Science.gov

Sample records for additional storage space

  1. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Dean, William G (Inventor); Owen, James W. (Inventor)

    1988-01-01

    This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

  2. 4. MACHINERY SHED AND STORAGE ROOM ADDITION, SOUTH AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MACHINERY SHED AND STORAGE ROOM ADDITION, SOUTH AND WEST WALL LOOKING NORTHEAST SEED STORAGE BUILDING (1963) BEHIND - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ

  3. Making Space: Automated Storage and Retrieval.

    ERIC Educational Resources Information Center

    Tanis, Norman; Ventuleth, Cindy

    1987-01-01

    Describes a pilot project in automated storage and retrieval of library materials which uses miniload cranes to retrieve bins of materials, and an interface with an online catalog that patrons use to request materials. Savings in space and money and potential problems with the system are discussed. (CLB)

  4. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  5. 15. DETAILED VIEW OF ENRICHED URANIUM STORAGE TANK. THE ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAILED VIEW OF ENRICHED URANIUM STORAGE TANK. THE ADDITION OF THE GLASS RINGS SHOWN AT THE TOP OF THE TANK HELPS PREVENT THE URANIUM FROM REACHING CRITICALITY LIMITS. (4/12/62) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  6. 8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF NAILS USED TO ADHERE PORTLAND CEMENT PLASTER, SOUTH ADOBE WALL ADJACENT TO WINDOW Note: Photographs Nos. AZ-159-A-9 through AZ-159-A-10 are photocopies of photographs. The original prints and negatives are located in the SCS Tucson Plant Materials Center, Tucson, Arizona. Photographer Ted F. Spaller. - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ

  7. Storage of platelets in additive solutions: a new method for storage using sodium chloride solution.

    PubMed

    Gulliksson, H; Sallander, S; Pedajas, I; Christenson, M; Wiechel, B

    1992-06-01

    The in vitro effect of 6-day storage of platelets prepared from 6 pooled buffy coat (BC) units and stored in a platelet storage medium containing approximately 40 percent CPD-plasma and 60 percent platelet additive solution (PAS) was evaluated. PAS is composed of sodium and potassium chloride, citrate, phosphate, and mannitol. The total count of platelets per pooled unit included in the in vitro studies (n = 25) was 376 +/- 59 x 10(9) (mean +/- SD). The present study included three steps. 1. Evaluation of platelet storage in one (n = 7) and two (n = 6) 1000-mL polyolefin containers using PAS. During storage in one container, significantly lower values were found for pH, pO2, glucose, ATP, and the ratio of ATP to AMP+ADP+ATP. The values for mean platelet volume, pCO2, lactate, and extracellular adenylate kinase activity were significantly higher. These results indicate that storage in only one polyolefin container is not appropriate for maintaining satisfactory platelet quality. During storage in two polyolefin containers, a remarkably decreased lactate production (0.07 +/- 0.02 mmol/day/10(11) platelets) was noted. 2. PAS was substituted for saline during 6-day storage in two 1000-mL polyolefin containers (n = 12). The composition of the platelet preparations was the same in all other respects. Similar in vitro results were noted with PAS and saline, which indicated that PAS has no specific effect on the storage of platelets different from that of saline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1626346

  8. Study of flywheel energy storage for space stations

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  9. Energy Storage Technology Development for Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  10. Perspectives on energy storage wheels for space station application

    SciTech Connect

    Oglevie, R.E.

    1984-11-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  11. An Isotope-Powered Thermal Storage unit for space applications

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Rose, M. F.

    1991-01-01

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  12. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  13. Thermal storage analysis for large manned space platforms

    NASA Technical Reports Server (NTRS)

    Lehtinen, A. M.; Sadunas, J. A.

    1985-01-01

    High electrical power and waste heat rejection is projected for future manned low earth orbit space platforms, such as Space Station. The high heat rejection, optical coating degradation, long operating life with minimum maintenance requirements pose a challenging thermal management design problem. System optimization, with respect to radiator area and weight, indicate the requirement for thermal storage. This paper examines the thermal storage benefits, determines the characteristics as applied to different TMS concepts (e.g., centralized, decentralized), and examines the similarities and differences of thermal storage integration with single-phase and two-phase systems for a study baseline 75 kWe low earth orbit platform.

  14. Advanced Energy Storage for Space Applications

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Surampudi, S.

    1993-01-01

    NASA is planning a number of space science and space exploration missions into the early 21st century. The JPL Advanced Battery Program, which has the goal of developing batteries for these missions, is described. Under program consideration are Li-SOCl(sub 2) cells, secondary lithium cells, advanced metal hydride cells, and high-temperature sodium-nickel chloride cells.

  15. Advanced energy storage for space applications: A follow-up

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1994-01-01

    Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.

  16. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  17. Inertial energy storage for advanced space station applications

    NASA Technical Reports Server (NTRS)

    Van Tassel, K. E.; Simon, W. E.

    1985-01-01

    Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.

  18. Development of regenerable energy storage for space multimegawatt applications

    SciTech Connect

    Olszewski, M.

    1986-01-01

    A program has recently been initiated as a part of the national Strategic Defense Initiative (SDI) to develop energy storage technology for space power applications. This program is jointly conducted by the Department of Energy and the Department of Defense. It is focused on the development of advanced technologies in regenerable energy storage that will be required for generation of multimegawatt levels of sprint power for SDI space missions. Energy storage technology considered in the program relate to devices that have a high specific capacity for energy storage, which can provide high levels of electric power on demand, and which may be recharged with electric power. The devices of principal interest are electrochemical batteries, chemical fuel cells, and electromechanical flywheels (the latter includes the motors and generators used to provide the electrical to mechanical coupling). The intent of the program is to resolve technical feasibility issues associated with an electrically regenerable energy storage system satisfying SDI needs. Specifically, energy storage technology will be developed through the proof-of-concept stage within the next six years that provides a specific power greater than 2.5 kW/kg with an energy storage density of at least 450 kJ/kg.

  19. Data storage systems technology for the Space Station era

    NASA Technical Reports Server (NTRS)

    Dalton, John; Mccaleb, Fred; Sos, John; Chesney, James; Howell, David

    1987-01-01

    The paper presents the results of an internal NASA study to determine if economically feasible data storage solutions are likely to be available to support the ground data transport segment of the Space Station mission. An internal NASA effort to prototype a portion of the required ground data processing system is outlined. It is concluded that the requirements for all ground data storage functions can be met with commercial disk and tape drives assuming conservative technology improvements and that, to meet Space Station data rates with commercial technology, the data will have to be distributed over multiple devices operating in parallel and in a sustained maximum throughput mode.

  20. Space Station thermal storage/refrigeration system research and development

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  1. Reorganizing Nigeria's Vaccine Supply Chain Reduces Need For Additional Storage Facilities, But More Storage Is Required.

    PubMed

    Shittu, Ekundayo; Harnly, Melissa; Whitaker, Shanta; Miller, Roger

    2016-02-01

    One of the major problems facing Nigeria's vaccine supply chain is the lack of adequate vaccine storage facilities. Despite the introduction of solar-powered refrigerators and the use of new tools to monitor supply levels, this problem persists. Using data on vaccine supply for 2011-14 from Nigeria's National Primary Health Care Development Agency, we created a simulation model to explore the effects of variance in supply and demand on storage capacity requirements. We focused on the segment of the supply chain that moves vaccines inside Nigeria. Our findings suggest that 55 percent more vaccine storage capacity is needed than is currently available. We found that reorganizing the supply chain as proposed by the National Primary Health Care Development Agency could reduce that need to 30 percent more storage. Storage requirements varied by region of the country and vaccine type. The Nigerian government may want to consider the differences in storage requirements by region and vaccine type in its proposed reorganization efforts. PMID:26858383

  2. Automated File Transfer and Storage Management Concepts for Space

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Criscuolo, Ed; Parise, Ron

    2004-01-01

    This presentation will summarize work that has been done to prototype and analyze approaches for automated file transfer and storage management for space missions. The concepts were prototyped in an environment with data files being generated at the target mission rates and stored in onboard files. The space-to-ground link was implemented using a channel simulator to introduce representative mission delays and errors. The system was operated for days with data files building up on the spacecraft and periodically being transferred to ground storage during a limited contact time. Overall performance was measured to identify limits under which the entire data volume could be transferred automatically while still fitting into the mission s limited contact time. The overall concepts, measurements, and results will be presented.

  3. Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost

    SciTech Connect

    2000-12-01

    Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the

  4. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  5. Cases for Additive Manufacturing on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.; McLemore, Carole; Anderson, Theodore " Ted"

    2012-01-01

    There are thousands of plastic or non-structural metal components on the International Space Station (ISS), any of which could require replacing sometime between resupply missions. While these may not be life critical, it can cause significant delays to flight projects that have to wait several weeks to months to receive a key part one that could have been designed and built on-board the ISS within a few hours. A plastic deposition additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS.

  6. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Owen, James W. (Inventor); Dean, William G. (Inventor)

    1989-01-01

    Two storage containers are disclosed within which food or biological samples may be stored for transfer in a module by the space shuttle to a space station while maintaining the food or samples at very low temperatures. The container is formed in two parts, each part having an inner shell and an outer shell disposed about the inner shell. The space between the shells is filled with a continuous wrap multi-layer insulation and a getter material. The two parts of the container have interlocking members and when connected together are sealed for preventing leakage from the space between the shells. After the two parts are filled with frozen food or samples they are connected together and a vacuum is drawn in the space between the shells and the container is stored in the module. For the extremely low temperature requirements of biological samples, an internal liner having a phase change material charged by a refrigerant coil is disposed in the space between the shells, and the container is formed from glass fiber material including honeycomb structural elements. All surfaces of the glass fiber which face the vacuum space are lined with a metal foil.

  7. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  8. Space station experiment definition: Long term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Riemer, David H.

    1987-01-01

    A preliminary design of an experiment to demonstrate and evaluate long-term cryogenic fluid storage and transfer technologies has been performed. This Long-Term Cryogenic Fluid Storage (LTCFS) experiment is a Technology Development Mission (TDM) experiment proposed by the NASA Lewis Research Center to be deployed on the Initial Operational Capability (IOC) space station. Technologies required by future orbital cryogenic systems such as Orbital Transfer Vehicles (OTV's) were defined, and critical technologies requiring demonstration were chosen to be included in the experiment. A three-phase test program was defined to test the following types of technologies: (1) Passive Thermal Technologies; (2) Fluid Transfer Technologies; and (3) Active Refrigeration Technologies. The development status of advanced technologies required for the LTCFS experiment is summarized, including current, past and future programs.

  9. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  10. A Flywheel Energy Storage System Demonstration for Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  11. Holographic Storage as a Solution to Space Imaging Requirements

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    1998-01-01

    The data growth experienced in the recent past has been of staggering proportions. Over the past 10 years, tape data storage density (with the same form factor) has increased according to Moore's law, doubling every 18 months. However, during the same period, data transfer speeds have only increased at a rate of about 1.3 times every 18 months, and thus have fallen behind data density growth rates by a factor of at least 3. Coupled with data media density growth, data storage requirements have gone up significantly. According to a recent Computer Technology Review article (March 1998) the total storage at a typical Fortune 1000 site is projected to escalate from just 10 TB in 1997 to 1 PB by the year 2000. In the next 5 years, a typical large database system for U.S. government agencies is expected to accept 5 TB per day, maintain 300 TB on-line (within 15 seconds to 1 minute access time), and archive from 15 to 100 PB. Additionally, data intensive programs such as NASA's Earth Observation System (EOS) and the intelligence data archival systems at the Rome Air Development Center, and scientific laboratories such as Thomas Jefferson National Accelerator Facility will have enormously large scientific databases with very large storage requirements.

  12. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    NASA Astrophysics Data System (ADS)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  13. Feasibility of flywheel energy storage systems for applications in future space missions

    NASA Technical Reports Server (NTRS)

    Santo, G. Espiritu; Gill, S. P.; Kotas, J. F.; Paschall, R.

    1995-01-01

    The objective of this study was to examine the overall feasibility of deploying electromechanical flywheel systems in space used for excess energy storage. Results of previous Rocketdyne studies have shown that the flywheel concept has a number of advantages over the NiH2 battery, including higher specific energy, longer life and high roundtrip efficiency. Based on this prior work, this current study was broken into four subtasks. The first subtask investigated the feasibility of replacing the NiH2 battery orbital replacement unit (ORU) on the international space station (ISSA) with a flywheel ORU. In addition, a conceptual design of a generic flywheel demonstrator experiment implemented on the ISSA was completed. An assessment of the life cycle cost benefits of replacing the station battery energy storage ORU's with flywheel ORU's was performed. A fourth task generated a top-level development plan for critical flywheel technologies, the flywheel demonstrator experiments and its evolution into the production unit flywheel replacement ORU.

  14. Flywheel Energy Storage System Designed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Delventhal, Rex A.

    2002-01-01

    Following successful operation of a developmental flywheel energy storage system in fiscal year 2000, researchers at the NASA Glenn Research Center began developing a flight design of a flywheel system for the International Space Station (ISS). In such an application, a two-flywheel system can replace one of the nickel-hydrogen battery strings in the ISS power system. The development unit, sized at approximately one-eighth the size needed for ISS was run at 60,000 rpm. The design point for the flight unit is a larger composite flywheel, approximately 17 in. long and 13 in. in diameter, running at 53,000 rpm when fully charged. A single flywheel system stores 2.8 kW-hr of useable energy, enough to light a 100-W light bulb for over 24 hr. When housed in an ISS orbital replacement unit, the flywheel would provide energy storage with approximately 3 times the service life of the nickel-hydrogen battery currently in use.

  15. Optical residue addition and storage units using a Hughes liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Habiby, S. F.; Collins, S. A., Jr.

    1984-01-01

    Optical addition and storage units are described in this paper. These units are implemented using the Hughes Liquid Crystal Light Valve (LCLV) as a spatial light modulator using residue arithmetic for a numerical representation. The main hardware components of the design, besides the light valve, include an array of single-mode optical fibers that provide input information, a polarizing prism in combination with quarter-wave and half-wave retarders for residue arithmetic implementation in the adder, and a holographic array for spatial stability in the storage unit.

  16. Enabling Exploration of Deep Space: High Density Storage of Antimatter

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.; Kramer, Kevin J.

    1999-01-01

    Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.

  17. Prolonged cold storage of red blood cells by oxygen removal and additive usage

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1998-08-04

    Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials. 8 figs.

  18. Prolonged cold storage of red blood cells by oxygen removal and additive usage

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    1998-01-01

    Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials.

  19. Exploratory studies of extended storage of apheresis platelets in a platelet additive solution (PAS).

    PubMed

    Slichter, Sherrill J; Corson, Jill; Jones, Mary Kay; Christoffel, Todd; Pellham, Esther; Bailey, S Lawrence; Bolgiano, Doug

    2014-01-01

    To evaluate the poststorage viability of apheresis platelets stored for up to 18 days in 80% platelet additive solution (PAS)/20% plasma, 117 healthy subjects donated platelets using the Haemonetics MCS+, COBE Spectra (Spectra), or Trima Accel (Trima) systems. Control platelets from the same subjects were compared with their stored test PAS platelets by radiolabeling their stored and control platelets with either (51)chromium or (111)indium. Trima platelets met Food and Drug Administration poststorage platelet viability criteria for only 7 days vs almost 13 days for Haemonetics platelets; ie, platelet recoveries after these storage times averaged 44 ± 3% vs 49 ± 3% and survivals were 5.4 ± 0.3 vs 4.6 ± 0.3 days, respectively. The differences in storage duration are likely related to both the collection system and the storage bag. The Spectra and Trima platelets were hyperconcentrated during collection, and PAS was added, whereas the Haemonetics platelets were elutriated with PAS, which may have resulted in less collection injury. When Spectra and Trima platelets were stored in Haemonetics' bags, poststorage viability was significantly improved. Platelet viability is better maintained in vitro than in vivo, allowing substantial increases in platelet storage times. However, implementation will require resolution of potential bacterial overgrowth during storage. PMID:24258816

  20. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  1. A means for stationing additional geosynchronous satellites and space ladder

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1984-01-01

    A practical method is analytically shown for multiplying the number of orbital slots for synchronous satellites. This is by radially tethering satellites above the synchronous orbit (forces outwards) balanced to satellites below this orbit (forces inwards). The term practical applies because the tether tension force is of second order smallness. Thus, several thousand miles of synchronous satellites can be radiated along a small tether line sized for tension of about one percent of a satellite weight. A vertical tether line also provides a track for transport, that is, a ladder or elevator. Analysis for an optimized diameter tether line is developed which is particularly effective when the tether, line is extended to the ground, thus, making a space ladder. Mars is the best candidate for a space ladder. With the optimized tether the total system mass is minimum when the outer satellite is far out. Tethered satellites have G-forces.

  2. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    PubMed

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  3. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    PubMed Central

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  4. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  5. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    SciTech Connect

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-04-19

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  6. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    SciTech Connect

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  7. The study of importance of the storage method of the space foods

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Yamashita, Masamichi; Space Agriculture Task Force, J.

    Providing foods to space crew is the important requirements to support long term manned space exploration. Foods fill not only physiological requirements to sustain life, but psychological needs for refreshment and joy during the long and hard mission to extraterrestrial planets. In the space stay of the long term, the storage technology of the food is important. Surplus food and the establishment of a safe save method of the food are essential. However, in Moon and Mars base or spaceship, there are limited spaces. We need to think about how to use the storage food when we have the time of emergency. The fundamental composition of our recipe is unpolished rice, barley, soybean, sweat potato and green-yellow vegetables. Supplement food materials to fulfill the nutritional requirements we chose are loach, silkworm pupa, termite, snail, mud snail, bee, cassava and quinoa. The pupa of the silkworm becomes the important nourishment source as protein and lipid. The silk thread uses it as clothing and cosmetics and medical supplies. However, we can use the silk thread as food as protein. The silk thread is mad of sericin and fibroin. The sericin is used for cosmetics mainly, but can make sheet food by mixing it with rice flour. We can make Japanese rolled sushi with this product. In addition, we can make spring roll and gyoza and shao-mai. As for the fibroin which is the subject of the silk thread, is to extract it high pressure heat; of the protein can powder it, and can use it as food. Even if there is the silk thread in this way after having made it clothes once, we can do it to food again. We can reuse the cotton thread as carbohydrates equally, too. We can use the wood as carbohydrates, also. Based upon the foregoing, we use the pupa of the silkworm as protein and lipid, and the silk thread as protein, and the cotton thread and wood as carbohydrates. It is recommended as healthy meal balance; Protein: Lipid: Carbohydrate ratio equal 15We succeeded to develop joyful

  8. Telemetry data storage systems technology for the Space Station Freedom era

    NASA Technical Reports Server (NTRS)

    Dalton, John T.

    1989-01-01

    This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.

  9. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    SciTech Connect

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  10. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    SciTech Connect

    Richardson, T.J.; Ross, P.N.

    1999-12-21

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85 C or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1 {times} 10{sup {minus}8}cm{sup 2}/second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  11. mz5: Space- and Time-efficient Storage of Mass Spectrometry Data Sets*

    PubMed Central

    Wilhelm, Mathias; Kirchner, Marc; Steen, Judith A. J.; Steen, Hanno

    2012-01-01

    Across a host of MS-driven-omics fields, researchers witness the acquisition of ever increasing amounts of high throughput MS data and face the need for their compact yet efficiently accessible storage. Addressing the need for an open data exchange format, the Proteomics Standards Initiative and the Seattle Proteome Center at the Institute for Systems Biology independently developed the mzData and mzXML formats, respectively. In a subsequent joint effort, they defined an ontology and associated controlled vocabulary that specifies the contents of MS data files, implemented as the newer mzML format. All three formats are based on XML and are thus not particularly efficient in either storage space requirements or read/write speed. This contribution introduces mz5, a complete reimplementation of the mzML ontology that is based on the efficient, industrial strength storage backend HDF5. Compared with the current mzML standard, this strategy yields an average file size reduction to ∼54% and increases linear read and write speeds ∼3–4-fold. The format is implemented as part of the ProteoWizard project and is available under a permissive Apache license. Additional information and download links are available from http://software.steenlab.org/mz5. PMID:21960719

  12. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 3

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.

  13. Reusable module for the storage, transportation, and supply of multiple propellants in a space environment

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D. (Inventor); Mankins, John C. (Inventor)

    2004-01-01

    A space module has an outer structure designed for traveling in space, a docking mechanism for facilitating a docking operation therewith in space, a first storage system storing a first propellant that burns as a result of a chemical reaction therein, a second storage system storing a second propellant that burns as a result of electrical energy being added thereto, and a bi-directional transfer interface coupled to each of the first and second storage systems to transfer the first and second propellants into and out thereof. The space module can be part of a propellant supply architecture that includes at least two of the space modules placed in an orbit in space.

  14. Flexible Graphene-based Energy Storage Devices for Space Application Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  15. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  16. Space environment data storage and access: lessons learned and recommendations for the future

    NASA Astrophysics Data System (ADS)

    Evans, Hugh; Heynderickx, Daniel

    2012-07-01

    With the ever increasing volume of space environment data available at present and planned for the near future, the demands on data storage and access methods are increasing as well. In addition, continued access to historical, archived data remains crucial. On the basis of many years of experience, the authors identify the following issues as important for continued and efficient handling of datasets now and in the future: The huge data volumes currently or very soon avaiable from a number of space missions will limi direct Internet download access to even relatively short epoch ranges of data. Therefore, data providers should establish or extend standardised data (post-) processing services so that only data query results should be downloaded. Although a single standardised data format will in all likelihood remain utopia, data providers should at least include extensive metadata with their data products, according to established standards and practices (e.g. ISTP, SPASE). Standardisation of (sets of) metadata greatly facilitates data mining and querying. The use of SQL database storage should be considered instead of, or in parallel with, classic storage of data files. The use of SQL does away with having to handle file parsing and processing, while at the same time standard access protocols can be used to (remotely) connect to such data repositories. Many data holdings are still lacking in extensive descriptions of data provenance (e.g. instrument description), content and format. Unfortunately, detailed data information is usually rejected by scientific and technical journals. Re-processing of historical archived datasets into modern formats, making them easily available and usable, is urgently required, as knowledge is being lost. A global data directory has still not been achieved; policy makers should enforce stricter rules for "broadcasting" dataset information.

  17. 36 CFR 1236.28 - What additional requirements apply to the selection and maintenance of electronic records storage...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-free. (c) For additional guidance on the maintenance and storage of CDs and DVDS, agencies may consult... retention. This test should verify that the magnetic computer tape media are free of permanent errors and...

  18. Space charge and coherent effects in the NSNS storage ring

    SciTech Connect

    Ruggiero, A.G.; Weng, W.T.; Zhang, S.Y.

    1996-07-01

    The goal of the proposed National Spallation Neutron Source (NSNS) is to provide a short pulse proton beam of about 0.5 {mu}s with average beam power of 1-2 MW. To achieve such a purpose, a proton storage ring operate at 60 Hz with 1-2 x 10 {sup 14} protons per pulse at 1 GeV is required. The proton storage ring is one of the major systems in the design of the NSNS. The function of the storage ring is to take the 1.0 GeV proton beam from the Linac and convert the long Linac beam of about 1 ms into a 0.5 {mu}s beam in about one thousand turns. The final beam has 1 x 10 {sup 14} proton per pulse, resulting in 1 MW average beam power at 60 Hz repetition rate. Provision has been reserved for a future upgrade to 2 MW by doubling the storage beam to 2 x 10{sup 14} proton per pulse. The lattice of the storage ring is a simple FODO lattice with three-fold symmetry and the dispersion function is reduced to zero at straight sections by the missing magnet scheme. The total circumference of the ring is 208.6 m and the transition energy is 3.43, higher than the operating energy of 1 GeV to avoid the difficult instability problem that are expected above transition. Other salient design parameters are shown in Table 1.

  19. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  20. Structural assessment of a Space Station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Tong, M. T.; Kerslake, T. W.; Thompson, R. L.

    1988-01-01

    This paper assesses the structural performance of a Space Station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start-up operating conditions. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite-element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes-188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically-determined temperature was compared with that based on the experimentally-measured temperature data.

  1. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  2. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  3. International Space Station Attitude Motion Associated With Flywheel Energy Storage

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1999-01-01

    Flywheels can exert torque that alters the Station's attitude motion, either intentionally or unintentionally. A design is presented for a once planned experiment to contribute torque for Station attitude control, while storing or discharging energy. Two contingencies are studied: the abrupt stop of one rotor while another rotor continues to spin at high speed, and energy storage performed with one rotor instead of a counter rotating pair. Finally, the possible advantages to attitude control offered by a system of ninety-six flywheels are discussed.

  4. Routine Storage of Red Blood Cell Units in Additive Solution-3: a comprehensive investigation of the RBC metabolome

    PubMed Central

    D'Alessandro, Angelo; Nemkov, Travis; Kelher, Marguerite; West, Bernadette F.; Schwindt, Rani K.; Banerjee, Anirban; Moore, Ernest E; Silliman, Christopher C.; Hansen, Kirk C.

    2014-01-01

    Background In most countries, packed red blood cells (RBCs) can be stored up to 42 days before transfusion. However, observational studies have suggested that storage duration might be associated with increased morbidity and mortality. While clinical trials are underway, impaired metabolism has been documented in RBCs stored in several additive solutions. Here we hypothesize that, despite reported beneficial effects, storage in additive solution-3 (AS-3) results in metabolic impairment weeks before the end of the unit shelf-life. Study design and Methods Five leukocyte-filtered AS-3 RBC units were sampled before, during and after leukoreduction at day0, and then assayed on a weekly basis from storage day1 through day42. RBC extracts and supernatants were assayed using a UHPLC-MS metabolomics workflow. Results Blood bank storage significantly affects metabolic profiles of RBC extracts and supernatants by day14. In addition to energy and redox metabolism impairment, intra- and extracellular accumulation of amino acids was observed proportionally to storage duration, suggesting a role for glutamine and serine metabolism in aging RBCs. Conclusion Metabolomics of stored RBCs could drive the introduction of alternative additive solutions to address some of the storage-dependent metabolic lesions herein reported, thereby increasing the quality of transfused RBCs and minimizing potential links to patient morbidity. PMID:25556331

  5. Regenerative Fuel Cell System As Alternative Energy Storage For Space

    NASA Astrophysics Data System (ADS)

    Lucas, J.; Bockstahler, K.; Funke, H.; Jehle, W.; Markgraf, S.; Henn, N.; Schautz, M.

    2011-10-01

    Next generation telecommunication satellites will demand more power. Power levels of 20 to 30kW are foreseen for the next 10 years. Battery technology that can sustain 30kW for eclipse lengths of up to 72 minutes (equals amount of stored energy of 36kWh) will represent a major impact on the total mass of the satellite, even with Li-ion battery technologies, which are estimated to reach an energy density of 250Wh/kg (begin of life) on cell level i.e. 150Wh/kg on subsystem level in 10 years. For the high power level another technology is needed to reach the next goal of 300 - 350Wh/kg on subsystem level. One candidate is the Regenerative Fuel Cell (RFC) technology which proves to be superior to batteries with increasing power demand and increasing discharge time. Such an RFC system based on hydrogen and oxygen technology consists of storage for the reactants (H2, O2 and H2O), a fuel cell (FC) and an electrolyser (ELY). In charge mode, the electrolyser splits water in hydrogen and oxygen using electrical power from solar cells. The gases are stored in appropriate tanks. In discharge mode, during time intervals of power demand, O2 and H2 are converted in the fuel cell to generate electricity under formation of water as by-product. The water is stored in tanks and during charge mode rerouted to the electrolyser thus creating a closed-loop process. Today Astrium is developing an RFCS as energy storage and supply unit for some future ESA missions. A complete RFCS breadboard has been established and the operational behaviour of the system is being tested. First test results, dedicated experience gained from system testing and a comparison with the analytical prediction will be discussed and presented.

  6. Spacing effects on seismic responses of underground waste storage tanks

    SciTech Connect

    Xu, J.; Bandyopadhyay, K.; Miller, C.A.; Costantino, C.J.

    1994-05-01

    In this paper, an investigation is performed for determination of the effects of spacing on seismic response of grouped underground tank structures. The study is carried out using a 2-D Finite Element Method, and the key mechanisms for transmitting structure-soil-structure interaction (SSSI) effects are identified. A parametric analysis is performed to quantify the SSSI effects. Results of the study are presented.

  7. Graphene with outstanding anti-irradiation capacity as multialkylated cyclopentanes additive toward space application

    PubMed Central

    Fan, Xiaoqiang; Wang, Liping

    2015-01-01

    Multialkylated cyclopentanes (MACs), a class of synthetic hydrocarbon fluid have attracted intensive interest as possible space lubricants due to a series of unique physical and chemical properties. Here, we used graphene with high mechanical strength and chemical inertness as lubricant additive to explore its potential for space application. The effects of space irradiation on graphene and the tribological properties of graphene as lubricant additive were firstly investigated in detail under simulated space environment composed of high vacuum, high/low temperature and irradiation. Results demonstrate that graphene not only possesses outstanding anti–irradiation capacity but also significantly improves the space performance and tribological properties of MACs, which depends on the excellent physicochemical properties and high load-carrying ability of graphene as well as more effective separation of the sliding surfaces. PMID:26224254

  8. Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bryant, C. B.; Flachbart, R. H.; Holt, K. A.; Johnson, E.; Hedayat, A.; Hipp, B.; Plachta, D. W.

    2010-01-01

    Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy.

  9. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  10. l-carnitine as a Potential Additive in Blood Storage Solutions: A Study on Erythrocytes.

    PubMed

    Soumya, R; Carl, H; Vani, R

    2016-09-01

    Erythrocytes undergo various changes during storage (storage lesion) that in turn reduces their functioning and survival. Oxidative stress plays a major role in the storage lesion and antioxidants can be used to combat this stress. This study elucidates the effects of l-carnitine (LC) on erythrocytes of stored blood. Blood was obtained from male Wistar rats and stored (4 °C) for 20 days in CPDA-1 (citrate phosphate dextrose adenine) solution. Samples were divided into-(i) controls (ii) LC 10 (l-carnitine at a concentration of 10 mM) (iii) LC 30 (l-carnitine at a concentration of 30 mM) and (iv) LC 60 (l-carnitine at a concentration of 60 mM). Every fifth day, the biomarkers (haemoglobin, hemolysis, antioxidant enzymes, lipid peroxidation and protein oxidation products) were analysed in erythrocytes. Hemoglobin and protein sulfhydryls were insignificant during storage indicative of the maintenance of hemoglobin and sulfhydryls in all groups. Superoxide dismutase and malondialdehyde levels increased initially and decreased towards the end of storage. The levels of catalase and glutathione peroxidase were lower in experimentals than controls during storage. l-carnitine assisted the enzymes by scavenging the reactive oxygen species produced. Hemolysis increased in all groups with storage, elucidating that l-carnitine could not completely protect lipids and proteins from oxidative stress. Hence, this study opens up new avenues of using l-carnitine as a component of storage solutions with combinations of antioxidants in order to maintain efficacy of erythrocytes. PMID:27429526

  11. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    NASA Technical Reports Server (NTRS)

    Trouong, Long V.; Wolff, Frederic J.; Dravid, Narayan V.; Li, Ponlee

    2000-01-01

    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues.

  12. Thermodynamic and thermoeconomic analysis of combined geothermal space heating and thermal storage using phase change materials

    NASA Astrophysics Data System (ADS)

    Chauhan, V.; Ragnarsson, Á.

    2015-12-01

    The present work discusses the utilization of phase change materials for energy storage in geothermal space heating systems. Thermodynamics and thermoeconomics of the combined heating and thermal storing system were studied to show the scope of energy storage and cost savings. A computational model of the combined space heating and thermal storage system was developed and used to perform thermodynamic studies of the heat storage process and heating system efficiency at different times and ambient temperatures. The basis for these studies is daily variations in heating demand that is higher during the night than during the day. The results show the scope of the utilization of phase change material for low ambient temperature conditions. Under proper conditions a sufficient amount of exergy is stored during the charging period at a low ambient temperature to fulfill the daytime heat load requirement. Under these conditions the cost flow rate of exergy storage is found to be lower than the radiator heating cost flow rate. Thus, the use of exergy storage at low ambient temperatures for heating at higher ambient temperatures makes a significant contribution to cost savings.

  13. Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp.

    PubMed

    Anese, Monica; Bot, Francesca; Panozzo, Agnese; Mirolo, Giorgio; Lippe, Giovanna

    2015-04-01

    This study was performed to investigate the influence of ultrasound processing on tomato pulp containing no sunflower oil, or increasing amounts (i.e. 2.5%, 5% and 10%), on lycopene concentration and in vitro bioaccessibility at time zero and during storage at 5 °C. Results confirmed previous findings in that ultrasonication was responsible for cell breakage and subsequent lycopene release in a highly viscous matrix. Neither the ultrasound process nor oil addition affected lycopene concentration. A decrease of approximately 35% lycopene content occurred at storage times longer than 15 days, due to isomerisation and oxidation reactions. No differences in lycopene in vitro bioaccessibility were found between the untreated and ultrasonically treated samples; this parameter decreased as a consequence of oil addition. Losses of lycopene in vitro bioaccessibility ranging between 50% and 80% occurred in the untreated and ultrasonically treated tomato pulps with and without oil during storage, mainly due to carotenoid degradation. PMID:25442608

  14. View of municipal storage space and underpass at West 155th ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of municipal storage space and underpass at West 155th Street, showing masonry arch beneath Riverside Drive and steel floor beams beneath cantilever, looking south. - Henry Hudson Parkway, Extending 11.2 miles from West 72nd Street to Bronx-Westchester border, New York County, NY

  15. Regenerative fuel cell energy storage system for a low Earth orbit space station

    SciTech Connect

    Martin, R.E.; Garow, J.; Michaels, K.B.

    1984-08-01

    Results of a study to define the characteristics of a regenerative fuel cell energy storage system for a large space station operating in low earth orbit (LEO) are presented. The regenerative fuel cell system employs an alkaline electrolyte fuel cell with the option of employing either an alkaline or a solid polymer electrolyte electrolyzer.

  16. 49 CFR 228.311 - Minimum space requirements, beds, storage, and sanitary facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.311 Minimum space requirements, beds, storage, and sanitary facilities. (a) Each camp car used for sleeping purposes must contain at least 80 square feet...

  17. 49 CFR 228.311 - Minimum space requirements, beds, storage, and sanitary facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.311 Minimum space requirements, beds, storage, and sanitary facilities. (a) Each camp car used for sleeping purposes must contain at least 80 square feet...

  18. 49 CFR 228.311 - Minimum space requirements, beds, storage, and sanitary facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.311 Minimum space requirements, beds, storage, and sanitary facilities. (a) Each camp car used for sleeping purposes must contain at least 80 square feet...

  19. The Study of Importance of the Balance Space Food -Storage Method -

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Yamashita, Masamichi; Hashimoto, Hirofumi; Space Agriculture Task Force, J.

    Providing foods to space crew is the important requirements to support long term manned space exploration. Foods fill not only physiological requirements to sustain life, but psychological needs for refreshment and joy during the long and hard mission to extraterrestrial planets. We designed joyful and healthy recipe with materials, which can be produced by the bio-regenerative agricultural system operated at limited resources available in Mars base, Moon base and spaceship. We need to think about how to use the storage food when we have the time of emergency. The pupa of the silkworm becomes the important nourishment source as protein and lipid. The silk thread uses it as clothing and cosmetics and medical supplies. However, we can use the silk thread as food as protein. The silk thread is mad of sericin and fibroin. The sericin is used for cosmetics mainly, but can make sheet food by mixing it with rice flour. We can make Japanese rolled sushi with this product. In addition, we can make spring roll and gyoza and shao-mai. As for the fibroin which is the subject of the silk thread, is to extract it high pressure heat; of the protein can powder it, and can use it as food. Even if there is the silk thread in this way after having made it clothes once, we can do it to food again. We can reuse the cotton thread as carbohydrates equally, too. We can use the wood as carbohydrates, also. Based upon the foregoing, we use the pupa of the silkworm as protein and lipid, and the silk thread as protein, and the cotton thread and wood as carbohydrates. It is recommended as healthy meal balance; Protein: Lipid: Carbohydrate ratio equal 15-20We succeeded to develop joyful and nutritious space recipe at the end. Since energy consumption for physical exercise activities under micro-or sub-gravity is less than the terrestrial case, choice of our space foods is essencial to suppress blood sugar level, and prevent the metabolic syndrome. Because of less need of agricultural resources

  20. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media.

    PubMed

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-28

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. PMID:25824851

  1. 36 CFR 1236.28 - What additional requirements apply to the selection and maintenance of electronic records storage...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false What additional requirements apply to the selection and maintenance of electronic records storage media for permanent records? 1236.28 Section 1236.28 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT ELECTRONIC...

  2. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... was published in the Federal Register on March 28, 2011 (76 FR 17019). This direct final rule amended....gov . SUPPLEMENTARY INFORMATION: On March 28, 2011 (76 FR 17019), the NRC published a direct final... 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY:...

  3. Re-Imagining the 21st Century School Library: From Storage Space to Active Learning Space

    ERIC Educational Resources Information Center

    Grigsby, Susan K. S.

    2015-01-01

    As libraries adjust to the needs of the 21st century, there needs to be a different way of thinking in regards to its design. School libraries have traditionally been designed as large rooms for the storage of materials for research and pleasure reading. As more and more districts focus their attention on digital acquisitions, the need for storage…

  4. Improvement on the storage performance of LiMn2O4 with the mixed additives of ethanolamine and heptamethyldisilazane

    NASA Astrophysics Data System (ADS)

    Wu, Xianwen; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Yue, Peng; Zhang, Yunhe

    2013-03-01

    The commercial LiMn2O4 are added into the LiPF6-based electrolyte without or with the mixed additives of ethanolamine and heptamethyldisilazane to be exposed in air at 60 °C for 2-6 h, and the effect of different electrolytes on the storage behavior of LiMn2O4 materials and LiMn2O4/Li cells at elevated temperature is investigated comparatively for the first time by FTIR, SEM, TEM, XRD and charge-discharge measurements. The results show that the electrochemical performances of LiMn2O4 exposed in the LiPF6-based electrolyte become worse gradually with the storage time increasing. However, when the mixture of ethanolamine and heptamethyldisilazane as electrolyte additives is added into the LiPF6-based electrolyte, it can stabilize the original morphology and spinel structure of LiMn2O4 greatly and improve the storage performance of the material and LiMn2O4/Li cells effectively. As the commercial LiMn2O4 is exposed in the LiPF6-based electrolyte with additives for 4 h at 60 °C, the initial discharge capacity of 97.7 mA h g-1 at 0.1 C and the capacity retention of 89.14% at 1 C rate after 150 cycles are much better than that LiMn2O4 exposed in the LiPF6-based electrolyte under the same conditions. Furthermore, the LiMn2O4/Li cells using the LiPF6-based electrolyte with additives exhibit higher initial discharge capacity before storage and higher capacity retention after storage at 60 °C for a week compared to the cells without additives in the LiPF6-based electrolyte.

  5. A study of the applicability/compatibility of inertial energy storage systems to future space missions

    NASA Technical Reports Server (NTRS)

    Weldon, W. F.

    1980-01-01

    The applicability/compatibility of inertial energy storage systems like the homopolar generator (HPG) and the compensated pulsed alternator (CPA) to future space missions is explored. Areas of CPA and HPG design requiring development for space applications are identified. The manner in which acceptance parameters of the CPA and HPG scale with operating parameters of the machines are explored and the types of electrical loads which are compatible with the CPA and HPG are examined. Potential applications including the magnetoplasmadynamic (MPD) thruster, pulsed data transmission, laser ranging, welding and electromagnetic space launch are discussed.

  6. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  7. Ongoing nickel-hydrogen energy storage device testing at George C. Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowery, John E.; Lanier, John R., Jr.; Hall, Charles I.; Whitt, Thomas H.

    1990-01-01

    The primary objective of the testing is to characterize Ni-H2 cells for successful integration into the electrical power system (EPS) of the Hubble Space Telescope (HST). A broad spectrum of Ni-H2 design technology is encompassed by the testing configurations; tests include cells with dates of manufacture as early as 1976. The database includes cells of varied storage times, capacity, plate design, stack design, terminal configuration, pressure vessel thickness, separator material, potassium hydroxide (KOH) concentration, and thermal control. Currently, 196 Ni-H2 cells are being tested, grouped as follows: 12 RNH-35-3, 14 RNH-30-1, 22 HST cells (1 battery, flight spare lot), 132 HST cells (6 batteries, test modules 1 and 2, called TM1 and TM2), 12 HST cells (3 four-cell packs, TM1, TM2, flight spare module FSM), and 4 HST cells (engineering lot). In addition to the characterization and life testing, an extensive thermal vacuum and purge test was conducted in November 1989 and February 1990 using the HST FSM (3 batteries composed of 69 HST cells from the flight spare lot) to help verify thermal design. A report is presented of the progress, significant findings, and future objectives of the testing.

  8. Software for Information Storage and Retrieval Tested, Evaluated and Compared: Part VI--Various Additional Programs.

    ERIC Educational Resources Information Center

    Sieverts, Eric G.; And Others

    1993-01-01

    Reports on tests evaluating nine microcomputer software packages designed for information storage and retrieval: BRS-Search, dtSearch, InfoBank, Micro-OPC, Q&A, STN-PFS, Strix, TINman, and ZYindex. Tables and narrative evaluations detail results related to security, hardware, user features, search capability, indexing, input, maintenance of files,…

  9. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  10. Effects of cavern spacing on the performance and stability of gas-filled storage caverns

    SciTech Connect

    Hoffman, E.L.

    1993-04-01

    Three-dimensional finite element analyses of gas-filled storage caverns in domal salt were performed to investigate the effects of cavern spacing on surface subsidence, storage loss, and cavern stability. The finite element model used for this study models a seven cavern storage field with one center cavern and six hexagonally spaced surrounding caverns. Cavern spacing is described in terms of the P/D ratio which is the pillar thickness (the width between two caverns) divided by the cavern diameter. With the stratigraphy and cavern size held constant, simulations were performed for P/D ratios of 6.0, 3.0, 2.0, 1.0, and 0.5. Ten year simulations were performed modeling a constant 400 psi gas pressure applied to the cavern lining. The calculations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. For the range of P/D ratios studied, cavern deformation and storage volume were relatively insensitive to P/D ratio, while subsidence volume increased with increasing P/D ratio. A stability criterion which describes stability in terms of a limiting creep strain was used to investigate cavern stability. The stability criterion indicated that through-pillar instability was possible for the cases of P/D = 0.5 and 1.0.

  11. Examining the Use of Facebook and Twitter as an Additional Social Space in a MOOC

    ERIC Educational Resources Information Center

    Liu, Min; McKelroy, Emily; Kang, Jina; Harron, Jason; Liu, Sa

    2016-01-01

    In this study, the researchers examined if and to what extent social media tools such as Facebook and Twitter can augment participants' learning experience in an xMOOC and offer an additional social space. Two research questions guided this inquiry: (1) What did MOOC participants consider the usefulness of the Facebook group and Twitter feed…

  12. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  13. Development of a COTS Mass Storage Unit for the Space Readiness Coherent Lidar Experiment

    NASA Technical Reports Server (NTRS)

    Liggin, Karl; Clark, Porter

    1999-01-01

    The technology to develop a Mass Storage Unit (MSU) using commercial-off-the-shelf (COTS) hard drives is an on-going challenge to meet the Space Readiness Coherent Lidar Experiment (SPARCLE) program requirements. A conceptual view of SPARCLE's laser collecting atmospheric data from the shuttle is shown in Figure 1. The determination to develop this technology required several in depth studies before an actual COTS hard drive was selected to continue this effort. Continuing the development of the MSU can, and will, serve future NASA programs that require larger data storage and more on-board processing.

  14. A nonventing cooling system for space environment extravehicular activity, using radiation and regenerable thermal storage

    NASA Technical Reports Server (NTRS)

    Bayes, Stephen A.; Trevino, Luis A.; Dinsmore, Craig E.

    1988-01-01

    This paper outlines the selection, design, and testing of a prototype nonventing regenerable astronaut cooling system for extravehicular activity space suit applications, for mission durations of four hours or greater. The selected system consists of the following key elements: a radiator assembly which serves as the exterior shell of the portable life support subsystem backpack; a layer of phase change thermal storage material, n-hexadecane paraffin, which acts as a regenerable thermal capacitor; a thermoelectric heat pump; and an automatic temperature control system. The capability for regeneration of thermal storage capacity with and without the aid of electric power is provided.

  15. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  16. Mass storage systems for data transport in the early space station era 1992-1998

    NASA Technical Reports Server (NTRS)

    Carper, Richard (Editor); Dalton, John (Editor); Healey, Mike (Editor); Kempster, Linda (Editor); Martin, John (Editor); Mccaleb, Fred (Editor); Sobieski, Stanley (Editor); Sos, John (Editor)

    1987-01-01

    NASA's Space Station Program will provide a vehicle to deploy an unprecedented number of data producing experiments and operational devices. Peak down link data rates are expected to be in the 500 megabit per second range and the daily data volume could reach 2.4 terabytes. Such startling requirements inspired an internal NASA study to determine if economically viable data storage solutions are likely to be available to support the Ground Data Transport segment of the NASA data system. To derive the requirements for data storage subsystems, several alternative data transport architectures were identified with different degrees of decentralization. Data storage operations at each subsystem were categorized based on access time and retrieval functions, and reduced to the following types of subsystems: First in First out (FIFO) storage, fast random access storage, and slow access with staging. The study showed that industry funded magnetic and optical storage technology has a reasonable probability of meeting these requirements. There are, however, system level issues that need to be addressed in the near term.

  17. Estimation of local water storage change by space- and ground-based gravimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangcun; Sun, Heping; Xu, Jianqiao; Zhang, Weimin

    2016-08-01

    We estimated local water storage change by combining space- and ground-based gravimetry in this paper. The gravity change from GRACE was first divided into local and global parts according to potential theory. We then subtracted the GRACE-derived global field from ground gravimeter results to obtain local gravity change which is directly induced by the local water storage. Finally we inferred the local water storage change. We used superconducting gravimeter (SG) data recorded from June 2008 to June 2012 at Wuhan station and GRACE satellite gravimetric data to estimate the local water storage change. To validate the inferred local water storage change, the water table records of a well which is several meters away from SG station were compared. Furthermore, the equivalent water heights from hydrological models and GRACE were used also for comparisons. The comparisons show that the results from combining SG and GRACE data are better than those from either GRACE data alone or hydrological models, which demonstrates the efficiency of the combination method to derive local water storage.

  18. CSER 79-028, Addendum 2: Security bar addition to pedestal storage racks in Room 3 in 2736-Z Building

    SciTech Connect

    Miller, E.M.

    1994-11-18

    The Plutonium Finishing Plant (PFP) is installing security bars on plutonium storage racks in Room 3 in 2736-Z Building to meet International Atomic Energy Agency (IAEA) material control requirements. Figures show the existing arrangement and design of the security bars. The security bars are to be fabricated of aluminum or carbon steel. The detailed fabrication sketches are reproduced in Appendix C. The security bars are to be installed close to the chains of plutonium so a determination of their effect on criticality safety needs to be made. The addition of security bars to the storage array of 2.5 kg plutonium buttons in Room 3 can effect reactivity by reflecting neutrons back into the plutonium in the storage cans, by absorbing neutrons, and by moderating neutrons between stored plutonium buttons. The small amount of metal added by the storage bars in comparison to the amount of concrete in the walls and aluminum in the shelf monitors already in place would not significantly increase the k{sub eff} of the storage array. Several computer calculations in previous analyses show that the security bars will have a negligible affect on reactivity.

  19. Storage of blood for methemoglobin determination: comparison of storage with a cryoprotectant at -30 degrees C and without any additions at -80 degrees C or -196 degrees C.

    PubMed

    Sato, K; Tamaki, K; Tsutsumi, H; Okajima, H; Katsumata, Y

    1990-03-01

    Changes in methemoglobin (Met-Hb) concentrations during storage of whole blood or mixtures of blood and a cryoprotectant at refrigerated or various freezing temperatures were examined using blood samples from nitrite-administered rats and from autopsy cadavers. When whole blood was stored at 3 degrees C, Met-Hb reduction was observed in blood samples from nitrite-administered rats and in the blood from a victim poisoned by a weed killer containing some oxidant. When samples were stored at -30 degrees C, Met-Hb formation by autoxidation was inevitably observed in blood samples stored as whole blood, whereas addition of a cryoprotectant to whole blood could prevent Met-Hb formation in all the blood samples. When whole blood was stored at -80 degrees C or -196 degrees C, Met-Hb concentrations were practically stable until at least 30 days regardless of the initial values except in the control rat blood samples stored at -80 degrees C which showed slight formation of Met-Hb. From the results obtained, both the storage with a cryoprotectant at -30 degrees C and that without any additions at -80 degrees C or -196 degrees C proved to be suitable for long-term storage of blood samples from autopsy cadavers for Met-Hb determination. PMID:2335326

  20. Pomegranate and mint syrup addition to green tea beverage stabilized its polyphenolic content and biofunctional potentials during refrigerated storage.

    PubMed

    Dhaouadi, Karima; Belkhir, Manel; Raboudi, Faten; Mecha, Elsa; Ghommeme, Imen; Bronze, Maria Do Rosario; Ammar, Hajer; Fattouch, Sami

    2016-02-01

    The chemical stability of the green tea (GT) preparation during refrigerated storage was investigated following the addition of mint (MS) or pomegranate (PS) syrups, a common habit in the Mediterranean countries that improves the savor of this popular beverage. The supernatants recovered by centrifuging GT supplemented or not with mint (GTMS) or pomegranate (GTPS) syrup were examined for their polyphenolic profiles using the high performance liquid chromatography with diode array detection and electrospray ionization-mass spectrometry. Following storage at 4 °C for 15 days, not-supplemented GT showed a significant decrease (≈92 %) of its phenolic content. However, the decrease was relatively lesser in GTPS (≈36 %) and in GTMS (≈40 %). The observed slight increase of the extractable polyphenolics in PS and MS during the storage might explain in part the relatively limited decrease of GTPS and GTMS total phenolic content. However, chromatographic examination proved that some tea compounds, particularly caffeine, were preserved following PS and MS supplementation. Likewise, syrups'addition to GT significantly (P < 0.5) limited the reduction of its antioxidant capacity as revealed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-(3-ethylbenz-thialzoline-6-sulfonic acid)) assays. As expected, the antimicrobial trials showed that Gram (+) Staphylococcus aureus and Staphylococcus epidermidis were the most sensitive strains to tea polyphenols. The syrups supplementation noticeably preserved the tea bacteriostatic and bactericide activities during storage. The obtained analytical results demonstrate that MS or PS addition to green tea beverage stabilized its polyphenolic content and biofunctional properties during refrigerated storage, thus, scientifically supporting this popular practice in the Mediterranean countries. PMID:27162396

  1. Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)

    1991-01-01

    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  2. International Space Station Attitude Control and Energy Storage Experiment: Effects of Flywheel Torque

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1999-01-01

    The Attitude Control and Energy Storage Experiment is currently under development for the International Space Station; two counter-rotating flywheels will be levitated with magnetic bearings and placed in vacuum housings. The primary objective of the experiment is to store and discharge energy, in combination with existing batteries, into the electrical power system. The secondary objective is to use the flywheels to exert torque on the Station; a simple torque profile has been designed so that the Station's Control Moment Gyroscopes will be assisted in maintaining torque equilibrium attitude. Two energy storage contingencies could result in the inadvertent application of torque by the flywheels to the Station: an emergency shutdown of one flywheel rotor while the other remains spinning, and energy storage with only one rotor instead of the counterrotating pair. Analysis of these two contingencies shows that attitude control and the microgravity environment will not be adversely affected.

  3. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  4. Working group report on advanced high-voltage high-power and energy-storage space systems

    NASA Technical Reports Server (NTRS)

    Cohen, H. A.; Cooke, D. L.; Evans, R. W.; Hastings, D.; Jongeward, G.; Laframboise, J. G.; Mahaffey, D.; Mcintyre, B.; Pfizer, K. A.; Purvis, C.

    1986-01-01

    Space systems in the future will probably include high-voltage, high-power energy-storage and -production systems. Two such technologies are high-voltage ac and dc systems and high-power electrodynamic tethers. The working group identified several plasma interaction phenomena that will occur in the operation of these power systems. The working group felt that building an understanding of these critical interaction issues meant that several gaps in our knowledge had to be filled, and that certain aspects of dc power systems have become fairly well understood. Examples of these current collection are in quiescent plasmas and snap over effects. However, high-voltage dc and almost all ac phenomena are, at best, inadequately understood. In addition, there is major uncertainty in the knowledge of coupling between plasmas and large scale current flows in space plasmas. These gaps in the knowledge are addressed.

  5. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media

    NASA Astrophysics Data System (ADS)

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-01

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG.We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. Electronic supplementary information (ESI) available: Experimental details, synthesis and characterization of compounds 1, 2, 1-Sil and 2-Sil, and materials. See DOI: 10.1039/c5nr00346f

  6. Development of encapsulated lithium hydride thermal energy storage for space power systems

    SciTech Connect

    Morris, D.G.; Foote, J.P.; Olszewski, M.

    1987-12-01

    Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

  7. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    PubMed

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction. PMID:26298568

  8. International Space Station Bus Regulation With NASA Glenn Research Center Flywheel Energy Storage System Development Unit

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.

    2001-01-01

    An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.

  9. Space station experiment definition: Long-term cryogenic fluid storage. Final report

    SciTech Connect

    Jetley, R.L.; Scarlotti, R.D.

    1987-06-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  10. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx.10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders, if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating

  11. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating

  12. Value addition of Palmyra palm and studies on the storage life.

    PubMed

    Chaurasiya, A K; Chakraborty, I; Saha, J

    2014-04-01

    Palmyra palm (Borassus flabellifer L.) belonging to the family Palmae is referred to as tree of life with several uses including food, beverage, fibre, medicinal and timber. Unfortunately, the nutritionally enriched pulp of ripened palm has limited commercial use. Extraction of pulp has been accomplished by using water and heat to ensure maximum pulp recovery. Different recipes were tried for the preparation of two uncommon value added products like palm spread and palm toffee. On the basis of biochemical composition, organoleptic scores, microbial estimation and storage study both under ambient and refrigerated conditions; the suitable recipe was selected with the maximum acceptability. Gradual increase in total soluble solid (TSS), total sugar and reducing sugar while decrease in ascorbic acid, pH, β-carotene and protein content of processed products have been observed irrespective of storage condition. The results obtained from sensory evaluation and microbial status revealed that palm spread and toffee remained acceptable up to 9 months and 8 months, respectively at ambient temperature. The income per rupee investment for these two products was found to be remunerative. PMID:24741173

  13. Design and evaluation of thermodynamic vent/screen baffle cryogenic storage system. [for space shuttles, space tugs, and spacelab

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1975-01-01

    A comprehensive analytical program was performed to compare an integrated thermodynamic vent/screen baffle orbital cryogenic propellant storage and transfer system with other concepts. The screen systems were found to be 20% to 29% lighter in weight than a propulsively accelerated Tug-scale LH2/LO2 resupply module. The screen systems were compared with small-scale supercritical storage systems for the space shuttle fuel cell reactant and life support system fluid supply and were lighter by up to 556 kg (1225 lb) for the extended 30-day mission. When compared with high-pressure gas storage for the spacelab atmosphere supply, the screen system saved 79% of the inert system weight for the 30-day mission. An experimental program found that heat flux rates up to 9,450 watts/sq m (3,000 Btu/hr-sq ft) degraded the LH2 bubble point performance of eight screens by a maximum of 12.5%. No effects of helium pressurant, screen material, or LH2 superheat were observed.

  14. Effects of cavern spacing and pressure on subsidence and storage losses for the US Strategic Petroleum Reserve

    SciTech Connect

    Ehgartner, B.

    1992-03-01

    The effects of cavern spacing and operating pressure on surface subsidence and cavern storage losses were evaluated using the finite- element method. The base case for the two sensitivity studies was a typical SPR cavern. The predicted responses of the base case and those from the pressurization study compared quite closely to measured surface subsidence and oil pressurization rates. This provided credibility for the analyses and constitutive models used. Subsidence and cavern storage losses were found to be strongly influenced by cavern spacing and pressurization. The relationship between subsidence volume and losses in storage volume varied as cavern spacing and operating pressure deviated from the base case. However, for a typical SPR cavern subsidence volume is proportional to storage loss and when expressed in ft., subsidence is equal to the percentage of storage loss.

  15. Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces

    SciTech Connect

    Xu Tianzhou; Rassias, John Michael; Xu Wanxin

    2010-09-15

    We establish some stability results concerning the general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. In addition, we establish some results of approximately general mixed additive-cubic mappings in non-Archimedean fuzzy normed spaces. The results improve and extend some recent results.

  16. Improvement of Frozen Storage Tolerance by the Addition of Sugar in Dusky Spinefoot, Lizard fish and Horse mackerel Surimi

    NASA Astrophysics Data System (ADS)

    Kawashima, Akane; Hamada, Yuki; Kusano, Sawa; Osako, Kazufumi; Tachibana, Katsuyasu; Nozaki, Yukinori

    The effects of three different sugars (sucrose, trehalose, sorbitol, at 5%) were analyzed and compared against a control for frozen surimi (-25 °C) made from dusky spinefoot, lizard fish and horse mackerel, for a total storage period of 180 days. Kamaboko was prepared at defined time intervals, and its jelly strength (J.S.), water holding capacity (W.H.C.), and whiteness, and the total Ca-ATPase activity of surimi were analyzed. Present results showed that all parameters of sugar free control samples decreased faster than those of sugar added samples during frozen storage.Sugar resulted a good additive for long time surimi conservation for all the species analyzed.

  17. Space flight micro-fungi after 27 years storage in water and in continuous culture.

    PubMed

    Volz, P A; Parent, S L

    1998-01-01

    Four species of micro-fungi were selected for study in the National Aeronautics and Space Administration (NASA) Apollo Microbial Ecology Evaluation Device (MEED) mycology experiments. Trichophyton terrestre, Rhodotorula rubra, Saccharomyces cerevisiae and Chaetomium globosum were selected from a series of preflight test fungi for the MEED mycology studies during the 2 years prior to the actual flight (Volz, 1971a, 1972b). Conidia of T. terrestre, ascospores of C. globosum and yeast cells of R. rubra and S. cerevisiae were suspended in sterile distilled water and loaded into wet and dry cuvettes for exposure to specific space flight parameters according to the filters built into the space flight hardware (Volz, 1971b). Living cells were found in the original inocula and phenotype water storage after 27 years. Colony cells were also examined after 27 years of continuous culture. PMID:10093232

  18. Space-based LH 2 propellant storage system: subscale ground testing results

    NASA Astrophysics Data System (ADS)

    Liggett, M. W.

    An orbital cryogenic liquid storage facility will be one of the essential elements of the US Space Program to realize the benefits of space-based cryogenic propulsion vehicles such as NASA's space transfer vehicle (STV) for transporting personnel and scientific packages from a space station in low earth orbit (LEO) to geosynchronous orbit (GEO), the moon and beyond. Long-term thermal control of LH 2 and LO 2 storage cryotanks is a key technical objective for many NASA and SDI programmes. Improved retention using refrigeration, boil-off vapour-cooled shields (VCSs), multilayer superinsulation (MLI) and para-ortho (P-O) hydrogen conversion are the required state-of-the-art techniques. The cryotank system level development testing (CSLDT) programme has supported the development of these technologies. Under the programme, trade studies and analyses were followed by the design and construction of a subscale LH 2 storage facility test article for steady-state and transient thermal tests. A two-stage gaseous helium (GHe) refrigerator was integrated with the test article and used to reduce boil-off and/or decrease the time required between passive test configuration steady-state conditions. The LH 2 tank, mounted in a vacuum chamber, was thermally shielded from the chamber wall by MLI blankets and two VCSs. The VCSs were cooled with either LH 2 boil-off gas (through an optional P-O converter) or refrigerated GHe. The CSLDT test article design, assembly and results from 400 hours of thermal tests are presented along with important conclusions. A comparison of predicted and measured steady-state boil-off rates is provided for 10 test configurations, and the system time constant is addressed. Also presented are some of the unique issues and challenges encountered during these tests that are related to instrumentation and control.

  19. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  20. Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide

    NASA Technical Reports Server (NTRS)

    DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay

    2012-01-01

    Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.

  1. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  2. Cryogenic temperature control by means of energy storage materials. [for long space voyages

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.; Connor, L. E.

    1977-01-01

    An investigation was conducted to study the concept of thermal control by means of physical or chemical reaction heats for applications involving the storage of cryogens during long-term space voyages. The investigation included some preliminary experimental tests of energy storage material (ESM) effectiveness. The materials considered can store and liberate large amounts of thermal energy by means of mechanisms such as sensible heat, heat of fusion, and physical or chemical reaction heat. A differential thermal analysis was utilized in the laboratory tests. Attention is given to the evaluation of cryogenic ESM thermal control concepts, the experimental determination of phase change materials characteristics, and adsorption ESMs. It is found that an ESM shield surrounded by multiple layer insulation provides the best protection for a cryogen store.

  3. Future thrusts of the NASA space power program. [with emphasis on electrochemical energy conversion and storage

    NASA Technical Reports Server (NTRS)

    Holcomb, L.

    1978-01-01

    General objectives and plan directions are given for current program support in the following areas: (1) solar cells and arrays; (2) batteries and fuel cells; (3) thermoelectric, thermionic, and Brayton cycle conversion systems; (4) circuits and subsystems for the management and distribution of power; and (5) the interactions of the environment with the power system and the spacecraft. Particular emphasis is given to the electrochemical energy conversion storage portion of the program where efforts are directed to improving the energy density and life of nickel cadmium batteries, to validating flight-weight silver hydrogen cells, to promoting the safe use of lithium primary batteries, to completing the silver zinc batteries and the orbital transfer fuel cell technology, to increasing the capacity of space batteries, to and to evaluating new electrochemical concepts for very high energy density. The use of the fuel cell electrolyzer concept for energy storage in both the dedicated and the truly regenerative mode is also being investigated.

  4. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  5. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  6. International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment

    NASA Technical Reports Server (NTRS)

    Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark

    2014-01-01

    The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.

  7. Collins Cryocooler Design for Zero-Boil Storage of Liquid Hydrogen and Oxygen in Space

    NASA Astrophysics Data System (ADS)

    Segado, M. A.; Hannon, C. L.; Brisson, J. G.

    2010-04-01

    Several models of multi-stage cryocoolers are developed for zero-boil-off storage of liquid hydrogen and oxygen in space. The thermodynamic cycles are based on a modified Collins cycle being developed by MIT and AMTI, and each configuration is optimized for maximum efficiency by varying the mass flows, heat exchanger UA distribution, and other variables where applicable, subject to the required heat loads of 100 W at 100 K and 20 W at 25 K. By using double expanders connected in series with the heat loads in one or more stages of the cooler, we were able to achieve predicted efficiency gains of 10-24% over single expander designs.

  8. Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree.

    PubMed

    Nowicka, Paulina; Wojdyło, Aneta

    2016-04-01

    The aim of this study was to describe the changes in phenolic compounds, antioxidant activity and colour of sour cherry puree supplemented with different natural sweeteners (sucrose, palm sugar, erythritol, xylitol, steviol glycoside, Luo Han Kuo), and natural prebiotic (inulin). A total of 18 types of polyphenolic compounds were assessed in the following sour cherry puree by LC-MS-QTof analysis, before and after 6 months of storage at 4 °C and 30 °C. Total phenolics determined by UPLC-PDA-FL was 1179.6 mg/100 g dm. In samples with addition of sweeteners the content of phenolic compounds ranged from 1133.1 (puree with steviol glycoside) to 725.6 mg/100 g dm (puree with erythritol), and the content of these compounds strongly affected on antioxidant activity. After 6-month storage, protective effects of some additives (palm sugar, erythritol, steviol glycoside, xylitol and inulin) on the polyphenol content, especially on anthocyanins and consequently on colour, and antioxidant activity were noticed. The results showed that some natural sweeteners might be interesting from a nutritional as well as commercial and pharmaceutical perspective. PMID:26593574

  9. Photon storage in {lambda}-type optically dense atomic media. II. Free-space model

    SciTech Connect

    Gorshkov, Alexey V.; Andre, Axel; Lukin, Mikhail D.; Soerensen, Anders S.

    2007-09-15

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we presented a universal physical picture for describing a wide range of techniques for storage and retrieval of photon wave packets in {lambda}-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo based techniques. This universal picture produced an optimal control strategy for photon storage and retrieval applicable to all approaches and yielded identical maximum efficiencies for all of them. In the present paper, we present the full details of this analysis as well some of its extensions, including the discussion of the effects of non-degeneracy of the two lower levels of the {lambda} system. The analysis in the present paper is based on the intuition obtained from the study of photon storage in the cavity model in the preceding paper [Gorshkov et al., previous paper, Phys. Rev. A. 76, 033804 (2007)].

  10. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  11. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    NASA Astrophysics Data System (ADS)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  12. System for thermal energy storage, space heating and cooling and power conversion

    DOEpatents

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  13. Planning additional drilling campaign using two-space genetic algorithm: A game theoretical approach

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Ozer, Umit

    2013-03-01

    Grade and tonnage are the most important technical uncertainties in mining ventures because of the use of estimations/simulations, which are mostly generated from drill data. Open pit mines are planned and designed on the basis of the blocks representing the entire orebody. Each block has different estimation/simulation variance reflecting uncertainty to some extent. The estimation/simulation realizations are submitted to mine production scheduling process. However, the use of a block model with varying estimation/simulation variances will lead to serious risk in the scheduling. In the medium of multiple simulations, the dispersion variances of blocks can be thought to regard technical uncertainties. However, the dispersion variance cannot handle uncertainty associated with varying estimation/simulation variances of blocks. This paper proposes an approach that generates the configuration of the best additional drilling campaign to generate more homogenous estimation/simulation variances of blocks. In other words, the objective is to find the best drilling configuration in such a way as to minimize grade uncertainty under budget constraint. Uncertainty measure of the optimization process in this paper is interpolation variance, which considers data locations and grades. The problem is expressed as a minmax problem, which focuses on finding the best worst-case performance i.e., minimizing interpolation variance of the block generating maximum interpolation variance. Since the optimization model requires computing the interpolation variances of blocks being simulated/estimated in each iteration, the problem cannot be solved by standard optimization tools. This motivates to use two-space genetic algorithm (GA) approach to solve the problem. The technique has two spaces: feasible drill hole configuration with minimization of interpolation variance and drill hole simulations with maximization of interpolation variance. Two-space interacts to find a minmax solution

  14. Correction of an active space telescope mirror using a gradient approach and an additional deformable mirror

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2015-09-01

    High development cost is a challenge for space telescopes and imaging satellites. One of the primary reasons for this high cost is the development of the primary mirror, which must meet diffraction limit surface figure requirements. Recent efforts to develop lower cost, lightweight, replicable primary mirrors include development of silicon carbide actuated hybrid mirrors and carbon fiber mirrors. The silicon carbide actuated hybrid mirrors at the Naval Postgraduate School do not meet the surface quality required for an optical telescope due to high spatial frequency residual surface errors. A technique under investigation at the Naval Postgraduate School is to correct the residual surface figure error using a deformable mirror in the optical path. We present a closed loop feedback gradient controller to actively control a SMT active segment and an additional deformable mirror to reduce residual wavefront error. The simulations and experimental results show that the gradient controller reduces the residual wavefront error more than an integral controller.

  15. Low Mass Printable Devices for Energy Capture, Storage, and Use for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Singer, Christopher E.; Ray, William J.; Fuller, Kirk A.

    2010-01-01

    The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between -Technologies Worldwide, Inc., and the National Aeronautics and Space Administration s (NASA s) Marshall Space Flight Center (MSFC). This work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications, and is an example of industry and government cooperation that leads to novel inventions. Device development involves three energy generation and consumption projects: 1) a low mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; 2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and 3) a new approach to building supercapacitors. These three technologies - energy capture, storage, and usage (e.g., lighting) - represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies will be useful for lightweight power generation that enables inner planetary missions using smaller launch vehicles and facilitates surface operations. The PV device model is a two-sphere, light-trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. All three components may be printed in line by printing sequential layers on a standard screen or flexographic direct impact press using the threedimensional printing technique (3DFM) patented by NthDegree. MSFC is testing the robustness of prototype devices in the harsh space and lunar surface environments, and available results will be reported. Unlike many traditional light sources, this device does not contain toxic compounds, and the LED component has passed stringent off-gassing tests required for potential manifesting on spacecraft such as the International Space

  16. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  17. Effects of Sucrose Stearate Addition on the Quality Improvement of Ready-To-Eat Samgyetang During Storage at 25℃

    PubMed Central

    2014-01-01

    The effects of sucrose stearate at various concentrations (0.1%, 0.2%, and 0.3%, w/v) on the physico-chemical characteristics of ready-to-eat (RTE) Samgyetang were investigated during storage at 25℃ for 12 mon. Over the storage duration, the addition of sucrose stearate had no significant effects on the proximate composition of Samgyetang, including meat, broth, and porridge, or the hardness and spreadability of the porridge, although it resulted in significantly higher CIE L* values for the porridge. The CIE L* values of Samgyetang porridge with added sucrose stearate increased until 9 mon, while the control decreased until 6 mon, and the values for both changed insignificantly thereafter. The breast meat of Samgyetang treated with sucrose stearate showed higher percentages of polyunsaturated fatty acid after 3 mon and lower percentages of monounsaturated fatty acid after 6 mon compared to the control (p<0.05), while no significant differences were observed with the different sucrose stearate concentrations (p>0.05). The overall sensory acceptability scores were higher at sucrose stearate concentrations of 0.2% or 0.3% after 6 mon and at 0.1% after 9 mon compared to those of the control. PMID:26761503

  18. Possible effects of protracted exposure on the additivity of risks from space radiations

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.

    1996-01-01

    Conventional radiation risk assessments are presently based on the additivity assumption. This assumption states that risks from individual components of a complex radiation field involving many different types of radiation can be added to yield the total risk of the complex radiation field. If the assumption is not correct, the summations and integrations performed to obtain the presently quoted risk estimates are not appropriate. This problem is particularly important in the area of space radiation risk evaluation because of the many different types of high- and low-LET radiation present in the galactic cosmic ray environment. For both low- and high-LET radiations at low enough dose rates, the present convention is that the addivity assumption holds. Mathematically, the total risk, Rtot is assumed to be Rtot = summation (i) Ri where the summation runs over the different types of radiation present. If the total dose (or fluence) from each component is such that the interaction between biological lesions caused by separate single track traversals is negligible within a given cell, it is presently considered to be reasonable to accept the additivity assumption. However, when the exposure is protracted over many cell doubling times (as will be the case for extended missions to the moon or Mars), the possibility exists that radiation effects that depend on multiple cellular events over a long time period, such as is probably the case in radiation-induced carcinogenesis, may not be additive in the above sense and the exposure interval may have to be included in the evaluation procedure. It is shown, however, that "inverse" dose-rate effects are not expected from intermediate LET radiations arising from the galactic cosmic ray environment due to the "sensitive-window-in-the-cell-cycle" hypothesis.

  19. [TESTING STABILITY OF TABLETED ACETAMINOPHEN AND FUROSEMIDE AFTER 6-MONTH STORAGE IN SPACE FLIGHT].

    PubMed

    Bogomolov, V V; Kondratenko, S N; Kovachevich, I V

    2015-01-01

    It was shown that multiple spaceflight factors (i.e., acceleration, overvibration, microgravity etc.) do not impact stability of acetaminophen and furosemide tablets stored onboard the International space station over 6 months. Acetaminophen dose in a tablet was 496.44 ± 6.88 mg (99.29 ± 1.38%) before spaceflight (SF) and 481.77 ± 1 2.40 mg (96.35 ± 0.48%) after 6 mos. of storage; furosemide dose in a tablet was 40.19 ± 0.28 mg (100.47 ± 0.71%) before and 39.24 ± 0.72 mg (98.105 ± 1.80%) after SF remaining within the established limits. PMID:26087581

  20. Development of encapsulated lithium hydride sink-side thermal energy storage for pulsed space power systems

    SciTech Connect

    Morris, D.G.; Foote, J.P.; Olszewski, M.; Whittaker, J.W.

    1988-01-01

    Value analysis indicates that inclusion of thermal energy storage (TES) as an element in a pulsed space power supply will reduce the mass of the heat rejection system. A candidate design for the TES component utilizes lithium hydride (LiH) encapsulated in 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Critical concerns with this concept are the need to (1) accommodate shell stresses induced by volumetric expansion of the melting salt or surface gripping by the freezing salt and (2) minimize hydrogen loss through the shell due to LiH dissociation at high temperatures. Experimental observation of significant cracking of the LiH during cooling mitigates the first of these issues by providing a leakage path into the interior void as melting occurs at the salt-containment interface, thus allowing use of thin shells.

  1. Space station control requirements and flywheel system weights for combined momentum and energy storage

    SciTech Connect

    Elam, F.M.

    1983-12-01

    The specifications of the flywheel system for momentum storage and vehicle torquing are somewhat dependent upon the attitude control requirements of the space station in orbit. As a ground rule, the flywheel system will be sized large enough to provide all attitude maneuvers, if practical, to avoid or minimize turning on the reaction control system (RCS). The RCS, whenever used, expels expensive mass and tends to contaminate optical surfaces of the vehicle. The vehicle rate and acceleration specifications of 0.10 deg/sec and 0.01 deg/square sec are tentative, and may be reduced if lesser values are more practical for flywheel design. For local vertical attitude hold, the average attitude error should be zero, and not the classical 1 degree, since control moment gyro (CMG) gimbal angles provide an exact reference feedback for gravity gradient momentum. Docking presents a problem for docking transients and attitude alignment which will require use of the RCS.

  2. Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration

    NASA Technical Reports Server (NTRS)

    Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.

    2012-01-01

    NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.

  3. Observation of space-charge effects in the Los Alamos Proton Storage Ring

    SciTech Connect

    Neuffer, D.; Fitzgerald, D.; Hardek, T.; Hutson, R.; Macek, R.; Plum, M.; Thiessen, H.; Wang, T.S.

    1991-01-01

    In recent operation of the Los Alamos Proton Storage Ring (PSR), the vertical and horizontal tunes have been moved closer to the integers (v{sub y} = 2.12, v{sub x} = 3.17) due to enlarge the low-los working region. In this region, the beam can be significantly affected by space charge. The first observed effects are a nondestructive distortion of the beam profile and vertical growth of beam size sufficient to keep the shifted tunes from crossing the integer, but without large beam loss. At higher intensities, or with tunes closer to the integer, beam blow-up, accompanied by beam losses, can occur. In this paper, we report recent observations of this intensity-dependent effect and discuss implications for future PSR operation. 4 refs., 2 figs., 1 tab.

  4. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  5. Site-specific investigations on aquifer thermal energy storage for space and process cooling

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1991-08-01

    The Pacific Northwest Laboratory (PNL) has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low.

  6. Polymeric Materials With Additives for Durability and Radiation Shielding in Space

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard

    2011-01-01

    Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.

  7. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the...

  8. Berkeley Storage Manager

    2007-03-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management of shared storage components on the Grid, They provide storage availability for the planning and execution of a Grid job. SRMs manage two types of resources: space and files. When managing space, SRMs negotiate space allocation with the requesting client, andlor assign default space quotas. When managing files, SRMs allocate space for files, invoke file transfer servicesmore » to move files into the space. phi files for a certain lifetime, release files upon the clients’ request, and use file replacement policies to optimize the use of the shared space. SPMs can be designed to provide effective sharing of files, by monitoring the activity of shared files, and make dynamic decisions on which files to replace when space is needed. In addition, SRMs perform automatic gathage collection of unused files by removing selected files whose lifetime has expired when space is needed. BeStMan is a Java implementation of SRM functionality by the Scientific Data Management Group at LBNL. It manages multiple disks as well as the HPSS mass storage system, and can be adapted to other storage systems. The BeStMan package contains the SRM server, the SRM client tools, and SRM testing tools.« less

  9. Berkeley Storage Manager

    SciTech Connect

    Sim, Alex; Gu, Junmin; Natarajan, Vijaya; Shoshani, Arie

    2007-03-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management of shared storage components on the Grid, They provide storage availability for the planning and execution of a Grid job. SRMs manage two types of resources: space and files. When managing space, SRMs negotiate space allocation with the requesting client, andlor assign default space quotas. When managing files, SRMs allocate space for files, invoke file transfer services to move files into the space. phi files for a certain lifetime, release files upon the clients’ request, and use file replacement policies to optimize the use of the shared space. SPMs can be designed to provide effective sharing of files, by monitoring the activity of shared files, and make dynamic decisions on which files to replace when space is needed. In addition, SRMs perform automatic gathage collection of unused files by removing selected files whose lifetime has expired when space is needed. BeStMan is a Java implementation of SRM functionality by the Scientific Data Management Group at LBNL. It manages multiple disks as well as the HPSS mass storage system, and can be adapted to other storage systems. The BeStMan package contains the SRM server, the SRM client tools, and SRM testing tools.

  10. Longitudinal phase-space coating of beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Bhat, C. M.

    2014-06-01

    In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.

  11. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  12. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  13. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  14. An AC-electromagnetic bearing for flywheel energy storage in space

    NASA Astrophysics Data System (ADS)

    Nikolajsen, Jorgen L.

    A repulsive type AC-electromagnetic bearing was developed and tested. It was conceived on the basis of the so-called Magnetic River suspension for high-speed trains. The appearance of the bearing is similar to the traditional DC-type electromagnetic bearing but the operating principle is different. The magnets are fed with alternating current instead of direct current and the rotor is fitted with a conducting sleeve (e.g. aluminum) instead of a ferromagnetic sleeve. The repulsion is due to induction of eddy-currents in the conducting sleeve. The bearing is inherently stable and requires no feedback control. It provides support in five degrees of freedom such that a short rotor may be fully supported by a single bearing. These capabilities were demonstrated experimentally. On the down side, the load carrying capacity and the damping obtained so far were quite low compared to the DC-type bearing. Also, significant heating of the conducting sleeve was experienced. The AC-bearing is essentially a modified induction motor and there are strong indications that it can be run both as a motor and as a generator with no commutator requirements. It is therefore considered to be a good candidate for support of energy storage flywheels in space.

  15. An AC-electromagnetic bearing for flywheel energy storage in space

    NASA Technical Reports Server (NTRS)

    Nikolajsen, Jorgen L.

    1993-01-01

    A repulsive type AC-electromagnetic bearing was developed and tested. It was conceived on the basis of the so-called Magnetic River suspension for high-speed trains. The appearance of the bearing is similar to the traditional DC-type electromagnetic bearing but the operating principle is different. The magnets are fed with alternating current instead of direct current and the rotor is fitted with a conducting sleeve (e.g. aluminum) instead of a ferromagnetic sleeve. The repulsion is due to induction of eddy-currents in the conducting sleeve. The bearing is inherently stable and requires no feedback control. It provides support in five degrees of freedom such that a short rotor may be fully supported by a single bearing. These capabilities were demonstrated experimentally. On the down side, the load carrying capacity and the damping obtained so far were quite low compared to the DC-type bearing. Also, significant heating of the conducting sleeve was experienced. The AC-bearing is essentially a modified induction motor and there are strong indications that it can be run both as a motor and as a generator with no commutator requirements. It is therefore considered to be a good candidate for support of energy storage flywheels in space.

  16. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  17. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  18. 36 CFR 1236.28 - What additional requirements apply to the selection and maintenance of electronic records storage...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... storage media containing permanent and unscheduled records within the following temperature and relative humidity ranges: (1) Temperature—62° to 68 °F. (2) Relative humidity—35% to 45%. (b) Electronic...

  19. 36 CFR 1236.28 - What additional requirements apply to the selection and maintenance of electronic records storage...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... storage media containing permanent and unscheduled records within the following temperature and relative humidity ranges: (1) Temperature—62° to 68 °F. (2) Relative humidity—35% to 45%. (b) Electronic...

  20. 36 CFR 1236.28 - What additional requirements apply to the selection and maintenance of electronic records storage...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage media containing permanent and unscheduled records within the following temperature and relative humidity ranges: (1) Temperature—62° to 68 °F. (2) Relative humidity—35% to 45%. (b) Electronic...

  1. Additional symbols used in double-spaced text for Wang OIS word-processor users

    SciTech Connect

    Miller, J.A.

    1983-06-01

    This paper illustrates samples of Greek symbols (and other symbols) that are on the Wang daisy printwheel but not in the form that is often required. This technique can be used in place of rub-ons. It applies to double-spaced formats only, and involves creating new format lines within the text.

  2. Does the NASA Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.

  3. Assessment of energy storage concepts for use in pulsed space power systems

    SciTech Connect

    Olszewski, M.; Morris, D.G.

    1987-01-01

    Preliminary assessments have been completed for thermal energy storage in heat rejection systems as well as for regenerable electrical storage modules in systems having nuclear sources with Rankine power conversion and solar sources with Brayton and Rankine power conversion. Storage technologies considered for the regenerable modules include flywheels, batteries, fuel cells, superconducting magnets and capacitors. Both source and sink thermal storage were examined for the solar energy based systems. Benefits derived from incorporating thermal storage in the heat rejection system depend on the storage density and the radiator specific mass. The analysis shows that inclusion of a thermal store results in heat rejection system mass reductions for generation times of up to 1100 seconds. Results show that the storage system value (mass reduction) increases with decreasing total generation time. In general, the value is greatest for generation times of 600 seconds or less although mass savings are realized for generation times nearly twice as long. For a total generation time of 500 seconds, incorporating storage in a nuclear Rankine power system results in a mass reduction of 50%. System masses similar to the nuclear Rankine are obtainable for solar Rankine and Brayton cycles using regenerable electrical storage modules. However, a 100-orbit recharge time is required, when the constraint of keeping concentrator areas smaller than 1000 m/sup 2/ is also imposed.

  4. Analysis of community solar systems for combined space and domestic hot water heating using annual cycle thermal energy storage

    SciTech Connect

    Hooper, F.C.; McClenahan, J.D.; Cook, J.D.; Baylin, F.; Monte, R.; Sillman, S.

    1980-01-01

    A simplified design procedure is examined for estimating the storage capacity and collector area for annual-cycle-storage, community solar heating systems in which 100% of the annual space heating energy demand is provided from the solar source for the typical meteorological year. Hourly computer simulations of the performance of these systems were carried out for 10 cities in the United States for 3 different building types and 4 community sizes. These permitted the use of design values for evaluation of a more simplified system sizing method. Results of this study show a strong correlation between annual collector efficiency and two major, location-specific, annual weather parameters: the mean air temperature during daylignt hours and the total global insolation on the collector surface. Storage capacity correlates well with the net winter load, which is a measure of the seasonal variation in the total load, a correlation which appears to be independent of collector type.

  5. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment. PMID:26554132

  6. Data systems and computer science space data systems: Onboard memory and storage

    NASA Technical Reports Server (NTRS)

    Shull, Tom

    1991-01-01

    The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.

  7. Densification of silicon carbide using oxy-nitride additives for space-based telescope mirror applications

    NASA Astrophysics Data System (ADS)

    Kumar, R. Suresh; Shukla, Anoop K.; Babu, Sankaranarayanan; Sivakumar, Dhenuvakonda; Gandhi, Ashutosh S.

    2011-07-01

    Densification behavior of alpha silicon carbide (SiC) during vacuum hot pressing was studied up to 1900ºC with sintering additives based on AlN and Y2O3 in different proportions. Near theoretical density was obtained with a total sintering additive content of < 4 vol.%. The microstructure of SiC sintered with AlN+Y2O3 revealed fine equiaxed grains against the additional elongated grains exhibited by SiC sintered with AlN alone. The SiC having high density exhibited very good strength, elastic modulus, high thermal conductivity, low coefficient of thermal expansion and excellent polishability for telescope mirror applications.

  8. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... part 72, entitled ``General License for Storage of Spent Fuel at Power Reactor Sites'' (55 FR 29181..., 1997, and published in the Federal Register on September 3, 1997 (62 FR 46517), this rule is classified... June 10, 1998 (63 FR 31883), directed that the Government's documents be in clear and...

  9. The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training

    PubMed Central

    Smolka, Lukasz; Borkowski, Jacek; Zaton, Marek

    2014-01-01

    The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER) and carbon dioxide production (VCO2). Two groups of young healthy males: Experimental (Exp, n = 15) and Control (Con, n = 15), participated in this study. The training consisted of 12 sessions, performed twice a week for 6 weeks. A single training session consisted of continuous, constant-rate exercise on a cycle ergometer at 60% of VO2max which was maintained for 30 minutes. Subjects in Exp group were breathing through additional respiratory dead space (1200ml), while subjects in Con group were breathing without additional dead space. Pre-test and two post-training incremental exercise tests were performed for the detection of gas exchange variables. In all training sessions, pCO2 was higher and blood pH was lower in the Exp group (p < 0.001) ensuring respiratory acidosis. A 12-session training program resulted in significant increase in performance time in both groups (from 17”29 ± 1”31 to 18”47 ± 1”37 in Exp; p=0.02 and from 17”20 ± 1”18 to 18”45 ± 1”44 in Con; p = 0.02), but has not revealed a significant difference in RER and VCO2 in both post-training tests, performed at rest and during submaximal workload. We interpret the lack of difference in post-training values of RER and VCO2 between groups as an absence of inhibition in glycolysis and glycogenolysis during exercise with additional dead space. Key Points The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training on respiratory exchange ratio and carbon dioxide production. In all training sessions, respiratory acidosis was gained by experimental group only. No significant difference in RER and VCO2 between experimental and control group due to the trainings. The lack of

  10. Flow-induced vibration of the SSME Lox posts: additional issues. [Space shuttle main engine

    SciTech Connect

    Chen, S.S.

    1984-12-01

    A mathematical model is presented for flow-induced vibration of the Space Shuttle Main Engine (SSME) liquid oxygen (LOX) posts. The definition of the critical flow velocity is addressed, and detuning of the vibrations of the LOX posts is discussed. Nonuniform flow distributions in the axial and transverse directions are examined briefly, followed by upstream turbulence. The dependence of response upon post location is addressed briefly. Scruton's number, a mass-damping parameter, is defined and its value for the SSME LOX posts is given. Also discussed are the interaction of turbulent buffeting and fluidelastic instability, post arrangement, and swirlers around the posts. The differences are discussed between the quasi-static, the analytical, and the general analytical mathematical models. (LEW)

  11. Large Advanced Space Systems (LASS) computer-aided design program additions

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.

    1982-01-01

    The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.

  12. Additional results on space environmental effects on polymer matrix composites: Experiment A0180

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.

    1992-01-01

    Additional experimental results on the atomic oxygen erosion of boron, Kevlar, and graphite fiber reinforced epoxy matrix composites are presented. Damage of composite laminates due to micrometeoroid/debris impacts is also examined with particular emphasis on the relationship between damage area and actual hole size due to particle penetration. Special attention is given to one micrometeoroid impact on an aluminum base plate which resulted in ejecta visible on an adjoining vertical flange structure.

  13. EMASS (tm): An expandable solution for NASA space data storage needs

    NASA Technical Reports Server (NTRS)

    Peterson, Anthony L.; Cardwell, P. Larry

    1992-01-01

    The data acquisition, distribution, processing, and archiving requirements of NASA and other U.S. Government data centers present significant data management challenges that must be met in the 1990's. The Earth Observing System (EOS) project alone is expected to generate daily data volumes greater than 2 Terabytes (2(10)(exp 12) Bytes). As the scientific community makes use of this data their work product will result in larger, increasingly complex data sets to be further exploited and managed. The challenge for data storage systems is to satisfy the initial data management requirements with cost effective solutions that provide for planned growth. This paper describes the expandable architecture of the E-Systems Modular Automated Storage System (EMASS (TM)), a mass storage system which is designed to support NASA's data capture, storage, distribution, and management requirements into the 21st century.

  14. EMASS (trademark): An expandable solution for NASA space data storage needs

    NASA Technical Reports Server (NTRS)

    Peterson, Anthony L.; Cardwell, P. Larry

    1991-01-01

    The data acquisition, distribution, processing, and archiving requirements of NASA and other U.S. Government data centers present significant data management challenges that must be met in the 1990's. The Earth Observing System (EOS) project alone is expected to generate daily data volumes greater than 2 Terabytes (2 x 10(exp 12) Bytes). As the scientific community makes use of this data, their work will result in larger, increasingly complex data sets to be further exploited and managed. The challenge for data storage systems is to satisfy the initial data management requirements with cost effective solutions that provide for planned growth. The expendable architecture of the E-Systems Modular Automated Storage System (EMASS(TM)), a mass storage system which is designed to support NASA's data capture, storage, distribution, and management requirements into the 21st century is described.

  15. Evaluating surface and subsurface water storage variations at small time and space scales from relative gravity measurements in semiarid Niger

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Champollion, CéDric; Favreau, Guillaume; Cappelaere, Bernard; Hinderer, Jacques; Boucher, Marie; Nazoumou, Yahaya; Oï, Monique; Mouyen, Maxime; Henri, Christopher; Moigne, Nicolas; Deroussi, SéBastien; Demarty, JéRôMe; Boulain, Nicolas; Benarrosh, Nathalie; Robert, Olivier

    2013-06-01

    The acquisition of reliable data sets representative of hydrological regimes and their variations is a critical concern for water resource assessment. For the subsurface, traditional approaches based on probe measurements, core analysis, and well data can be laborious, expensive, and highly intrusive, while only yielding sparse data sets. For this study, an innovative field survey, merging relative microgravimetry, magnetic resonance soundings, and hydrological measurements, was conducted to evaluate both surface and subsurface water storage variations in a semiarid Sahelian area. The instrumental setup was implemented in the lower part of a typical hillslope feeding to a temporary pond. Weekly measurements were carried out using relative spring gravimeters during 3 months of the rainy season in 2009 over a 350 × 500 m2 network of 12 microgravity stations. Gravity variations of small to medium amplitude (≤220 nm s-2) were measured with accuracies better than 50 nm s-2, revealing significant variations of the water storage at small time (from 1 week up to 3 months) and space (from a couple of meters up to a few hundred meters) scales. Consistent spatial organization of the water storage variations were detected, suggesting high infiltration at the outlet of a small gully. The comparison with hydrological measurements and magnetic resonance soundings involved that most of the microgravity variations came from the heterogeneity in the vadose zone. The results highlight the potential of time lapse microgravity surveys for detecting intraseasonal water storage variations and providing rich space-time data sets for process investigation or hydrological model calibration/evaluation.

  16. Method and integrated system for the torque control and energy storage for a space vehicle

    SciTech Connect

    Legrand, F.; Weisser, B.

    1980-02-12

    The energy storage is effected kinetically. The system includes a first feedback loop with a time constant tau 1 including a regulator connecting the supply busbar to a device for controlling momentum wheels used for the kinetic energy storage and the torque control. A second feedback loop, of time constant tau 2, transmits velocity data omega from the momentum wheels to a processing unit, constituted by a microprocessor, which controls the wheel actuating device. A third feedback loop, of time constant tau 3, supplies the processing unit with the data regarding the torque required by the satellite piloting device.

  17. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  18. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  19. Space.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2001

    2001-01-01

    This annotated subject guide to Web sites and additional resources focuses on space and astronomy. Specifies age levels for resources that include Web sites, CD-ROMS and software, videos, books, audios, and magazines; offers professional resources; and presents a relevant class activity. (LRW)

  20. Effects of a 500 Mc s -1 additional cavity on spontaneous coherent synchrotron oscillations in the Super-ACO storage ring

    NASA Astrophysics Data System (ADS)

    Bergher, M.

    An additional 500 Mc s -1 cavity, fifth harmonics of the main cavity, was installed on the Super-ACO storage ring in order to shorten the bunch length. This cavity was introduced to obtain shorter wavelengths in the UV for the FEL and shorter flashes of light for the experiments using the two-bunches-mode functioning for the time-resolved measurements. Spontaneous coherent synchrotron oscillations (SCSO) were profoundly modified by the presence of this cavity. These instabilities are probably the consequence of the formation of micro-bunches. The vanishing of these micro-bunches is associated to the emission of coherent synchrotron radiation, which gives the SCSO a cyclic character. The identification of the resonant elements responsible for these cyclic instabilities can help us to suppress or substantial ameliorate the SCSO by acting selectively on these resonant elements. This method can be applied to other storage or damping rings that show the same type of instabilities.

  1. Effect of talc addition on the extraction yield and quality of extra virgin olive oils from Coratina cultivar after production and during storage.

    PubMed

    Caponio, Francesco; Monteleone, Julieta I; Martellini, Giovanni; Summo, Carmine; Paradiso, Vito M; Pasqualone, Antonella

    2014-01-01

    An experimental investigation was carried out with the aim to evaluate the effect of talc on the extraction yield and quality of extra virgin olive oils from Coratina olives after production and during storage. A significant effect of talc, added in the malaxer, on both yield and oil quality was observed. The addition of 1% talc lead to a 15% decrease of the residual oil in the olive-pomace, while higher amounts of talc did not determine further significant variations. The use of talc caused also a significant decrease of the peroxide value and tocopherols and a significant increase of carotenoids, chlorophylls, phenols, antioxidant activity and K270, while no influence was detected on free fatty acids and K232. Finally, during storage the differences among the oils were maintained as immediately after their production, with the exception of chlorophylls. PMID:25296576

  2. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  3. High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.

  4. Effects of Ti-Based Additives on the Hydrogen Storage Properties of a L i B H 4 / C a H 2 Destabilized System

    DOE PAGESBeta

    Yang, Hongwei; Ibikunle, Adeola; Goudy, Andrew J.

    2010-01-01

    Tmore » he hydrogen storage properties of a destabilized LiBH 4 / CaH 2 system ball-milled with TiCl 3 , TiF 3 , and TiO 2 additives have been investigated. It is found that the system with TiCl 3 additive has a lower dehydrogenation temperature than the ones with other additives. Further study shows that a higher amount of TiCl 3 is more effective in reducing the desorption temperature of the LiBH 4 / CaH 2 system, since it leads to a lower activation energy of dehydrogenation.he activations energies for mixtures containing 4, 10, and 25 mol% of TiCl 3 are 141, 126, and 110 kJ/mol, respectively. However, the benefits of higher amounts of TiCl 3 are offset by a larger reduction in hydrogen capacity of the mixtures.« less

  5. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  6. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    NASA Astrophysics Data System (ADS)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  7. Lipid Storage Diseases

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Lipid Storage Diseases Information Page Condensed from Lipid Storage ... en Español Additional resources from MedlinePlus What are Lipid Storage Diseases? Lipid storage diseases are a group ...

  8. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    NASA Technical Reports Server (NTRS)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  9. Illuminating solid gas storage in confined spaces - methane hydrate formation in porous model carbons.

    PubMed

    Borchardt, Lars; Nickel, Winfried; Casco, Mirian; Senkovska, Irena; Bon, Volodymyr; Wallacher, Dirk; Grimm, Nico; Krause, Simon; Silvestre-Albero, Joaquín

    2016-07-27

    Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores. PMID:27412621

  10. Potential propellant storage and feed systems for space station resistojet propulsion options

    NASA Technical Reports Server (NTRS)

    Bader, Clayton H.

    1987-01-01

    The resistojet system has been defined as part of the baseline propulsion system for the initial Operating Capability Space Station. The resistojet propulsion module will perform a reboost function using a wide variety of fluids as propellants. There are many optional propellants and propellant combinations for use in the resistojet including (but not limited to): hydrazine, hydrogen, oxygen, nitrogen, water, carbon dioxide, and methane. Many different types of propulsion systems have flown or have been conceptualized that may have application for use with resistojets. This paper describes and compares representative examples of these systems that may provide a basis for space station resistojet system design.

  11. Power Reactant Storage Assembly (PRSA) (Space Shuttle). PRSA hydrogen and oxygen DVT tank refurbishment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Power Reactant Storage Assembly (PRSA) liquid hydrogen Development Verification Test (H2 DVT) tank assembly (Beech Aircraft Corporation P/N 15548-0116-1, S/N 07399000SHT0001) and liquid oxygen (O2) DVT tank assembly (Beech Aircraft Corporation P/N 15548-0115-1, S/N 07399000SXT0001) were refurbished by Ball Electro-Optics and Cryogenics Division to provide NASA JSC, Propulsion and Power Division, the capability of performing engineering tests. The refurbishments incorporated the latest flight configuration hardware and avionics changes necessary to make the tanks function like flight articles. This final report summarizes these refurbishment activities. Also included are up-to-date records of the pressure time and cycle histories.

  12. Power Reactant Storage Assembly (PRSA) (Space Shuttle). PRSA hydrogen and oxygen DVT tank refurbishment

    NASA Astrophysics Data System (ADS)

    1993-07-01

    The Power Reactant Storage Assembly (PRSA) liquid hydrogen Development Verification Test (H2 DVT) tank assembly (Beech Aircraft Corporation P/N 15548-0116-1, S/N 07399000SHT0001) and liquid oxygen (O2) DVT tank assembly (Beech Aircraft Corporation P/N 15548-0115-1, S/N 07399000SXT0001) were refurbished by Ball Electro-Optics and Cryogenics Division to provide NASA JSC, Propulsion and Power Division, the capability of performing engineering tests. The refurbishments incorporated the latest flight configuration hardware and avionics changes necessary to make the tanks function like flight articles. This final report summarizes these refurbishment activities. Also included are up-to-date records of the pressure time and cycle histories.

  13. Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage

    SciTech Connect

    Swart, Peter

    2013-11-30

    This award was a training grant awarded by the U.S. Department of Energy (DOE). The purpose of this award was solely to provide training for two PhD graduate students for three years in the general area of carbon capture and storage (CCS). The training consisted of course work and conducting research in the area of CCS. Attendance at conferences was also encouraged as an activity and positive experience for students to learn the process of sharing research findings with the scientific community, and the peer review process. At the time of this report, both students have approximately two years remaining of their studies, so have not fully completed their scientific research projects.

  14. Development of COPVS for High pressure, In-Space, Cryogenic Fuel Storage

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Schneider, Judy; Dyess, Mark; Hastings, Chad; Noorda, Ryan; Noorda, Jared; Patterson, James

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. To evaluate the ultimate performance, various polymeric COPV's have been statically burst tested at cryogenic conditions before and after exposure to irradiation. Materials selected for these COPVs were based on the measured mechanical properties of candidate resin systems and fibers that were also tested at cryogenic conditions before and after exposure to irradiation. The correlation of COPV burst pressures with the constituent material properties has proven to be a valuable screening method for selection of suitable candidate materials with resistance to material degradation due to exposure to temperature and radiation.

  15. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.

  16. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  17. A study pertaining to inertial energy storage machine designs for space applications

    NASA Technical Reports Server (NTRS)

    Zowarka, R. C.

    1981-01-01

    The preliminary design of a counterrotating fast discharge homopolar generator (HPG) and a counterrotating active rotary flux compressor (CARFC) for space application is reported. The HPG is a counterrotating spool-type homopolar with superconducting field coil excitation. It delivers a 20-ms, 145-kJ pulse to a magnetoplasmahydrodynamic thruster. The peak output current is 42.7 kA at 240 V. After 20 ms the current is 29.7 kA at 167 V. The CARFC delivers ten 50-kJ, 250 microsecond pulses at 50-ms interval to six Xenon flash lamps pumping an Nd glass laser. The flux compressor is counterrotating for torque compensation. Current is started in the machine with a 5-kV, 5-kJ pulse-charged capacitor. Both designs were based upon demonstrated technology. The sensitivity of the designs to technology that may be available in five to ten years was determined.

  18. Multi-terabyte image storage and distribution for NASA's Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Weller, H. W., Jr.

    1990-01-01

    The modular architecture, functionality, and key components of the Hubble Space Telescope Data Archive Distribution Service (DADS) are presented. DADS functions comprise archive management, catalog management, and user interface. The distributed modular architecture utilized is made up of four subsystems, including the archive, host, catalog, and the Science Operations ground System/DADS Interface Processor. All data generated by the HST are archived in DADS on 12-in. optical disks. DADS is a permanent archive with a data capacity of 30 terabytes that can be expanded to 68 terabytes. Supplementary information and stellar observations will be instantly accessible through DADS, which can collect and archive more than 3 gigabytes per day of image and support data over the lifetime of the HST. Electronic and physical media will be accessible through 140 network connections, with a catalogue to assist in data set selection.

  19. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOEpatents

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  20. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties.

    PubMed

    Mitsumoto, Mitsuru; O'Grady, Michael N; Kerry, Joe P; Joe Buckley, D

    2005-04-01

    The effects of addition of tea catechins (TC) and vitamin C (VC) on sensory evaluation, colour and lipid stability in cooked or raw beef and chicken meat patties during refrigerated storage were studied. Fresh beef striploin and chicken breast muscles were minced, following removal of external fat and connective tissue. Following mincing, beef and chicken were assigned to one of the following five treatments: control (meat treated with no antioxidant); TC200, meat plus 200 mg TC/kg muscle; TC400, meat plus 400 mg TC/kg muscle; VC200, meat plus 200 mg VC/kg muscle, VC400, meat plus 400 mg VC/kg muscle. Sodium chloride (1%) was added to all samples. Patties (125 g portions), formed from the above-treated minced meat, were oven cooked, cooled, and packaged in 30% CO(2):70% N(2). Fresh raw beef and chicken patties were packaged in 80% O(2):20% CO(2). All samples were stored for up to 7 days under fluorescent lighting at 4 °C. Sensory parameters (colour, flavour, taste, tenderness and overall acceptability) were evaluated on cooked beef and chicken patties after 1, 3 and 6 days of storage. Surface colour (Hunter L, a and b values), and lipid oxidation (2-thiobarbituric acid reactive substances) were measured on days 1, 3 and 6 of storage for cooked meats and on days 2 and 7 for raw beef and chicken. Tea catechins addition (200 or 400 mg/kg) to minced meat caused (P<0.05) discolouration in cooked beef and chicken meat patties and significantly reduced (P<0.001) lipid oxidation in cooked or raw beef patties compared to the control. Beef, either raw or cooked, was more susceptible (P<0.01) to oxidation compared to chicken. Raw meat stored in high oxygen conditions was more susceptible to lipid oxidation than cooked meat stored in anaerobic conditions. Tea catechins treatments (TC200 and TC400) inhibited (P<0.05) lipid oxidation in raw beef to a greater extent than vitamin C treatments (VC200 and VC400). These results indicate that tea catechins are potent natural

  1. Profiling of differentially expressed genes critical to storage root development in hydroponically and in-vitro grown sweetpotato for space farming

    NASA Astrophysics Data System (ADS)

    Egnin, M.; Gao, H.; He, G.; Woullard, F.; Mortley, D.; Scoffield, J.; Bey, B.; Quain, M.; Prakash, C. S.; Bonsi, C.

    Environment is known to have significant effects on the nutrient content and quality of crop plants especially through its impact on the temporal and spatial expression of genes Little is known about the molecular changes and harvest index in plants in response to microgravity Sweetpotato underline Ipomoea underline batatas L Lam is one of the most important root crops and an excellent NASA crop for space farming to provide essential nutrients to sustain human life on long-term space missions The initiation and development of storage root formation is one of the most critical processes determining yield of sweetpotato The molecular mechanism of storage root initiation and development in sweetpotato is poorly understood To this end knowledge of gravity perception the genetic and molecular nature of the induction process of storage root will tremendously help improve on sweetpotato harvest index for space farming cDNA-AFLP techniques were employed to investigate temporal and spatial expressions to gain molecular insights and identify transcripts differentially expressed during early stages of sweetpotato storage root development Two hydroponically grown cultivars using Nutrient Film Technology NFT and microstorage roots were evaluated TU-82-155 an early maturing 90 DAP with orange flesh and tinge red skin and PI318846-3 a late maturing 135 DAP with white flesh and off-yellow skin were compared for differential genes expression during storage root development at 14 21 28 35 and 45 DAP Total RNA was isolated from

  2. 12. Interior view of the 1930's leant0 addition, showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of the 1930's lean-t0 addition, showing the commercial storage and space and the addition's roof framing; looking north - Horsepasture Store, U.S. Route 58 & State Route 687, Horse Pasture, Henry County, VA

  3. Regenerative fuel cell energy storage system for a low earth orbit space station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Garow, J.; Michaels, K. B.

    1988-01-01

    A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.

  4. Experiments with phase change thermal energy storage canisters for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    1991-01-01

    The solar dynamic power module proposed for the Space Station Freedom (SSF) uses the heat of fusion of a phase change material (PCM) to efficiently store thermal energy for use during eclipse periods. The PCM, a LiF-20CaF2 salt, is contained in annular, metal canisters located in a heat receiver at the focus of a solar concentrator. PCM canister ground-based experiments and analytical heat transfer studies are discussed. The hardware, test procedures, and test results from these experiments are discussed. After more than 900 simulated SSF orbital cycles, no canister cracks or leaks were observed and all data were successfully collected. The effect of 1-g test orientation on canister wall temperatures was generally small while void position was strongly dependent on test orientation and canister cooling. In one test orientation, alternating wall temperature data were measured that supports an earlier theory of oscillating vortex flow in the PCM melt. Analytical canister wall temperatures compared very favorably with experimental temperature data. This illustrates that ground-based canister thermal performance can be predicted well by analyses that employ straight-forward, engineering models of void behavior and liquid PCM free convection.

  5. Regenerative fuel cell energy storage system for a low earth orbit space station

    NASA Astrophysics Data System (ADS)

    Martin, R. E.; Garow, J.; Michaels, K. B.

    1988-04-01

    A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.

  6. A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2.

    PubMed

    Gao, Chao-Ying; Tian, Hong-Rui; Ai, Jing; Li, Lei-Jiao; Dang, Song; Lan, Ya-Qian; Sun, Zhong-Ming

    2016-09-25

    A microporous Cu-MOF with optimized open metal sites and pore space was constructed based on a designed bent ligand; it exhibits high-capacity multiple gas storage under atmospheric pressure and efficient catalytic activity for chemical fixation of CO2 under mild conditions. PMID:27550833

  7. Compact Holographic Data Storage

    NASA Technical Reports Server (NTRS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  8. Economic impact of stimulated technological activity. Part 3: Case study, knowledge additions and earth links from space crew systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A case study of knowledge contributions from the crew life support aspect of the manned space program is reported. The new information needed to be learned, the solutions developed, and the relation of new knowledge gained to earthly problems were investigated. Illustrations are given in the following categories: supplying atmosphere for spacecraft; providing carbon dioxide removal and recycling; providing contaminant control and removal; maintaining the body's thermal balance; protecting against the space hazards of decompression, radiation, and meteorites; minimizing fire and blast hazards; providing adequate light and conditions for adequate visual performance; providing mobility and work physiology; and providing adequate habitability.

  9. Towards the Separation of Integral GRACE Signals of Continental Water Storage Using Multi-Sensor Space and In-situ Observations

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Hedman, K.

    2012-12-01

    The latest IPCC assessment report identified once more the land hydrology as the most uncertain component of the global water cycle. Variations of continental water storage occur in several hydrological compartments such as groundwater, soil moisture, surface water and snow. These storage variations and related changes of mass and surface water extensions map into a considerable number of different space based or in-situ observation systems such as the GRACE gravity field mission, radar and laser altimeter systems, radiometers, optical sensors, synthetic aperture radar, and in-situ river gauges. We perform a multi-sensor approach in order to detect, separate and balance individual contributions to continental water storage variations for selected large river basins. A specific focus is placed on the analysis of climate signals. The study exploits the synergies of various observation systems and combines their output with hydrological simulation models. Thus, the project provides significant new and valuable insights into hydrological processes and the impacts of climate change on the global water cycle. The roadmap includes (1) the elaboration of the potential und usability of contemporary space-borne and terrestrial sensors, (2) a quantification of water storage variations in different compartments from multi-mission analysis, (3) an assessment of the total water storage change from GRACE gravimetry, (4) the computation of the water balance for different study areas, (5) the analysis of balance inconsistencies with respect to non-hydrological mass changes, and (6) the interpretation of the results for water storage changes in terms of variability of weather and climate.

  10. Passive storage technologies

    NASA Astrophysics Data System (ADS)

    Kittel, P.

    1984-04-01

    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters.

  11. Passive storage technologies

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1984-01-01

    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters.

  12. Process Drama: The Use of Affective Space to Reduce Language Anxiety in the Additional Language Learning Classroom

    ERIC Educational Resources Information Center

    Piazzoli, Erika

    2011-01-01

    This paper describes a research project designed to find out what happens when process drama strategies are applied to an advanced level of additional language learning. In order to answer this question, the author designed and facilitated six process drama workshops as part of a third-year course of Italian at a university in Brisbane, Australia.…

  13. Physicochemical Changes and Glycation Reaction in Intermediate-Moisture Protein-Sugar Foods with and without Addition of Resveratrol during Storage.

    PubMed

    Sheng, Zhanwu; Gu, Mantun; Hao, Wangjun; Shen, Yixiao; Zhang, Weimin; Zheng, Lili; Ai, Binling; Zheng, Xiaoyan; Xu, Zhimin

    2016-06-22

    An intermediate-moisture food (IMF) model consisting of whey protein isolate and glucose and an IMF model fortified with resveratrol were used to study the effect of resveratrol on physicochemical changes and glycation of protein-sugar-rich foods during storage. The water activity (aw) of the storage was controlled at 0.75 or 0.56. The browning rate or hardness of fortified IMFs was significantly lower than that of IMFs after 45-day storage. The rate of Maillard reaction in the samples stored at aw 0.56 was higher than that of samples stored at aw 0.75. The fortified IMFs had lower levels of AGEs (advanced glycation end products), CML (N(ε)-(carboxymethyl)-l-lysine), and insoluble protein during storage. The inhibition capability of resveratrol against glycation was also confirmed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography mass spectrometry (LC-MS), and Fourier transform infrared spectroscopy (FTIR) analysis to monitor glycated proteins and protein aggregation in the samples. The results of this study suggested that resveratrol could be used as an inhibitor to reduce the formation of undesirable AGEs and other Maillard reaction products in foods during storage. PMID:27218138

  14. Monitoring for thermal storage demonstration

    SciTech Connect

    Carlson, S.W. )

    1991-10-01

    Detailed field monitoring of electric thermal storage (ETS) space heating and cooling systems were conducted to evaluate the appropriateness of these systems in the State of New York. This study collected detailed performance data on four ETS systems: pressurized hot water storage, non-pressurized hot water storage, sub-slab earth thermal heat storage and ice-on-coil cool storage. The energy consumption of the plant and secondary/parasitic equipment along with the system efficiency and storage losses were quantified over a heating and cooling season. Operating experiences that affected the system performance were also summarized. Each system was compared to a typical non-storage system on an electric energy use, electricity demand profile and economic basis. While the study shows that nearly all of a building's on-peak heating and/or cooling energy can be shifted economically to the off-peak periods, if also found that total system energy consumption increased by 10% to 25%, due to additional parasitic energy requirements, less efficient operating conditions and thermal losses from the storage media.

  15. UPDATE/ADDITIONS TO CURRENT OUST PUBLICATION: "HOW TO EVALUATE ALTERNATIVE CLEANUP TECHNOLOGIES FOR UNDERGROUND STORAGE TANK SITES: A GUIDE FOR CORRECTIVE ACTION PLAN REVIEWERS"

    EPA Science Inventory

    This guidance manual is comprised of several chapters, each of which describes in detail alternative cleanup technologies for underground storage tank sites. Each chapter provides diagrams and tables to aide in determining whether a particular technology may be applicable for cl...

  16. The Effect of Modified Atmosphere Packaging and Addition of Rosemary Extract, Sodium Acetate and Calcium Lactate Mixture on the Quality of Pre-cooked Hamburger Patties during Refrigerated Storage.

    PubMed

    Muhlisin; Kang, Sun Moon; Choi, Won Hee; Lee, Keun Taik; Cheong, Sung Hee; Lee, Sung Ki

    2013-01-01

    The effect of modified atmosphere packaging (MAP; 30% CO2+70% N2 or 100% N2) and an additive mixture (500 ppm rosemary extract, 3,000 ppm sodium acetate and 1,500 ppm calcium lactate) on the quality of pre-cooked hamburger patties during storage at 5°C for 14 d was evaluated. The addition of the additive mixture reduced aerobic and anaerobic bacteria counts in both 30% CO2-MAP (30% CO2+70% N2) and 100% N2-MAP (p<0.05). The 30% CO2-MAP was more effective to suppress the microbial growth than 100% N2-MAP, moreover the 30% CO2-MAP combined with additive mixture resulted in the lowest bacterial counts. The hamburger patties with additive mixture showed lower CIE L* and CIE a*, and higher CIE b* than those with no additive mixture. The 30% CO2-MAP tended to decrease the TBARS during storage regardless of the addition of additives. The use of 30% CO2-MAP in combination with additives mixture was effective for maintaining the quality and extending the shelf-life of pre-cooked hamburger patties. PMID:25049716

  17. Phase-space measurement of stored electron beam at the Cornell Electron Storage Ring using a combination of slit array and CCD detector

    SciTech Connect

    Cai, Z.; Lai, B.; Yun, W.; Gluskin, E.; Dejus, R.; Ilinski, P. )

    1995-02-01

    A new technique for fast phase-space measurement has been developed and tested during a recent APS/CHESS undulator run. A measurement time of a few seconds was obtained by using a slit array and a high-resolution position sensitive detector system. The detector system consists of a CdWO[sub 4] scintillation crystal, an optical imaging system, and a CCD detector. The short measurement time increases the measurement accuracy by reducing the effects from the instabilities of the electron beam in storage ring. The vertical emittance at the Cornell Electron Storage Ring in single-bunch and low-current mode was measured, and reasonable agreement with the expected values for both source size and source divergence were obtained ([sigma][sub [ital y

  18. Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets

    SciTech Connect

    Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

    2013-11-01

    Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 5–40 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 23–28 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 19•49, 19•20, 18•0 and 2•07% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 4•6–5•02%, 14–15 mm, 6•4–6•5 mm, 1125–1175 kg m-3, 750–770 kg m-3, 825–840 kg m-3, 73–74%, 18•32–18•78 MJ kg-1, 0•65–0•74% and 0•13–0•15%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

  19. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants. PMID:27181251

  20. Highly flexible nearest-neighbor-search associative memory with integrated k nearest neighbor classifier, configurable parallelism and dual-storage space

    NASA Astrophysics Data System (ADS)

    An, Fengwei; Mihara, Keisuke; Yamasaki, Shogo; Chen, Lei; Jürgen Mattausch, Hans

    2016-04-01

    VLSI-implementations are often applied to solve the high computational cost of pattern matching but have usually low flexibility for satisfying different target applications. In this paper, a digital word-parallel associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern recognition, is reported applying the squared Euclidean distance measure. The reported architecture features reconfigurable parallelism, dual-storage space to achieve a flexible number of reference vectors, and a dedicated majority vote circuit. Programmable switching circuits, located between vector components, enable scalability of the searching parallelism by configuring the reference feature-vector dimensionality. A pipelined storage with dual static-random-access-memory (SRAM) cells for each unit and an intermediate winner control circuit are designed to extend the applicability by improving the flexibility of the reference storage. A test chip in 180 nm CMOS technology, which has 32 rows, 4 elements in each row and 2-parallel 8-bit dual-components in each element, consumes altogether 61.4 mW and in particular only 11.9 mW during the reconfigurable KNN classification (at 45.58 MHz and 1.8 V).

  1. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  2. Potential Estimation of Hourly Blank Storage Space and Charge Loads of EVs using Road Traffic Census and Vehicles Status

    NASA Astrophysics Data System (ADS)

    Oda, Takuya; Ito, Masakazu; Kawasaki, Norihiro; Miyazaki, Takahiko; Kashiwagi, Takao

    If both EVs (Electric Vehicles, includes plug-in hybrid electric vehicles) and renewable energies spread in large quantities, it is possible to control the supply fluctuation of renewable energies using the storage battery of EVs. This research tried to show the charge load potential of EVs based on the state of the Japanese passenger car using traffic census results etc. Furthermore, it tried to show trend of the storage battery capacity according to time. From the estimated result; (1) the charge electricity of low and middle distance gets a majority of the total charge demand, (2) charge load changes according to time several times, and the minimum load is the number of GWh at early morning, (3) if night charge is assumed, the standby charge demand of noon will reach tens GWh, it may have sufficient scale for supply fluctuation control of PVs. Although the present EV is not suitable for long-distance running, these are expected to be 30 or less percent of the total charge demand. The estimated storage capacity potential in this research will not change numbers of times.

  3. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  4. Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2.

    PubMed

    Pan, Hongge; Shi, Songbo; Liu, Yongfeng; Li, Bo; Yang, Yanjing; Gao, Mingxia

    2013-03-21

    A Mg(BH(4))(2)-added Mg(NH(2))(2)-2LiH system was prepared by ball milling the corresponding chemicals. The hydrogen storage properties of the Mg(NH(2))(2)-2LiH-xMg(BH(4))(2) (x = 0, 0.1, 0.2, 0.3) samples and the role played by Mg(BH(4))(2) were systematically investigated. The results show that the onset and peak temperatures for hydrogen desorption from the Mg(BH(4))(2)-added Mg(NH(2))(2)-2LiH sample shifted to lower temperatures. In particular, the Mg(NH(2))(2)-2LiH-0.1Mg(BH(4))(2) sample could reversibly absorb ~4.5 wt% of hydrogen in the temperature range of 120-150 °C, which is superior to the pristine sample. During ball milling, a metathesis reaction between Mg(BH(4))(2) and LiH readily occurred to form LiBH(4) and MgH(2) and subsequently, the newly formed MgH(2) reacted with Mg(NH(2))(2) to generate MgNH. Upon heating, the presence of LiBH(4) not only decreased the recrystallization temperature of Mg(NH(2))(2) but also reacted with LiNH(2) to form the Li(4)(BH(4))(NH(2))(3) intermediate, which weakens the N-H bonding and enhances the ion conductivity. Meanwhile, MgNH may act as the nucleation center for the dehydrogenation product of Li(2)MgN(2)H(2) due to the structural similarity. Thus, the in situ formed LiBH(4) and MgNH provide a synergetic effect to improve the hydrogen storage performances of the Mg(NH(2))(2)-2LiH system. PMID:23178338

  5. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  6. Thermal performance of an integrated thermal protection system for long-term storage of cryogenic propellants in space

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.; Boyle, R. J.

    1977-01-01

    It was demonstrated that cryogenic propellants can be stored unvented in space long enough to accomplish a Saturn orbiter mission after 1,200-day coast. The thermal design of a hydrogen-fluorine rocket stage was carried out, and the hydrogen tank, its support structure, and thermal protection system were tested in a vacuum chamber. Heat transfer rates of approximately 23 W were measured in tests to simulate the near-Earth portion of the mission. Tests to simulate the majority of the time the vehicle would be in deep space and sun-oriented resulted in a heat transfer rate of 0.11 W.

  7. Public storage for the Open Science Grid

    NASA Astrophysics Data System (ADS)

    Levshina, T.; Guru, A.

    2014-06-01

    The Open Science Grid infrastructure doesn't provide efficient means to manage public storage offered by participating sites. A Virtual Organization that relies on opportunistic storage has difficulties finding appropriate storage, verifying its availability, and monitoring its utilization. The involvement of the production manager, site administrators and VO support personnel is required to allocate or rescind storage space. One of the main requirements for Public Storage implementation is that it should use SRM or GridFTP protocols to access the Storage Elements provided by the OSG Sites and not put any additional burden on sites. By policy, no new services related to Public Storage can be installed and run on OSG sites. Opportunistic users also have difficulties in accessing the OSG Storage Elements during the execution of jobs. A typical users' data management workflow includes pre-staging common data on sites before a job's execution, then storing for a subsequent download to a local institution the output data produced by a job on a worker node. When the amount of data is significant, the only means to temporarily store the data is to upload it to one of the Storage Elements. In order to do that, a user's job should be aware of the storage location, availability, and free space. After a successful data upload, users must somehow keep track of the data's location for future access. In this presentation we propose solutions for storage management and data handling issues in the OSG. We are investigating the feasibility of using the integrated Rule-Oriented Data System developed at RENCI as a front-end service to the OSG SEs. The current architecture, state of deployment and performance test results will be discussed. We will also provide examples of current usage of the system by beta-users.

  8. Assessing Antibody Microarray for Space Missions: Effect of Long-term Storage, Gamma radiation and High Energy proton radiation

    NASA Astrophysics Data System (ADS)

    de Diego-Castilla, G.; Parro, V.

    2012-09-01

    Fluorescent antibody microarray has been proposed for Molecular biomarker detector in planetary exploration [1]. A number of different environmental stresses may affect the antibody performance, such as temperatures variations, highly penetrating radiation and high energy particles. Here we have tested the effect of gamma radiation, proton radiation and longterm storage on the microarray immunoassay and fluorocromes. Although different antibodies might have different susceptibilities we conclude that there was not significant reduction in the functionality of antibodies printed on the microarray and the fluorescent tracers antibodies, even in a extreme case of receiving a radiation dose 3000-fold than a biochip would receive in a trip mission to Mars. In summary, antibodies are suitable for use in planetary exploration purposes.

  9. Enhanced hydrogen storage properties of the 2LiBH4-MgH2 composite with BaTiO3 as an additive.

    PubMed

    Wang, Jiasheng; Han, Shumin; Wang, Zhibin; Ke, Dandan; Liu, Jingjing; Ma, Mingzhen

    2016-04-19

    The 2LiBH4-MgH2 + 20 wt% BaTiO3 composite was prepared by ball-milling LiBH4, MgH2 and BaTiO3, and the effect of BaTiO3 on the hydrogen storage properties of the composite was investigated. TG-DSC results show that the onset dehydrogenation temperature of the composite is 299 °C, which is 124 °C lower than that of 2LiBH4-MgH2, and the dehydrogenation amount of the composite increases from 6.86 wt% to 7.48 wt% at 500 °C. Kinetic tests show that the dehydrogenation amount of 2LiBH4-MgH2 + 20 wt% BaTiO3 reaches 1.5 wt% within 400 seconds, almost 10 times that of 2LiBH4-MgH2. BaTiO3 reacts with LiBH4 during the dehydrogenation of the composite and generates BaB6 and TiO2. BaB6 is beneficial to lower the stability of LiBH4, while TiO2 has a catalytic effect in improving the hydrogenation/dehydrogenation kinetics of the reaction between Mg and LiBH4. PMID:26990634

  10. ASME Section VIII Recertification of a 33,000 Gallon Vacuum-jacketed LH2 Storage Vessel for Densified Hydrogen Testing at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.

    2015-01-01

    The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.

  11. Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens).

    PubMed

    Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Eagar, Christopher

    2008-06-01

    In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO(3), a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition watershed) at the Hubbard Brook Experimental Forest (Thornton, NH). We analyzed nutrition, soluble sugar concentrations, ascorbate peroxidase (APX) activity and cold tolerance, to evaluate the basis of recent (2003) differences between watersheds in red spruce foliar winter injury. Foliar Ca and total sugar concentrations were significantly higher in trees in the Ca-addition watershed than in trees in the reference watershed during both fall (P=0.037 and 0.035, respectively) and winter (P=0.055 and 0.036, respectively). The Ca-addition treatment significantly increased foliar fructose and glucose concentrations in November (P=0.013 and 0.007, respectively) and foliar sucrose concentrations in winter (P=0.040). Foliar APX activity was similar in trees in both watersheds during fall (P=0.28), but higher in trees in the Ca-addition watershed during winter (P=0.063). Cold tolerance of foliage was significantly greater in trees in the Ca-addition watershed than in trees in the reference watershed (P<0.001). Our results suggest that low foliar sugar concentrations and APX activity, and reduced cold tolerance in trees in the reference watershed contributed to their high vulnerability to winter injury in 2003. Because the reference watershed reflects forest conditions in the region, the consequences of impaired physiological function caused by soil Ca depletion may have widespread implications for forest health. PMID:18381266

  12. Storage Media for Microcomputers.

    ERIC Educational Resources Information Center

    Trautman, Rodes

    1983-01-01

    Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…

  13. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1991-01-01

    The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.

  14. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes

    DOEpatents

    Kerr, John B.; Tian, Minmin

    2000-01-01

    A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte, and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula (in an uncharged state): ##STR1## where R.sub.1 is selected from the group consisting of H, OCH.sub.3, OCH.sub.2 CH.sub.3, and OCH.sub.2 phenyl, and R.sub.2 is selected from the group consisting of OCH.sub.3, OCH.sub.2 CH.sub.3, OCH.sub.2 phenyl, and O.sup.- Li.sup.+ ; and (b) a di-anisole compound having the general formula (in an uncharged state): ##STR2## where R is selected from the group consisting of -OCH.sub.3 and -CH.sub.3, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH.sub.3 (methoxy) or its lithium salt --O.sup.- Li.sup.+. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.

  15. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes

    SciTech Connect

    Kerr, John B.; Tian, Minmin

    1998-12-01

    A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte; and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula shown in a figure (in an uncharged state): where R{sub 1} is selected from the group consisting of H, 0CH{sub 3}, OCH{sub 2}CH{sub 3}, and OCH{sub 2}phenyl, and R{sub 2} is selected from the group consisting of OCH{sub 3}, OCH{sub 2}CH{sub 3}, OCH{sub 2} phenyl, and O{sup {minus}}Li{sup +}; and (b) a di-anisole compound having the general formula shown in a second figure (in an uncharged state): where R is selected from the group consisting of -OCH{sup 3} and -CH{sub 3}, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH{sub 3} (methoxy) or its lithium salt -O{sup {minus}}Li{sup +}. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.

  16. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  17. Monitoring for thermal storage demonstration. Final report

    SciTech Connect

    Carlson, S.W.

    1991-10-01

    Detailed field monitoring of electric thermal storage (ETS) space heating and cooling systems were conducted to evaluate the appropriateness of these systems in the State of New York. This study collected detailed performance data on four ETS systems: pressurized hot water storage, non-pressurized hot water storage, sub-slab earth thermal heat storage and ice-on-coil cool storage. The energy consumption of the plant and secondary/parasitic equipment along with the system efficiency and storage losses were quantified over a heating and cooling season. Operating experiences that affected the system performance were also summarized. Each system was compared to a typical non-storage system on an electric energy use, electricity demand profile and economic basis. While the study shows that nearly all of a building`s on-peak heating and/or cooling energy can be shifted economically to the off-peak periods, if also found that total system energy consumption increased by 10% to 25%, due to additional parasitic energy requirements, less efficient operating conditions and thermal losses from the storage media.

  18. Evaluation of platelet function during extended storage in additive solution, prepared in a new container that allows manual buffy-coat platelet pooling and leucoreduction in the same system

    PubMed Central

    Plaza, Eva María; Lozano, María Luisa; Guiu, Isabel Sánchez; Egea, José Manuel; Vicente, Vicente; de Terán, Laura Collantes; Rivera, José

    2012-01-01

    Background A novel and practical storage container designed for manual buffy-coat pooling and leucodepletion was evaluated to assess its filtration performance and to analyse the quality of stored leucoreduced buffy-coat-derived platelet pools. Materials and methods. To analyse the Grifols Leucored® Transfer PL system, blood was collected from random donors into standard triple bag systems, and fractionated using standard procedures to obtain buffy-coats. Ten leucodepleted platelet pools were prepared each from five units of buffy-coats in additive solution. Concentrates were stored for 10 days at 22 °C on an end-over-end agitator. On days 0, 5, 7, and 10 of storage, samples were tested using standard in vitro platelet parameters. Results The use of this novel system for volume reduction and leucodepletion of buffy-coats resuspended in additive solution led to platelet pools that met the European requirements. pH was maintained well, declining from an initial value of 7.11±0.04 to 6.88±0.08 after 10 days. Parameters of cell lysis, response to a hypotonic stimulus and aggregation induced by agonists (arachidonic acid, ristocetin, collagen or thrombin receptor activating peptide) were also well-preserved. During storage, the quality profile of the platelet pools remained very similar to that previously reported in platelet concentrates in terms of metabolism, platelet activation (CD62, CD63, sCD62), expression of glycoproteins Ib and IIb/IIIa, capacity of glycoprotein IIb/IIIa to become activated upon ADP stimulation, and release of biological response modifiers (sCD40L and RANTES). Discussion. This new system allows the preparation of leucodepleted buffy-coat platelet pools in additive solution with good preservation of platelet function. The logistics of the procedure are relatively simple and it results in good-quality components, which may reduce costs and ease the process of buffy-coat pooling and leucocyte reduction in transfusion services. PMID:22682335

  19. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  20. A Tissue Retrieval and Postharvest Processing Regimen for Rodent Reproductive Tissues Compatible with Long-Term Storage on the International Space Station and Postflight Biospecimen Sharing Program

    PubMed Central

    Holets-Bondar, Lesya; Roby, Katherine F.; Enders, George; Tash, Joseph S.

    2015-01-01

    Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging. Specimens must be harvested with minimal time after landing to minimize postflight readaptation alterations in protein expression/translation, posttranslational modifications, and expression, as well as changes in gene expression and tissue histological degradation after euthanasia. We report the development of a widely applicable strategy for determining the window of optimal species-specific and tissue-specific posteuthanasia harvest that can be utilized to integrate into multi-investigator Biospecimen Sharing Programs. We also determined methods for ISS-compatible long-term tissue storage (10 months at −80°C) that yield recovery of high quality mRNA and protein for western analysis after sample return. Our focus was reproductive tissues. The time following euthanasia where tissues could be collected and histological integrity was maintained varied with tissue and species ranging between 1 and 3 hours. RNA quality was preserved in key reproductive tissues fixed in RNAlater up to 40 min after euthanasia. Postfixation processing was also standardized for safe shipment back to our laboratory. Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities. PMID:25654107

  1. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    SciTech Connect

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2014-02-18

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  2. A tissue retrieval and postharvest processing regimen for rodent reproductive tissues compatible with long-term storage on the international space station and postflight biospecimen sharing program.

    PubMed

    Gupta, Vijayalaxmi; Holets-Bondar, Lesya; Roby, Katherine F; Enders, George; Tash, Joseph S

    2015-01-01

    Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging. Specimens must be harvested with minimal time after landing to minimize postflight readaptation alterations in protein expression/translation, posttranslational modifications, and expression, as well as changes in gene expression and tissue histological degradation after euthanasia. We report the development of a widely applicable strategy for determining the window of optimal species-specific and tissue-specific posteuthanasia harvest that can be utilized to integrate into multi-investigator Biospecimen Sharing Programs. We also determined methods for ISS-compatible long-term tissue storage (10 months at -80°C) that yield recovery of high quality mRNA and protein for western analysis after sample return. Our focus was reproductive tissues. The time following euthanasia where tissues could be collected and histological integrity was maintained varied with tissue and species ranging between 1 and 3 hours. RNA quality was preserved in key reproductive tissues fixed in RNAlater up to 40 min after euthanasia. Postfixation processing was also standardized for safe shipment back to our laboratory. Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities. PMID:25654107

  3. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    NASA Astrophysics Data System (ADS)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2014-02-01

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  4. Effect of silicon alloying additions on growth temperature and primary spacing of Al{sub 3}Fe in Al-8wt%Fe alloy

    SciTech Connect

    Liang, D.; Jones, H.; Gilgien, P.

    1995-05-15

    Alloys of Al-8.4Fe-1.7Si, Al-8.5Fe-3.4Si and Al-8.5Fe-5.6Si (wt%) designated A, B and C, respectively, were prepared from high purity (99.99%) aluminum, Japanese electrolytic iron (99.9%) and superpure silicon (99.99%). Melting was carried out in a recrystallized alumina crucible by using a Radyne induction furnace and was followed by chill casting under flowing argon into steel molds of cavity dimension 15 mm thick, 50 mm wide and 150 mm high. Rods 3 mm in diameter were fabricated directly from the ingots. Lengths of the rods, which were contained in 3 mm bore tubular alumina crucibles, were melted in a Bridgman growth facility. After maintaining the melt at 100K above the liquidus temperatures liquidus: 1,118, 1,108 and 1,092 K for 1.7, 3.4 and 5.6 wt%Si, respectively, for about 10 minutes, crucibles containing the melt were withdrawn at a speed of 0.34 mm/s into a water bath. The following conclusions can be drawn from analysis of the specimens. Addition of silicon to Al-8wt%Fe alloy results in an increase in growth undercooling and primary spacing of Al{sub 3}Fe dendrites Bridgman grown at 0.34 mm/s and 10K/mm. This increase in growth undercooling, relative to predicted local liquidus temperatures which have been corrected for observed macrosegregation of Fe, is in good accord with the predictions of the Kurz-Giovanola-Trivedi model for needle-like dendrite growth. The silicon content of the Al{sub 3}Fe dendrites obtained is consistent with previously reported measurements for a range of cast Al-Fe-Si alloys.

  5. Storage Rings

    SciTech Connect

    Fischer, W.

    2011-01-01

    positron beams. Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/{tau}) (1) where the decay time {tau} and, correspondingly, the store time ranges from a few turns to 10 days (ISR). {tau} can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. [3] is the first proposal for a collider storage ring. A

  6. 174. STORAGE ROOM, SOUTH WEST CORNER OF STORAGE AREA ADDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    174. STORAGE ROOM, SOUTH WEST CORNER OF STORAGE AREA ADDED AS PART OF 1905 ELEVATOR ADDITION. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  7. 173. STORAGE ROOM, LOOKING WEST FROM ELEVATOR SHAFT INTO STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    173. STORAGE ROOM, LOOKING WEST FROM ELEVATOR SHAFT INTO STORAGE AREA ADDED AS PART OF 1905 ELEVATOR ADDITION. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  8. 175. STORAGE ROOM, SOUTH WALL OF STORAGE ROOM, ADDED WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    175. STORAGE ROOM, SOUTH WALL OF STORAGE ROOM, ADDED WITH ELEVATOR ADDITION OF 1905. WALL IS EXTERIOR OF ORIGINAL WAGON WORKS OF 1883. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  9. Placing Manuscript and Archival Collections into an Automated Storage and Retrieval System at the University of Nevada, Reno

    ERIC Educational Resources Information Center

    Sundstrand, Jacquelyn K.

    2008-01-01

    Academic libraries are turning to automated storage and retrieval systems (ASRS) as a long-term cost effective means of gaining additional space in their open stacks areas by removing lesser used books and other materials for storage and placement into ASRS bins. The new library building under construction at the University of Nevada-Reno will…

  10. Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies.

    PubMed

    de Diego-Castilla, Graciela; Cruz-Gil, Patricia; Mateo-Martí, Eva; Fernández-Calvo, Patricia; Rivas, Luis A; Parro, Víctor

    2011-10-01

    Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances. PMID:22007740

  11. Robust holographic storage system design.

    PubMed

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. PMID:22109441

  12. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  13. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  14. OAST Space Theme Workshop. Volume 3: Working group summary. 3: Sensors (E-3). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.

  15. Storage resource manager

    SciTech Connect

    Perelmutov, T.; Bakken, J.; Petravick, D.; /Fermilab

    2004-12-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and the Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.

  16. Storage Proteins

    PubMed Central

    Fujiwara, Toru; Nambara, Eiji; Yamagishi, Kazutoshi; Goto, Derek B.; Naito, Satoshi

    2002-01-01

    Plants accumulate storage substances such as starch, lipids and proteins in certain phases of development. Storage proteins accumulate in both vegetative and reproductive tissues and serve as a reservoir to be used in later stages of plant development. The accumulation of storage protein is thus beneficial for the survival of plants. Storage proteins are also an important source of dietary plant proteins. Here, we summarize the genome organization and regulation of gene expression of storage protein genes in Arabidopsis. PMID:22303197

  17. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  18. TANK SPACE OPTIONS REPORT

    SciTech Connect

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  19. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  20. Thermal storage for electric utilities

    NASA Technical Reports Server (NTRS)

    Swet, C. J.; Masica, W. J.

    1977-01-01

    Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.

  1. Shuttle orbiter storage locker system: A study

    NASA Technical Reports Server (NTRS)

    Butler, D. R.; Schowalter, D. T.; Weil, D. C.

    1973-01-01

    Study has been made to assure maximum utility of storage space and crew member facilities in planned space shuttle orbiter. Techniques discussed in this study should be of interest to designers of storage facilities in which space is at premium and vibration is severe. Manufacturers of boats, campers, house trailers, and aircraft could benefit from it.

  2. Hydrocarbon fuel additive

    SciTech Connect

    Ambrogio, S.

    1989-02-28

    This patent describes the method of fuel storage or combustion, wherein the fuel supply contains small amounts of water, the step of adding to the fuel supply an additive comprising a blend of a hydrophilic agent chosen from the group of ethylene glycol, n-butyl alcohol, and cellosolve in the range of 22-37% by weight; ethoxylated nonylphenol in the range of 26-35% by weight; nonylphenol polyethylene glycol ether in the range of 32-43% by weight.

  3. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  4. Affordable Space Tourism: SpaceStationSim

    NASA Technical Reports Server (NTRS)

    2006-01-01

    For over 5 years, people have been living and working in space on the International Space Station (ISS), a state-of-the-art laboratory complex orbiting high above the Earth. Offering a large, sustained microgravity environment that cannot be duplicated on Earth, the ISS furthers humankind s knowledge of science and how the body functions for extended periods of time in space all of which will prove vital on long-duration missions to Mars. On-orbit construction of the station began in November 1998, with the launch of the Russian Zarya Control Module, which provided battery power and fuel storage. This module was followed by additional components and supplies over the course of several months. In November 2000, the first ISS Expedition crew moved in. Since then, the ISS has continued to change and evolve. The space station is currently 240 feet wide, measured across the solar arrays, and 171 feet long, from the NASA Destiny Laboratory to the Russian Zvezda Habitation Module. It is 90 feet tall, and it weighs approximately 404,000 pounds. Crews inhabit a living space of about 15,000 cubic feet. To date, 90 scientific investigations have been conducted on the space station. New results from space station research, from basic science to exploration research, are being published each month, and more breakthroughs are likely to come. It is not all work on the space station, though. The orbiting home affords many of the comforts one finds on Earth. There is a weightless "weight room" and even a musical keyboard alongside research facilities. Holidays are observed, and with them, traditional foods such as turkey and cobbler are eaten, with lemonade to wash them down

  5. Energy storage

    NASA Astrophysics Data System (ADS)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  6. NV Energy Electricity Storage Valuation

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  7. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  8. The Role of Energy Storage in Commercial Building

    SciTech Connect

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R

  9. Storage options for the healthcare enterprise.

    PubMed

    Smith, Edward M

    2003-01-01

    The storage objectives for the healthcare enterprise (HE) are to ensure that information (images and data) are readily available anywhere and at anytime, images and data are secure, and the storage fulfills legal requirements and the Health Insurance Portability and Accountability Act (HIPAA). These objectives must be satisfied at a minimum economic cost with respect to personnel, hardware, software, space and telecommunications. Many approaches and storage configurations meet these objectives. Which approach is chosen will depend on the size of the institution, patient population, geographic distribution of the institutions (if more than one), type of facility (such as a hospital, outpatient clinic or private imaging center), and financial investment objectives. The quantity of storage required depends on the characteristics of the modalities, the number of imaging devices and databases, the number and location of imaging sites that make up the HE, the size of the data and image, and the projected procedure volume growth. The only certainty with respect to storage requirements is that they will increase significantly with time. The types of storage required in the HE can be described by their functions: Active storage includes both online and long-term storage. Backup images are temporarily backed up on the limited storage capacity of the modality for several days or longer. Additional copies of the study are made on different media (e.g., disk, DVD or tape), in different locations. The process of backing up data and images must be automated. Effective April 21, 2005, HIPAA requires that all healthcare entities have a disaster recovery plan in effect. This requires that a copy of all medical data be secure, retrievable and maintained in a second location, such that if the primary copy of the data is destroyed or made unavailable, the disaster recovery copy would be available. Planning for the HE archive is critical if the HE is to work productively in an

  10. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  11. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  12. Additive Transforms Paint into Insulation

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Tech Traders Inc. sought assistance developing low-cost, highly effective coatings and paints that created useful thermal reflectance and were safe and non-toxic. In cooperation with a group of engineers at Kennedy Space Center., Tech Traders created Insuladd, a powder additive made up of microscopic, inert gas-filled, ceramic microspheres that can be mixed into ordinary interior or exterior paint, allowing the paint to act like a layer of insulation. When the paint dries, this forms a radiant heat barrier, turning the ordinary house paint into heat-reflecting thermal paint. According to Tech Traders, the product works with all types of paints and coatings and will not change the coverage rate, application, or adhesion of the paint. Other useful applications include feed storage silos to help prevent feed spoilage, poultry hatcheries to reduce the summer heat and winter cold effects, and on military vehicles and ships. Tech Traders has continued its connection to the aerospace community by recently providing Lockheed Martin Corporation with one of its thermal products for use on the F-22 Raptor.

  13. Thermal energy storage

    SciTech Connect

    Tomlinson, J.J. ); Kannberg, L.D. )

    1990-09-01

    This paper discusses how thermal energy storage (TES) can aid in the efficient use and provision of thermal energy, wherever there is a mismatch between energy generation and use. Three fundamental types of thermal energy storage processes (sensible, latent, and thermochemical) can be used, and many different media are available within each type. Various subsets of these processes are being researched and developed to accelerate TES implementation, focusing on applications in building heating and cooling, industrial energy efficiency, and utility and space power systems. TES can contribute significantly to meeting society's needs for more efficient, environmentally benign energy use in these and other sectors.

  14. Modeling techniques for gaining additional urban space

    NASA Astrophysics Data System (ADS)

    Thunig, Holger; Naumann, Simone; Siegmund, Alexander

    2009-09-01

    One of the major accompaniments of the globalization is the rapid growing of urban areas. Urban sprawl is the main environmental problem affecting those cities across different characteristics and continents. Various reasons for the increase in urban sprawl in the last 10 to 30 years have been proposed [1], and often depend on the socio-economic situation of cities. The quantitative reduction and the sustainable handling of land should be performed by inner urban development instead of expanding urban regions. Following the principal "spare the urban fringe, develop the inner suburbs first" requires differentiated tools allowing for quantitative and qualitative appraisals of current building potentials. Using spatial high resolution remote sensing data within an object-based approach enables the detection of potential areas while GIS-data provides information for the quantitative valuation. This paper presents techniques for modeling urban environment and opportunities of utilization of the retrieved information for urban planners and their special needs.

  15. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  16. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  17. Integral Radiator and Storage Tank

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  18. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    1989-01-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  19. FreeLoader:Scavenging Desktop Storage Resources for Scientific Data

    SciTech Connect

    Vazhkudai, Sudharshan S; Ma, Xiaosong; Freeh, Vincent W; Strickland, Jonathan W; Tammineedi, Nandan; Scott, Stephen L

    2005-11-01

    High-end computing is suffering a data deluge from experiments, simulations, and apparatus that creates overwhelming application dataset sizes. End-user workstations-despite more processing power than ever before-are ill-equipped to cope with such data demands due to insufficient secondary storage space and I/O rates. Meanwhile, a large portion of desktop storage is unused. We present the FreeLoader framework, which aggregates unused desktop storage space and I/O bandwidth into a shared cache/scratch space, for hosting large, immutable datasets and exploiting data access locality. Our experiments show that FreeLoader is an appealing low-cost solution to storing massive datasets, by delivering higher data access rates than traditional storage facilities. In particular, we present novel data striping techniques that allow FreeLoader to efficiently aggregate a workstation's network communication bandwidth and local I/O bandwidth. In addition, the performance impact on the native workload of donor machines is small and can be effectively controlled.

  20. Electrochemistry and Storage Panel Report

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.; Halpert, G.

    1984-01-01

    Design and performance requirements for electrochemical power storage systems are discussed and some of the approaches towards satisfying these constraints are described. Geosynchronous and low Earth orbit applications, radar type load constraints, and high voltage systems requirements are addressed. In addition, flywheel energy storage is discussed.

  1. Fuel cell systems for First Lunar Outpost-reactant storage option

    NASA Technical Reports Server (NTRS)

    Nelson, P. A.

    1995-01-01

    The office of Space, DOE, appointed a Lunar Surface Power Working Group to review candidate systems for the First Lunar Outpost habitat. The working group met for a total of five days in the fall of 1992 and concluded that the candidate involving a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases was the most attractive for this application. Most of the volume (97 percent) and weight (63 percent) are taken up by the reactants and their storage tanks. Therefore, in my work for the Group, and in this report, I have concentrated on finding ways to reduce these volumes and weights. Three options were considered: (1) the baseline case considered in the preliminary system design, that of separate high pressure (200 bar) storage tanks; (2) the use of two of the descent storage propellant tanks wrapped with graphite fibers to increase the pressure capability; and (3) the use of cryogenic storage of reactants in the propellant tanks. The first option results in high storage tank mass and volume. The second option saves 90 percent of the volume by making use of the propellant tanks, but it has little if any weight advantages; the weight saved by not providing extra tanks for reactant storage is nearly entirely added back by the weight of the additional material (graphite fibers) to strengthen the propellant tanks. Use of the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids requires a gas liquefaction system. The weight of this system is expected to be less than that of the storage tanks but it would require development and testing to prove its reliability. The solar array would have to be 40 percent larger and the heat projection range would be 170 percent larger than for storage of reactants as high pressure gases. For a high power system (greater than 20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  2. Fuel cell systems for First Lunar Outpost-reactant storage option

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1995-04-01

    The office of Space, DOE, appointed a Lunar Surface Power Working Group to review candidate systems for the First Lunar Outpost habitat. The working group met for a total of five days in the fall of 1992 and concluded that the candidate involving a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases was the most attractive for this application. Most of the volume (97 percent) and weight (63 percent) are taken up by the reactants and their storage tanks. Therefore, in my work for the Group, and in this report, I have concentrated on finding ways to reduce these volumes and weights. Three options were considered: (1) the baseline case considered in the preliminary system design, that of separate high pressure (200 bar) storage tanks; (2) the use of two of the descent storage propellant tanks wrapped with graphite fibers to increase the pressure capability; and (3) the use of cryogenic storage of reactants in the propellant tanks. The first option results in high storage tank mass and volume. The second option saves 90 percent of the volume by making use of the propellant tanks, but it has little if any weight advantages; the weight saved by not providing extra tanks for reactant storage is nearly entirely added back by the weight of the additional material (graphite fibers) to strengthen the propellant tanks. Use of the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids requires a gas liquefaction system. The weight of this system is expected to be less than that of the storage tanks but it would require development and testing to prove its reliability. The solar array would have to be 40 percent larger and the heat projection range would be 170 percent larger than for storage of reactants as high pressure gases. For a high power system (greater than 20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  3. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  4. ATL Products Division's entries into the computer mass storage marketplace

    NASA Technical Reports Server (NTRS)

    Zeiler, Fred

    1991-01-01

    The viewgraphs of a discussion on ATL Products Division's entries into the computer mass storage marketplace presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Topics covered are product evolution including robotics; aperture storage module library; Broadcast Division's TCS2000 Video Cart and TCS90 Videocart System; high density systems business product lines; and storage and library management.

  5. Data and data retrieval in space astronomy

    NASA Technical Reports Server (NTRS)

    Vette, J. I.

    1982-01-01

    To illustrate the range of storage and retrieval facilities and data products that are involved in space astronomy, the present situation on data from some instruments on the following missions is presented: Small Astronomy Satellite-B, Orbiting Astronomical Observatory 3, High Energy Astrophysics Observatory 2, International Ultraviolet Explorer, Viking Orbiter, and Solar Maximum Mission. In addition, the Coordinated Data Analysis Workshops conducted at the National Space Science Data Center are outlined to demonstrate the usefulness of building a problem-oriented on-line data base from instruments flown on a number of spacecraft and operating from ground-based facilities.

  6. Secure Storage Architectures

    SciTech Connect

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine; Koch, Scott M; Naughton, III, Thomas J; Pogge, James R; Scott, Stephen L; Shipman, Galen M; Sorrillo, Lawrence

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  7. Spent-fuel storage requirements

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as current licensed by the Nuclear Regulatory Commission. This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000.

  8. The mass storage testing laboratory at GSFC

    NASA Technical Reports Server (NTRS)

    Venkataraman, Ravi; Williams, Joel; Michaud, David; Gu, Heng; Kalluri, Atri; Hariharan, P. C.; Kobler, Ben; Behnke, Jeanne; Peavey, Bernard

    1998-01-01

    Industry-wide benchmarks exist for measuring the performance of processors (SPECmarks), and of database systems (Transaction Processing Council). Despite storage having become the dominant item in computing and IT (Information Technology) budgets, no such common benchmark is available in the mass storage field. Vendors and consultants provide services and tools for capacity planning and sizing, but these do not account for the complete set of metrics needed in today's archives. The availability of automated tape libraries, high-capacity RAID systems, and high- bandwidth interconnectivity between processor and peripherals has led to demands for services which traditional file systems cannot provide. File Storage and Management Systems (FSMS), which began to be marketed in the late 80's, have helped to some extent with large tape libraries, but their use has introduced additional parameters affecting performance. The aim of the Mass Storage Test Laboratory (MSTL) at Goddard Space Flight Center is to develop a test suite that includes not only a comprehensive check list to document a mass storage environment but also benchmark code. Benchmark code is being tested which will provide measurements for both baseline systems, i.e. applications interacting with peripherals through the operating system services, and for combinations involving an FSMS. The benchmarks are written in C, and are easily portable. They are initially being aimed at the UNIX Open Systems world. Measurements are being made using a Sun Ultra 170 Sparc with 256MB memory running Solaris 2.5.1 with the following configuration: 4mm tape stacker on SCSI 2 Fast/Wide; 4GB disk device on SCSI 2 Fast/Wide; and Sony Petaserve on Fast/Wide differential SCSI 2.

  9. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  10. Nutritional Biochemistry of Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  11. Energy Storage

    SciTech Connect

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  12. Seasonal storage of energy in solar heating

    NASA Astrophysics Data System (ADS)

    Braun, J. E.; Klein, S. A.; Mitchell, J. W.

    1981-01-01

    This paper focuses on several aspects of seasonal storage for space heating using water as the storage medium. The interrelationships between collector area, storage volume, and system performance are investigated using the transient simulation program TRNSYS. The situations for which seasonal storage is most promising are presented. Particular emphasis is placed upon design of seasonal storage systems. A design method is presented which is applicable for storage capacities ranging from a few days to seasonal storage. This design method, coupled with cost information, should be useful in assessing the economic viability of seasonal storage systems. Also investigated are the importance of the load heat exchanger size, tank insulation, collector slope, and year-to-year weather variations in system design.

  13. 1. SOUTH FACE AND WEST SIDE OF STORAGE SHED (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTH FACE AND WEST SIDE OF STORAGE SHED (BLDG. 773) LOCATED ON SLC-3W IMMEDIATELY NORTH OF SEWAGE TREATMENT PLANT - Vandenberg Air Force Base, Space Launch Complex 3, Storage Shed, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  15. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  16. Evaluation of existing Hanford buildings for the storage of solid wastes

    SciTech Connect

    Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

    1993-05-01

    Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft{sup 2} of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft{sup 2} while new construction will cost about $50 per ft{sup 2}. Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D&D) cost avoidances realized by using existing facilities.

  17. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    A major constraint to the evolution of solar thermal power systems is the need to provide continuous operation during periods of solar outage. A number of high temperature thermal energy storage technologies which have the potential to meet this need are currently under development. The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  18. Stability of Pharmaceuticals in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Y-Uyen

    2009-01-01

    Stability testing is a tool used to access shelf life and effects of storage conditions for pharmaceutical formulations. Early research from the International Space Station (ISS) revealed that some medications may have degraded while in space. This potential loss of medication efficacy would be very dangerous to Crew health. The aim of this research project, Stability of Pharmacotherapeutic Compounds, is to study how the stability of pharmaceutical compounds is affected by environmental conditions in space. Four identical pharmaceutical payload kits containing medications in different dosage forms (liquid for injection, tablet, capsule, ointment and suppository) were transported to the ISS aboard a Space Shuttle. One of the four kits was stored on that Shuttle and the other three were stored on the ISS for return to Earth at various time intervals aboard a pre-designated Shuttle flight. The Pharmacotherapeutics laboratory used stability test as defined by the United States Pharmacopeia (USP), to access the degree of degradation to the Payload kit medications that may have occurred during space flight. Once these medications returned, the results of stability test performed on them were compared to those from the matching ground controls stored on Earth. Analyses of the results obtained from physical and chemical stability assessments on these payload medications will provide researchers additional tools to promote safe and efficacious medications for space exploration.

  19. Optical Storage.

    ERIC Educational Resources Information Center

    Vanderstar, John

    1987-01-01

    Classifies and briefly describes several types of optical storage media available today--read-only and write-once analog disks, read-only and write-once digital disks and erasable disks. The appropriateness of CD-ROM (compact disk read-only memory) for use in libraries of developing nations is discussed in terms of users' information needs and…

  20. Archive Storage Media Alternatives.

    ERIC Educational Resources Information Center

    Ranade, Sanjay

    1990-01-01

    Reviews requirements for a data archive system and describes storage media alternatives that are currently available. Topics discussed include data storage; data distribution; hierarchical storage architecture, including inline storage, online storage, nearline storage, and offline storage; magnetic disks; optical disks; conventional magnetic…

  1. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  2. Position paper -- Waste storage tank heat removal

    SciTech Connect

    Stine, M.D.

    1995-01-03

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made.

  3. Data Storage Accounting and Verification at LHC experiments

    NASA Astrophysics Data System (ADS)

    Huang, C.-H.; Lanciotti, E.; Magini, N.; Ratnikova, N.; Sanchez-Hernandez, A.; Serfon, C.; Wildish, T.; Zhang, X.

    2012-12-01

    All major experiments at the Large Hadron Collider (LHC) need to measure real storage usage at the Grid sites. This information is equally important for resource management, planning, and operations. To verify the consistency of central catalogs, experiments are asking sites to provide a full list of the files they have on storage, including size, checksum, and other file attributes. Such storage dumps, provided at regular intervals, give a realistic view of the storage resource usage by the experiments. Regular monitoring of the space usage and data verification serve as additional internal checks of the system integrity and performance. Both the importance and the complexity of these tasks increase with the constant growth of the total data volumes during the active data taking period at the LHC. The use of common solutions helps to reduce the maintenance costs, both at the large Tier1 facilities supporting multiple virtual organizations and at the small sites that often lack manpower. We discuss requirements and solutions to the common tasks of data storage accounting and verification, and present experiment-specific strategies and implementations used within the LHC experiments according to their computing models.

  4. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  5. TES (Thermal Energy Storage) Video News Release

    NASA Technical Reports Server (NTRS)

    1994-01-01

    TES is an in-space technology experiment that flew on STS-62. Its intent is to investigate the behavior of two different thermal energy storage materials as they undergo repeated melting and freezing in the microgravity environment.

  6. Waste gas storage

    NASA Technical Reports Server (NTRS)

    Vickers, Brian D. (Inventor)

    1994-01-01

    Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

  7. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; Berrios, David

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  8. The partnership: Space shuttle, space science, and space station

    NASA Technical Reports Server (NTRS)

    Culbertson, Philip E.; Freitag, Robert F.

    1989-01-01

    An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.

  9. CMS Space Monitoring

    SciTech Connect

    Ratnikova, N.; Huang, C.-H.; Sanchez-Hernandez, A.; Wildish, T.; Zhang, X.

    2014-01-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  10. Space Medicine

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    2000-01-01

    The National Academy of Sciences Committee on Space Biology and Medicine points out that space medicine is unique among space sciences, because in addition to addressing questions of fundamental scientific interest, it must address clinical or human health and safety issues as well. Efforts to identify how microgravity affects human physiology began in earnest by the United States in 1960 with the establishment of the National Aeronautics and Space Administration (NASA's) Life Sciences program. Before the first human space missions, prediction about the physiological effects of microgravity in space ranged from extremely severe to none at all. The understanding that has developed from our experiences in space to date allows us to be guardedly optimistic about the ultimate accommodations of humans to space flight. Only by our travels into the microgravity environment of space have we begun to unravel the mysteries associated with gravity's role in shaping human physiology. Space medicine is still at its very earliest stages. Development of this field has been slow for several reasons, including the limited number of space flights, the small number of research subjects, and the competition within the life sciences community and other disciplines for flight opportunities. The physiological changes incurred during space flight may have a dramatic effect on the course of an injury or illness. These physiological changes present an exciting challenge for the field of space medicine: how to best preserve human health and safety while simultaneously deciphering the effects of microgravity on human performance. As the United States considers the future of humans in long-term space travel, it is essential that the many mysteries as to how microgravity affects human systems be addressed with vigor. Based on the current state of our knowledge, the justification is excellent indeed compelling- for NASA to develop a sophisticated capability in space medicine. Teams of physicians

  11. Longitudinal dynamics in storage rings

    SciTech Connect

    Colton, E.P.

    1986-01-01

    The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected.

  12. Opportunities for ice storage to provide ancillary services to power grids incorporating wind turbine generation

    NASA Astrophysics Data System (ADS)

    Finley, Christopher

    Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.

  13. Gas storage materials, including hydrogen storage materials

    SciTech Connect

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  14. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  15. In-Space Cryogenic Propellant Depot Stepping Stone

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Fikes, John C.

    2005-01-01

    An In-Space Cryogenic Propellant Depot (ISCPD) is an important stepping stone to provide the capability to preposition, store, manufacture, and later use the propellants for Earth-Neighborhood campaigns and beyond. An in-space propellant depot will provide affordable propellants and other similar consumables to support the development of sustainable and affordable exploration strategies as well as commercial space activities. An in-space propellant depot not only requires technology development in key areas such as zero boil-off storage and fluid transfer, but in other areas such as lightweight structures, highly reliable connectors, and autonomous operations. These technologies can be applicable to a broad range of propellant depot concepts or specific to a certain design. In addition, these technologies are required for spacecraft and orbit transfer vehicle propulsion and power systems, and space life support. Generally, applications of this technology require long-term storage, on-orbit fluid transfer and supply, cryogenic propellant production from water, unique instrumentation and autonomous operations. This paper discusses the reasons why such advances are important to future affordable and sustainable operations in space. This paper also discusses briefly R&D objectives comprising a promising approach to the systems planning and evolution into a meaningful stepping stone design, development, and implementation of an In-Space Cryogenic Propellant Depot. The success of a well-planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.

  16. High volume data storage architecture analysis

    NASA Technical Reports Server (NTRS)

    Malik, James M.

    1990-01-01

    A High Volume Data Storage Architecture Analysis was conducted. The results, presented in this report, will be applied to problems of high volume data requirements such as those anticipated for the Space Station Control Center. High volume data storage systems at several different sites were analyzed for archive capacity, storage hierarchy and migration philosophy, and retrieval capabilities. Proposed architectures were solicited from the sites selected for in-depth analysis. Model architectures for a hypothetical data archiving system, for a high speed file server, and for high volume data storage are attached.

  17. A system approach to archival storage

    NASA Technical Reports Server (NTRS)

    Corcoran, John W.

    1991-01-01

    The introduction and viewgraphs of a discussion on a system approach to archival storage presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. The use of D-2 iron particles for archival storage is discussed along with how acceleration factors relating short-term tests to archival life times can be justified. Ampex Recording Systems is transferring D-2 video technology to data storage applications, and encountering concerns about corrosion. To protect the D-2 standard, Battelle tests were done on all four tapes in the Class 2 environment. Error rates were measured before and after the test on both exposed and control groups.

  18. Friendly Spaces.

    ERIC Educational Resources Information Center

    D'Elia, William

    1996-01-01

    The creation of usable space for gatherings and socializing is an important consideration in any campus planning program. The University of California-San Diego has a large outdoor assembly area. An addition at Cal Poly-San Luis Obispo encompasses an existing pedestrian path. A new building at the University of Alaska, Fairbanks, is designed as a…

  19. Comprehensive Monitoring for Heterogeneous Geographically Distributed Storage

    NASA Astrophysics Data System (ADS)

    Ratnikova, N.; Karavakis, E.; Lammel, S.; Wildish, T.

    2015-12-01

    Storage capacity at CMS Tier-1 and Tier-2 sites reached over 100 Petabytes in 2014, and will be substantially increased during Run 2 data taking. The allocation of storage for the individual users analysis data, which is not accounted as a centrally managed storage space, will be increased to up to 40%. For comprehensive tracking and monitoring of the storage utilization across all participating sites, CMS developed a space monitoring system, which provides a central view of the geographically dispersed heterogeneous storage systems. The first prototype was deployed at pilot sites in summer 2014, and has been substantially reworked since then. In this paper we discuss the functionality and our experience of system deployment and operation on the full CMS scale.

  20. Comprehensive Monitoring for Heterogeneous Geographically Distributed Storage

    SciTech Connect

    Ratnikova, N.; Karavakis, E.; Lammel, S.; Wildish, T.

    2015-12-23

    Storage capacity at CMS Tier-1 and Tier-2 sites reached over 100 Petabytes in 2014, and will be substantially increased during Run 2 data taking. The allocation of storage for the individual users analysis data, which is not accounted as a centrally managed storage space, will be increased to up to 40%. For comprehensive tracking and monitoring of the storage utilization across all participating sites, CMS developed a space monitoring system, which provides a central view of the geographically dispersed heterogeneous storage systems. The first prototype was deployed at pilot sites in summer 2014, and has been substantially reworked since then. In this paper we discuss the functionality and our experience of system deployment and operation on the full CMS scale.

  1. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  2. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  3. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Storage battery design and installation. 23... Equipment Electrical Systems and Equipment § 23.1353 Storage battery design and installation. Link to an amendment published at 76 FR 75761, December 2, 2011. (a) Each storage battery must be designed...

  4. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  5. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  6. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Storage battery design and installation. 23... Equipment Electrical Systems and Equipment § 23.1353 Storage battery design and installation. (a) Each storage battery must be designed and installed as prescribed in this section. (b) Safe cell...

  7. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 23... Equipment Electrical Systems and Equipment § 23.1353 Storage battery design and installation. (a) Each storage battery must be designed and installed as prescribed in this section. (b) Safe cell...

  8. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Storage battery design and installation. 23... Equipment Electrical Systems and Equipment § 23.1353 Storage battery design and installation. (a) Each storage battery must be designed and installed as prescribed in this section. (b) Safe cell...

  9. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Storage battery design and installation. 23... Equipment Electrical Systems and Equipment § 23.1353 Storage battery design and installation. (a) Each storage battery must be designed and installed as prescribed in this section. (b) Safe cell...

  10. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  11. Performance Boosting Additive

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mainstream Engineering Corporation was awarded Phase I and Phase II contracts from Goddard Space Flight Center's Small Business Innovation Research (SBIR) program in early 1990. With support from the SBIR program, Mainstream Engineering Corporation has developed a unique low cost additive, QwikBoost (TM), that increases the performance of air conditioners, heat pumps, refrigerators, and freezers. Because of the energy and environmental benefits of QwikBoost, Mainstream received the Tibbetts Award at a White House Ceremony on October 16, 1997. QwikBoost was introduced at the 1998 International Air Conditioning, Heating, and Refrigeration Exposition. QwikBoost is packaged in a handy 3-ounce can (pressurized with R-134a) and will be available for automotive air conditioning systems in summer 1998.

  12. 40 CFR 265.77 - Additional reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest System, Recordkeeping, and Reporting § 265.77 Additional reports. In addition to... in § 265.56(j); (b) Ground-water contamination and monitoring data as specified in §§ 265.93 and...

  13. Hazmat storage

    SciTech Connect

    Not Available

    1993-12-01

    RCRA regulations governing hazardous materials storage, as well as potential long-term liabilities under CERCLA for soil and groundwater contamination, make daily management of industrial chemicals and wastes a precarious enterprise. Container corrosion, potential leaks and spills, possibilities of chemical reactions and fires, and health threats to employees and community members--not to mention the prospect of visits from regulatory agencies-comprise a persistent backdrop for environmental managers' decisions and actions. RCRA's Subtitle C, the hazardous waste management program, establishes cradle-to-grave liability for hazardous waste generators, rather loosely defined in practice as anyone whose actions bring a waste under RCRA's regulatory authority. Thus, someone who digs up a long-forgotten drum of hazardous chemicals, then stores or disposes it is a generator.

  14. Vapor sampling of the headspace of radioactive waste storage tanks

    SciTech Connect

    Reynolds, D.A., Westinghouse Hanford

    1996-05-22

    This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

  15. The cryogenic on-orbit liquid analytical tool (COOLANT) - A computer program for evaluating the thermodynamic performance of orbital cryogen storage facilities

    NASA Technical Reports Server (NTRS)

    Taylor, W. J.; Honkonen, S. C.; Williams, G. E.; Liggett, M. W.; Tucker, S. P.

    1991-01-01

    The United States plans to establish a permanent manned presence at the Space Station Freedom in low earth orbit (LEO) and then carry out exploration of the solar system from this base. These plans may require orbital cryogenic propellant storage depots. The COOLANT program has been developed to analyze the thermodynamic performance of these depots to support design tradeoff studies. It was developed as part of the Long Term Cryogenic Storage Facility Systems Study for NASA/MSFC. This paper discusses the program structure and capabilities of the COOLANT program. In addition, the results of an analysis of a 200,000 lbm hydrogen/oxygen storage depot tankset using COOLANT are presented.

  16. Space Nutrition

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2009-01-01

    Optimal nutrition will be critical for crew members who embark on space exploration missions. Nutritional assessment provides an opportunity to ensure that crewmembers begin their missions in optimal nutritional status, to document changes during a mission and, if necessary, to provide intervention to maintain that status throughout the mission, and to assesses changes after landing in order to facilitate the return to their normal status as soon as possible after landing. We report here the findings from our nutritional assessment of astronauts who participated in the International Space Station (ISS) missions, along with flight and ground-based research findings. We also present ongoing and planned nutrition research activities. These studies provide evidence that bone loss, compromised vitamin status, and oxidative damage are the critical nutritional concerns for space travelers. Other nutrient issues exist, including concerns about the stability of nutrients in the food system, which are exposed to longterm storage and radiation during flight. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health.

  17. 46 CFR 108.451 - CO2 storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false CO2 storage. 108.451 Section 108.451 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.451 CO2 storage. (a... have one or more cylinders in the space protected by the system if the space has a heat...

  18. 46 CFR 108.451 - CO2 storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false CO2 storage. 108.451 Section 108.451 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.451 CO2 storage. (a... have one or more cylinders in the space protected by the system if the space has a heat...

  19. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  20. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  1. Evaluation of Design Concepts for Collapsible Cryogenic Storage Vessels

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2001-01-01

    Future long-duration missions to Mars using in situ resource production to obtain oxygen from the Martian atmosphere for use as a propellant or for life support will require long term oxygen storage facilities. This report describes preliminary analysis of design concepts for lightweight, collapsible liquid oxygen storage tanks to be used on the surface of Mars. With storage at relatively low pressures, an inflatable tank concept in which the cryogen is stored within a fiber-reinforced Teflon FEP bladder is an efficient approach. The technology required for such a tank is well-developed through similar previous applications in positive expulsion bladders for zero-g liquid fuel rocket tanks and inflatable space habitat technology, though the liquid oxygen environment presents unique challenges. The weight of the proposed structure is largely dominated by the support structure needed to hold the tank off the ground and permit a vacuum insulation space to be maintained around the tank. In addition to the inflatable tank concept, telescoping tank concepts are studied. For a telescoping tank, the greatest difficulty is in making effective joints and seals. The use of shape memory alloy to produce a passive clamping ring is evaluated. Although the telescoping tank concepts are a viable option, it appears that inflatable tank concepts will be more efficient and are recommended.

  2. Method for forming a bladder for fluid storage vessels

    SciTech Connect

    Mitlitsky, F.; Myers, B.; Magnotta, F.

    2000-01-25

    A lightweight, low permeability liner is described for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  3. Method for forming a bladder for fluid storage vessels

    DOEpatents

    Mitlitsky, Fred; Myers, Blake; Magnotta, Frank

    2000-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  4. Mass storage at NSA

    NASA Technical Reports Server (NTRS)

    Shields, Michael F.

    1993-01-01

    The need to manage large amounts of data on robotically controlled devices has been critical to the mission of this Agency for many years. In many respects this Agency has helped pioneer, with their industry counterparts, the development of a number of products long before these systems became commercially available. Numerous attempts have been made to field both robotically controlled tape and optical disk technology and systems to satisfy our tertiary storage needs. Custom developed products were architected, designed, and developed without vendor partners over the past two decades to field workable systems to handle our ever increasing storage requirements. Many of the attendees of this symposium are familiar with some of the older products, such as: the Braegen Automated Tape Libraries (ATL's), the IBM 3850, the Ampex TeraStore, just to name a few. In addition, we embarked on an in-house development of a shared disk input/output support processor to manage our every increasing tape storage needs. For all intents and purposes, this system was a file server by current definitions which used CDC Cyber computers as the control processors. It served us well and was just recently removed from production usage.

  5. Maui energy storage study.

    SciTech Connect

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  6. Biomarker for Glycogen Storage Diseases

    ClinicalTrials.gov

    2016-08-25

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  7. Seasonal thermal energy storage

    SciTech Connect

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  8. Assessment of flywheel energy storage for spacecraft power systems

    SciTech Connect

    Rodriguez, G.E.; Studer, P.A.; Baer, D.A.

    1983-05-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  9. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  10. Advanced solar receivers for space power

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Coombs, M. G.; Lacy, D. E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability and, when implemented, will be lighter, smaller, and/or more efficient than baseline systems such as the configuration used for the Brayton solar receiver under development by Garrett AiResearch for the NASA Space Station. In addition to the baseline designs, four other receiver concepts were designed and evaluated with respect to Brayton and Stirling engines. These concepts include a higher temperature version of the baseline receiver, a packed bed receiver, a plate-fin receiver, and a heat pipe receiver. The thermal storage for all designs is provided by the melting and freezing of a salt.

  11. Space Shuttle Familiarization

    NASA Technical Reports Server (NTRS)

    Mellett, Kevin

    2006-01-01

    This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

  12. Automation and crew time saving in the space experiment

    NASA Technical Reports Server (NTRS)

    Matsumoto, Kohtaro; Suzuki, Tsuyoshi; Funaya, Kouichi; Kawamura, Takeya; Sonobe, Masayoshi

    1994-01-01

    We describe preliminary results of the feasibility study of automation and crew workload saving in space experiments on the space station. Some functions have been studied that can be automated within a single rack and without major impact to the development process and costs. In addition, we assume the following premises: (1) applicable as the second generation apparatuses; (2) maximum reduction of the crew workload; and (3) automation between racks including storage. Four apparatuses have been selected as the study case; results for three are summarized.

  13. Space Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.

  14. USE OF HYDROGEN GETTERS FOR ENSURING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Woodsmall, T.; Hackney, B.; Traver, L.

    2010-05-20

    Plutonium oxide left over from the 3013 destructive surveillance process is ultimately disposed of as waste. Therefore, this material is not re-stabilized and packaged to meet the requirements of DOE-STD-3013. Instead, it is stored on an interim basis in compliance with the interim safe storage criteria issued by DOE in January 1996. One of the safe storage criteria requires actions to be taken to minimize the formation or accumulation of flammable gases inside the storage container. Personnel responsible for the safe storage of the material have chosen to use a polymer-based, ambient air compatible hydrogen 'getter' to prevent the formation of hydrogen gas inside the storage container and thus prevent the formation of a flammable gas mixture. This paper briefly describes the method in which the getter performs its functions. More importantly, this paper presents the results of the testing that has been performed to characterize the bounding effects of aging and demonstrate the use of the getter for long-term storage. In addition, the favorable results of a post-storage analysis of actual getter material are presented and compared with bounding predictions. To date, bounding test results have shown that after 18 months of continuous storage and 39 months of total storage at 70C, the getter is able to both recombine gaseous hydrogen and oxygen into water when oxygen is available, and irreversibly getter (i.e., scavenge) hydrogen from the vapor space when oxygen is not available, both under a CO{sub 2} environment. Further bounding testing has been deemed unnecessary, and continued post-storage testing will be conducted on a periodic basis. The first post-storage testing of deployed getter material after two years of service revealed that it still performed like new material.

  15. Autonomous support for microorganism research in space

    NASA Technical Reports Server (NTRS)

    Fleet, Mary L.; Miller, Mark S.; Shipley, Derek, E.; Smith, Jeff D.

    1992-01-01

    A preliminary design for performing on orbit, autonomous research on microorganisms and cultured cells/tissues is presented. An understanding of gravity and its effects on cells is crucial for space exploration as well as for terrestrial applications. The payload is designed to be compatible with the Commercial Experiment Transporter (COMET) launch vehicle, an orbiter middeck locker interface, and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with in-flight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibrations, and radiation are provided for environmental regulation and experimental data collection. Additional experimental data acquisition includes optical density measurement, microscopy, video, and film photography. On-board full data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, representative experiments were developed to ensure scientific objectives remained compatible with hardware capabilities. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.

  16. Autonomous support for microorganism research in space

    NASA Technical Reports Server (NTRS)

    Luttges, M. W.; Klaus, D. M.; Fleet, M. L.; Miller, M. S.; Shipley, D. E.; Smith, J. D.

    1992-01-01

    A preliminary design for performing on-orbit, autonomous research on microorganisms and cultured cells/tissues is presented. An understanding of gravity and its effects on cells is crucial for space exploration as well as for terrestrial applications. The payload is designed to be compatible with the COMmercial Experiment Transported (COMET) launch vehicle, an orbiter middeck locker interface, and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with inflight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibration, and radiation are provided for environmental regulation and experimental data collection. Additional experiment data acquisition includes optical density measurement, microscopy, video, and file photography. Onboard full data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, representative experiments were developed to ensure scientific objectives remained compatible with hardware capabilities. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.

  17. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect

    1998-09-01

    and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  18. Platelet storage media.

    PubMed

    Gulliksson, H

    2014-10-01

    Present platelet storage media often designated platelet additive solutions (PAS) basically contain acetate, citrate and phosphate and recently also potassium and magnesium. However, there seems to be an increasing interest in developing PASs that can be used also after further reduction of residual plasma content below 15-20% plasma. Inclusion of glucose but also calcium and bicarbonate in such solutions have been suggested to improve platelet (PLT) storage, especially when plasma content is reduced to very low levels. Results from a limited number of studies using novel PAS alternatives have been presented during the last years, such as InterSol-G, PAS-5, M-sol, PAS-G and SAS. Most of them are experimental solutions. The combined results presented in those studies suggest that presence of glucose may be necessary during PLT storage, primarily to maintain ATP at acceptable levels. At plasma inclusion below 15-20%, the content of glucose will generally be too low to support PLT metabolism for more than a few days making glucose addition in PAS necessary. Significant effects associated with presence of calcium was observed in PLTs stored in PAS with 5% inclusion but not with 20-35% plasma inclusion, suggesting that the content of plasma could be of importance. Bicarbonate only seems to be of importance for pH regulation, primarily when plasma inclusion is reduced to about 5%. Reduction in rate of glycolysis was observed in some PAS alternatives containing potassium and magnesium but not in others. Differences in pH or in concentrations of the various compounds included in PAS may be possible explanations. Additionally, novel PAS containing glucose, calcium and bicarbonate does not seem to be associated with improved in vitro results as compared to SSP+ or CompoSol when PLTs are stored with 35% plasma inclusion. The results would then also suggest that excess of glucose in novel PAS environment may not be associated with additional positive effects on PLT metabolism

  19. Audit of the Federal Energy Regulatory Commission leased warehouse space

    SciTech Connect

    1996-05-24

    The Federal Energy Regulatory Commission (Commission) stores furniture, automated data processing equipment, and office supplies in a warehouse located in Landover, Maryland. The annual operating cost for this space (25,830 square feet) approximates $455,000-$245,000 in lease costs and $210,000 for contractor personnel. The purpose of the audit was to assess the effectiveness of the Commission`s use of warehouse space. The specific audit objective was to determine whether the Commission was minimizing the need for warehouse space for the storage of office supplies, furniture, and equipment. Federal Property Management Regulations and prudent business practices require Government agencies to minimize their need for space. More space was being leased than needed because Commission officials understood that they were obligated by terms of the lease to -pay for the space until March 31, 2002. We found, however, that there was a misunderstanding by officials, and that the Commission could at any time relinquish warehouse space by giving 120 days notice. Because of this misunderstanding and the recent relocation of the Commission to a newly furnished facility, about 16,000 square feet of warehouse space was being used to store furniture and equipment that was no longer needed by the Commission. An additional 6,000 square feet of space was used to store office supplies instead of using a more frequent ordering program that would reduce space requirements.

  20. Reversible hydrogen storage materials

    DOEpatents

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  1. Environmental Assessment for the ammunition storage facility at the Savannah River Site

    SciTech Connect

    Not Available

    1992-12-01

    The Savannah River Site (SRS), a DOE national defense facility. The SRS maintains an armed and uniformed protective force that performs patrol, guard, and monitoring activities on site. A safe, secure storage facility is needed for the storage of weapons, small arms ammunition, and explosives that may be used in carrying out such activities. This Environmental Assessment assesses the potential environmental and related safety impacts of constructing a small storage facility to replace the existing facility being used to store these munitions. Constructing a new storage facility is necessary to enable SRS to meet DOE requirements and any other applicable standards including DOE Order-6430.1A, General Design Criteria; - 5632.7, Protective Forces; - DOE Manuals-DOE/TIC 11268, Manual for Prediction of Blast and Fragment Loading for Structures; - DOE/EV 06194-5, and Explosives Safety Manual. Additionally, this action is needed because the present facility, the Building 217-F vault, does not comply with the above criteria for storage of munitions and explosives, and has been cited with seven occupational safety violations by DOE safety engineers. The most serious noted violations are due to the existing lack of appropriate storage space: munitions stacked directly against masonry walls, weapons stored in the same magazine as the munitions, inoperable ventilation system, inadequate air circulation, and the existence of electrical fans and switchgear within the magazine.

  2. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  3. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  4. Cassava; African perspective on space agriculture

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  5. Evaluation of thermal-storage concepts for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Hughes, P. J.; Morehouse, J. H.; Choi, M. K.; White, N. M.; Scholten, W. B.

    1981-10-01

    Various configuration concepts for utilizing thermal energy storage to improve the thermal and economic performance of solar cooling systems for buildings were analyzed. The storge concepts evaluated provide short-term thermal storge via the bulk containment of water or salt hydrates. The evaluations were made for both residential-size cooling systems (3-ton) and small commercial-size cooling systems (25-ton). The residential analysis considers energy requirements for space heating, space cooling and water heating, while the commercial building analysis is based only on energy requirements for space cooling. The commercial building analysis considered a total of 10 different thermal storage/solar systems, 5 each for absorption and Rankine chiller concepts. The residential analysis considered 4 thermal storage/solar systems, all utilizing an absorption chiller. The trade-offs considered include: cold-side versus hot-side storage, single vs multiple stage storage, and phase-change vs sensible heat storage.

  6. Photon storage cavities

    SciTech Connect

    Kim, K.J.; Sessler, A.M.

    1991-08-01

    A general analysis is presented of a photon storage cavity, coupled to free-electron laser (FEL) cavity. It is shown that if the coupling between the FEL cavity and the storage cavity is unidirectional (for example, a ring resonator storage cavity) then storage is possible, but that if the coupling is bi-directional then storage is not possible. Parameters are presented for an infra-red FEL storage cavity giving an order of magnitude increase in the instantaneous photon power within the storage cavity. 4 refs., 3 figs.

  7. REACTOR REFUELING - INTERIM DECAY STORAGE (FFTF)

    SciTech Connect

    MCFADDEN NR; OMBERG RP

    1990-06-18

    The IDS facility is located between the CLEM rails and within the FFTF containment building. It is located in a rectangular steel-lined concrete cell which lies entirely below the 550 ft floor level with the top flush with the 550 ft floor level. The BLTC rails within containment traverse the IDS cover (H-4-38001). The facility consists of a rotatable storage basket submerged in liquid sodium which is contained in a stainless steel tank. The storage positions within the basket are arranged so that it is not physically possible to achieve a critical array. The primary vessel is enclosed in a secondary guard tank of such size and arrangement that, should a leak develop in the primary tank, the sodium level would not fall below the top of the fueled section of the stored core components or test assemblies. The atmosphere outside the primary vessel, but within the concrete cell, is nitrogen which also serves as a heat transfer medium to control the cell temperature. To provide space for the storage of test assemblies such as the OTA and CLIRA, 10 storage tubes (each approximately 43-1/4 ft long) are included near the center of the basket. This arrangement requires that the center of the primary vessel be quite deep. In this region, the primary vessel extends downward to elevation 501 ft 6 inches while the guard tank reaches 500 ft 4 inches. The floor of the cell is at 499 ft a inches which is 51 ft below the operating room floor. Storage positions are provided for 112 core components in the upper section of the storage basket. These positions are arranged in four circles, all of which are concentric with the test element array and the storage basket. The primary vessel and the guard tank are shaped to provide the necessary space with a minimum of excess volume. Both these vessels have a relatively small cylindrical lower section connected to a larger upper cylinder by a conical transition. The primary vessel is supported from a top flange by a vessel support structure

  8. Large capacity cryopropellant orbital storage facility

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.

    1987-01-01

    A comprehensive study was performed to develop the major features of a large capacity orbital propellant storage facility for the space-based cryogenic orbital transfer vehicle. Projected propellant usage and delivery schedules can be accommodated by two orbital tank sets of 100,000 lb storage capacity, with advanced missions expected to require increased capacity. Information is given on tank pressurization schemes, propellant transfer configurations, pump specifications, the refrigeration system, and flight tests.

  9. Underground storage of hydrocarbons in Ontario

    SciTech Connect

    Carter, T.R.; Manocha, J.

    1995-09-01

    The underground storage of natural gas and liquified petroleum products in geological formations is a provincially significant industry in Ontario with economic, environmental, and safety benefits for the companies and residents of Ontario. There are 21 active natural gas storage pools in Ontario, with a total working storage capacity of approximately 203 bcf (5.76 billion cubic metres). Most of these pools utilize former natural gas-producing Guelph Formation pinnacle reefs. In addition there are seventy-one solution-mined salt caverns utilized for storage capacity of 24 million barrels (3.9 million cubic metres). These caverns are constructed within salt strata of the Salina A-2 Unit and the B Unit. The steadily increasing demand for natural gas in Ontario creates a continuing need for additional storage capacity. Most of the known gas-producing pinnacle reefs in Ontario have already been converted to storage. The potential value of storage rights is a major incentive for continued exploration for undiscovered reefs in this mature play. There are numerous depleted or nearly depleted natural gas reservoirs of other types with potential for use as storage pools. There is also potential for use of solution-mined caverns for natural gas storage in Ontario.

  10. Thermal energy storage for cogeneration applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Z. I.

    1992-04-01

    Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be decoupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

  11. Catalyzed borohydrides for hydrogen storage

    DOEpatents

    Au, Ming

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  12. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  13. Integrating new Storage Technologies into EOS

    NASA Astrophysics Data System (ADS)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  14. Storage media for computers in radiology

    PubMed Central

    Dandu, Ravi Varma

    2008-01-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits. PMID:19774182

  15. Storage media for computers in radiology.

    PubMed

    Dandu, Ravi Varma

    2008-11-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits. PMID:19774182

  16. VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN STORAGE TANK IN FOREGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Receiving & Storage Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  17. Tomato quality in controlled atmosphere storage, modified atmosphere packaging and cold storage.

    PubMed

    Majidi, H; Minaei, S; Almassi, M; Mostofi, Y

    2014-09-01

    Effects of controlled atmosphere storage (CAS) and modified atmosphere packaging (MAP) in comparison with conventional cold storage on qualitative properties of green-mature harvested tomato were evaluated. Qualitative properties included firmness, redness value (a*), hue angle, Total Soluble Solids (TSS) content, Titratable Acidity (TA) and TSS/TA. Under CAS and MAP conditions, gas composition was 5 kPa O2 and 3 kPa CO2. Results showed that the ability of CAS and MAP to retard the ripening process was more than cold storage. With regard to maintaining texture and colour, CAS treatment was the best and MAP was better than cold storage. Although amongst storage treatments, the maximum value of TSS was observed in cold storage, its decreasing trend in CAS was slower than that in cold storage. Additionally, MAP and especially CAS slowed down the diminishing trend of TA in tomatoes. PMID:25190877

  18. Toroidal solar collection and energy storage apparatus

    SciTech Connect

    Wasserman, K.J.

    1980-09-23

    Vehicular tires are generally toroidal heat collection elements of a solar heating system. Liquid or gaseous fluid flow is circulated between the tires and a space to be heated for transferring the heat from the tires to the space. The tires are generally vertically stacked within a thermally insulated enclosure which includes a double glazed window located so that solar rays impinge on and heat the tires. Heat storage media such as water, rock or pebble beds, or phase change material in an elongated coiled jacket may be provided within the tires. Downwardly inclined vanes either partially cut from the tire walls or attached to the tires or attached to separators between the tires, provide additional surface area to absorb the solar radiation and to also direct airflow radially inward into the center of the tires. When the vanes are formed by cutting from the tires, they are naturally hinged for elevational angulation and a cable linkage is provided to simultaneously adjust the elevation of the vanes or to close the apertures in the tire walls formed by the cutting out of the vanes. The window is selectively obstructed from light and heat transfer therethrough either by means of a removeable cover or by thermally insulating sliding opaque sheets within the walls of the enclosure which are selectively positionable between the double glazing.

  19. PCB storage requirements

    SciTech Connect

    1994-12-01

    Polychlorinated biphenyls (PCBs) are a class of organic chemicals that had become widely used in industrial applications due to their practical physical and chemical properties. Historical uses of PCBs include dielectric fluids (used in utility transformers, capacitors, etc.), hydraulic fluids, and other applications requiring stable, fire-retardant materials. Due to findings that PCBs may cause adverse health effects and due to their persistence and accumulation in the environment, the Toxic Substances Control Act (TSCA), enacted on october 11, 1976, banned the manufacture of PCBs after 1978 [Section 6(e)]. The first PCB regulations, promulgated at 40 CFR Part 761, were finalized on February 17, 1978. These PCB regulations include requirements specifying disposal methods and marking (labeling) procedures, and controlling PCB use. To assist the Department of Energy (DOE) in its efforts to comply with the TSCA statute and implementing regulations, the Office of Environmental Guidance has prepared the document ``Guidance on the Management of Polychlorinated Biphenyls (PCBs).`` That document explains the requirements specified in the statute and regulations for managing PCBs, including PCB use, storage, transport, and disposal. The requirements specified at 40 CFR Part 761.65 require most PCB wastes to be stored in a facility that meets the specifications of that section. Additionally, the regulations include rules concerning time limits for PCBs and PCB Items in storage, rules concerning leaking electrical equipment, and rules concerning types of containers used to store PCBs and PCB Items. This Information Brief supplements the PCB guidance document by responding to common questions concerning storage requirements for PCBs. It is one of a series of Information Briefs pertinent to PCB management issues.

  20. The pore space scramble

    NASA Astrophysics Data System (ADS)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  1. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Additional tests. 27.927 Section...

  2. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Additional tests. 27.927 Section 27.927... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...

  3. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Additional tests. 29.927 Section 29.927... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...

  4. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Additional tests. 29.927 Section 29.927... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...

  5. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Additional tests. 27.927 Section 27.927... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...

  6. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Additional tests. 27.927 Section 27.927... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...

  7. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Additional tests. 29.927 Section 29.927... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...

  8. Space Operations Center system analysis study extension. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The analysis fo Space Operations Center (SOC) systems is summarized. Design considerations, configurations of the manned orbital space station, planned operational and research missions, and subsystem tradeoffs are considered. Integration into the space transportation system is discussed. A modular design concept permitting growth of the SOC as its functions are expanded is described. Additional considerations are special requirements for habitat modules, design modifications needed to operate in geosynchronous orbits, and use of the external tank for cryogenic propellant storage or as a pressurized hangar. A cost summary is presented.

  9. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  10. Characterization of a new electrostatic storage ring for photofragmentation experiments

    SciTech Connect

    Pedersen, H. B. Svendsen, A.; Harbo, L. S.; Kiefer, H. V.; Kjeldsen, H.; Lammich, L.; Andersen, L. H.; Toker, Y.

    2015-06-15

    We describe the design of and the first commissioning experiments with a newly constructed electrostatic storage ring named SAPHIRA (Storage Ring in Aarhus for PHoton-Ion Reaction Analysis). With an intense beam of Cu{sup −} at 4 keV, the storage ring is characterized in terms of the stored ion beam decay rate, the longitudinal spreading of an injected ion bunch, as well as the direct measurements of the transverse spatial distributions under different conditions of storage. The ion storage stability in SAPHIRA was investigated systematically in a selected region of its electrical configuration space.

  11. Assessment of Nutrient Stability in Space Foods

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Perchonok, M.; Braby, L. A.; Kloeris, V. A.; Smith, S. M.

    2009-01-01

    Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient

  12. Energy Storage Flywheels on Spacecraft

    NASA Technical Reports Server (NTRS)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)

    2002-01-01

    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  13. Initial blood storage experiment

    NASA Technical Reports Server (NTRS)

    Surgenor, Douglas MACN.

    1988-01-01

    The possibility of conducting experiments with the formed elements of the blood under conditions of microgravity opens up important opportunities to improve the understanding of basic formed element physiology, as well as, contribution to improved preservation of the formed elements for use in transfusion. The physiological, biochemical, and physical changes of the membrane of the erythrocyte, platelet, and leukocyte was studied during storage under two specific conditions: standard blood bank conditions and microgravity, utilizing three FDA approved plastic bags. Storage lesions; red cell storage on Earth; platelet storage on Earth; and leukocyte storage Earth were examined. The interaction of biomaterials and blood cells was studied during storage.

  14. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  15. PUREX Storage Tunnels dangerous waste permit application

    SciTech Connect

    Not Available

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report.

  16. Natural gas storage in bedded salt formations

    SciTech Connect

    Macha, G.

    1996-09-01

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

  17. A Bookless Library, Part I: Relocating Print Materials to Off-Site Storage

    ERIC Educational Resources Information Center

    Sewell, Bethany B.

    2013-01-01

    This article presents an analysis of the feasibility of a bookless library in a research setting. As spaces for collections are being converted for increased study and community spaces, many libraries have been moving low-use collections to off-site storage. Issues regarding the types of storage spaces available are addressed. Concerns and…

  18. Space and energy: Global viewpoint

    NASA Astrophysics Data System (ADS)

    Koelle, D. E.

    1981-11-01

    The potential contributions from space technology to solving the future world energy problem are addressed. The basic problem is created by the depletion of the fossile fuels in the next century. The replacement of oil, gas and coal is only feasible by nuclear power and solar energy. In the first case space technology can contribute to making the terrestrial storage of radioactive waste much less dangerous and more acceptable by expediting the highly radioactive components (only 3%) into space. In the case of solar energy space technology can contribute large solar power stations in space, providing energy via microwaves to special rectenna sites.

  19. Report on interim storage of spent nuclear fuel

    SciTech Connect

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  20. Value of Energy Storage for Grid Applications

    SciTech Connect

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  1. Autonomous support for microorganism research in space

    NASA Astrophysics Data System (ADS)

    Fleet, M. L.; Smith, J. D.; Klaus, D. M.; Luttges, M. W.

    1993-02-01

    A preliminary design for performing on orbit, autonomous research on microorganisms and cultured cells/tissues is presented. The payload is designed to be compatible with the COMercial Experiment Transporter (COMET), an orbiter middeck locker interface and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with in-flight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibrations, and radiation are provided for environmental regulation and experimental data collection. Additional data acquisition includes optical density measurement, microscopy, video, and film photography. On-board data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, research opportunities are explored to illustrate hardware versatility and function. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.

  2. Inherit Space

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.; Jenks, K. C.

    1997-01-01

    The objective of the proposed research was to begin development of a unique educational tool targeted at educating and inspiring young people 12-16 years old about NASA and the Space Program. Since these young people are the future engineers, scientists and space pioneers, the nurturing of their enthusiasm and interest is of critical importance to the Nation. This summer the basic infrastructure of the tool was developed in the context of an educational game paradigm. The game paradigm has achieved remarkable success in maintaining the interest of young people in a self-paced, student-directed learning environment. This type of environment encourages student exploration and curiosity which are exactly the traits that future space pioneers need to develop to prepare for the unexpected. The Inherit Space Educational Tool is an open-ended learning environment consisting of a finite-state machine classic adventure game paradigm. As the young person explores this world, different obstacles must be overcome. Rewards will be offered such as using the flight simulator to fly around and explore Titan. This simulator was modeled on conventional Earth flight simulators but has been considerably enhanced to add texture mapping of Titan's atmosphere utilizing the latest information from the NASA Galileo Space Probe. Additional scenery was added to provide color VGA graphics of a futuristic research station on Titan as well as an interesting story to keep the youngster's attention. This summer the game infrastructure has been developed as well as the Titan Flight Simulator. A number of other enhancements are planned.

  3. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  4. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  5. Zero-Boiloff Cryogenic Storage Cryocooler Integration Test

    NASA Technical Reports Server (NTRS)

    Plachta, David W.

    2001-01-01

    Developments in NASA Glenn Research Center's Centaur work have led to an exciting new cryogenic storage concept being considered for future NASA space missions. With long-duration cryogenic storage, propellants will boil off because of the environmental heating of the tank. To accommodate these losses, extra propellant is required along with larger propellant tanks. Analyses of space transportation concepts show that spacetransfer cryogenic stages with the zero boiloff (ZBO) cryogenic storage concept reduce the stage mass for missions longer than approximately 45 days in low Earth orbit. The ZBO system consists of an active cryocooling system using a cryocooler in addition to traditional passive thermal insulation. Engineers at Glenn analyzed, designed, built, and bench tested a heat exchanger and integration hardware for a large-scale ZBO demonstration for the NASA Marshall Space Flight Center. The heat exchanger, which transfers the heat that enters the tank from the fluid to the cryocooler, must limit the temperature difference across it to limit the cryocooler size and power requirements. With a low temperature difference, the system efficiency is improved. For that temperature difference to be reduced, the thermal conductivity must be as high as possible at liquid hydrogen temperatures, around 25 K (-248 C). In addition, it is important for the heat exchanger to be welded to a stainless steel flange and have enough strength to accommodate piping stress. High-conductivity copper was selected and fabricated, then integrated with the stainless steel piping tee as shown in the cutaway representation. Literature showed that this conductivity might range from 2 to 100 W/cm/K but that is was likely to be around 13 W/cm/K. Unexpectedly, this conductivity was measured to be 23 W/cm/K, which limited the temperature increase along the heat exchanger to just 2 K. This limited temperature increase, compared with the predicted difference of 3.5 K, improves the overall

  6. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  7. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  8. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  9. Regenerative fuel cell systems for space station

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Sheibley, D. W.

    1985-01-01

    Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.

  10. 86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 2. Southeast side of addition. View to northwest. Offutt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southeast side of addition. View to northwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  12. 5. General interior overview of addition. View to south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. General interior overview of addition. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  13. 6. General interior overview of addition. View to northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General interior overview of addition. View to northwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  14. 3. Northwest side and southwest rear of addition. View to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Northwest side and southwest rear of addition. View to east. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  15. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  16. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  17. Hydrogen Storage in Wind Turbine Towers

    SciTech Connect

    Kottenstette, R.; Cotrell, J.

    2003-09-01

    Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

  18. Security optical data storage in Fourier holograms.

    PubMed

    Su, Wei-Chia; Chen, Yu-Wen; Chen, Yu-Jen; Lin, Shiuan-Huei; Wang, Li-Karn

    2012-03-20

    We have proposed and demonstrated a holographic security storage system that is implemented with a shift multiplexing technique. The security function of this storage system is achieved by using a microdiffuser (MD) for random phase encoding of the reference beams. The apparatus of random phase encoding in this system offers an additional and flexible function during the recording processes. The system can generate holographic security memory or nonsecurity holographic memory via using the MD or not. The storage capacity and the average signal-to-noise value of the security storage system are 16 bits/μm(2) and 3.5, respectively. Lateral shifting selectivity in this holographic security storage system is theoretically analyzed and experimentally investigated. PMID:22441475

  19. COSY - a cooler synchrotron and storage ring

    SciTech Connect

    Martin, S.A.; Berg, G.P.A.; Hacker, U.; Hardt, A.; Kohler, M.; Osterfeld, F.; Prasuhn, D.; Riepe, G.; Rogge, M.; Schult, O.W.B.

    1985-10-01

    The storage ring COSY with phase space cooling and RF acceleration is designed to accept protons and light ions injected from the existing cyclotron JULIC or protons from the LINAC of the proposed neutron spallation source (SNQ). The lay-out of COSY was developed in cooperation with the Universities in Nordrhein-Westfalen and meets the experimental requirements of variable and high quality beams which are necessary for future nuclear research under discussion. The three essential properties of the storage ring will be: high luminosities and very efficient use of the beam in the storage ring by thin internal targets; energy variability in the range of 20 MeV to 1.5 GeV by RF acceleration; and very high beam quality through phase space cooling.

  20. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2000-01-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  1. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  2. 71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ON SLC-3W LIQUID OXYGEN APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 79. VIEW FROM SOUTH OF NITROGEN AND HELIUM STORAGE TANKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. VIEW FROM SOUTH OF NITROGEN AND HELIUM STORAGE TANKS AND CONTROL SKIDS ON SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  5. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  6. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  7. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  8. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  9. Energy Efficient Storage and Transfer of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2013-01-01

    Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.

  10. Waste canister for storage of nuclear wastes

    DOEpatents

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  11. 41 CFR 101-39.305 - Storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Storage. 101-39.305 Section 101-39.305 Public Contracts and Property Management Federal Property Management Regulations System... -controlled parking space in accordance with the provisions of § 101-17.101-6....

  12. Space vehicle propulsion systems: Environmental space hazards

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Bahr, G. K.

    1990-01-01

    The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.

  13. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects. PMID:24772784

  14. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  15. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  16. Thermal energy storage apparatus enabling use of aqueous or corrosive thermal storage media

    SciTech Connect

    James, T.W.

    1993-08-31

    A holdover plate is described for thermal energy storage in refrigeration and air conditioning systems, the holdover plate comprising: a heat exchanger with an adjacent space in close proximity thereto; a plurality of expandable capsules containing a thermal energy storage medium, the capsules substantially filling the adjacent space and the capsules including means to provide for expansion of the thermal energy storage medium without altering outer envelope dimensions of the capsules; a containment means forming an exterior of the holdover plate and surrounding the heat exchanger and the adjacent space filled with the capsules, the containment means further containing a convective coupling fluid which thermally couples and is non-corrosive to the heat exchanger, the capsules, and the containment means; and wherein the convective coupling fluid transfers heat primarily through natural convection and conduction and does not freeze at operational temperatures of the heat exchanger.

  17. Living in Space

    NASA Technical Reports Server (NTRS)

    Brown, Ray (Editor)

    1993-01-01

    In this educational video from the 'Liftoff to Learning' series, astronauts from the STS-56 Mission (Ken Cockrell, Mike Foale, Ellen Ochoa, Steve Oswald, and Ken Cameron) explain and show through demonstrations how microgravity affects the way astronauts live onboard the Space Shuttle, and how these same daily habits or processes differ on Earth. A tour of the Space Shuttle is given, including the sleeping compartments, the kitchen area, the storage compartments, and the Waste Collection System (or WCS, as they call it). Daily habits (brushing teeth, shampooing hair and bathing, eating,...) are explained and actively illustrated, along with reasons of how these applications differ from their employment on Earth.

  18. A Magnetic Solid-State Storage Technology: Vertical Bloch Line Storage

    NASA Technical Reports Server (NTRS)

    Katti, R. R.

    1993-01-01

    No storage technology is known to exist today which simultaneously offers high-storage density, nonvolatility, and a solid-state form factor. For example, common random access memories are solid-state, but are volatile and typically offer modest density. Alternatively, mainstream magnetic disk and magnetic tape systems offer high storage density and nonvolatility, but are fundamentally not solid-state. A number of applications exist which would be suited well with high performance solid- state technology. NASA, for example, is beginning baseline solid-state recorders for upcoming space missions, such as the Cassini mission to Saturn.

  19. Central unresolved issues in thermal energy storage for building heating and cooling

    SciTech Connect

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  20. 14 CFR 431.11 - Additional license terms and conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Additional license terms and conditions. 431.11 Section 431.11 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.11 Additional license terms...

  1. Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi

    2009-01-01

    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the

  2. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  3. Overview of International Space Standards

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.

    2005-01-01

    This presentation reviews space standards as put forth by the International Organization for Standardization, additionally the organizational structure for both the international and US groups are presented. A new technical committee for space is proposed, areas of technical coverage are highlighted and models of space communications protocol and space link access service are presented.

  4. APS storage ring vacuum system performance

    SciTech Connect

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-06-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented.

  5. The cavity heat pipe Stirling receiver for space solar dynamics

    NASA Technical Reports Server (NTRS)

    Kesseli, James B.; Lacy, Dovie E.

    1989-01-01

    The receiver/storage unit for the low-earth-orbiting Stirling system is discussed. The design, referred to as the cavity heat pipe (CHP), has been optimized for minimum specific mass and volume width. A specific version of this design at the 7-kWe level has been compared to the space station Brayton solar dynamic design. The space station design utilizes a eutectic mixture of LiF and CaF2. Using the same phase change material, the CHP has been shown to have a specific mass of 40 percent and a volume of 5 percent of that of the space station Brayton at the same power level. Additionally, it complements the free-piston Stirling engine in that it also maintains a relatively flat specific mass down to at least 1 kWe. The technical requirements, tradeoff studies, critical issues, and critical technology experiments are discussed.

  6. Universal stowage module for future space exploration

    NASA Technical Reports Server (NTRS)

    Seccamp, V. A.; Hussex, M. W.; Garber, P.; Mandras, W.; Mckinney, D.

    1973-01-01

    The development, design, and fabrication of a prototype storage module, with internal restraints, for the stowage of items that are normally launched to support a space mission are discussed. The primary design criteria was that the storage module be universal in accomodating most sizes and shapes of items that could be launched and returned in a shuttle payload. Mechanical drawings of various types of storage modules are provided.

  7. Additive usage levels.

    PubMed

    Langlais, R

    1996-01-01

    With the adoption of the European Parliament and Council Directives on sweeteners, colours and miscellaneous additives the Commission is now embarking on the project of coordinating the activities of the European Union Member States in the collection of the data that are to make up the report on food additive intake requested by the European Parliament. This presentation looks at the inventory of available sources on additive use levels and concludes that for the time being national legislation is still the best source of information considering that the directives have yet to be transposed into national legislation. Furthermore, this presentation covers the correlation of the food categories as found in the additives directives with those used by national consumption surveys and finds that in a number of instances this correlation still leaves a lot to be desired. The intake of additives via food ingestion and the intake of substances which are chemically identical to additives but which occur naturally in fruits and vegetables is found in a number of cases to be higher than the intake of additives added during the manufacture of foodstuffs. While the difficulties are recognized in contributing to the compilation of food additive intake data, industry as a whole, i.e. the food manufacturing and food additive manufacturing industries, are confident that in a concerted effort, use data on food additives by industry can be made available. Lastly, the paper points out that with the transportation of the additives directives into national legislation and the time by which the food industry will be able to make use of the new food legislative environment several years will still go by; food additives use data by the food industry will thus have to be reviewed at the beginning of the next century. PMID:8792135

  8. 27 CFR 19.343 - Addition of oak chips to spirits and addition of caramel to brandy and rum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Addition of oak chips to... PLANTS Storage § 19.343 Addition of oak chips to spirits and addition of caramel to brandy and rum. Oak chips which have not been treated with any chemical may be added to packages either prior to or...

  9. An additional middle cuneiform?

    PubMed Central

    Brookes-Fazakerley, S.D.; Jackson, G.E.; Platt, S.R.

    2015-01-01

    Additional cuneiform bones of the foot have been described in reference to the medial bipartite cuneiform or as small accessory ossicles. An additional middle cuneiform has not been previously documented. We present the case of a patient with an additional ossicle that has the appearance and location of an additional middle cuneiform. Recognizing such an anatomical anomaly is essential for ruling out second metatarsal base or middle cuneiform fractures and for the preoperative planning of arthrodesis or open reduction and internal fixation procedures in this anatomical location. PMID:26224890

  10. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    DOEpatents

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  11. Humans in Space &Space Biology

    NASA Astrophysics Data System (ADS)

    Legner, Klaus

    Inevitably, members of the human species will again walk on the face of the moon and ultimately establish a permanently occupied lunar base. Also, inevitably, humans will venture to the planets within the solar system, most likely beginning with Mars or the Martian satellite, Phobos. These missions will take place because the species that contemplates them is driven by an insatiable desire for knowledge and understanding and because the technical means to accomplish these objectives are possible. There is no question that humans will establish outposts on Earth's moon and make interplanetary journeys. The only uncertainties concern when and how these expeditions are to be made. Just as a 90- or 120-day tour onboard an international space station is fundamentally different from a brief space shuttle mission; a one-year lunar base tour or a two- or three-year mission to Mars will be unique. Despite superficial similarities to other space missions and analogues, the extended durations and astronomical distances involved in lunar and Martian missions will make these activities far more difficult and dangerous. Crowded conditions, language and cultural differences, logistics problems, radiation concerns, communications lag times, workloads, and a variety of additional issues will conspire to impair the performance and affect the behaviour of long duration crew personnel. Above all stressors, however, the durations of the missions will impose the greatest burdens and extract the most severe tolls on the humans involved. On long-duration space missions, time will be the factor that can compound all issues, however trivial, into serious problems.

  12. Space Discovery.

    ERIC Educational Resources Information Center

    Blackman, Joan

    1998-01-01

    Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)

  13. Nanostructured graphene nanoplatelets for energy storage applications

    NASA Astrophysics Data System (ADS)

    Monga, Anchita

    There is an increasing demand for high performance compact batteries for diverse applications ranging from portable electronics to electric automotive vehicles. This need has driven the direction of research towards newer materials, improved synthesis and architectured assembly. This research addresses the gravimetric and volumetric density challenges as well as the cost issues faced by energy storage devices by developing structured graphitic materials, aiming at better electrochemical performance, improved energy density and reduced cost. The few layer graphene nanoplatelets (GnP) used in this study can be produced from natural graphite in thicknesses from 1-10 nm and in widths from 0.3 to 50 microns via an acid intercalation/thermal exfoliation process. The GnP serves as an inexpensive alternative to carbon nanotubes and single graphene sheets. The ability to nanostructure GnP and tailor its inherent properties for lithium storage and electrical conductivity, allows it to be used for customized applications in three different lithium ion battery components viz., active anode material, current collector and conducting additive. Metal nanoparticle doped GnP in which nanosized metal particles are coated onto the GnP basal surface, have been assembled to make a 'pillared' nanostructure in which the particles maintain a fixed distance between adjacent GnPs facilitating improved transport and enhanced lithium storage capacity, especially at faster charge rates. Graphene nanoplatelets synthesized with different sizes of metal nanoparticles effectively create a nano-architectured GnP multilayer assembly with flexible interlayer spacing. The creation of a lithium ion battery anode with controllable GnP interlayer spacing facilitates lithium ion diffusion through the electrode, and this in turn leads to improved transport and enhanced capacity. Graphene nanoplatelets are also intrinsically excellent electrical conductors, which can be assembled into continuous conductive

  14. Percolation in dense storage arrays

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Scott; Wilcke, Winfried W.; Garner, Robert B.; Huels, Harald

    2002-11-01

    As computers and their accessories become smaller, cheaper, and faster the providers of news, retail sales, and other services we now take for granted on the Internet have met their increasing computing needs by putting more and more computers, hard disks, power supplies, and the data communications linking them to each other and to the rest of the wired world into ever smaller spaces. This has created a new and quite interesting percolation problem. It is no longer desirable to fix computers, storage or switchgear which fail in such a dense array. Attempts to repair things are all too likely to make problems worse. The alternative approach, letting units “fail in place”, be removed from service and routed around, means that a data communications environment will evolve with an underlying regular structure but a very high density of missing pieces. Some of the properties of this kind of network can be described within the existing paradigm of site or bond percolation on lattices, but other important questions have not been explored. I will discuss 3D arrays of hundreds to thousands of storage servers (something which it is quite feasible to build in the next few years), and show that bandwidth, but not percolation fraction or shortest path lengths, is the critical factor affected by the “fail in place” disorder. Redundancy strategies traditionally employed in storage systems may have to be revised. Novel approaches to routing information among the servers have been developed to minimize the impact.

  15. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  16. Lightweight structural columns. [space erectable trusses

    NASA Technical Reports Server (NTRS)

    Bush, H. G. (Inventor)

    1981-01-01

    Lightweight half-lengths of columns for truss structures are described. The columns are adapted for nestable storage and transport to facilitate fabrication of large area truss structures at a remote site and particularly adaptable for space applications.

  17. A panoramic view of the Space Station Processing Facility with Unity connecting module

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this panoramic view of the Space Station Processing Facility (SSPF) can be seen (left to right) Unity connecting module, the Rack Insertion Device and the first Multi-Purpose Launch Module, the Leonardo. Windows at the right above Leonardo allow visitors on tour to watch the activities in the SSPF. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station. The Italian-built MPLM, scheduled to be launched on STS-100 on Dec. 2, 1999, will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station.

  18. Carbamate deposit control additives

    SciTech Connect

    Honnen, L.R.; Lewis, R.A.

    1980-11-25

    Deposit control additives for internal combustion engines are provided which maintain cleanliness of intake systems without contributing to combustion chamber deposits. The additives are poly(oxyalkylene) carbamates comprising a hydrocarbyloxyterminated poly(Oxyalkylene) chain of 2-5 carbon oxyalkylene units bonded through an oxycarbonyl group to a nitrogen atom of ethylenediamine.

  19. Flywheel Energy Storage Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Wolff, Frederick J.

    2001-01-01

    A flywheel energy storage system was spun to 60,000 rpm while levitated on magnetic bearings. This system is being developed as an energy-efficient replacement for chemical battery systems. Used in groups, the flywheels can have two functions providing attitude control for a spacecraft in orbit as well as providing energy storage. The first application for which the NASA Glenn Research Center is developing the flywheel is the International Space Station, where a two-flywheel system will replace one of the nickel-hydrogen battery strings in the space station's power system. The 60,000-rpm development rotor is about one-eighth the size that will be needed for the space station (0.395 versus 3.07 kWhr).

  20. Aging and space travel

    NASA Technical Reports Server (NTRS)

    Mohler, S. R.

    1982-01-01

    The matter of aging and its relation to space vehicle crewmembers undertaking prolonged space missions is addressed. The capabilities of the older space traveler to recover from bone demineralization and muscle atrophy are discussed. Certain advantages of the older person are noted, for example, a greater tolerance of monotony and repetitious activities. Additional parameters are delineated including the cardiovascular system, the reproductive system, ionizing radiation, performance, and group dynamics.

  1. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  2. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  3. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  4. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  5. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  6. Challenges in hydrogen storage

    NASA Astrophysics Data System (ADS)

    Schüth, F.

    2009-09-01

    Hydrogen is one possible medium for energy storage and transportation in an era beyond oil. Hydrogen appears to be especially promising in connection with electricity generation in polymer electrolyte membrane (PEM) fuel cells in cars. However, before such technologies can be implemented on a larger scale, satisfactory solutions for on-board storage of hydrogen are required. This is a difficult task due to the low volumetric and gravimetric storage density on a systems level which can be achieved so far. Possibilities include cryogenic storage as liquid hydrogen, high pressure storage at 70 MPa, (cryo)adsorptive storage, or various chemical methods of binding and releasing hydrogen. This survey discusses the different options and the associated advantages and disadvantages.

  7. Space Shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The space shuttle flight system and mission profile are briefly described. Emphasis is placed on the economic and social benefits of the space transportation system. The space shuttle vehicle is described in detail.

  8. Space communications in Japan

    NASA Astrophysics Data System (ADS)

    Mori, T.

    This paper outlines some of the planned satellite comunication projects in Japan over the next 5-7 years. In addition, Japanese space development policies are set out along with a historic review of the development of artificial satellites.

  9. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  10. Chemical Engineering in Space

    NASA Technical Reports Server (NTRS)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  11. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  12. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  13. Grumman evaluates Space Station thermal control and power systems

    SciTech Connect

    Kandebo, S.W.

    1985-09-01

    Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.

  14. Improved Li/BCX (thionyl chloride) cells for space applications

    NASA Technical Reports Server (NTRS)

    Clark, W. D. K.; Ebel, S. J.; Eberhard, D. P.; Takeuchi, E. S.

    1988-01-01

    New NASA requirements for the screening of lithium cells for space applications involve thermal soaks at elevated temperatures (149 C). The BCX DD and C size cells have been redesigned to pass this test with only marginal losses in capacity as was done previously for the D cells. In addition, the pressure increases in cells subjected to this high temperature environment have been characterized showing that the earlier designs failed this exposure due to lack of void volume. An improve BCX chemistry has been demonstrated which significantly improves voltage delay problems encountered after partial discharge and storage of the cells.

  15. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  16. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  17. Additional Types of Neuropathy

    MedlinePlus

    ... A A Listen En Español Additional Types of Neuropathy Charcot's Joint Charcot's Joint, also called neuropathic arthropathy, ... can stop bone destruction and aid healing. Cranial Neuropathy Cranial neuropathy affects the 12 pairs of nerves ...

  18. Method and apparatus for thermal energy storage. [Patent application

    DOEpatents

    Gruen, D.M.

    1975-08-19

    A method and apparatus for storing energy by converting thermal energy to potential chemically bound energy in which a first metal hydride is heated to dissociation temperature, liberating hydrogen gas which is compressed and reacted with a second metal to form a second metal hydride while releasing thermal energy. Cooling the first metal while warming the second metal hydride to dissociation temperature will reverse the flow of hydrogen gas back to the first metal, releasing additional thermal energy. The method and apparatus are particularly useful for the storage and conversion of thermal energy from solar heat sources and for the utilization of this energy for space heating purposes, such as for homes or offices.

  19. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  20. Preparation of guinea pig macrophage for electrophoretic experiments in space

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  1. A New Storage-Ring Light Source

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2015-07-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  2. A New Storage-Ring Light Source

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  3. A new storage-ring light source

    SciTech Connect

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  4. Inexpensive site-assembled thermal storage tank

    SciTech Connect

    Forbes, R.E.

    1981-01-01

    An inexpensive ($0.20 per gallon) thermal storage tank was constructed using polystyrene foam, welded steel (hog) wire, and polyethylene film. The tank was formed as a right circular cylinder using the welded wire as a hoop. Polystyrene foam was cut to shape using a hot wire and used to line the wire hoop. Polyethylene film was placed in the interior of the tank to complete a leakproof liquid thermal storage tank. The design incorporates features making the tank both inexpensive and relatively easy to construct in a confined space. Thermal performance can be adjusted by choosing thickness of the polystrene foam as it is cut.

  5. Coal storage hopper with vibrating screen agitator

    DOEpatents

    Daw, Charles S.; Lackey, Mack E.; Sy, Ronald L.

    1984-01-01

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyor mechanism. The vibrating screen agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  6. Earth storage structural energy system and process for constructing a thermal storage well

    SciTech Connect

    Ippolito, J.J.

    1983-07-12

    A geothermal space conditioning and water heating system for a building structure comprises a battery of serially coupled thermal storage wells. Each well includes a dual concentric thermal conduction tube having an external circumference and an integrated earth interface and substantially moisture impervious clay platelet transition surrounding and at least double the tube circumference. The thermal storage battery has a cold port and a hot port maintained at a temperature greater than the cold port. A space conditioning arrangement is provided in which thermal transport fluid passes through a fan-driven radiator. A reversible heat pump has a radiator conditioned air coupled first heat exchanger and a downstream radiator fluid coupled second heat exchanger. A second heat pump has a first heat exchanger in thermal communication with a hot port coupled hot water heater and a cold port coupled second heat exchanger. A transient storage tank provides a time averaged uniform transport fluid temperature. Valving allows reversal of fluid from the hot and cold ports to and from the transient storage tank and the space conditioning arrangement as determined by multiple temperature sensors determining output states of a controller. The geothermal storage wells are established by circulating a mud in a well to stabilize the hole, running a conduit in the well and thereafter reverse-circulating a sand/gravel slurry through the conduit thereby packing the region between the conducting tube and the earth interface.

  7. Modified lithium borohydrides for reversible hydrogen storage.

    PubMed

    Au, Ming; Jurgensen, Arthur

    2006-04-01

    In an attempt to develop lithium borohydrides as reversible hydrogen storage materials with high hydrogen storage capacities, the feasibility of reducing the dehydrogenation temperature of the lithium borohydride and moderating rehydrogenation conditions was explored. The lithium borohydride was modified by ball milling with metal oxides and metal chlorides as additives. The modified lithium borohydrides released 9 wt % hydrogen starting from 473 K. The dehydrided modified lithium borohydrides absorbed 7-9 wt % hydrogen at 873 K and 7 MPa. The modification with additives reduced the dehydriding starting temperature from 673 to 473 K and moderated the rehydrogenation conditions from 923 K/15 MPa to 873 K/7 MPa. XRD and SEM analysis revealed the formation of an intermediate compound that might play a key role in changing the reaction path, resulting in the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide-modified lithium borohydrides decreased gradually during hydriding/dehydriding cycling. One of the possible reasons for this effect might be the loss of boron during dehydrogenation, but this can be prevented by changing the dehydriding path using appropriate additives. The additives reduced the dehydriding temperature and improved the reversibility, but they also reduced the hydrogen storage capacity. The best compromise can be reached by selecting appropriate additives, optimizing the additive loading, and using new synthesis processes other than ball milling. PMID:16571023

  8. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  9. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Technical Reports Server (NTRS)

    Yi, T. Y.

    1986-01-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  10. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Astrophysics Data System (ADS)

    Yi, T. Y.

    1986-09-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  11. Themed Space

    ERIC Educational Resources Information Center

    Lynch, Christopher O.

    2010-01-01

    This article presents a classroom activity that introduces students to the concept of themed space. Students learn to think critically about the spaces they encounter on a regular basis by analyzing existing spaces and by working in groups to create their own themed space. This exercise gives students the chance to see the relevance of critical…

  12. Space colonization.

    PubMed

    2002-12-01

    NASA interest in colonization encompasses space tourism; space exploration; space bases in orbit, at L1, on the Moon, or on Mars; in-situ resource utilization; and planetary terraforming. Activities progressed during 2002 in areas such as Mars colonies, hoppers, and biomass; space elevators and construction; and in-situ consumables. PMID:12506926

  13. Angle-multiplexed holographic data storage with minimum cross talk noise.

    PubMed

    Liu, Jung-Ping

    2011-02-01

    The cross talk noise-to-signal ratio (NSR) of an angle-multiplexed holographic data storage system is studied, and we propose a method to determine the optimized multiplexing spacing with which the cross talk noise can be less than the conventional method. In our method, the optimization location at the image plane can be chosen arbitrarily, so the multiplexing of asymmetrical image patterns can be optimized. In particular, we investigate the 90° scheme and the transmission scheme angle multiplexing. For the 90° scheme, a holographic medium with a higher refractive index is recommended for cross talk-limited multiplexing. For the transmission scheme, a holographic medium with a lower refractive index is recommended for angular range-limited multiplexing. In addition, for the transmission scheme, a larger angle between the object arm and the reference arm results in less cross talk noise, whereas the highest storage density is achieved at a 45° angle. PMID:21293527

  14. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  15. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  16. HAWAII UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    This is a point coverage of underground storage tanks(UST) for the state of Hawaii. The original database was developed and is maintained by the State of Hawaii, Dept. of Health. The point locations represent facilities where one or more underground storage tanks occur. Each fa...

  17. Wind-energy storage

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  18. Postharvest storage and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato storage makes the crop available for consumption or sale over an extended period of time. In this book chapter, the various way that potatoes are stored worldwide are described. The most important physiological defects that occur in storage are reviewed, as are the biochemical pathways of car...

  19. Grain Handling and Storage.

    ERIC Educational Resources Information Center

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  20. Characterization of heat transfer in nutrient materials. [space flight feeding

    NASA Technical Reports Server (NTRS)

    Witte, L. C.

    1985-01-01

    The processing and storage of foodstuffs in zero-g environments such as in Skylab and the space shuttle were investigated. Particular attention was given to the efficient heating of foodstuffs. The thermophysical properties of various foods were cataloged and critiqued. The low temperature storage of biological samples as well as foodstuffs during shuttle flights was studied. Research and development requirements related to food preparation and storage on the space station are discussed.