explained) and behaviour (15% of variance explained) were found using the Theory of Planned Behaviour. Neither descriptive norms nor perceived social support added to these predictions of intentions over and above the TPB variables. However, perceived social support was found to act as a moderator variable on the relationship between perceived behavioral control and intention, and the relationship between attitude and intention. Implications for exploring the role of social influence variables on decisions concerning health behavioun an discussed. PMID:22175258

  18. Interannual climate variability and snowpack in the western United States

    USGS Publications Warehouse

    Cayan, Daniel R.

    1996-01-01

    An important part of the water supply in the western United States is derived from runoff fed by mountain snowmelt Snow accumulation responds to both precipitation and temperature variations, and forms an interesting climatic index, since it integrates these influences over the entire late fall-spring period. Here, effects of cool season climate variability upon snow water equivalent (SWE) over the western part of the conterminous United States are examined. The focus is on measurements on/and 1 April, when snow accumulation is typically greatest. The primary data, from a network of mountainous snow courses, provides a good description of interannual fluctuations in snow accumulations, since many snow courses have records of five decades or more. For any given year, the spring SWE anomaly at a particular snow course is likely to be 25%–60% of its long-term average. Five separate regions of anomalous SWE variability are distinguished, using a rotated principal components analysis. Although effects vary with region and with elevation, in general, the anomalous winter precipitation has the strongest influence on spring SWE fluctuations. Anomalous temperature has a weaker effect overall, but it has great influence in lower elevations such as in the coastal Northwest, and during spring in higher elevations. The regional snow anomaly patterns are associated with precipitation and temperature anomalies in winter and early spring. Patterns of the precipitation, temperature, and snow anomalies extend over broad regional areas, much larger than individual watersheds. These surface anomalies are organized by the atmospheric circulation, with primary anomaly centers over the North Pacific Ocean as well as over western North America. For most of the regions, anomalously low SWE is associated with a winter circulation resembling the PNA pattern. With a strong low in the central North Pacific and high pressure over the Pacific Northwest, this pattern diverts North Pacific

  19. Interannual hydroclimatic variability and its influence on winter nutrients variability over the southeast United States

    NASA Astrophysics Data System (ADS)

    Oh, J.; Sankarasubramanian, A.

    2011-12-01

    It is well established in the hydroclimatic literature that the interannual variability in seasonal streamflow could be partially explained using climatic precursors such as tropical Sea Surface Temperature (SST) conditions. Similarly, it is widely known that streamflow is the most important predictor in estimating nutrient loadings and the associated concentration. The intent of this study is to bridge these two findings so that nutrient loadings could be predicted using season-ahead climate forecasts forced with forecasted SSTs. By selecting 18 relatively undeveloped basins in the Southeast US (SEUS), we relate winter (January-February-March, JFM) precipitation forecasts that influence the JFM streamflow over the basin to develop winter forecasts of nutrient loadings. For this purpose, we consider two different types of low-dimensional statistical models to predict 3-month ahead nutrient loadings based on retrospective climate forecasts. Split sample validation of the predictive models shows that 18-45% of interannual variability in observed winter nutrient loadings could be predicted even before the beginning of the season for at least 8 stations. Stations that have very high R2(LOADEST) (>0.8) in predicting the observed WQN loadings during the winter (Table 2) exhibit significant skill in loadings. Incorporating antecedent flow conditions (December flow) as an additional predictor did not increase the explained variance in these stations, but substantially reduced the RMSE in the predicted loadings. Relating the dominant mode of winter nutrient loadings over 18 stations clearly illustrates the association with El Niño Southern Oscillation (ENSO) conditions. Potential utility of these season-ahead nutrient predictions in developing proactive and adaptive nutrient management strategies is also discussed.

  20. The Geographic Variability of Contemporary United States Land Cover Change

    NASA Astrophysics Data System (ADS)

    Loveland, T. R.

    2004-12-01

    The U.S. Geological Survey, in cooperation with NASA and the U.S. Environmental Protection Agency, is conducing a study to document the rates, causes, and consequences of 1973 to 2000 land cover change for the eighty-four ecoregions of the conterminous United States. Estimates of change are based on the interpretation of five dates of Landsat MSS and TM data (nominally 1973, 1980, 1986, 1992, and 2000). Results from an analysis of the first twenty-five ecoregions indicate that the rates, causes, and consequences of change are relative consistent within ecoregions but there are significant differences in the rates of change and types of dominant land use and land cover conversions occurring between ecoregions. For example, high rates of cyclic change are found in ecoregions dominated by resource-based economies while lower but unidirectional change is more common in more urbanized ecoregions. The specific character of change in each ecoregion is shaped by the resource potential of each ecoregion and the historical settlement patterns. Land uses changes that determine changes in cover in a given ecoregion are typically based on the highest economic use enabled by the physical environment (i.e., climate, soils, geology, landforms, etc.) and the comparative advantages associate with resource, location, and history. The differences in rates of change combined with the prevailing land use practices and enduring environmental character of different regions have a significant impact on issues such as carbon dynamics. An assessment of the ecoregion carbon dynamics also shows significant differences in flux rates over time. Overall, the results of this study show that the fabric of change across the conterminous United States highly variable in time and space and understanding the geographic dimensions of change. This suggests that ecoregions offer a framework for projecting rates, types, and the subsequent consequences of change.

  1. Phenotypic Variability in Resting-State Functional Connectivity: Current Status

    PubMed Central

    Gordon, Evan M.

    2013-01-01

    Abstract We reviewed the extant literature with the goal of assessing the extent to which resting-state functional connectivity is associated with phenotypic variability in healthy and disordered populations. A large corpus of work has accumulated to date (125 studies), supporting the association between intrinsic functional connectivity and individual differences in a wide range of domains—not only in cognitive, perceptual, motoric, and linguistic performance, but also in behavioral traits (e.g., impulsiveness, risky decision making, personality, and empathy) and states (e.g., anxiety and psychiatric symptoms) that are distinguished by cognitive and affective functioning, and in neurological conditions with cognitive and motor sequelae. Further, intrinsic functional connectivity is sensitive to remote (e.g., early-life stress) and enduring (e.g., duration of symptoms) life experience, and it exhibits plasticity in response to recent experience (e.g., learning and adaptation) and pharmacological treatment. The most pervasive associations were observed with the default network; associations were also widespread between the cingulo-opercular network and both cognitive and affective behaviors, while the frontoparietal network was associated primarily with cognitive functions. Associations of somatomotor, frontotemporal, auditory, and amygdala networks were relatively restricted to the behaviors linked to their respective putative functions. Surprisingly, visual network associations went beyond visual function to include a variety of behavioral traits distinguished by affective function. Together, the reviewed evidence sets the stage for testing causal hypothesis about the functional role of intrinsic connectivity and augments its potential as a biomarker for healthy and disordered brain function. PMID:23294010

  2. Variable flavor number scheme for final state jets in DIS

    NASA Astrophysics Data System (ADS)

    Hoang, Andre H.; Pietrulewicz, Piotr; Samitz, Daniel

    2016-02-01

    We discuss massive quark effects in the end-point region x →1 of inclusive deep inelastic scattering (DIS), where the hadronic final state is collimated and thus represents a jet. In this regime heavy quark pairs are generated via secondary radiation, i.e. due to a gluon splitting in light quark initiated contributions starting at O (αs2) in the fixed-order expansion. Based on the factorization framework for DIS in the end-point region for massless quarks in soft collinear effective theory (SCET), which we also scrutinize in this work, we construct a variable flavor number scheme that deals with arbitrary hierarchies between the mass scale and the kinematic scales. The scheme exhibits a continuous behavior between the massless limit for very light quarks and the decoupling limit for very heavy quarks. It entails threshold matching corrections, arising from all gauge-invariant factorization components at the mass scale, which are related to each other via consistency conditions. This is explicitly demonstrated by recalculating the known threshold correction for the parton distribution function at O (αs2CFTF) within SCET. The latter contains large rapidity logarithms ˜ln (1 -x ) that can be summed by exponentiation. Their coefficients are universal, which can be used to obtain potentially relevant higher-order results for generic threshold corrections at colliders from computations in DIS. In particular, we extract the O (αs3) threshold correction multiplied by a single rapidity logarithm from results obtained earlier.

  3. Engineering of Schroedinger cat states by a sequence of displacements and photon additions or subtractions

    SciTech Connect

    Podoshvedov, S. A.

    2011-04-15

    A method to generate Schroedinger cat states in free propagating optical fields based on the use of displaced states (or displacement operators) is developed. Some optical schemes with photon-added coherent states are studied. The schemes are modifications of the general method based on a sequence of displacements and photon additions or subtractions adjusted to generate Schroedinger cat states of a larger size. The effects of detection inefficiency are taken into account.

  4. Trend analysis of precipitation in Jharkhand State, India - Investigating precipitation variability in Jharkhand State

    NASA Astrophysics Data System (ADS)

    Chandniha, Surendra Kumar; Meshram, Sarita Gajbhiye; Adamowski, Jan Franklin; Meshram, Chandrashekhar

    2016-08-01

    Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901-2011) from 18 meteorological stations. Autocorrelation and Mann-Kendall/modified Mann-Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt-Mann-Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901-2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901-1949, which was reversed during the subsequent period (1950-2011).

  5. Technical options for processing additional light tight oil volumes within the United States

    EIA Publications

    2015-01-01

    This report examines technical options for processing additional LTO volumes within the United States. Domestic processing of additional LTO would enable an increase in petroleum product exports from the United States, already the world’s largest net exporter of petroleum products. Unlike crude oil, products are not subject to export limitations or licensing requirements. While this is one possible approach to absorbing higher domestic LTO production in the absence of a relaxation of current limitations on crude exports, domestic LTO would have to be priced at a level required to encourage additional LTO runs at existing refinery units, debottlenecking, or possible additions of processing capacity.

  6. Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding

    PubMed Central

    Tosteson, Tor D.; Morden, Nancy E.; Stukel, Therese A.; O'Malley, A. James

    2014-01-01

    The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival. PMID:25506259

  7. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  8. Numerical solution of the compressible Navier-Stokes equations using density gradients as additional dependent variables. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kwon, J. H.

    1977-01-01

    Numerical solution of two dimensional, time dependent, compressible viscous Navier-Stokes equations about arbitrary bodies was treated using density gradients as additional dependent variables. Thus, six dependent variables were computed with the SOR iteration method. Besides formulation for pressure gradient terms, a formulation for computing the body density was presented. To approximate the governing equations, an implicit finite difference method was employed. In computing the solution for the flow about a circular cylinder, a problem arose near the wall at both stagnation points. Thus, computations with various conditions were tried to examine the problem. Also, computations with and without formulations are compared. The flow variables were computed on 37 by 40 field first, then on an 81 by 40 field.

  9. Dust Around Herbig Ae Stars: Additional Constraints from their Photometric and Polarimetric Variability

    NASA Technical Reports Server (NTRS)

    Krivova, N. A.; Ilin, V. B.; Fischer, O.

    1996-01-01

    For the Herbig Ae stars with Algol-like minima (UX Ori, WW Vul, etc), the effects of circumstellar dust include: excess infrared emission, anomalous ultraviolet extinction, the 'blueing' of the stars in minima accompanying by an increase of intrinsic polarization. Using a Monte-Carlo code for polarized radiation transfer we have simulated these effects and compared the results obtained for different models with the observational data available. We found that the photometric and polarimetric behavior of the stars provided essential additional constraints on the circumstellar dust models. The models with spheroidal shell geometry and compact (non-fluffy) dust grains do not appear to be able to explain all the data.

  10. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery.

    PubMed

    Carnell, Paul E; Keough, Michael J

    2014-05-01

    Understanding the impact of multiple stressors on ecosystems is of pronounced importance, particularly when one or more of those stressors is anthropogenic. Here we investigated the role of physical disturbance and increased nutrients on reefs dominated by the canopy-forming kelp Ecklonia radiata. We combined experimental kelp canopy removals and additional nutrient at three different locations in a large embayment in temperate southeastern Australia. Over the following winter recruitment season, Ecklonia recruitment was unaffected by increased nutrients alone, but tripled at all sites where the canopy had been removed. At one site, the combination of disturbance and increased nutrients resulted in more than four times the recruitment of the introduced kelp Undaria pinnatifida. Six months after disturbance, the proliferation of the Undaria canopy in the canopy-removal and nutrient-addition treatment negatively influenced the recovery of the native kelp Ecklonia. Given the otherwise competitive dominance of adult Ecklonia, this provides a mechanism whereby Undaria could maintain open space for the following recruitment season. This interplay between disturbance, nutrients and the response of native and invasive species makes a compelling case for how a combination of factors can influence species dynamics. PMID:24604540

  11. Prediction of telephone calls load using Echo State Network with exogenous variables.

    PubMed

    Bianchi, Filippo Maria; Scardapane, Simone; Uncini, Aurelio; Rizzi, Antonello; Sadeghian, Alireza

    2015-11-01

    We approach the problem of forecasting the load of incoming calls in a cell of a mobile network using Echo State Networks. With respect to previous approaches to the problem, we consider the inclusion of additional telephone records regarding the activity registered in the cell as exogenous variables, by investigating their usefulness in the forecasting task. Additionally, we analyze different methodologies for training the readout of the network, including two novel variants, namely ν-SVR and an elastic net penalty. Finally, we employ a genetic algorithm for both the tasks of tuning the parameters of the system and for selecting the optimal subset of most informative additional time-series to be considered as external inputs in the forecasting problem. We compare the performances with standard prediction models and we evaluate the results according to the specific properties of the considered time-series. PMID:26413714

  12. Hispanic-White Differences in Lifespan Variability in the United States.

    PubMed

    Lariscy, Joseph T; Nau, Claudia; Firebaugh, Glenn; Hummer, Robert A

    2016-02-01

    This study is the first to investigate whether and, if so, why Hispanics and non-Hispanic whites in the United States differ in the variability of their lifespans. Although Hispanics enjoy higher life expectancy than whites, very little is known about how lifespan variability-and thus uncertainty about length of life-differs by race/ethnicity. We use 2010 U.S. National Vital Statistics System data to calculate lifespan variance at ages 10+ for Hispanics and whites, and then decompose the Hispanic-white variance difference into cause-specific spread, allocation, and timing effects. In addition to their higher life expectancy relative to whites, Hispanics also exhibit 7 % lower lifespan variability, with a larger gap among women than men. Differences in cause-specific incidence (allocation effects) explain nearly two-thirds of Hispanics' lower lifespan variability, mainly because of the higher mortality from suicide, accidental poisoning, and lung cancer among whites. Most of the remaining Hispanic-white variance difference is due to greater age dispersion (spread effects) in mortality from heart disease and residual causes among whites than Hispanics. Thus, the Hispanic paradox-that a socioeconomically disadvantaged population (Hispanics) enjoys a mortality advantage over a socioeconomically advantaged population (whites)-pertains to lifespan variability as well as to life expectancy. Efforts to reduce U.S. lifespan variability and simultaneously increase life expectancy, especially for whites, should target premature, young adult causes of death-in particular, suicide, accidental poisoning, and homicide. We conclude by discussing how the analysis of Hispanic-white differences in lifespan variability contributes to our understanding of the Hispanic paradox. PMID:26682740

  13. Regional Climate and Variability of the Summertime Continental United States: Assessing Reanalyses Uncertainty

    NASA Astrophysics Data System (ADS)

    Bosilovich, M. G.; Robertson, F. R.

    2013-12-01

    Understanding climate variability at regional scales is an important for research and societal needs. Atmospheric retrospective-analyses (or reanalyses) integrate multitudes of observing systems with numerical models to produce continuous data that include variables not observed easily, if at all. The breadth of variables as well as observational influence included in reanalyses make them ideal for investigating processes climate variability. In this paper, we assess NASA's Modern Era Retrospective-analysis for Research and Application (MERRA) regional variability in North America, specifically the United States, in conjunction with current satellite data reanalyses. Emphasis is placed on summertime precipitation because 1) it is a difficult parameter to capture in the most difficult season, 2) significant observational resources exist to benchmark comparisons and 3) accurate assessment of precipitation variability is crucial to a multitude of sectors and applications. Likewise, we have also begun to evaluate surface air temperature, which provides a robust field, relative to observed data. While precipitation biases are identified, year to year variability of the precipitation, in many cases, are quite reasonable. However, some spurious long term trends and sudden shifts in the time series are also identified. In surface air temperature, analysis of station observations provides ERA Interim a clear overall advantage. However, in a number of regions, all the reanalyses are quite comparable in variability and trend. In other regions, significant precipitation biases may occur, which has implications for the ancillary process data in a reanalysis, such as surface fluxes. We also characterize the reanalyses ability to capture variability related to ENSO. In general, the summertime variations of precipitation in the reanalyses are more highly correlated (positively) to ENSO (using Nino 3.4) than are the observations. The Northwestern US shows the largest positive

  14. Regional Climate and Variability of the Summertime Continental United States in Reanalyses

    NASA Technical Reports Server (NTRS)

    Bosilovich, M G.; Robertson, F. R.; Roberts, B.

    2013-01-01

    Understanding climate variability at regional scales is an important for research and societal needs. Atmospheric retrospective-analyses (or reanalyses) integrate multitudes of observing systems with numerical models to produce continuous data that include variables not easily observed, if at all. The breadth of variables as well as observational influence included in reanalyses make them ideal for investigating climate variability. In this paper, we assess NASA s Modern Era Retrospective-analysis for Research and Application (MERRA) regional variability in North America, specifically the United States, in conjunction with current satellite data reanalyses. Emphasis is placed on summertime precipitation because 1) it is a difficult parameter to capture in the most difficult season, 2) significant observational resources exist to benchmark comparisons, and 3) accurate assessment of precipitation variability is crucial to a multitude of sectors and applications. Likewise, we have also begun to evaluate surface air temperature. While precipitation biases are identified, year to year variability of the precipitation variations, in many cases, are quite reasonable. However, some spurious long term trends and sudden shifts in the time series are also identified. In surface air temperature, analysis of station observations provides ERA Interim a clear overall advantage. However, in a number of regions, all the reanalyses are quite comparable in variability and trend. In other regions, significant precipitation biases may occur, which has implications for the ancillary process data in a reanalysis, such as surface fluxes. We also characterize the reanalyses ability to capture variability related to ENSO. In general, the summertime variations of precipitation in the reanalyses are more highly correlated (positively) to ENSO (using ENSO34) than are the observations. The Northwestern US shows the largest positive correlations to ENSO34, and reanalyses agree with that, and

  15. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Additional rules for United States Secret Service employees. 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Secret Service employees....

  16. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Additional rules for United States Secret Service employees. 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Secret Service employees....

  17. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Additional rules for United States Secret Service employees. 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Secret Service employees....

  18. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Additional rules for United States Secret Service employees. 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Secret Service employees....

  19. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Additional rules for United States Secret Service employees. 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Secret Service employees....

  20. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TECHNOLOGY EDUCATION PROGRAM What Are the State's Organizational and Planning Responsibilities? § 403.12 What... 34 Education 3 2010-07-01 2010-07-01 false What are the additional responsibilities of the State board? 403.12 Section 403.12 Education Regulations of the Offices of the Department of...

  1. 77 FR 2492 - United States Pharmacopeial Convention; Filing of Food Additive Petition; Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... published in the Federal Register on August 10, 2010 (75 FR 48353), FDA announced that a food additive... HUMAN SERVICES Food and Drug Administration 21 CFR Parts 172, 173, 178, and 180 United States Pharmacopeial Convention; Filing of Food Additive Petition; Amendment AGENCY: Food and Drug Administration,...

  2. Non-additive three-body interaction energies for H3 (quartet spin state)

    NASA Astrophysics Data System (ADS)

    Zhang, Z. C.; Allnatt, A. R.; Talman, James D.; Meath, William J.

    The results of an Unsold average energy calculation of the non-additive interaction energy for H3 (quartet spin state) are presented for equilateral triangular configurations. They are discussed in the context of the problems associated with the representation of non-additive energies for the interaction of closed-shell species.

  3. Continuous-variable quantum-state sharing via quantum disentanglement

    SciTech Connect

    Lance, Andrew M.; Symul, Thomas; Lam, Ping Koy; Bowen, Warwick P.; Sanders, Barry C.; Tyc, Tomas; Ralph, T.C.

    2005-03-01

    Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of 'quantum disentangling' protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73{+-}0.02. A result achievable only by using quantum resources.

  4. Conservative-variable average states for equilibrium gas multi-dimensional fluxes

    NASA Technical Reports Server (NTRS)

    Iannelli, G. S.

    1992-01-01

    Modern split component evaluations of the flux vector Jacobians are thoroughly analyzed for equilibrium-gas average-state determinations. It is shown that all such derivations satisfy a fundamental eigenvalue consistency theorem. A conservative-variable average state is then developed for arbitrary equilibrium-gas equations of state and curvilinear-coordinate fluxes. Original expressions for eigenvalues, sound speed, Mach number, and eigenvectors are then determined for a general average Jacobian, and it is shown that the average eigenvalues, Mach number, and eigenvectors may not coincide with their classical pointwise counterparts. A general equilibrium-gas equation of state is then discussed for conservative-variable computational fluid dynamics (CFD) Euler formulations. The associated derivations lead to unique compatibility relations that constrain the pressure Jacobian derivatives. Thereafter, alternative forms for the pressure variation and average sound speed are developed in terms of two average pressure Jacobian derivatives. Significantly, no additional degree of freedom exists in the determination of these two average partial derivatives of pressure. Therefore, they are simultaneously computed exactly without any auxiliary relation, hence without any geometric solution projection or arbitrary scale factors. Several alternative formulations are then compared and key differences highlighted with emphasis on the determination of the pressure variation and average sound speed. The relevant underlying assumptions are identified, including some subtle approximations that are inherently employed in published average-state procedures. Finally, a representative test case is discussed for which an intrinsically exact average state is determined. This exact state is then compared with the predictions of recent methods, and their inherent approximations are appropriately quantified.

  5. Sea state variability observed by high resolution satellite radar images

    NASA Astrophysics Data System (ADS)

    Pleskachevsky, A.; Lehner, S.

    2012-04-01

    The spatial variability of the wave parameters is measured and investigated using new TerraSAR-X (TS-X) satellite SAR (Synthetic Aperture Radar) images. Wave groupiness, refraction and breaking of individual wave are studied. Space borne SAR is a unique sensor providing two dimensional information of the ocean surface. Due to its daylight, weather independency and global coverage, the TS-X radar is particularly suitable for many ocean and coastal observations and it acquires images of the sea surface with up to 1m resolution; individual ocean waves with wavelength below 30m are detectable. Two-dimensional information of the ocean surface, retrieved using TS-X data, is validated for different oceanographic applications: derivation of the fine resolved wind field (XMOD algorithm) and integrated sea state parameters (XWAVE algorithm). The algorithms are capable to take into account fine-scale effects in the coastal areas. This two-dimensional information can be successfully applied to validate numerical models. For this, wind field and sea state information retrieved from SAR images are given as input for a spectral numerical wave model (wind forcing and boundary condition). The model runs and sensitivity studies are carried out at a fine spatial horizontal resolution of 100m. The model results are compared to buoy time series at one location and with spatially distributed wave parameters obtained from SAR. The comparison shows the sensitivity of waves to local wind variations and the importance of local effects on wave behavior in coastal areas. Examples for the German Bight, North Sea and Rottenest Island, Australia are shown. The wave refraction, rendered by high resolution SAR images, is also studied. The wave ray tracking technique is applied. The wave rays show the propagation of the peak waves in the SAR-scenes and are estimated using image spectral analysis by deriving peak wavelength and direction. The changing of wavelength and direction in the rays allows

  6. On the use of internal state variables in thermoviscoplastic constitutive equations

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Beek, J. M.

    1985-01-01

    The general theory of internal state variables are reviewed to apply it to inelastic metals in use in high temperature environments. In this process, certain constraints and clarifications will be made regarding internal state variables. It is shown that the Helmholtz free energy can be utilized to construct constitutive equations which are appropriate for metallic superalloys. Internal state variables are shown to represent locally averaged measures of dislocation arrangement, dislocation density, and intergranular fracture. The internal state variable model is demonstrated to be a suitable framework for comparison of several currently proposed models for metals and can therefore be used to exhibit history dependence, nonlinearity, and rate as well as temperature sensitivity.

  7. Quantum Conditional Cloning of Continuous Variable Entangled States

    NASA Astrophysics Data System (ADS)

    Liu, K.; Gao, J. R.

    2014-12-01

    We extend the technique of conditional preparation to a quantum cloning machine, and present a protocol of 1 -> 2 conditional cloning of squeezed state and entanglement states. It is shown that the entanglement degree of the cloned entangled states can be well preserved even when the fidelity between the input and output states is beyond the limit of 4/9. This scheme is practicable since only the linear elements of beam splitters, homodyne detections, optical modulations and electrical trigger system, are involved.

  8. Experimental verification of quantum discord in continuous-variable states

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Rahimi-Keshari, S.; Haw, J. Y.; Assad, S. M.; Chrzanowski, H. M.; Janousek, J.; Symul, T.; Ralph, T. C.; Lam, P. K.

    2014-01-01

    We introduce a simple and efficient technique to verify quantum discord in unknown Gaussian states and a certain class of non-Gaussian states. We show that any separation in the peaks of the marginal distributions of one subsystem conditioned on two different outcomes of homodyne measurements performed on the other subsystem indicates correlation between the corresponding quadratures, and hence nonzero discord. We also apply this method to non-Gaussian states that are prepared by overlapping a statistical mixture of coherent and vacuum states on a beam splitter. We experimentally demonstrate this technique by verifying nonzero quantum discord in a bipartite Gaussian and certain non-Gaussian states.

  9. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    SciTech Connect

    Dsilva, Carmeline J.; Talmon, Ronen Coifman, Ronald R.; Rabin, Neta; Kevrekidis, Ioannis G.

    2013-11-14

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certain simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.

  10. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    NASA Astrophysics Data System (ADS)

    Dsilva, Carmeline J.; Talmon, Ronen; Rabin, Neta; Coifman, Ronald R.; Kevrekidis, Ioannis G.

    2013-11-01

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certain simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.

  11. Characterization of Nighttime Light Variability Over the Southeastern United States

    NASA Technical Reports Server (NTRS)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.

    2016-01-01

    City lights provide indications of human activity at night. Nighttime satellite imagery offers daily snapshots of this activity. With calibrated, science-quality imagery, long-term monitoring can also be achieved. The degree to which city lights fluctuate, however, is not well known. For the application of detecting power outages, this degree of variability is crucial for assessing reductions to city lights based on historical trends. Eight southeastern U.S. cities are analyzed to understand the relationship between emission variability and several population centers. A preliminary, example case power outage study is also discussed as a transition into future work.

  12. On computing ``accurate'' derivatives of Equation-of-State variables

    SciTech Connect

    Shestakov, A. I.

    2015-12-11

    We analyze a log-log interpolant for 2D EOS lookups, where the EOS independent variables are, say, T and ρ. If the data f (Ti, ρj) are in the form of a power law, even locally, the interpolant is exact.

  13. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis.

    PubMed

    Wei, Wen-Hua; Bowes, John; Plant, Darren; Viatte, Sebastien; Yarwood, Annie; Massey, Jonathan; Worthington, Jane; Eyre, Stephen

    2016-01-01

    Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals. PMID:27109064

  14. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis

    PubMed Central

    Wei, Wen-Hua; Bowes, John; Plant, Darren; Viatte, Sebastien; Yarwood, Annie; Massey, Jonathan; Worthington, Jane; Eyre, Stephen

    2016-01-01

    Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene’s (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals. PMID:27109064

  15. Comparison of heart rate variability between resting state and external-cuff-inflation-and-deflation state: a pilot study.

    PubMed

    Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Yan, Chang; Liu, Changchun

    2015-10-01

    Heart rate variability (HRV) has been widely used in clinical research to provide an insight into the autonomic control of the cardiovascular system. Measurement of HRV is generally performed under a relaxed resting state. The effects of other conditions on HRV measurement, such as running, mountaineering, head-up tilt, etc, have also been investigated. This study aimed to explore whether an inflation-and-deflation process applied to a unilateral upper arm cuff would influence the HRV measurement. Fifty healthy young volunteers aged between 21 and 30 were enrolled in this study. Electrocardiogram (ECG) signals were recorded for each subject over a five minute resting state followed by a five minute external-cuff-inflation-and-deflation state (ECID state). A one minute gap was scheduled between the two measurements. Consecutive RR intervals in the ECG were extracted automatically to form the HRV data for each of the two states. Time domain (SDNN, RMSSD and PNN50), frequency domain (LFn, HFn and LF/HF) and nonlinear (VLI, VAI and SampEn) HRV indices were analyzed and compared between the two states. In addition, the effects of mean artery pressure (MAP) and heart rate (HR) on the aforementioned HRV indices were assessed for the two states, respectively, by Pearson correlation analysis. The results showed no significant difference in all aforementioned HRV indices between the resting and the ECID states (all p  >  0.05). The corresponding HRV indices had significant positive correlation (all p  <  0.01) between the two states. None of the indices showed MAP-related change (all p  >  0.05) for either state. Besides, none of the indices showed HR-related change (all p  >  0.05) for either state except the index of VLI in the resting state. To conclude, this pilot study suggested that the applied ECID process hardly influenced those commonly used HRV indices. It would thus be applicable to simultaneously measure both blood pressure and HRV

  16. Multiple States and Variable Intensity in the Plasma Display Panel.

    ERIC Educational Resources Information Center

    Petty, William Dooley

    The plasma panel has potential as a computer output display device; and when perfected, may even be suitable for commercial television. In its normal operation the plasma panel exhibits a bistable range in which the cells can exist in either of two stable modes. The "on" state results from a discharge every cycle, and the "off" state corresponds…

  17. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    NASA Astrophysics Data System (ADS)

    Egorov, E. N.; Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-01

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  18. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  19. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 2. Tropospheric variability and the zonal wave-one

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, FrançOise; Coetzee, Gert J. R.; Hoegger, Bruno; Kawakami, Shuji; Ogawa, Toshihiro; Fortuin, J. P. F.; Kelder, H. M.

    2003-01-01

    The first view of stratospheric and tropospheric ozone variability in the Southern Hemisphere tropics is provided by a 3-year record of ozone soundings from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network (http://croc.gsfc.nasa.gov/shadoz). Observations covering 1998-2000 were made over Ascension Island, Nairobi (Kenya), Irene (South Africa), Réunion Island, Watukosek (Java), Fiji, Tahiti, American Samoa, San Cristóbal (Galapagos), and Natal (Brazil). Total, stratospheric, and tropospheric column ozone amounts usually peak between August and November. Other features are a persistent zonal wave-one pattern in total column ozone and signatures of the quasi-biennial oscillation (QBO) in stratospheric ozone. The wave-one is due to a greater concentration of free tropospheric ozone over the tropical Atlantic than the Pacific and appears to be associated with tropical general circulation and seasonal pollution from biomass burning. Tropospheric ozone over the Indian and Pacific Oceans displays influences of the waning 1997-1998 El Niño, seasonal convection, and pollution transport from Africa. The most distinctive feature of SHADOZ tropospheric ozone is variability in the data, e.g., a factor of 3 in column amount at 8 of 10 stations. Seasonal and monthly means may not be robust quantities because statistics are frequently not Gaussian even at sites that are always in tropical air. Models and satellite retrievals should be evaluated on their capability for reproducing tropospheric variability and fine structure. A 1999-2000 ozone record from Paramaribo, Surinam (6°N, 55°W) (also in SHADOZ) shows a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone (ITCZ). A more representative tropospheric ozone climatology for models and satellite retrievals requires additional Northern Hemisphere tropical data.

  20. 7 CFR 1951.240 - State Director's additional authorizations and guidance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false State Director's additional authorizations and guidance. 1951.240 Section 1951.240 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE...

  1. 7 CFR 1951.240 - State Director's additional authorizations and guidance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false State Director's additional authorizations and guidance. 1951.240 Section 1951.240 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE...

  2. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-07-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  3. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-02-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  4. Variability and Trends in Annual Runoff Efficiency in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    McCabe, G. J., Jr.; Wolock, D.

    2015-12-01

    Variability and trends in annual runoff efficiency (RE)—computed as the ratio of annual runoff (streamflow per unit area) to annual precipitation—in the conterminous United States (CONUS) are examined for the period from 1951 through 2012. Changes in RE are analyzed using measured runoff and precipitation aggregated to United States Geological Survey 8-digit hydrologic cataloging units (HUs). Results indicate that, in the central CONUS, RE has predominantly increased (determined using Kendall's Tau statistic) likely due to changes in climate. Some HUs in the central CONUS, however, indicate changes in RE that cannot be attributed to climate variability. In addition, many HUs in the western CONUS show decreases in RE that do not appear to be related to climate changes. Some of the RE increases in the central CONUS that cannot be explained by climate occur in agricultural areas with substantial artificial drainage (i.e. tile drains, canals, ditches). The decreases in RE in the central CONUS that are not explained by climate coincide with HUs where water is withdrawn for irrigation and subsequently consumed by evapotranspiration. These results indicate that climate and anthropogenic effects associated with agriculture have affected changes in RE in the CONUS.

  5. State variable model for unsteady two dimensional axial vortex flow with pressure relaxation

    NASA Astrophysics Data System (ADS)

    Abuharaz, Mazin Mohammed Elbakri

    This research has utilized a state variable model for unsteady two dimensional axial vortex flows experiencing non-equilibrium pressure gradient forces. The model was developed successfully using perturbed radial and azimuthal momentum equations and a pressure Poisson's equations. Three main regions of the axial vortex flow were highlighted in this study including: a laminar core region, a non-equilibrium pressure envelope, and an outer potential vortex. Linear stability theory was utilized to formulate the model and the perturbation functions were assumed to be of the Fourier type. The flow parameters considered were the Reynolds numbers, ranging between 6,000 and 14,000, and a new non-equilibrium swirl parameter, Np determining the area of significant non-equilibrium pressure forces. Two other state variable parameters were imposed-complex frequency and associated azimuthal mode number. Perturbation outputs included primary Reynolds stress, radial and azimuthal velocity amplitudes, and radial pressure gradient amplitudes. Maximum perturbation growth occurred inside the non-equilibrium pressure zone between one and five core radii from the rotational axis, while the inner core remained laminar. The maximum amplitudes and critical radii depended on the four physical and state variable parameters. Increases in Np resulted in lower perturbation pressure gradient amplitudes, moving the critical radius closer to the vortex core, and expanding the non-equilibrium pressure zone. Increasing the frequency resulted in steady increases in the perturbation amplitudes until a particular dimensionless frequency was reached. Beyond that frequency, additional perturbation growth was insignificant or the amplitude decayed because of a high damping factor. Two types of azimuthal modes were unstable, the +/-½ modes inside the non-equilibrium pressure zone, causing the pressure gradient amplitudes to peak even though the azimuthal velocity profile remained stable, and +/- 1 helical

  6. THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS

    SciTech Connect

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob; Irwin, Jonathan; Burke, Christopher J.; Desert, Jean-Michel; Nutzman, Philip; Falco, Emilio E.

    2011-07-20

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.

  7. The GJ1214 Super-Earth System: Stellar Variability, New Transits, and a Search for Additional Planets

    NASA Astrophysics Data System (ADS)

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob; Irwin, Jonathan; Burke, Christopher J.; Désert, Jean-Michel; Nutzman, Philip; Falco, Emilio E.

    2011-07-01

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 ± 0.03.

  8. All-optical digital logic: Full addition or subtraction on a three-state system

    SciTech Connect

    Remacle, F.; Levine, R. D.

    2006-03-15

    Stimulated Raman adiabatic passage (STIRAP) is a well-studied pump-probe control scheme for manipulating the population of quantum states of atoms or molecules. By encoding the digits to be operated on as 'on' or 'off' laser input signals we show how STIRAP can be used to implement a finite-state logic machine. The physical conditions required for an effective STIRAP operation are related to the physical conditions expected for a logic machine. In particular, a condition is derived on the mean number of photons that represent an on pulse. A finite-state machine computes Boolean expressions that depend both on the input and on the present state of the machine. With two input signals we show how to implement a full adder where the carry-in digit is stored in the state of the machine. Furthermore, we show that it is possible to store the carry-out digit as the next state and thereby return the machine to a state ready for the next full addition. Such a machine operates as a cyclical full adder. We further show how this full adder can equally well be operated as a full subtractor. To the best of our knowledge this is the first example of a nanosized system that implements a full subtraction.

  9. Influence of modifying additives on the electronic state of supported palladium

    NASA Astrophysics Data System (ADS)

    Pestryakov, A. N.; Lunin, V. V.; Fuentes, S.; Bogdanchikova, N.; Barrera, A.

    2003-01-01

    The influence of modifying additives of Ce, Zr, La and Cs oxides on the electronic state of palladium supported on γ-Al 2O 3 has been studied by IR-spectroscopy of adsorbed CO, diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD) and H 2 chemisorption. The modified supports have been prepared using impregnation, coprecipitation and sol-gel methods. It is established that Ce and Zr oxide additives increase the effective charge of palladium ions whereas La and Cs oxides lower it. The effect of metal-support interaction is stronger in samples prepared by sol-gel than by coprecipitation

  10. High-fidelity teleportation of continuous-variable quantum states using delocalized single photons.

    PubMed

    Andersen, Ulrik L; Ralph, Timothy C

    2013-08-01

    Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can be obtained with modest resources. PMID:23952378

  11. Streamflow variability in the United States: 1931-1978.

    USGS Publications Warehouse

    Lins, H.F.

    1985-01-01

    Systematic modes of spatial and temporal variation in a 48-year record of streamflow are defined using principal components. The components were calculated from a matrix of annual streamflow departures for 106 grid cells covering the United States in the years 1931-78. Five statistically significant components are found to account for more than 56% of the total variance. A varimax orthogonal rotation of the original components describes regional anomaly cores located in the middle Mississippi Valley, Pacific Northwest, Far West, Northeast, and northern Great Plains. -from Author

  12. Drumlin height variability in the New York State drumlin field

    NASA Astrophysics Data System (ADS)

    Spagnolo, Matteo; Hess, Dale P.; Clark, Chris D.

    2010-05-01

    Although drumlins are among the most common landforms found in formerly glaciated terrain and have been studied for centuries, we still lack a general agreement on their genesis. No one theory of formation can be accepted, though, unless it is capable of explaining the shape of drumlins observed in nature. Most scientists will agree that drumlins have a characteristic shape, but what are the exact figures? While many studies have focused on drumlin length, width and elongation, there is a relatively lack of work on bedform height. In the few exceptions that can be found in the literature, drumlin height has been usually quantified in terms of altitudinal range, with biases related to topography, and from studies of a relatively small number of drumlins. In this work, the height of over 6000 drumlins mapped in New York State, south of Lake Ontario, is analyzed. Specific GIS techniques are applied to effectively quantify drumlin height rather than the once typically measured altitudinal range. Results are discussed statistically and in respect to those reported in the literature as well as those recently emerged from a study of the British Isles. The spatial distribution of drumlin height across the New York State field varies systematically. This paper explores the potential influence of topography, bedrock and glacial history on this variation through spatial analysis. The correlation to other morphometric properties, i.e. length, width and elongation, has also revealed interesting trends.

  13. Assessment of the local stress state through macroscopic variables.

    PubMed

    Lipton, Robert P

    2003-05-15

    Macroscopic quantities beyond effective elastic tensors are presented that can be used to assess the local state of stress within a composite in the linear elastic regime. These are presented in a general homogenization context. It is shown that the gradient of the effective elastic property can be used to develop a lower bound on the maximum pointwise equivalent stress in the fine-scale limit. Upper bounds are more sensitive and are correlated with the distribution of states of the equivalent stress in the finescale limit. The upper bounds are given in terms of the macrostress modulation function. This function gauges the magnitude of the actual stress. For 1

  14. Precipitation variability in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Dufek, A. S.; Ambrizzi, T.

    2008-08-01

    The State of São Paulo is the richest in Brazil, responsible for over 30% of the Brazilian gross rate. It has a population of around 30 million and its economy is based on agriculture and industrial products. Any change in climate can have a profound influence on the socio-economics of the State. In order to determine changes in total and extreme rainfall over São Paulo State, climate change indices derived from daily precipitation data were calculated using specially designed software. Maps of trends for a subset of 59 rain gauge stations were analysed for the period 1950-1999 and also for a subset of this period, 1990-1999, representing more recent climate. A non-parametric Mann-Kendall test was applied to the time series. Maps of trends for six annual precipitation indices (annual total precipitation (PRCPTOT), very heavy precipitation days (R20 mm), events greater than the 95th percentile (R95p), maximum five days precipitation total (RX5day), the length of the largest wet spell (CWD) and the length of the largest dry spell (CDD)) were analysed for the entire period. These exhibited statistically significant trends associated with a wetter climate. A significant increase in PRCPTOT, associated with very heavy precipitation days, were observed at more than 45% of the rain gauge stations. The Mann-Kendall test identified that the positive trend in PRCPTOT is possibly related to the increase in the R95p and R20 mm indices. Therefore, the results suggest that there has been a change in precipitation intensity. In contrast, the indices for the more recent shorter time series are significantly different to the longer term indices. The results indicate that intense precipitation is becoming concentrated in a few days and spread over the period when the CDD and R20 mm indices show positive trends, while negative ones are seen in the RX5day index. The trends found could be related to many anthropogenic aspects such as biomass burning aerosols and land use.

  15. Continuous-variable versus hybrid schemes for quantum teleportation of Gaussian states

    NASA Astrophysics Data System (ADS)

    Kogias, Ioannis; Ragy, Sammy; Adesso, Gerardo

    2014-05-01

    In this paper, we examine and compare two fundamentally different teleportation schemes: the well-known continuous-variable scheme of Vaidman, Braunstein, and Kimble (VBK) and a recently proposed hybrid scheme by Andersen and Ralph (AR). We analyze the teleportation of ensembles of arbitrary pure single-mode Gaussian states using these schemes and see how they fare against the optimal measure-and-prepare strategies—the benchmarks. In the VBK case, we allow for nonunit gain tuning and additionally consider a class of non-Gaussian resources in order to optimize performance. The results suggest that the AR scheme may likely be a more suitable candidate for beating the benchmarks in the teleportation of squeezing, capable of achieving this for moderate resources in comparison to the VBK scheme. Moreover, our quantification of resources, whereby different protocols are compared at fixed values of the entanglement entropy or the mean energy of the resource states, brings into question any advantage due to non-Gaussianity for quantum teleportation of Gaussian states.

  16. Subseasonal climate variability for North Carolina, United States

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe; Schimmel, Keith A.

    2014-08-01

    Subseasonal trends in climate variability for maximum temperature (Tmax), minimum temperature (Tmin) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The magnitude and significance of the trends at all stations were determined using the non-parametric Theil-Sen Approach (TSA) and the Mann-Kendall (MK) test, respectively. The Sequential Mann-Kendall (SQMK) test was also applied to find the initiation of abrupt trend changes. The lag-1 serial correlation and double mass curve were employed to address the data independency and homogeneity. Using the MK trend test, statistically significant (confidence level ≥ 95% in two-tailed test) decreasing (increasing) trends by 44% (45%) of stations were found in May (June). In general, trends were decreased in Tmax and increased in Tmin data series in subseasonal scale. Using the TSA method, the magnitude of lowest (highest) decreasing (increasing) trend in Tmax is - 0.050 °C/year (+ 0.052 °C/year) in the monthly series for May (March) and for Tmin is - 0.055 °C/year (+ 0.075 °C/year) in February (December). For the precipitation time series using the TSA method, it was found that the highest (lowest) magnitude of 1.00 mm/year (- 1.20 mm/year) is in September (February). The overall trends in precipitation data series were not significant at the 95% confidence level except that 17% of stations were found to have significant (confidence level ≥ 95% in two-tailed test) decreasing trends in February. The statistically significant trend test results were used to develop a spatial distribution of trends: May for Tmax, June for Tmin, and February for precipitation. A correlative analysis of significant temperature and precipitation trend results was examined with respect to large scale circulation modes (North Atlantic Oscillation (NAO) and Southern Oscillation Index (SOI). A negative NAO index (positive-El Niño Southern Oscillation (ENSO) index) was found to be associated with

  17. The Effectiveness of Six Personality Variables in Predicting Success on the Nursing State Board Examination.

    ERIC Educational Resources Information Center

    Cusick, Patricia; Harckham, Laura D.

    A study was conducted to determine whether six personality variables, presently used in admissions decisions by a nursing school, were effective predictors of success on the State Board Examination (SBE), the nursing licensing examination. The personality variables were measured by subtests of the Personal Preference Schedule of the Psychological…

  18. Identifying and Measuring the State Variables in TaOx Memristors

    NASA Astrophysics Data System (ADS)

    Mickel, Patrick; Marinella, Matthew; James, Conrad

    2013-03-01

    We present evidence of the identification and characterization of new state variables in TaOx memristors. Thus far, the state variable controlling the resistive switching has been believed to be the oxygen concentration in the conducting Ta filament. However, using voltage pulse measurements sensitive to small changes in resistance, we identify three distinct switching regimes governed by three unique state variables. Oxygen concentration in the Ta filament is shown to control the memristor resistance for low resistances, after which we observe a clear crossover to the area state variable dominated resistance range, and finally a large non-linear resistance range governed by the thickness of a developing insulating layer. The amplitude and time-scale of the applied tuning voltage pulses is investigated, providing insight into thermal properties of the device during switching.

  19. Variable Temperature Stress in the Nematode Caenorhabditis elegans (Maupas) and Its Implications for Sensitivity to an Additional Chemical Stressor

    PubMed Central

    Svendsen, Claus; Spurgeon, David J.

    2016-01-01

    A wealth of studies has investigated how chemical sensitivity is affected by temperature, however, almost always under different constant rather than more realistic fluctuating regimes. Here we compared how the nematode Caenorhabditis elegans responds to copper at constant temperatures (8–24°C) and under fluctuation conditions of low (±4°C) and high (±8°C) amplitude (averages of 12, 16, 20°C and 16°C respectively). The DEBkiss model was used to interpret effects on energy budgets. Increasing constant temperature from 12–24°C reduced time to first egg, life-span and population growth rates consistent with temperature driven metabolic rate change. Responses at 8°C did not, however, accord with this pattern (including a deviation from the Temperature Size Rule), identifying a cold stress effect. High amplitude variation and low amplitude variation around a mean temperature of 12°C impacted reproduction and body size compared to nematodes kept at the matching average constant temperatures. Copper exposure affected reproduction, body size and life-span and consequently population growth. Sensitivity to copper (EC50 values), was similar at intermediate temperatures (12, 16, 20°C) and higher at 24°C and especially the innately stressful 8°C condition. Temperature variation did not increase copper sensitivity. Indeed under variable conditions including time at the stressful 8°C condition, sensitivity was reduced. DEBkiss identified increased maintenance costs and increased assimilation as possible mechanisms for cold and higher copper concentration effects. Model analysis of combined variable temperature effects, however, demonstrated no additional joint stressor response. Hence, concerns that exposure to temperature fluctuations may sensitise species to co-stressor effects seem unfounded in this case. PMID:26784453

  20. Variable Temperature Stress in the Nematode Caenorhabditis elegans (Maupas) and Its Implications for Sensitivity to an Additional Chemical Stressor.

    PubMed

    Cedergreen, Nina; Nørhave, Nils Jakob; Svendsen, Claus; Spurgeon, David J

    2016-01-01

    A wealth of studies has investigated how chemical sensitivity is affected by temperature, however, almost always under different constant rather than more realistic fluctuating regimes. Here we compared how the nematode Caenorhabditis elegans responds to copper at constant temperatures (8-24°C) and under fluctuation conditions of low (±4°C) and high (±8°C) amplitude (averages of 12, 16, 20°C and 16°C respectively). The DEBkiss model was used to interpret effects on energy budgets. Increasing constant temperature from 12-24°C reduced time to first egg, life-span and population growth rates consistent with temperature driven metabolic rate change. Responses at 8°C did not, however, accord with this pattern (including a deviation from the Temperature Size Rule), identifying a cold stress effect. High amplitude variation and low amplitude variation around a mean temperature of 12°C impacted reproduction and body size compared to nematodes kept at the matching average constant temperatures. Copper exposure affected reproduction, body size and life-span and consequently population growth. Sensitivity to copper (EC50 values), was similar at intermediate temperatures (12, 16, 20°C) and higher at 24°C and especially the innately stressful 8°C condition. Temperature variation did not increase copper sensitivity. Indeed under variable conditions including time at the stressful 8°C condition, sensitivity was reduced. DEBkiss identified increased maintenance costs and increased assimilation as possible mechanisms for cold and higher copper concentration effects. Model analysis of combined variable temperature effects, however, demonstrated no additional joint stressor response. Hence, concerns that exposure to temperature fluctuations may sensitise species to co-stressor effects seem unfounded in this case. PMID:26784453

  1. Multiport solid-state imager characterization at variable pixel rates

    SciTech Connect

    Yates, G.J.; Albright, K.A.; Turko, B.T.

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  2. Fitness variables and the lipid profile in United States astronauts

    NASA Technical Reports Server (NTRS)

    Berry, M. A.; Squires, W. G.; Jackson, A. S.

    1980-01-01

    The study examines the relationship between several measures of fitness and the lipid profile in United States astronauts. Data were collected on 89 astronauts, previously selected (PSA) and newly selected (NSA), during their annual physical examinations. Several similarities were seen in the two groups. The PSA (mean age of 46.1) had a lower maximum oxygen capacity (41.7 ml kg/min vs. 47.5 ml kg/min); when adjusted for age, it was no different from the NSA (mean age 33.5). The PSA had similar body composition with 15.7% - lower than expected for age. The lipid profiles of the two groups were basically the same with the differences being a function of age. Compared to a normative population, the astronauts had similar cholesterols, lower triglycerides, and higher HDLs. The astronaut profiles were generally more favorable than the age-matched controls, which is felt to be a result of the self-supervised conditioning program and annual preventive medicine consultation and education.

  3. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    NASA Technical Reports Server (NTRS)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  4. All-Solid-State Electrochromic Variable Emittance Coatings for Thermal Management in Space

    NASA Astrophysics Data System (ADS)

    Kislov, Nikolai; Groger, Howard; Ponnappan, Rengasamy

    2003-01-01

    The results presented in this article demonstrate the feasibility of ``all-solid-state'' inorganic electrochromic (EC) variable emittance coatings (VEC) for thermal management in space. VECs were built on glass substrates, flexible polyimide (Kapton™) films, and on high resistance silicon wafers. The best VECs were found to modulate mid-infrared emittance from 0.15 to 0.46 on a Kapton film and from 0.24 to 0.48 on a silicon wafer that performs the dual role as both infrared window and substrate. The results of thermal estimations for a two-dimensional plate showed that EC systems with emittance modulation ratio ɛhigh/Vegr low = 3 can be practically used to advantage in providing enhanced thermal control for lightweight structures in space. In addition, EC variable solar reflectance coatings (VSRCs) were built on polyethylene terephthalate (PET) film. The average reflection of the VSRC in a visual spectral range was 63% in the bleached condition and 20% in the colored condition. Thermal analysis shows that a combination of VECs and VSRCs described in this work provides an enhanced range of thermal control for satellites and small space vehicles in the space environment.

  5. Thermodynamics of trapped gases: Generalized mechanical variables, equation of state, and heat capacity

    NASA Astrophysics Data System (ADS)

    Sandoval-Figueroa, Nadia; Romero-Rochín, Víctor

    2008-12-01

    We present the full thermodynamics of an interacting fluid confined by an arbitrary external potential. We show that for each confining potential, there emerge “generalized” volume and pressure variables V and P , that replace the usual volume and hydrostatic pressure of a uniform system. This scheme is validated with the derivation of the virial expansion of the grand potential. We discuss how this approach yields experimentally amenable procedures to find the equation of state of the fluid, P=P(V/N,T) with N the number of atoms, as well as its heat capacity at constant generalized volume CV=CV(V,N,T) . With these two functions, all the thermodynamics properties of the system may be found. As specific examples we study weakly interacting Bose gases trapped by harmonic and by linear quadrupolar potentials within the Hartree-Fock approximation. We claim that this route provides an additional and useful tool to analyze both the thermodynamic variables of an ultracold trapped gas as well as its elementary excitations.

  6. The Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2002 Tropical Ozone Climatology. 3; Instrumentation and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacqueline C.; Smit, Herman G. J.; Oltmans, Samuel J.; Johnson, Bryan J.; Kirchhoff, Volker W. J. H.; Schmidlin, Francis J.

    2004-01-01

    Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with accompanying pressure-temperature-humidity soundings) are archived. Analysis of ozonesonde imprecision within the SHADOZ dataset revealed that variations in ozonesonde technique could lead to station-to-station biases in the measurements. In this paper imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. When SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release), discrepancies between sonde and satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS. Variability among stations is evaluated using total ozone normalized to TOMS and results of laboratory tests on ozonesondes (JOSE-2O00, Julich Ozonesonde Intercomparison Experiment). Ozone deviations from a standard instrument in the JOSE flight simulation chamber resemble those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain systematic variations in SHADOZ ozone profiles are accounted for by differences in solution composition, data processing and instrument (manufacturer). Instrument bias leads to a greater ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific sites compared to other SHADOZ stations at 0-20 deg.S.

  7. Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Walker, James L.

    2014-01-01

    This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process.

  8. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  9. Spontaneous physiological variability modulates dynamic functional connectivity in resting-state functional magnetic resonance imaging.

    PubMed

    Nikolaou, F; Orphanidou, C; Papakyriakou, P; Murphy, K; Wise, R G; Mitsis, G D

    2016-05-13

    It is well known that the blood oxygen level-dependent (BOLD) signal measured by functional magnetic resonance imaging (fMRI) is influenced-in addition to neuronal activity-by fluctuations in physiological signals, including arterial CO2, respiration and heart rate/heart rate variability (HR/HRV). Even spontaneous fluctuations of the aforementioned physiological signals have been shown to influence the BOLD fMRI signal in a regionally specific manner. Related to this, estimates of functional connectivity between different brain regions, performed when the subject is at rest, may be confounded by the effects of physiological signal fluctuations. Moreover, resting functional connectivity has been shown to vary with respect to time (dynamic functional connectivity), with the sources of this variation not fully elucidated. In this context, we examine the relation between dynamic functional connectivity patterns and the time-varying properties of simultaneously recorded physiological signals (end-tidal CO2 and HR/HRV) using resting-state fMRI measurements from 12 healthy subjects. The results reveal a modulatory effect of the aforementioned physiological signals on the dynamic resting functional connectivity patterns for a number of resting-state networks (default mode network, somatosensory, visual). By using discrete wavelet decomposition, we also show that these modulation effects are more pronounced in specific frequency bands. PMID:27044987

  10. Analyzing State and Private School Students' Achievement Goal Orientation Levels in Terms of Some Variables

    ERIC Educational Resources Information Center

    Türkçapar, Ünal

    2015-01-01

    The purpose of this study is to investigate the state and private school students' achievement goal orientation levels in terms of some variables. Quantitative survey method was used in this study. Study group in this research consists of 201 students who are studying at state and private school in Kahramanmaras during the 2014-2015 academic year.…

  11. Distribution of Personal Income in Agriculture-Dependent Counties of Midwestern States: A Policy Variables Approach.

    ERIC Educational Resources Information Center

    Goreham, Gary A.; And Others

    Significant social, demographic, and economic changes have occurred in the North Central states since 1960. This document examines structural and policy variables related to distribution of income, during the years 1960-80 in the 397 counties defined as agriculture-dependent in 13 North Central states. Personal income distribution has been…

  12. Use of heart rate variability differentiates between physical and psychological states

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major goal of animal welfare scientists is to determine when animals are experiencing a state of good welfare or poor welfare. The goal of this research was to determine if measures of heart rate variability can be used to differentiate whether animals are experiencing differing states of physi...

  13. Optimal control of singularly perturbed nonlinear systems with state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Corban, J. E.

    1990-01-01

    The established necessary conditions for optimality in nonlinear control problems that involve state-variable inequality constraints are applied to a class of singularly perturbed systems. The distinguishing feature of this class of two-time-scale systems is a transformation of the state-variable inequality constraint, present in the full order problem, to a constraint involving states and controls in the reduced problem. It is shown that, when a state constraint is active in the reduced problem, the boundary layer problem can be of finite time in the stretched time variable. Thus, the usual requirement for asymptotic stability of the boundary layer system is not applicable, and cannot be used to construct approximate boundary layer solutions. Several alternative solution methods are explored and illustrated with simple examples.

  14. Variability of tornado occurrence over the continental United States since 1950

    NASA Astrophysics Data System (ADS)

    Guo, Li; Wang, Kaicun; Bluestein, Howard B.

    2016-06-01

    The United States experiences the most tornadoes of any country in the world. Given the catastrophic impact of tornadoes, concern has arisen regarding the variation in climatology of U.S. tornadoes under the changing climate. A recent study claimed that the temporal variability of tornado occurrence over the continental U.S. has increased since the 1970s. However, that study ignored the highly regionalized climatology of U.S. tornadoes. To address this issue, we examined the long-term trend of tornado temporal variability in each continental U.S. state. Based on the 64 year tornado records (1950-2013), we found that the trends in tornado temporal variability varied across the U.S., with only one third of the continental area or three out of 10 contiguous states (mostly from the Great Plains and Southeast, but where the frequency of occurrence of tornadoes is greater) displaying a significantly increasing trend. The other two-thirds area, where 60% of the U.S. tornadoes were reported (but the frequency of occurrence of tornadoes is less), however, showed a decreasing or a near-zero trend in tornado temporal variability. Furthermore, unlike the temporal variability alone, the combined spatial-temporal variability of U.S. tornado occurrence has remained nearly constant since 1950. Such detailed information on the climatological variability of U.S. tornadoes refines the claim of previous study and can be helpful for local mitigation efforts toward future tornado risks.

  15. Charge state of arginine as an additive on heat-induced protein aggregation.

    PubMed

    Miyatake, Takumi; Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-06-01

    Arginine (Arg) is one of the most versatile solvent additives, such as suppressing protein aggregation, increasing solubility of small aromatic compounds and peptides, and preventing protein binding on solid surfaces. In this study, we investigated the role of the charged state of α-amino group of Arg for the prevention of protein aggregation. As expected, Arg effectively suppressed thermal aggregation of hen egg-white lysozyme at neutral pH, whereas the suppression effect diminished at and above pH 9.0, which corresponds to the pK of Arg's α-amino group. The pH dependence of Arg as an aggregation suppressor was confirmed by additional experiments with neutral proteins, bovine hemoglobin and bovine γ-globulin. Interestingly, N-acetylated arginine, which lacks the α-amino group, showed a weaker suppressive effect on protein aggregation than Arg, even at neutral pH. These results indicate that both positively charged α-amino group and guanidinium group play important roles in suppressing heat-induced protein aggregation by Arg. The elucidated limitation of Arg at alkaline pH provides new insight in the application as well as the mechanism of Arg as a solvent additive. PMID:26987431

  16. 42 CFR 493.645 - Additional fee(s) applicable to approved State laboratory programs and laboratories issued a...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS General Administration § 493.645 Additional fee(s) applicable to approved State laboratory programs...

  17. 42 CFR 493.645 - Additional fee(s) applicable to approved State laboratory programs and laboratories issued a...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS General Administration § 493.645 Additional fee(s) applicable to approved State laboratory programs...

  18. Graphical rule of transforming continuous-variable graph states by local homodyne detection

    SciTech Connect

    Zhang Jing

    2010-09-15

    Graphical rule, describing that any single-mode homodyne detection turns a given continuous-variable (CV) graph state into a new one, is presented. Employing two simple graphical rules--local complement operation and vertex deletion (single quadrature-amplitude x measurement)--the graphical rule for any single-mode quadrature component measurement can be obtained. The shape of CV weighted graph state may be designed and constructed easily from a given larger graph state by applying this graphical rule.

  19. The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.

    2015-12-01

    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.

  20. Theory and design of variable conductance heat pipes: Steady state and transient performance

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.

    1972-01-01

    Heat pipe technology pertinent to the design and application of self-controlled, variable conductance heat pipes for spacecraft thermal control is discussed. Investigations were conducted to: (1) provide additional confidence in existing design tools, (2) to generate new design tools, and (3) to develop superior variable conductance heat pipe designs. A computer program for designing and predicting the performance of the heat pipe systems was developed.

  1. Recent trends in the variability of halogenated trace gases over the United States

    NASA Astrophysics Data System (ADS)

    Hurst, Dale F.; Bakwin, Peter S.; Elkins, James W.

    1998-10-01

    Recent trends in the atmospheric variability of seven halogenated trace gases are determined from three years (November 1994 through October 1997) of hourly gas chromatographic measurements at a 610 m tower in North Carolina and 17 months (June 1996 through October 1997) of similar measurements at a 450 m tower in Wisconsin. Production of five of these gases, CCl3F (CFC-11), CCl2F2 (CFC-12), CCl2FCClF2 (CFC-113), CH3CCl3 (methyl chloroform), and CCl4 (carbon tetrachloride), is now strictly regulated in the United States and other developed countries under international legislation. C2Cl4 (tetrachloroethene) and SF6 (sulfur hexafluoride) are currently produced without restriction, but requests for voluntary cutbacks in C2Cl4 emissions have been made, at least in the United States. Atmospheric variability of these gases is examined at several sampling heights on the towers, but trends are deduced using only nighttime data at the top sampling level of each tower to minimize variability driven by local emissions and the diurnal cycle of the planetary boundary layer, leaving regional emissions as the main source of day-to-day variability. Significant downward trends are determined for CFC-12, CFC-113, CH3CCl3, and C2Cl4 variability at both towers, reflecting decreased emissions of these gases in two regions of the United States. Trends in CFC-11, CCl4, and SF6 variability at both towers are not significantly different from zero.

  2. Feedback from network states generates variability in a probabilistic olfactory circuit

    PubMed Central

    Gordus, Andrew; Pokala, Navin; Levy, Sagi; Flavell, Steven W.; Bargmann, Cornelia I

    2016-01-01

    Summary Variability is a prominent feature of behavior, and an active element of certain behavioral strategies. To understand how neuronal circuits control variability, we examined the propagation of sensory information in a chemotaxis circuit of Caenorhabditis elegans where discrete sensory inputs can drive a probabilistic behavioral response. Olfactory neurons respond to odor stimuli with rapid and reliable changes in activity, but downstream AIB interneurons respond with a probabilistic delay. The interneuron response to odor depends on the collective activity of multiple neurons – AIB, RIM, and AVA -- when the odor stimulus arrives. Certain activity states of the network correlate with reliable responses to odor stimuli. Artificially generating these activity states by modifying neuronal activity increases the reliability of odor responses in interneurons and the reliability of the behavioral response to odor. The integration of sensory information with network state may represent a general mechanism for generating variability in behavior. PMID:25772698

  3. [Substrate phase state and time factor in variability of human fecal microbiota].

    PubMed

    Bogdanova, E A; Nesvizhskiĭ, Iu V; Gerasimova, E V; Zverev, V V

    2007-01-01

    Effects of substrate phase state and time factor on variability of human fecal microbiota were studied. It was shown that microecological system of native feces was characterized by marked time-dependent variability. It is unstable and begins to destruct after 24 hours of cultivation. The most sensitive elements of the system were bifidobacteria and Escherichia coli. Change of phase state of biotope eliminated the effect of factor limiting the microecosystem development, which allowed species of obligate and transitory microflora to freely colonize the growth substrate and interact with each other. The mentioned facts demonstrate that fecal microbiota exists in the environment of excess of growth substrate, which colonization is limited by cluster structure of biotope of native feces. It was concluded that phase state of growth substrate and duration of cultivation are important factors determining the population variability of fecal microbiota. PMID:18277541

  4. Analytical optimal controls for the state constrained addition and removal of cryoprotective agents

    PubMed Central

    Chicone, Carmen C.; Critser, John K.

    2014-01-01

    Cryobiology is a field with enormous scientific, financial and even cultural impact. Successful cryopreservation of cells and tissues depends on the equilibration of these materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal to minimize exposure time as well. Because solute and solvent flux is governed by a system of ordinary differential equations, CPA addition and removal from cells is an ideal context for the application of optimal control theory. Recently, we presented a mathematical synthesis of the optimal controls for the ODE system commonly used in cryobiology in the absence of state constraints and showed that controls defined by this synthesis were optimal. Here we define the appropriate model, analytically extend the previous theory to one encompassing state constraints, and as an example apply this to the critical and clinically important cell type of human oocytes, where current methodologies are either difficult to implement or have very limited success rates. We show that an enormous increase in equilibration efficiency can be achieved under the new protocols when compared to classic protocols, potentially allowing a greatly increased survival rate for human oocytes, and pointing to a direction for the cryopreservation of many other cell types. PMID:22527943

  5. Novel Multiparty Controlled Bidirectional Quantum Secure Direct Communication Based on Continuous-variable States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Wen, Ru-Hong

    2016-03-01

    A novel multiparty controlled bidirectional quantum secure direct communication protocol combining continuous-variable states with qubit block transmission is proposed. Two legitimate communication parties encode their own secret information into entangled optical modes with translation operations, and the secret information of each counterpart can only be recovered under the permission of all controllers. Due to continuous-variable states and block transmission strategy, the proposed protocol is easy to realize with perfect qubit efficiency. Security analyses show that the proposed protocol is free from common attacks, including the man-in-the-middle attack.

  6. Effects of Climate Variability and Change on Groundwater Resources of the United States

    USGS Publications Warehouse

    Gurdak, Jason S.; Hanson, Randall T.; Green, Timothy R.

    2009-01-01

    Groundwater is an important part of the global fresh water supply and is affected by climate. U.S. Geological Survey (USGS) scientists are working with local, State, Federal, and international partners to understand how the availability and sustainability of groundwater resources in the United States will be affected by climate variability and change. This fact sheet describes climate variability and change, important groundwater resources of the Nation, and how USGS research is helping to answer critical questions about the effects of climate on groundwater.

  7. Assessing the future of crop yield variability in the United States with downscaled climate projections (Invited)

    NASA Astrophysics Data System (ADS)

    Lobell, D. B.; Urban, D.

    2010-12-01

    One aspect of climate change of particular concern to farmers and food markets is the potential for increased year-to-year variability in crop yields. Recent episodes of food price increases following the Australian drought or Russian heat wave have heightened this concern. Downscaled climate projections that properly capture the magnitude of daily and interannual variability of weather can be useful for projecting future yield variability. Here we examine the potential magnitude and cause of changes in variability of corn yields in the United States up to 2050. Using downscaled climate projections from multiple models, we estimate a distribution of changes in mean and variability of growing season average temperature and precipitation. These projections are then fed into a model of maize yield that explicitly factors in the effect of extremely warm days. Changes in yield variability can result from a shift in mean temperatures coupled with a nonlinear crop response, a shift in climate variability, or a combination of the two. The results are decomposed into these different causes, with implications for future research to reduce uncertainties in projections of future yield variability.

  8. Interannual Variability of Ammonia Concentrations over the United States: Sources and Implications for Inorganic Particulate Matter

    NASA Astrophysics Data System (ADS)

    Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Pierre-Francois, C.; Clerbaux, C.

    2015-12-01

    Modern agricultural practices have greatly increased the emission of ammonia (NH3) to the atmosphere. Recent controls to reduce the emissions of sulfur and nitrogen oxides (SOX and NOX) have increased the importance of understanding the role ammonia plays in the formation of surface fine inorganic particulate matter (PM2.5) in the United States. In this study, we identify the interannual variability in ammonia concentration, explore the sources of this variability and determine their contribution to the variability in surface PM2.5 concentration. Over the summers of 2008-2012, measurements from the Ammonia Monitoring Network (AMoN) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument show considerable variability in both surface and column ammonia concentrations (+/- 29% and 28% of the mean), respectively. This observed variability is larger than that simulated by the GEOS-Chem chemical transport model, where meteorology dominates the variability in ammonia and PM2.5 concentrations compared to the changes caused by SOX and NOX reductions. Our initial simulation does not include year-to-year changes in ammonia agricultural emissions. We use county-wide information on fertilizer sales and livestock populations, as well as meteorological variations to account for the interannual variability in agricultural activity and ammonia volatilization. These sources of ammonia emission variability are important for replicating observed variations in ammonia and PM2.5, highlighting how accurate ammonia emissions characterization is central to PM air quality prediction.

  9. Evidence for increasingly variable Palmer Drought Severity Index in the United States since 1895.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-02-15

    Annual and summertime trends towards increasingly variable values of the Palmer Drought Severity Index (PDSI) over a sub-decadal period (five years) were investigated within the contiguous United States between 1895 and the present. For the contiguous United States as a whole, there is a significant increasing trend in the five-year running minimum-maximum ranges for the annual PDSI (aPDSI5 yr(min|max, range)). During this time frame, the average aPDSI5 yr(min|max, range) has increased by about one full unit, indicating a substantial increase in drought variability over short time scales across the United States. The end members of the running aPDSI5 yr(min|max, range) highlight even more rapid changes in the drought index variability within the past 120 years. This increasing variability in the aPDSI5 yr(min|max, range) is driven primarily by changes taking place in the Pacific and Atlantic Ocean coastal climate regions, climate regions which collectively comprise one-third the area of the contiguous United States. Similar trends were found for the annual and summertime Palmer Hydrological Drought Index (PHDI), the Palmer Modified Drought Index (PMDI), and the Palmer Z Index (PZI). Overall, interannual drought patterns in the contiguous United States are becoming more extreme and difficult to predict, posing a challenge to agricultural and other water-resource related planning efforts. PMID:26688051

  10. Estimation of Hidden State Variables of the Intracranial System Using Constrained Nonlinear Kalman Filters

    PubMed Central

    Nenov, Valeriy; Bergsneider, Marvin; Glenn, Thomas C.; Vespa, Paul; Martin, Neil

    2007-01-01

    Impeded by the rigid skull, assessment of physiological variables of the intracranial system is difficult. A hidden state estimation approach is used in the present work to facilitate the estimation of unobserved variables from available clinical measurements including intracranial pressure (ICP) and cerebral blood flow velocity (CBFV). The estimation algorithm is based on a modified nonlinear intracranial mathematical model, whose parameters are first identified in an offline stage using a nonlinear optimization paradigm. Following the offline stage, an online filtering process is performed using a nonlinear Kalman filter (KF)-like state estimator that is equipped with a new way of deriving the Kalman gain satisfying the physiological constraints on the state variables. The proposed method is then validated by comparing different state estimation methods and input/output (I/O) configurations using simulated data. It is also applied to a set of CBFV, ICP and arterial blood pressure (ABP) signal segments from brain injury patients. The results indicated that the proposed constrained nonlinear KF achieved the best performance among the evaluated state estimators and that the state estimator combined with the I/O configuration that has ICP as the measured output can potentially be used to estimate CBFV continuously. Finally, the state estimator combined with the I/O configuration that has both ICP and CBFV as outputs can potentially estimate the lumped cerebral arterial radii, which are not measurable in a typical clinical environment. PMID:17281533

  11. Ozone and other air quality-related variables affecting visibility in the southeast United States.

    PubMed

    Aneja, Viney P; Brittig, Jeffrey S; Kim, Deug-Soo; Hanna, Adel

    2004-06-01

    An analysis of ozone (O3) concentrations and several other air quality-related variables was performed to elucidate their relationship with visibility at five urban and semi-urban locations in the southeast United States during the summer seasons of 1980-1996. The role and impact of O3 on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis over the 1980s reveals an increase in maximum O3 concentration coupled with a decrease in visibility. However, a similar analysis for the 1990s shows a leveling-off of both O3 and visibility; in both cases, the results were not statistically significant at the 5% level. A case study of site-specific trends at Nashville, TN, followed similar trends. To better understand the relationships between O3 concentration and visibility, the analysis was varied from yearly through daily to hourly averaged values. This increased temporal resolution showed a statistically significant inverse relationship between visibility and O3. Site-specific hourly r2 values ranged from 0.02 to 0.43. Additionally, by performing back-trajectory analysis, it was found that the visibility degraded by air mass migration over polluted areas. PMID:15242148

  12. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    NASA Astrophysics Data System (ADS)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-01

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  13. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    SciTech Connect

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-26

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  14. Anomalous Low States and Long-term Variability in the Black Hole Binary LMC X-3

    NASA Astrophysics Data System (ADS)

    Smale, Alan P.; Boyd, Patricia T.

    2012-09-01

    Rossi X-ray Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (~3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of ~hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 × 1035 erg s-1. Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the ~188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-1. The average period and amplitude of the variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-1, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-1 is reliably modeled with a tilted, warped precessing accretion disk.

  15. ANOMALOUS LOW STATES AND LONG-TERM VARIABILITY IN THE BLACK HOLE BINARY LMC X-3

    SciTech Connect

    Smale, Alan P.; Boyd, Patricia T. E-mail: padi.boyd@nasa.gov

    2012-09-10

    Rossi X-ray Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration ({approx}3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of {approx}hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 Multiplication-Sign 10{sup 35} erg s{sup -1}. Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the {approx}188 day duration. These episodes share some characteristics with the 'anomalous low states' in the neutron star binary Her X-1. The average period and amplitude of the variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-1, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-1 is reliably modeled with a tilted, warped precessing accretion disk.

  16. Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Boyd, Patricia T.

    2012-01-01

    Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.

  17. Tropical Climate Mean State and Variability during the Pliocene Warm Period (Invited)

    NASA Astrophysics Data System (ADS)

    Ravelo, A. C.; Ford, H. L.; Dekens, P. S.; White, S. M.; Griffith, E. M.

    2013-12-01

    Past studies have shown that the mean climate state during the Pliocene warm period, about 3 - 4 million years ago, differed from present day climate in several ways: global temperature was about 3-4 degrees C warmer, the tropical thermocline was warmer and/or deeper, and meridional and zonal sea surface temperature gradients were reduced due to warmer high latitude temperatures but tropical sea surface temperatures that were similar to today. One of the most striking features of the Pliocene warm period is the El Niño-like (El Padre) mean state of the tropical Pacific, which is thought to have far-field impacts. In this study, we present a synthesis of new and published tropical Pacific data, detailing the mean state and higher frequency variability (e.g., using orbital scale records and measurements made on single foraminifera shells), for the purpose of meeting two main goals. First, we highlight important characteristics of the El Padre mean state, which include average Indo-Pacific warm pool temperatures that were similar and east Pacific cold tongue temperatures and cross-Pacific subsurface temperatures that were warmer than today. Because much of the paleotemperature data comes from Mg/Ca ratios measured in planktonic foraminifera, the impact of possible changes in Mg/Ca of seawater on paleotemperature estimates is addressed. We conclude that Mg/Ca-derived temperature estimates could be adjusted by no more than about 1 degree in order to account for seawater chemistry changes. Second, by examining orbital variability and temperature distributions based on single foraminifera analyses, we evaluate whether the cumulative strength of the many feedbacks that are involved in the generation of climate variability may be impacted by the mean state. Data indicate that the amplitude of orbital variability in surface temperature, and possibly the amplitude of ENSO variability, was reduced during the warm Pliocene compared to today. On orbital timescales, the

  18. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TECHNOLOGY EDUCATION PROGRAM What Are the State's Organizational and Planning Responsibilities? § 403.12 What... least two) technical committees to advise the State council and the State board on the development...

  19. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TECHNOLOGY EDUCATION PROGRAM What Are the State's Organizational and Planning Responsibilities? § 403.12 What... least two) technical committees to advise the State council and the State board on the development...

  20. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TECHNOLOGY EDUCATION PROGRAM What Are the State's Organizational and Planning Responsibilities? § 403.12 What... least two) technical committees to advise the State council and the State board on the development...

  1. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TECHNOLOGY EDUCATION PROGRAM What Are the State's Organizational and Planning Responsibilities? § 403.12 What... least two) technical committees to advise the State council and the State board on the development...

  2. The Effect of Three Cognitive Variables on Students' Understanding of the Particulate Nature of Matter and its Changes of State

    NASA Astrophysics Data System (ADS)

    Tsitsipis, Georgios; Stamovlasis, Dimitrios; Papageorgiou, George

    2010-05-01

    In this study, students' understanding of the structure of matter and its changes of state such as melting, evaporation, boiling, and condensation was investigated in relation to three cognitive variables: logical thinking (LTh), field dependence/independence, and convergence/divergence dimension. The study took place in Greece with the participation of 329 ninth-grade junior high school pupils (age 14-15). A stepwise multiple regression analysis revealed that all of the above-mentioned cognitive variables were statistically significant predictors of the students' achievement. Among the three predictors, LTh was found to be the most dominant. In addition, students' understanding of the structure of matter, along with the cognitive variables, was shown to have an effect on their understanding of the changes of states and on their competence to interpret these physical changes. Path analyses were implemented to depict these effects. Moreover, a theoretical analysis is provided that associates LTh and cognitive styles with the nature of mental tasks involved when learning the material concerning the particulate nature of matter and its changes of state. Implications for science education are also discussed.

  3. State-variable models of structures having rigid-body modes

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tsu-Jeng; Ni, Zhenhua

    1990-01-01

    In cases where the equations of motion of a structure having rigid-body freedom are cast in state-variable form, generalized state rigid-body modes may be needed. It is possible to find a linearly-independent set of generalized vectors which transform an n x n matrix into the almost-diagonal Jordan form. Attention is presently given to equations governing these generalized eigenvectors, together with illustrative examples of the damped and undamped structure cases.

  4. Effects of climate oscillations on wind resource variability in the United States

    NASA Astrophysics Data System (ADS)

    Hamlington, B. D.; Hamlington, P. E.; Collins, S. G.; Alexander, S. R.; Kim, K.-Y.

    2015-01-01

    Natural climate variations in the United States wind resource are assessed by using cyclostationary empirical orthogonal functions (CSEOFs) to decompose wind reanalysis data. Compared to approaches that average climate signals or assume stationarity of the wind resource on interannual time scales, the CSEOF analysis isolates variability associated with specific climate oscillations, as well as their modulation from year to year. Contributions to wind speed variability from the modulated annual cycle (MAC) and the El Niño-Southern Oscillation (ENSO) are quantified, and information provided by the CSEOF analysis further allows the spatial variability of these effects to be determined. The impacts of the MAC and ENSO on the wind resource are calculated at existing wind turbine locations in the United States, revealing variations in the wind speed of up to 30% at individual sites. The results presented here have important implications for predictions of wind plant power output and siting.

  5. Additional photoelectric observations and analysis of the variability of the beta Cephei stars 12 and 16 Lacertae

    NASA Astrophysics Data System (ADS)

    Jarzebowski, T.; Jerzykiewicz, M.; Rios Herrera, M.; Rios Berumen, M.

    1980-04-01

    We present photoelectric observations of two Cephei variables - 12 and 16 Lacertae- made in 1977 in the Observatory of Zacatecas. The results of a frequency analysis made with these data and with the data obtained in the same year at the San Pedro Martir, Chiran and Bialkow Observatories are also given.

  6. Inaccuracy of Self-Evaluation as Additional Variable for Prediction of Students at Risk of Failing First-Year Chemistry

    ERIC Educational Resources Information Center

    Potgieter, Marietjie; Ackermann, Mia; Fletcher, Lizelle

    2010-01-01

    Early identification of students at risk of failing first-year chemistry allows timely intervention. Cognitive factors alone are insufficient predictors for success; however, non cognitive factors are usually difficult to measure. We have explored the use of demographic and performance variables, as well as the accuracy of self-evaluation as an…

  7. Quantum error correction of continuous-variable states against Gaussian noise

    SciTech Connect

    Ralph, T. C.

    2011-08-15

    We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.

  8. State-variable analysis of non-linear circuits with a desk computer

    NASA Technical Reports Server (NTRS)

    Cohen, E.

    1981-01-01

    State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.

  9. What is a species a species? Genetic variability of Edwardsiella tarda in the Southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intra-specific variability of Edwardsiella tarda isolates from fish in the eastern United States was assessed. Repetitive sequence mediated PCR (rep-PCR) and multi-locus sequence analysis identified two distinct genotypes (DNA group I; DNA group II). This was supported by fluorometric estimatio...

  10. CHARACTERIZATION OF THE SPATIOTEMPORAL VARIABILITY OF NON-URBAN OZONE CONCENTRATIONS OVER THE EASTERN UNITED STATES

    EPA Science Inventory

    The spatial and temporal variability of the maximum 24 hourly 03 concentrations over non-urban areas of the eastern United States was examined for the period 1985-1990 using principal component analysis. tilization of Kaiser's Varimax orthogonal rotation led to the delineation of...

  11. Assessment of Intraindividual Variability in Positive and Negative Affect Using Latent State-Trait Model Analyses

    ERIC Educational Resources Information Center

    Yasuda, Tomoyuki; Lawrenz, Cathy; Whitlock, Rod Van; Lubin, Bernard; Lei, Pui-Wa

    2004-01-01

    Intraindividual variability in positive and negative affect was assessed by the positive affect (Contentment, Joy, Vigor, Love, and Excitement) and negative affect (Depression, Hostility, Anxiety, Agitation, and Social Anxiety) subscales of the state version of the Comprehensive Personality and Affect Scales (COPAS) during a 3-week period. Using…

  12. The Use of Heart Rate Variability as a Novel Method to Differentiate between Affective States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major goal of animal welfare scientists is to determine when animals are experiencing a state of good welfare or poor welfare. The goal of this research was to determine if measures of heart rate variability can be used to differentiate whether animals are experiencing ‘unpleasant’ versus ‘pleas...

  13. Heart Rate Variability – a Tool to Differentiate Positive and Negative Affective States in Pigs?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The causal neurophysiological processes, such as autonomic nervous system activity, that mediate behavioral and physiological reactivity to an environment have largely been ignored. Heart rate variability (HRV) analysis is a clinical diagnostic tool used to assess affective states (stressful and ple...

  14. a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.

    NASA Astrophysics Data System (ADS)

    Sobolewski, Stanley John

    The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second

  15. Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University

    NASA Astrophysics Data System (ADS)

    Nassar, Abdalla R.; Reutzel, Edward W.; Brown, Stephen W.; Morgan, John P.; Morgan, Jacob P.; Natale, Donald J.; Tutwiler, Rick L.; Feck, David P.; Banks, Jeffery C.

    2016-04-01

    Additive manufacturing of metal components through directed energy deposition or powder bed fusion is a complex undertaking, often involving hundreds or thousands of individual laser deposits. During processing, conditions may fluctuate, e.g. material feed rate, beam power, surrounding gas composition, local and global temperature, build geometry, etc., leading to unintended variations in final part geometry, microstructure and properties. To assess or control as-deposited quality, researchers have used a variety of methods, including those based on sensing of melt pool and plume emission characteristics, characteristics of powder application, and layer-wise imaging. Here, a summary of ongoing process monitoring activities at Penn State is provided, along with a discussion of recent advancements in the area of layer-wise image acquisition and analysis during powder bed fusion processing. Specifically, methods that enable direct comparisons of CAD model, build images, and 3D micro-tomographic scan data will be covered, along with thoughts on how such analyses can be related to overall process quality.

  16. Dynamics of Neurobehavioral Performance Variability Under Forced Desynchrony: Evidence of State Instability

    PubMed Central

    Zhou, Xuan; Ferguson, Sally A.; Matthews, Raymond W.; Sargent, Charli; Darwent, David; Kennaway, David J.; Roach, Gregory D.

    2011-01-01

    Study Objectives: The state instability hypothesis posits that increasing sleep drive brings about escalating state instability in attention, making neurobehavioral performance increasingly variable. This hypothesis predicts that performance variability is a function of prior wake, circadian phase, and time on task. These predictions have been supported when wakefulness is beyond the habitual wake period. Our study aimed to test these predictions within the habitual wake period. Design: A 12-calendar-day 28-h forced desynchrony protocol consisting of 7 repetitions of a 28-h sleep/wake cycle, with two-thirds time awake and one-third time in bed. Each wake period included 7 equally spaced 1-h testing sessions. Setting: A time-isolation sleep laboratory. Participants: Thirteen young healthy males. Interventions: Wake periods during the protocol were 4 h delayed each 28-h “day” relative to the circadian system, such that they were distributed across the whole circadian cycle. This allowed performance testing at different combinations of prior wake of a habitual length (i.e., < 18 h) and circadian phase. Measurements and Results: Performance variability was indexed by standard deviation of response times within a 10-min psychomotor vigilance task. We found that response times became more variable with increasing wakefulness and towards circadian nadir, i.e., when sleep drive was increasing. These changes in response time variability were however not dependent on time on task, which is likely due to the modest level of sleep drive in our study. Conclusions: The state instability hypothesis, as an explanation for the responsiveness of neurobehavioral performance to increasing sleep drive, is supported during the habitual wake period. Citation: Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD. Dynamics of neurobehavioral performance variability under forced desynchrony: evidence of state instability. SLEEP 2011;34(1):57-63. PMID:21203373

  17. Variability and Limits of US State Laws Regulating Workplace Wellness Programs.

    PubMed

    Pomeranz, Jennifer L; Garcia, Andrea M; Vesprey, Randy; Davey, Adam

    2016-06-01

    We examined variability in state laws related to workplace wellness programs for public and private employers. We conducted legal research using LexisNexis and Westlaw to create a master list of US state laws that existed in 2014 dedicated to workplace wellness programs. The master list was then divided into laws focusing on public employers and private employers. We created 2 codebooks to describe the variables used to examine the laws. Coders used LawAtlas(SM) Workbench to code the laws related to workplace wellness programs. Thirty-two states and the District of Columbia had laws related to workplace wellness programs in 2014. Sixteen states and the District of Columbia had laws dedicated to public employers, and 16 states had laws dedicated to private employers. Nine states and the District of Columbia had laws that did not specify employer type. State laws varied greatly in their methods of encouraging or shaping wellness program requirements. Few states have comprehensive requirements or incentives to support evidence-based workplace wellness programs. PMID:27077349

  18. Quantum key distribution using continuous-variable non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  19. Equation of state for water-alcohol mixtures over a wide range of state variables

    NASA Astrophysics Data System (ADS)

    Karabekova, B. K.; Bazaev, E. A.

    2015-09-01

    Coefficients of the three-parameter polynomial equation of states are determined from experimental data on the ( p, ρ, T, x) relationship for water-aliphatic alcohol (methanol, ethanol, and n-propanol) mixtures in the liquid and vapor phases and in the supercritical state: expansions of compressibility factor Z = p/ RTρ m into series in powers of reduced density ω = ρm/ρmcr; reduced temperature τ = T/T cr and composition x (as the mole fraction of alcohol), . The mean percentage errors of the calculated pressure values relative to the experimental values are 2% (liquid phase), 0.7% (vapor phase), and 0.5% (supercritical fluid).

  20. Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality.

    PubMed

    Bowles, Joseph; Francfort, Jérémie; Fillettaz, Mathieu; Hirsch, Flavien; Brunner, Nicolas

    2016-04-01

    The relation between entanglement and nonlocality is discussed in the case of multipartite quantum systems. We show that, for any number of parties, there exist genuinely multipartite entangled states that admit a fully local hidden variable model, i.e., where all parties are separated. Hence, although these states exhibit the strongest form of multipartite entanglement, they cannot lead to Bell inequality violation considering general nonsequential local measurements. Then, we show that the nonlocality of these states can nevertheless be activated using sequences of local measurements, thus revealing genuine multipartite hidden nonlocality. PMID:27081960

  1. Near-optimal, asymptotic tracking in control problems involving state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Markopoulos, N.; Calise, A. J.

    1993-01-01

    The class of all piecewise time-continuous controllers tracking a given hypersurface in the state space of a dynamical system can be split by the present transformation technique into two disjoint classes; while the first of these contains all controllers which track the hypersurface in finite time, the second contains all controllers that track the hypersurface asymptotically. On this basis, a reformulation is presented for optimal control problems involving state-variable inequality constraints. If the state constraint is regarded as 'soft', there may exist controllers which are asymptotic, two-sided, and able to yield the optimal value of the performance index.

  2. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false In what additional ways may funds be used under the State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE VOCATIONAL AND...

  3. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false In what additional ways may funds be used under the... the required activities in § 403.70, a State may use funds reserved under section 102(a)(3) of the Act for the State Programs and State Leadership Activities in accordance with § 403.180(b)(3) for...

  4. Local hidden variable models for entangled quantum States using finite shared randomness.

    PubMed

    Bowles, Joseph; Hirsch, Flavien; Quintino, Marco Túlio; Brunner, Nicolas

    2015-03-27

    The statistics of local measurements performed on certain entangled states can be reproduced using a local hidden variable (LHV) model. While all known models make use of an infinite amount of shared randomness, we show that essentially all entangled states admitting a LHV model can be simulated with finite shared randomness. Our most economical model simulates noisy two-qubit Werner states using only log_{2}(12)≃3.58 bits of shared randomness. We also discuss the case of positive operator valued measures, and the simulation of nonlocal states with finite shared randomness and finite communication. Our work represents a first step towards quantifying the cost of LHV models for entangled quantum states. PMID:25860723

  5. Continuous-variable dense coding via a general Gaussian state: Monogamy relation

    NASA Astrophysics Data System (ADS)

    Lee, Jaehak; Ji, Se-Wan; Park, Jiyong; Nha, Hyunchul

    2014-08-01

    We study a continuous-variable dense coding protocol, originally proposed to employ a two-mode squeezed state, using a general two-mode Gaussian state as a quantum channel. We particularly obtain conditions to manifest quantum advantage by beating two well-known single-mode schemes, namely, the squeezed-state scheme (best Gaussian scheme) and the number-state scheme (optimal scheme achieving the Holevo bound). We then extend our study to a multipartite Gaussian state and investigate the monogamy of operational entanglement measured by the communication capacity under the dense coding protocol. We show that this operational entanglement represents a strict monogamy relation, by means of Heisenberg's uncertainty principle among different parties; i.e., the quantum advantage for communication can be possible for only one pair of two-mode systems among many parties.

  6. Generating arbitrary photon-number entangled states for continuous-variable quantum informatics.

    PubMed

    Lee, Su-Yong; Park, Jiyong; Lee, Hai-Woong; Nha, Hyunchul

    2012-06-18

    We propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test. The experimental imperfection due to the on-off photodetectors with nonideal efficiency is also considered in our analysis to show the feasibility of our schemes within existing technologies. PMID:22714485

  7. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions.

    PubMed

    Weiss, Volker C

    2016-06-21

    Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties. PMID:27334174

  8. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States

    NASA Astrophysics Data System (ADS)

    Lute, A. C.; Abatzoglou, J. T.; Hegewisch, K. C.

    2015-02-01

    Projected warming will have significant impacts on snowfall accumulation and melt, with implications for water availability and management in snow-dominated regions. Changes in snowfall extremes are confounded by projected increases in precipitation extremes. Downscaled climate projections from 20 global climate models were bias-corrected to montane Snowpack Telemetry stations across the western United States to assess mid-21st century changes in the mean and variability of annual snowfall water equivalent (SFE) and extreme snowfall events, defined by the 90th percentile of cumulative 3 day SFE amounts. Declines in annual SFE and number of snowfall days were projected for all stations. Changes in the magnitude of snowfall event quantiles were sensitive to historical winter temperature. At climatologically cooler locations, such as in the Rocky Mountains, changes in the magnitude of snowfall events mirrored changes in the distribution of precipitation events, with increases in extremes and less change in more moderate events. By contrast, declines in snowfall event magnitudes were found for all quantiles in warmer locations. Common to both warmer and colder sites was a relative increase in the magnitude of snowfall extremes compared to annual SFE and a larger fraction of annual SFE from snowfall extremes. The coefficient of variation of annual SFE increased up to 80% in warmer montane regions due to projected declines in snowfall days and the increased contribution of snowfall extremes to annual SFE. In addition to declines in mean annual SFE, more frequent low-snowfall years and less frequent high-snowfall years were projected for every station.

  9. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2016-06-01

    Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.

  10. Note on linearized stability of Schwarzschild thin-shell wormholes with variable equations of state

    NASA Astrophysics Data System (ADS)

    Varela, Victor

    2015-08-01

    We discuss how the assumption of variable equation of state (EoS) allows the elimination of the instability at equilibrium throat radius a0=3 M featured by previous Schwarzschild thin-shell wormhole models. Unobstructed stability regions are found for three choices of variable EoS. Two of these EoS entail linear stability at every equilibrium radius. Particularly, the thin shell remains stable as a0 approaches the Schwarzschild radius 2 M . A perturbative analysis of the wormhole equation of motion is carried out in the case of variable Chaplygin EoS. The squared proper angular frequency ω02 of small throat oscillations is linked with the second derivative of the thin-shell potential. In various situations ω02 remains positive and bounded in the limit a0→2 M .

  11. Mid to late Holocene Leeuwin Current variability offshore southern Australia linked to ENSO state changes

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; De Deckker, Patrick; Blanz, Thomas; Siegel, Herbert; Wacker, Lukas; Schneider, Ralph; Jansen, Eystein

    2015-04-01

    The El Niño-Southern Oscillation (ENSO), a key aspect of the Earth's climate, drives regional to global oceanic and climate changes on various time-scales. Differences in the temporal coverage of Holocene records for the more general state in El Niño frequency, however, restrict a comprehensive overview. Oceanic variability offshore southern Australia is linked to the Leeuwin Current (LC), an eastern boundary current, transporting tropical waters from the Indo Pacific Warm Pool region towards higher latitudes. Instrumental data, spanning the last few decades, document that ENSO modulates LC variability. Here we present new, well-dated time series from two marine sediment cores (MD03-2611 and SS0206-GC 15)of past LC variability, based on alkenone-derived sea-surface temperatures (SST) and planktonic foraminifera offshore southern Australia, an area affected by recent El Niño and La Niña events. Our reconstructions of ENSO-state changes cover the last 7,400 years. With transition into the mid Holocene [dates], we find clear evidence that oceanic conditions prevailed under the dominant influence of a persistent La Niña mode. A strong LC produces a stratified water column and establishes a permanent thermocline as seen in the high abundance of the 'tropical fauna' (Globoturborotalita rubescens, Globoturborotalita tenella and Globigerinella sacculifer (including G. trilobus)) and maximum SST offshore southern Australia. During this La Niña-state dominated period, we record at c. 5000 years BP the first short period of a strong El Niño-like-state, by a pronounced drop in abundance of the subtropical species Globigerinoides ruber and a reduced SST gradient between the two core sites. The Late Holocene (from 3,500 years BP onwards) period is characterized by centennial to millennial scale variability in the LC strength, which is accompanied by an overall decrease of SSTs offshore southern Australia. We link this LC variability to Late Holocene centennial

  12. Variability of HCHO over the Southeastern United States observed from space: Implications for VOC emissions

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Mickley, L. J.; Jacob, D. J.; Cohan, D. S.; Li, Y.; Chen, Y.; Chance, K.

    2012-12-01

    Satellite observations of formaldehyde (HCHO) have been used as proxies for biogenic isoprene emissions, but the observed multiscale variability of HCHO is still not well understood. We use OMI and GOME2 HCHO column densities at 0.5x0.5 degree resolution to investigate both fine-scale and interannual patterns of HCHO variability in the Southeastern United States. By several statistical methods (step-wise variable selection, principle component analysis, least absolute shrinkage and selection operator), we find that temperature is the most important meteorological variable controlling HCHO, with implications for better understanding the variability of isoprene emissions. Both OMI and GOME2 observe a turnover of HCHO at high temperatures (307~310 K), as expected from process models of isoprene emission. Daily GOME2 and OMI HCHO column densities match well (R=0.91, bias = 9%) in 2007-2008, implying that GOME2 data can provide continuity following the degradation of OMI data after 2008. We used the fine-pixel information from OMI to search for HCHO enhancements in urban areas such as Houston that could serve as proxy for anthropogenic VOC emissions. We could find no such enhancements, including in winter. This illustrates the complete dominance of biogenic over anthropogenic VOC emissions in the Southeastern United States. Using the long-term archive of HCHO satellite measurements compiled by de Smedt et al. [GRL, 37, L18808, 2010], we find a significant decline in HCHO column density over the Southeastern United States from 1996 to 2011. Such a trend might be related to changes in ecosystem type or function.

  13. Atomic homodyne detection of continuous-variable entangled twin-atom states.

    PubMed

    Gross, C; Strobel, H; Nicklas, E; Zibold, T; Bar-Gill, N; Kurizki, G; Oberthaler, M K

    2011-12-01

    Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution, the realization of quantum teleportation and quantum memories, or the demonstration of the Einstein-Podolsky-Rosen paradox. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose-Einstein condensate reveals continuous-variable entanglement, as well as the twin-atom character of the state. Our results provide a rare example of continuous-variable entanglement of massive particles. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles. PMID:22139418

  14. Composable Security Proof for Continuous-Variable Quantum Key Distribution with Coherent States

    NASA Astrophysics Data System (ADS)

    Leverrier, Anthony

    2015-02-01

    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.

  15. Finite element analysis of notch behavior using a state variable constitutive equation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.

    1985-01-01

    The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.

  16. The state variable method as a unifying approach to the study of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Castoldi, A.; Gatti, E.; Longoni, A.; Sampietro, M.

    The application of the state variable method to the solution of the one dimensional Poisson equation at thermal equilibrium in semiconductor devices is presented. The method is based on the determination of the analytical relationship between the state variables potential (p) and electric field (e), and on its representation, as a trajectory, in the plane. The trajectories of semiconductors, metal contacts and oxide layers are calculated. A device formed of any combination of these materials can be represented and studied in the p/e plane. The graphical representation of these trajectories is addressed and it is shown how analysis allows, in a simple and didactic way, a thorough comprehension of the typical characteristics of multijunction devices. Devices different from one another (like pn junctions and MOS structures) are considered.

  17. Climate Variability and Change and Their Potential Health Effects in Small Island States: Information for Adaptation Planning in the Health Sector

    PubMed Central

    Ebi, Kristie L.; Lewis, Nancy D.; Corvalan, Carlos

    2006-01-01

    Small island states are likely the countries most vulnerable to climate variability and long-term climate change. Climate models suggest that small island states will experience warmer temperatures and changes in rainfall, soil moisture budgets, prevailing winds (speed and direction), and patterns of wave action. El Niño events likely will strengthen short-term and interannual climate variations. In addition, global mean sea level is projected to increase by 0.09–0.88 m by 2100, with variable effects on regional and local sea level. To better understand the potential human health consequences of these projected changes, a series of workshops and a conference organized by the World Health Organization, in partnership with the World Meteorological Organization and the United Nations Environment Programme, addressed the following issues: the current distribution and burden of climate-sensitive diseases in small island states, the potential future health impacts of climate variability and change, the interventions currently used to reduce the burden of climate-sensitive diseases, additional interventions that are needed to adapt to current and future health impacts, and the health implications of climate variability and change in other sectors. Information on these issues is synthesized and key recommendations are identified for improving the capacity of the health sector to anticipate and prepare for climate variability and change in small island states. PMID:17185291

  18. 68 FR 50541 - Unilever United States, Inc.; Filing of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2003-08-21

    ... food additive regulations be amended to provide for the safe use of vitamin D 3 as a nutrient... food additive regulations in Sec. 172.380 Vitamin D 3 (21 CFR 172.380) to provide for the safe use of vitamin D 3 in certain foods for special dietary use, such as meal replacement products and...

  19. Designing stable finite state machine behaviors using phase plane analysis and variable structure control

    SciTech Connect

    Feddema, J.T.; Robinett, R.D.; Driessen, B.J.

    1998-03-10

    This paper discusses how phase plane analysis can be used to describe the overall behavior of single and multiple autonomous robotic vehicles with finite state machine rules. The importance of this result is that one can begin to design provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with decentralized variable structure control. The ability to prove asymptotically stable group behavior is especially important for applications such as locating military targets or land mines.

  20. Why lifespans are more variable among blacks than among whites in the United States.

    PubMed

    Firebaugh, Glenn; Acciai, Francesco; Noah, Aggie J; Prather, Christopher; Nau, Claudia

    2014-12-01

    Lifespans are both shorter and more variable for blacks than for whites in the United States. Because their lifespans are more variable, there is greater inequality in length of life-and thus greater uncertainty about the future-among blacks. This study is the first to decompose the black-white difference in lifespan variability in America. Are lifespans more variable for blacks because they are more likely to die of causes that disproportionately strike the young and middle-aged, or because age at death varies more for blacks than for whites among those who succumb to the same cause? We find that it is primarily the latter. For almost all causes of death, age at death is more variable for blacks than it is for whites, especially among women. Although some youthful causes of death, such as homicide and HIV/AIDS, contribute to the black-white disparity in variance, those contributions are largely offset by the higher rates of suicide and drug poisoning deaths for whites. As a result, differences in the causes of death for blacks and whites account, on net, for only about one-eighth of the difference in lifespan variance. PMID:25391224

  1. Failure mode analysis using state variables derived from fault trees with application

    SciTech Connect

    Bartholomew, R.J.

    1981-01-01

    Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem.

  2. Contribution of Land-atmosphere Coupling to Summer Climate Variability over the Contiguous United States

    SciTech Connect

    Zhang, Jingyong; Wang, Wei-Chyung; Leung, Lai R.

    2008-11-27

    The Weather Research and Forecasting (WRF) model has been used to study the role of land-atmosphere coupling in influencing interannual summer climate variability over the contiguous U.S. Two long-term climate simulations are performed: A control experiment (CTL) allows soil moisture to interact freely with the atmosphere, and an additional experiment uncouples the land surface from the atmosphere by replacing soil moisture at each time step with the climatology of CTL. The CTL simulation reproduces well the observed temperature and precipitation variability, despite some discrepancies in daily mean and maximum temperature variability in the Midwest/Ohio Valley region and the adjacent areas, and precipitation variability in the Great Plains and some other areas. Strong coupling of soil moisture with daily mean temperature appears mainly over the transitional zone between cold and warm climates from the Southwest to the northern Great Plains to the Southeast, contributing up to about 30%-60% of the total interannual variance of temperature. There is a significantly different influence on daily maximum and minimum temperatures. Whereas soil moisture plays a leading role in explaining the variability of maximum temperature over the transitional zone, minimum temperature variability is highly constrained by external factors including atmospheric circulation and sea surface temperature almost everywhere over land. Soil moisture, mainly through its effects on convection, makes a dominant contribution to precipitation variability over about half of the northern U.S. The model’s behavior agrees generally well with land-atmosphere relationships diagnosed using available observations and soil moisture data from the Global Land Data Assimilation System.

  3. Interannual and interdecadal variability in United States surface-air temperatures, 1910-87

    USGS Publications Warehouse

    Dettinger, M.D.; Ghil, M.; Keppenne, C.L.

    1995-01-01

    Monthly mean surface-air temperatures at 870 sites in the contiguous United States were analyzed for interannual and interdecadal variability over the time interval 1910-87. The temperatures were analyzed spatially by empirical-orthogonal-function analysis and temporally by singularspectrum analysis (SSA). The dominant modes of spatio-temporal variability are trends and nonperiodic variations with time scales longer than 15 years, decadal-scale oscillations with periods of roughly 7 and 10 years, and interannual oscillations of 2.2 and 3.3 years. Together, these modes contribute about 18% of the slower-than-annual United States temperature variance. Two leading components roughly capture the mean hemispheric temperature trend and represent a long-term warming, largest in the southwest, accompanied by cooling of the domain's southeastern quadrant. The extremes of the 2.2-year interannual oscillation characterize temperature differences between the Northeastern and Southwestern States, whereas the 3.3-year cycle is present mostly in the Western States. The 7- to 10-year oscillations are much less regular and persistent than the interannual oscillations and characterize temperature differences between the western and interior sectors of the United States. These continental- or regional-scale temperature variations may be related to climatic variations with similar periodicities, either global or centered in other regions; such variations include quasi-biennial oscillations over the tropical Pacific or North Atlantic and quasi-triennial oscillations of North Pacific sea-surface temperatures.

  4. A STATE-VARIABLE APPROACH FOR PREDICTING THE TIME REQUIRED FOR 50% RECRYSTALLIZATION

    SciTech Connect

    M. STOUT; ET AL

    2000-08-01

    It is important to be able to model the recrystallization kinetics in aluminum alloys during hot deformation. The industrial relevant process of hot rolling is an example of where the knowledge of whether or not a material recrystallizes is critical to making a product with the correct properties. Classically, the equations that describe the kinetics of recrystallization predict the time to 50% recrystallization. These equations are largely empirical; they are based on the free energy for recrystallization, a Zener-Holloman parameter, and have several adjustable exponents to fit the equation to engineering data. We have modified this form of classical theory replacing the Zener-Hollomon parameter with a deformation energy increment, a free energy available to drive recrystallization. The advantage of this formulation is that the deformation energy increment is calculated based on the previously determined temperature and strain-rate sensitivity of the constitutive response. We modeled the constitutive response of the AA5182 aluminum using a state variable approach, the value of the state variable is a function of the temperature and strain-rate history of deformation. Thus, the recrystallization kinetics is a function of only the state variable and free energy for recrystallization. There are no adjustable exponents as in classical theory. Using this approach combined with engineering recrystallization data we have been able to predict the kinetics of recrystallization in AA5182 as a function of deformation strain rate and temperature.

  5. Interannual Variability in Net Ecosystem Exchange in United States Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wylie, Bruce; Ji, Lei; Gilmanov, Tagir; Howard, Danny

    2010-05-01

    The grasslands in the United States Great Plains occupy about 1.5 million km2 and span considerable moisture and temperature gradients. The grasslands are characterized by different photosynthetic pathways, from C3 dominance in the north to C4 dominance in the south. The contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for these extensive and diverse grassland ecosystems and local variances in climate variability, land use changes, and varying land management practices. There are limited studies on the seasonal, spatial, and interannual variabilities in carbon exchange as well as responses to climatic change across the Great Plains. Our objective was to quantify how the grassland ecosystems will respond to climate under a variety of environmental conditions. Net ecosystem exchange (NEE) was measured at 15 flux towers distributed throughout the Great Plains. These sites represent the wide spatial, ecological, and climatological ranges of grasslands found in this region. We developed a remote sensing-based piecewise regression (PWR) model to estimate grassland carbon fluxes from 2000 to 2008 using flux-tower data and remotely sensed data (250-m resolution) input at 7-day intervals. The model integrated MODIS-derived vegetation indices, weather data, and phenological parameters with the observed NEE data. The correlation coefficient (r) for the independent tests between tower-measured NEE and PWR-estimated NEE were 0.61 to 0.98 for the individual tower sites withheld and 0.81 to 0.92 for the individual years withheld. We mapped 7-day interval NEE at 250-m resolution for the years 2000 to 2008 and evaluated the interannual variability of NEE and its response to climatic variation. NEE varied in space and time across the 9 years (from 0.3 in 2002 to 47.7 g C • m-2 • yr-1 in 2005) with an average annual NEE of 24 ± 14 g C • m-2 • yr-1 and a cumulative flux of 214 g C • m-2. On average, the

  6. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Sanctions, Enforcement Actions, and Termination § 460.48 Additional actions...

  7. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Sanctions, Enforcement Actions, and Termination § 460.48 Additional actions...

  8. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Sanctions, Enforcement Actions, and Termination § 460.48 Additional actions...

  9. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Sanctions, Enforcement Actions, and Termination § 460.48 Additional actions...

  10. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Sanctions, Enforcement Actions, and Termination § 460.48 Additional actions...

  11. 75 FR 48353 - United States Pharmacopeial Convention; Filing of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Furnace Method,'' Method I. 173.115(b)(3) 4th Ed. Alpha-acetolactate Enzyme preparation must meet general and decarboxylase (a-ALDC) additional requirements for enzyme enzyme preparation preparations in...

  12. 24 CFR 570.711 - State borrowers; additional requirements and application procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or amended pursuant to 24 CFR part 91. In addition to the requirements of 24 CFR part 91, such method... citizen participation requirements. The presubmission and citizen participation requirements in §...

  13. 24 CFR 570.711 - State borrowers; additional requirements and application procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or amended pursuant to 24 CFR part 91. In addition to the requirements of 24 CFR part 91, such method... citizen participation requirements. The presubmission and citizen participation requirements in §...

  14. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agencies; (b) The support for tech-prep education as described in 34 CFR part 406; (c)(1) The support of... 34 Education 3 2010-07-01 2010-07-01 false In what additional ways may funds be used under the State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of...

  15. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGESBeta

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  16. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    SciTech Connect

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexing in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.

  17. Modified internal state variable models of plasticity using nonlocal integrals in damage and gradients in dislocation density

    NASA Astrophysics Data System (ADS)

    Ahad, Fazle Rabbi

    To enhance material performance at different length scales, this study strives to develop a reliable analytical and computational tool with the help of internal state variables spanning micro and macro-level behaviors. First, the practical relevance of a nonlocal damage integral added to an internal state variable (BCJ) model is studied to alleviate numerical instabilities associated within the post-bifurcation regime. The characteristic length scale in the nonlocal damage, which is mathematical in nature, can be calibrated using a series of notch tensile tests. Then the same length scale from the notch tests is used in solving the problem of a high-velocity (between 89 and 107 m/s) rigid projectile colliding against a 6061-T6 aluminum-disk. The investigation indicates that incorporating a characteristic length scale to the constitutive model eliminates the pathological mesh-dependency associated with material instabilities. In addition, the numerical calculations agree well with experimental data. Next, an effort is made rather to introduce a physically motivated length scale than to apply a mathematical-one in the deformation analysis. Along this line, a dislocation based plasticity model is developed where an intrinsic length scale is introduced in the forms of spatial gradients of mobile and immobile dislocation densities. The spatial gradients are naturally invoked from balance laws within a consistent kinematic and thermodynamic framework. An analytical solution of the model variables is derived at homogenous steady state using the linear stability and bifurcation analysis. The model qualitatively captures the formation of dislocation cell-structures through material instabilities at the microscopic level. Finally, the model satisfactorily predicts macroscopic mechanical behaviors - e.g., multi-strain rate uniaxial compression, simple shear, and stress relaxation - and validates experimental results.

  18. Habitat and Vegetation Variables Are Not Enough When Predicting Tick Populations in the Southeastern United States.

    PubMed

    Trout Fryxell, R T; Moore, J E; Collins, M D; Kwon, Y; Jean-Philippe, S R; Schaeffer, S M; Odoi, A; Kennedy, M; Houston, A E

    2015-01-01

    Two tick-borne diseases with expanding case and vector distributions are ehrlichiosis (transmitted by Amblyomma americanum) and rickettiosis (transmitted by A. maculatum and Dermacentor variabilis). There is a critical need to identify the specific habitats where each of these species is likely to be encountered to classify and pinpoint risk areas. Consequently, an in-depth tick prevalence study was conducted on the dominant ticks in the southeast. Vegetation, soil, and remote sensing data were used to test the hypothesis that habitat and vegetation variables can predict tick abundances. No variables were significant predictors of A. americanum adult and nymph tick abundance, and no clustering was evident because this species was found throughout the study area. For A. maculatum adult tick abundance was predicted by NDVI and by the interaction between habitat type and plant diversity; two significant population clusters were identified in a heterogeneous area suitable for quail habitat. For D. variabilis no environmental variables were significant predictors of adult abundance; however, D. variabilis collections clustered in three significant areas best described as agriculture areas with defined edges. This study identified few landscape and vegetation variables associated with tick presence. While some variables were significantly associated with tick populations, the amount of explained variation was not useful for predicting reliably where ticks occur; consequently, additional research that includes multiple sampling seasons and locations throughout the southeast are warranted. This low amount of explained variation may also be due to the use of hosts for dispersal, and potentially to other abiotic and biotic variables. Host species play a large role in the establishment, maintenance, and dispersal of a tick species, as well as the maintenance of disease cycles, dispersal to new areas, and identification of risk areas. PMID:26656122

  19. Habitat and Vegetation Variables Are Not Enough When Predicting Tick Populations in the Southeastern United States

    PubMed Central

    Trout Fryxell, R. T.; Moore, J. E.; Collins, M. D.; Kwon, Y.; Jean-Philippe, S. R.; Schaeffer, S. M.; Odoi, A.; Kennedy, M.; Houston, A. E.

    2015-01-01

    Two tick-borne diseases with expanding case and vector distributions are ehrlichiosis (transmitted by Amblyomma americanum) and rickettiosis (transmitted by A. maculatum and Dermacentor variabilis). There is a critical need to identify the specific habitats where each of these species is likely to be encountered to classify and pinpoint risk areas. Consequently, an in-depth tick prevalence study was conducted on the dominant ticks in the southeast. Vegetation, soil, and remote sensing data were used to test the hypothesis that habitat and vegetation variables can predict tick abundances. No variables were significant predictors of A. americanum adult and nymph tick abundance, and no clustering was evident because this species was found throughout the study area. For A. maculatum adult tick abundance was predicted by NDVI and by the interaction between habitat type and plant diversity; two significant population clusters were identified in a heterogeneous area suitable for quail habitat. For D. variabilis no environmental variables were significant predictors of adult abundance; however, D. variabilis collections clustered in three significant areas best described as agriculture areas with defined edges. This study identified few landscape and vegetation variables associated with tick presence. While some variables were significantly associated with tick populations, the amount of explained variation was not useful for predicting reliably where ticks occur; consequently, additional research that includes multiple sampling seasons and locations throughout the southeast are warranted. This low amount of explained variation may also be due to the use of hosts for dispersal, and potentially to other abiotic and biotic variables. Host species play a large role in the establishment, maintenance, and dispersal of a tick species, as well as the maintenance of disease cycles, dispersal to new areas, and identification of risk areas. PMID:26656122

  20. On the optimal minimum order observer-based compensator and the limited state variable feedback controller

    NASA Technical Reports Server (NTRS)

    Llorens-Ortiz, B.

    1976-01-01

    Four design problems are considered: two on the optimal minimum order observer-based compensator design and two on the optimal limited state variable feedback controller. The problem of designing an optimal discrete time linear time-invariant observer-based compensator for the regulation of an n dimensional linear discrete time time-invariant plant with m independent outputs is considered. This is a stochastic design problem to the extent that the initial plant state is assumed to be a random vector with known first and second order statistics. The compensator parameters are obtained by minimizing the expectation, with respect to the initial conditions, of the standard cost, quadratic in the state and control vectors with the inclusion of cross terms.

  1. Distillation of mixed-state continuous-variable entanglement by photon subtraction

    SciTech Connect

    Zhang Shengli; Loock, Peter van

    2010-12-15

    We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible even for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.

  2. Performance Consensus Problem of Multi-Agent Systems with Multiple State Variables

    NASA Astrophysics Data System (ADS)

    Hayashi, Naoki; Ushio, Toshimitsu

    A consensus problem has been studied in many fundamental and application fields to analyze coordinated behavior in multiagent systems. In a consensus problem, it is usually assumed that a state of each agent is scalar and all agents have an identical linear consensus protocol. We present a consensus problem of multi-agent systems where each agent has multiple state variables and a performance value evaluated by a nonlinear performance function according to its current state. We derive sufficient conditions for agents to achieve consensus on the performance value using an algebraic graph theory and the mean value theorem. We also consider an application of a performance consensus problem to resource allocation in soft real-time systems so as to achieve a fair QoS (Quality of Service) level.

  3. Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    SciTech Connect

    Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.

    2010-11-15

    We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.

  4. Measuring Temperaturelike State Variables in History-Dependent Jammed Granular Systems

    NASA Astrophysics Data System (ADS)

    Bililign, Ephraim; Daniels, Karen

    Granular systems are athermal, thus a complete statistical mechanics framework must be based on a set of macroscopic state variables which excludes temperature. One leading theory incorporates a stress-based ensemble, and predicts a Boltzmann-like distribution of the force-moment tensor with respect to the conjugate, temperature-like variable, angoricity. We experimentally test this theory on a static, bidisperse, two-dimensional packing of discs. Basal friction is eliminated by floating the discs on a sub-fluidizing upflow of air, and the packings are subjected to either uniaxial compression or simple shear. We simultaneously measure the contact forces acting on each disc using photoelasticity. These measurements are repeated over many configurations of discs by dilating and rearranging the system, and the angoricity is computed as a function of the confining pressure. In particular, we test the predicted linear relationship between angoricity and pressure. Comparison to prior results and numerical simulations also suggests a history-dependent angoricity, an undesirable feature in the proposed state variable.

  5. Assessing evapotranspiration variability in contiguous United States: Comparing the various remote-sensed observations

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zeng, R.

    2015-12-01

    Evapotranspiration (ET) couples the water cycle and energy budget of hydrological processes. Understanding the components of ET variability and their spatial distribution is essential for improving hydrological simulations, quantifying ET observation uncertainties and supporting water resources management under climate change. Although advances in monitoring hydrological components have been made, how to use various existing observations to obtain a better knowledge about ET variability remains a challenging task. This study adopts a system approach to analyze ET variability in contiguous United States, considering the factors of climatic forcing fluctuations and catchment storage dynamics. We apply an ET variance decomposition framework (Zeng and Cai, 2015) to calculate monthly ET variance based on climatic forcing (i.e., precipitation and potential ET) and GRACE terrestrial storage change data. We quantify the various sources of ET variance, in terms of variances of precipitation, potential ET and terrestrial storage and their covariances, and obtain a spatial map of its primary and secondary controlling factors in the in contiguous United States. Furthermore, the estimated ET variance is compared to two existing ET products (e.g., MODIS-based remote sensing and FLUEXNET-based interpolation). It is found that FLUXNET-based interpolation is systematically smaller than the estimated ET variance with less deviation; while the MODIS-based ET agrees with estimated ET variance with larger uncertainty. The decomposition framework provides not only an independent estimation of ET variance but also a method to assess the uncertainty of existing ET products.

  6. Long-term trend and variability of precipitation in Chhattisgarh State, India

    NASA Astrophysics Data System (ADS)

    Meshram, Sarita Gajbhiye; Singh, Vijay P.; Meshram, Chandrashekhar

    2016-04-01

    Spatial and temporal precipitation variability in Chhattisgarh State in India was examined by using monthly precipitation data for 102 years (1901-2002) from 16 stations. The homogeneity of precipitation data was evaluated by the double-mass curve approach and the presence of serial correlation by lag-1 autocorrelation coefficient. Linear regression analysis, the conventional Mann-Kendall (MK) test, and Spearman's rho were employed to identify trends and Sen's slope to estimate the slope of trend line. The coefficient of variation (CV) was used to analyze precipitation variability. Spatial interpolation was done by a Kriging process using ArcGIS 9.3. Results of both parametric and non-parametric tests and trend tests showed that at 5 % significance level, annual precipitation exhibited a decreasing trend at all stations except Bilaspur and Dantewada. For both annual and monsoon precipitation, Sen's test showed a decreasing trend for all stations, except Bilaspur and Dantewada. The highest percentage of variability was observed in winter precipitation (88.75 %) and minimum percentage variability in annual series (14.01 %) over the 102-year periods.

  7. The impact of mean state errors on equatorial Atlantic interannual variability in a climate model

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Keenlyside, Noel; Latif, Mojib; Park, Wonsun; Wahl, Sebastian

    2015-02-01

    Observations show that the Equatorial Atlantic Zonal Mode (ZM) obeys similar physics to the El Niño Southern Oscillation (ENSO): positive Bjerknes and delayed negative feedbacks. This implies the ZM may be predictable on seasonal timescales, but models demonstrate little prediction skill in this region. In this study using different configurations of the Kiel Climate Model (KCM) exhibiting different levels of systematic error, we show that a reasonable simulation of the ZM depends on realistic representation of the mean state, i.e., surface easterlies along the equator, upward sloping thermocline to the east, with an equatorial SST cold tongue in the east. We further attribute the differences in interannual variability among the simulations to the individual components of the positive Bjerknes and delayed negative feedbacks. Differences in the seasonality of the variability are similarly related to the impact of seasonal biases on the Bjerknes feedback. Our results suggest that model physics must be enhanced to enable skillful seasonal predictions in the Tropical Atlantic Sector, although some improvement with regard to the simulation of Equatorial Atlantic interannual variability may be achieved by momentum flux correction. This pertains especially to the seasonal phase locking of interannual SST variability.

  8. Additional Handicapping Conditions Among Hearing Impaired Students. United States: 1971-72.

    ERIC Educational Resources Information Center

    Gentile, Augustine; McCarthy Barbara

    The Annual Survey of Hearing Impaired Children and Youth (1971-72) obtained information on 42,513 students enrolled in 636 preschool, elementary, and secondary educational programs for the hearing impaired. Data were gathered on the number of hearing impaired students with additional handicapping conditions, the types of conditions reported, the…

  9. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect

    PubMed Central

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT. PMID:27499744

  10. Formation mechanism for the amplitude of interannual climate variability in subtropical northern hemisphere: relative contributions from the zonal asymmetric mean state and the interannual variability of SST

    NASA Astrophysics Data System (ADS)

    He, Chao; Lin, Ailan; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2016-04-01

    The Amplitude Interannual climate Variability (AIV) differs among the subtropical northern hemisphere, and the Western North Pacific (WNP) was claimed to exhibit the largest AIV. The robustness of the AIV pattern is investigated in this study with different atmospheric variables from multiple datasets. As consistently shown by the interannual variance patterns of precipitation and circulation, the AIV over subtropical northern hemisphere closely follows the mean state of precipitation, where higher (lower) AIV is located at moister (drier) regions. The largest AIV is seen over the broad area from South Asia to WNP, followed by a secondary local maximum over the Gulf of Mexico. To further investigate the formation mechanism for the AIV pattern, numerical simulations are performed by Community Atmosphere Model version 4 (CAM4). The zonal asymmetry of AIV is reduced if the interannual SST variability is removed, and it almost disappears if the zonal asymmetry of SST mean state is removed. The results suggest that the zonal asymmetric AIV pattern primarily originates from the zonal asymmetric SST mean state, and it is amplified by the interannual SST variability. The atmospheric convection-circulation feedback plays a key role in connecting the AIV with the mean state precipitation. In both observation and CAM4 simulations, stronger (weaker) convection-circulation feedback is seen in moister (drier) regions. By modulating the mean state precipitation and the associated intensity of convection-circulation feedback, the zonal asymmetric SST mean state accounts for the zonal asymmetry of AIV in the subtropical northern hemisphere.

  11. Analyzing Variability in Ebola-Related Controls Applied to Returned Travelers in the United States.

    PubMed

    Kraemer, John D; Siedner, Mark J; Stoto, Michael A

    2015-01-01

    Public health authorities have adopted entry screening and subsequent restrictions on travelers from Ebola-affected West African countries as a strategy to prevent importation of Ebola virus disease (EVD) cases. We analyzed international, federal, and state policies-principally based on the policy documents themselves and media reports-to evaluate policy variability. We employed means-ends fit analysis to elucidate policy objectives. We found substantial variation in the specific approaches favored by WHO, CDC, and various American states. Several US states impose compulsory quarantine on a broader range of travelers or require more extensive monitoring than recommended by CDC or WHO. Observed differences likely partially resulted from different actors having different policy goals-particularly the federal government having to balance foreign policy objectives less salient to states. Further, some state-level variation appears to be motivated by short-term political goals. We propose recommendations to improve future policies, which include the following: (1) actors should explicitly clarify their objectives, (2) legal authority should be modernized and clarified, and (3) the federal government should consider preempting state approaches that imperil its goals. PMID:26348222

  12. Analyzing Variability in Ebola-Related Controls Applied to Returned Travelers in the United States

    PubMed Central

    Siedner, Mark J.; Stoto, Michael A.

    2015-01-01

    Public health authorities have adopted entry screening and subsequent restrictions on travelers from Ebola-affected West African countries as a strategy to prevent importation of Ebola virus disease (EVD) cases. We analyzed international, federal, and state policies—principally based on the policy documents themselves and media reports—to evaluate policy variability. We employed means-ends fit analysis to elucidate policy objectives. We found substantial variation in the specific approaches favored by WHO, CDC, and various American states. Several US states impose compulsory quarantine on a broader range of travelers or require more extensive monitoring than recommended by CDC or WHO. Observed differences likely partially resulted from different actors having different policy goals—particularly the federal government having to balance foreign policy objectives less salient to states. Further, some state-level variation appears to be motivated by short-term political goals. We propose recommendations to improve future policies, which include the following: (1) actors should explicitly clarify their objectives, (2) legal authority should be modernized and clarified, and (3) the federal government should consider preempting state approaches that imperil its goals. PMID:26348222

  13. Changes in Autonomic Variables Following Two Meditative States Described in Yoga Texts

    PubMed Central

    Raghavendra, Bhat Ramachandra; Naveen, Kalkuni Visweswaraiah; Manjunath, Nandi Krishnamurthy; Kumar, Sanjay; Subramanya, Pailoor

    2013-01-01

    Abstract Objectives In ancient yoga texts there are two meditative states described. One is dharana, which requires focusing, the second is dhyana, during which there is no focusing, but an expansive mental state is reached. While an earlier study did show improved performance in an attention task after dharana, the autonomic changes during these two states have not been studied. Methods Autonomic and respiratory variables were assessed in 30 healthy male volunteers (group mean age±SD, 29.1±5.1 years) during four mental states described in traditional yoga texts. These four mental states are random thinking (cancalata), nonmeditative focusing (ekagrata), meditative focusing (dharana), and effortless meditation (dhyana). Assessments were made before (5 minutes), during (20 minutes), and after (5 minutes), each of the four states, on four separate days. Results During dhyana there was a significant increase in the skin resistance level (p<0.001; post hoc analysis following ANOVA, during compared to pre) and photo-plethysmogram amplitude (p<0.05), whereas there was a significant decrease in the heart rate (p<0.001) and breath rate (p<0.001). There was a significant decrease in the low frequency (LF) power (p<0.001) and increase in the high frequency (HF) power (p<0.001) in the frequency domain analysis of the heart rate variability (HRV) spectrum, on which HF power is associated with parasympathetic activity. There was also a significant increase in the NN50 count (the number of interval differences of successive NN intervals greater than 50 ms; p<0.001) and the pNN50 (the proportion derived by dividing NN50 by the total number of NN intervals; p<0.001) in time domain analysis of HRV, both indicative of parasympathetic activity. Conclusions Maximum changes were seen in autonomic variables and breath rate during the state of effortless meditation (dhyana). The changes were all suggestive of reduced sympathetic activity and/or increased vagal modulation. During

  14. Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil

    PubMed Central

    2010-01-01

    Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations. PMID:21637591

  15. Explaining spatial variability in mean annual runoff in the conterminous United States

    USGS Publications Warehouse

    Wolock, D.M.; McCabe, G.J.

    1999-01-01

    The hydrologic concepts needed in a water-balance model to estimate the spatial variation in mean annual runoff for the 344 climate divisions in the conterminous United States (U.S.) were determined. The concepts that were evaluated were the climatic supply of water (precipitation), climatic demand for water (potential evapotranspiration), seasonality in supply and demand, and soil-moisture-storage capacity. Most (91%) of the spatial variability in mean annual runoff for the climate divisions in the conterminous U.S. was explained by the spatial variability of mean annual precipitation minus mean annual potential evapotranspiration. When soil-moisture-storage capacity and seasonality in supply and demand were added to the water balance, the explained variance in mean annual runoff increased slightly, and the error in estimated mean annual runoff decreased significantly. Adding soil-moisture-storage capacity and seasonality in supply and demand provided the most improvement in areas where seasonal supply and demand are out of phase.

  16. Problems Related to the Use of Food Additives in the United States

    PubMed Central

    Oser, Bernard L.

    1966-01-01

    Major problems encountered by enforcement agencies and by regulated industries, respectively, in implementing and conforming to recent food additive laws are reviewed. Decisions as to which substances fall within the broad terms of the legal definition, and which escape by virtue of “generally recognized as safe” (GRAS) status, are often difficult and complex. Distinctions cannot be made solely on the basis of whether substances are old or new, natural or synthetic. Registration of pesticides on a “no residue” basis and establishment of “zero tolerances” for food additives have created an anomalous situation as a result of improvements in sensitivity of analytical techniques which revealed the presence of minute amounts of substances where none were believed to exist. A solution has been recommended by a specially appointed committee of the National Academy of Sciences-National Research Council (U.S.A.). Enforcement of the new food additive laws warrants revision of present labelling requirements to provide for designating chemical ingredients by functional categories rather than by confusing chemical terminology.

  17. Attribution of Trends and Variability in Surface Ozone over the United States

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Cooper, Owen; Damo, Megan; Logan, Jennifer; Rodriquez, Jose; Strahan, Susan; Witte, Jacquie

    2013-01-01

    Concentrations of tropospheric ozone, a greenhouse gas and air pollutant, are impacted by changes in precursor emissions as well meteorology and influx from the stratosphere. Observations show a decreasing trend in summertime surface ozone at rural stations in the eastern United States, while some western stations show increasing trends, particularly in springtime. We use the Global Modeling Initiative (GMI) global chemical transport model to investigate the roles of precursor emission changes, meteorological variability, and stratosphere-troposphere exchange (STE) in explaining observed trends in surface ozone from rural sites in the United States from 1991-2010. The model's interannual variability shows significant correlations with observations from many of the surface sites. We also compare the simulated ozone to ozonesonde data for several locations with sufficiently long records. We compare a simulation with time-dependent precursor emissions, including emission reductions over the United States and Europe and increases over Asia, to a simulation with fixed emissions to quantify the impact of changing emissions on the surface trends. The simulation with varying emissions reproduces much of the east-west difference in summertime ozone over the U.S., although it generally underestimates the negative trend in the East. In contrast, the fixed-emission simulation shows increasing ozone at both eastern and western sites. We will discuss possible causes of this behavior, including long-range transport and STE.

  18. The influence of climate state variables on Atlantic Tropical Cyclone occurrence rates

    NASA Astrophysics Data System (ADS)

    Sabbatelli, Thomas A.; Mann, Michael E.

    2007-09-01

    We analyzed annual North Atlantic tropical cyclone (TC) counts from 1871-2004, considering three climate state variables—the El Niño/Southern Oscillation (ENSO), peak (August-October or `ASO') Sea Surface Temperatures (SST) over the main development region (`MDR': 6-18°N, 20-60°W), and the North Atlantic Oscillation (NAO)—thought to influence variations in annual TC counts on interannual and longer timescales. The unconditional distribution of TC counts is observed to be inconsistent with the null hypothesis of a fixed rate random (Poisson) process. However, using two different methods, we find that conditioning TC counts on just two climate state variables, ENSO and MDR SST, can account for much or all of the apparent non-random variations over time in TC counts. Based on statistical models of annual Atlantic TC counts developed in this study and current forecasts of climate state variables, we predicted m = 15 ± 4 total named storms for the 2007 season.

  19. Variable pulse repetition frequency output from an optically injected solid state laser.

    PubMed

    Kane, D M; Toomey, J P

    2011-02-28

    An optically injected solid state laser (OISSL) system is known to generate complex nonlinear dynamics within the parameter space of varying the injection strength of the master laser and the frequency detuning between the master and slave lasers. Here we show that within these complex nonlinear dynamics, a system which can be operated as a source of laser pulses with a pulse repetition frequency (prf) that can be continuously varied by a single control, is embedded. Generation of pulse repetition frequencies ranging from 200 kHz up to 4 MHz is shown to be achievable for an optically injected Nd:YVO4 solid state laser system from analysis of prior experimental and simulation results. Generalizing this to other optically injected solid state laser systems, the upper bound on the repetition frequency is of order the relaxation oscillation frequency for the lasers. The system is discussed in the context of prf versatile laser systems more generally. Proposals are made for the next generation of OISSLs that will increase understanding of the variable pulse repetition frequency operation, and determine its practical limitations. Such variable prf laser systems; both low powered, and, higher powered systems achieved using one or more optical power amplifier stages; have many potential applications from interrogating resonance behaviors in microscale structures, through sensing and diagnostics, to laser processing. PMID:21369300

  20. Optimization of glycerol fed-batch fermentation in different reactor states: a variable kinetic parameter approach.

    PubMed

    Xie, Dongming; Liu, Dehua; Zhu, Haoli; Zhang, Jianan

    2002-05-01

    To optimize the fed-batch processes of glycerol fermentation in different reactor states, typical bioreactors including 500-mL shaking flask, 600-mL and 15-L airlift loop reactor, and 5-L stirred vessel were investigated. It was found that by reestimating the values of only two variable kinetic parameters associated with physical transport phenomena in a reactor, the macrokinetic model of glycerol fermentation proposed in previous work could describe well the batch processes in different reactor states. This variable kinetic parameter (VKP) approach was further applied to model-based optimization of discrete-pulse feed (DPF) strategies of both glucose and corn steep slurry for glycerol fed-batch fermentation. The experimental results showed that, compared with the feed strategies determined just by limited experimental optimization in previous work, the DPF strategies with VKPs adjusted could improve glycerol productivity at least by 27% in the scale-down and scale-up reactor states. The approach proposed appeared promising for further modeling and optimization of glycerol fermentation or the similar bioprocesses in larger scales. PMID:12049203

  1. Implications of Export/Import Reporting Requirements in the United States - International Atomic Energy Agency Safeguards Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Benjamin, Eugene L.; McNair, Gary W.

    2001-02-20

    The United States has signed but not ratified the US/IAEA Safeguards Additional Protocol. If ratified, the Additional Protocol will require the US to report to the IAEA certain nuclear-related exports and imports to the IAEA. This document identifies and assesses the issues associated with the US making those reports. For example, some regulatory changes appear to be necessary. The document also attempts to predict the impact on the DOE Complex by assessing the historical flow of exports and imports that would be reportable if the Additional Protocol were in force.

  2. Factors responsible for mortality variation in the United States: A latent variable analysis

    PubMed Central

    Tencza, Christopher; Stokes, Andrew; Preston, Samuel

    2014-01-01

    BACKGROUND Factors including smoking, drinking, substance abuse, obesity, and health care have all been shown to affect health and longevity. The relative importance of each of these factors is disputed in the literature, and has been assessed through a number of methods. OBJECTIVE This paper uses a novel approach to identify factors responsible for interstate mortality variation. It identifies factors through their imprint on mortality patterns and can therefore identify factors that are difficult or impossible to measure directly, such as sensitive health behaviors. METHODS The analysis calculates age-standardized death rates by cause of death from 2000-2009 for white men and women separately. Only premature deaths between ages 20-64 are included. Latent variables responsible for mortality variation are then identified through a factor analysis conducted on a death-rate-by-state matrix. These unobserved latent variables are inferred from observed mortality data and interpreted based on their correlations with individual causes of death. RESULTS Smoking and obesity, substance abuse, and rural/urban residence are the three factors that make the largest contributions to state-level mortality variation among males. The same factors are at work for women but are less vividly revealed. The identification of factors is supported by a review of epidemiologic studies and strengthened by correlations with observable behavioral variables. Results are not sensitive to the choice of factor-analytic method used. CONCLUSIONS The majority of interstate variation in mortality among white working-age adults in the United States is associated with a combination of smoking and obesity, substance abuse and rural/urban residence. PMID:25419171

  3. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1989-01-01

    A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.

  4. Geographic variability in access to primary kidney transplantation in the United States, 1996-2005.

    PubMed

    Ashby, V B; Kalbfleisch, J D; Wolfe, R A; Lin, M J; Port, F K; Leichtman, A B

    2007-01-01

    This article focuses on geographic variability in patient access to kidney transplantation in the United States. It examines geographic differences and trends in access rates to kidney transplantation, in the component rates of wait-listing, and of living and deceased donor transplantation. Using data from Centers for Medicare and Medicaid Services and the Organ Procurement and Transplantation Network/Scientific Registry of Transplant Recipients, we studied 700,000+ patients under 75, who began chronic dialysis treatment, received their first living donor kidney transplant, or were placed on the waiting list pre-emptively. Relative rates of wait-listing and transplantation by State were calculated using Cox regression models, adjusted for patient demographics. There were geographic differences in access to the kidney waiting list and to a kidney transplant. Adjusted wait-list rates ranged from 37% lower to 64% higher than the national average. The living donor rate ranged from 57% lower to 166% higher, while the deceased donor transplant rate ranged from 60% lower to 150% higher than the national average. In general, States with higher wait-listing rates tended to have lower transplantation rates and States with lower wait-listing rates had higher transplant rates. Six States demonstrated both high wait-listing and deceased donor transplantation rates while six others, plus D.C. and Puerto Rico, were below the national average for both parameters. PMID:17428289

  5. 49 CFR 1155.23 - Additional requirements when filing after an unsatisfactory result from a State, local, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Additional requirements when filing after an unsatisfactory result from a State, local, or municipal authority affecting the siting of the facility. 1155.23 Section 1155.23 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT...

  6. State control of discrete-time linear systems to be bound in state variables by equality constraints

    NASA Astrophysics Data System (ADS)

    Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír

    2014-12-01

    The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach.

  7. Autoregressive modeling with state-space embedding vectors for damage detection under operational and environmental variability

    SciTech Connect

    Farrar, Charles; Figueiredo, Eloi; Todd, Michael; Flynn, Eric

    2010-01-01

    A nonlinear time series approach is presented to detect damage in systems by using a state-space reconstruction to infer the geometrical structure of a deterministic dynamical system from observed time series response at multiple locations. The unique contribution of this approach is using a Multivariate Autoregressive (MAR) model of a baseline condition to predict the state space, where the model encodes the embedding vectors rather than scalar time series. A hypothesis test is established that the MAR model will fail to predict future response if damage is present in the test condition, and this test is investigated for robustness in the context of operational and environmental variability. The applicability of this approach is demonstrated using acceleration time series from a base-excited 3-story frame structure.

  8. Impact of climate variability on runoff in the north-central United States

    USGS Publications Warehouse

    Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.

    2014-01-01

    Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.

  9. Boundary layer versus free tropospheric CO budget and variability over the United States during summertime

    NASA Astrophysics Data System (ADS)

    Boynard, A.; Pfister, Gabriele G.; Edwards, David P.

    2012-02-01

    The regional Weather Research and Forecasting Model with Chemistry (WRF-Chem) version 3.2 is used to analyze the carbon monoxide (CO) budget and spatiotemporal variability over the United States in summer 2008. CO tracers for different emission sources are used to separate the modeled CO fields into the contributions from individual sources (pollution inflow to the model domain, chemical production within the model domain, and local emissions by type). The implementation of tagged CO tracers into WRF-Chem constitutes an innovative aspect of this work. We evaluate WRF-Chem CO concentrations using aircraft, satellite, and surface observations. The model reproduces fairly well the observed CO concentrations for the entire altitude range but tends to underestimate fire emissions and overestimate anthropogenic sources and CO from pollution inflow. Evaluation results also show that the model gives a good representation of background CO mixing ratios with mean biases better than ˜15 ppbv in the free troposphere (FT) and less than 20 ppbv toward the surface. The analysis of the CO budget over the contiguous United States shows that at the surface, CO from inflow is the dominant source, with a mean relative contribution of 63 ± 19%. Anthropogenic and photochemically produced CO contribute to surface CO to a lesser extent (18 ± 14% and 14 ± 8%, respectively). The average contribution from fire emissions to surface CO during the period examined is small (2 ± 5%) but can have a large impact in certain regions and times. Similar trends are found in the planetary boundary layer (PBL). In the FT, the average CO relative contributions are estimated as 84 ± 12% for CO from inflow, 5 ± 4% for anthropogenic CO, 9 ± 7% for photochemically produced CO, and 1 ± 5% for CO from fires. Using WRF-Chem simulations, we also examine the representation of surface and PBL CO concentration variability that would be captured by current near infrared (NIR) and thermal infrared (TIR

  10. Event triggered state estimation techniques for power systems with integrated variable energy resources.

    PubMed

    Francy, Reshma C; Farid, Amro M; Youcef-Toumi, Kamal

    2015-05-01

    For many decades, state estimation (SE) has been a critical technology for energy management systems utilized by power system operators. Over time, it has become a mature technology that provides an accurate representation of system state under fairly stable and well understood system operation. The integration of variable energy resources (VERs) such as wind and solar generation, however, introduces new fast frequency dynamics and uncertainties into the system. Furthermore, such renewable energy is often integrated into the distribution system thus requiring real-time monitoring all the way to the periphery of the power grid topology and not just the (central) transmission system. The conventional solution is two fold: solve the SE problem (1) at a faster rate in accordance with the newly added VER dynamics and (2) for the entire power grid topology including the transmission and distribution systems. Such an approach results in exponentially growing problem sets which need to be solver at faster rates. This work seeks to address these two simultaneous requirements and builds upon two recent SE methods which incorporate event-triggering such that the state estimator is only called in the case of considerable novelty in the evolution of the system state. The first method incorporates only event-triggering while the second adds the concept of tracking. Both SE methods are demonstrated on the standard IEEE 14-bus system and the results are observed for a specific bus for two difference scenarios: (1) a spike in the wind power injection and (2) ramp events with higher variability. Relative to traditional state estimation, the numerical case studies showed that the proposed methods can result in computational time reductions of 90%. These results were supported by a theoretical discussion of the computational complexity of three SE techniques. The work concludes that the proposed SE techniques demonstrate practical improvements to the computational complexity of

  11. Spectral variability of GX339-4 in a hard-to-soft state transition

    NASA Astrophysics Data System (ADS)

    Del Santo, M.; Malzac, J.; Jourdain, E.; Belloni, T.; Ubertini, P.

    2008-10-01

    We report on INTEGRAL observations of the bright black hole transient GX339-4 performed during the period 2004 August-September, including the fast transition (10h) observed simultaneously with INTEGRAL and RXTE on August 15 and previously reported. Our data cover three different spectral states, namely hard/intermediate state (HIMS), soft/intermediate state (SIMS) and high/soft state (HSS). We investigate the spectral variability of the source across the different spectral states. The hard X-ray spectrum becomes softer during the HIMS-to-SIMS transition, but it hardens when reaching the HSS. A principal component analysis demonstrates that most of the variability occurs through two independent modes: a pivoting of the spectrum around 6keV (responsible for 75 per cent of the variance) and an intensity variation of the hard component (responsible for 21 per cent). The pivoting is interpreted as due to changes in the soft cooling photon flux entering the corona, the second mode as fluctuations of the heating rate in the corona. These results are very similar to those previously obtained for CygnusX-1. Our spectral analysis of the spectra of GX339-4 shows a high energy excess with respect to pure thermal Comptonization models in the HIMS: a non-thermal power-law component seems to be requested by data. In all spectral states joint IBIS, SPI and JEM-X data are well represented by hybrid thermal/non-thermal Comptonization (EQPAIR). These fits allow us to track the evolution of each spectral component during the spectral transition. The spectral evolution seems to be predominantly driven by a reduction of the ratio of the electron heating rate to the soft cooling photon flux in the corona, lh/ls. The inferred accretion disc soft thermal emission increases by about two orders of magnitude, while the Comptonized luminosity decreases by at most a factor of 3. This confirms that the softening we observed is due to a major increase in the flux of soft cooling photons in the

  12. A modal strategy devoted to the hidden state variables method with large interfaces

    NASA Astrophysics Data System (ADS)

    Ropars, Pierre; Desceliers, Christophe

    2015-05-01

    In many mechanical engineering applications, the interactions of a structure through its boundary is modelled by a dynamic boundary stiffness matrix. Nevertheless, it is well known that the solution of such computational model is very sensitive to the modelling uncertainties on the dynamic boundary stiffness matrix. In a recent work, the "hidden state variables method" is used to identify mass, stiffness and damping matrices associated with a given deterministic dynamic boundary stiffness matrix which can be constructed by using experimental measurements. Such an identification allows the construction of the probabilistic model of a random boundary stiffness matrix by substituting those identified mass, stiffness and damping matrices by random matrices. Nevertheless, the numerical cost of the "hidden state variables method" increases drastically with the dimension (number of degrees of freedom) of the interface. We then propose an enhanced approach which consists in a truncated spectral representation of the displacements on the boundary and with a partition of the frequency band of analysis. A collection of mass, stiffness and damping matrices is then identified for each sub-frequency band of analysis. A probabilistic model is constructed in substituting each of those matrices by random matrices. A numerical application is proposed.

  13. Continuous-variable entanglement distillation of non-Gaussian mixed states

    SciTech Connect

    Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Andersen, Ulrik L.

    2010-07-15

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.

  14. Spatial and temporal variability of precipitation for selected regions of New York State and relationship to variability in sulfate deposition measurements

    SciTech Connect

    Pagnotti, V.; Rao, S.T.

    1986-04-01

    The preliminary results are presented of a study aimed at quantifying the variability in precipitation data and its role in the modeling of acidic deposition processes. The character of this variability for various regions of New York State is assessed over a 30-year period, with emphasis on the Adirondack region. Spatial and temporal means as well as coefficients of variation are presented. Of the five regions where precipitation data are investigated, the Adirondacks have the greatest overall variability, around 23 percent, while Long Island has the least, about 17 percent. A proportionality factor, based on the coefficient of variation, is suggested to account for the precipitation variability in achieving targeted wet deposition threshold values.

  15. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    SciTech Connect

    Yu Wenfei; Zhang Wenda

    2013-06-20

    We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  16. Personality Traits and Socio-Demographic Variables as Correlates of Counselling Effectiveness of Counsellors in Enugu State, Nigeria

    ERIC Educational Resources Information Center

    Onyekuru, Bruno U.; Ibegbunam, Josephat

    2015-01-01

    Quality personality traits and socio-demographic variables are essential elements of effective counselling. This correlational study investigated personality traits and socio-demographic variables as predictors of counselling effectiveness of counsellors in Enugu State. The instruments for data collection were Personality Traits Assessment Scale…

  17. Sports Participation and Social Personality Variable of Students in Secondary Schools in Central Senatorial District of Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Edim, M. E.; Odok, E. A.

    2015-01-01

    The main thrust of this study was to investigate sports participation and social personality variable of students in secondary schools in Central Senatorial District of Cross River State, Nigeria. To achieve the purpose of this study, one hypothesis was formulated to guide the study. Literature review was carried out according to the variable of…

  18. Interannual to Multidecadal Climate Variability and Groundwater Resources of the Western United States

    NASA Astrophysics Data System (ADS)

    Gurdak, J. J.; Kuss, A. M.

    2011-12-01

    Climate variability and change have important implications for groundwater recharge, discharge, contaminant transport, and resource sustainability. Reliable predictions of groundwater sustainability due to climate change will require improved understanding of the effects of global scale atmosphere-ocean climate oscillations on interannual to multidecadal timescales. Climate variability on these timescales partially controls precipitation, air temperature, drought, evapotranspiration, streamflow, recharge, and mobilization of subsurface-chemical reservoirs. Climate variability can augment or diminish human stresses on groundwater, and the responses in storage can be dramatic when different climate cycles lie coincident in a positive or negative phase of variability. Thus, understanding climate variability has particular relevance for management decisions during drought and for water resources close to the limits of sustainability. Major findings will be presented from a national scale study of climate variability on recharge rates and groundwater levels, and will highlight regional aquifers of the western United States, including the Basin and Range (700,000 km2), Central Valley (52,000 km2), High Plains (450,000 km2), and Mississippi Embayment (181,000 km2) aquifer systems. Using singular spectrum analysis, the groundwater pumping signal was removed and natural variations were identified in groundwater levels as partially coincident with the El Niño/Southern Oscillation (ENSO) (2-6 year cycle), North Atlantic Oscillation (3-6 year cycle), Pacific Decadal Oscillation (PDO) (10-25 year cycle), and Atlantic Multidecadal Oscillation (AMO) (50-80 year cycle). The PDO was the most significant contributor to recharge and groundwater level fluctuations in most aquifers. In the Central Valley and the Basin and Range, the PDO contributes to the greatest amount of variance (ranging from 13.6-83%) in all precipitation and groundwater level time series, with moderate to strong

  19. The association of resting state heart rate variability and 24-hour blood pressure variability in spinal cord injury.

    PubMed

    Thayer, Julian F; Sollers, John J; Clamor, Annika; Koenig, Julian; Hagglund, Kristofer J

    2016-02-15

    Patients with high cervical complete spinal cord injuries (tetraplegia) sustain damage to the autonomic neural pathways that influence cardiovascular functioning and produce variability in the heart rate (HR) and blood pressure (BP). In non-injured individuals, an inverse relationship exists between resting autonomic control of the heart (as evidenced by HR variability (HRV)) and BP variability (BPV). This study examined the relationship between HRV, BP and BPV in individuals with tetraplegic (n=10) and paraplegic (n=10) spinal cord injuries, and a group of healthy controls (n=14). Resting HRV at baseline and 24-hour ambulatory BP measurements were collected from electrocardiogram measures of each participant. HRV was quantified using time- and frequency-domain measures. The standard deviation of the BP measurements was used as an index of BPV. Multivariate analyses of variance were performed to examine group differences for laboratory-based and 24-h dependent variables. The MANOVAs for HRV parameters (λ(14,50)=.352, p=.010, η(2)=.407) and for BP indices and HR (λ(16,48)=.318, p=.013, η(2)=.436) were significant. Furthermore, in line with existing evidence, we found that vagally mediated HRV was inversely related to BPV in healthy controls. However, this relationship did not hold for the tetraplegia group (ρ<|.42|), and mixed results were found for the paraplegia group (e.g., ρ<|.29| for time domain HRV, ρ>|.65| for low-frequency power). These results support the conclusion that the damage to the spinal sympathetic pathways to the heart found in people with tetraplegia causes a significant disruption in baroreflex control of BP. PMID:26810517

  20. Climate model biases in the Indian Ocean meant state, variability and change

    NASA Astrophysics Data System (ADS)

    Xie, S. P.; Li, G.

    2015-12-01

    Long-standing biases of climate models limit the skills of climate prediction and projection. The monsoonal tropical Indian Ocean (IO) has been overlooked in bias studies because model errors compensate among seasons and do not manifest prominently in the annual means. In the phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble, we have identified a common error pattern in climate models that resembles the IO dipole (IOD) mode of interannual variability in nature, with an excessive equatorial easterly wind bias during boreal autumn accompanied by physically consistent biases in precipitation, sea surface temperature (SST), and subsurface ocean temperature. The analyses show that such IOD-like biases can be traced back to errors in the South Asian summer monsoon. A southwest summer monsoon that is too weak over the Arabian Sea generates a warm SST bias over the western equatorial IO. In boreal autumn, Bjerknes feedback helps amplify the error into an IOD-like bias pattern in wind, precipitation, SST, and subsurface ocean temperature. Such mean state biases result in an interannual IOD variability that is too strong. Most models project an IOD-like future change for the boreal autumn mean state in the global warming scenario, which would result in more frequent occurrences of extreme positive IOD events in the future with important consequences to Indonesia and East Africa. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) characterizes this future IOD-like projection in the mean state as robust based on consistency among models, but the authors' results cast doubts on this conclusion since models with larger IOD amplitude biases tend to produce stronger IOD-like projected changes in the future.

  1. Variability in Ozone in the Tropical Upper Troposphere-Lower Stratosphere from the 1998-2000 SHADOZ (Southern Hemisphere Additional Ozonesondes) Data

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; McPeters, R. D.; Schmidlin, F. J.; Oltmans, S. J.; Kirchhoff, V. W. J. H.; Coetzee, G. J. R.; Posny, F.; Kawakami, S.; Ogawa, T.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The first view of lower stratospheric and upper tropospheric structure from sondes is provided by a 3-year, 10-site record from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network: . Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Taking the UT/LS (upper troposphere- lower stratosphere) as the region between 12 and 17 km, we examine ozone variability in this region on a week-to-week and seasonal basis. The tropopause is lower in September-October-November than in March-April-May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern (referring to ozone mixing ratios greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean), persists all year. The wave, predominantly in the troposphere and with variable magnitude, appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Reunion Island.

  2. Century-long regional climate simulations for North America: Changes in the mean state and its variability in a doubled-CO2 atmosphere

    NASA Astrophysics Data System (ADS)

    Schuetz, A.; Hostetler, S. W.; Alder, J. R.

    2009-12-01

    We have produced 100 years of high-resolution climate simulations over North America for present conditions and under a doubling of atmospheric CO2 using the RegCM3 regional climate model. The model was run on a 50-km grid adopted by the North American Regional Climate Change Assessment Program (http://www.narccap.ucar.edu), with 23 vertical atmospheric levels and a fully coupled land-surface scheme (Biosphere-Atmosphere Transfer Scheme, BATS). Boundary conditions were derived from our coupled atmosphere-ocean general circulation model (GENESIS-MOM, A/OGCM). Our analyses are regionalized over the 22 U.S. Fish and Wildlife Service ecoregions for North America. This study focuses on analyzing the significance of changes, delineated by ecoregion, in both surface and atmospheric variables, such as temperature, precipitation, relative humidity, geopotential heights, winds, divergence, and vorticity. Time series of area-averages for the ecoregions were created and mapped to show the monthly raw data, as well as the statistical significance for each variable. Preliminary results show that climate change is inevitable across the North American domain under doubled atmospheric CO2 concentrations; however, these changes are neither spatially nor temporally uniform. In addition, there is variation across variables and ecoregions in the significance of the change in mean state, variability, or both. Additionally, changes in the mean state may or may not accompany changes in seasonal variability, while changes in seasonal variability may be present without significant changes in the mean state. The results highlight the relationship between changes in upper-level atmospheric circulation (500- and 250-mb) and changes on the surface.

  3. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.

    PubMed

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately. PMID:23012502

  4. Post-lumpectomy CT-guided tumor bed delineation for breast boost and partial breast irradiation: Can additional pre- and postoperative imaging reduce interobserver variability?

    PubMed Central

    DEN HARTOGH, MARISKA D.; PHILIPPENS, MARIELLE E.P.; VAN DAM, IRIS E.; KLEYNEN, CATHARINA E.; TERSTEEG, ROBBERT J.H.A.; KOTTE, ALEXIS N.T.J.; VAN VULPEN, MARCO; VAN ASSELEN, BRAM; VAN DEN BONGARD, DESIRÉE H.J.G.

    2015-01-01

    For breast boost radiotherapy or accelerated partial breast irradiation, the tumor bed (TB) is delineated by the radiation oncologist on a planning computed tomography (CT) scan. The aim of the present study was to investigate whether the interobserver variability (IOV) of the TB delineation is reduced by providing the radiation oncologist with additional magnetic resonance imaging (MRI) or CT scans. A total of 14 T1-T2 breast cancer patients underwent a standard planning CT in the supine treatment position following lumpectomy, as well as additional pre- and postoperative imaging in the same position. Post-lumpectomy TBs were independently delineated by four breast radiation oncologists on standard postoperative CT and on CT registered to an additional imaging modality. The additional imaging modalities used were postoperative MRI, preoperative contrast-enhanced (CE)-CT and preoperative CE-MRI. A cavity visualization score (CVS) was assigned to each standard postoperative CT by each observer. In addition, the conformity index (CI), volume and distance between centers of mass (dCOM) of the TB delineations were calculated. On CT, the median CI was 0.57, with a median volume of 22 cm3 and dCOM of 5.1 mm. The addition of postoperative MRI increased the median TB volume significantly to 28 cm3 (P<0.001), while the CI (P=0.176) and dCOM (P=0.110) were not affected. The addition of preoperative CT or MRI increased the TB volume to 26 and 25 cm3, respectively (both P<0.001), while the CI increased to 0.58 and 0.59 (both P<0.001) and the dCOM decreased to 4.7 mm (P=0.004) and 4.6 mm (P=0.001), respectively. In patients with CVS≤3, the median CI was 0.40 on CT, which was significantly increased by all additional imaging modalities, up to 0.52, and was accompanied by a median volume increase up to 6 cm3. In conclusion, the addition of postoperative MRI, preoperative CE-CT or preoperative CE-MRI did not result in a considerable reduction in the IOV in postoperative CT

  5. Solid-state non-volatile electronically programmable reversible variable resistance device

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni (Inventor); Thakoor, Sarita (Inventor); Daud, Taher (Inventor); Thakoor, Aniklumar P. (Inventor)

    1989-01-01

    A solid-state variable resistance device (10) whose resistance can be repeatedly altered by a control signal over a wide range, and which will remain stable after the signal is removed, is formed on an insulated layer (14), supported on a substrate (12) and comprises a set of electrodes (16a, 16b) connected by a layer (18) of material, which changes from an insulator to a conductor upon the injection of ions, covered by a layer (22) of material with insulating properties which permit the passage of ions, overlaid by an ion donor material (20). The ion donor material is overlaid by an insulating layer (24) upon which is deposited a control gate (26) located above the contacts. In a preferred embodiment, the variable resistance material comprises WO.sub.3, the ion donor layer comprises Cr.sub.2 O.sub.3, and the layers sandwiching the ion donor layer comprise silicon monoxide. When a voltage is applied to the gate, the resistance between the electrode contacts changes, decreasing with positive voltage and increasing with negative voltage.

  6. Variability of Meloidogyne exigua on Coffee in the Zona da Mata of Minas Gerais State, Brazil

    PubMed Central

    Oliveira, D. S.; Oliveira, R. D. L.; Freitas, L. G.; Silva, R. V.

    2005-01-01

    Minas Gerais is the major coffee-producing state of Brazil, with 28% of its production coming from the region of Zona da Mata. Four major species of root-knot nematode attacking coffee (Meloidogyne incognita, M. paranaensis, M. coffeicola, and M. exigua) have been reported from Brazil. To determine the variability in Meloidogyne spp. occurring in that region, 57 populations from 20 localities were evaluated for morphological, enzymatic, and physiological characteristics. According to the perineal pattern, all the populations were identified as M. exigua; however populations from the municipality of São João do Manhuaçu exhibited patterns very similar to M. arenaria. The identity of all the populations was confirmed by the phenotypes of esterase, malate dehydrogenase, superoxide dismutase, and glutamate-oxaloacetate transaminase. Thirteen populations (22.8%) showed the typical one-band (E1) esterase phenotype, whereas the others (77.2%) had a novel two-band phenotype (E2). No intraspecies variability was found in any population. All populations were able to reproduce on tomato, pepper, beans, cacao, and soybean. Reproduction was greater on tomato and pepper than on coffee seedlings, the susceptible standard. PMID:19262880

  7. A dynamic state variable model of mate desertion in Cooper's Hawks

    SciTech Connect

    Kelly, E.J. ); Kennedy, P.L. )

    1993-03-01

    In a 4-yr study of the reproductive strategies of Cooper's Hawks (Accipiter cooperii) nesting in north-central New Mexico, >50% of the females deserted during the fledgling-dependence period and did not renest. A dynamic state variable model was developed to study the females' brood-rearing strategies. In this model a strategy consisted of combinations of staying at the nest, hunting, and deserting. The modeling assumptions were: a female's strategy during brood rearing maximizes her reproductive fitness, defined as the weighted average of the expected probability of survival of her current offspring and her expected future reproduction; and the reproductive fitness function depends on the physical condition of the female and nestlings, the risks to the nestlings associated with each strategy, and the male's foraging capabilities. The model predictions were compared to the observations of female strategies in Cooper's Hawks. The best match between observations and predictions (84-96%) was obtained when the nestlings' survival and the female's future reproductive potential were equally weighted during the nestling stage, but weighted in favor of the female's reproductive potential during the fledgling stage. A sensitivity analysis showed that the model predictions corresponded well with the observations of staying and hunting. However, those combinations of parameter values that reflected conditions with the least pressure to desert missed 70-85% of the desertions. The sensitivity analysis also indicated that a key factor influencing the female's choise of strategy was the interaction between the threat to her future reproduction due to her poor physical condition and the nestlings' risk of death from predation and exposure. The agreement of model predictions and observed strategies supported the modeling assumptions. Dynamic state variable modeling is an excellent tool for studying mate desertion. 54 refs., 2 figs., 5 tabs.

  8. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  9. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  10. Model Representation of Multi-Cyclic Phenomena Using Role State Variables: Model Based Fast Idling Control of SI Engine

    NASA Astrophysics Data System (ADS)

    Jimbo, Tomohiko; Hayakawa, Yoshikazu

    The present paper describes a model representation of multi-cyclic phenomena for a multi-cylinder engine system. The model is simplified for implementation as a practical engine controller. The simplified model with physically meaningful variables can be used in design considering practical objectives and constraints more effectively. The proposed approach consists of two steps. First, an approximate analytical discrete crank angle model (i.e., a periodically time-varying state space model) is derived from the conservation laws. Second, the concept of role state variables is proposed to transform the periodically time-varying state space model into a time-invariant state space model. The stabilizability and optimality of the time-invariant state space model imply those of the periodically time-varying state space model. The time-invariant state space model is used to design cold start feedforward and feedback controllers.

  11. Trends In Wintertime Climate Variability In The Northeastern United States: 1970- 2004

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Wake, C. P.; Braswell, B.

    2007-12-01

    Humans experience climate variability and climate change primarily through changes in weather at a local and regional scale. One of the most effective means to track these changes is through detailed analysis of meteorological data. In this work, changes in the winter climate of the northeastern United States are documented. Snow on the ground and snowfall are important components in water management, travel safety, and winter tourism and recreation. Trends in Temperature, snowfall, and snow depth data were collected from the United States Historical Climate Network (USHCN). The months of December through March are selected for winter climate analysis. Monthly and seasonal time series of the number of days with snow on the ground greater than 1, 3, and 5 inches are constructed from snow depth data. The National Climatic Data Center and Carbon Dioxide Information Analysis Center perform extensive quality assurance and quality control measures for monthly temperature data. However, daily snowfall and snow depth data have not been adjusted for station relocations, instrument changes, or time of observation biases. To address these data quality issues, we evaluate daily data for spatial coherence with nearest neighbors, and remove stations with non-climatic influences from regional analysis. Monthly and seasonal trends in mean, minimum and maximum temperature, total snowfall, and days with snow on the ground are estimated using linear regression and robust spline analysis. Northeastern United States winter temperatures are warming at a rate significantly greater than the global average. At stations located north of 44oN, December snowfall exhibits a decreasing trend (-3.5 inches/decade), whereas March snowfall is increasing (+1.3 inches/decade) over the period 1970-2004. Across the northeastern United States, the number of days with snow on the ground has also decreased substantially. The results hold important implications for the winter economy and recreation in the

  12. Origin of the OFF state variability in ReRAM cells

    NASA Astrophysics Data System (ADS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis

    2014-04-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.

  13. Trap density of states in n-channel organic transistors: variable temperature characteristics and band transport

    SciTech Connect

    Cho, Joung-min Akiyama, Yuto; Kakinuma, Tomoyuki; Mori, Takehiko; ACT-C, JST, Honcho, Kawaguchi, Saitama 332-0012

    2013-10-15

    We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulated characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V{sub G} above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge.

  14. Documentation for the State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Baker, Kristine M.

    2011-01-01

    Many groundwater-management problems are concerned with the control of one or more variables that reflect the state of a groundwater-flow system or a coupled groundwater/surface-water system. These system state variables include the distribution of heads within an aquifer, streamflow rates within a hydraulically connected stream, and flow rates into or out of aquifer storage. This report documents the new State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005). The new package provides a means to explicitly represent heads, streamflows, and changes in aquifer storage as state variables in a GWM-2005 simulation. The availability of these state variables makes it possible to include system state in the objective function and enhances existing capabilities for constructing constraint sets for a groundwater-management formulation. The new package can be used to address groundwater-management problems such as the determination of withdrawal strategies that meet water-supply demands while simultaneously maximizing heads or streamflows, or minimizing changes in aquifer storage. Four sample problems are provided to demonstrate use of the new package for typical groundwater-management applications.

  15. Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States

    NASA Astrophysics Data System (ADS)

    Qi, W. J.; Song, R. G.; Qi, X.; Li, H.; Wang, Z. X.; Wang, C.; Jin, J. R.

    2015-09-01

    Hydrogen embrittlement susceptibility of 7050 aluminum alloy under various aging states has been investigated by means of cathodic hydrogen permeation, slow strain rate test, hydrogen determinator, x-ray diffraction, and scanning electron microscope, and effect of hydrogen on atomic binding force of charged alloy has been calculated by free electron theory in this paper. Simultaneously, hydrogen-induced additive stress (σad) of 7050 aluminum alloy hydrogen charged with different current densities under various aging states have been investigated by flowing stress differential method. The results showed that hydrogen concentration of examined alloy increased with increasing charging time or current density under the same aging state. Hydrogen segregation occurred at grain boundaries which enlarged the crystal lattice constant, meanwhile, it reduced the average bonding energy and interatomic bonding force of the grain boundary atoms, thus resulting in hydrogen embrittlement; moreover, σad of 7050 aluminum alloy increased linearly with increasing hydrogen concentration under the same aging state, i.e., under aged: σad = -1.61 + 9.93 × 105 C H, peak aged: σad = -1.55 + 9.67 × 105 C H, over aged: σad = -0.16 + 9.35 × 105 C H, correspondingly, σad increased the susceptibility to hydrogen embrittlement ( I HE) further. Under the same charging condition, aging states had a great influence on σad and I HE, the under-aged state alloy was of the highest, the over-aged state alloy was of the lowest, and peak-aged was in the middle.

  16. Influence of Additives on the Yield and Pathogenicity of Conidia Produced by Solid State Cultivation of an Isaria javanica Isolate

    PubMed Central

    Xie, Ling; Han, Ji Hee; Lee, Sang Yeob

    2014-01-01

    Recently, the Q biotype of tobacco whitefly has been recognized as the most hazardous strain of Bemisia tabaci worldwide, because of its increased resistance to some insecticide groups. As an alternative control agent, we selected an Isaria javanica isolate as a candidate for the development of a mycopesticide against the Q biotype of sweet potato whitefly. To select optimal mass production media for solid-state fermentation, we compared the production yield and virulence of conidia between 2 substrates (barley and brown rice), and we also compared the effects of various additives on conidia production and virulence. Barley was a better substrate for conidia production, producing 3.43 × 1010 conidia/g, compared with 3.05 × 1010 conidia/g for brown rice. The addition of 2% CaCO3 + 2% CaSO4 to barley significantly increased conidia production. Addition of yeast extract, casein, or gluten also improved conidia production on barley. Gluten addition (3% and 1.32%) to brown rice improved conidia production by 14 and 6 times, respectively, relative to brown rice without additives. Conidia cultivated on barley produced a mortality rate of 62% in the sweet potato whitefly after 4-day treatment, compared with 53% for conidia cultivated on brown rice. The amendment of solid substrate cultivation with additives changed the virulence of the conidia produced; the median lethal time (LT50) was shorter for conidia produced on barley and brown rice with added yeast extract (1.32% and 3%, respectively), KNO3 (0.6% and 1%), or gluten (1.32% and 3%) compared with conidia produced on substrates without additives. PMID:25606006

  17. Influence of Additives on the Yield and Pathogenicity of Conidia Produced by Solid State Cultivation of an Isaria javanica Isolate.

    PubMed

    Kim, Jeong Jun; Xie, Ling; Han, Ji Hee; Lee, Sang Yeob

    2014-12-01

    Recently, the Q biotype of tobacco whitefly has been recognized as the most hazardous strain of Bemisia tabaci worldwide, because of its increased resistance to some insecticide groups. As an alternative control agent, we selected an Isaria javanica isolate as a candidate for the development of a mycopesticide against the Q biotype of sweet potato whitefly. To select optimal mass production media for solid-state fermentation, we compared the production yield and virulence of conidia between 2 substrates (barley and brown rice), and we also compared the effects of various additives on conidia production and virulence. Barley was a better substrate for conidia production, producing 3.43 × 10(10) conidia/g, compared with 3.05 × 10(10) conidia/g for brown rice. The addition of 2% CaCO3 + 2% CaSO4 to barley significantly increased conidia production. Addition of yeast extract, casein, or gluten also improved conidia production on barley. Gluten addition (3% and 1.32%) to brown rice improved conidia production by 14 and 6 times, respectively, relative to brown rice without additives. Conidia cultivated on barley produced a mortality rate of 62% in the sweet potato whitefly after 4-day treatment, compared with 53% for conidia cultivated on brown rice. The amendment of solid substrate cultivation with additives changed the virulence of the conidia produced; the median lethal time (LT50) was shorter for conidia produced on barley and brown rice with added yeast extract (1.32% and 3%, respectively), KNO3 (0.6% and 1%), or gluten (1.32% and 3%) compared with conidia produced on substrates without additives. PMID:25606006

  18. Application of the Bammann inelasticity internal state variable constitutive model to geological materials

    NASA Astrophysics Data System (ADS)

    Sherburn, J. A.; Horstemeyer, M. F.; Bammann, D. J.; Baumgardner, J. R.

    2011-03-01

    We describe how the Bammann internal state variable (ISV) constitutive approach, which has proven highly successful in modelling deformation processes in metals, can be applied with great benefit to silicate rocks and other geological materials in modelling their deformation dynamics. In its essence, ISV theory provides a constitutive framework to account for changing history states that arise from inelastic dissipative microstructural evolution of a polycrystalline solid. In this paper, we restrict our attention to a Bammann ISV elastic-viscoplastic model with temperature and strain rate dependence and use isotropic hardening and anisotropic hardening as our two ISVs. We show the Bammann model captures the inelastic behaviour of olivine aggregates (with and without water), lherzolite (with and without water), Carrara marble and rock salt using some experimental data found in the literature. These examples illustrate that when more experimental stress-strain data are gathered on other rock materials, much more realistic numerical simulation of rock behaviour becomes feasible. Though not available in the literature, we outline a set of experiments to obtain unique Bammann ISV model constants.

  19. Interstitial growth and remodeling of biological tissues: tissue composition as state variables.

    PubMed

    Myers, Kristin; Ateshian, Gerard A

    2014-01-01

    Growth and remodeling of biological tissues involves mass exchanges between soluble building blocks in the tissue's interstitial fluid and the various constituents of cells and the extracellular matrix. As the content of these various constituents evolves with growth, associated material properties, such as the elastic modulus of the extracellular matrix, may similarly evolve. Therefore, growth theories may be formulated by accounting for the evolution of tissue composition over time in response to various biological and mechanical triggers. This approach has been the foundation of classical bone remodeling theories that successfully describe Wolff's law by establishing a dependence between Young's modulus and bone apparent density and by formulating a constitutive relation between bone mass supply and the state of strain. The goal of this study is to demonstrate that adding tissue composition as state variables in the constitutive relations governing the stress-strain response and the mass supply represents a very general and straightforward method to model interstitial growth and remodeling in a wide variety of biological tissues. The foundation for this approach is rooted in the framework of mixture theory, which models the tissue as a mixture of multiple solid and fluid constituents. A further generalization is to allow each solid constituent in a constrained solid mixture to have its own reference (stress-free) configuration. Several illustrations are provided, ranging from bone remodeling to cartilage tissue engineering and cervical remodeling during pregnancy. PMID:23562499

  20. Interstitial Growth and Remodeling of Biological Tissues: Tissue Composition as State Variables

    PubMed Central

    Myers, Kristin; Ateshian, Gerard A.

    2013-01-01

    Growth and remodeling of biological tissues involves mass exchanges between soluble building blocks in the tissue’s interstitial fluid and the various constituents of cells and the extracellular matrix. As the content of these various constituents evolves with growth, associated material properties, such as the elastic modulus of the extracellular matrix, may similarly evolve. Therefore, growth theories may be formulated by accounting for the evolution of tissue composition over time in response to various biological and mechanical triggers. This approach has been the foundation of classical bone remodeling theories that successfully describe Wolff’s law by establishing a dependence between Young’s modulus and bone apparent density and by formulating a constitutive relation between bone mass supply and the state of strain. The goal of this study is to demonstrate that adding tissue composition as state variables in the constitutive relations governing the stress-strain response and the mass supply represents a very general and straightforward method to model interstitial growth and remodeling in a wide variety of biological tissues. The foundation for this approach is rooted in the framework of mixture theory, which models the tissue as a mixture of multiple solid and fluid constituents. A further generalization is to allow each solid constituent in a constrained solid mixture to have its own reference (stress-free) configuration. Several illustrations are provided, ranging from bone remodeling to cartilage tissue engineering and cervical remodeling during pregnancy. PMID:23562499

  1. Association of socioeconomic and clinical variables with the state of frailty among older inpatients1

    PubMed Central

    Tavares, Darlene Mara dos Santos; Nader, Isabella Danielle; de Paiva, Mariana Mapelli; Dias, Flavia Aparecida; Pegorari, Maycon Sousa

    2015-01-01

    Objectives: to identify the prevalence of frailty among inpatient older adults in a clinical hospital and check the association of the socioeconomic and clinical characteristics with the state of frailty. Method: observational, cross-sectional and analytical study, conducted with 255 hospitalized patients. Materials used: structured instrument for the economical and clinical data and frailty phenotype of Fried. Descriptive and bivariate statistical analysis was carried out and, by means of chi-square tests and ANOVA One-way (p<0.05). Results: the prevalence of frailty corresponded to 26.3%, while pre-frailty represented 53.3%. The highest proportion of frail seniors was identified for 80 years or older (p = 0.004), widowed (p = 0.035) and with the highest average length of stay (p = 0.006). Conclusion: inpatient older adults presented high percentages of frail states associated with socioeconomic variables and hospitalization period. The identification of the health conditions related to pre-frailty and frailty can foster the planning and implementation of the assistance to older adults in this context. PMID:26626004

  2. Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index

    NASA Astrophysics Data System (ADS)

    Mignone, A.; McKinney, Jonathan C.

    2007-07-01

    The role of the equation of state (EoS) for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant Γ-law EoS, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic EoS that better approximates the single-specie relativistic gas. The paper focuses on three different topics. First, the influence of a more realistic EoS on the propagation of fast magnetosonic shocks is investigated. This calls into question the validity of the constant Γ-law EoS in problems where the temperature of the gas substantially changes across hydromagnetic waves. Secondly, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general EoS and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of astrophysical relevance (including magnetized accretion flows around Kerr black holes) are compared using different equations of state. Our main conclusion is that the choice of a realistic EoS can considerably bear upon the solution when transitions from cold to hot gas (or vice versa) are present. Under these circumstances, a polytropic EoS can significantly endanger the solution.

  3. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    SciTech Connect

    Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.

  4. Thermocline Temperature Variability Reveals Shifts in the Tropical Pacific Mean State across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Hertzberg, J. E.; Schmidt, M. W.

    2014-12-01

    The eastern equatorial Pacific (EEP) is one of the most dynamic oceanographic regions, making it a critical area for understanding past climate change. Despite this, there remains uncertainty on the climatic evolution of the EEP through the last glacial period. According to the ocean dynamical thermostat theory, warming (cooling) of the tropical Pacific Ocean may lead to a more La Niña (El Niño)-like mean state due to zonally asymmetric heating and subsequent easterly (westerly) wind anomalies at the equator (Clement and Cane, 1999). Attempts to understand these feedbacks on millennial timescales across Marine Isotope Stage 3 (MIS 3) have proven to be fruitful in the western equatorial Pacific (WEP) (Stott et al., 2002), yet complimentary, high-resolution records from the EEP are lacking. To provide a more complete understanding of the feedback mechanisms of the dynamical thermostat across periods of abrupt climate change, we reconstruct thermocline temperature variability across MIS 3 from a sediment core located in the EEP, directly within the equatorial cold tongue upwelling region (core MV1014-02-17JC). Temperature anomalies in thermocline waters of the EEP are integrally linked to the ENSO system, with large positive and negative anomalies recorded during El Niño and La Niña events, respectively. Mg/Ca ratios in the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei were measured at 2 cm intervals, resulting in a temporal resolution of <200 years. Preliminary results across Interstadials 5-7 reveal warmer thermocline temperatures (an increase in Mg/Ca of .25 ± .02 mmol/mol) during periods of cooling following peak Interstadial warmth over Greenland, as seen from the NGRIP δ18O record. Thus, periods of cooling over Greenland appear to correspond to an El Niño-like mean state in the tropical Pacific, in line with predictions of an ocean dynamical thermostat. Interestingly, Heinrich Event 3 corresponds to cooler thermocline

  5. Assessing positive emotional states in dogs using heart rate and heart rate variability.

    PubMed

    Zupan, Manja; Buskas, Julia; Altimiras, Jordi; Keeling, Linda J

    2016-03-01

    Since most animal species have been recognized as sentient beings, emotional state may be a good indicator of welfare in animals. The goal of this study was to manipulate the environment of nine beagle research dogs to highlight physiological responses indicative of different emotional experiences. Stimuli were selected to be a more or a less positive food (meatball or food pellet) or social reward (familiar person or less familiar person). That all the stimuli were positive and of different reward value was confirmed in a runway motivation test. Dogs were tested individually while standing facing a display theatre where the different stimuli could be shown by lifting a shutter. The dogs approached and remained voluntarily in the test system. They were tested in four sessions (of 20s each) for each of the four stimuli. A test session consisted of four presentation phases (1st exposure to stimulus, post exposure, 2nd exposure, and access to reward). Heart rate (HR) and heart rate variability (HRV) responses were recorded during testing in the experimental room and also when lying resting in a quiet familiar room. A new method of 'stitching' short periods of HRV data together was used in the analysis. When testing different stimuli, no significant differences were observed in HR and LF:HF ratio (relative power in low frequency (LF) and the high-frequency (HF) range), implying that the sympathetic tone was activated similarly for all the stimuli and may suggest that dogs were in a state of positive arousal. A decrease of HF was associated with the meatball stimulus compared to the food pellet and the reward phase (interacting with the person or eating the food) was associated with a decrease in HF and RMSSD (root mean square of successive differences of inter-beat intervals) compared to the preceding phase (looking at the person or food). This suggests that parasympathetic deactivation is associated with a more positive emotional state in the dog. A similar reduction

  6. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    SciTech Connect

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-15

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  7. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  8. Variability and potential sources of summer PM2.5 in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Saunders, Rolando O.; Waugh, Darryn W.

    2015-09-01

    The variability of ground-level concentrations of fine suspended particulate matter (PM2.5) in the Northeastern United States is examined using observed PM2.5 from multiple data networks together with output from the Modern-Era Retrospective Analysis for Research and Applications Aerosol Reanalysis (MERRAero). The long-term variations as well as the occurrence of short-term high-concentration episodes in the region are investigated for the period 1999-2013. This analysis shows that over this period there has been a significant decrease in summer-mean PM2.5. A decrease in the occurrence and magnitude of high-PM2.5 events in the Northeastern U.S. region is also observed. The potential sources of PM2.5 are analyzed using MERRAero aerosol optical depth for two of the main components of the pollutant: organic carbon and ammonium sulfate. The analysis indicates that high-PM2.5 events in the Northeastern U.S. are, generally, the result of long range transport of smoke from large boreal wildfires, Midwestern industrial emissions, or a combination of both. There are roughly equal numbers of events due to natural or anthropogenic sources for the 2002-2012 period for this region. The events that have an anthropogenic source are characterized by a strong high pressure system in the Southern U.S. that cause aerosols to be advected from the Midwest into the Northeastern U.S. The meteorology related to wildfire events is more variable, consistent with the varied locations of the fires that cause aerosol events in the Northeastern U.S.

  9. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID

  10. Soil Carbon Variability and Change Detection in the Forest Inventory Analysis Database of the United States

    NASA Astrophysics Data System (ADS)

    Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.

    2014-12-01

    The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.

  11. Modulation depth estimation and variable selection in state-space models for neural interfaces.

    PubMed

    Malik, Wasim Q; Hochberg, Leigh R; Donoghue, John P; Brown, Emery N

    2015-02-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID

  12. Interannual hydroclimatic variability and its influence on winter nutrient loadings over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Oh, J.; Sankarasubramanian, A.

    2012-07-01

    It is well established in the hydroclimatic literature that the interannual variability in seasonal streamflow could be partially explained using climatic precursors such as tropical sea surface temperature (SST) conditions. Similarly, it is widely known that streamflow is the most important predictor in estimating nutrient loadings and the associated concentration. The intent of this study is to bridge these two findings so that nutrient loadings could be predicted using season-ahead climate forecasts forced with forecasted SSTs. By selecting 18 relatively undeveloped basins in the Southeast US (SEUS), we relate winter (January-February-March, JFM) precipitation forecasts that influence the JFM streamflow over the basin to develop winter forecasts of nutrient loadings. For this purpose, we consider two different types of low-dimensional statistical models to predict 3-month ahead nutrient loadings based on retrospective climate forecasts. Split sample validation of the predictive models shows that 18-45% of interannual variability in observed winter nutrient loadings could be predicted even before the beginning of the season for at least 8 stations. Stations that have very high coefficient of determination (> 0.8) in predicting the observed water quality network (WQN) loadings during JFM exhibit significant skill in predicting seasonal total nitrogen (TN) loadings using climate forecasts. Incorporating antecedent flow conditions (December flow) as an additional predictor did not increase the explained variance in these stations, but substantially reduced the root-mean-square error (RMSE) in the predicted loadings. Relating the dominant mode of winter nutrient loadings over 18 stations clearly illustrates the association with El Niño Southern Oscillation (ENSO) conditions. Potential utility of these season-ahead nutrient predictions in developing proactive and adaptive nutrient management strategies is also discussed.

  13. Ocean acidification state in western Antarctic surface waters: drivers and interannual variability

    NASA Astrophysics Data System (ADS)

    Mattsdotter Björk, M.; Fransson, A.; Chierici, M.

    2013-05-01

    Each December during four years from 2006 to 2010, the surface water carbonate system was measured and investigated in the Amundsen Sea and Ross Sea, western Antarctica as part of the Oden Southern Ocean expeditions (OSO). The I/B Oden started in Punta Arenas in Chile and sailed southwest, passing through different regimes such as, the marginal/seasonal ice zone, fronts, coastal shelves, and polynyas. Discrete surface water was sampled underway for analysis of total alkalinity (AT), total dissolved inorganic carbon (CT) and pH. Two of these parameters were used together with sea-surface temperature (SST), and salinity to obtain a full description of the surface water carbonate system, including pH in situ and calcium carbonate saturation state of aragonite (ΩAr) and calcite (ΩCa). Multivariate analysis was used to investigate interannual variability and the major controls (sea-ice concentration, SST, salinity and chlorophyll a) on the variability in the carbonate system and Ω. This analysis showed that SST and chlorophyll a were the major drivers of the Ω variability in both the Amundsen and Ross seas. In 2007, the sea-ice edge was located further south and the area of the open polynya was relatively small compared to 2010. We found the lowest pH in situ (7.932) and Ω = 1 values in the sea-ice zone and in the coastal Amundsen Sea, nearby marine out flowing glaciers. In 2010, the sea-ice coverage was the largest and the areas of the open polynyas were the largest for the whole period. This year we found the lowest salinity and AT, coinciding with highest chl a. This implies that the highest ΩAr in 2010 was likely an effect of biological CO2 drawdown, which out-competed the dilution of carbonate ion concentration due to large melt water volumes. We predict and discuss future Ω values, using our data and reported rates of oceanic uptake of anthropogenic CO2, suggesting that the Amundsen Sea will become undersaturated with regard to aragonite about 20 yr sooner

  14. Homeostatic and Circadian Contribution to EEG and Molecular State Variables of Sleep Regulation

    PubMed Central

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M.; Emmenegger, Yann; Franken, Paul

    2013-01-01

    Study Objectives: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. Design: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Setting: Mouse sleep laboratory. Participants: Male mice. Interventions: Sleep deprivation. Results: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Conclusions: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Citation: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state

  15. A Formal Method for Identifying Distinct States of Variability in Time-varying Sources: Sgr A* as an Example

    NASA Astrophysics Data System (ADS)

    Meyer, L.; Witzel, G.; Longstaff, F. A.; Ghez, A. M.

    2014-08-01

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.

  16. A formal method for identifying distinct states of variability in time-varying sources: SGR A* as an example

    SciTech Connect

    Meyer, L.; Witzel, G.; Ghez, A. M.; Longstaff, F. A.

    2014-08-10

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.

  17. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students

    PubMed Central

    Dimitriev, Aleksey D.

    2016-01-01

    Objectives Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. Methods A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger’s State-Trait Anxiety Inventory was used to assess the level of SA. Results Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. Conclusions The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation. PMID:26807793

  18. Measurements of Variable-Shaped Electron Beams with Solid-State Detector and Scattering Aperture

    NASA Astrophysics Data System (ADS)

    Sakakibara, Makoto; Ohta, Hiroya; Kanosue, Tadashi; Sohda, Yasunari; Ban, Naoma

    2007-09-01

    A highly accurate method for measuring beam properties in a variable-shaped electron beam (VSB) system has been developed. This method is based on a knife-edge method with a solid-state detector (SSD) and scattering apertures. In VSB system, it is necessary to measure both beam profile and beam position for a long time. To meet this requirement, many aperture marks on a silicon membrane were prepared in a measurement unit. Using this unit, the accuracy and stability of beam-size and beam position measurements were evaluated in VBS system (HL-7000D, Hitachi-HITEC). As a result, the repeatability error for beam size was obtained to be smaller than 2 nm (3σ) and the repeatability error for beam position was obtained to be 0.82 nm (3σ). Moreover, a multitude of repeat experiments showed that this measurement unit can be used for more than ten years. Consequently, it was confirmed that this measurement method is useful for the high accuracy of a VSB system.

  19. The Pattern Across the Continental United States of Evapotranspiration Variability Associated with Water Availability

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.

    2015-01-01

    The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.

  20. Bell inequalities for continuous-variable systems in generic squeezed states

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Vennin, Vincent

    2016-06-01

    Bell inequalities for continuous-variable bipartite systems are studied. The inequalities are expressed in terms of pseudo-spin operators, and quantum expectation values are calculated for generic two-mode squeezed states characterized by a squeezing parameter r and a squeezing angle φ . Allowing for generic values of the squeezing angle is especially relevant when φ is not under experimental control, such as in cosmic inflation, where small quantum fluctuations in the early universe are responsible for structures formation. Compared to previous studies restricted to φ =0 and to a fixed orientation of the pseudo-spin operators, allowing for φ ≠0 and optimizing the angular configuration leads to a completely new and rich phenomenology. Two dual schemes of approximation are designed that allow for comprehensive exploration of the squeezing parameter space. In particular, it is found that Bell inequalities can be violated when the squeezing parameter r is large enough, r ≳1.12 , and the squeezing angle φ is small enough, φ ≲0.34 e-r .

  1. Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states

    PubMed Central

    Abid, Aamir D.; Kanematsu, Masakazu; Young, Thomas M.; Kennedy, Ian M.

    2013-01-01

    We utilized gas-phase diffusion flame synthesis, which has potential for large-scale production of metal oxide nanoparticles, to produce iron oxide nanoparticles (IONPs) with variable oxidation states. The efficacy of these materials in removal of arsenate (As(V) ) from water was assessed. Two different flame configurations, a diffusion flame (DF) and an inverse diffusion flame (IDF), were employed to synthesize six different IONPs by controlling flame conditions. The IONPs produced in the IDF configuration (IDF-IONPs) had smaller particle diameters (4.8 – 8.2 nm) and larger surface areas (141–213 m2/g) than the IONPs produced in the DF configuration (29 nm, 36 m2/g), which resulted in their higher adsorption capacities. As(V) adsorption capacities of the IDF-IONPs increased when the IONPs were synthesized in more oxidizing conditions. The fully oxidized IDF-IONPs, maghemite (γ-Fe2O3), showed the highest As(V) adsorption capacity, comparable to that of magnetite nanocrystals synthesized by thermal decomposition of iron pentacarbonyl and equivalent to three to four times higher capacity than that of a commonly used goethite-based adsorbent. All IONPs were magnetically responsive, which is of great importance for solid−liquid separation. This study demonstrates that the IONPs synthesized in gas-phase flame, particularly IDF-IONPs, are excellent adsorbents because of their high As(V) sorption capacity, potential for large-scale production, and useful magnetic property. PMID:23645964

  2. Hydraulic fracturing water use variability in the United States and potential environmental implications

    PubMed Central

    Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Abstract Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. PMID:26937056

  3. Hydraulic fracturing water use variability in the United States and potential environmental implications

    NASA Astrophysics Data System (ADS)

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-07-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000-36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  4. A Piecewise Linear State Variable Technique for Real Time Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Roth, S. P.

    1982-01-01

    The emphasis on increased aircraft and propulsion control system integration and piloted simulation has created a need for higher fidelity real time dynamic propulsion models. A real time propulsion system modeling technique which satisfies this need and which provides the capabilities needed to evaluate propulsion system performance and aircraft system interaction on manned flight simulators was developed and demonstrated using flight simulator facilities at NASA Ames. A piecewise linear state variable technique is used. This technique provides the system accuracy, stability and transient response required for integrated aircraft and propulsion control system studies. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model contains approximately 7.0 K bytes of in-line computational code and 14.7 K of block data. It has an 8.9 ms cycle time on a Xerox Sigma 9 computer. A Pegasus-Harrier propulsion system was used as a baseline for developing the mathematical modeling and simulation technique. A hydromechanical and water injection control system was also simulated. The model was programmed for interfacing with a Harrier aircraft simulation at NASA Ames. Descriptions of the real time methodology and model capabilities are presented.

  5. 3D hydrodynamics and shear rates' variability in the United States Pharmacopeia Paddle Dissolution Apparatus.

    PubMed

    Ameur, Houari; Bouzit, Mohamed

    2013-08-16

    The 3D hydrodynamics and shear rates distributions within the United States Pharmacopeia Apparatus 2 have been investigated in this paper. With the help of a CFD package, several geometric modifications to the device were evaluated in this study. Specially, we examine the influence of impeller clearance, blade diameter, shape of the vessel base and shape of the lower part of blade. Increasing the impeller clearance was observed to exacerbate the heterogeneity in shear and would likely result in greater variability in dissolution measurements. Use of moderate blade diameter and dished bottom were observed to reduce shear heterogeneity in the regions where tablets are most likely to visit during testing. The comparative analysis shows better reproducibility and accelerated dissolution rates with the modified vessel shape, the dished bottom can enhance mixing near the vessel base when compared with the flat bottom. Increasing length of the lower edge of the paddle was observed to generate high radial pumping and to enlarge the dead zone located at the center of the vessel base. PMID:23680733

  6. Excited-state hydroxyl maser catalogue from the methanol multibeam survey - I. Positions and variability

    NASA Astrophysics Data System (ADS)

    Avison, A.; Quinn, L. J.; Fuller, G. A.; Caswell, J. L.; Green, J. A.; Breen, S. L.; Ellingsen, S. P.; Gray, M. D.; Pestalozzi, M.; Thompson, M. A.; Voronkov, M. A.

    2016-09-01

    We present the results of the first complete unbaised survey of the Galactic plane for 6035-MHz excited-state hydroxyl (ex-OH) masers undertaken as part of the methanol multibeam (MMB) survey. These observations cover the Galactic longitude ranges 186° < l < 60° including the Galactic Centre. We report the detection of 127 ex-OH masers within the survey region, 47 being new sources. The positions of new detections were determined from interferometric observations with the Australia Telescope Compact Array. We discuss the association of 6035-MHz masers in our survey with the 6668-MHz masers from the MMB Survey, finding 37 likely CH3OH-ex-OH maser pairs with physical separations of ≤0.03 pc and 55 pairings separated by ≤0.1 pc. Using these we calculate for the first time an ex-OH maser lifetime of between 3.3 × 103 and 8.3 × 103 yr. We also discuss the variability of the 6035-MHz masers and detection rates of counterpart 6030-MHz ex-OH masers (28 per cent of our sample having detection at both frequencies).

  7. Hydraulic fracturing water use variability in the United States and potential environmental implications

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  8. Water Table Response to Climate Variability In The Northeastern United State

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.

    2014-12-01

    The New England region is one of the few locations of the United States that is experiencing an increasing amount of annual precipitation over the last few decades. This increase in precipitation is not necessarily resulting in higher annual streamflow but is impacting the amount of water recharging subsurface reservoirs. In this contribution we present a quantitative analysis of instrumental data and use that to drive a regional modeling study of the interaction of recharge water and the distinct aquifers of the region. The region is characterized by four main aquifer recharge types, which are shown to have distinct hydraulic responses to recharge variability due to both their aquifer hydraulic properties and their hydrogeologic setting. Assessments of hydraulic properties allows the prediction of ground water storage changes from the water level changes. Modeling results show that the timing of recharge to the aquifer system has not necessarily changed but the amount precipitation during these times has increased significantly. The last ten years of ground water storage prediction shows a significant increase in the amount of time when positive storage conditions are present. Extreme precipitation events from tropical cyclones have resulted in some of the highest water tables recorded in the instrumental record. Comparison of these results to those from paleo-hydrological studies on lake levels suggest that this region is experiencing some of the wettest conditions recorded since de-glaciation. These results have significant implications for management approaches dealing with low flow stream requirements across the region.

  9. Water Table Response to Climate Variability In The Northeastern United States

    NASA Astrophysics Data System (ADS)

    Boutt, David

    2015-04-01

    The New England region is one of the few locations of the United States that is experiencing an increasing amount of annual precipitation over the last few decades. This increase in precipitation is not necessarily resulting in higher annual streamflow but is impacting the amount of water recharging subsurface reservoirs. In this contribution we present a quantitative analysis of instrumental data and use that to drive a regional modeling study of the interaction of recharge water and the distinct aquifers of the region. The region is characterized by four main aquifer recharge types, which are shown to have distinct hydraulic responses to recharge variability due to both their aquifer hydraulic properties and their hydrogeologic setting. Assessments of hydraulic properties allows the prediction of ground water storage changes from the water level changes. Modeling results show that the timing of recharge to the aquifer system has not necessarily changed but the amount precipitation during these times has increased significantly. The last ten years of ground water storage prediction shows a significant increase in the amount of time when positive storage conditions are present. Extreme precipitation events from tropical cyclones have resulted in some of the highest water tables recorded in the instrumental record. Comparison of these results to those from paleo-hydrological studies on lake levels suggest that this region is experiencing some of the wettest conditions recorded since de-glaciation. These results have significant implications for management approaches dealing with low flow stream requirements across the region.

  10. Theorems and Application of Local Activity of CNN with Five State Variables and One Port

    PubMed Central

    Xiong, Gang; Dong, Xisong; Xie, Li; Yang, Thomas

    2012-01-01

    Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems. PMID:22611440

  11. An internal state variable mapping approach for Li-Plating diagnosis

    NASA Astrophysics Data System (ADS)

    Bai, Guangxing; Wang, Pingfeng

    2016-08-01

    Li-ion battery failure becomes one of major challenges for reliable battery applications, as it could cause catastrophic consequences. Compared with capacity fading resulted from calendar effects, Li-plating induced battery failures are more difficult to identify, as they causes sudden capacity loss leaving limited time for failure diagnosis. This paper presents a new internal state variable (ISV) mapping approach to identify values of immeasurable battery ISVs considering changes of inherent parameters of battery system dynamics for Li-plating diagnosis. Employing the developed ISV mapping approach, an explicit functional relationship model between measurable battery signals and immeasurable battery ISVs can be developed. The developed model can then be used to identify ISVs from an online battery system for the occurrence identification of Li-plating. Employing multiphysics based simulation of Li-plating using COMSOL, the proposed Li-plating diagnosis approach is implemented under different conditions in the case studies to demonstrate its efficacy in diagnosis of Li-plating onset timings.

  12. Classification of archaeological sherds across the southeast United States based on variable selection from compositional fingerprints.

    PubMed

    Pizarro, C; González-Sáiz, J M; Esteban-Díez, I; Rodríguez-Tecedor, S; Pérez-del-Notario, Nuria; Sáenz-González, C

    2009-07-30

    The transfer of advances in chemometrics into archaeometric research opens a wide range of new application possibilities in this rapidly developing field. The present research represents a feasibility study aimed at showing how the huge potential that multivariate analysis and feature selection techniques have demonstrated for classification purposes can be extrapolated to archaeological provenance studies, thus pursuing an enhancement of the resulting classification performance. The classification problem studied here was related to the discrimination of pottery sherds from different sources across the southeast of the United States from their compositional fingerprints. The sample elemental concentrations were analyzed using the stepwise linear discriminant analysis (SLDA) method, thus simultaneously performing feature selection and classification. Several approaches, more or less restrictive according to the geographical scope and the number of considered classes, were explored, following a hierarchical classification approach. In contrast to previous studies on the same data set, the reliable and unequivocal classification strategy presented here did not merely focus on developing a large-scale classification into broad geographical areas, but finer classifications were also successively obtained until samples were assigned into individual regions. The great discrimination ability and effectiveness of the classification methodology proposed are promising and encourage its application to new samples of unknown provenance and the feasibility of using similar approaches in other archaeological studies. The high quality results obtained were even more remarkable considering the relatively small number of discriminant variables selected in each case by the stepwise procedure. PMID:19523557

  13. Variability of runoff-based drought conditions in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory; Wolock, David M.; Austin, Samuel H.

    2016-01-01

    In this study, a monthly water-balance model is used to simulate monthly runoff for 2109 hydrologic units (HUs) in the conterminous United States (CONUS) for water-years 1901 through 2014. The monthly runoff time series for each HU were smoothed with a 3-month moving average, and then the 3-month moving-average runoff values were converted to percentiles. For each HU, a drought was considered to occur when the HU runoff percentile dropped to the 20th percentile or lower. A drought was considered to end when the HU runoff percentile exceeded the 20th percentile. After identifying drought events for each HU, the frequency and length of drought events were examined. Results indicated that (1) the longest mean drought lengths occur in the eastern CONUS and parts of the Rocky Mountain region and the northwestern CONUS, (2) the frequency of drought is highest in the southwestern and central CONUS, and lowest in the eastern CONUS, the Rocky Mountain region, and the northwestern CONUS, (3) droughts have occurred during all months of the year and there does not appear to be a seasonal pattern to drought occurrence, (4) the variability of precipitation appears to have been the principal climatic factor determining drought, and (5) for most of the CONUS, drought frequency appears to have decreased during the 1901 through 2014 period.

  14. Distinguishing State Variability From Trait Change in Longitudinal Data: The Role of Measurement (Non)Invariance in Latent State-Trait Analyses

    PubMed Central

    Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias

    2014-01-01

    Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650

  15. Depression and resting state heart rate variability in children and adolescents - A systematic review and meta-analysis.

    PubMed

    Koenig, Julian; Kemp, Andrew H; Beauchaine, Theodore P; Thayer, Julian F; Kaess, Michael

    2016-06-01

    Among adults, depression is associated with reduced vagal activity, as indexed by high frequency heart rate variability [HF-HRV]), which correlates inversely with depression severity. Available evidence in depressed children and adolescents remains to be reviewed systematically. A search of the literature was performed to identify studies reporting (i) HF-HRV in clinically depressed children/adolescents relative to controls (k=4, n=259) and (ii) the association between HF-HRV and depressive symptoms as measured by standardized psychometric instruments in children and adolescents (k=6, n=2625). Random-effects meta-analysis on group differences revealed significant effects that were associated with a moderate effect size (Hedges' g=-0.59; 95% CI [-1.05; -0.13]), indicating lower resting state HF-HRV among clinically depressed children/adolescents (n=99) compared to healthy controls (n=160), consistent with findings among adults. While no correlation between HF-HRV and depressive symptom severity was observed (r=-.041 [-0.143; 0.062]), these additional correlational findings are limited to non-clinical samples. Findings have important clinical implications including a potentially increased risk for future physical ill health and also the identification of potential new treatment targets in child and adolescent depression. PMID:27185312

  16. Ocean acidification state in western Antarctic surface waters: controls and interannual variability

    NASA Astrophysics Data System (ADS)

    Mattsdotter Björk, M.; Fransson, A.; Torstensson, A.; Chierici, M.

    2014-01-01

    During four austral summers (December to January) from 2006 to 2010, we investigated the surface-water carbonate system and its controls in the western Antarctic Ocean. Measurements of total alkalinity (AT), pH and total inorganic carbon (CT) were investigated in combination with high-frequency measurements on sea-surface temperature (SST), salinity and Chl a. In all parameters we found large interannual variability due to differences in sea-ice concentration, physical processes and primary production. The main result from our observations suggests that primary production was the major control on the calcium carbonate saturation state (Ω) in austral summer for all years. This was mainly reflected in the covariance of pH and Chl a. In the sea-ice-covered parts of the study area, pH and Ω were generally low, coinciding with low Chl a concentrations. The lowest pH in situ and lowest aragonite saturation (ΩAr ~ 1.0) were observed in December 2007 in the coastal Amundsen and Ross seas near marine outflowing glaciers. These low Ω and high pH values were likely influenced by freshwater dilution. Comparing 2007 and 2010, the largest ΩAr difference was found in the eastern Ross Sea, where ΩAr was about 1.2 units lower in 2007 than in 2010. This was mainly explained by differences in Chl a (i.e primary production). In 2010 the surface water along the Ross Sea shelf was the warmest and most saline, indicating upwelling of nutrient and CO2-rich sub-surface water, likely promoting primary production leading to high Ω and pH. Results from multivariate analysis agree with our observations showing that changes in Chl a had the largest influence on the ΩAr variability. The future changes of ΩAr were estimated using reported rates of the oceanic uptake of anthropogenic CO2, combined with our data on total alkalinity, SST and salinity (summer situation). Our study suggests that the Amundsen Sea will become undersaturated with regard to aragonite about 40 yr sooner than

  17. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters

    SciTech Connect

    Wang Yu; Su Xiaolong; Shen Heng; Tan Aihong; Xie Changde; Peng Kunchi

    2010-02-15

    One-way quantum computation based on measurement and multipartite cluster entanglement offers the ability to perform a variety of unitary operations only through different choices of measurement bases. Here we present an experimental study toward demonstrating the controlled-X operation, a two-mode gate in which continuous variable (CV) four-partite cluster states of optical modes are utilized. Two quantum teleportation elements are used for achieving the gate operation of the quantum state transformation from input target and control states to output states. By means of the optical cluster state prepared off-line, the homodyne detection and electronic feeding forward, the information carried by the input control state is transformed to the output target state. The presented scheme of the controlled-X operation based on teleportation can be implemented nonlocally and deterministically. The distortion of the quantum information resulting from the imperfect cluster entanglement is estimated with the fidelity.

  18. Tailoring the Properties of Poly(ethylene terephthalate) without Addition of Fillers via Solid-State Shear Pulverization

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia; Kasimatis, Kosmas; Torkelson, John

    2008-03-01

    We demonstrate the ability to very strongly tune the physical and mechanical properties of poly(ethylene terephthalate) (PET) by changing the processing conditions of neat PET during solid-state shear pulverization without addition of any fillers or nucleating agents. Using differential scanning calorimetry, we observe a roughly factor of 3 increase in crystallinity of PET that has been pulverized and subsequently melted relative to the unprocessed PET. We also observe a dramatic increase in the rate of crystallization of the pulverized samples. Rheological characterization has demonstrated an increase in viscosity of the pulverized material, which can be ascribed to chain branching in the pulverized product. We also observe significant reductions in the oxygen permeability of the PET with pulverization as well as enhancements in mechanical properties that are commensurate with the modified crystallization properties of the pulverized PET.

  19. The Influence of Environmental Variables on the Presence of White Sharks, Carcharodon carcharias at Two Popular Cape Town Bathing Beaches: A Generalized Additive Mixed Model

    PubMed Central

    Weltz, Kay; Kock, Alison A.; Winker, Henning; Attwood, Colin; Sikweyiya, Monwabisi

    2013-01-01

    Shark attacks on humans are high profile events which can significantly influence policies related to the coastal zone. A shark warning system in South Africa, Shark Spotters, recorded 378 white shark (Carcharodon carcharias) sightings at two popular beaches, Fish Hoek and Muizenberg, during 3690 six-hour long spotting shifts, during the months September to May 2006 to 2011. The probabilities of shark sightings were related to environmental variables using Binomial Generalized Additive Mixed Models (GAMMs). Sea surface temperature was significant, with the probability of shark sightings increasing rapidly as SST exceeded 14°C and approached a maximum at 18°C, whereafter it remains high. An 8 times (Muizenberg) and 5 times (Fish Hoek) greater likelihood of sighting a shark was predicted at 18°C than at 14°C. Lunar phase was also significant with a prediction of 1.5 times (Muizenberg) and 4 times (Fish Hoek) greater likelihood of a shark sighting at new moon than at full moon. At Fish Hoek, the probability of sighting a shark was 1.6 times higher during the afternoon shift compared to the morning shift, but no diel effect was found at Muizenberg. A significant increase in the number of shark sightings was identified over the last three years, highlighting the need for ongoing research into shark attack mitigation. These patterns will be incorporated into shark awareness and bather safety campaigns in Cape Town. PMID:23874668

  20. The influence of environmental variables on the presence of white sharks, Carcharodon carcharias at two popular Cape Town bathing beaches: a generalized additive mixed model.

    PubMed

    Weltz, Kay; Kock, Alison A; Winker, Henning; Attwood, Colin; Sikweyiya, Monwabisi

    2013-01-01

    Shark attacks on humans are high profile events which can significantly influence policies related to the coastal zone. A shark warning system in South Africa, Shark Spotters, recorded 378 white shark (Carcharodon carcharias) sightings at two popular beaches, Fish Hoek and Muizenberg, during 3690 six-hour long spotting shifts, during the months September to May 2006 to 2011. The probabilities of shark sightings were related to environmental variables using Binomial Generalized Additive Mixed Models (GAMMs). Sea surface temperature was significant, with the probability of shark sightings increasing rapidly as SST exceeded 14 °C and approached a maximum at 18 °C, whereafter it remains high. An 8 times (Muizenberg) and 5 times (Fish Hoek) greater likelihood of sighting a shark was predicted at 18 °C than at 14 °C. Lunar phase was also significant with a prediction of 1.5 times (Muizenberg) and 4 times (Fish Hoek) greater likelihood of a shark sighting at new moon than at full moon. At Fish Hoek, the probability of sighting a shark was 1.6 times higher during the afternoon shift compared to the morning shift, but no diel effect was found at Muizenberg. A significant increase in the number of shark sightings was identified over the last three years, highlighting the need for ongoing research into shark attack mitigation. These patterns will be incorporated into shark awareness and bather safety campaigns in Cape Town. PMID:23874668

  1. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology. 2; Stratospheric and Tropospheric Ozone Variability and the Zonal Wave-One

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, Francoise; Coetzee, Gert J. R.; Hoegger, Bruno; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at () are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network.

  2. Precipitation and evapotranspiration controls on daily runoff variability in the contiguous United States and Puerto Rico

    NASA Astrophysics Data System (ADS)

    Rossi, Matthew W.; Whipple, Kelin X.; Vivoni, Enrique R.

    2016-01-01

    Daily runoff variability is an important driver of fluvial erosion but is difficult to incorporate into landscape evolution models due to limited observations and incomplete understanding of hydroclimatic controls on runoff distributions. Prior work in the contiguous U.S. showed how limitations can be overcome when mean runoff is correlated with the shape of the right tail of runoff distributions. However, which probability distribution functions best capture geomorphically important events and whether patterns in the contiguous U.S. transfer to other settings remain important open questions. Our analysis of large hydroclimatic data sets from the contiguous U.S. and Puerto Rico reveals that stretched exponential distributions provide a common probabilistic framework to evaluate daily rainfall and runoff variability. In both settings, daily runoff variability is correlated with the evapotranspiration ratio, aridity index, and the ratio of wet to dry days. Surprisingly, mean storm depth (estimated from average daily precipitation during wet days only) and storm depth variability are uncorrelated with daily runoff variability in either data set. These findings suggest that first-order controls on runoff variability are processes that reduce runoff during intermediate frequency flows rather than processes that enhance the magnitude of rare floods. However, by normalizing local runoff variability by storm depth variability, some correlations collapse onto a single trend for the contiguous U.S. and Puerto Rico, suggesting a secondary role for rainfall variability on runoff variability. Taken together, this analysis provides a rationale for how hydroclimatic controls on runoff variability can be better incorporated into landscape evolution models from readily available data.

  3. Understanding the Southeast United States "Warming Hole": Forced Response or Internal Variability?

    NASA Astrophysics Data System (ADS)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.

    2015-12-01

    Observed summertime temperatures in the southeast United States did not change significantly from 1895 to 2011 despite the fact that temperatures averaged over the entire U.S. have increased by 0.65°C during this time. A variety of possible causes have been suggested to explain this southeast U.S. "warming hole", including changes in Pacific and Atlantic sea surface temperatures (SSTs) due to internal variability, forcing from anthropogenic aerosols, and changes in local hydrology due to land-use change. Here we investigate some of these mechanisms using the GFDL-CM3 chemistry climate model, one of the CMIP5 models best able to capture the observed warming hole. We use the "aerosol only" and "greenhouse gas only" single forcing simulations to further develop our understanding of the potential drivers of the warming hole. We find that in both simulations, temperatures in the southeast U.S. exhibit a weaker response to anthropogenic forcing compared with the rest of the country, suggesting a preferred regional mode of response that is largely independent of the type of forcing. Increasing anthropogenic aerosols weaken the Bermuda High, reducing the transport of moisture into the southeast U.S. from the Gulf of Mexico. Accordingly, total cloud fraction, precipitation, and soil moisture content are also reduced. These changes are associated with an increase in the surface absorption of shortwave (SW) radiation, thus offsetting the expected cooling due to the radiative effects of the aerosols, and creating a "cooling hole" in the aerosol only simulation. In the greenhouse gas only simulation, there is an opposite-signed response, with increases in the Bermuda High strength and moisture flux into the southeast U.S, and decreases in the surface SW absorption. Finally, the impacts of Pacific and Atlantic SST changes, both forced and internal, on the simulated temperature in the southeast U.S. are also discussed.

  4. Tropical Pacific forcing of Late-Holocene hydrologic variability in the coastal southwest United States

    NASA Astrophysics Data System (ADS)

    Kirby, Matthew E.; Feakins, Sarah J.; Hiner, Christine A.; Fantozzi, Joanna; Zimmerman, Susan R. H.; Dingemans, Theodore; Mensing, Scott A.

    2014-10-01

    Change in water availability is of great concern in the coastal southwest United States (CSWUS). Reconstructing the history of water pre-1800 AD requires the use of proxy data. Lakes provide long-lived, high-resolution terrestrial archives of past hydrologic change, and their sediments contain a variety of proxies. This study presents geochemical and sedimentological data from Zaca Lake, CA (Santa Barbara County) used to reconstruct a 3000 year history of winter season moisture source (δDwax) and catchment run-off (125-2000 μm sand) at decadal resolution. Here we show that winter season moisture source and run-off are highly variable over the past 3000 years; superimposed are regime shifts between wetter or drier conditions that persist on average over multiple centuries. Moisture source and run-off do not consistently covary indicating multiple atmospheric circulation modes where wetter/drier conditions prevail. Grain-size analysis reveals two intervals of multi-century drought with less run-off that pre-date the “epic droughts” as identified by Cook et al. (2004). A well-defined wet period with more run-off is identified during the Little Ice Age. Notably, the grain size data show strong coherence with western North American percent drought area indices for the past 1000 years. As a result, our data extend the history of drought and pluvials back to 3000 calendar years BP in the CSWUS. Comparison to tropical Pacific proxies confirms the long-term relationship between El Niño and enhanced run-off in the CSWUS. Our results demonstrate the long-term importance of the tropical Pacific to the CSWUS winter season hydroclimate.

  5. Tropical Pacific Forcing of Late-Holocene Hydrologic Variability in the Coastal Southwest United States

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.; Feakins, S. J.; Hiner, C.; Fantozzi, J. M.; Zimmerman, S. R. H.; Dingemans, T.; Mensing, S. A.

    2014-12-01

    Change in water availability is of great concern in the coastal southwest United States (CSWUS). Reconstructing the history of water pre-1800 AD requires the use of proxy data. Lakes provide long-lived, high-resolution terrestrial archives of past hydrologic change, and their sediments contain a variety of proxies. This study presents geochemical, sedimentological, and biological data from Zaca Lake, CA (Santa Barbara County) used to reconstruct a 3000 year history of winter season moisture source (dDwax) and catchment run-off (125-2000 mm sand) at decadal resolution. Vegetative response to hydrologic change is also investigated using pollen. Here we show that winter season moisture source and run-off are highly variable over the past 3000 years; superimposed are regime shifts between wetter or drier conditions that persist on average over multiple centuries. Moisture source and run-off do not consistently covary indicating multiple atmospheric circulation modes where wetter/drier conditions prevail. Grain-size analysis reveals two intervals of multi-century drought with less run-off that pre-date the "epic droughts" as identified by Cook et al. (2004). A well-defined wet period with more run-off is identified during the Little Ice Age. Notably, the grain size data show strong coherence with western North American percent drought area indices for the past 1000 years. As a result, our data extend the history of drought and pluvials back to 3000 calendar years BP in the CSWUS. Comparison to tropical Pacific proxies confirms the long-term relationship between El Niño and enhanced run-off in the CSWUS. Our results demonstrate the long-term importance of the tropical Pacific to the CSWUS winter season hydroclimate.

  6. Environmental variables controlling nitric oxide :emissions from agricultural soils in the southeast united states

    NASA Astrophysics Data System (ADS)

    Sullivan, Lee J.; Moore, Thomas C.; Aneja, Viney P.; Robarge, Wayne P.; Pierce, Thomas E.; Geron, Chris; Gay, Bruce

    Fluxes of nitric oxide (NO) were measured during the summer of 1994 (12 July to 11 August) in the Upper Coastal Plain of North Carolina in a continuing effort to characterize NO emissions from intensively managed agricultural soils in the southeastern United States. Previous work during a similar time of year on the same soil type was characterized by severe moisture stress conditions. The summer of 1994 provided a more diverse weather pattern and as a result represented a set of measurements more typical of soil temperature and soil moisture relationships for the southeastern United States. In order to ascertain NO flux response to fertilization and crop type, measurements were made on fields with three distinct fertilizer practices and crop types, namely corn, cotton, and soybean. Average NO fluxes were 21.9 ± 18.6, 4.3 ± 3.7, and 2.1 ± 0.9 ng N m -2 s -1, respectively, for corn, cotton, and soybean. NO flux increased exponentially with soil temperature when soil water content was not limiting [> 30% Water Filled Pore Space (%WFPS)]. During conditions when soil water content was limiting, NO flux was inhibited and had no relationship with soil temperature. Above a value of 30% WFPS, increasing soil water content had no effect on NO emissions (the upper limit of %WFPS could not be estimated due to a lack of data in this regime). Below 30% WFPS, increasing soil moisture increased NO production and lower soil moistures led to decreased NO flux. Increased nitrogen fertilization rates led to higher NO fluxes. However, differences in physiological growth stages between crops confound extractable nitrogen values as decomposing root biomass in the mature corn crop added an undetermined amount of available nitrogen to the soil. Interactions between soil water content, fertilizer application, and soil temperature make it very difficult to predict day-to-day variations of NO flux from our data. There appears to be no simple relation between NO flux and the environmental

  7. Using the Long-term Optical/Infrared Color Variability to Trace the Gamma-ray Jet "State"

    NASA Astrophysics Data System (ADS)

    Isler, Jedidah; Urry, C. Megan; Bailyn, Charles D.; Coppi, Paolo S.; Hasan, Imran; MacPherson, Emily; Buxton, Michelle

    2016-04-01

    We have undertaken a 7-year, multiwavelength program to observe a sample of blazars in various Fermi gamma-ray states, using the Small and Medium Aperture Research Telescope System (SMARTS) 1.3m + ANDICAM instrument in Cerro Tololo, Chile. We present near-daily optical and infrared (OIR) color variability diagrams of these sources and compare the OIR flux and color to the Fermi gamma-ray flux on similar cadence. We then analyze the color variability properties on short and long timescales, as compared to the length of an average gamma-ray flare, to better constrain the physical mechanisms responsible for the variability properties that we observe. From this long-term observational data, we develop a schematic representation of the possible color variability behaviors in blazars and how it is related to the thermal disk and non-thermal jet contributions in both Flat Spectrum Radio Quasars and BL Lac objects.

  8. The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts.

    PubMed

    Lebarbier, Vanessa M; Karim, Ayman M; Engelhard, Mark H; Wu, Yu; Xu, Bo-Qing; Petersen, Eric J; Datye, Abhaya K; Wang, Yong

    2011-11-18

    The effect of zinc promotion on the oxidation state of cobalt in Co/ZrO(2) catalysts was investigated and correlated with the activity and selectivity for ethanol steam reforming (ESR). Catalysts were synthesized by applying incipient wetness impregnation and characterized by using Brunauer-Emmett-Teller (BET), temperature-programmed reduction (TPR) measurements, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Higher ethanol conversion and lower CH(4) selectivity are observed for the Co/ZrO(2) catalyst promoted with Zn as compared to the Co/ZrO(2) catalyst alone. Addition of Zn inhibits the oxidation of metallic cobalt (Co(0) ) particles and results in a higher ratio of Co(0) /Co(2+) in the Zn-promoted Co/ZrO(2) catalyst. These results suggest that metallic cobalt (Co(0) ) is more active than Co(2+) in the ethanol conversion through dehydrogenation and that Co(2+) may play a role in the CH(4) formation. TPR measurements, on the other hand, reveal that Zn addition inhibits the reduction of Co(2+) and Co(3+) , which would lead to the false conclusion that oxidized Co is required to reduce the CH(4) formation. Therefore, TPR measurements may not be appropriate to correlate the degree of metal reducibility (in this case Co(0)) with the catalyst activity for reactions, such as ESR, where oxidizing conditions exist. PMID:21919212

  9. The Effect of Three Cognitive Variables on Students' Understanding of the Particulate Nature of Matter and Its Changes of State

    ERIC Educational Resources Information Center

    Tsitsipis, Georgios; Stamovlasis, Dimitrios; Papageorgiou, George

    2010-01-01

    In this study, students' understanding of the structure of matter and its changes of state such as melting, evaporation, boiling, and condensation was investigated in relation to three cognitive variables: logical thinking (LTh), field dependence/independence, and convergence/divergence dimension. The study took place in Greece with the…

  10. Personality Variables as Predictors of Leadership Role Performance Effectiveness of Administrators of Public Secondary Schools in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Akpan, Charles P.; Archibong, Ijeoma A.

    2012-01-01

    The study sought to find out the predictive effect of self-concept, self-efficacy, self-esteem and locus of control on the instructional and motivational leadership roles performance effectiveness of administrators of public secondary schools in Cross River State of Nigeria. The relative contribution of each of the independent variables to the…

  11. Genetic variability of the European corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) is a widely distributed and serious economic pest to corn production in the U.S. Genetic variability of O. nubilalis was studied in 18 sub-populations in the upper Midwestern United States using amplified fragment length polymorphism (AFLP). The...

  12. Cloning and optimal Gaussian individual attacks for a continuous-variable quantum key distribution using coherent states and reverse reconciliation

    SciTech Connect

    Namiki, Ryo; Koashi, Masato; Imoto, Nobuyuki

    2006-03-15

    We investigate the security of continuous-variable quantum key distribution using coherent states and reverse reconciliation against Gaussian individual attacks based on an optimal Gaussian 1{yields}2 cloning machine. We provide an implementation of the optimal Gaussian individual attack. We also find a Bell-measurement attack which works without delayed choice of measurements and has better performance than the cloning attack.

  13. Self Efficacy and Some Demographic Variables as Predictors of Occupational Stress among Primary School Teachers in Delta State of Nigeria

    ERIC Educational Resources Information Center

    Akpochafo, G. O.

    2014-01-01

    This study investigated self efficacy and some demographic variables as predictors of occupational stress among primary school teachers in Delta State. Three hypotheses were formulated to guide the study. The study adopted a descriptive survey design that utilized an expost-facto research type. A sample of one hundred and twenty primary school…

  14. The Invisible Link: Using State Space Representations to Investigate the Connection between Variables and Their Referents

    ERIC Educational Resources Information Center

    Pollack, Courtney

    2012-01-01

    The ability to represent numerical quantities in symbolic form is a necessary foundation for mathematical competence. Variables are particularly important symbolic representations for learning algebra and succeeding in higher mathematics, but the mechanisms of how students link a variable to what it represents are not well understood. Research…

  15. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.

    2015-11-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.

  16. A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts

    SciTech Connect

    Uribe, Eva C; Sandoval, M Analisa; Sandoval, Marisa N; Boyer, Brian D; Leitch, Rosalyn M

    2009-01-01

    With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

  17. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis.

    PubMed

    Sun, Wei; Huang, Guo H; Zeng, Guangming; Qin, Xiaosheng; Yu, Hui

    2011-03-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH₄+-N concentration>Moisture content>Ash Content>Mean Temperature>Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. PMID:21257193

  18. Effects of additional repeated sprint training during preseason on performance, heart rate variability, and stress symptoms in futsal players: a randomized controlled trial.

    PubMed

    Soares-Caldeira, Lúcio F; de Souza, Eberton A; de Freitas, Victor H; de Moraes, Solange M F; Leicht, Anthony S; Nakamura, Fábio Y

    2014-10-01

    The aim of this study was to investigate whether supplementing regular preseason futsal training with weekly sessions of repeated sprints (RS) training would have positive effects on repeated sprint ability (RSA) and field test performance. Thirteen players from a professional futsal team (22.6 ± 6.7 years, 72.8 ± 8.7 kg, 173.2 ± 6.2 cm) were divided randomly into 2 groups (AddT: n = 6 and normal training group: n = 7). Both groups performed a RSA test, Yo-Yo intermittent recovery test level 1 (YoYo IR1), squat (SJ) and countermovement jumps (CMJ), body composition, and heart rate variability (HRV) measures at rest before and after 4 weeks of preseason training. Athletes weekly stress symptoms were recorded by psychometric responses using the Daily Analysis of Life Demands for Athletes questionnaire and subjective ratings of well-being scale, respectively. The daily training load (arbitrary units) was assessed using the session of rating perceived exertion method. After the preseason training, there were no significant changes for body composition, SJ, CMJ, and RSAbest. The YoYo IR1, RSAmean, RSAworst, and RSAdecreament were significantly improved for both groups (p ≤ 0.05). The HRV parameters improved significantly within both groups (p ≤ 0.05) except for high frequency (HF, absolute and normalized units, [n.u.]), low frequency (LF) (n.u.), and the LF/HF ratio. A moderate effect size for the AddT group was observed for resting heart rate and several HRV measures. Training load and psychometric responses were similar between both groups. Additional RS training resulted in slightly greater positive changes for vagal-related HRV with similar improvements in performance and training stress during the preseason training in futsal players. PMID:24662230

  19. Autogenic variability and dynamic steady-state in sand-bedded rivers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; McElroy, B.; Mohrig, D.

    2004-12-01

    In sand-bedded rivers, the local physics of sediment transport produces spatially varying topography that evolves unpredictably in time, even when the structure of the stream-bed varies little in a statistical sense. Understanding autogenic adjustments within trains of bedforms under conditions of steady and uniform flow is necessary before we can predict the response of channel morphology to changes in flow conditions, e.g. the stage-discharge relationship. Also, dunes may coalesce to form bars, which are capable of laterally deflecting flow and ultimately modifying the path and shape of a channel. Bedforms are the link between sediment transport and channel morphology in sandy rivers, and their collective interactions maintain a dynamic steady-state on the river bottom. We document the evolution of fields of dunes under steady flow in the N. Loup River, NE, using topographic maps generated from low-altitude aerial photography. The distributions of bedform height, length and migration rate are broad (coefficient of variation 0.5 for each), but remain stationary in time. Individual bedforms, however, undergo substantial deformation during migration, through interactions with neighboring bedforms and the associated spatially varying sediment flux. Cross-correlation techniques show that the spatial/temporal correlation coefficient of the sediment-fluid interface decays exponentially with migration distance and time. Hence, the dunes themselves are inherently unstable objects and become unrecognizable from their original form after migrating a few wavelengths, corresponding here to a distance of 2 m and a time of 1 hour. If bedload is the dominant style of sediment transport, then sediment flux may be treated as responding instantaneously to the flow field. We build a simple mathematical model in which instantaneous sediment flux is computed locally from a combination of bed elevation and slope, and we deduce the general form of a surface evolution equation for

  20. Individual Variability and Test-Retest Reliability Revealed by Ten Repeated Resting-State Brain Scans over One Month

    PubMed Central

    Zhou, Changle; Wang, Luoyu; Yang, Ning; Wang, Ze; Dong, Hao-Ming; Yang, Zhi; Zang, Yu-Feng; Zuo, Xi-Nian; Weng, Xu-Chu

    2015-01-01

    Individual differences in mind and behavior are believed to reflect the functional variability of the human brain. Due to the lack of a large-scale longitudinal dataset, the full landscape of variability within and between individual functional connectomes is largely unknown. We collected 300 resting-state functional magnetic resonance imaging (rfMRI) datasets from 30 healthy participants who were scanned every three days for one month. With these data, both intra- and inter-individual variability of six common rfMRI metrics, as well as their test-retest reliability, were estimated across multiple spatial scales. Global metrics were more dynamic than local regional metrics. Cognitive components involving working memory, inhibition, attention, language and related neural networks exhibited high intra-individual variability. In contrast, inter-individual variability demonstrated a more complex picture across the multiple scales of metrics. Limbic, default, frontoparietal and visual networks and their related cognitive components were more differentiable than somatomotor and attention networks across the participants. Analyzing both intra- and inter-individual variability revealed a set of high-resolution maps on test-retest reliability of the multi-scale connectomic metrics. These findings represent the first collection of individual differences in multi-scale and multi-metric characterization of the human functional connectomes in-vivo, serving as normal references for the field to guide the use of common functional metrics in rfMRI-based applications. PMID:26714192

  1. Effects of winter atmospheric circulation on temporal and spatial variability in annual streamflow in the western United States

    USGS Publications Warehouse

    McCabe, G.J., Jr.

    1996-01-01

    Winter mean 700-hectoPascal (hPa) height anomalies, representing the average atmospheric circulation during the snow season, are compared with annual streamflow measured at 140 streamgauges in the western United States. Correlation and anomaly pattern analyses are used to identify relationships between winter mean atmospheric circulation and temporal and spatial variability in annual streamflow. Results indicate that variability in winter mean 700-Hpa height anomalies accounts for a statistically significant portion of the temporal variability in annual streamflow in the western United States. In general, above-average annual streamflow is associated with negative winter mean 700-Hpa height anomalies over the eastern North Pacific Ocean and/or the western United States. The anomalies produce an anomalous flow of moist air from the eastern North Pacific Ocean into the western United States that increases winter precipitation and snowpack accumulations, and subsequently streamflow. Winter mean 700-hPa height anomalies also account for statistically significant differences in spatial distributions of annual streamflow. As part of this study, winter mean atmospheric circulation patterns for the 40 years analysed were classified into five winter mean 700-hPa height anomaly patterns. These patterns are related to statistically significant and physically meaningful differences in spatial distributions of annual streamflow.

  2. Genetic Structure and Molecular Variability of Cucumber mosaic virus Isolates in the United States

    PubMed Central

    Nouri, Shahideh; Arevalo, Rafael; Falk, Bryce W.; Groves, Russell L.

    2014-01-01

    Cucumber mosaic virus (CMV) has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean (Phaseulos vulgaris L.) in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π) was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure. PMID:24801880

  3. Recommendations for State Data Systems: The Importance of Socioeconomic Variables. Policy Alert.

    ERIC Educational Resources Information Center

    Arcia, Emily; Gallagher, James J.

    To determine the extent to which states are able to assess their provision of services to typically underserved populations, this study interviewed 16 Part H (Individuals with Disabilities Education Act) state coordinators. Major findings indicated: (1) six states identified their rural population as most underserved and six identified one or more…

  4. Effect of Selected Variables on Funding State Compensatory and Regular Education in Texas

    ERIC Educational Resources Information Center

    Wiesman, Karen Wheeler

    2009-01-01

    Funding public schools has been an ongoing struggle since the inception of the United States. Beginning with Jefferson's "A General Diffusion of Knowledge" that charged the states with properly funding public schools, to the current day legal battles that continue in states across the Union, America struggles with finding a solution to adequate…

  5. The Public-Good Variable: Can Public Engagement Boost State Support for Higher Education?

    ERIC Educational Resources Information Center

    Weerts, David J.

    2015-01-01

    As state support for higher education has continued its downward slide, several commissions, declarations, and association reports have called on colleges and universities to be more productively engaged with state and regional needs. An underlying subtext of these reports is that the future of state support for higher education hinges on the…

  6. Eastern Tropical Pacific Mean State and Variability During the Past 1000 Years

    NASA Astrophysics Data System (ADS)

    Rustic, G. T.; Koutavas, A.; Marchitto, T. M., Jr.; Linsley, B. K.

    2014-12-01

    Dynamical changes in the tropical Pacific are hypothesized to have exerted an important influence on climate of the past millennium. However, direct proxy evidence in support of this hypothesis from the Eastern Tropical Pacific remains sparse. Here we present a unique 1000+ year continuous record of oceanic mixed layer temperature and its variability from a sediment multi-core collected in 2009 near the Galápagos Islands. The study location sits in the center of action of the El Niño Southern Oscillation (ENSO), a major driver of tropical and global climate variability. We analyzed Mg/Ca ratios of multiple specimens of the mixed-layer dwelling foraminifera Globigerinoides ruber to reconstruct mean sea surface temperature (SST) over the past 1000 years. We also analyzed δ18O from individual specimens of G. ruber from the same samples to assess mixed layer temperature variability during the same period. Both the multi-shell Mg/Ca and single-shell δ18O reveal statistically significant and systematic changes during the past millennium. The Medieval Climate Anomaly (MCA, ~1100-1400 CE) features a sustained period of ~1°C cooler mean surface temperatures and reduced variability (by up to 35%) compared to the late 20th century. Little Ice Age (LIA) mean mixed layer temperatures were comparatively warmer and much more variable than the MCA. Intervals with greater variability than modern, as well as intervals with lower than modern variability are both present in the LIA. The most recent sediment interval corresponding to the period 1985-2009 CE has the highest mean SST of the past 1000 years, although it is within error of temperatures from ~1000 CE. An estimate of the zonal SST gradient of the tropical Pacific based on this Mg/Ca data and similar data from the western Pacific supports a pattern of enhanced zonal gradient during the MCA and reduced gradient during the LIA. We explore the implications of these results for tropical Pacific dynamics in the context of

  7. Data for first NASA Atmospheric Variability Experiment (AVE 1). Part 1: Data tabulation. [rawindsonde data for eastern United States

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Smith, O. E.

    1973-01-01

    A tablulation is given of rawinsonde data for NASA's first Atmospheric Variability Experiment (AVE 1) conducted during the period February 19-22, 1964. Methods of data handling and processing, and estimates of error magnitudes are also given. Data taken on the AVE 1 project in 1964 enabled an analysis of a large sector of the eastern United States on a fine resolution time scale. This experiment was run in February 1964, and data were collected as a wave developed in the East Gulf on a frontal system which extended through the eastern part of the United States. The primary objective of AVE 1 was to investigate the variability of parameters in space and over time intervals of three hours, and to integrate the results into NASA programs which require this type of information. The results presented are those from one approach, and represent only a portion of the total research effort that can be accomplished.

  8. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    SciTech Connect

    Chen, Haixia; Zhang, Jing

    2007-02-15

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning.

  9. Herd management and social variables associated with bulk tank somatic cell count in dairy herds in the eastern United States.

    PubMed

    Schewe, R L; Kayitsinga, J; Contreras, G A; Odom, C; Coats, W A; Durst, P; Hovingh, E P; Martinez, R O; Mobley, R; Moore, S; Erskine, R J

    2015-11-01

    The ability to reduce somatic cell counts (SCC) and improve milk quality depends on the effective and consistent application of established mastitis control practices. The US dairy industry continues to rely more on nonfamily labor to perform critical tasks to maintain milk quality. Thus, it is important to understand dairy producer attitudes and beliefs relative to management practices, as well as employee performance, to advance milk quality within the changing structure of the dairy industry. To assess the adoption rate of mastitis control practices in United States dairy herds, as well as assess social variables, including attitudes toward employees relative to mastitis control, a survey was sent to 1,700 dairy farms in Michigan, Pennsylvania, and Florida in January and February of 2013. The survey included questions related to 7 major areas: sociodemographics and farm characteristics, milking proficiency, milking systems, cow environment, infected cow monitoring and treatment, farm labor, and attitudes toward mastitis and related antimicrobial use. The overall response rate was 41% (21% in Florida, 39% in Michigan, and 45% in Pennsylvania). Herd size ranged from 9 to 5,800 cows. Self-reported 3-mo geometric mean bulk tank SCC (BTSCC) for all states was 194,000 cells/mL. Multivariate analysis determined that proven mastitis control practices such as the use of internal teat sealants and blanket dry cow therapy, and not using water during udder preparation before milking, were associated with lower BTSCC. Additionally, farmer and manager beliefs and attitudes, including the perception of mastitis problems and the threshold of concern if BTSCC is above 300,000 cells/mL, were associated with BTSCC. Ensuring strict compliance with milking protocols, giving employees a financial or other penalty if BTSCC increased, and a perceived importance of reducing labor costs were negatively associated with BTSCC in farms with nonfamily employees. These findings highlight the

  10. An Examination of Teacher Quality Variables Associated with Passing State Content Tests

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo; Harris, Mary M.; Jackson, Jennifer K.

    2009-01-01

    Graduates of a post-baccalaureate secondary education program working on certification in five core subject fields served as a sample for transcript review to investigate how well the variables of number of hours completed for content major course work, the content major grade point average (GPA), and the age of content major course work predicted…

  11. Variables in Second Language Attrition: Advancing the State of the Art

    ERIC Educational Resources Information Center

    Bardovi-Harlig, Kathleen; Stringer, David

    2010-01-01

    This article provides a comprehensive synthesis of research on language attrition to date, with a view to establishing a theoretically sound basis for future research in the domain of second language (L2) attrition. We identify the variables that must be tracked in populations who experience language loss, and we develop a general model for the…

  12. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, Mark A.; Auch, Roger F.; Karstensen, Krista A.; Sayler, Kristi L.; Taylor, Janis L.; Loveland, Thomas R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km x 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human–environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors.

  13. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, M.A.; Auch, R.F.; Karstensen, K.A.; Sayler, K.L.; Taylor, J.L.; Loveland, T.R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km ?? 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human-environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors. ?? 2011.

  14. Variability in Fusarium oxysporum from sugar beets in the United States – Final Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows can cause significant reduction in root yield, sucrose percentage and juice purity in affected sugar beets. Research in our laboratory and others on variability in Fusarium oxysporum associated with sugar beets demonstrated that isolates that are pathogenic on sugar beet can be hig...

  15. Motor variability arises from a slow random walk in neural state.

    PubMed

    Chaisanguanthum, Kris S; Shen, Helen H; Sabes, Philip N

    2014-09-01

    Even well practiced movements cannot be repeated without variability. This variability is thought to reflect "noise" in movement preparation or execution. However, we show that, for both professional baseball pitchers and macaque monkeys making reaching movements, motor variability can be decomposed into two statistical components, a slowly drifting mean and fast trial-by-trial fluctuations about the mean. The preparatory activity of dorsal premotor cortex/primary motor cortex neurons in monkey exhibits similar statistics. Although the neural and behavioral drifts appear to be correlated, neural activity does not account for trial-by-trial fluctuations in movement, which must arise elsewhere, likely downstream. The statistics of this drift are well modeled by a double-exponential autocorrelation function, with time constants similar across the neural and behavioral drifts in two monkeys, as well as the drifts observed in baseball pitching. These time constants can be explained by an error-corrective learning processes and agree with learning rates measured directly in previous experiments. Together, these results suggest that the central contributions to movement variability are not simply trial-by-trial fluctuations but are rather the result of longer-timescale processes that may arise from motor learning. PMID:25186752

  16. Mnemonic Device for Relating the Eight Thermodynamic State Variables: The Energy Pie

    ERIC Educational Resources Information Center

    Fieberg, Jeffrey E.; Girard, Charles A.

    2011-01-01

    A mnemonic device, the energy pie, is presented that provides relationships between thermodynamic potentials ("U," "H," "G," and "A") and other sets of variables that carry energy units, "TS" and "PV." Methods are also presented in which the differential expressions for the potentials and the corresponding Maxwell relations follow from the energy…

  17. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    NASA Astrophysics Data System (ADS)

    Miserev, D. S.

    2016-06-01

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p y of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

  18. Vegetation controls on variably saturated processes between surface water and groundwater and their impact on the state of connection

    NASA Astrophysics Data System (ADS)

    Banks, E. W.; Brunner, P.; Simmons, C. T.

    2011-11-01

    The vadose zone plays an important role in surface water-groundwater interaction and exerts strong influences on biogeochemical, ecological, and hyporheic processes. It is also the presence of an unsaturated zone that controls the state of connection between surface water and groundwater. Despite recent advances on how hydrogeological variables affect surface water-groundwater interactions, there is limited understanding of the hydroclimatic effects of precipitation and evapotranspiration. More specifically, there is a need for a physically based understanding on the changes that may occur in response to changes in vegetation. While it may seem qualitatively obvious that the presence of vegetation can cause an unsaturated zone to develop underneath a riverbed and alter the state of connection, it has so far not been demonstrated quantitatively. Also, the influence of variables such as root extinction depth, topography, and the influence of land clearance has so far not been explored. In this study, fully coupled, physically based 2-D transient homogeneous models were used to simulate the impact of land clearance and revegetation on the state of connection of a perennial river system. The simulations showed that the presence of vegetation can create an unsaturated zone between a river and an aquifer and affect the state of connection and that the removal of deep-rooted vegetation from a catchment may have a significant impact on the state of connection as well as the condition of the water resource.

  19. [Variability patterns of nest construction, physiological state, and morphometric traits in honey bee].

    PubMed

    2014-01-01

    High variability of cells size is used selectively for reproduction of working bees and drones. A decrease in both distance between cells and cells size themselves causes similar effects to body mass and morphometric traits of developing individuals. Adaptation of honey bees to living in shelters has led to their becoming tolerant to hypoxia. Improvement of ethological and physiological mechanisms of thermal regulation is associated with limitation of ecological valence and acquiring of stenothermic features by breed. Optimal thermal conditions for breed are limited by the interval 33-34.5 degrees C. Deviations of temperature by 3-4 degrees C beyond this range have minimum lethal effect at embryonic stage of development and medium effect at the stage of pre-pupa and pupa. Developing at the low bound of the vital range leads to increasing, while developing at the upper bound--to decreasing of body mass, mandibular and hypopharyngeal glands, as well as other organs, which, later, affects the variability of these traits during the adult stage of development. Eliminative and teratogenic efficiency of ecological factors that affect a breed is most often manifested in underdevelopment of wings. However, their size (in case of wing laminas formation). is characterized by relatively low variability and size-dependent asymmetry. Asymmetry variability of wings and other pair organs is expressed through realignment of size excess from right- to left-side one with respect to their increase. Selective elimination by those traits whose emerging probability increases as developmental conditions deviate from the optimal ones promotes restrictions on individual variability. Physiological mechanisms that facilitate adaptability enhancement under conditions of increasing anthropogenic contamination of eivironment and trophic substrates consumed by honey bees, arrear to be toxicants accumulation in rectum and crops' ability to absorb contaminants from nectar in course of its

  20. [Variability patterns of nest construction, physiological state, and morphometric traits in honey bee].

    PubMed

    Es'kov, E K; Es'kova, M D

    2014-01-01

    High variability of cells size is used selectively for reproduction of working bees and drones. A decrease in both distance between cells and cells size themselves causes similar effects to body mass and morphometric traits of developing individuals. Adaptation of honey bees to living in shelters has led to their becoming tolerant to hypoxia. Improvement of ethological and physiological mechanisms of thermal regulation is associated with limitation of ecological valence and acquiring of stenothermic features by breed. Optimal thermal conditions for breed are limited by the interval 33-34.5 degrees C. Deviations of temperature by 3-4 degrees C beyond this range have minimum lethal effect at embryonic stage of development and medium effect at the stage of pre-pupa and pupa. Developing at the low bound of the vital range leads to increasing, while developing at the upper bound--to decreasing of body mass, mandibular and hypopharyngeal glands, as well as other organs, which, later, affects the variability of these traits during the adult stage of development. Eliminative and teratogenic efficiency of ecological factors that affect a breed is most often manifested in underdevelopment of wings. However, their size (in case of wing laminas formation). is characterized by relatively low variability and size-dependent asymmetry. Asymmetry variability of wings and other pair organs is expressed through realignment of size excess from right- to left-side one with respect to their increase. Selective elimination by those traits whose emerging probability increases as developmental conditions deviate from the optimal ones promotes restrictions on individual variability. Physiological mechanisms that facilitate adaptability enhancement under conditions of increasing anthropogenic contamination of eivironment and trophic substrates consumed by honey bees, arrear to be toxicants accumulation in rectum and crops' ability to absorb contaminants from nectar in course of its

  1. Maximal-radius multiscale entropy of cardiovascular variability: a promising biomarker of pathological mood states in bipolar disorders.

    PubMed

    Valenza, Gaetano; Nardelli, Mimma; Bertschy, Gilles; Lanatà, Antonio; Barbieri, Riccardo; Scilingo, Enzo Pasquale

    2014-01-01

    Complexity measures from Multiscale Entropy (MSE) analysis of cardiovascular variability may provide potential biomarkers of pathological mental states such as major depression. To this extent, in this study we investigate whether complexity of Heart Rate Variability (HRV) is also affected in mental disorders such as bipolar disorders (BD). As part of the European project PSYCHE, eight BD patients experiencing multiple pathological mood states among depression, hypomania, and euthymia (i.e., good affective balance) underwent long-term night recordings through a comfortable sensing t-shirt with integrated fabric electrodes and sensors. Standard radius, i.e., 20% of the HRV standard deviation, and a maximal-radius choice for the sample entropy estimation were compared along with a further multiscale Renyi Entropy analysis. We found that, despite the inter-subject variability, the maximal-radius MSE analysis is able to discern the considered pathological mental states of BD. As the current clinical practice in diagnosing BD is only based on verbal interviews and scores from specific questionnaires, these findings provide evidence on the possibility of using heartbeat complexity as the basis of novel clinical biomarkers of mental disorders. PMID:25571524

  2. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies; (b) The support for tech-prep education as described in 34 CFR part 406; (c)(1) The support of... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In...

  3. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agencies; (b) The support for tech-prep education as described in 34 CFR part 406; (c)(1) The support of... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In...

  4. Causal Linkages of Local School Variables Associated with Successful Implementation of State Education Improvement Programs.

    ERIC Educational Resources Information Center

    Odden, Allan; And Others

    Through programs aimed at enhancing educational effectiveness, states can play important and substantive roles in helping local schools, students, teachers, and principals improve, according to the study "State Strategies to Support Local School Improvement: Cross Site Analysis." The study identifies the key elements of the local change process…

  5. DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. VII. Additional Variables in the Field M33A Discovered with Image Subtraction

    NASA Astrophysics Data System (ADS)

    Mochejska, B. J.; Kaluzny, J.; Stanek, K. Z.; Sasselov, D. D.; Szentgyorgyi, A. H.

    2001-04-01

    DIRECT is a project to directly obtain the distances to two Local Group galaxies, M31 and M33, which occupy a crucial position near the bottom of the cosmological distance ladder. As the first step of the DIRECT project, we have searched for detached eclipsing binaries (DEBs) and new Cepheids in the M31 and M33 galaxies with 1 m class telescopes. In this paper, we present a catalog of variable stars discovered in the data from the follow-up observations of the DEB system D33J013346.2+304439.9 in field M33A (α=23.55d, δ=30.72d J2000.0), collected with the Kitt Peak National Observatory's 2.1 m telescope. In our search covering an area of 108 arcmin2, we have found 434 variable stars: 63 eclipsing binaries, 305 Cepheids, and 66 other periodic, possible long-period, or nonperiodic variables. Of these variables, 280 are newly discovered, mainly short-period and/or faint Cepheids. Their light curves were extracted using the ISIS image subtraction package. For 85% of the variables, we present light curves in standard V and B magnitudes, with the remaining 15% expressed in units of differential flux. We have discovered a population of first-overtone Cepheid candidates, and for eight of them we present strong arguments in favor of this interpretation. We also report on the detection of a nonlinearity in the KPNO T2KA and T1KA cameras. The catalog of variables, as well as their photometry (~7.8×104 BV measurements) and finding charts, is available electronically via anonymous ftp and the World Wide Web. The complete set of the CCD frames is available upon request. Based on observations obtained with the 2.1 m telescope at the Kitt Peak National Observatory.

  6. DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. VIII. Additional Variables in the Field M33B Discovered with Image Subtraction

    NASA Astrophysics Data System (ADS)

    Mochejska, B. J.; Kaluzny, J.; Stanek, K. Z.; Sasselov, D. D.; Szentgyorgyi, A. H.

    2001-11-01

    DIRECT is a project to obtain directly the distances to two Local Group galaxies, M31 and M33, which occupy a crucial position near the bottom of the cosmological distance ladder. As the first step of the DIRECT project we have searched for detached eclipsing binaries (DEBs) and new Cepheids in the M31 and M33 galaxies with 1 m class telescopes. In this eighth paper we present a catalog of variable stars discovered in the data from the follow-up observations of DEB system D33J013337.0+303032.8 in field M33B [(α,δ)=(23.48d,30.57d), J2000.0], collected with the Kitt Peak National Observatory 2.1 m telescope. In our search covering an area of 108 arcmin2 we have found 895 variable stars: 96 eclipsing binaries, 349 Cepheids, and 450 other periodic, possibly long-period or nonperiodic variables. Of these variables 612 are newly discovered. Their light curves were extracted using the ISIS image subtraction package. For 77% of the variables we present light curves in standard V and B magnitudes, with the remaining 23% expressed in units of differential flux. We have discovered a population of first-overtone Cepheid candidates, and for six of them we present strong arguments in favor of this interpretation. The catalog of variables, as well as their photometry (about 9.2×104 BV measurements) and finding charts, is available electronically via anonymous ftp and the World Wide Web. The complete set of the CCD frames is available upon request. Based on observations obtained with the 2.1 m telescope at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  7. Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development

    PubMed Central

    Brändle, Johanna; Preissl, Hubert; Draganova, Rossitza; Ortiz, Erick; Kagan, Karl O.; Abele, Harald; Brucker, Sara Y.; Kiefer-Schmidt, Isabelle

    2015-01-01

    Fetal behavioral states are defined by fetal movement and heart rate variability (HRV). At 32 weeks of gestational age (GA) the distinction of four fetal behavioral states represented by combinations of quiet or active sleep or awakeness is possible. Prior to 32 weeks, only periods of fetal activity and quiesence can be distinguished. The increasing synchronization of fetal movement and HRV reflects the development of the autonomic nervous system (ANS) control. Fetal magnetocardiography (fMCG) detects fetal heart activity at high temporal resolution, enabling the calculation of HRV parameters. This study combined the criteria of fetal movement with the HRV analysis to complete the criteria for fetal state detection. HRV parameters were calculated including the standard deviation of the normal-to-normal R–R interval (SDNN), the mean square of successive differences of the R–R intervals (RMSSD, SDNN/RMSSD ratio, and permutation entropy (PE) to gain information about the developing influence of the ANS within each fetal state. In this study, 55 magnetocardiograms from healthy fetuses of 24–41 weeks’ GA were recorded for up to 45 min using a fetal biomagnetometer. Fetal states were classified based on HRV and movement detection. HRV parameters were calculated for each state. Before GA 32 weeks, 58.4% quiescence and 41.6% activity cycles were observed. Later, 24% quiet sleep state (1F), 65.4% active sleep state (2F), and 10.6% active awake state (4F) were observed. SDNN increased over gestation. Changes of HRV parameters between the fetal behavioral states, especially between 1F and 4F, were statistically significant. Increasing fetal activity was confirmed by a decrease in PE complexity measures. The fHRV parameters support the differentiation between states and indicate the development of autonomous nervous control of heart rate function. PMID:25904855

  8. Genetic variability of blueberry scorch virus isolates from highbush blueberry in New York State.

    PubMed

    Kalinowska, Elżbieta; Marsella-Herrick, Patricia; Fuchs, Marc

    2015-06-01

    The genetic variability of blueberry scorch virus (BlScV) isolates from New York was determined within a portion of the RNA-dependent RNA polymerase gene and the triple gene block and coat protein (CP) genes. Phylogenetic analysis of 19 New York isolates and other isolates for which sequence information is available in GenBank revealed two distinct clades, regardless of the coding region analyzed, and limited variability within (0.029 ± 0.007) and between (0.183 ± 0.032) phylogroups. Recombination events were identified in the CP gene of three New York isolates, and codons of the five BlScV genes characterized were found to be under neutral or negative selective pressure. PMID:25809019

  9. X-RAY VARIABILITY AND HARDNESS OF ESO 243-49 HLX-1: CLEAR EVIDENCE FOR SPECTRAL STATE TRANSITIONS

    SciTech Connect

    Servillat, Mathieu; Farrell, Sean A.; Lin Dacheng; Godet, Olivier; Barret, Didier; Webb, Natalie A.

    2011-12-10

    The ultraluminous X-ray (ULX) source ESO 243-49 HLX-1, which reaches a maximum luminosity of 10{sup 42} erg s{sup -1} (0.2-10 keV), currently provides the strongest evidence for the existence of intermediate-mass black holes (IMBHs). To study the spectral variability of the source, we conduct an ongoing monitoring campaign with the Swift X-ray Telescope (XRT), which now spans more than two years. We found that HLX-1 showed two fast rise and exponential decay type outbursts in the Swift XRT light curve with increases in the count rate of a factor {approx}40 separated by 375 {+-} 13 days. We obtained new XMM-Newton and Chandra dedicated pointings that were triggered at the lowest and highest luminosities, respectively. From spectral fitting, the unabsorbed luminosities ranged from 1.9 Multiplication-Sign 10{sup 40} to 1.25 Multiplication-Sign 10{sup 42} erg s{sup -1}. We confirm here the detection of spectral state transitions from HLX-1 reminiscent of Galactic black hole binaries (GBHBs): at high luminosities, the X-ray spectrum showed a thermal state dominated by a disk component with temperatures of 0.26 keV at most, and at low luminosities the spectrum is dominated by a hard power law with a photon index in the range 1.4-2.1, consistent with a hard state. The source was also observed in a state consistent with the steep power-law state, with a photon index of {approx}3.5. In the thermal state, the luminosity of the disk component appears to scale with the fourth power of the inner disk temperature, which supports the presence of an optically thick, geometrically thin accretion disk. The low fractional variability (rms of 9% {+-} 9%) in this state also suggests the presence of a dominant disk. The spectral changes and long-term variability of the source cannot be explained by variations of the beaming angle and are not consistent with the source being in a super-Eddington accretion state as is proposed for most ULX sources with lower luminosities. All this

  10. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGESBeta

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  11. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  12. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    SciTech Connect

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  13. The model of the variable speed constant frequency closed-loop system operating in generating state

    NASA Astrophysics Data System (ADS)

    Ding, Daohong

    1986-10-01

    The variable speed constant frequency (USCF) electrical power system is a new type of aircraft power supply, which contains an alternating generator and a cycloconverter. This sums up the work of the cycloconverter and obtains four fundamental classes of circuit construction of the closed-loop system, which have twelve operating models. A mathematical model for each fundamental class of the circuit construction is introduced. These mathematical models can be used in digital simulation.

  14. Role of Climate Variability in Modulating Surface Water and Groundwater Interaction over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Almanaseer, N.; Arumugam, S.; Bales, J. D.

    2010-12-01

    We investigate the role of climatic variability on interannual groundwater variability in the Southeast U.S. For this purpose, streamflow and associated groundwater levels are analyzed for 20 basins that are minimally affected by reservoirs and groundwater pumping. Using the spatially-averaged monthly precipitation time series obtained from the Precipitation Regressions on Independent Slope Model (PRISM), we identify the recharge and discharge periods that influence the groundwater levels during the winter (January-February-March, JFM) and summer (July-August-September, JAS) seasons. Recharge-discharge dependency analyses indicate that precipitation during the previous three months influence the groundwater level in a given month. Streamflow in any given month depends on the groundwater level during the previous three months. Singular spectrum analysis (SSA) on the precipitation, temperature, streamflow and groundwater data indicate that groundwater levels and streamflow are the two dominant variables influencing the basin hydroclimatology. Further, relating the percentage variance explained from the SSA to baseflow index (BFI) clearly show that basins with high BFI have higher eigenvalues indicating groundwater being a spatial integrator of hydroclimatic processes. Relating the groundwater levels with El Nino Southern Oscillation (ENSO) index, Nino3.4, show that interannual variability in JFM groundwater levels could be partially explained by the ENSO conditions, but the relationship between JAS groundwater levels and JAS Nino3.4 is statistically not significant. Investigating the ability of precipitation forecasts from ECHAM4.5 General Circulation Model shows that there is potential to quantify groundwater availability during the winter season based on the forecasted precipitation and ENSO conditions.

  15. Parameter Estimation for a Physically-Based Model Using Multi-Objective Approach Constrained With Additional Internal States

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Fenicia, F.; Savenije, H. H.

    2007-12-01

    Parameter estimation (i.e. model calibration) is a critical procedure for not only determining a successful model application, but also assessing model uncertainties, thus helping improve model development. Physically-based distributed hydrological models are increasingly used as required in water management because of the complexity of the processes to be represented. Given the fact that the distributed catchment characteristics, represented by parameters, could not be directly measured in most cases, model calibration is therefore inevitable. Calibration and uncertainty assessment for such complex models are more challenging than for those simpler ones due to the large number of parameters associated with integrated multiple processes description and large computing resources demands. There is ample literature on the approaches to model parameter estimation and applications of such approaches. Multi-objective Pareto-optimality approaches, such as MOSCEM-UA, are amongst the state-the-art approaches in modeling practices. The multi-objective optimization approaches, however, have not yet widely applied to physically-based distributed models, due to the aforementioned challenging issues. This work presents an application of MOSCEM-UA algorithm to a newly developed physically-based model REWASH. REWASH is a model based on the Representative Elementary Watershed (REW) concept that describes hydrological processes at the watershed scale, using the basic physical conservation laws. The elementary watersheds, i.e. the sub-watersheds are the hydrological response units of a catchment when using REWASH model. In this study, REWASH model was applied to simulate rainfall-runoff relation for the Hesperange catchment in Luxembourg. Due to its physically-based and semi-distributed nature, the applied hydrological model reproduces not only stream flows at the catchment outlet and the sub-watersheds' outlets, but subsurface flows and groundwater table variations as well

  16. Effect of additional optical pumping injection into the ground-state ensemble on the gain and the phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2014-02-01

    The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.

  17. A Transformation Approach to Optimal Control Problems with Bounded State Variables

    NASA Technical Reports Server (NTRS)

    Hanafy, Lawrence Hanafy

    1971-01-01

    A technique is described and utilized in the study of the solutions to various general problems in optimal control theory, which are converted in to Lagrange problems in the calculus of variations. This is accomplished by mapping certain properties in Euclidean space onto closed control and state regions. Nonlinear control problems with a unit m cube as control region and unit n cube as state region are considered.

  18. 76 FR 41046 - Addition of the New State of the Republic of South Sudan to the Export Administration Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Secretary of State as a state sponsor of terrorism under U.S. law on August 12, 1993 (58 FR 52523, Oct. 8... FR 50681, August 16, 2010), has continued the EAR in effect under the International Emergency....C. 7210; E.O. 13026, 61 FR 58767, 3 CFR, 1996 Comp., p. 228; E.O. 13222, 66 FR 44025, 3 CFR,...

  19. 20 CFR 667.640 - What additional appeal processes or systems must a State have for the WIA program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADMINISTRATIVE PROVISIONS UNDER TITLE I OF THE WORKFORCE... State must establish, and include in its State Plan, due process procedures which provide expeditious... under the appeal process established in paragraph (a)(1) of this section, or that the area meets...

  20. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    PubMed

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. PMID:25116250

  1. Multi-color optical variability of the TeV blazar Mrk 501 in the low-state

    NASA Astrophysics Data System (ADS)

    Gupta, A. C.; Deng, W. G.; Joshi, U. C.; Bai, J. M.; Lee, M. G.

    2008-08-01

    We report results based on the monitoring of the BL Lac object Mrk 501 in the optical (B, V and R) passbands from March to May 2000. Observations spread over 12 nights were carried out using 1.2 m Mount Abu Telescope, India and 61 cm Telescope at Sobaeksan Astronomy Observatory, South Korea. The aim is to study the intra-day variability (IDV), short term variability and color variability in the low state of the source. We have detected flux variation of 0.05 mag in the R-band in time scale of 15 min in one night. In the B and V passbands, we have less data points and it is difficult to infer any IDVs. Short term flux variations are also observed in the V and R bands during the observing run. No significant variation in color (B-R) has been detected but (V-R) shows variation during the present observing run. Assuming the shortest observed time scale of variability (15 min) to represent the disk instability or pulsation at a distance of five Schwarschild radii from the black hole (BH), mass of the central BH is estimated ∼1.20 × 108M⊙.

  2. Relating ocean dynamics and sea state to time-angle variability of HF waveforms

    NASA Astrophysics Data System (ADS)

    Badiey, Mohsen; Forsythe, Stephen E.; Porter, Michael B.

    2001-05-01

    One of the objectives of the Kauai experiment was a better understanding of the ocean dynamics effects on the propagation of high-frequency acoustic signals. Due to a unique oceanographic feature of the shallow water region near the Pacific Missile Range Facility in Kauai, a bottom mounted vertical line array containing eight elements was deployed with sufficiently small element spacing to measure the acoustic energy near the bottom. Simultaneous environmental parameters including current, temperature and salinity profiles, directional surface wave spectra, as well as the wind speed and direction above the sea surface were measured. High correlation between the environmental variability and the received acoustic signals is observed. To interpret the results broadband PE and Gaussian beam ray tracing models were utilized. Arrival time-angle statistics are correlated with the environmental variability due to ocean dynamics in this region. It is shown that variations of the sea surface dynamics exhibit different statistical effects than those occurring within the water column. [Work supported by ONR-321OA.] a)Paul Hursky, Martin Siderius (SAIC), Jerald Caruthers (USM), William S. Hodgkiss, Kaustubha Raghukumar (SIO), Dan Rouseff, Warren Fox (APL-UW), Christian de Moustier, Brian Calder, Barbara J. Kraft (UNH), Keyko McDonald (SPAWARSSC), Peter Stein, James K. Lewis, and Subramaniam Rajan (SSI).

  3. Circumbinary Dust in Magnetic Cataclysmic Variables - Bright State of AM Her

    NASA Astrophysics Data System (ADS)

    Hoard, Donald; Brinkworth, Carolyn; Howell, Steve; Wachter, Stefanie

    2007-07-01

    Observations by the AAVSO during the past several days of the polar AM Herculis show that it may be leaving the "normal" faint state it has occupied during the past ~2 years, and becoming bright. We observed AM Her with IRAC during GO-3 as part of program 30249. That program also included two medium-impact TOO observations to be triggered to re-observe any target of 30249 that changed brightness state during GO-3 from whatever state it was in when its non-TOO observation for 30249 was made. Unfortunately, those TOOs expired at the end of June, at about the same time that AM Her first started to show an indication that it might be getting bright. So, we are requesting a DDT observation, for the same scientific reasons that the TOO observations were requested (and approved) for program 30249 (to be detailed in a follow-on email to the Spitzer Helpdesk). The target is visible to Spitzer until Dec 2007 - we request the DDT observation during IRAC-43 or IRAC-44, in case the high state is of short duration. Total AOR duration will be ~10 minutes. We have requested that the AAVSO alert its members to intensify observations of AM Her so we can confirm with certainty the rise to bright state within the next few days; in the meantime, please consider this TOO request and notify us if it would be approved. By then, we should know if the rise to bright state is real and should be observed.

  4. Leprosy incidence, characterization of cases and correlation with household and cases variables of the Brazilian states in 2010*

    PubMed Central

    de Castro, Shamyr Sulyvan; Santos, Juliana Pereira Pontes; Abreu, Graziela Basílio; Oliveira, Vanessa Rossato; Fernandes, Luciane Fernanda Rodrigues Martinho

    2016-01-01

    BACKGROUND: Leprosy is millenary disease and still persists in several countries. OBJECTIVES: To estimate the incidence of leprosy in the Brazilian states and for the country in the year 2010; to describe the cases reported according to the studied variables; to verify the correlation between the overall incidence and the studied variables. METHODS: Ecological descriptive study, with population data from the 27 states, 2010. Information about reported cases were collected: gender, race, percentage of patients younger than 15 years old and living conditions. The analysis was performed using percentages, means, incidence rates and the Spearman correlation test. RESULTS: The states of Mato Grosso and Tocantins recorded the highest incidence rates; Rio Grande do Sul and Santa Catarina, the lowest; there was a higher incidence of leprosy among men; the incidence of leprosy increases proportionally with the nonwhites among the inhabitants; patients younger than 15 years; the average number of residents per household; and a decrease in coverage of water supply and presence of bathrooms. CONCLUSION: The incidence of leprosy is related to factors as gender, race and house conditions (p<0,05 for all). PMID:26982775

  5. ENVIRONMENTAL VARIABLES CONTROLLING NITRIC OXIDE EMISSIONS FROM AGRICULTURAL SOILS IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Fluxes of nitric oxide (NO) were measured during the summer of 1994 (12 July to 11 August) in the Upper Coastal Plain of North Carolina in a continuing effort to characterize NO emissions from intensively managed agricultural soils in the southeastern United States. Previous work...

  6. A CLIMATOLOGY OF TEMPERATURE AND PRECIPITATION VARIABILITY IN THE UNITED STATES

    EPA Science Inventory

    This paper examines the seasonal and variance and standardized range for temperature and the seasonal end annual coefficient of variation and normalized standardized range for precipitation, on a climatic division level for the contiguous United States for the period 1895 to 1985...

  7. Investigation of the Motivation Level of Teachers Working at State Schools in Relation to Some Variables

    ERIC Educational Resources Information Center

    Can, Süleyman

    2015-01-01

    In order to give the best and accurate orientation to teachers working in school organizations, it seems to be necessary to determine their motivation level. Thus, the purpose of the current study is to determine the motivation level of teachers working in state elementary and secondary schools. Moreover, the study also looks at the relationships…

  8. EXAMINING THE IMPACT OF CLIMATE CHANGE AND VARIABILITY OF REGIONAL AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    The United States has established a series of standards for criteria and other air pollutants to safeguard air quality to protect human health and the environment. The Climate Impact on Regional Air Quality (CIRAQ) project, a collaborative research effort involving multiple Fede...

  9. Sensitivity of a semi-arid riparian ecosystem to climatic variability in the southwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climatic change will have strong impacts on riverine ecosystems and their associated riparian zones. In the southwestern United States, conservation and restoration of riparian habitats has become a priority for resource management agencies and conservation groups, and these areas are biodiversity h...

  10. Quantitative Analysis of Variables Affecting Nursing Program Completion at Arizona State University

    ERIC Educational Resources Information Center

    Herrera, Cheryl

    2013-01-01

    This study is designed to understand the patterns of selection, preparation, retention and graduation of undergraduate pre-licensure clinical nursing students in the College of Nursing and Health Innovation at Arizona State University enrolled in 2007 and 2008. The resulting patterns may guide policy decision making regarding future cohorts in…

  11. Personality Variables as Correlates of Marital Adjustment among Married Persons in Delta State of Nigeria

    ERIC Educational Resources Information Center

    Ebenuwa-Okoh, E. E.

    2008-01-01

    This study examined the extent to which emotional expression, communication flow, financial management and work involvement predict marital adjustment among married persons in Delta State, Nigeria. One question was raised and one hypothesis was formulated to guide the study. 2561 married persons were selected through the use of purposive sampling…

  12. Trait-Like Qualities of Selected Variables Assumed to Be Transient Causes of Performance State Anxiety.

    ERIC Educational Resources Information Center

    Beatty, Michael J.; And Others

    1989-01-01

    Examines data from two public speaking performances to examine the stability of speakers' perceptions of situational factors and the relationship of those factors to communication apprehension and state anxiety. Finds that degree of attention functions as a situational perception, whereas novelty, subordinate status, conspicuousness, and…

  13. Dynamical connection between Great Plains low-level winds and variability of central Gulf States precipitation

    NASA Astrophysics Data System (ADS)

    Pu, Bing; Dickinson, Robert E.; Fu, Rong

    2016-04-01

    The Great Plains low-level jet has been related to summer precipitation over the northern Great Plains and Midwest through its moisture transport and convergence at the jet exit area. Much less studied has been its negative relationship with precipitation over the southern Great Plains and the Gulf coastal area. This work shows that the southerly low-level winds at 30°-40°N over the southern Great Plains are significantly correlated with anticyclonic vorticity to its east over the central Gulf States (30°-35°N, 85°-95°W) from May to July. When the low-level jet is strong in June and July, anomalous anticyclonic vorticity over the central Gulf States leads to divergence and consequent subsidence suppressing precipitation over that region. In contrast, an enhanced southerly flow at the entrance region of the jet over the Gulf of Mexico, largely uncorrelated with the meridional wind over the southern Great Plains, is correlated with increased precipitation over the central Gulf States. Precipitation is large over the central Gulf States when the meridional wind over the southern Great Plains is weakest and over the Gulf of Mexico is strongest. This increase is consistent with the increased moisture transport and dynamic balance between loss of vorticity by advection and friction and gain by convergence.

  14. Variable Classification of Drug-Intoxication Suicides across US States: A Partial Artifact of Forensics?

    PubMed Central

    Rockett, Ian R. H.; Hobbs, Gerald R.; Wu, Dan; Jia, Haomiao; Nolte, Kurt B.; Smith, Gordon S.; Putnam, Sandra L.; Caine, Eric D.

    2015-01-01

    Background The 21st-century epidemic of pharmaceutical and other drug-intoxication deaths in the United States (US) has likely precipitated an increase in misclassified, undercounted suicides. Drug-intoxication suicides are highly prone to be misclassified as accident or undetermined. Misclassification adversely impacts suicide and other injury mortality surveillance, etiologic understanding, prevention, and hence clinical and public health policy formation and practice. Objective To evaluate whether observed variation in the relative magnitude of drug-intoxication suicides across US states is a partial artifact of the scope and quality of toxicological testing and type of medicolegal death investigation system. Methods This was a national, state-based, ecological study of 111,583 drug-intoxication fatalities, whose manner of death was suicide, accident, or undetermined. The proportion of (nonhomicide) drug-intoxication deaths classified by medical examiners and coroners as suicide was analyzed relative to the proportion of death certificates citing one or more specific drugs and two types of state death investigation systems. Our model incorporated five sociodemographic covariates. Data covered the period 2008–2010, and derived from NCHS’s Multiple Cause-of-Death public use files. Results Across states, the proportion of drug-intoxication suicides ranged from 0.058 in Louisiana to 0.286 in South Dakota and the rate from 1 per 100,000 population in North Dakota to 4 in New Mexico. There was a low correlation between combined accident and undetermined drug-intoxication death rates and corresponding suicide rates (Spearman’s rho = 0.38; p<0.01). Citation of 1 or more specific drugs on the death certificate was positively associated with the relative odds of a state classifying a nonhomicide drug-intoxication death as suicide rather than accident or undetermined, adjusting for region and type of state death investigation system (odds ratio, 1.062; 95% CI,1.016

  15. Arthritis in the prehistoric Southeastern United States: biological and cultural variables.

    PubMed

    Hudson, C; Butler, R; Sikes, D

    1975-07-01

    Recent research shows that a bacterial life form, Erysipelothrix insidiosa, can produce rheumatoid arthritis in deer, swine, and dogs, and that a number of animals, including man, birds, and fish, may be infected by the organism. Examination of the archaeological record suggests that both cultural and biological variables may be interrelated in the maintenance of some forms of arthritis over long periods of time in geographically disparate populations. Re-examination of Cherokee folk beliefs concerning arthritis suggests that they had some recognition of this connection, and it also suggests that they had some recognition of this connection, and it also suggests that the term "magical" may relate more to the world view of the observer than to any actual inability of preliterate peoples to draw causal relations on the basis of their own intimate knowledge of their environments. PMID:1098480

  16. Multiband optical variability of the blazar S5 0716+714 in outburst state during 2014-2015

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditi; Gupta, Alok C.; Bachev, R.; Strigachev, A.; Semkov, E.; Wiita, Paul J.; Fan, J. H.; Pandey, U. S.; Boeva, S.; Spassov, B.

    2016-01-01

    We analysed the multiband optical behaviour of the BL Lacertae object, S5 0716+714, during its outburst state from 2014 November to 2015 March. We took data on 23 nights at three observatories, one in India and two in Bulgaria, making quasi-simultaneous observations in B, V, R, and I bands. We measured multiband optical fluxes, colour, and spectral variations for this blazar on intraday and short time-scales. The source was in a flaring state during the period analysed and displayed intense variability in all wavelengths. R-band magnitude of 11.6 was attained by the target on 2015 January 18, which is the brightest value ever recorded for S5 0716+714. The discrete correlation function method yielded good correlation between the bands with no measurable time lags, implying that radiation in these bands originate from the same region and by the same mechanism. We also used the structure function technique to look for characteristic time-scales in the light curves. During the times of rapid variability, no evidence for the source to display spectral changes with magnitude was found on either of the time-scales. The amplitude of variations tends to increase with increasing frequency with a maximum of ˜22 per cent seen during flaring states in B band. A mild trend of larger variability amplitude as the source brightens was also found. We found the duty cycle of our source during the analysed period to be ˜90 per cent. We also investigated the optical spectral energy distribution of S5 0716+714 using B, V, R, and I data points for 21 nights. We briefly discuss physical mechanisms most likely responsible for its flux and spectral variations.

  17. Relationships Among Top-of-atmosphere Radiation and Atmospheric State Variables in Observations and CESM

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.

    2015-12-01

    A detailed examination is made in both observations and the Community Earth System Model (CESM) of relationships among top-of-atmosphere (TOA) radiation and surface air temperatures, as well as water vapor, tropospheric temperatures and precipitation for 2000-2014 to assess the origins of radiative perturbations and climate feedbacks empirically. The 30-member CESM large ensemble coupled runs are analyzed. Both global and local relationships are examined. There is a lot more high frequency variability in radiative fluxes than in temperature, highlighting the role of clouds and transient weather systems in the radiation statistics. Surface temperatures respond to a radiative imbalance and also greatly affect the outgoing longwave radiation OLR), especially over land. However, tropospheric temperatures are much more influenced by clouds, which affect both absorbed solar radiation (ASR) and OLR, and with large compensation. The vertical structure of the CESM temperature profile tends to be top-heavy in the model, with too much deep convection and not enough lower stratospheric cooling as part of the response to tropospheric heating. There is too much ASR over the southern oceans and not enough in the tropics, and ENSO is too large in amplitude in this version of the model. However, the co-variability of monthly mean anomalies produces remarkably good replication of most of the observed relationships. Over the Warm Pool in the tropical western Pacific and Indian oceans, where non-local effects from the Walker circulation driven by the ENSO events are important, several related biases emerge: in response to high SST anomalies there is more precipitation, water vapor and cloud, and less ASR and OLR in the model than observed. Different model global mean trends are evident, however, and hint at too much positive cloud feedback in the model.

  18. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert; Piatak, Nadine; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  19. Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-06-01

    The capability of the National Centers for Environmental Prediction climate forecast system version 2 (CFSv2) in simulating the Indian summer monsoon (ISM) is evaluated in the context of the global monsoon in the Indo-Pacific domain and its variability. Although the CFSv2 captures the ISM spatial structure qualitatively, it demonstrates a severe dry bias over the Indian subcontinent. The weaker model monsoon may be related to an excessive surface convergence over the equatorial Indian Ocean, which reduces the moisture transport toward the Indian subcontinent. The excessively low equatorial pressure is in turn a part of a tropical-wise bias with the largest errors in the central and eastern equatorial Pacific associated with the cold sea surface temperature bias and an overly strong inter-tropical convergence zone. In this sense, the model bias in the tropical Pacific influences those in the Indian Ocean-ISM region substantially. The leading mode of the June-September averaged CFSv2 rainfall anomalies covering the ISM and its adjacent oceanic regions is qualitatively similar to that of the observations, characterized by a spatial pattern of strong anomalies over either side of the Indian peninsula as well as center of opposite sign over Myanmar. However, the model fails to reproduce the northward expansion of rainfall anomalies from Myanmar, leading to opposite anomalies over northeast India and Himalayas region. A substantial amount of the anomalous fluctuation is attributed to the El Niño and the Southern Oscillation (ENSO), although the model variability depends more strongly on ENSO. The active regional influences in the observations may contribute to its baroclinic vertical structure of the geopotential height anomalies in the ISM region, compared with the predominantly barotropic one in CFSv2. Model ENSO deficiencies also affects its ISM simulation significantly.

  20. Copper Speciation in Variably Toxic Sediments at the Ely Copper Mine, Vermont, United States.

    PubMed

    Kimball, Bryn E; Foster, Andrea L; Seal, Robert R; Piatak, Nadine M; Webb, Samuel M; Hammarstrom, Jane M

    2016-02-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160-1200 times) and sediments (15-79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80-95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu. PMID:26734712

  1. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    SciTech Connect

    Zhang Youhong

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 {+-} 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  2. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.

    1999-01-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17

  3. Spatial variability of soil carbon across Mexico and the United States

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Guevara, M.; Cruz Gaistardo, C.; Paz, F.; de Jong, B.; Etchevers, J.

    2015-12-01

    Soil organic carbon (SOC) is directly linked to soil quality, food security, and land use/global environmental change. We use publicly available information on SOC and couple it with digital elevation models and derived terrain attributes using a machine learning approach. We found a strong spatial dependency of SOC across the United States, but less spatial dependency of SOC across Mexico. Using High Performance Computing (HPC) we derived a 1 km resolution map of SOC across Mexico and the United States. We tested different machine learning methods (e.g., kernel based, tree based and/or Geo-statistics approaches) for computational efficiency and statistical accuracy. Using random forest combined with geo-statistics we were able to explain >70% of SOC variance for Mexico and >40% in the case of the United States via cross validation. These results compare with other published estimates of SOC at 1km resolution that only explain <30% of SOC variance across the world. Topographic attributes derived from digital elevation models are freely available globally at fine spatial resolution (<100 m), and this information allowed us to make predictions of SOC at fine scales. We further tested this approach using SOC information from the International Soil Carbon Network to predict SOC in other regions of the world. We conclude that this approach (using public information and open source platforms for data analysis) could be implemented to predict detailed explicit information of SOC across different spatial scales.

  4. Longshore variability of beach states and bar types in a microtidal, storm-influenced, low-energy environment

    NASA Astrophysics Data System (ADS)

    Aleman, N.; Robin, N.; Certain, R.; Anthony, E. J.; Barusseau, J.-P.

    2015-07-01

    Beach classification models are widely used in the literature to describe beach states in response to environmental conditions. These models were essentially developed for sandy barred to barless beaches in micro- to meso-tidal environments subject to moderate to high wave energy conditions and have been based on field studies over limited stretches of coast. Here, we further interrogate the performance of the Australian beach classification scheme by analysing beach states and corresponding bar types on a regional scale in a storm-influenced, low wave-energy, microtidal environment, using a large and unique spatial and temporal dataset of supra- and subtidal beach morphology and sedimentology. The 200 km-long coast of the Gulf of Lions in the Mediterranean consists of quasi-continuous sandy beaches with a well-developed double sandbar system. All the reported classical beach states were observed on this coast, from reflective to dissipative, along with two more unusual states: the rock platform-constrained beach state which is associated with bedrock outcrops, and the non-barred dissipative beach state which is more commonly found in large tidal-range settings. LiDAR bathymetry shows that the transitions between beach state zones are marked mainly headlands but transitions also occur progressively along stretches of continuous sandy beach. The longshore distribution of beach states and associated bar types on a regional scale can be related to the variability of hydrodynamic conditions (wave incidence and energy) and sediment characteristics (particle size). However, the influence of these parameters on beach state seems to be largely controlled by the geological context such as the presence of a river mouth, headland or rock platform. Finally, we assessed the ability of the parameter Ω, commonly used to characterise beach states, which combines wave characteristics and sediment fall velocity, to predict the observed beach states and bar types using a very large

  5. 76 FR 69268 - Delegation of Authority to the State of West Virginia To Implement and Enforce Additional or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... copy of the letter which EPA sent to West Virginia on August 29, 2011 follows: ``John Benedict... Charleston, WV 25304 Dear Mr. Benedict: The United States Environmental Protection Agency (EPA) has... implement and enforce NESHAP and NSPS. Dated: October 27, 2011. David Arnold, Acting Director,...

  6. 12 CFR 208.73 - What additional provisions are applicable to state member banks with financial subsidiaries?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... liabilities of any financial subsidiary with those of the bank. (2) For purposes of determining the bank's... accounting principles, separately present financial information for the bank reflecting the capital deduction... limited liability of the state member bank and the financial subsidiary. (d) Application of Sections...

  7. Conversion of canola meal into a high-protein feed additive via solid-state fungal incubation process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study goal was to determine the optimal fungal culture to reduce glucosinolates (GLS), fiber, and residual sugars while increasing the protein content and nutritional value of canola meal. Solid-state incubation conditions were used to enhance filamentous growth of the fungi. Flask trials were p...

  8. Climatic variability in the eastern United States over the past millenium from Chesapeake Bay sediments

    USGS Publications Warehouse

    Cronin, T.; Willard, D.; Karlsen, A.; Ishman, S.; Verardo, S.; McGeehin, J.; Kerhin, R.; Holmes, C.; Colman, S.; Zimmerman, A.

    2000-01-01

    Salinity oscillations caused by multidecadal climatic variability had major impacts on the Chesapeake Bay estuarine ecosystem during the past 1000 yr. Microfossils from sediments dated by radiometry (14C, 137Cs, 210Pb) and pollen stratigraphy indicate that salinity in mesohaline regions oscillated 10-15 ppt during periods of extreme drought (low fresh-water discharge) and wet climate (high discharge). During the past 500 yr, 14 wet-dry cycles occurred, including sixteenth and early seventeenth century megadroughts that exceeded twentieth century droughts in their severity. These droughts correspond to extremely dry climate also recorded in North American tree-ring records and by early colonists. Wet periods occurred every ~60-70 yr, began abruptly, lasted <20 yr, and had mean annual rainfall ~25%-30% and fresh-water discharge ~40%-50% greater than during droughts. A shift toward wetter regional climate occurred in the early nineteenth century, lowering salinity and compounding the effects of agricultural land clearance on bay ecosystems.

  9. Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis.

    PubMed

    Bulea, Thomas C; Kobetic, Rudi; Audu, Musa L; Schnellenberger, John R; Triolo, Ronald J

    2013-01-01

    We have previously reported on a novel variable impedance knee mechanism (VIKM). The VIKM was designed as a component of a hybrid neuroprosthesis to regulate knee flexion. The hybrid neuroprosthesis is a device that uses a controllable brace to support the body against collapse while stimulation provides power for movement. The hybrid neuroprosthesis requires a control system to coordinate the actions of the VIKM with the stimulation system; the development and evaluation of such a controller is presented. Brace mounted sensors and a baseline open loop stimulation pattern are utilized as control signals to activate the VIKM during stance phase while simultaneously modulating muscle stimulation in an on-off fashion. The objective is twofold: reduce the amount of stimulation necessary for walking while simultaneously restoring more biologically correct knee motion during stance using the VIKM. Custom designed hardware and software components were developed for controller implementation. The VIKM hybrid neuroprosthesis (VIKM-HNP) was evaluated during walking in one participant with thoracic level spinal cord injury. In comparison to walking with functional neuromuscular stimulation alone, the VIKM-HNP restored near normal stance phase knee flexion during loading response and pre-swing phases while decreasing knee extensor stimulation by up to 40%. PMID:23193320

  10. Finite State Control of a Variable Impedance Hybrid Neuroprosthesis for Locomotion after Paralysis

    PubMed Central

    Bulea, Thomas C.; Kobetic, R.; Audu, M.L.; Schnellenberger, J.; Triolo, R.J.

    2013-01-01

    We have previously reported on a novel variable impedance knee mechanism (VIKM). The VIKM was designed as a component of a hybrid neuroprosthesis to regulate knee flexion. The hybrid neuroprosthesis is a device that uses a controllable brace to support the body against collapse while stimulation provides power for movement. The hybrid neuroprosthesis requires a control system to coordinate the actions of the VIKM with the stimulation system; the development and evaluation of such a controller is presented. Brace mounted sensors and a baseline open loop stimulation pattern are utilized as control signals to activate the VIKM during stance phase while simultaneously modulating muscle stimulation in an on-off fashion. The objective is twofold: reduce the amount of stimulation necessary for walking while simultaneously restoring more biologically correct knee motion during stance using the VIKM. Custom designed hardware and software components were developed for controller implementation. The VIKM hybrid neuroprosthesis (VIKM-HNP) was evaluated during walking in one participant with thoracic level spinal cord injury. In comparison to walking with functional neuromuscular stimulation (FNS) alone, the VIKM-HNP restored near normal stance phase knee flexion during loading response and pre-swing phases while decreasing knee extensor stimulation by up to 40%. PMID:23193320

  11. Emotion state identification based on heart rate variability and genetic algorithm.

    PubMed

    Sung-Nien Yu; Shu-Feng Chen

    2015-08-01

    The objective of this study is to develop an effective emotion recognition system based on ECG. The proposed emotion recognition system is capable of differentiating four kinds of emotions, namely neutral, happiness, stress, and sadness, based on the heart rate variability (HRV). Ten male subjects were involved in the study. Both visual and auditory stimuli were used to stimulate the emotions. Four categories of HRV features, namely time-domain, frequency-domain, Poincare plot, and differential features, were exploited to characterize the physiological changes during the affective stimuli. The support vector machine (SVM) was employed as the classifier. The genetic algorithm (GA) was exploited as feature selector. Without feature selector, only 52.2% recognition rate was achieved. However, with the GA feature selector, an optimal recognition rate of 90% was achieved. Compared with other user-independent systems published in the literature, the proposed method achieves an accuracy of 90% which is demonstrated to be the most effective for discriminating four kinds of emotions with user-independent design policy. PMID:26736318

  12. Probing the hard and intermediate states of X-ray binaries using short time-scale variability

    NASA Astrophysics Data System (ADS)

    Skipper, Chris J.; McHardy, Ian M.

    2016-05-01

    Below an accretion rate of approximately a few per cent of the Eddington accretion rate, X-ray binary systems are not usually found in the soft spectral state. However, at accretion rates a factor of a few lower still, in the hard state, there is another spectral transition which is well observed but not well understood. Below {˜ }0.5-1 per cent of the Eddington accretion rate (dot{m}_crit), the spectral index hardens with increasing accretion rate, but above dot{m}_crit, although still in the hard state, the spectral index softens with increasing accretion rate. Here we use a combination of X-ray spectral fitting and a study of short time-scale spectral variability to examine the behaviour of three well-known X-ray binaries: Cygnus X-1, GX 339-4 and XTE J1118+480. In Cygnus X-1 we find separate hard and soft continuum components, and show using root mean square (rms) spectra that the soft component dominates the variability. The spectral transition at dot{m}_crit is clearly present in the hard-state hardness-intensity diagrams of Cygnus X-1. Above dot{m}_crit, GX 339-4 shows similar softer-when-brighter behaviour at both long and short time-scales. Similarly, XTE J1118+480, which remains well below dot{m}_crit, has harder-when-brighter behaviour on all time-scales. We interpret these results in terms of two continuum components: a hard power law which dominates the spectra when the accretion rate is low, probably arising from Comptonization of cyclo-synchrotron photons from the corona, and a soft power law which dominates at higher accretion rates, arising from Comptonization of seed photons from the accretion disc.

  13. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how

  14. Statistically designed study of the variables and parameters of carbon dioxide equations of state

    SciTech Connect

    Donohue, M.D.; Naiman, D.Q.; Jin, Gang; Loehe, J.R.

    1991-05-01

    Carbon dioxide is used widely in enhanced oil recovery (EOR) processes to maximize the production of crude oil from aging and nearly depleted oil wells. Carbon dioxide also is encountered in many processes related to oil recovery. Accurate representations of the properties of carbon dioxide, and its mixtures with hydrocarbons, play a critical role in a number of enhanced oil recovery operations. One of the first tasks of this project was to select an equation of state to calculate the properties of carbon dioxide and its mixtures. The equations simplicity, accuracy, and reliability in representing phase behavior and thermodynamic properties of mixtures containing carbon dioxide with hydrocarbons at conditions relevant to enhanced oil recovery were taken into account. We also have determined the thermodynamic properties that are important to enhanced oil recovery and the ranges of temperature, pressure and composition that are important. We chose twelve equations of state for preliminary studies to be evaluated against these criteria. All of these equations were tested for pure carbon dioxide and eleven were tested for pure alkanes and their mixtures with carbon dioxide. Two equations, the ALS equation and the ESD equation, were selected for detailed statistical analysis. 54 refs., 41 figs., 36 tabs.

  15. Contrasts in the Sensitivity of Community Calcification to Saturation State Variability Within Temperate and Tropical Marine Environments

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.

    2015-12-01

    Ongoing emissions of carbon dioxide (CO2) and invasion of part of this CO2 into the oceans are projected to lower the calcium carbonate saturation state. As a result, the ability of many marine organisms to calcify may be compromised, with significant impacts on ocean ecosystems throughout the Anthropocene. In laboratory manipulations, calcifying organisms have exhibited reduced calcification under elevated pCO2 conditions. However, very few experiments have observed how in situ community calcification, which incorporates complex species interactions, responds to natural variations in carbonate chemistry. Using intensive seawater sampling techniques we assess the community level sensitivity of calcification rates to natural variability in the aragonite saturation state (Ωarag) at both a tropical coral reef and temperate intertidal study site. Both sites experiences large daily variation in Ωarag during low tide due to photosynthesis, respiration, and the time at which the sites are isolated from the open ocean. On hourly timescales, we find that community level rates of calcification have only a weak dependence on variability in Ωarag at the tropical study site. At the temperate study site, although weak Ωarag sensitivity is observed during the day, nighttime community calcification rates are found to be strongly influenced by variability in Ωarag, with greater dissolution rates at lower Ωarag levels. If the short-term sensitivity of community calcification to Ωarag described here is representative of the long-term sensitivity of marine ecosystems to ocean acidification, then one would expect temperate intertidal calcifying communities to be more vulnerable than tropical coral reef calcifying communities. In particular, reductions in net community calcification, in the temperate intertidal zone may be predominately due to the nocturnal impact of ocean acidification.

  16. Low Flows over the Eastern United States: Variability, Trends, and Attributions (1962-2011)

    NASA Astrophysics Data System (ADS)

    Kam, J.; Sheffield, J.

    2014-12-01

    Low flows are a seasonal hydrologic response generally during a drying period. Extreme low flows are a result of prolonged antecedent precipitation deficit and/or high evaporative demand, and can indicate hydrological droughts (water availability deficit) and ecological droughts (water quality degradation). Human impacts (e.g. dams, reservoirs, and power plants) also play a role in exacerbating the severity of low flow droughts. For drought mitigation, it is critical to better understand how low flows vary over time and their generating mechanisms. The goals of this study are to examine trends in low flows over the eastern U.S. and to assess their attributions and teleconnections in the context of climate change and variability. We selected 149 out of 4878 USGS stations over the eastern U.S., taking into account data availability and minimal human impacts. We analyzed annual 7-day low flows (Q7) from the series of daily streamflow records for 1962-2011. We also computed an antecedent precipitation (AP) over the corresponding basin for each station. We found a north-south (increasing-decreasing) dipole pattern in Q7 trends and a monopole (increasing) pattern in AP trends, which indicates a gap between the trends of Q7 and AP over the southern part of the study region (Virginia, North and South Carolina). We found that these regions show significant increasing trends in potential evapotranspiration (PET) as driven by increasing temperatures and vapor pressure deficit. We also examined teleconnections between detrended Q7 and nine atmospheric and oceanic climate indices. We found that the North Atlantic Oscillation (NAO) and Pacific North America (PNA) pattern show prediction skill for Q7 at one and two month lead time, respectively. Our findings suggest that the worst scenario for future droughts over the eastern U.S. is a combination of a response to an increasing trend in temperature driving PET with strong negative NAO and positve PNA during summer.

  17. Relationships among top-of-atmosphere radiation and atmospheric state variables in observations and CESM

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Zhang, Yongxin; Fasullo, John T.

    2015-10-01

    A detailed examination is made in both observations and the Community Earth System Model (CESM) of relationships among top-of-atmosphere radiation, water vapor, temperatures, and precipitation for 2000-2014 to assess the origins of radiative perturbations and climate feedbacks empirically. The 30-member large ensemble coupled runs are analyzed along with one run with specified sea surface temperatures for 1994 to 2005 (to avoid volcanic eruptions). The vertical structure of the CESM temperature profile tends to be top heavy in the model, with too much deep convection and not enough lower stratospheric cooling as part of the response to tropospheric heating. There is too much absorbed solar radiation (ASR) over the Southern Oceans and not enough in the tropics, and El Niño-Southern Oscillation (ENSO) is too large in amplitude in this version of the model. However, the covariability of monthly mean anomalies produces remarkably good replication of most of the observed relationships. There is a lot more high-frequency variability in radiative fluxes than in temperature, highlighting the role of clouds and transient weather systems in the radiation statistics. Over the Warm Pool in the tropical western Pacific and Indian Oceans, where nonlocal effects from the Walker circulation driven by the ENSO events are important, several related biases emerge: in response to high SST anomalies there is more precipitation, water vapor, and cloud and less ASR and outgoing longwave radiation in the model than observed. Different model global mean trends are evident, however, possibly hinting at too much positive cloud feedback in the model.

  18. Projecting 21st Century Snowpack Trends in the Western United States using Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Rhoades, A.; Huang, X.; Zarzycki, C. M.; Ullrich, P. A.

    2015-12-01

    The western USA is integrally reliant upon winter season snowpack, which supplies 3/4 of the region's fresh water and buffers against seasonal aridity on agricultural, ecosystem, and urban water demands. By the end of the 21st century, western USA snowpack (SWE) could decline by 40-70%, snowfall by 25-40%, more winter storms could tend towards rain rather than snow, and the peak timing of snowmelt will shift several weeks earlier in the season. Further, there has been evidence that mountain ranges could face more accelerated warming (elevational dependent warming) due to climate change. These future trends have largely been derived from global climate models (CMIP5) which can't resolve some of the more relatively narrow mountain ranges, like the California Sierra Nevada, in great detail. Therefore, due to the importance of orographic uplift on weather fronts, eastern Pacific sea-surface temperature anomalies, atmospheric river events, and mesoscale convective systems, high-resolution global scale modeling techniques are necessary to properly resolve western USA mountain range climatology. Variable-resolution global climate models (VRGCMs) are a promising next-generation technique to analyze both past and future hydroclimatic trends in the region. VRGCMs serve as a bridge between regional and global models by allowing for high-resolution in areas of interest, eliminate lateral boundary forcings (and resultant model biases), allow for more dynamically inclusive large-scale climate teleconnections, and require smaller simulation times and lower data storage demand (compared to conventional global models). This presentation focuses on validating these next-generation models as well as projecting future climate change scenario impacts on several of the western USA's key hydroclimate metrics (e.g., two-meter surface temperature, snow cover, snow water equivalent, and snowfall) to inform water managers and policy makers and offer resilience to climate change impacts

  19. Late Holocene Hydrologic Variability Reconstruction of the Coastal Southwestern United States Using Lake Sediments from Crystal Lake, CA

    NASA Astrophysics Data System (ADS)

    Palermo, J. A.; Kirby, M. E.; Hiner, C.; Leeper, R. J.

    2014-12-01

    This study aims to reconstruct a high resolution, late Holocene record of precipitation variability for the coastal southwestern United States region using sediment cores from Crystal Lake, CA. This region is especially susceptible to droughts and episodic floods, making it of particular importance to understand past hydrologic variability. Crystal Lake is a small, alpine landslide dammed lake in the Angeles National Forest of the San Gabriel Mountains. The lake is the only permanent, freshwater lake located in the range. It is hydrologically closed, meaning all lake level changes are controlled by changes in precipitation: evaporation. To reconstruct past hydrologic variability, two Livingston piston cores were taken 15 m apart in the depocenter of the lake in May 2014. A multi-proxy methodology was utilized including: magnetic susceptibility, total organic matter and total carbonate content, grain size, and bulk d13Corg of sediments. All analyses were conducted at 1 cm contiguous intervals except bulk d13Corg (at 2 cm). Seismic reflection profiles were also generated to examine the basin's stratigraphic features in the context of the individual sediment cores. A working age model was provided by multiple AMS 14C dates from discrete organic matter (i.e., seeds, charcoal). Results from this study are compared to preexisting records of late Holocene hydrologic variability from coastal, central, and southern California. Further, the forcing mechanisms that drive hydrologic change (wet vs. dry episodes) in Southern California, such as ocean-atmosphere interactions including El Niño Southern Oscillation or the Pacific Decadal Oscillation, are discussed.

  20. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-05-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments. PMID:11359688

  1. Mercury cycling in aquatic ecosystems and trophic state-related variables--implications from structural equation modeling.

    PubMed

    Pollman, Curtis D

    2014-11-15

    Structural equation modeling (SEM) provides a framework that can more properly handle complex variable interactions inherent in mercury cycling and its bioaccumulation compared to more traditional regression-based methods. SEM was applied to regional data sets for three different types of aquatic ecosystems within Florida, USA--lakes, streams, and the Everglades--to evaluate the underlying nature (i.e., indirect and direct) of the relationships between fish mercury concentrations and trophic state related variables such as nutrients, dissolved organic carbon (DOC), sulfate, and alkalinity. The modeling results indicated some differences in key variable relationships--for example, the effect of nutrients on fish mercury in lakes and streams was uniformly negative through direct and indirect pathways consistent with biodilution or eutrophication-associated effects on food web structure. Somewhat surprisingly, however, was that total phosphorus did not serve as a meaningful variable in the Everglades model, apparently because its effects were masked or secondary to the effects of DOC. What is perhaps a more important result were two key similarities across the three systems. First, the modeling clearly indicates that the dominant influence on fish tissue mercury concentrations in all three systems is related to variations in the methylmercury signal. Second, the modeling demonstrated that the effect of DOC on fish mercury concentrations was exerted through multiple and antagonistic pathways, including facilitated transport of total mercury and methylmercury, enhanced rates of methylation, and limitations imposed on bioavailability. Indeed, while the individual DOC pathways in the models were all highly significant (generally p<0.001), the net effect of DOC in each model was greatly reduced or insignificant. These results can help explain contradictory results obtained previously by other researchers in other systems, and illustrate the importance of SEM as a modeling

  2. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°–15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  3. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed Central

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-01-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments. PMID:11359688

  4. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ∼10°–15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ∼6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  5. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: examples from two alpine watersheds

    USGS Publications Warehouse

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-01-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996–2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54–0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  6. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Cheng, Shaodong; Li, Chao; Zhong, Jiasong; Ma, Chuansheng; Wang, Zhao; Xiang, Weidong

    2014-12-01

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  7. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    SciTech Connect

    Yang, Guang Cheng, Shaodong; Li, Chao; Ma, Chuansheng; Zhong, Jiasong; Xiang, Weidong; Wang, Zhao

    2014-12-14

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  8. Clarifying the chemical state of additives in membranes for polymer electrolyte fuel cells by X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Tanuma, Toshihiro; Itoh, Takanori

    2016-02-01

    Cerium and manganese compounds are used in the membrane for polymer electrolyte fuel cells (PEFCs) as radical scavengers to mitigate chemical degradation of the membrane. The chemical states of cerium and manganese in the membrane were investigated using a fluorescence X-ray absorption fine structure (XAFS) technique. Membrane electrode assemblies (MEAs) were subjected to open circuit voltage (OCV) condition, under which hydroxyl radicals attack the membrane; a shift in absorption energy in X-ray absorption near edge structure (XANES) spectra was compared between Ce- and Mn-containing membranes before and after OCV testing. In the case of the Ce-containing MEA, there was no significant difference in XANES spectra before and after OCV testing, whereas in the case of the Mn-containing MEA, there was an obvious shift in XANES absorption energy after OCV testing, indicating that Mn atoms with higher valence state than 2+ exist in the membrane after OCV testing. This can be attributed to the difference in the rate of reduction; the reaction of Ce4+ with ·OOH is much faster than that of Mn3+ with ·OOH, leaving some of the Mn atoms with higher valence state. It was confirmed that cerium and manganese redox couples reduced the attack from radicals, mitigating membrane degradation.

  9. Entanglement-based continuous-variable quantum key distribution with multimode states and detectors

    NASA Astrophysics Data System (ADS)

    Usenko, Vladyslav C.; Ruppert, Laszlo; Filip, Radim

    2014-12-01

    Secure quantum key distribution with multimode Gaussian entangled states and multimode homodyne detectors is proposed. In general the multimode character of both the sources of entanglement and the homodyne detectors can cause a security break even for a perfect channel when trusted parties are unaware of the detection structure. Taking into account the multimode structure and potential leakage of information from a homodyne detector reduces the loss of security to some extent. We suggest the symmetrization of the multimode sources of entanglement as an efficient method allowing us to fully recover the security irrespectively to multimode structure of the homodyne detectors. Further, we demonstrate that by increasing the number of the fluctuating but similar source modes the multimode protocol stabilizes the security of the quantum key distribution. The result opens the pathway towards quantum key distribution with multimode sources and detectors.

  10. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    PubMed

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions. PMID:26125323

  11. Influence of synoptic patterns on surface ozone variability over the Eastern United States from 1980 to 2012

    NASA Astrophysics Data System (ADS)

    Shen, L.; Mickley, L. J.; Tai, A. P. K.

    2015-05-01

    We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8 h average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the SD of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 30-35° N and 39-43° N, identifying those regions most influenced by daily weather variability. We apply Empirical Orthogonal Functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53% of the total variance in deseasonalized surface ozone, displaying (1) a widespread decrease of ozone in the eastern United States associated with southward movement of jet wind, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the East coast, and (3) an east-west pattern characteristic of a westward extension of Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. In the Midwest and Northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the Southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ∼ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the Southeast by ∼ 1 ppbv deg-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1-2 ppbv deg-1 in latitude. None of the synoptic patterns identified in this study show a

  12. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  13. CXOGBS J174444.7-260330: a new long orbital period cataclysmic variable in a low state

    NASA Astrophysics Data System (ADS)

    Ratti, E. M.; van Grunsven, T. F. J.; Jonker, P. G.; Britt, C. T.; Hynes, R. I.; Steeghs, D.; Greiss, S.; Torres, M. A. P.; Maccarone, T. J.; Groot, P. J.; Knigge, C.; Gossen, L.; Mikles, V.; Villar, V. A.; Collazzi, A. C.

    2013-02-01

    We present phase-resolved spectroscopy and photometry of a source discovered with the Chandra Galactic Bulge Survey (GBS), CXOGBS J174444.7-260330 (aka CX93 and CX153 in the previously published GBS list). We find two possible values for the orbital period P, differing from each other by ˜13 s. The most likely solution is P = 5.690 14(6) h. The optical lightcurves show ellipsoidal modulations, whose modelling provides an inclination of 32±1° for the most likely P. The spectra are dominated by a K5 V companion star (the disc veiling is ≲5 per cent). Broad and structured emission from the Balmer lines is also detected, as well as fainter emission from He i. From the absorption lines we measure K2 = 117 ± 8 km s- 1 and v sin i = 69 ± 7 km s- 1. By solving the system mass function we find M1 = 0.8 ± 0.2 M⊙ for the favoured P and i, consistent with a white dwarf accretor, and M2 = 0.6 ± 0.2 M⊙. We estimate a distance in the range 400-700 pc. Although in a low accretion state, both spectroscopy and photometry provide evidence of variability on a time-scale of months or faster. Besides finding a new, long orbital period cataclysmic variable (CV) in a low accretion state, this work shows that the design of the GBS works efficiently to find accreting X-ray binaries in quiescence, highlighting that the spectra of CVs in a low accretion state can at times appear suggestive of a quiescent neutron star or a black hole system.

  14. Patterns of acid deposition variability in the Eastern United States, 1981-84

    USGS Publications Warehouse

    Lins, H.F.; Lanfear, K.J.; Schertz, T.L.

    1987-01-01

    An increase in pH and a decrease in sulfate concentration of precipitation were recorded at National Atmospheric Deposition Program and National Trends Network (NADP/NTN) monitoring sites in the Eastern United States between 1981 and 1984. The decline in acidity, however, was not spatially or temporally uniform. The range in acidity and sulfate concentrations decreased during the four-yr period. Variations in the area of constant pH surfaces take the general form of area reductions in both the lower (pH 4.01-4.40) and upper (pH 4.91-5.40) range of values with concomitant area increases in the middle (pH 4.41-4.90) range. The pattern for sulfate is simpler, with area increases occurring in the lower (1.0-1.9 mg/L) range, decreases in the upper (2.5-4.4 mg/L) range, with approximate stability in the middle (2.0-2.4 mg/L) range of values. (Author 's abstract)

  15. Investigation of intrinsic variability in one-dimensional parallel shocks using steady state hybrid simulations

    NASA Technical Reports Server (NTRS)

    Bennett, Lee; Ellison, Donald C.

    1995-01-01

    We have developed a means of producing a steady state hybrid simulation of a collisionless shock. The shock is stopped in the simulation box by transforming into the shock frame and by modifying the downstream boundary conditions to allow the plasma to flow through the simulation box. Once the shock is stationary in the box frame, the simulation can be run for an arbitrary time with a fixed box size and a fixed number of simulation particles. Using this technique, we have shown that certain gross properties associated with the shock, such as the particle distribution function (including energetic particles produced by Fermi acceleration) and the flow speed profile, are constant (except for statistical variations) over hundreds of gyroperiods when averaged over times short compared to the average residence time of energetic particles. Our results imply that any microphysical processes responsible for particle heating and/or injection into the Fermi mechanism can be viewed as smooth and continuous on timescales longer than a few gyroperiods.

  16. Simultaneous measurements of several state variables in shocked carbon by imaging x-ray scattering

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Drake, R. P.; Falk, K.; Keiter, P. A.; Montgomery, D. S.; Benage, J. F.; Trantham, M. R.

    2014-04-01

    We apply the novel experimental technique of imaging x-ray Thomson scattering to measure the spatial profiles of the temperature, ionization state, relative material density, and the shock speed in a high-energy density system. A blast wave driven in a low-density foam is probed with 90∘ scattering of 7.8 keV helium-like nickel x-rays, which are spectrally dispersed and resolved in one spatial dimension by a doubly curved crystal. The inferred properties of the shock are shown to be self-consistent with 1D analytical estimates. These high-resolution measurements enable a direct comparison of the observed temperature with the results from hydrodynamic simulations. We find good agreement with the simulations for the temperature at the shock front but discrepancies in the modeling of the spatial temperature profile and shock speed. These results indicate the challenges in modeling the shock dynamics of structured materials like foams, commonly used in many high-energy density and laboratory astrophysics experiments.

  17. Monitoring multiple species: Estimating state variables and exploring the efficacy of a monitoring program

    USGS Publications Warehouse

    Mattfeldt, S.D.; Bailey, L.L.; Grant, E.H.C.

    2009-01-01

    Monitoring programs have the potential to identify population declines and differentiate among the possible cause(s) of these declines. Recent criticisms regarding the design of monitoring programs have highlighted a failure to clearly state objectives and to address detectability and spatial sampling issues. Here, we incorporate these criticisms to design an efficient monitoring program whose goals are to determine environmental factors which influence the current distribution and measure change in distributions over time for a suite of amphibians. In designing the study we (1) specified a priori factors that may relate to occupancy, extinction, and colonization probabilities and (2) used the data collected (incorporating detectability) to address our scientific questions and adjust our sampling protocols. Our results highlight the role of wetland hydroperiod and other local covariates in the probability of amphibian occupancy. There was a change in overall occupancy probabilities for most species over the first three years of monitoring. Most colonization and extinction estimates were constant over time (years) and space (among wetlands), with one notable exception: local extinction probabilities for Rana clamitans were lower for wetlands with longer hydroperiods. We used information from the target system to generate scenarios of population change and gauge the ability of the current sampling to meet monitoring goals. Our results highlight the limitations of the current sampling design, emphasizing the need for long-term efforts, with periodic re-evaluation of the program in a framework that can inform management decisions.

  18. Simultaneous measurements of several state variables in shocked carbon by imaging x-ray scattering

    SciTech Connect

    Gamboa, E. J. Drake, R. P.; Keiter, P. A.; Trantham, M. R.; Falk, K.; Montgomery, D. S.; Benage, J. F.

    2014-04-15

    We apply the novel experimental technique of imaging x-ray Thomson scattering to measure the spatial profiles of the temperature, ionization state, relative material density, and the shock speed in a high-energy density system. A blast wave driven in a low-density foam is probed with 90∘ scattering of 7.8 keV helium-like nickel x-rays, which are spectrally dispersed and resolved in one spatial dimension by a doubly curved crystal. The inferred properties of the shock are shown to be self-consistent with 1D analytical estimates. These high-resolution measurements enable a direct comparison of the observed temperature with the results from hydrodynamic simulations. We find good agreement with the simulations for the temperature at the shock front but discrepancies in the modeling of the spatial temperature profile and shock speed. These results indicate the challenges in modeling the shock dynamics of structured materials like foams, commonly used in many high-energy density and laboratory astrophysics experiments.

  19. Spatial variability of seasonal extreme precipitation in the western United States

    NASA Astrophysics Data System (ADS)

    Bracken, C.; Rajagopalan, B.; Alexander, M.; Gangopadhyay, S.

    2015-05-01

    We examine the characteristics of 3 day total extreme precipitation in the western United States. Coherent seasonal spatial patterns of timing and magnitude are evident in the data, motivating a seasonally based analysis. Using a clustering method that is consistent with extreme value theory, we identify coherent regions for extremes that vary seasonally. Based on storm back trajectory analysis, we demonstrate unique moisture sources and dominant moisture pathways for each spatial region. In the winter the Pacific Ocean is the dominant moisture source across the west, but in other seasons the Gulf of Mexico, the Gulf of California, and the land surface over the midwestern U.S. play an important role. We find the El Niño-Southern Oscillation (ENSO) to not have a strong impact on dominant moisture delivery pathways or moisture sources. The frequency of extremes under ENSO is spatially coherent and seasonally dependent with certain regions tending to have more (less) frequent extreme events in El Niño (La Niña) conditions.

  20. State Test Programs Mushroom as NCLB Mandate Kicks in: Nearly Half of States Are Expanding Their Testing Programs to Additional Grades This School Year to Comply with the Federal No Child Left Behind Act

    ERIC Educational Resources Information Center

    Olson, Lynn

    2005-01-01

    Twenty-three states are expanding their testing programs to additional grades this school year to comply with the federal No Child Left Behind Act. In devising the new tests, most states have defied predictions and chosen to go beyond multiple-choice items, by including questions that ask students to construct their own responses. But many state…

  1. Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States

    NASA Astrophysics Data System (ADS)

    Wurster, Christopher M.; McFarlane, Donald A.; Bird, Michael I.

    2007-07-01

    Stable isotopes of faeces contain information related to the animals feeding ecology. The use of stable isotope values from subfossil faeces as a palaeoenvironmental indicator depends on how faithfully the animal records their local environment. Here we present insectivorous bat guano δ 13C and δ 15N values from a precipitation gradient across the southern United States and northern Mexico to compare with local vegetation and climate. We find δ 13C values to be an excellent predictor of expected C 4/CAM vegetation, indicating that the bats are non-selective in their diet. Moreover, we find bat guano δ 13C values to be strongly correlated with summer precipitation amount and winter precipitation ratio. We also find evidence for a significant relationship with mean annual temperature. In general, we do not find δ 15N values to be related to any parameters along the climatic gradient we examined. Additionally, we measured δ 13C and δ 15N values of bulk guano deposited annually from 1968 to 1987 in a varved guano deposit at Eagle Creek Cave, Arizona. Neither δ 13C nor δ 15N values were significantly related to various local meteorological variables; however, we found δ 13C values of guano to be significantly related to drought and to the North American Monsoon indicating bat guano δ 13C values preserve an interpretable record of large-scale atmospheric variability.

  2. Forest response to 1,000 years of drought variability in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Williams, A. P.; Meko, D. M.; Woodhouse, C. A.; Cook, E.; Swetnam, T. W.; Macalady, A. K.; Allen, C. D.; Rauscher, S. A.; Jiang, X.; Grissino-Mayer, H.; McDowell, N. G.; Cai, M.

    2011-12-01

    Droughts in the early 1950s and early 2000s significantly accelerated tree mortality rates in the Southwestern United States. During the early 2000s, forest inventory data indicate that the proportion of dead piñon pine, ponderosa pine, and Douglas-fir trees doubled in the Southwest. The 2000s drought peaked in 2002 and was the most severe drought in at least 100 years. In 2011, precipitation, dew-point, and wind data indicate the intensity of the 2002 drought has been surpassed in a number of ways. Measurements of water potential in piñon pine trees in northern New Mexico indicate that, at present, trees have less access to soil moisture than in 2002 when widespread mortality occurred. How do these recent droughts compare to those of the last 1000 years? We used records of annual tree-ring widths from 309 populations of piñon pine, ponderosa pine, and Douglas-fir throughout the Southwestern United States to reconstruct a single record of regional drought stress from 1000-2005 AD. This record indicates that the last Southwestern drought similar in intensity to one in the early 2000s occurred in the late 1600s. Both of these droughts, however, paled in comparison to a mega-drought that occurred from 1575-1595. The emergence from this mega-drought, around 1600 AD, appears to mark a transition period from a time when droughts similar the early 2000s drought were much more common. Tree-age studies indicate a scarcity of Southwestern trees with rings extending back beyond the mega-drought of the late 1500s. This suggests that (1) the late-1500s mega-drought triggered a massive die-off of forests and/or (2) the higher frequency of drought events prior to the mega-drought sustained a much more sparse forest population than the one that has thrived from the 1600s through present. Given this apparent plasticity of Southwestern forests, a change in the forest population should be underway if higher temperatures contribute to forest drought stress. The Southwestern tree

  3. Sensitivity of global tropical climate to land surface processes: Mean state and interannual variability

    SciTech Connect

    Ma, Hsi-Yen; Xiao, Heng; Mechoso, C. R.; Xue, Yongkang

    2013-03-01

    This study examines the sensitivity of global tropical climate to land surface processes (LSP) using an atmospheric general circulation model both uncoupled (with prescribed SSTs) and coupled to an oceanic general circulation model. The emphasis is on the interactive soil moisture and vegetation biophysical processes, which have first order influence on the surface energy and water budgets. The sensitivity to those processes is represented by the differences between model simulations, in which two land surface schemes are considered: 1) a simple land scheme that specifies surface albedo and soil moisture availability, and 2) the Simplified Simple Biosphere Model (SSiB), which allows for consideration of interactive soil moisture and vegetation biophysical process. Observational datasets are also employed to assess the reality of model-revealed sensitivity. The mean state sensitivity to different LSP is stronger in the coupled mode, especially in the tropical Pacific. Furthermore, seasonal cycle of SSTs in the equatorial Pacific, as well as ENSO frequency, amplitude, and locking to the seasonal cycle of SSTs are significantly modified and more realistic with SSiB. This outstanding sensitivity of the atmosphere-ocean system develops through changes in the intensity of equatorial Pacific trades modified by convection over land. Our results further demonstrate that the direct impact of land-atmosphere interactions on the tropical climate is modified by feedbacks associated with perturbed oceanic conditions ("indirect effect" of LSP). The magnitude of such indirect effect is strong enough to suggest that comprehensive studies on the importance of LSP on the global climate have to be made in a system that allows for atmosphere-ocean interactions.

  4. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Mato Grosso do Sul State, Brazil

    NASA Astrophysics Data System (ADS)

    Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; da Cunha, Elias Rodrigues; Correa, Caio Cezar Guedes; Torres, Francisco Eduardo; Bacani, Vitor Matheus; Gois, Givanildo; Ribeiro, Larissa Pereira

    2016-04-01

    The State of Mato Grosso do Sul (MS) located in Brazil Midwest is devoid of climatological studies, mainly in the characterization of rainfall regime and producers' meteorological systems and rain inhibitors. This state has different soil and climatic characteristics distributed among three biomes: Cerrado, Atlantic Forest and Pantanal. This study aimed to apply the cluster analysis using Ward's algorithm and identify those meteorological systems that affect the rainfall regime in the biomes. The rainfall data of 32 stations (sites) of the MS State were obtained from the Agência Nacional de Águas (ANA) database, collected from 1954 to 2013. In each of the 384 monthly rainfall temporal series was calculated the average and applied the Ward's algorithm to identify spatial and temporal variability of rainfall. Bartlett's test revealed only in January homogeneous variance at all sites. Run test showed that there was no increase or decrease in trend of monthly rainfall. Cluster analysis identified five rainfall homogeneous regions in the MS State, followed by three seasons (rainy, transitional and dry). The rainy season occurs during the months of November, December, January, February and March. The transitional season ranges between the months of April and May, September and October. The dry season occurs in June, July and August. The groups G1, G4 and G5 are influenced by South Atlantic Subtropical Anticyclone (SASA), Chaco's Low (CL), Bolivia's High (BH), Low Levels Jet (LLJ) and South Atlantic Convergence Zone (SACZ) and Maden-Julian Oscillation (MJO). Group G2 is influenced by Upper Tropospheric Cyclonic Vortex (UTCV) and Front Systems (FS). The group G3 is affected by UTCV, FS and SACZ. The meteorological systems' interaction that operates in each biome and the altitude causes the rainfall spatial and temporal diversity in MS State.

  5. State of the art of Ready-to-Use Therapeutic Food: a tool for nutraceuticals addition to foodstuff.

    PubMed

    Santini, Antonello; Novellino, Ettore; Armini, Vincenzo; Ritieni, Alberto

    2013-10-15

    Therapeutic foodstuff are a challenge for the use of food and functional food ingredients in the therapy of different pathologies. Ready-to-Use Therapeutic Food (RUTF) are a mixture of nutrients designed and primarily addressed to the therapy of the severe acute malnutrition. The main ingredients of the formulation are powdered milk, peanuts butter, vegetal oil, sugar, and a mix of vitamins, salts, and minerals. The potential of this food are the low percentage of free water and the high energy and nutritional density. The high cost of the powdered milk, and the food safety problems connected to the onset of toxigenic moulds on the peanuts butter, slowed down considerably the widespread and homogenous diffusion of this product. This paper presents the state of the art of RUTF, reviews the different proposed recipes, suggests some possible new formulations as an alternative of novel recipes for this promising food. PMID:23692774

  6. State of Oral Mucosa as an Additional Symptom in the Course of Primary Amyloidosis and Multiple Myeloma Disease

    PubMed Central

    Czerniuk, Maciej R.; Jurczyszyn, Artur; Charlinski, Grzegorz

    2014-01-01

    Multiple myeloma (myeloma multiplex (MM)) is a malignant non-Hodgkin's lymphoma derived from B cell. Its essence is a malignant clone of plasma cells synthesizing growth of monoclonal immunoglobulin, which infiltrate the bone marrow, destroy the bone structure, and prevent the proper production of blood cells components. The paper presents a case of 62-year-old patient who developed symptoms in addition to neurological and haematological changes in the oral mucosa in the course of multiple myeloma. The treatment resulted in partial improvement. The authors wish to draw attention not only to nonspecificity and rarity of changes in the mouth which can meet the dentist but also to the complexity of the multidisciplinary therapy patients diagnosed with MM. PMID:25013412

  7. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed Central

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-01-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686

  8. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology: Ozonesonde Precision, Accuracy and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, Anne M.; McPeters, R. D.; Oltmans, S. J.; Schmidlin, F. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    As part of the SAFARI-2000 campaign, additional launches of ozonesondes were made at Irene, South Africa and at Lusaka, Zambia. These represent campaign augmentations to the SHADOZ database described in this paper. This network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project and established from operational sites, provided over 1000 profiles from ozonesondes and radiosondes during the period 1998-2000. (Since that time, two more stations, one in southern Africa, have joined SHADOZ). Archived data are available at: http://code9l6.gsfc.nasa.gov/Data-services/shadoz>. Uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in stratospheric ozone profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/TOMS (Total Ozone Mapping Spectrometer) satellite and ground-based instruments; (3) possible biases from station-to-station due to variations in ozonesonde characteristics. The key results are: (1) Ozonesonde precision is 5%; (2) Integrated total ozone column amounts from the sondes are in good agreement (2-10%) with independent measurements from ground-based instruments at five SHADOZ sites and with overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in groundbased-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.

  9. The boreal spring variability of the Intra-Americas low-level jet and its relation with precipitation and tornadoes in the eastern United States

    NASA Astrophysics Data System (ADS)

    Muñoz, Ernesto; Enfield, David

    2011-01-01

    The Intra-Americas Sea (IAS) low-level jet has been studied mainly for the summer and winter seasons. In contrast, spring conditions have been studied less. Here we analyze the boreal spring variability of the IAS low-level jet (IA-LLJ) and its relation with precipitation and tornadic activity in the region of the lower Mississippi, Tennessee and Ohio River basins (MORB). The main mode of variability of the spring IA-LLJ is obtained from a combined principal component analysis of zonal and meridional winds at 925-hPa. The first empirical orthogonal function of the IA-LLJ is a strengthening of the climatological flow with stronger easterlies in the Caribbean and stronger southeasterlies in the Gulf of Mexico. This first mode of variability of the IA-LLJ is related mainly to the Pacific North American (PNA) teleconnection pattern as the PNA modulates the pressure in the southeast region of the U.S. Consequently, there is an increase in precipitation over the MORB region as the moisture fluxes associated with the IA-LLJ increase. Tornadic activity in nine states spanning the MORB region is also significantly related to the IA-LLJ and the PNA index for March, in addition to the Pacific decadal oscillation (PDO) and the Niño indexes. Among the environmental factors that influence tornadic activity are southwesterly wind shear, dry transients at the mid-troposphere, moist transients at low levels, and an increase in convective available potential energy (CAPE). The decadal shifts in MORB precipitation and tornado activity appear to be related to the decadal shift of the IA-LLJ.

  10. Deconstructed transverse mass variables

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Schwienhorst, Reinhard; Virzi, Joseph S.; Walker, Devin G. E.

    2015-04-01

    Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. We demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton, jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. In addition, we also discuss how these variables allow for novel searches of single stop production, in order to directly probe unconstrained stealth stops in the small stop- and neutralino-mass regime. We also demonstrate the utility of these variables for generic gluino and stop searches in all-hadronic final states. Overall, we demonstrate that deconstructed transverse variables are essential to any search wanting to maximize signal separation from the background when the signal has undetected particles in the final state.

  11. Thermal state of permafrost in the Northern Yakutia: modern dynamics and spatial variability.

    NASA Astrophysics Data System (ADS)

    Kholodov, Alexander; Gilichinsky, David; Abramov, Andrey; Lupachev, Alexey; Davydov, Sergey; Romanovsky, Vladimir; Natali, Susan

    2013-04-01

    Permafrost exerts a significant influence on northern socioeconomic and biological systems. The thermal state of permafrost has recently become the focus of rapt attention around the world. Permafrost temperature is an integrated parameter and depends not only on the air temperature, but also on the heat transfer conditions at the ground surface and on the thermal properties of deposits; any permafrost regional forecasts and models must take these factors into consideration. Current research concerns to study of regional permafrost feedbacks associated with climate change in the Northern Yakutia. The investigated region covers the most ancient permafrost area in the Northern Hemisphere; it is characterized by varied climate zones, from a maritime to a continental. There are 3 main landscape types here including boreal forest, tundra and river or streams valleys. The research was based on making geothermal observations in an already-established network of boreholes. Recently this network includes 12 boreholes. Temperature measurements were supplemented with investigations of landscape conditions and determination of relevant soil physical properties at the key observational sites. We will achieve the goals of this project by comparing modern measurements with historical data and meteorological observations in combination with investigating heat transfer parameters at the monitoring sites. Geothermal measurements show that in the boreal forest natural zones recent permafrost temperature varies from -2.6 to -6.4°C, at the Kolyma-Panteleiha floodplain from -4.7 to -5.5°C and in tundra natural zone -9 to -10.4°C. Most of observed boreholes shows sustainable permafrost temperature rising. Within the tundra zone rate of mean annual ground temperature (MAGT) increasing consists of 0.073 to 0.109°C per year, within the boreal forest - from 0.035 to 0.063°C per year and in the floodplain 0.019°C per year. Such variations in both MAGT values and its modern changes rates

  12. Uncertainty and variability in health-related damages from coal-fired power plants in the United States

    SciTech Connect

    Levy, J.I.; Baxter, L.K.; Schwartz, J.

    2009-07-15

    The health-related damages associated with emissions from coal-fired power plants can vary greatly across facilities as a function of plant, site, and population characteristics, but the degree of variability and the contributing factors have not been formally evaluated. In this study, we modeled the monetized damages associated with 407 coal-fired power plants in the United States, focusing on premature mortality from fine particulate matter (PM2.5). We applied a reduced-form chemistry-transport model accounting for primary PM2.5 emissions and the influence of sulfur dioxide (SO{sub 2}) and nitrogen oxide (NOx) emissions on secondary particulate formation. Outputs were linked with a concentration-response function for PM2.5-related mortality that incorporated nonlinearities and model uncertainty. We valued mortality with a value of statistical life approach, characterizing and propagating uncertainties in all model elements. At the median of the plant-specific uncertainty distributions, damages across plants ranged from $30,000 to $500,000 per ton of PM2.5, $6,000 to $50,000 per ton of SO{sub 2}, $500 to $15,000 per ton of NOx, and $0.02 to $1.57 per kilowatt-hour of electricity generated. Variability in damages per ton of emissions was almost entirely explained by population exposure per unit emissions (intake fraction), which itself was related to atmospheric conditions and the population size at various distances from the power plant. Variability in damages per kilowatt-hour was highly correlated with SO{sub 2} emissions, related to fuel and control technology characteristics, but was also correlated with atmospheric conditions and population size at various distances.

  13. A methodology to asess relations between climatic variability and variations in hydrologic time series in the southwestern United States

    USGS Publications Warehouse

    Hanson, R.T.; Newhouse, M.W.; Dettinger, M.D.

    2004-01-01

    A new method for frequency analysis of hydrologic time series was developed to facilitate the estimation and reconstruction of individual or groups of frequencies from hydrologic time-series and facilitate the comparison of these isolated time-series components across data types, between different hydrologic settings within a watershed, between watersheds, and across frequencies. While climate-related variations in inflow to and outflow from aquifers have often been neglected, the development and management of ground-water and surface-water resources has required the inclusion of the assessment of the effects of climatic variability on the supply and demand and sustainability of use. The regional assessment of climatic variability of surface-water and ground-water flow throughout the southwestern United States required this new systematic method of hydrologic time-series analysis. To demonstrate the application of this new method, six hydrologic time-series from the Mojave River Basin, California were analyzed. The results indicate that climatic variability exists in all the data types and are partially coincident with known climate cycles such as the Pacific Decadal Oscillation and the El Nino-Southern Oscillation. The time-series also indicate lagged correlations between tree-ring indices, streamflow, stream base flow, and ground-water levels. These correlations and reconstructed time-series can be used to better understand the relation of hydrologic response to climatic forcings and to facilitate the simulation of streamflow and ground-water recharge for a more realistic approach to water-resource management. Published by Elsevier B.V.

  14. Impact of additional counselling sessions through phone calls on smoking cessation outcomes among smokers in Penang State, Malaysia

    PubMed Central

    2014-01-01

    Background Studies all over the world reported that smoking relapses occur during the first two weeks after a quit date. The current study aimed to assess the impact of the additional phone calls counselling during the first month on the abstinence rate at 3 and 6 months after quit date among smokers in Penang, Malaysia. Methods The study was conducted at Quit Smoking Clinic of two major hospitals in Penang, Malaysia. All the eligible smokers who attended the clinics between February 1st and October 31st 2012 were invited. Participants were randomly assigned by using urn design method either to receive the usual care that followed in the clinics (control) or the usual care procedure plus extra counselling sessions through phone calls during the first month of quit attempt (intervention). Results Participants in our cohort smoked about 14 cigarettes per day on average (mean = 13.78 ± 7.0). At 3 months, control group was less likely to quit smoking compared to intervention group (36.9% vs. 46.7%, verified smoking status) but this did not reach statistical significance (OR = 0.669; 95% CI = 0.395-1.133, P = 0.86). However, at 6 months, 71.7% of the intervention group were successfully quit smoking (bio-chemically verified) compared to 48.6% of the control group (P < 0.001). The control group were significantly less likely to quit smoking (OR = 0.375; 95% CI = 0.217-0.645, P < 0.001). Conclusions Smoking cessation intervention consisting of phone calls counselling delivered during the first month of quit attempt revealed significantly higher abstinence rates compared with a standard care approach. Therefore, the additional counselling in the first few weeks after stop smoking is a promising treatment strategy that should be evaluated further. Trial registration TCTR20140504001 PMID:24886549

  15. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  16. Population Structure, Genetic Variability, and Gene Flow of the Bean Leaf Beetle, Cerotoma trifurcata, in the Midwestern United States

    PubMed Central

    Tiroesele, Bamphitlhi; Skoda, Steven R.; Hunt, Thomas E.; Lee, Donald J.; Molina-Ochoa, Jaime; Foster, John E.

    2014-01-01

    Bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is a common pest of soybean in the Midwest United States. However, there are currently no reports on the genetic variability of C. trifurcata. This study examined 15–30 individuals from 25 sample locations to estimate genetic variability and gene flow within and among C. trifurcata from across the Midwest. Amplified fragment length polymorphism generated 175 markers for analyses. Results from analysis of molecular variance (AMOVA) indicated that the majority of genetic variation was from within samples; only a small amount of the total variation was attributed to the variation among the samples. The GST for the entire C. trifurcata population indicated that the majority of genetic variation was found within the samples, further supporting the AMOVA results. The estimated average gene flow among the C. trifurcata samples was 1.83. The Mantel test revealed no indication of correlation between geographical and genetic distance for all the C. trifurcata samples. These findings show that C. trifurcata in the Midwest are genetically heterogeneous and part of a large, interbreeding population. PMID:25373209

  17. Relations between climatic variability and hydrologic time series from four alluvial basins across the southwestern United States

    USGS Publications Warehouse

    Hanson, R.T.; Dettinger, M.D.; Newhouse, M.W.

    2006-01-01

    Hydrologic time series of groundwater levels, streamflow, precipitation, and tree-ring indices from four alluvial basins in the southwestern United States were spectrally analyzed, and then frequency components were reconstructed to isolate variability due to climatic variations on four time scales. Reconstructed components (RCs), from each time series, were compared to climatic indices like the Pacific Decadal Oscillation (PDO), North American Monsoon (NAM), and El Nin??o-Southern Oscillation (ENSO), to reveal that as much as 80% of RC variation can be correlated with climate variations on corresponding time scales. In most cases, the hydrologic RCs lag behind the climate indices by 1-36 months. In all four basins, PDO-like components were the largest contributors to cyclic hydrologic variability. Generally, California time series have more variation associated with PDO and ENSO than the Arizona series, and Arizona basins have more variation associated with NAM. ENSO cycles were present in all four basins but were the largest relative contributors in southeastern Arizona. Groundwater levels show a wide range of climate responses that can be correlated from well to well in the various basins, with climate responses found in unconfined and confined aquifers from pumping centers to mountain fronts. ?? Springer-Verlag 2006.

  18. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  19. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    SciTech Connect

    Bonfils, Celine; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, Lai-Yung R.; Doutriaux, Charles; Capotondi, Antonietta

    2015-12-15

    The El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. Most climate models project an increase in the frequency of extreme El Niño events under increased greenhouse-gas (GHG) forcing. However, it is unclear how other aspects of ENSO and ENSO-driven teleconnections will evolve in the future. Here, we identify in 20th century sea-surface temperature (SST) observations a time-invariant ENSO-like (ENSOL) pattern that is largely uncontaminated by GHG forcing. We use this pattern to investigate the future precipitation (P) response to ENSO-like SST anomalies. Models that better capture observed ENSOL characteristics produce P teleconnection patterns that are in better accord with observations and more stationary in the 21st century. We decompose the future P response to ENSOL into the sum of three terms: (1) the change in P mean state, (2) the historical P response to ENSOL, and (3) a future enhancement in the P response to ENSOL. In many regions, this last term can aggravate the P extremes associated with ENSO variability. This simple decomposition allows us to identify regions likely to experience ENSOL-induced P changes that are without precedent in the current climate.

  20. 30,000 years of hydroclimatic variability in the coastal southwest United States: regional synthesis and forcings analysis.

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.

    2015-12-01

    The coastal southwest United States is characterized by a winter dominated hydroclimate. Far from dependable, this region's supply of winter precipitation is highly variable and often characterized by hydrologic opposites - droughts and floods. Predicting future precipitation and hydrologic dynamics requires a paleoperspective. Here, we present an up-to-date synthesis of hydroclimatic variability over the past 30,000 years. A variety of terrestrial-based studies are examined and compared to understand patterns of regional hydroclimatic change. This comparison is extended into the San Joaquin Basin of California where future climate change will impact the region's agricultural stability and economy. Particularly interesting is the apparent role that Pacific sea surface temperatures (SSTs) play in modulating the region's hydroclimate over a variety of timescales. Are past periods of above average Pacific SSTs analogs for future global warming? If yes, the region might expect an increase in winter precipitation as SSTs rise in response to global warming. However, how this potential precipitation increase is manifest is unknown. For example, will the intensity of precipitation events increase and thus present increased flood hazards and diminished freshwater capture? Finally, we present evidence for changes in the source of winter precipitation over time as well as ecological responses to past hydrologic change.

  1. Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry.

    PubMed

    Rajesh, N; Imelda-Joseph; Raj, R Paul

    2010-11-01

    Vegetable waste typically has high moisture content and high levels of protein, vitamins and minerals. Its value as an agricultural feed can be enhanced through solid-state fermentation (SSF). Two experiments were conducted to evaluate the nutritional status of the products derived by SSF of a mixture of dried vegetable waste powder and oil cake mixture (soybean flour, wheat flour, groundnut oil cake and sesame oil cake at 4:3:2:1 ratio) using fungi Aspergillus niger S(1)4, a mangrove isolate, and A. niger NCIM 616. Fermentation was carried out for 9 days at 35% moisture level and neutral pH. Significant (p<0.05) increase in crude protein and amino acids were obtained in both the trials. The crude fat and crude fibre content showed significant reduction at the end of fermentation. Nitrogen free extract (NFE) showed a gradual decrease during the fermentation process. The results of the study suggest that the fermented product obtained on days 6 and 9 in case of A. niger S(1)4 and A. niger NCIM 616 respectively contained the highest levels of crude protein. PMID:20100652

  2. Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012

    NASA Astrophysics Data System (ADS)

    Shen, L.; Mickley, L. J.; Tai, A. P. K.

    2015-10-01

    We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28-32 and 40-45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north-south movement of jet wind latitude, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east-west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg-1 in longitude. For all summers, a northward

  3. MULTIWAVELENGTH VARIABILITY OF THE BLAZARS Mrk 421 AND 3C 454.3 IN THE HIGH STATE

    SciTech Connect

    Gaur, Haritma; Gupta, Alok C.; Wiita, Paul J.

    2012-01-15

    We report the results of photometric observations of the blazars Mrk 421 and 3C 454.3 designed to search for intraday variability (IDV) and short-term variability (STV). Optical photometric observations were spread over 18 nights for Mrk 421 and 7 nights for 3C 454.3 during our observing run in 2009-2010 at the 1.04 m telescope at Aryabhatta Research Institute of Observational Sciences, India. Genuine IDV is found for the source 3C 454.3 but not for Mrk 421. Genuine STV is found for both sources. Mrk 421 was revealed by the Monitor of All-sky X-ray Image (MAXI) X-ray detector on the International Space Station to be in an exceptionally high flux state in 2010 January-February. We performed a correlation between the X-ray and optical bands to search for time delays and found a weak correlation with higher frequencies leading the lower frequencies by about 10 days. The blazar 3C 454.3 was found to be in a high flux state in 2009 November-December. We performed correlations in optical observations made at three telescopes, along with X-ray data from the MAXI camera and public release {gamma}-ray data from the Fermi space telescope. We found strong correlations between the {gamma}-ray and optical bands at a time lag of about four days, but the X-ray flux is not correlated with either. We briefly discuss the possible reasons for the time delays between these bands within the framework of existing models for X-ray and {gamma}-ray emission mechanisms.

  4. Glucose Variability

    PubMed Central

    2013-01-01

    The proposed contribution of glucose variability to the development of the complications of diabetes beyond that of glycemic exposure is supported by reports that oxidative stress, the putative mediator of such complications, is greater for intermittent as opposed to sustained hyperglycemia. Variability of glycemia in ambulatory conditions defined as the deviation from steady state is a phenomenon of normal physiology. Comprehensive recording of glycemia is required for the generation of any measurement of glucose variability. To avoid distortion of variability to that of glycemic exposure, its calculation should be devoid of a time component. PMID:23613565

  5. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases.

    PubMed Central

    Gubler, D J; Reiter, P; Ebi, K L; Yap, W; Nasci, R; Patz, J A

    2001-01-01

    Diseases such as plague, typhus, malaria, yellow fever, and dengue fever, transmitted between humans by blood-feeding arthropods, were once common in the United States. Many of these diseases are no longer present, mainly because of changes in land use, agricultural methods, residential patterns, human behavior, and vector control. However, diseases that may be transmitted to humans from wild birds or mammals (zoonoses) continue to circulate in nature in many parts of the country. Most vector-borne diseases exhibit a distinct seasonal pattern, which clearly suggests that they are weather sensitive. Rainfall, temperature, and other weather variables affect in many ways both the vectors and the pathogens they transmit. For example, high temperatures can increase or reduce survival rate, depending on the vector, its behavior, ecology, and many other factors. Thus, the probability of transmission may or may not be increased by higher temperatures. The tremendous growth in international travel increases the risk of importation of vector-borne diseases, some of which can be transmitted locally under suitable circumstances at the right time of the year. But demographic and sociologic factors also play a critical role in determining disease incidence, and it is unlikely that these diseases will cause major epidemics in the United States if the public health infrastructure is maintained and improved. PMID:11359689

  6. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases.

    PubMed

    Gubler, D J; Reiter, P; Ebi, K L; Yap, W; Nasci, R; Patz, J A

    2001-05-01

    Diseases such as plague, typhus, malaria, yellow fever, and dengue fever, transmitted between humans by blood-feeding arthropods, were once common in the United States. Many of these diseases are no longer present, mainly because of changes in land use, agricultural methods, residential patterns, human behavior, and vector control. However, diseases that may be transmitted to humans from wild birds or mammals (zoonoses) continue to circulate in nature in many parts of the country. Most vector-borne diseases exhibit a distinct seasonal pattern, which clearly suggests that they are weather sensitive. Rainfall, temperature, and other weather variables affect in many ways both the vectors and the pathogens they transmit. For example, high temperatures can increase or reduce survival rate, depending on the vector, its behavior, ecology, and many other factors. Thus, the probability of transmission may or may not be increased by higher temperatures. The tremendous growth in international travel increases the risk of importation of vector-borne diseases, some of which can be transmitted locally under suitable circumstances at the right time of the year. But demographic and sociologic factors also play a critical role in determining disease incidence, and it is unlikely that these diseases will cause major epidemics in the United States if the public health infrastructure is maintained and improved. PMID:11359689

  7. Spatial variability of carbonaceous aerosols and associated source tracers in two cites in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Snyder, David C.; Rutter, Andrew P.; Worley, Chris; Olson, Mike; Plourde, Anthony; Bader, Rebecca C.; Dallmann, Timothy; Schauer, James J.

    2010-05-01

    Semi-continuous and 24-h averaged measurements of fine carbonaceous aerosols were made concurrently at three sites within each of two U.S. Midwestern Cities; Detroit, Michigan and Cleveland, Ohio; during two, one-month intensive campaigns conducted in July of 2007 and January & February of 2008. A comparison of 24-h measurements revealed substantial intra-urban variability in carbonaceous aerosols consistent with the influence of local sources, and excesses in both PM 2.5 organic carbon (OC) and elemental carbon (EC) were identified at individual sites within each city. High time-resolved black carbon (BC) measurements indicated that elemental carbon concentrations were higher at sites adjacent to freeways and busy surface streets, and temporal patterns suggested that excess EC at sites adjacent to freeways was dominated by mobile source emissions while excesses in EC away from traffic corridors was dominated by point/area source emissions. The site-to-site variability in OC concentrations was approximately 7% within the neighborhood scale (0.5-4 km) and between 4 and 27% at the urban scale (4-100 km). In contrast, measurements of organic source tracers, in conjunction with a Chemical Mass Balance (CMB) source-apportionment model, indicated that the spatial variation in the contribution of both mobile and stationary sources to PM 2.5 OC often exceeded the variation in OC mass concentration by a factor of 3 or more. Markers for mobile sources, biomass smoke, natural gas, and coal combustion differed by as much as 60% within the neighborhood scale and by greater than 200% within the urban scale. The observations made during this study suggest that the urban excess of carbonaceous aerosols is much more complex than has been previously reported and that a more rigorous, source-oriented approach should be taken in order to assess the risk associated with exposure to carbonaceous aerosols within the industrialized environments of the Midwestern United States.

  8. Evaluating Inter-Annual Climate Variability of Nitrogen Wet Deposition in the United States Using Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Nergui, T.; Thomas, N.; Liu, M.; Lamb, B. K.; Adam, J. C.; Chung, S. H.

    2012-12-01

    Human activities, primarily agricultural practices and fossil fuel combustion, have caused a significant increase in nitrogen (N) emissions into the atmosphere over the last 150 years. The increase in emission subsequently leads to elevated ozone concentration, haze, increased acid rain and N deposition at local and regional scales. Many ecosystems in the US are naturally N limited. These regions are highly vulnerable to increased N deposition which can lead to irreversible changes in biodiversity richness and composition of the ecosystems. Through the impact on atmospheric chemistry and scavenging by precipitation, climate variability can play a major role on N deposition rates. The El Niño/Southern Oscillation (ENSO), Northern Annular Mode/Arctic Oscillation (NAM/AO), North Atlantic Oscillation (NAO), and the Pacific-North American Pattern (PNA) indices are the key climate indices that characterize the climate in the contiguous US at inter-annual timescale. Here, we identify dominant periodic components (signal) in the N wet deposition and the climate index timeseries and examine their correlations and coherences using wavelet analysis. Seasonal precipitation and nitrogen (ammonium and nitrate) wet deposition data from the National Atmospheric Deposition Program (NADP), National Trends Network (NTN) for 87 sites across the United States are used for the study. The sites were selected based on data continuity of 21 years or more and NADP criteria for valid precipitation and wet deposition data. Precipitation data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are also used to replicate and validate the general features of climate variability effects in different regions of US. Initial analysis reveals nitrate wet deposition has a dominant 1-4 year periodicity while ammonium wet deposition has a shorter periodicity (about 0.5-2 year) during 1979 to 2011. Precipitation and total N wet deposition are most correlated in the Great Plains

  9. Clinical and laboratory variability in a cohort of patients diagnosed with type 1 VWD in the United States.

    PubMed

    Flood, Veronica H; Christopherson, Pamela A; Gill, Joan Cox; Friedman, Kenneth D; Haberichter, Sandra L; Bellissimo, Daniel B; Udani, Rupa A; Dasgupta, Mahua; Hoffmann, Raymond G; Ragni, Margaret V; Shapiro, Amy D; Lusher, Jeanne M; Lentz, Steven R; Abshire, Thomas C; Leissinger, Cindy; Hoots, W Keith; Manco-Johnson, Marilyn J; Gruppo, Ralph A; Boggio, Lisa N; Montgomery, Kate T; Goodeve, Anne C; James, Paula D; Lillicrap, David; Peake, Ian R; Montgomery, Robert R

    2016-05-19

    von Willebrand disease (VWD) is the most common inherited bleeding disorder, and type 1 VWD is the most common VWD variant. Despite its frequency, diagnosis of type 1 VWD remains the subject of debate. In order to study the spectrum of type 1 VWD in the United States, the Zimmerman Program enrolled 482 subjects with a previous diagnosis of type 1 VWD without stringent laboratory diagnostic criteria. von Willebrand factor (VWF) laboratory testing and full-length VWF gene sequencing was performed for all index cases and healthy control subjects in a central laboratory. Bleeding phenotype was characterized using the International Society on Thrombosis and Haemostasis bleeding assessment tool. At study entry, 64% of subjects had VWF antigen (VWF:Ag) or VWF ristocetin cofactor activity below the lower limit of normal, whereas 36% had normal VWF levels. VWF sequence variations were most frequent in subjects with VWF:Ag <30 IU/dL (82%), whereas subjects with type 1 VWD and VWF:Ag ≥30 IU/dL had an intermediate frequency of variants (44%). Subjects whose VWF testing was normal at study entry had a similar rate of sequence variations as the healthy controls (14%). All subjects with severe type 1 VWD and VWF:Ag ≤5 IU/dL had an abnormal bleeding score (BS), but otherwise BS did not correlate with VWF:Ag. Subjects with a historical diagnosis of type 1 VWD had similar rates of abnormal BS compared with subjects with low VWF levels at study entry. Type 1 VWD in the United States is highly variable, and bleeding symptoms are frequent in this population. PMID:26862110

  10. Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability.

    PubMed

    Jennings, J Richard; Sheu, Lei K; Kuan, Dora C-H; Manuck, Stephen B; Gianaros, Peter J

    2016-04-01

    Resting high-frequency heart rate variability (HF-HRV) relates to cardiac vagal control and predicts individual differences in health and longevity, but its functional neural correlates are not well defined. The medial prefrontal cortex (mPFC) encompasses visceral control regions that are components of intrinsic networks of the brain, particularly the default mode network (DMN) and the salience network (SN). Might individual differences in resting HF-HRV covary with resting state neural activity in the DMN and SN, particularly within the mPFC? This question was addressed using fMRI data from an eyes-open, 5-min rest period during which echoplanar brain imaging yielded BOLD time series. Independent component analysis yielded functional connectivity estimates defining the DMN and SN. HF-HRV was measured in a rest period outside of the scanner. Midlife (52% female) adults were assessed in two studies (Study 1, N = 107; Study 2, N = 112). Neither overall DMN nor SN connectivity strength was related to HF-HRV. However, HF-HRV related to connectivity of one region within mPFC shared by the DMN and SN, namely, the perigenual anterior cingulate cortex, an area with connectivity to other regions involved in autonomic control. In sum, HF-HRV does not seem directly related to global resting state activity of intrinsic brain networks, but rather to more localized connectivity. A mPFC region was of particular interest as connectivity related to HF-HRV was shared by the DMN and SN. These findings may indicate a functional basis for the coordination of autonomic cardiac control with engagement and disengagement from the environment. PMID:26995634

  11. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  12. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  13. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory

    SciTech Connect

    Edwards, T. B.; Peeler, D. K.

    2012-11-26

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

  14. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  15. Spatial Variability in Black Carbon Mixing State Observed During The Multi-City NASA DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Hudgins, C.; Martin, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    mixed fraction of particles containing BC across the optically-active region of the size distribution (200-1000 nm) and 2) the internally mixed volume fraction of BC relative to the total particle volume assuming spherical particles. Vertical profiles of these variables are discussed in the context of remotely sensing aerosol mixing state.

  16. Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5

    NASA Astrophysics Data System (ADS)

    Kucharski, F.; Syed, F. S.; Burhan, A.; Farah, I.; Gohar, A.

    2015-02-01

    This paper investigates the influence of the tropical Atlantic on the tropical Pacific interannual variability and mean state in the twentieth century. It is demonstrated that observational datasets show a significant time-delayed impact of the tropical Atlantic on tropical Pacific sea surface temperatures, leading to an anticorrelation between the tropical Atlantic and the eastern Pacific if the Atlantic is leading by about 10 months. This result is robust across different sea surface temperature reconstructions. There is no robust correlation between the tropical Atlantic and the eastern Pacific when the Pacific is leading, although in recent decades a positive correlation between the two basins is more dominant. An analysis of the surface pressure response to the tropical Atlantic indicates an atmospheric bridge and a modification of the Walker circulation as the likely trigger for the teleconnection, and this result is consistent with recent observational and modelling results for the recent decades. 30 out of the analyzed 45 World Climate Research Program's Coupled Model Intercomparison Project Phase 5 (CMIP5) models show statistically significant anticorrelations between individual tropical Atantic warm and cold events and the time-lagged eastern Pacific sea surface temperatues. 16 out of the 45 analyzed models fulfill the more stringent criterion of lead-lag correlations between the tropical Atlantic and Pacific similar to the observations. The atmospheric bridge mechanism seems also valid in the selected CMIP5 models. We have identified the tropical Atlantic warm bias present in nearly all models as one potential candidate for the overall weak time-delayed teleconnection between the tropical Atlantic and the Pacific, but also other mean state biases are important. In the selected models a stronger warming of the tropical Atlantic Ocean compared to the global sea surface temperature mean is associated with a La Nina-like mean state change in the tropical

  17. The Oxidation State of Fe in Glasses from the Galapagos Archipelago: Variable Oxygen Fugacity as a Function of Mantle Source

    NASA Astrophysics Data System (ADS)

    Peterson, M. E.; Kelley, K. A.; Cottrell, E.; Saal, A. E.; Kurz, M. D.

    2015-12-01

    The oxidation state of the mantle plays an intrinsic role in the magmatic evolution of the Earth. Here we present new μ-XANES measurements of Fe3+/ΣFe ratios (a proxy for ƒO2) in a suite of submarine glasses from the Galapagos Archipelago. Using previously presented major, trace, and volatile elements and isotopic data for 4 groups of glass that come from distinct mantle sources (depleted upper mantle, 2 recycled, and a primitive mantle source) we show that Fe3+/ΣFe ratios vary both with the influence of shallow level processes and with variations in mantle source. Fe3+/ΣFe ratios increase with differentiation (i.e. decreasing MgO), but show a large variation at a given MgO. Progressive degassing of sulfur accompanies decreasing Fe3+/ΣFe ratios, while assimilation of hydrothermally altered crust (as indicated by increasing Sr/Sr*) is shown to increase Fe3+/ΣFe ratios. After taking these processes into account, there is still variability in the Fe3+/ΣFe ratios of the isotopically distinct sample suites studied, yielding a magmatic ƒO2 that ranges from ΔQFM = +0.16 to +0.74 (error < 0.5 log units) and showing that oxidation state varies as a function of mantle source composition in the Galapagos hotspot system. After correcting back to a common MgO content = 8.0 wt%, the trace element depleted group similar to MORB (ITD), and the group similar to Pinta (WD = high Th/La, Δ7/4, Δ8/4 ratios) show Fe3+/ΣFe ratios within the range of MORB (average ITD = 0.162 ± 0.003 and WD = 0.164 ± 0.006). Another trace element enriched group similar to Sierra Negra and Cerro Azul (ITE = enriched Sr and Pb isotopes) shows evidence of mixing between oxidized and reduced sources (ITE oxidized end-member = 0.177). This suggests that mantle sources in the Galapagos that are thought to contain recycled components (i.e., WD and ITE groups) have distinct oxidation states. The high 3He/4He Fernandina samples (HHe group) are shown to be the most oxidized (ave. 0.175 ± 0

  18. Graphite and fiberglass additives for improving high-rate partial-state-of-charge cycle life of valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Valenciano, J.; Sánchez, A.; Trinidad, F.; Hollenkamp, A. F.

    In order to accommodate regenerative braking energy input in hybrid and mild hybrid vehicles while maintaining boosting power at high rates of discharge, valve-regulated lead-acid (VRLA) batteries must operate permanently at partial-state-of-charge (PSoC) conditions. As a consequence, new failure modes appear, e.g., irreversible sulfation in negative plates, that have to be overcome. In this way, work has been done to apply some solutions like improving charge acceptance in this "sulfated medium". Several batches of 6 V 20 Ah AGM VRLA batteries with spiral cell design have been assembled and tested, each batch containing novel additives in the negative active material (NAM). It has been observed that the addition of a sufficient amount of expanded graphite significantly improves cycle life under PSoC conditions. Moreover, life duration is also extended, although to a lesser extent, by using a novel fiberglass which increases surface area of NAM.

  19. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  20. The evolution of earthquake-nucleating slip instabilities under spatially variable steady-state rate dependence of friction

    NASA Astrophysics Data System (ADS)

    Ray, S.; Viesca, R. C.

    2014-12-01

    Following laboratory rock friction experiments, fault strength under sub-seismic slip speeds is thought to depend on a slip rate- and state-dependent friction. Laboratory-measured temperature dependence of the frictional properties and their implied variation with depth form the basis for current models of the seismic cycle. However, scant attention has been paid to the role such heterogeneity has on determining the location and manner in which an earthquake nucleating slip instability develops. Recent work demonstrates that a slip instability on a fault with rate-and-state friction (in which state evolution follows the aging law) occurs as the attraction of a dynamical system towards a fixed point (Viesca, this meeting). Based on this development, we find that the location of that fixed point may be determined if a heterogeneous distribution of the relative rate-weakening parameter a/b is known. (Rate-weakening occurs for 01). That this arises can be deduced considering that (i) the problem that determines the fixed points is equivalent to finding the equilibrium solution for a linearly slip-weakening crack, and (ii) heterogeneities in the parameter a/b have analogy in the equivalent problem to heterogeneities in the background stress. Physically, instability develops where rate-weakening is strongest. We examined the influence such a heterogeneity has on the fixed point attractor (and hence on the instability development) by considering the scenario of a rate-weakening patch embedded within a rate-strengthening region with in-plane or anti-plane slip conditions. Specifically, we solve for fixed points under a rate-weakening heterogeneity within |x|1) outside. Additionally, a linear stability analysis reveals the effect of heterogeneity on the stability of the fixed points of the dynamical system. The heterogeneity parameters (a

  1. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.

    PubMed

    Wang, Hongye; McIntosh, Anthony R; Kovacevic, Natasa; Karachalios, Maria; Protzner, Andrea B

    2016-07-01

    Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a "rest-task-rest" design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity. PMID:26942319

  2. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 1: Theoretical developments and applications

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, Wei

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present first part of the

  3. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 2: Algorithmic developments and implementation

    NASA Technical Reports Server (NTRS)

    Li, Wei; Saleeb, Atef F.

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of

  4. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  5. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    PubMed

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  6. An Alexandrium Spp. Cyst Record from Sequim Bay, Washington State, USA, and its Relation to Past Climate Variability(1).

    PubMed

    Feifel, Kirsten M; Moore, Stephanie K; Horner, Rita A

    2012-06-01

    Since the 1970s, Puget Sound, Washington State, USA, has experienced an increase in detections of paralytic shellfish toxins (PSTs) in shellfish due to blooms of the harmful dinoflagellate Alexandrium. Natural patterns of climate variability, such as the Pacific Decadal Oscillation (PDO), and changes in local environmental factors, such as sea surface temperature (SST) and air temperature, have been linked to the observed increase in PSTs. However, the lack of observations of PSTs in shellfish prior to the 1950s has inhibited statistical assessments of longer-term trends in climate and environmental conditions on Alexandrium blooms. After a bloom, Alexandrium cells can enter a dormant cyst stage, which settles on the seafloor and then becomes entrained into the sedimentary record. In this study, we created a record of Alexandrium spp. cysts from a sediment core obtained from Sequim Bay, Puget Sound. Cyst abundances ranged from 0 to 400 cysts · cm(-3) and were detected down-core to a depth of 100 cm, indicating that Alexandrium has been present in Sequim Bay since at least the late 1800s. The cyst record allowed us to statistically examine relationships with available environmental parameters over the past century. Local air temperature and sea surface temperature were positively and significantly correlated with cyst abundances from the late 1800s to 2005; no significant relationship was found between PDO and cyst abundances. This finding suggests that local environmental variations more strongly influence Alexandrium population dynamics in Puget Sound when compared to large-scale changes. PMID:27011070

  7. Additional Testing of the DHC-6 Twin Otter Tailplane Iced Airfoil Section in the Ohio State University 7x10 Low Speed Wind Tunnel. Volume 2

    NASA Technical Reports Server (NTRS)

    Gregorek, Gerald; Dresse, John J.; LaNoe, Karine; Ratvasky, Thomas (Technical Monitor)

    2000-01-01

    The need for fundamental research in Ice Contaminated Tailplane Stall (ICTS) was established through three international conferences sponsored by the FAA. A joint NASA/FAA Tailplane Icing Program was formed in 1994 with the Ohio State University playing a critical role for wind tunnel and analytical research. Two entries of a full-scale 2-dimensional tailplane airfoil model of a DHC-6 Twin Otter were made in The Ohio State University 7x10 ft wind tunnel. This report describes the second test entry that examined additional ice shapes and roughness, as well as airfoil section differences. The addition data obtained in this test fortified the original database of aerodynamic coefficients that permit a detailed analysis of flight test results with an OSU-developed analytical program. The testing encompassed a full range of angles of attack and elevator deflections at flight Reynolds number conditions. Aerodynamic coefficients, C(L), C(M), and C(He), were obtained by integrating static pressure coefficient, C(P), values obtained from surface taps. Comparisons of clean and iced airfoil results show a significant decrease in the tailplane aeroperformance (decreased C(Lmax), decreased stall angle, increased C(He)) for all ice shapes with the grit having the lease affect and the LEWICE shape having the greatest affect. All results were consistent with observed tailplane stall phenomena and constitute an effective set of data for comprehensive analysis of ICTS.

  8. Relative Contributions of Selected Teachers' Variables and Students' Attitudes toward Academic Achievement in Biology among Senior Secondary School Students in Ondo State, Nigeria

    ERIC Educational Resources Information Center

    Gbore, L. O.; Daramola, C. A.

    2013-01-01

    This study investigated the relative contributions of selected teachers' variables and students' attitude towards academic achievement in biology among senior secondary schools in Ondo State, Nigeria. It involved descriptive survey research and ex-post facto research designs. The sample, 360 respondents which consists of 180 biology teachers and…

  9. The Role of Motivation and Learner Variables in L1 and L2 Vocabulary Development in Japanese Heritage Language Speakers in the United States

    ERIC Educational Resources Information Center

    Mori, Yoshiko; Calder, Toshiko M.

    2015-01-01

    This study investigates the role of motivation and learner variables in bilingual vocabulary development among first language (L1) Japanese students attending hoshuukoo (i.e., supplementary academic schools for Japanese-speaking children) in the United States. One hundred sixteen high school students ages 15-18 from eight hoshuukoo completed…

  10. Higher Education and the Spectre of Variable Fees: Public Policy and Institutional Responses in the United States and the United Kingdom

    ERIC Educational Resources Information Center

    Ward, David; Douglass, John Aubrey

    2006-01-01

    As part of a larger effort to fund public universities, variable fees at the graduate and undergraduate levels are a topic of discussion in the United States and increasingly throughout the European Union. This essay describes the relatively new shift to have students pay for a significant portion of their university education, emerging fee…

  11. X-ray variability with spectral state transitions in NS-LMXBs observed with MAXI/GSC and Swift/BAT

    NASA Astrophysics Data System (ADS)

    Asai, Kazumi; Mihara, Tatehiro; Matsuoka, Masaru; Sugizaki, Mutsumi

    2015-10-01

    X-ray variabilities with spectral state transitions in bright low-mass X-ray binaries containing a neutron star are investigated by using the one-day bin light curves of MAXI/GSC (Gas Slit Camera) and Swift/BAT (Burst Alert Telescope). Four sources (4U 1636-536, 4U 1705-44, 4U 1608-52, and GS 1826-238) exhibited small-amplitude X-ray variabilities with spectral state transitions. Such "mini-outbursts" were characterized by smaller amplitudes (several times) and shorter duration (less than several tens of days) than those of "normal outbursts." A theoretical model of disk instability by Mineshige and Osaki (PASJ, 37, 1, 1985) predicts both large-amplitude outbursts and small-amplitude variabilities. We interpret the normal outbursts as the former prediction of this model, and the mini-outbursts as the latter. Here, we can also call the mini-outburst a "purr-type outburst" referring to the theoretical work. We suggest that similar variabilities lasting for several tens of days without spectral state transitions, which are often observed in the hard state, may be repeats of mini-outbursts.

  12. Population structure, genetic variability, and gene flow of the bean leaf beetle, Cerotoma trifurcata, in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is a common pest of soybean in the Midwest. However, there are currently no studies on the genetic variability of C. trifurcata. This study examined 15-30 individuals from 25 subpopulations to determine genetic variability ...

  13. Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid and semi-arid grazing lands (rangelands) may regularly shift between functioning as a carbon (C) sink and a C source in response to variability in precipitation and other climatic or environmental variables. We analyzed measurements of carbon dioxide (CO2) exchange from 8 native rangeland ecos...

  14. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers

    PubMed Central

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  15. Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete and continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Mandarino, Antonio; Bina, Matteo; Porto, Carmen; Cialdi, Simone; Olivares, Stefano; Paris, Matteo G. A.

    2016-06-01

    We experimentally address the significance of fidelity as a figure of merit in quantum state reconstruction of discrete (DV) and continuous-variable (CV) quantum optical systems. In particular, we analyze the use of fidelity in quantum homodyne tomography of CV states and maximum-likelihood polarization tomography of DV ones, focusing attention on nonclassicality, entanglement, and quantum discord as a function of fidelity to a target state. Our findings show that high values of fidelity, despite well quantifying geometrical proximity in the Hilbert space, may be obtained for states displaying opposite physical properties, e.g., quantum or semiclassical features. In particular, we analyze in detail the quantum-to-classical transition for squeezed thermal states of a single-mode optical system and for Werner states of a two-photon polarization qubit system.

  16. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers.

    PubMed

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  17. Regionally-Coherent Moisture Variability at Multi-Centennial Time-Scales in the Northeastern United States during the Holocene

    NASA Astrophysics Data System (ADS)

    Donnelly, J. P.; Shuman, B. N.

    2006-12-01

    Few records of Holocene climate variability have been reproduced in detail at multiple sites and with a clear indication of the controls on the paleoclimate proxy. Here, we present a well-replicated regional record of multi- century drought in the Northeast U.S. based on sedimentary evidence for lake level changes. Our record derives from evidence for repeated ~700-yr long episodes of low lake levels in the past 5600 yrs at three lakes up to 240 km apart in Massachusetts. Ground-penetrating radar (GPR) profiles and sediment cores show four paleoshorelines within the lakes that date between 5600 and 2300 cal yr BP following several millennia without evidence for low lake stands. Loss-on-ignition and scanning XRF data from near-shore cores within the three lakes reveal repeated sand layers that correlate with near-shore unconformities in GPR profiles. Such features can be well explained by low lake levels and the generation of sandy lags and erosional surfaces by wave action in shallow water near to shore; during intermediate high lake phases, low wave energy in deep water at the same locations enabled the accumulation of fine-grained organic-rich sediments. The calibrated ages for the beginning of the first low stand are 5340-5730 cal yr BP at New Long Pond, 5570-5690 cal yr BP at Round Pond, and 5655-5605 cal yr BP at Davis Pond; ages for the end of the fourth low stand are 2000- 2110 cal yr BP at New Long Pond, 2270-2390 cal yr BP at Round Pond, and 2325-2350 cal yr BP at Davis Pond. The strong correlation of water table low stands at three different lakes in different parts of the state confirm that the events are related to regional climate phenomena. Like the AD 1964 drought, which severely reduced the water supply to Boston and New York City, these events may have been generated by atmospheric circulation patterns established in response to changes in Atlantic sea-surface temperature gradients.

  18. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  19. Transfer of hospitals and "additional premises" to the state: questionable morality in the implementation of the National Health Service Act (1946).

    PubMed

    Cook, G C

    2004-12-01

    The National Health Service Act of 1946, pioneered by Aneurin Bevan, came into being on the "appointed day", 5 July 1948. Hospitals with their "additional premises" throughout Britain were "seized" by the state and incorporated into this vast socialist enterprise. While the majority of the population welcomed this new initiative in the creation of a welfare state, associated with medical care from cradle to grave, not all (especially members of various Hospital Boards of Management) were so enthusiastic. The hospitals for "incurables" (long stay patients) were unhappy and lost a vast proportion of their income owing to a great deal of procrastination; but most of them ultimately managed to escape nationalisation after a prolonged period of negotiation, by a claim that they were "homes" rather than "hospitals". The confiscation of property which had been built as a result of voluntary subscription was another huge and highly contentious matter, which has been highlighted in recent years. The future of the Seamen's Hospital Society's properties represents a good example of this. PMID:15579611

  20. Data regarding hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Comprehensive, published, and publicly available data regarding the extent, location, and character of hydraulic fracturing in the United States are scarce. The objective of this data series is to publish data related to hydraulic fracturing in the public domain. The spreadsheets released with this data series contain derivative datasets aggregated temporally and spatially from the commercial and proprietary IHS database of U.S. oil and gas production and well data (IHS Energy, 2011). These datasets, served in 21 spreadsheets in Microsoft Excel (.xlsx) format, outline the geographical distributions of hydraulic fracturing treatments and associated wells (including well drill-hole directions) as well as water volumes, proppants, treatment fluids, and additives used in hydraulic fracturing treatments in the United States from 1947 through 2010. This report also describes the data—extraction/aggregation processing steps, field names and descriptions, field types and sources. An associated scientific investigation report (Gallegos and Varela, 2014) provides a detailed analysis of the data presented in this data series and comparisons of the data and trends to the literature.