Science.gov

Sample records for additional structural features

  1. ProFold: Protein Fold Classification with Additional Structural Features and a Novel Ensemble Classifier

    PubMed Central

    2016-01-01

    Protein fold classification plays an important role in both protein functional analysis and drug design. The number of proteins in PDB is very large, but only a very small part is categorized and stored in the SCOPe database. Therefore, it is necessary to develop an efficient method for protein fold classification. In recent years, a variety of classification methods have been used in many protein fold classification studies. In this study, we propose a novel classification method called proFold. We import protein tertiary structure in the period of feature extraction and employ a novel ensemble strategy in the period of classifier training. Compared with existing similar ensemble classifiers using the same widely used dataset (DD-dataset), proFold achieves 76.2% overall accuracy. Another two commonly used datasets, EDD-dataset and TG-dataset, are also tested, of which the accuracies are 93.2% and 94.3%, higher than the existing methods. ProFold is available to the public as a web-server. PMID:27660761

  2. Structural features of bone marrow

    PubMed Central

    Romaniuk, Anatolii; Lyndina, Yuliia; Sikora, Vladyslav; Lyndin, Mykola; Karpenko, Ludmyla; Gladchenko, Oksana; Masalitin, Igor

    2016-01-01

    Purpose This article is devoted to the investigation of the structural features of the bone marrow of mature rats. Materials and methods The investigation of the structural features of the bone marrow was performed on the femurs of the mature male rats. General structure of the organ was studied with hematoxylin–eosin and Van Gieson staining of samples. Certain features of the bone marrow structure were studied using immunohistochemical method (CD3, CD79α, S100, myeloperoxidase, and cyclin D1). Results We can state that stromal–parenchymal structure is typical for the bone marrow of rats as for any other organ. The stromal component is presented with bone tissue (48.8 ± 3.3% at epiphyses), the net of blood vessels (18.7 ± 2.1%), fat tissue (11 ± 2%), fibrous tissue (0.7 ± 0.2%), and the network of reticular fibers. Hematopoietic tissue covers 20.9 ± 3.7% at the femoral epiphyses and 69.6 ± 2.2% at diaphysis. Among these tissues, myelopoiesis occupies 74.2 ± 4.7%, erythropoiesis – 24.3 ± 4.7%, and lymphopoiesis – less than 5%. Megalokaryocytes take 0.1–0.3%. Conclusion Considering the lack of significant anatomical, morphological, and histological differences of red bone marrow of rats and humans, we can state that hematopoiesis in rats takes place on the basis of the same principles as in humans, although it has certain mechanisms. PMID:28203394

  3. The suitability of concentration addition for predicting the effects of multi-component mixtures of up to 17 anti-androgens with varied structural features in an in vitro AR antagonist assay

    SciTech Connect

    Ermler, Sibylle; Scholze, Martin; Kortenkamp, Andreas

    2011-12-15

    The risks associated with human exposures to chemicals capable of antagonising the effects of endogenous androgens have attracted considerable recent interest. Exposure is typically to large numbers of chemicals with androgen receptor (AR) antagonist activity, yet there is limited evidence of the combined effects of multi-component mixtures of these chemicals. A few in vitro studies with mixtures of up to six AR antagonists suggest that the concept of concentration addition (CA) provides good approximations of experimentally observed mixture effects, but studies with larger numbers of anti-androgens, and with more varied structural features, are missing. Here we show that the mixture effects of up to 17 AR antagonists, comprising compounds as diverse as UV-filter substances, parabens, perfluorinated compounds, bisphenol-A, benzo({alpha})pyrene, synthetic musks, antioxidants and polybrominated biphenyls, can be predicted well on the basis of the anti-androgenicity of the single components using the concept of CA. We tested these mixtures in an in vitro AR-dependent luciferase reporter gene assay, based on MDA-kb2 cells. The effects of further mixtures, composed of four and six anti-androgens, could be predicted accurately by CA. However, there was a shortfall from expected additivity with a ten-component mixture at two different mixture ratios, but attempts to attribute these deviations to differential expression of hormone-metabolising CYP isoforms did not produce conclusive results. CA provides good approximations of in vitro mixture effects of anti-androgens with varying structural features. -- Highlights: Black-Right-Pointing-Pointer Humans are exposed to a large number of androgen receptor antagonists. Black-Right-Pointing-Pointer There is limited evidence of the combined effects of anti-androgenic chemicals. Black-Right-Pointing-Pointer We modelled the predictability of combined effects of up to 17 anti-androgens. Black-Right-Pointing-Pointer We tested the

  4. Application features of additives based on metakaolin in concrete

    NASA Astrophysics Data System (ADS)

    Kirsanova, A. A.; Kramar, L. Y.

    2015-01-01

    The present paper is devoted to the influence of additives based on metakaolin (U- YF, UM-YF and YF-UMD) on speed concrete strength development in the early stages of concrete hardening, as well as the strength increase in 28 days. The authors have proved that metakaolin gauging in concrete should not exceed 3%. Introduction of 5% of metakaolin or more entails the fault in concrete strength in the later stages of concrete hardening and decreases its resistance to the influence of sulfate and frosty environments. The most effective of the developed additives are UM-YF and UMD-YF which provide high sulfate and frost resistance to the concrete (up to 800 ... 1000 cycles). The above mentioned influence of additives on concrete properties is connected with an intended formation of structure of the cement matrix of concrete that is resistant to various aggressive environments.

  5. Structural features offshore northern Taiwan

    NASA Astrophysics Data System (ADS)

    Yicheng Yang, Eason; Liu, Char-Shine; Chang, Jih-Hsin; Chiu, Chien-Hsuan

    2016-04-01

    The area offshore northern Taiwan is the place where East China Sea Shelf extends into the Southern Okinawa Trough, and where pre-Pleistocene arc-continental collision had occurred. Comparison between fault distribution in the area with previously published results suggests that the fault distribution and regional structural framework are still controversial. Using marine multichannel seismic reflection data collected in 3 marine geophysical survey cruises, we remapped the fault distribution in the northern offshore area of Taiwan. By analyzing all the seismic profiles using the KINGDOM suite (a seismic interpretation software), a new fault distribution map is presented, and a subsurface unconformity PRSB (Pliocene reflection sequence boundary) is identified. Six major NE-SW trending high-angle normal faults cut the PRSB can be traced to the fault systems on land northernmost Taiwan. These normal faults are located between the Southern Okinawa Trough and the East China Sea continental shelf basin, and have been suggested to be reactivated from pre-existing reverse faults. The offsets of fault ramps in PRSB increase toward southeast. The isopach map of the study area compiled shows that sediment strata overlying PRSB thin toward northwest.

  6. Additive Manufacturing of Hierarchical Porous Structures

    SciTech Connect

    Grote, Christopher John

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  7. Feature extraction for structural dynamics model validation

    SciTech Connect

    Hemez, Francois; Farrar, Charles; Park, Gyuhae; Nishio, Mayuko; Worden, Keith; Takeda, Nobuo

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  8. Feature based Weld-Deposition for Additive Manufacturing of Complex Shapes

    NASA Astrophysics Data System (ADS)

    Panchagnula, Jayaprakash Sharma; Simhambhatla, Suryakumar

    2016-08-01

    Fabricating functional metal parts using Additive Manufacturing (AM) is a leading trend. However, realizing overhanging features has been a challenge due to the lack of support mechanism for metals. Powder-bed fusion techniques like, Selective Laser Sintering (SLS) employ easily-breakable-scaffolds made of the same material to realize the overhangs. However, the same approach is not extendible to deposition processes like laser or arc based direct energy deposition processes. Although it is possible to realize small overhangs by exploiting the inherent overhanging capability of the process or by blinding some small features like holes, the same cannot be extended for more complex geometries. The current work presents a novel approach for realizing complex overhanging features without the need of support structures. This is possible by using higher order kinematics and suitably aligning the overhang with the deposition direction. Feature based non-uniform slicing and non-uniform area-filling are some vital concepts required in realizing the same and are briefly discussed here. This method can be used to fabricate and/or repair fully dense and functional components for various engineering applications. Although this approach has been implemented for weld-deposition based system, the same can be extended to any other direct energy deposition processes also.

  9. Feature Extraction for Structural Dynamics Model Validation

    SciTech Connect

    Farrar, Charles; Nishio, Mayuko; Hemez, Francois; Stull, Chris; Park, Gyuhae; Cornwell, Phil; Figueiredo, Eloi; Luscher, D. J.; Worden, Keith

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  10. Structural features of protein folding nuclei.

    PubMed

    Garbuzynskiy, S O; Kondratova, M S

    2008-03-05

    A crucial event of protein folding is the formation of a folding nucleus. We demonstrate the presence of a considerable coincidence between the location of folding nuclei and the location of so-called "root structural motifs", which have unique overall folds and handedness. In the case of proteins with a single root structural motif, the involvement in the formation of a folding nucleus is in average significantly higher for amino acids residues that are in root structural motifs, compared to residues in other parts of the protein. The tests carried out revealed that the observed difference is statistically reliable. Thus, a structural feature that corresponds to the protein folding nucleus is now found.

  11. Phase-shifting structures for isolated features

    NASA Astrophysics Data System (ADS)

    Garofalo, Joseph G.; Kostelak, Robert L.; Yang, Tungsheng

    1991-07-01

    The technique for improving optical projection-system resolution by phase-shifting alternate apertures of a periodic grating was introduced in 1982. This halves the frequency content of the image passing through the optics and should therefore double the effective resolution of such patterns. Unfortunately, as feature separation increases, the efficacy of this method diminishes. Previous work applying a similar approach to isolated features involves introducing minute, non-printable, phase-shifted assist slots around the desired feature. The diffraction side-lobes of these slots constructively interfere with the center lobe of the primary aperture. The resolution enhancement afforded be this technique is limited by the printability of the assist slots. This restraint also dictates 1X-size reticle feature dimensions and the employment of high contrast imaging resists. A new approach entails significantly oversizing the desired feature and introducing a phase-shifting region around the periphery. This type of structure affords substantial focus-exposure improvements and may either be fabricated in a single-level, self-aligned scheme or by a two-level exposure with conventional e-beam tools since the phase-shifting regions are on the order of 1 micrometers (reticle dimensions). Extensive modeling of this structure for isolated contact holes and spaces explores the myriad of trade- offs involved in an optimum design. Mask-fabrication tolerances, such as phase-shift uniformity, are also investigated. It is shown that the focus-exposure window enlarges as the overall structure dimensions increase. The degree of enhancement must therefore by weighed against packing density restrictions. Also, the structure suffers, to some degree, from the effect of side-lobes. However, for a given side-lobe intensity, this technique yields enhancements superior to the assist-slot approach. As is typical of phase-shifted systems, performance is improved as the partial coherence ((sigma

  12. SCRATCH: a protein structure and structural feature prediction server

    PubMed Central

    Cheng, J.; Randall, A. Z.; Sweredoski, M. J.; Baldi, P.

    2005-01-01

    SCRATCH is a server for predicting protein tertiary structure and structural features. The SCRATCH software suite includes predictors for secondary structure, relative solvent accessibility, disordered regions, domains, disulfide bridges, single mutation stability, residue contacts versus average, individual residue contacts and tertiary structure. The user simply provides an amino acid sequence and selects the desired predictions, then submits to the server. Results are emailed to the user. The server is available at . PMID:15980571

  13. Identification of Mitral Annulus Hinge Point Based on Local Context Feature and Additive SVM Classifier.

    PubMed

    Zhang, Jianming; Liu, Yangchun; Xu, Wei

    2015-01-01

    The position of the hinge point of mitral annulus (MA) is important for segmentation, modeling and multimodalities registration of cardiac structures. The main difficulties in identifying the hinge point of MA are the inherent noisy, low resolution of echocardiography, and so on. This work aims to automatically detect the hinge point of MA by combining local context feature with additive support vector machines (SVM) classifier. The innovations are as follows: (1) designing a local context feature for MA in cardiac ultrasound image; (2) applying the additive kernel SVM classifier to identify the candidates of the hinge point of MA; (3) designing a weighted density field of candidates which represents the blocks of candidates; and (4) estimating an adaptive threshold on the weighted density field to get the position of the hinge point of MA and exclude the error from SVM classifier. The proposed algorithm is tested on echocardiographic four-chamber image sequence of 10 pediatric patients. Compared with the manual selected hinge points of MA which are selected by professional doctors, the mean error is in 0.96 ± 1.04 mm. Additive SVM classifier can fast and accurately identify the MA hinge point.

  14. Detecting Curvilinear Features Using Structure Tensors.

    PubMed

    Vicas, Cristian; Nedevschi, Sergiu

    2015-11-01

    Few published articles on curvilinear structures exist compared with works on detecting lines or corners with high accuracy. In medical ultrasound imaging, the structures that need to be detected appear as a collection of microstructures correlated along a path. In this paper, we investigated techniques that extract meaningful low-level information for curvilinear structures, using techniques based on structure tensor. We proposed a novel structure tensor enhancement inspired by bilateral filtering. We compared the proposed approach with five state-of-the-art curvilinear structure detectors. We tested the algorithms against simulated images with known ground truth and real images from three different domains (medical ultrasound, scanning electron microscope, and astronomy). For the real images, we employed experts to delineate the ground truth for each domain. Techniques borrowed from machine learning robustly assessed the performance of the methods (area under curve and cross validation). As a practical application, we used the proposed method to label a set of 5000 ultrasound images. We conclude that the proposed tensor-based approach outperforms the state-of-the-art methods in providing magnitude and orientation information for curvilinear structures. The evaluation methodology ensures that the employed feature-detection method will yield reproducible performance on new, unseen images. We published all the implemented methods as open-source software.

  15. Structural features of algebraic quantum notations

    NASA Astrophysics Data System (ADS)

    Gire, Elizabeth; Price, Edward

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] The formalism of quantum mechanics includes a rich collection of representations for describing quantum systems, including functions, graphs, matrices, histograms of probabilities, and Dirac notation. The varied features of these representations affect how computations are performed. For example, identifying probabilities of measurement outcomes for a state described in Dirac notation may involve identifying expansion coefficients by inspection, but if the state is described as a function, identifying those expansion coefficients often involves performing integrals. In this study, we focus on three notational systems: Dirac notation, algebraic wave-function notation, and matrix notation. These quantum notations must include information about basis states and their associated complex probability amplitudes. In this theory paper, we identify four structural features of quantum notations, which we term individuation, degree of externalization, compactness, and symbolic support for computational rules. We illustrate how student reasoning interacts with these structural features with episodes from interviews with advanced undergraduate physics majors reasoning about a superposition state of an infinite square well system. We find evidence of the students coordinating different notations through the use of Dirac notation, using an expression in Dirac notation to guide their work in another notation. These uses are supported by the high degree of individuation, compactness, and symbolic support for computation and the moderate degree of externalization provided by Dirac notation.

  16. Structure Property Studies for Additively Manufactured Parts

    SciTech Connect

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  17. In situ formation of the first proteinogenically functionalized [TeW6O24O2(Glu)]7– structure reveals unprecedented chemical and geometrical features of the Anderson-type cluster† †Electronic supplementary information (ESI) available: Full experimental details and additional figures are provided. See DOI: 10.1039/c6cc07004c Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Molitor, Christian; Bijelic, Aleksandar

    2016-01-01

    The chemistry of polyoxometalates (POMs) in a protein environment is an almost unexplored but highly relevant research field as important biological and pharmacological attributes of certain POMs are based on their interactions with proteins. We report on the A-type Anderson–Evans polyoxotungstate, [TeW6O24]6– (TEW), mediated crystallization of Coreopsis grandiflora aurone synthase (cgAUS1) using ∼0.24 mM protein and 1.0 mM TEW. The 1.78 Å crystal structure reveals the covalent binding of TEW to the protein under the formation of an unprecedented polyoxotungstate cluster, [TeW6O24O2(Glu)]7– (GluTEW). The polyoxotungstate–protein complex exhibits the first covalent bond between a protein and the A-type Anderson–Evans cluster, an archetype where up to now no hybrid structures exist. The polyoxotungstate is modified at two of its six addenda tungsten atoms, which covalently bind to the carboxylic oxygen atoms of glutamic acid (Glu157), leading to W–O distances of ∼2.35 Å. This ligand substitution reaction is accompanied by a reduction of the coordination number of two μ3 polyoxotungstate oxygen atoms. This is so far unique since all known hybridizations of the Anderson–Evans POM with organic units have been obtained via the functionalization of the B-type Anderson–Evans structure through its bridging oxygen atoms. The structure reported here proves the reactivity of this POM archetype's addenda atoms as it has been administered into the protein solution as a pre-assembled cluster. Moreover, the novel cluster [TeW6O24O2(Glu)]7– displays the great versatility of the Anderson–Evans POM class. PMID:27722437

  18. Quantifying Wrinkle Features of Thin Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Naton, M. C.

    2004-01-01

    For future micro-systems utilizing membrane based structures, quantified predictions of wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made. This work demonstrates that critical assumptions include: effects of gravity, supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 m x 02 m membrane is treated as a structural material with non-negligible bending stiffness. Finite element modeling is used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density and thickness for cases with differing initial conditions are independent of assumed initial conditions. In addition, analysis results indicate that the relationship between wrinkle amplitude scale (W/t) and structural scale (L/t) is independent of the nonlinear relationship between thickness and stiffness.

  19. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking.

    PubMed

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the "laws of perceptual organization" proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. "Additive effect" refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The "where" and "what" pathways might have played an important role in the additive grouping effect.

  20. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking

    PubMed Central

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875

  1. Structural features of plastic deformation in bulk metallic glasses

    SciTech Connect

    Scudino, S. Shakur Shahabi, H.; Stoica, M.; Kühn, U.; Kaban, I.; Escher, B.; Eckert, J.; Vaughan, G. B. M.

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  2. Aromatase inhibitors: structural features and biochemical characterization.

    PubMed

    Hong, Yanyan; Chen, Shiuan

    2006-11-01

    Aromatase is the enzyme synthesizing estrogens from androgens. In estrogen-dependent breast tumors, estrogens induce the expression of growth factors responsible for cancer cell proliferation. In situ estrogen synthesis by aromatase "is thought to play a key role in the promotion of breast cancer growth. Aromatase inhibitors (AIs) provide new approaches for the prevention and treatment of breast cancer by inhibiting estrogen biosynthesis. Through reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical techniques, aromatase has been found to be expressed in many endocrine tissues and tumors originating from these tissues. Unexpectedly, this enzyme is now known to also be expressed in liver, lung, and colon cancers. Such findings suggest a potential role for endocrine manipulation of these types of cancer using AIs. Three Food and Drug Administration (FDA)-approved AIs, anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin), effectively challenging tamoxifen, have been used as first-line drugs in the treatment of hormone-dependent breast cancer, and possibly other aromatase-expressing cancers. In addition, natural anti-aromatase chemicals, such as flavones and coumarins, have been identified. Efforts to develop new lines of AIs derived from these phytochemicals have been initiated in several laboratories. Finally, significant progress has been made in the understanding of the structure-function relationship of aromatase. Such information has helped the examination of binding characteristics of AIs, the evaluation of reaction mechanism of aromatase, and the explanation of the molecular basis for a low catalytic activity of the natural variant, M364T.

  3. Anatomical features of acute mitral valve repair dysfunction: Additional value of three-dimensional echocardiography.

    PubMed

    Derkx, Salomé; Nguyen, Virginia; Cimadevilla, Claire; Verdonk, Constance; Lepage, Laurent; Raffoul, Richard; Nataf, Patrick; Vahanian, Alec; Messika-Zeitoun, David

    2017-03-01

    Recurrence of mitral regurgitation after mitral valve repair is correlated with unfavourable left ventricular remodelling and poor outcome. This pictorial review describes the echocardiographic features of three types of acute mitral valve repair dysfunction, and the additional value of three-dimensional echocardiography.

  4. Structure damage detection based on random forest recursive feature elimination

    NASA Astrophysics Data System (ADS)

    Zhou, Qifeng; Zhou, Hao; Zhou, Qingqing; Yang, Fan; Luo, Linkai

    2014-05-01

    Feature extraction is a key former step in structural damage detection. In this paper, a structural damage detection method based on wavelet packet decomposition (WPD) and random forest recursive feature elimination (RF-RFE) is proposed. In order to gain the most effective feature subset and to improve the identification accuracy a two-stage feature selection method is adopted after WPD. First, the damage features are sorted according to original random forest variable importance analysis. Second, using RF-RFE to eliminate the least important feature and reorder the feature list each time, then get the new feature importance sequence. Finally, k-nearest neighbor (KNN) algorithm, as a benchmark classifier, is used to evaluate the extracted feature subset. A four-storey steel shear building model is chosen as an example in method verification. The experimental results show that using the fewer features got from proposed method can achieve higher identification accuracy and reduce the detection time cost.

  5. Structural Features of Algebraic Quantum Notations

    ERIC Educational Resources Information Center

    Gire, Elizabeth; Price, Edward

    2015-01-01

    The formalism of quantum mechanics includes a rich collection of representations for describing quantum systems, including functions, graphs, matrices, histograms of probabilities, and Dirac notation. The varied features of these representations affect how computations are performed. For example, identifying probabilities of measurement outcomes…

  6. Comparison of additive image fusion vs. feature-level image fusion techniques for enhanced night driving

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Reese, Colin E.; Van Der Wal, Gooitzen S.

    2003-02-01

    The Night Vision & Electronic Sensors Directorate (NVESD) has conducted a series of image fusion evaluations under the Head-Tracked Vision System (HTVS) program. The HTVS is a driving system for both wheeled and tracked military vehicles, wherein dual-waveband sensors are directed in a more natural head-slewed imaging mode. The HTVS consists of thermal and image-intensified TV sensors, a high-speed gimbal, a head-mounted display, and a head tracker. A series of NVESD field tests over the past two years has investigated the degree to which additive (A+B) image fusion of these sensors enhances overall driving performance. Additive fusion employs a single (but user adjustable) fractional weighting for all the features of each sensor's image. More recently, NVESD and Sarnoff Corporation have begun a cooperative effort to evaluate and refine Sarnoff's "feature-level" multi-resolution (pyramid) algorithms for image fusion. This approach employs digital processing techniques to select at each image point only the sensor with the strongest features, and to utilize only those features to reconstruct the fused video image. This selection process is performed simultaneously at multiple scales of the image, which are combined to form the reconstructed fused image. All image fusion techniques attempt to combine the "best of both sensors" in a single image. Typically, thermal sensors are better for detecting military threats and targets, while image-intensified sensors provide more natural scene cues and detect cultural lighting. This investigation will address the differences between additive fusion and feature-level image fusion techniques for enhancing the driver's overall situational awareness.

  7. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  8. Feature and Statistical Model Development in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network

  9. An Indian boy with additional features in Pallister-Killian syndrome.

    PubMed

    Shah, Krati; George, Renu; Balla, Evangelynn Singh; Oommen, Samuel P; Padankatti, Caroline S; Srivastava, Vivi M; Danda, Sumita

    2012-09-01

    Pallister-Killian syndrome (PKS; OMIM: # 601803) is a rare sporadic genetic disorder characterized by pigmentary skin changes, distinctive dysmorphology, developmental delay, and mosaicism for tetrasomy of chromosome 12p. The authors report a case of PKS in a 2-y-old boy. He had pigmentary skin changes, characteristic facial features, developmental delay and hearing loss. He had sacral and post-auricular pits in addition, which has not yet been reported. A diagnosis of PKS was suspected on the basis of the patient's clinical features. Skin fibroblast culture was done which showed mosaic tetrasomy of isochromosome 12p consistent with Pallister-Killian syndrome. This case highlights the importance of dysmorphology as a diagnostic tool for recognition and accurate genetic counseling in genetic syndromes.

  10. Nimbus IV View of the Major Structural Features of Alaska.

    PubMed

    Lathram, E H

    1972-03-31

    Notwithstanding the relatively low degree of ground resolution, many of the major structural features of Alaska can be identified on the Nimbus IV IDCS image, exposed at an altitude of 600 nautical miles (1100 km). In addition, linears of regional extent that may be structurally controlled can be seen, many of which have not yet been recognized in surface mapping. The synoptic view provided by the image brings into focus an orthogonal set of fractures trending north-northeast and east-south-east and not heretofore apparent in regional maps of Alaska. This orthogonal fracture set may reflect a conjugate set of fractures within the crust, which has exerted significant control over the geologic history of the state. Increased resolution in other images from space platforms, such as the resolution of 200 to 650 feet (60 to 200 m) planned for the satellite television cameras of the ERTS program (20), will permit the discernment of finer detail and a greater accuracy in identifying and locating geologic features.

  11. Structural features of reconstituted wheat wax films

    PubMed Central

    Pambou, Elias; Li, Zongyi; Campana, Mario; Hughes, Arwel; Clifton, Luke; Gutfreund, Philipp; Foundling, Jill

    2016-01-01

    Cuticular waxes are essential for the well-being of all plants, from controlling the transport of water and nutrients across the plant surface to protecting them against external environmental attacks. Despite their significance, our current understanding regarding the structure and function of the wax film is limited. In this work, we have formed representative reconstituted wax film models of controlled thicknesses that facilitated an ex vivo study of plant cuticular wax film properties by neutron reflection (NR). Triticum aestivum L. (wheat) waxes were extracted from two different wheat straw samples, using two distinct extraction methods. Waxes extracted from harvested field-grown wheat straw using supercritical CO2 are compared with waxes extracted from laboratory-grown wheat straw via wax dissolution by chloroform rinsing. Wax films were produced by spin-coating the two extracts onto silicon substrates. Atomic force microscopy and cryo-scanning electron microscopy imaging revealed that the two reconstituted wax film models are ultrathin and porous with characteristic nanoscale extrusions on the outer surface, mimicking the structure of epicuticular waxes found upon adaxial wheat leaf surfaces. On the basis of solid–liquid and solid–air NR and ellipsometric measurements, these wax films could be modelled into two representative layers, with the diffuse underlying layer fitted with thicknesses ranging from approximately 65 to 70 Å, whereas the surface extrusion region reached heights exceeding 200 Å. Moisture-controlled NR measurements indicated that water penetrated extensively into the wax films measured under saturated humidity and under water, causing them to hydrate and swell significantly. These studies have thus provided a useful structural basis that underlies the function of the epicuticular waxes in controlling the water transport of crops. PMID:27466439

  12. Featured Image: Structures in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    This beautiful false-color image (which covers 57 degrees2; click for the full view!) reveals structures in the hydrogen gas that makes up the diffuse atomic interstellar medium at intermediate latitudes in our galaxy. The imagewas created by representing three velocity channels with colors red for gas moving at 7.59 km/s, green for 5.12 km/s, and blue for 2.64 km/s and it shows the dramatically turbulent and filamentary structure of this gas. This image is one of many stunning, high-resolution observations that came out of the DRAO HI Intermediate Galactic Latitude Survey, a program that used the Synthesis Telescope at the Dominion Radio Astrophysical Observatory in British Columbia to map faint hydrogen emission at intermediate latitudes in the Milky Way. The findings from the program were recently published in a study led by Kevin Blagrave (Canadian Institute for Theoretical Astrophysics, University of Toronto); to find out more about what they learned, check out the paper below!CitationK. Blagrave et al 2017 ApJ 834 126. doi:10.3847/1538-4357/834/2/126

  13. Biobased extreme pressure additives: Structure-property considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...

  14. Toxicological features of maleilated polyflavonoids from Pinus radiata (D. Don.) as potential functional additives for biomaterials design.

    PubMed

    García, Danny E; Medina, Paulina A; Zúñiga, Valentina I

    2017-03-14

    Polyflavonoids from Pinus radiata (D. Don.) are an abundant natural oligomers highly desirable as renewable chemicals. However, structural modification of polyflavonoids is a viable strategy in order to use such polyphenols as macrobuilding-blocks for biomaterial design. Polyflavonoids were esterified with three five-member cyclic anhydrides (maleic, itaconic, and citraconic) at 20 °C during 24 h in order to diversify physicochemical-, and biological-properties for agricultural, and food-packaging applications. In addition, the influence of the chemical modification, as well as the chemical structure of the grafting on toxicological features was evaluated. Structural features of derivatives were analyzed by spectroscopy (FT-IR and (1)H-NMR), and the degree of substitution was calculated. Toxicological profile was assessed by using three target species in a wide range of concentration (0.01-100 mgL(-)(1)). Effect of polyflavonoids on the growth rate (Selenastrum capricornutum), mortality (Daphnia magna), and germination and radicle length (Lactuca sativa) was determined. Chemical modification affects the toxicological profile on the derivatives in a high extent. Results described remarkable differences in function of the target specie. The bioassays indicate differences of the polyflavonoids toxicological profile associated to the chemical structure of the grafting. Results allowed conclude that polyflavonoids from pine bark show slight toxic properties.

  15. Additive Manufacturing of Metal Cellular Structures: Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Yang, Li; Harrysson, Ola; Cormier, Denis; West, Harvey; Gong, Haijun; Stucker, Brent

    2015-03-01

    With the rapid development of additive manufacturing (AM), high-quality fabrication of lightweight design-efficient structures no longer poses an insurmountable challenge. On the other hand, much of the current research and development with AM technologies still focuses on material and process development. With the design for additive manufacturing in mind, this article explores the design issue for lightweight cellular structures that could be efficiently realized via AM processes. A unit-cell-based modeling approach that combines experimentation and limited-scale simulation was demonstrated, and it was suggested that this approach could potentially lead to computationally efficient design optimizations with the lightweight structures in future applications.

  16. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  17. Coding of odor stimulus features among secondary olfactory structures

    PubMed Central

    Xia, Christina Z.; Adjei, Stacey

    2015-01-01

    Sensory systems must represent stimuli in manners dependent upon a wealth of factors, including stimulus intensity and duration. One way the brain might handle these complex functions is to assign the tasks throughout distributed nodes, each contributing to information processing. We sought to explore this important aspect of sensory network function in the mammalian olfactory system, wherein the intensity and duration of odor exposure are critical contributors to odor perception. This is a quintessential model for exploring processing schemes given the distribution of odor information by olfactory bulb mitral and tufted cells into several anatomically distinct secondary processing stages, including the piriform cortex (PCX) and olfactory tubercle (OT), whose unique contributions to odor coding are unresolved. We explored the coding of PCX and OT neuron responses to odor intensity and duration. We found that both structures similarly partake in representing descending intensities of odors by reduced recruitment and modulation of neurons. Additionally, while neurons in the OT adapt to odor exposure, they display reduced capacity to adapt to either repeated presentations of odor or a single prolonged odor presentation compared with neurons in the PCX. These results provide insights into manners whereby secondary olfactory structures may, at least in some cases, uniquely represent stimulus features. PMID:26041832

  18. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  19. Sturgeon Osteocalcin Shares Structural Features with Matrix Gla Protein

    PubMed Central

    Viegas, Carla S. B.; Simes, Dina C.; Williamson, Matthew K.; Cavaco, Sofia; Laizé, Vincent; Price, Paul A.; Cancela, M. Leonor

    2013-01-01

    Osteocalcin (OC) and matrix Gla protein (MGP) are considered evolutionarily related because they share key structural features, although they have been described to exert different functions. In this work, we report the identification and characterization of both OC and MGP from the Adriatic sturgeon, a ray-finned fish characterized by a slow evolution and the retention of many ancestral features. Sturgeon MGP shows a primary structure, post-translation modifications, and patterns of mRNA/protein distribution and accumulation typical of known MGPs, and it contains seven possible Gla residues that would make the sturgeon protein the most γ-carboxylated among known MGPs. In contrast, sturgeon OC was found to present a hybrid structure. Indeed, although exhibiting protein domains typical of known OCs, it also contains structural features usually found in MGPs (e.g. a putative phosphorylated propeptide). Moreover, patterns of OC gene expression and protein accumulation overlap with those reported for MGP; OC was detected in bone cells and mineralized structures but also in soft and cartilaginous tissues. We propose that, in a context of a reduced rate of evolution, sturgeon OC has retained structural features of the ancestral protein that emerged millions of years ago from the duplication of an ancient MGP gene and may exhibit intermediate functional features. PMID:23884418

  20. Structural transformation features in titanium crystallite under mechanical loading

    SciTech Connect

    Kryzhevich, Dmitrij S.

    2015-10-27

    The features of defect structure generation and development in titanium crystallites were studied on the basis of molecular dynamics method. Interatomic interaction was described using many-body potentials calculated in the approximation of the embedded atom method. It is shown that local structural changes begin to occur in the crystallite at the achievement of a threshold strain value, which is accompanied by a dramatic decrease of potential energy. The features of the formation of local structural changes, which are precursors of classical stacking faults, were studied.

  1. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.

  2. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  3. Nonlinear feature identification of impedance-based structural health monitoring

    SciTech Connect

    Rutherford, A. C.; Park, G. H.; Sohn, H.; Farrar, C. R.

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  4. Periadnexal Mucin as an Additional Histopathologic Feature of Chronic Eczematous Dermatitis

    PubMed Central

    Lee, Noo Ri; Kim, Jae-Hong; Park, Hwa-Young; Yoon, Na Young

    2015-01-01

    Background Cutaneous mucinoses are a heterogeneous group of disorders characterized by an abnormal amount of mucin in the skin. However, the pathomechanism of an excessive mucin deposition in the skin is still unknown. Eczematous dermatitis is sub-classified histologically into acute, subacute, and chronic variants. The characteristic histopathologic findings for chronic eczema are variable. However, periadnexal mucin deposition is not known as a feature of chronic eczema. Objective To evaluate the presence of periadnexal mucin deposition in chronic eczematous dermatitis. Methods We analyzed the skin biopsy specimens from 36 patients who were pathologically diagnosed with chronic eczematous dermatitis. Alcian blue, colloidal iron, and periodic acid-Schiff stains were used to evaluate the mucin deposition in histologic sections. Two dermatologists and two dermatopathologists evaluated the degree of mucin deposition using a 4-point scale. Results Various amounts of mucin deposition were observed in the periadnexal area of patients who were diagnosed with chronic eczema. Mucin deposition was more visible after staining with mucin-specific stains. Evaluation of the staining analysis scores revealed that the staining intensities were significantly higher in patients with chronic eczema than age- and site-matched controls (normal, acute to subacute eczema, and psoriasis vulgaris). Conclusion Periadnexal mucin (secondary mucinoses) may be an additional finding of chronic eczematous dermatitis. PMID:25834351

  5. 113. Stage level floor structure. In addition to the movable ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. Stage level floor structure. In addition to the movable sections, there were hinged slots that could be opened in the stage floor (see sheet 4 of 9, note 4; sheet 5 of 9, note 2; and sheet 7 of 9, note 1). A remaining cast iron bracket is visible in the left foreground of the photograph. The actual structure for a hinged section is visible in the background, to the right of center. The hydraulic ram (type D) visible below the floor level is the south ram in the middle row; the view is facing north. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  6. Features and characterization needs of rubber composite structures

    NASA Technical Reports Server (NTRS)

    Tabaddor, Farhad

    1989-01-01

    Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.

  7. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation.

    PubMed

    Alhaj, Taqwa Ahmed; Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin

    2016-01-01

    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset.

  8. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation

    PubMed Central

    Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin

    2016-01-01

    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821

  9. Electrophysical properties and structural features of shungite (natural nanostructured carbon)

    NASA Astrophysics Data System (ADS)

    Golubev, E. A.

    2013-05-01

    This paper presents the results of investigations of the electrical conductive properties with a nanoscale locality at nanoampere currents and the results of an analysis of the correlation between the electrical conductivity and structural features of natural glassy carbon, i.e., shungite. The investigations have been performed using atomic force microscopy, electric force spectroscopy, scanning spreading resistance microscopy, X-ray spectroscopic analysis, and Raman spectroscopy. It has been found that there are differences in electrical conductive properties of the structurally similar shungite samples formed under different PT conditions. Based on the analysis of the structural parameters and specific features of the shungite compositions, it has been shown that the effect of intercalation of impurities into boundary layers of graphene sheets has the most significant influence on the electrical and physical properties of the shungites. The differences in types and values of conductivity of the shungite samples are determined by the different degrees of intercalation.

  10. Lithospheric structure on Venus from tectonic modelling of compressional features

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1987-01-01

    In previous studies, extensional models were used that incorporated realistic rheologies in order to constrain lithospheric structure. Lithospheric modelling is considered herein from the standpoint of compressional deformation. Features of presumed compressional tectonic origin are reviewed and a model for compressional folding based on lithospheric strength envelopes are presented that include the effects of both brittle and ductile yielding as well as finite elastic strength. Model predictions are then compared with the widths and spacings of observed tectonic features and it is concluded that the results are consistent with a thin crust overlying a relatively stronger mantle, with thermal gradients probably in the range of 10 to 15 deg/km.

  11. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features

    PubMed Central

    Iwata, Hiroaki; Gotoh, Osamu

    2012-01-01

    Spliced alignment plays a central role in the precise identification of eukaryotic gene structures. Even though many spliced alignment programs have been developed, recent rapid progress in DNA sequencing technologies demands further improvements in software tools. Benchmarking algorithms under various conditions is an indispensable task for the development of better software; however, there is a dire lack of appropriate datasets usable for benchmarking spliced alignment programs. In this study, we have constructed two types of datasets: simulated sequence datasets and actual cross-species datasets. The datasets are designed to correspond to various real situations, i.e. divergent eukaryotic species, different types of reference sequences, and the wide divergence between query and target sequences. In addition, we have developed an extended version of our program Spaln, which incorporates two additional features to the scoring scheme of the original version, and examined this extended version, Spaln2, together with the original Spaln and other representative aligners based on our benchmark datasets. Although the effects of the modifications are not individually striking, Spaln2 is consistently most accurate and reasonably fast in most practical cases, especially for plants and fungi and for increasingly divergent pairs of target and query sequences. PMID:22848105

  12. Duplication of distal 17q from a maternal translocation: an additional case with some unique features.

    PubMed Central

    Caine, A; Knapton, D M; Mueller, R F; Congdon, P J; Haigh, D

    1989-01-01

    A female with multiple dysmorphic features was found to have an unbalanced karyotype with duplication of the distal long arm of chromosome 17 and deletion of the terminal region of the short arm of chromosome 12. This was derived from a reciprocal translocation in the mother, 46,XX,t(12;17)(p13.3;q23). Clinical findings are presented and comparison with other reported cases of distal 17q duplication shows several unique features in our case. Images PMID:2810342

  13. Additive Manufacturing of Metal Structures at the Micrometer Scale.

    PubMed

    Hirt, Luca; Reiser, Alain; Spolenak, Ralph; Zambelli, Tomaso

    2017-01-04

    Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro-stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser-assisted electrophoretic deposition, laser-induced forward transfer, local electroplating methods, laser-induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1-10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques.

  14. New features in the structure of the classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Gladman, Brett; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gwyn, Stephen; Kavelaars, J. J.; Petit, Jean-Marc; Volk, Kathryn; OSSOS Collaboration

    2016-10-01

    We report fascinating new dynamical structures emerging from a higher precision view of the classical Kuiper belt (the plentiful non-resonant orbits with semimajor axes in roughly the a=35-60 au range). The classical Kuiper Belt divides into multiple sub-populations: an 'inner' classical belt (a small group of non-resonant objects with a<39.4 au where the 3:2 resonance is located), an abundant 'main' classical belt (between the 3:2 and the 2:1 at a=47.4 au), and a difficult to study outer classical belt beyond the 2:1. We examine the dynamical structure, as precisely revealed in the detections from OSSOS (the Outer Solar System Origin's Survey); the data set is of superb quality in terms of orbital element and numbers of detections (Kavelaars et al, this meeting).The previous CFEPS survey showed that the main classical belt requires a complex dynamical substructure that goes beyond a simple 'hot versus cold' division based primarily on orbital inclination; the 'cold' inclination component requires two sub-components in the semimajor axis and perihelion distance q space (Petit et al 2011). CFEPS modelled this as a 'stirred' component present at all a=40-47 AU semimajor axes, with a dense superposed 'kernel' near a=44 AU at low eccentricity; the first OSSOS data release remained consistent with this (Bannister et al 2016). As with the main asteroid belt, as statistics and orbital quality improve we see additional significant substructure emerging in the classical belt's orbital distribution.OSSOS continues to add evidence that the cold stirred component extends smoothly beyond the 2:1 (Bannister et al 2016). Unexpectedly, the data also reveal the clear existence of a paucity of orbits just beyond the outer edge of the kernel; there are significantly fewer TNOs in the narrow semimajor axis band from a=44.5-45.0 AU. This may be related to the kernel population's creation, or it may be an independent feature created by planet migration as resonances moved in the

  15. Conformational Features of Topologically Classified RNA Secondary Structures

    PubMed Central

    Chiu, Jimmy Ka Ho; Chen, Yi-Ping Phoebe

    2012-01-01

    Background Current RNA secondary structure prediction approaches predict prevalent pseudoknots such as the H-pseudoknot and kissing hairpin. The number of possible structures increases drastically when more complex pseudoknots are considered, thus leading to computational limitations. On the other hand, the enormous population of possible structures means not all of them appear in real RNA molecules. Therefore, it is of interest to understand how many of them really exist and the reasons for their preferred existence over the others, as any new findings revealed by this study might enhance the capability of future structure prediction algorithms for more accurate prediction of complex pseudoknots. Methodology/Principal Findings A novel algorithm was devised to estimate the exact number of structural possibilities for a pseudoknot constructed with a specified number of base pair stems. Then, topological classification was applied to classify RNA pseudoknotted structures from data in the RNA STRAND database. By showing the vast possibilities and the real population, it is clear that most of these plausible complex pseudoknots are not observed. Moreover, from these classified motifs that exist in nature, some features were identified for further investigation. It was found that some features are related to helical stacking. Other features are still left open to discover underlying tertiary interactions. Conclusions Results from topological classification suggest that complex pseudoknots are usually some well-known motifs that are themselves complex or the interaction results of some special motifs. Heuristics can be proposed to predict the essential parts of these complex motifs, even if the required thermodynamic parameters are currently unknown. PMID:22792195

  16. Structural features of carbon materials synthesized by different methods

    NASA Astrophysics Data System (ADS)

    Streletskii, O. A.; Ivanenko, I. P.; Khvostov, V. V.; Savchenko, N. F.; Nishchak, O. Yu.; Aleksandrov, A. F.

    2016-10-01

    This paper presents the results of investigations of three types of carbon structures synthesized by different methods, such as arc discharge plasma enhanced chemical vapor deposition of carbon in a magnetic field, chemical dehydrohalogenation of the poly(vinyl chloride)/poly(vinylidene chloride) precursor, and pulsed plasma ion assisted deposition. It has been found that the samples prepared by different methods have a common feature, i.e., the presence of three-dimensional clusters based on sp 2- or sp 3-bonds surrounded by quasi-one-dimensional carbon chains. It has been shown that the structure of carbon materials changes depending on the synthesis conditions.

  17. Weighted Feature Significance: A Simple, Interpretable Model of Compound Toxicity Based on the Statistical Enrichment of Structural Features

    PubMed Central

    Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.

    2009-01-01

    In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) data from Salmonella typhimurium reverse mutagenicity assays conducted by the U.S. National Toxicology Program, and (3) hepatotoxicity data published in the Registry of Toxic Effects of Chemical Substances. Enrichments of structural features in toxic compounds are evaluated for their statistical significance and compiled into a simple additive model of toxicity and then used to score new compounds for potential toxicity. The predictive power of the model for cytotoxicity was validated using an independent set of compounds from the U.S. Environmental Protection Agency tested also at the National Institutes of Health Chemical Genomics Center. We compared the performance of our WFS approach with classical classification methods such as Naive Bayesian clustering and support vector machines. In most test cases, WFS showed similar or slightly better predictive power, especially in the prediction of hepatotoxic compounds, where WFS appeared to have the best performance among the three methods. The new algorithm has the important advantages of simplicity, power, interpretability, and ease of implementation. PMID:19805409

  18. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  19. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  20. Features of the Correlation Structure of Price Indices

    PubMed Central

    Gao, Xiangyun; An, Haizhong; Zhong, Weiqiong

    2013-01-01

    What are the features of the correlation structure of price indices? To answer this question, 5 types of price indices, including 195 specific price indices from 2003 to 2011, were selected as sample data. To build a weighted network of price indices each price index is represented by a vertex, and a positive correlation between two price indices is represented by an edge. We studied the features of the weighted network structure by applying economic theory to the analysis of complex network parameters. We found that the frequency of the price indices follows a normal distribution by counting the weighted degrees of the nodes, and we identified the price indices which have an important impact on the network's structure. We found out small groups in the weighted network by the methods of k-core and k-plex. We discovered structure holes in the network by calculating the hierarchy of the nodes. Finally, we found that the price indices weighted network has a small-world effect by calculating the shortest path. These results provide a scientific basis for macroeconomic control policies. PMID:23593399

  1. Features of the correlation structure of price indices.

    PubMed

    Gao, Xiangyun; An, Haizhong; Zhong, Weiqiong

    2013-01-01

    What are the features of the correlation structure of price indices? To answer this question, 5 types of price indices, including 195 specific price indices from 2003 to 2011, were selected as sample data. To build a weighted network of price indices each price index is represented by a vertex, and a positive correlation between two price indices is represented by an edge. We studied the features of the weighted network structure by applying economic theory to the analysis of complex network parameters. We found that the frequency of the price indices follows a normal distribution by counting the weighted degrees of the nodes, and we identified the price indices which have an important impact on the network's structure. We found out small groups in the weighted network by the methods of k-core and k-plex. We discovered structure holes in the network by calculating the hierarchy of the nodes. Finally, we found that the price indices weighted network has a small-world effect by calculating the shortest path. These results provide a scientific basis for macroeconomic control policies.

  2. Addition of electrophilic lipids to actin alters filament structure

    SciTech Connect

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores . E-mail: dperezsala@cib.csic.es

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} (15d-PGJ{sub 2}) and PGA{sub 1} in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA{sub 1} and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ{sub 2} or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ{sub 2} at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  3. Faxing Structures to the Moon: Freeform Additive Construction System (FACS)

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Wilcox, Brian; McQuin, Christopher; Townsend, Julie; Rieber, Richard; Barmatz, Martin; Leichty, John

    2013-01-01

    Using the highly articulated All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility system as a precision positioning tool, a variety of print head technologies can be used to 3D print large-scale in-situ structures on planetary surfaces such as the moon or Mars. In effect, in the same way CAD models can be printed in a 3D printer, large-scale structures such as walls, vaults, domes, berms, paving, trench walls, and other insitu derived elements can be FAXed to the planetary surface and built in advance of the arrival of crews, supplementing equipment and materials brought from earth. This paper discusses the ATHLETE system as a mobility / positioning platform, and presents several options for large-scale additive print head technologies, including tunable microwave "sinterator" approaches and in-situ concrete deposition. The paper also discusses potential applications, such as sintered-in-place habitat shells, radiation shielding, road paving, modular bricks, and prefabricated construction components.

  4. Addition of electrophilic lipids to actin alters filament structure.

    PubMed

    Gayarre, Javier; Sánchez, David; Sánchez-Gómez, Francisco J; Terrón, María C; Llorca, Oscar; Pérez-Sala, Dolores

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and PGA(1) in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA(1) and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ(2) or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ(2) at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  5. Nanoscale structural features determined by AFM for single virus particles

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Wen W.; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-10-01

    In this work, we propose ``single-image analysis'', as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  6. Diamond field emitter array cathodes and possibilities for employing additive manufacturing for dielectric laser accelerating structures

    SciTech Connect

    Simakov, Evgenya Ivanovna; Andrews, Heather Lynn; Herman, Matthew Joseph; Hubbard, Kevin Mark; Weis, Eric

    2016-09-20

    These are slides for a presentation at Stanford University. The outline is as follows: Motivation: customers for compact accelerators, LANL's technologies for laser acceleration, DFEA cathodes, and additive manufacturing of micron-size structures. Among the stated conclusions are the following: preliminary study identified DFEA cathodes as promising sources for DLAs--high beam current and small emittance; additive manufacturing with Nanoscribe Professional GT can produce structures with the right scale features for a DLA operating at micron wavelengths (fabrication tolerances need to be studied, DLAs require new materials). Future plans include DLA experiment with a beam produced by the DFEA cathode with field emission, demonstration of photoemission from DFEAs, and new structures to print and test.

  7. Structural damage identification via a combination of blind feature extraction and sparse representation classification

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Nagarajaiah, Satish

    2014-03-01

    This paper addresses two problems in structural damage identification: locating damage and assessing damage severity, which are incorporated into the classification framework based on the theory of sparse representation (SR) and compressed sensing (CS). The sparsity nature implied in the classification problem itself is exploited, establishing a sparse representation framework for damage identification. Specifically, the proposed method consists of two steps: feature extraction and classification. In the feature extraction step, the modal features of both the test structure and the reference structure model are first blindly extracted by the unsupervised complexity pursuit (CP) algorithm. Then in the classification step, expressing the test modal feature as a linear combination of the bases of the over-complete reference feature dictionary—constructed by concatenating all modal features of all candidate damage classes—builds a highly underdetermined linear system of equations with an underlying sparse representation, which can be correctly recovered by ℓ1-minimization; the non-zero entry in the recovered sparse representation directly assigns the damage class which the test structure (feature) belongs to. The two-step CP-SR damage identification method alleviates the training process required by traditional pattern recognition based methods. In addition, the reference feature dictionary can be of small size by formulating the issues of locating damage and assessing damage extent as a two-stage procedure and by taking advantage of the robustness of the SR framework. Numerical simulations and experimental study are conducted to verify the developed CP-SR method. The problems of identifying multiple damage, using limited sensors and partial features, and the performance under heavy noise and random excitation are investigated, and promising results are obtained.

  8. Features of the Ti-40Nb alloy prototype formation by 3D additive method

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu. P.; Kovalevskaya, Zh. G.; Khimich, M. A.; Eroshenko, A. Yu.; Saprykin, A. A.; Ibragimov, E. A.; Glukhov, I. A.

    2016-11-01

    The structure of Ti-40Nb alloy prototype obtained by selective laser melting (SLM) on "VARISKAF 100MV" installation was considered by the methods of optical metallography, scanning and transmission electron microscopy. It was revealed that the most of the specimens' surface is uniform flowed surface with typical banded structure formed by laying-on molten pools. The process of the individual layer formation was followed by drop formation. This leads to the porosity formation on the specimen's surface. The structure of entire specimen is not homogeneous throughout the transverse section. The porosity of three kinds is observed. They are cavities of not full contact and melting of the layers, drawholes, gas pores. The porosity optimization requires more careful SLM modes selection. The alloy has a grain structure with anisotropy from small (2-8 µm) to medium (8-20 µm) grain size. The anisotropy of the specimen is formed in each layer and is retained during building of the specimen. The grains of microstructure are formed by the main β-phase with precipitations of nonequilibrium α″-martensite on the boundaries and within the grains.

  9. Landscape Features Shape Genetic Structure in Threatened Northern Spotted Owls

    USGS Publications Warehouse

    Funk, W. Chris; Forsman, Eric D.; Mullins, Thomas D.; Haig, Susan M.

    2008-01-01

    Several recent studies have shown that landscape features can strongly affect spatial patterns of gene flow and genetic variation. Understanding landscape effects on genetic variation is important in conservation for defining management units and understanding movement patterns. The landscape may have little effect on gene flow, however, in highly mobile species such as birds. We tested for genetic breaks associated with landscape features in the northern spotted owl (Strix occidentalis caurina), a threatened subspecies associated with old forests in the U.S. Pacific Northwest and extreme southwestern Canada. We found little evidence for distinct genetic breaks in northern spotted owls using a large microsatellite dataset (352 individuals from across the subspecies' range genotyped at 10 loci). Nonetheless, dry low-elevation valleys and the Cascade and Olympic Mountains restrict gene flow, while the Oregon Coast Range facilitates it. The wide Columbia River is not a barrier to gene flow. In addition, inter-individual genetic distance and latitude were negatively related, likely reflecting northward colonization following Pleistocene glacial recession. Our study shows that landscape features may play an important role in shaping patterns of genetic variation in highly vagile taxa such as birds.

  10. Structural features and domain organization of huntingtin fibrils.

    PubMed

    Bugg, Charles W; Isas, J Mario; Fischer, Torsten; Patterson, Paul H; Langen, Ralf

    2012-09-14

    Misfolding and aggregation of huntingtin is one of the hallmarks of Huntington disease, but the overall structure of these aggregates and the mechanisms by which huntingtin misfolds remain poorly understood. Here we used site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to study the structural features of huntingtin exon 1 (HDx1) containing 46 glutamine residues in its polyglutamine (polyQ) region. Despite some residual structuring in the N terminus, we find that soluble HDx1 is highly dynamic. Upon aggregation, the polyQ domain becomes strongly immobilized indicating significant tertiary or quaternary packing interactions. Analysis of spin-spin interactions does not show the close contact between same residues that is characteristic of the parallel, in-register structure commonly found in amyloids. Nevertheless, the same residues are still within 20 Å of each other, suggesting that polyQ domains from different molecules come into proximity in the fibrils. The N terminus has previously been found to take up a helical structure in fibrils. We find that this domain not only becomes structured, but that it also engages in tertiary or quaternary packing interactions. The existence of spin-spin interactions in this region suggests that such contacts could be made between N-terminal domains from different molecules. In contrast, the C-terminal domain is dynamic, contains polyproline II structure, and lacks pronounced packing interactions. This region must be facing away from the core of the fibrils. Collectively, these data provide new constraints for building structural models of HDx1 fibrils.

  11. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    PubMed

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  12. A deep learning framework for modeling structural features of RNA-binding protein targets

    PubMed Central

    Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang

    2016-01-01

    RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https

  13. A deep learning framework for modeling structural features of RNA-binding protein targets.

    PubMed

    Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang

    2016-02-29

    RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp.

  14. Microfabricated structures and devices featuring nanostructured titania thin films

    NASA Astrophysics Data System (ADS)

    Monkowski, Adam J.

    2007-05-01

    When titanium reacts with hydrogen peroxide at 80°C--100°C, a nanostructured titania (NST) thin film is formed on the titanium surface. This nanostructured film is particularly suited for integration with thin film and bulk microfabrication techniques. The ability to manufacture devices in a batch format is a principal advantage of microfabrication-based production. To reliably produce arrays of micro-patterned NST thin films on the wafer scale, a patterning guideline must be considered. The formation of NST relies on a re-deposition process; adequate ti-peroxo species must be generated and remain at the solid-solution interface. Numerical analysis of the characteristic transient diffusion behavior for various micro-patterns has been compared with experimental data to generate a criterion to guide the design of NST micro-patterns. Wafer scale arrays of NST micro gas-sensors have been fabricated using standard thin film techniques. Sensing elements are 20 mum on a side. High sensitivity to hydrogen is achieved by modification of the sensors with platinum nanoparticles. When exposed to a 10 mT partial pressure of hydrogen at 250°C, the functionalized devices exhibit more than one order of magnitude resistance decrease with a response time of approximately 7 sec. Titanium microstructures formed using the titanium ICP deep etch (TIDE) process have been integrated with NST films to produce an ordered nanostructure-microstructure composite (3D-NST). The process developed allows for the incorporation of a planar top surface, advantageous for bonding and sealing applications, in which the nanostructured thin film is formed only on feature sidewalls and floors. When titanium microstructures are spaced less than 1 mum apart, titania nanostructures bridge adjacent features. NST and 3D-NST structures have been assembled and tested in a dye-sensitized solar cell (DSSC) device. The NST film is approximately 900nm thick; this yielded a DSSC with an efficiency of 1.8%, similar

  15. Hemipteran Mitochondrial Genomes: Features, Structures and Implications for Phylogeny

    PubMed Central

    Wang, Yuan; Chen, Jing; Jiang, Li-Yun; Qiao, Ge-Xia

    2015-01-01

    The study of Hemipteran mitochondrial genomes (mitogenomes) began with the Chagas disease vector, Triatoma dimidiata, in 2001. At present, 90 complete Hemipteran mitogenomes have been sequenced and annotated. This review examines the history of Hemipteran mitogenomes research and summarizes the main features of them including genome organization, nucleotide composition, protein-coding genes, tRNAs and rRNAs, and non-coding regions. Special attention is given to the comparative analysis of repeat regions. Gene rearrangements are an additional data type for a few families, and most mitogenomes are arranged in the same order to the proposed ancestral insect. We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels. This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource. PMID:26039239

  16. Automatic classification of hepatocellular carcinoma images based on nuclear and structural features

    NASA Astrophysics Data System (ADS)

    Kiyuna, Tomoharu; Saito, Akira; Marugame, Atsushi; Yamashita, Yoshiko; Ogura, Maki; Cosatto, Eric; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2013-03-01

    Diagnosis of hepatocellular carcinoma (HCC) on the basis of digital images is a challenging problem because, unlike gastrointestinal carcinoma, strong structural and morphological features are limited and sometimes absent from HCC images. In this study, we describe the classification of HCC images using statistical distributions of features obtained from image analysis of cell nuclei and hepatic trabeculae. Images of 130 hematoxylin-eosin (HE) stained histologic slides were captured at 20X by a slide scanner (Nanozoomer, Hamamatsu Photonics, Japan) and 1112 regions of interest (ROI) images were extracted for classification (551 negatives and 561 positives, including 113 well-differentiated positives). For a single nucleus, the following features were computed: area, perimeter, circularity, ellipticity, long and short axes of elliptic fit, contour complexity and gray level cooccurrence matrix (GLCM) texture features (angular second moment, contrast, homogeneity and entropy). In addition, distributions of nuclear density and hepatic trabecula thickness within an ROI were also extracted. To represent an ROI, statistical distributions (mean, standard deviation and percentiles) of these features were used. In total, 78 features were extracted for each ROI and a support vector machine (SVM) was trained to classify negative and positive ROIs. Experimental results using 5-fold cross validation show 90% sensitivity for an 87.8% specificity. The use of statistical distributions over a relatively large area makes the HCC classifier robust to occasional failures in the extraction of nuclear or hepatic trabecula features, thus providing stability to the system.

  17. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  18. Gamma radiation effects on siloxane-based additive manufactured structures

    NASA Astrophysics Data System (ADS)

    Schmalzer, Andrew M.; Cady, Carl M.; Geller, Drew; Ortiz-Acosta, Denisse; Zocco, Adam T.; Stull, Jamie; Labouriau, Andrea

    2017-01-01

    Siloxane-basedadditive manufactured structures prepared by the direct ink write (DIW) technology were exposed to ionizing irradiation in order to gauge radiolysis effects on structure-property relationships. These well-defined 3-D structures were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by a suite of experimental methods. Changes in thermal, chemical, microstructure, and mechanical properties were evaluated by DSC, TGA, FT-IR, mass spectroscopy, EPR, solvent swelling, SEM, and uniaxial compressive load techniques. Our results demonstrated that 3-D structures made from aromatic-free siloxane resins exhibited hardening after being exposed to gamma radiation. This effect was accompanied by gas evolution, decreasing in crystallization levels, decreasing in solvent swelling and damage to the microstructure. Furthermore, long-lived radiation-induced radicals were not detected by EPR methods. Our results are consistent with cross-link formation being the dominant degradation mechanism over chain scission reactions. On the other hand, 3-D structures made from high phenyl content siloxane resins showed little radiation damage as evidenced by low off gassing.

  19. Teachers' Personal Agency: Making Sense of Slope through Additive Structures

    ERIC Educational Resources Information Center

    Walter, Janet G.; Gerson, Hope

    2007-01-01

    In the context of a three-year professional development program in mathematics, practicing elementary teachers persistently engaged in collaborative inquiry and reflection to build connected meanings for slope. One teacher invented a compelling representation for slope as a process of repeated addition, using Cuisenaire rods, based on teachers'…

  20. Nonlocal sparse model with adaptive structural clustering for feature extraction of aero-engine bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Li, Xiang; Yan, Ruqiang

    2016-04-01

    Fault information of aero-engine bearings presents two particular phenomena, i.e., waveform distortion and impulsive feature frequency band dispersion, which leads to a challenging problem for current techniques of bearing fault diagnosis. Moreover, although many progresses of sparse representation theory have been made in feature extraction of fault information, the theory also confronts inevitable performance degradation due to the fact that relatively weak fault information has not sufficiently prominent and sparse representations. Therefore, a novel nonlocal sparse model (coined NLSM) and its algorithm framework has been proposed in this paper, which goes beyond simple sparsity by introducing more intrinsic structures of feature information. This work adequately exploits the underlying prior information that feature information exhibits nonlocal self-similarity through clustering similar signal fragments and stacking them together into groups. Within this framework, the prior information is transformed into a regularization term and a sparse optimization problem, which could be solved through block coordinate descent method (BCD), is formulated. Additionally, the adaptive structural clustering sparse dictionary learning technique, which utilizes k-Nearest-Neighbor (kNN) clustering and principal component analysis (PCA) learning, is adopted to further enable sufficient sparsity of feature information. Moreover, the selection rule of regularization parameter and computational complexity are described in detail. The performance of the proposed framework is evaluated through numerical experiment and its superiority with respect to the state-of-the-art method in the field is demonstrated through the vibration signals of experimental rig of aircraft engine bearings.

  1. Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei.

    PubMed

    Wang, Jun; Böhme, Ulrike; Cross, George A M

    2003-05-01

    The glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) of Trypanosoma brucei is the most abundant GPI-anchored protein expressed on any cell, and is an essential virulence factor. To determine what structural features affect efficient expression of VSG, we made a series of mutations in two VSGs. Inserting 18 amino acids, between the amino- and carboxy-terminal domains, reduced the expression of VSG 221 to about 3% of the wild-type level. When this insertion was combined with deletion of the single carboxy-terminal subdomain, expression was reduced a further three-fold. In VSG 117, which contains two carboxy-terminal subdomains, point mutation of the intervening N-glycosylation site reduced expression about 15-fold. Deleting the most carboxy-terminal subdomain and intervening region, including the N-glycosylation site, reduced expression to 15-20% of wild type VSG, and deletion of both subdomains reduced expression to <1%. Despite their low abundance, all VSG mutants were GPI anchored on the cell surface. Our results suggest that, for a protein to be efficiently displayed on the surface of bloodstream-form T. brucei, it is essential that it contains the conserved structural motifs of a T. brucei VSG. Serum resistance-associated protein (SRA), which confers human infectivity on T. brucei, strongly resembles a VSG deletion mutant. Expression of three epitope-tagged versions of SRA in T. brucei conferred total resistance to human serum. SRA possesses a canonical GPI signal sequence, but we were unable to obtain unequivocal evidence for the presence of a GPI anchor. SRA was not released during osmotic lysis, indicating that it is not GPI anchored on the cell surface.

  2. Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase

    SciTech Connect

    Goblirsch, Brandon R.; Streit, Bennett R.; DuBois, Jennifer L.; Wilmot, Carrie M.

    2010-08-12

    Chlorite dismutase (Cld) is a heme enzyme capable of rapidly and selectively decomposing chlorite (ClO{sub 2}{sup -}) to Cl{sup -} and O{sub 2}. The ability of Cld to promote O{sub 2} formation from ClO{sub 2}{sup -} is unusual. Heme enzymes generally utilize ClO{sub 2}{sup -} as an oxidant for reactions such as oxygen atom transfer to, or halogenation of, a second substrate. The X-ray crystal structure of Dechloromonas aromatica Cld co-crystallized with the substrate analogue nitrite (NO{sub 2}{sup -}) was determined to investigate features responsible for this novel reactivity. The enzyme active site contains a single b-type heme coordinated by a proximal histidine residue. Structural analysis identified a glutamate residue hydrogen-bonded to the heme proximal histidine that may stabilize reactive heme species. A solvent-exposed arginine residue likely gates substrate entry to a tightly confined distal pocket. On the basis of the proposed mechanism of Cld, initial reaction of ClO{sub 2}{sup -} within the distal pocket generates hypochlorite (ClO{sup -}) and a compound I intermediate. The sterically restrictive distal pocket probably facilitates the rapid rebound of ClO{sup -} with compound I forming the Cl{sup -} and O{sub 2} products. Common to other heme enzymes, Cld is inactivated after a finite number of turnovers, potentially via the observed formation of an off-pathway tryptophanyl radical species through electron migration to compound I. Three tryptophan residues of Cld have been identified as candidates for this off-pathway radical. Finally, a juxtaposition of hydrophobic residues between the distal pocket and the enzyme surface suggests O{sub 2} may have a preferential direction for exiting the active site.

  3. Automated discovery of structural features of the optic nerve head on the basis of image and genetic data

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2014-03-01

    Evaluation of optic nerve head (ONH) structure is a commonly used clinical technique for both diagnosis and monitoring of glaucoma. Glaucoma is associated with characteristic changes in the structure of the ONH. We present a method for computationally identifying ONH structural features using both imaging and genetic data from a large cohort of participants at risk for primary open angle glaucoma (POAG). Using 1054 participants from the Ocular Hypertension Treatment Study, ONH structure was measured by application of a stereo correspondence algorithm to stereo fundus images. In addition, the genotypes of several known POAG genetic risk factors were considered for each participant. ONH structural features were discovered using both a principal component analysis approach to identify the major modes of variance within structural measurements and a linear discriminant analysis approach to capture the relationship between genetic risk factors and ONH structure. The identified ONH structural features were evaluated based on the strength of their associations with genotype and development of POAG by the end of the OHTS study. ONH structural features with strong associations with genotype were identified for each of the genetic loci considered. Several identified ONH structural features were significantly associated (p < 0.05) with the development of POAG after Bonferroni correction. Further, incorporation of genetic risk status was found to substantially increase performance of early POAG prediction. These results suggest incorporating both imaging and genetic data into ONH structural modeling significantly improves the ability to explain POAG-related changes to ONH structure.

  4. Structural features of DNA interaction with caffeine and theophylline

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Tajmir-Riahi, Heidar-Ali; Varavipour, Maryam

    2008-03-01

    Caffeine and theophylline are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. However, there has been no information on the interactions of these xanthine derivatives with individual DNA at molecular level. The aim of this study was to examine the stability and structural features of calf-thymus DNA complexes with caffeine and theophylline in aqueous solution, using constant DNA concentration (6.25 mM) and various caffeine or theophylline/DNA(P) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. FTIR, UV-visible spectroscopic methods were used to determine the ligand external binding modes, the binding constant and the stability of caffeine, theophylline-DNA complexes in aqueous solution. Spectroscopic evidence showed that the complexation of caffeine and theophylline with DNA occurred via G-C and A-T and PO 2 group with overall binding constants of K(caffeine-DNA) = 9.7 × 10 3 M -1 and K(theophylline-DNA) = 1.7 × 10 4 M -1. The affinity of ligand-DNA binding is in the order of theophylline > caffeine. A partial B to A-DNA transition occurs upon caffeine and theophylline complexation.

  5. Ultrafine cellulose acetate fibers with nanoscale structural features.

    PubMed

    Zhang, Lifeng; Hsieh, You-Lo

    2008-09-01

    Nano-structural features were introduced to ultrafine cellulose acetate (CA) fibers by electrospinning of its mixtures with either poly(vinyl pyrrolidone) PVP or beta-cyclodextrin (beta-CD) in DMF, followed by dissolution of the added PVP or beta-CD. The presence of the charge-holding PVP enabled fiber formation from CA below its entanglement chain length and improved the electrospinning efficiency to produce bicomponent fibers with wide ranging diameters from 30 to 650 nm. At up to 50% contents, the PVP in the bicomponent fibers was phase-separated from CA and, upon removal, resulting in highly angulated fiber surfaces with nanometer-size spherulites and sub-micron size ridges and grooves. Adding beta-CD to CA enabled fiber formation at concentrations below the chain entanglement concentration Ce (16.5%). Hydrogen bonding between beta-CD and CA, as evident by FTIR, helped to distribute beta-CD as individual molecules in the CA matrix and producing more uniform and finer (130-150 nm in diameters) fibers, irrespective of their beta-CD contents. Removal of beta-CD from the fibers originally containing 40% beta-CD, generated nanoporous fibers with 2-nm nanopores and 70% increase in specific surface and doubled pore volume.

  6. Prediction of protein structural classes for low-similarity sequences using reduced PSSM and position-based secondary structural features.

    PubMed

    Wang, Junru; Wang, Cong; Cao, Jiajia; Liu, Xiaoqing; Yao, Yuhua; Dai, Qi

    2015-01-10

    Many efficient methods have been proposed to advance protein structural class prediction, but there are still some challenges where additional insight or technology is needed for low-similarity sequences. In this work, we schemed out a new prediction method for low-similarity datasets using reduced PSSM and position-based secondary structural features. We evaluated the proposed method with four experiments and compared it with the available competing prediction methods. The results indicate that the proposed method achieved the best performance among the evaluated methods, with overall accuracy 3-5% higher than the existing best-performing method. This paper also found that the reduced alphabets with size 13 simplify PSSM structures efficiently while reserving its maximal information. This understanding can be used to design more powerful prediction methods for protein structural class.

  7. Feature Inference and the Causal Structure of Categories

    ERIC Educational Resources Information Center

    Rehder, B.; Burnett, R.C.

    2005-01-01

    The purpose of this article was to establish how theoretical category knowledge-specifically, knowledge of the causal relations that link the features of categories-supports the ability to infer the presence of unobserved features. Our experiments were designed to test proposals that causal knowledge is represented psychologically as Bayesian…

  8. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures

    NASA Astrophysics Data System (ADS)

    Liu, Shutian; Li, Quhao; Chen, Wenjiong; Tong, Liyong; Cheng, Gengdong

    2015-06-01

    Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simplyconnected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simplyconnected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.

  9. Structuring feature space: a non-parametric method for volumetric transfer function generation.

    PubMed

    Maciejewski, Ross; Woo, Insoo; Chen, Wei; Ebert, David S

    2009-01-01

    The use of multi-dimensional transfer functions for direct volume rendering has been shown to be an effective means of extracting materials and their boundaries for both scalar and multivariate data. The most common multi-dimensional transfer function consists of a two-dimensional (2D) histogram with axes representing a subset of the feature space (e.g., value vs. value gradient magnitude), with each entry in the 2D histogram being the number of voxels at a given feature space pair. Users then assign color and opacity to the voxel distributions within the given feature space through the use of interactive widgets (e.g., box, circular, triangular selection). Unfortunately, such tools lead users through a trial-and-error approach as they assess which data values within the feature space map to a given area of interest within the volumetric space. In this work, we propose the addition of non-parametric clustering within the transfer function feature space in order to extract patterns and guide transfer function generation. We apply a non-parametric kernel density estimation to group voxels of similar features within the 2D histogram. These groups are then binned and colored based on their estimated density, and the user may interactively grow and shrink the binned regions to explore feature boundaries and extract regions of interest. We also extend this scheme to temporal volumetric data in which time steps of 2D histograms are composited into a histogram volume. A three-dimensional (3D) density estimation is then applied, and users can explore regions within the feature space across time without adjusting the transfer function at each time step. Our work enables users to effectively explore the structures found within a feature space of the volume and provide a context in which the user can understand how these structures relate to their volumetric data. We provide tools for enhanced exploration and manipulation of the transfer function, and we show that the initial

  10. De-Orphaning the Structural Proteome through Reciprocal Comparison of Evolutionarily Important Structural Features

    PubMed Central

    Ward, R. Matthew; Erdin, Serkan; Tran, Tuan A.; Kristensen, David M.; Lisewski, Andreas Martin; Lichtarge, Olivier

    2008-01-01

    Function prediction frequently relies on comparing genes or gene products to search for relevant similarities. Because the number of protein structures with unknown function is mushrooming, however, we asked here whether such comparisons could be improved by focusing narrowly on the key functional features of protein structures, as defined by the Evolutionary Trace (ET). Therefore a series of algorithms was built to (a) extract local motifs (3D templates) from protein structures based on ET ranking of residue importance; (b) to assess their geometric and evolutionary similarity to other structures; and (c) to transfer enzyme annotation whenever a plurality was reached across matches. Whereas a prototype had only been 80% accurate and was not scalable, here a speedy new matching algorithm enabled large-scale searches for reciprocal matches and thus raised annotation specificity to 100% in both positive and negative controls of 49 enzymes and 50 non-enzymes, respectively—in one case even identifying an annotation error—while maintaining sensitivity (∼60%). Critically, this Evolutionary Trace Annotation (ETA) pipeline requires no prior knowledge of functional mechanisms. It could thus be applied in a large-scale retrospective study of 1218 structural genomics enzymes and reached 92% accuracy. Likewise, it was applied to all 2935 unannotated structural genomics proteins and predicted enzymatic functions in 320 cases: 258 on first pass and 62 more on second pass. Controls and initial analyses suggest that these predictions are reliable. Thus the large-scale evolutionary integration of sequence-structure-function data, here through reciprocal identification of local, functionally important structural features, may contribute significantly to de-orphaning the structural proteome. PMID:18461181

  11. An Eye-Tracking Study of Multiple Feature Value Category Structure Learning: The Role of Unique Features

    PubMed Central

    Liu, Zhiya; Song, Xiaohong; Seger, Carol A.

    2015-01-01

    We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting. PMID:26274332

  12. Process Features in Writing: Internal Structure and Incremental Value over Product Features. Research Report. ETS RR-15-27

    ERIC Educational Resources Information Center

    Zhang, Mo; Deane, Paul

    2015-01-01

    In educational measurement contexts, essays have been evaluated and formative feedback has been given based on the end product. In this study, we used a large sample collected from middle school students in the United States to investigate the factor structure of the writing process features gathered from keystroke logs and the association of that…

  13. Protein subcellular localization prediction based on compartment-specific features and structure conservation

    PubMed Central

    Su, Emily Chia-Yu; Chiu, Hua-Sheng; Lo, Allan; Hwang, Jenn-Kang; Sung, Ting-Yi; Hsu, Wen-Lian

    2007-01-01

    Background Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins. Results We propose a hybrid prediction method for Gram-negative bacteria that combines a one-versus-one support vector machines (SVM) model and a structural homology approach. The SVM model comprises a number of binary classifiers, in which biological features derived from Gram-negative bacteria translocation pathways are incorporated. In the structural homology approach, we employ secondary structure alignment for structural similarity comparison and assign the known localization of the top-ranked protein as the predicted localization of a query protein. The hybrid method achieves overall accuracy of 93.7% and 93.2% using ten-fold cross-validation on the benchmark data sets. In the assessment of the evaluation data sets, our method also attains accurate prediction accuracy of 84.0%, especially when testing on sequences with a low level of homology to the training data. A three-way data split procedure is also incorporated to prevent overestimation of the predictive performance. In addition, we show that the prediction accuracy should be approximately 85% for non-redundant data sets of sequence identity less than 30%. Conclusion Our results demonstrate that biological features derived from Gram-negative bacteria translocation pathways yield a significant

  14. Influence of ecological and geological features on rangewide patterns of genetic structure in a widespread passerine

    PubMed Central

    Adams, R V; Burg, T M

    2015-01-01

    Geological and ecological features restrict dispersal and gene flow, leading to isolated populations. Dispersal barriers can be obvious physical structures in the landscape; however microgeographic differences can also lead to genetic isolation. Our study examined dispersal barriers at both macro- and micro-geographical scales in the black-capped chickadee, a resident North American songbird. Although birds have high dispersal potential, evidence suggests dispersal is restricted by barriers. The chickadee's range encompasses a number of physiological features which may impede movement and lead to divergence. Analyses of 913 individuals from 34 sampling sites across the entire range using 11 microsatellite loci revealed as many as 13 genetic clusters. Populations in the east were largely panmictic whereas populations in the western portion of the range showed significant genetic structure, which often coincided with large mountain ranges, such as the Cascade and Rocky Mountains, as well as areas of unsuitable habitat. Unlike populations in the central and southern Rockies, populations on either side of the northern Rockies were not genetically distinct. Furthermore, Northeast Oregon represents a forested island within the Great Basin; genetically isolated from all other populations. Substructuring at the microgeographical scale was also evident within the Fraser Plateau of central British Columbia, and in the southeast Rockies where no obvious physical barriers are present, suggesting additional factors may be impeding dispersal and gene flow. Dispersal barriers are therefore not restricted to large physical structures, although mountain ranges and large water bodies do play a large role in structuring populations in this study. PMID:25074576

  15. Feature Extraction of High-Dimensional Structures for Exploratory Analytics

    DTIC Science & Technology

    2013-04-01

    development of a method to gain insight into HDD, particularly in the application of an analytic strategy to terrorist data. 15. SUBJECT TERMS...geodesic distance 4 (8); (3) the COIL-20 dataset; (4) word-features dataset; and (5) a Netflix dataset.* Although the manifold learners are

  16. Blurred face recognition by fusing blur-invariant texture and structure features

    NASA Astrophysics Data System (ADS)

    Zhu, Mengyu; Cao, Zhiguo; Xiao, Yang; Xie, Xiaokang

    2015-10-01

    Blurred face recognition is still remaining as a challenge task, but with wide applications. Image blur can largely affect recognition performance. The local phase quantization (LPQ) was proposed to extract the blur-invariant texture information. It was used for blurred face recognition and achieved good performance. However, LPQ considers only the phase blur-invariant texture information, which is not sufficient. In addition, LPQ is extracted holistically, which cannot fully explore its discriminative power on local spatial properties. In this paper, we propose a novel method for blurred face recognition. The texture and structure blur-invariant features are extracted and fused to generate a more complete description on blurred image. For texture blur-invariant feature, LPQ is extracted in a densely sampled way and vector of locally aggregated descriptors (VLAD) is employed to enhance its performance. For structure blur-invariant feature, the histogram of oriented gradient (HOG) is used. To further enhance its blur invariance, we improve HOG by eliminating weak gradient magnitude which is more sensitive to image blur than the strong gradient. The improved HOG is then fused with the original HOG by canonical correlation analysis (CCA). At last, we fuse them together by CCA to form the final blur-invariant representation of the face image. The experiments are performed on three face datasets. The results demonstrate that our improvements and our proposition can have a good performance in blurred face recognition.

  17. Structural features of atomized white cast iron powder

    NASA Astrophysics Data System (ADS)

    Gulyaev, A. P.; Astakhov, S. I.

    1991-01-01

    White cast iron powder rapidly quenched from the liquid condition with presence of the same phases and structural components differs markedly in structure from normally cast white iron. With an increase in cooling rate vcool during solidification the amount of eutectic decreases. However, with an increase in carbon content this tendency is weakened and with 3.9% the structure of powder cast iron is almost entirely of eutectic.

  18. The crystal structure of archaeal serine hydroxymethyltransferase reveals idiosyncratic features likely required to withstand high temperatures.

    PubMed

    Angelucci, Francesco; Morea, Veronica; Angelaccio, Sebastiana; Saccoccia, Fulvio; Contestabile, Roberto; Ilari, Andrea

    2014-12-01

    Serine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal-5'-phosphate-bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H₄MPT as a cofactor, at 2.83 and 3.0 Å resolution, respectively. Idiosyncratic features were observed that are likely to contribute to structure stabilization. At the dimer interface, the C-terminal region folds in a unique fashion with respect to SHMTs from eubacteria and eukarya. At the active site, the conserved tyrosine does not make a cation-π interaction with an arginine like that observed in all other SHMT structures, but establishes an amide-aromatic interaction with Asn257, at a different sequence position. This asparagine residue is conserved and occurs almost exclusively in (hyper)thermophile SHMTs. This led us to formulate the hypothesis that removal of frustrated interactions (such as the Arg-Tyr cation-π interaction occurring in mesophile SHMTs) is an additional strategy of adaptation to high temperature. Both peculiar features may be tested by designing enzyme variants potentially endowed with improved stability for applications in biomimetic processes.

  19. Structure dependent hydrogen induced etching features of graphene crystals

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Papon, Remi; Sharma, Subash; Vishwakarma, Riteshkumar; Sharma, Kamal P.; Tanemura, Masaki

    2015-06-01

    H2 induced etching of graphene is of significant interest to understand graphene growth process as well as to fabricate nanoribbons and various other structures. Here, we demonstrate the structure dependent H2 induced etching behavior of graphene crystals. We synthesized graphene crystals on electro-polished Cu foil by an atmospheric pressure chemical vapor deposition process, where some of the crystals showed hexagonal shaped snowflake-dendritic morphology. Significant differences in H2 induced etching behavior were observed for the snowflake-dendritic and regular graphene crystals by annealing in a gas mixture of H2 and Ar. The regular graphene crystals were etched anisotropically creating hexagonal holes with pronounced edges, while etching of all the dendritic crystals occurred from the branches of lobs creating symmetrical fractal structures. The etching behavior provides important clue of graphene nucleation and growth as well as their selective etching to fabricate well-defined structures for nanoelectronics.

  20. An automated approach to network features of protein structure ensembles

    PubMed Central

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  1. Coherent quantum transport features in carbon superlattice structures.

    PubMed

    McIntosh, R; Henley, S J; Silva, S R P; Bhattacharyya, S

    2016-10-19

    Whilst resonant transmission is well understood and can be fully harnessed for crystalline superlattices, a complete picture has not yet emerged for disordered superlattices. It has proven difficult to tune resonant transmission in disordered diamond-like carbon (DLC) superlattices as conventional models are not equipped to incorporate significant structural disorder. In this work, we present concurrent experimental and theoretical analysis which addresses resonant transmission in DLC superlattices. Devices were fabricated by growing alternate layers of DLC with different percentages of sp(3) hybridized carbon.Coherent quantum transport effects were demonstrated in these structurally disordered DLC superlattices through distinct current modulation with negative differential resistance (NDR) in the current-voltage (I-V) measurements. A model was developed using tight-binding calculations assuming a random variation of the hopping integral to simulate structural (bond-length) disorder. Calculations of the I-V characteristics compliment the interpretation of the measurements and illustrate that while DLC superlattice structures are unlike their classical counterparts, the near-field structural order will help with the confinement of quantised states. The present model provides an empirical guide for tailoring the properties of future devices, giving rise to much hope that carbon electronics operating at high frequencies over large areas can now be developed.

  2. Coherent quantum transport features in carbon superlattice structures

    PubMed Central

    McIntosh, R.; Henley, S. J.; Silva, S. R. P.; Bhattacharyya, S.

    2016-01-01

    Whilst resonant transmission is well understood and can be fully harnessed for crystalline superlattices, a complete picture has not yet emerged for disordered superlattices. It has proven difficult to tune resonant transmission in disordered diamond-like carbon (DLC) superlattices as conventional models are not equipped to incorporate significant structural disorder. In this work, we present concurrent experimental and theoretical analysis which addresses resonant transmission in DLC superlattices. Devices were fabricated by growing alternate layers of DLC with different percentages of sp3 hybridized carbon.Coherent quantum transport effects were demonstrated in these structurally disordered DLC superlattices through distinct current modulation with negative differential resistance (NDR) in the current-voltage (I-V) measurements. A model was developed using tight-binding calculations assuming a random variation of the hopping integral to simulate structural (bond-length) disorder. Calculations of the I-V characteristics compliment the interpretation of the measurements and illustrate that while DLC superlattice structures are unlike their classical counterparts, the near-field structural order will help with the confinement of quantised states. The present model provides an empirical guide for tailoring the properties of future devices, giving rise to much hope that carbon electronics operating at high frequencies over large areas can now be developed. PMID:27759047

  3. Coherent quantum transport features in carbon superlattice structures

    NASA Astrophysics Data System (ADS)

    McIntosh, R.; Henley, S. J.; Silva, S. R. P.; Bhattacharyya, S.

    2016-10-01

    Whilst resonant transmission is well understood and can be fully harnessed for crystalline superlattices, a complete picture has not yet emerged for disordered superlattices. It has proven difficult to tune resonant transmission in disordered diamond-like carbon (DLC) superlattices as conventional models are not equipped to incorporate significant structural disorder. In this work, we present concurrent experimental and theoretical analysis which addresses resonant transmission in DLC superlattices. Devices were fabricated by growing alternate layers of DLC with different percentages of sp3 hybridized carbon.Coherent quantum transport effects were demonstrated in these structurally disordered DLC superlattices through distinct current modulation with negative differential resistance (NDR) in the current-voltage (I-V) measurements. A model was developed using tight-binding calculations assuming a random variation of the hopping integral to simulate structural (bond-length) disorder. Calculations of the I-V characteristics compliment the interpretation of the measurements and illustrate that while DLC superlattice structures are unlike their classical counterparts, the near-field structural order will help with the confinement of quantised states. The present model provides an empirical guide for tailoring the properties of future devices, giving rise to much hope that carbon electronics operating at high frequencies over large areas can now be developed.

  4. NMR and structural features of noble-metal fluorides

    SciTech Connect

    Gabuda, S.P.; Zemskov, S.V.

    1987-11-01

    NMR studies are reported on the structures of binary and other noble-metal fluorides. Revised measurements have been made on /sup 19/F chemical shifts and the anisotropy in them. A relationship is considered between the screening tensor for /sup 19/F and the electronic structure of the molecule or ion containing the noble-metal cation in the electronic configuration d/sup 6/, d/sup 8/, or d/sup 10/. The observed anomalous shifts in this class of compound are explained qualitatively in terms of paired electrons in filled d shells affecting the result within the framework of the classical theory of magnetic nuclear screening.

  5. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    ERIC Educational Resources Information Center

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  6. Atypical Structural Features of Two MAP P60 Family Members

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of Map gene products have no known function. In order to better understand the pathobiology of this mycobacterium, we have begun to study the structure-function relationship of a subset of Map proteins. We have selected a number of gene products unique to Map, which are either predict...

  7. SOME FEATURES OF GANDA LINGUISTIC STRUCTURE, PART 2.

    ERIC Educational Resources Information Center

    COLE, DESMOND T.

    THIS PAPER PRESENTS THE SECOND PART OF A THREE-PART ARTICLE ON CERTAIN ASPECTS OF THE LINGUISTIC STRUCTURE OF GANDA. THE SPECIFIC CONCERNS OF THIS PART ARE (1) THE TONOMORPHOLOGY OF NOUNS AND ADJECTIVES AND (2) BASIC SETS OF ABSOLUTE AND DEMONSTRATIVE PRONOUNS. TONAL DECLENSIONS OF NOUNS AND PRONOUNS ARE PRESENTED ACCORDING TO CLASS, REPRESENTING…

  8. Diphthongization, Syllable Structure, and the Feature [high] in Hmu.

    ERIC Educational Resources Information Center

    Mills, Carl; Strecker, David

    The syllabic structure in the Hmongic language, Hmu (spoken by nearly one million people), is examined, based on the dialect of Hmu spoken in the town of Yanghao in the Southeast Guizhou Miao-Dong Autonomous District of southern China. The discussion is based entirely on data presented by Wang (1979). From the examination, two rules with the…

  9. Strong Nonadditivity as a Key Structure–Activity Relationship Feature: Distinguishing Structural Changes from Assay Artifacts

    PubMed Central

    2015-01-01

    Nonadditivity in protein–ligand affinity data represents highly instructive structure–activity relationship (SAR) features that indicate structural changes and have the potential to guide rational drug design. At the same time, nonadditivity is a challenge for both basic SAR analysis as well as many ligand-based data analysis techniques such as Free-Wilson Analysis and Matched Molecular Pair analysis, since linear substituent contribution models inherently assume additivity and thus do not work in such cases. While structural causes for nonadditivity have been analyzed anecdotally, no systematic approaches to interpret and use nonadditivity prospectively have been developed yet. In this contribution, we lay the statistical framework for systematic analysis of nonadditivity in a SAR series. First, we develop a general metric to quantify nonadditivity. Then, we demonstrate the non-negligible impact of experimental uncertainty that creates apparent nonadditivity, and we introduce techniques to handle experimental uncertainty. Finally, we analyze public SAR data sets for strong nonadditivity and use recourse to the original publications and available X-ray structures to find structural explanations for the nonadditivity observed. We find that all cases of strong nonadditivity (ΔΔpKi and ΔΔpIC50 > 2.0 log units) with sufficient structural information to generate reasonable hypothesis involve changes in binding mode. With the appropriate statistical basis, nonadditivity analysis offers a variety of new attempts for various areas in computer-aided drug design, including the validation of scoring functions and free energy perturbation approaches, binding pocket classification, and novel features in SAR analysis tools. PMID:25760829

  10. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression.

  11. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  12. GALT protein database: querying structural and functional features of GALT enzyme.

    PubMed

    d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna

    2014-09-01

    Knowledge of the impact of variations on protein structure can enhance the comprehension of the mechanisms of genetic diseases related to that protein. Here, we present a new version of GALT Protein Database, a Web-accessible data repository for the storage and interrogation of structural effects of variations of the enzyme galactose-1-phosphate uridylyltransferase (GALT), the impairment of which leads to classic Galactosemia, a rare genetic disease. This new version of this database now contains the models of 201 missense variants of GALT enzyme, including heterozygous variants, and it allows users not only to retrieve information about the missense variations affecting this protein, but also to investigate their impact on substrate binding, intersubunit interactions, stability, and other structural features. In addition, it allows the interactive visualization of the models of variants collected into the database. We have developed additional tools to improve the use of the database by nonspecialized users. This Web-accessible database (http://bioinformatica.isa.cnr.it/GALT/GALT2.0) represents a model of tools potentially suitable for application to other proteins that are involved in human pathologies and that are subjected to genetic variations.

  13. Multi-channel MRI segmentation of eye structures and tumors using patient-specific features

    PubMed Central

    Ciller, Carlos; De Zanet, Sandro; Kamnitsas, Konstantinos; Maeder, Philippe; Glocker, Ben; Munier, Francis L.; Rueckert, Daniel; Thiran, Jean-Philippe

    2017-01-01

    Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonance Imaging (MRI). In this context, having automatic segmentations to estimate the size and the distribution of the pathological tissue would be advantageous towards tumor characterization. Until now, the alternative has been the manual delineation of eye structures, a rather time consuming and error-prone task, to be conducted in multiple MRI sequences simultaneously. This situation, and the lack of tools for accurate eye MRI analysis, reduces the interest in MRI beyond the qualitative evaluation of the optic nerve invasion and the confirmation of recurrent malignancies below calcified tumors. In this manuscript, we propose a new framework for the automatic segmentation of eye structures and ocular tumors in multi-sequence MRI. Our key contribution is the introduction of a pathological eye model from which Eye Patient-Specific Features (EPSF) can be computed. These features combine intensity and shape information of pathological tissue while embedded in healthy structures of the eye. We assess our work on a dataset of pathological patient eyes by computing the Dice Similarity Coefficient (DSC) of the sclera, the cornea, the vitreous humor, the lens and the tumor. In addition, we quantitatively show the superior performance of our pathological eye model as compared to the segmentation obtained by using a healthy model (over 4% DSC) and demonstrate the relevance of our EPSF, which improve the final segmentation regardless of the classifier employed. PMID:28350816

  14. Features of noise in ultrathin gold nanowire structures

    NASA Astrophysics Data System (ADS)

    Handziuk, V.; Pud, S.; Coppola, M.; Kisner, A.; Vitusevich, S.

    2016-05-01

    Bundles of ultrathin gold nanowires (Au NWs, 2 nm in diameter) were fabricated and subsequently assembled onto electrodes. Electrical measurements and noise spectroscopy techniques were applied for sample characterization. The peculiarities of noise behavior in the system of bundles of ultrathin gold nanowires were studied. The measured power spectral density of flicker noise was proportional to current squared, which reflects ohmic behavior in NW structures. Lorentzian-shaped components were revealed in the noise spectra. They are suggested to be the result of the participation of molecules adsorbed on the NW surface in transport phenomena. The presence of molecular interfaces was confirmed by high-resolution transmission electron micrographs. The adsorbed molecules play an important role in charge transport and therefore determine electrical and noise properties of the NW structures. The results should be taken into account for the development of NW devices for sensing and molecular electronics applications.

  15. Structural features of the regulatory ACT domain of phenylalanine hydroxylase.

    PubMed

    Carluccio, Carla; Fraternali, Franca; Salvatore, Francesco; Fornili, Arianna; Zagari, Adriana

    2013-01-01

    Phenylalanine hydroxylase (PAH) catalyzes the conversion of L-Phe to L-Tyr. Defects in PAH activity, caused by mutations in the human gene, result in the autosomal recessively inherited disease hyperphenylalaninemia. PAH activity is regulated by multiple factors, including phosphorylation and ligand binding. In particular, PAH displays positive cooperativity for L-Phe, which is proposed to bind the enzyme on an allosteric site in the N-terminal regulatory domain (RD), also classified as an ACT domain. This domain is found in several proteins and is able to bind amino acids. We used molecular dynamics simulations to obtain dynamical and structural insights into the isolated RD of PAH. Here we show that the principal motions involve conformational changes leading from an initial open to a final closed domain structure. The global intrinsic motions of the RD are correlated with exposure to solvent of a hydrophobic surface, which corresponds to the ligand binding-site of the ACT domain. Our results strongly suggest a relationship between the Phe-binding function and the overall dynamic behaviour of the enzyme. This relationship may be affected by structure-disturbing mutations. To elucidate the functional implications of the mutations, we investigated the structural effects on the dynamics of the human RD PAH induced by six missense hyperphenylalaninemia-causing mutations, namely p.G46S, p.F39C, p.F39L, p.I65S, p.I65T and p.I65V. These studies showed that the alterations in RD hydrophobic interactions induced by missense mutations could affect the functionality of the whole enzyme.

  16. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    PubMed

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds.

  17. Automated measurement of CT noise in patient images with a novel structure coherence feature

    NASA Astrophysics Data System (ADS)

    Chun, Minsoo; Choi, Young Hun; Hyo Kim, Jong

    2015-12-01

    While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC  =  0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCCwithin  =  0.75, PCCbetween  =  0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine.

  18. Structural and dynamic features of geoeffective coronal ejections

    NASA Astrophysics Data System (ADS)

    Minasyants, G. S.; Minasyants, T. M.

    2011-12-01

    The structure and physical conditions in 104 coronal mass ejections (CMEs) with a clear-cut leading shock front have been considered using satellite data for 1996-2008. In 99% of cases, the action of increased shock front dynamic pressure on the Earth's magnetosphere resulted in the origination of geomagnetic storms with sudden commencement. It has been revealed that decreased magnetic field strength values correspond to denser plasma bunches in an ejection body and vice versa. As a result, gas pressure is decreased in regions with increased magnetic pressure. Thus, a self-consistent interrelationship between plasma parameters, which supports total pressure at mutual changes in gas and magnetic pressures, is observed in the ejection structure. Pronounced differences in variations in the physical parameters in different zones along the front in the Earth-Sun direction have not been detected for each ejection. The maximal distances between the compared ejection zones are 2 million kilometers. This indicates that the ejection structure is stable. The values of the shock front velocity ( V psf), temperature ( T psf), and density ( N psf), as well as the ejection geometrical extension ( L ae), have been compared for the considered ejections. Cases when ejections followed one another at intervals of 3-30 h have been studied. It has been established that a leading ejection is strongly decelerated during its motion, and the next ejection faster covers the distance to the Earth. The next ejections with larger values of the plasma physical parameters are more geoeffective as compared to the previous ejections.

  19. Features of structural response of mechanically loaded crystallites to irradiation

    SciTech Connect

    Korchuganov, Aleksandr V.

    2015-10-27

    A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.

  20. Structural features of ZnxOy/nanosilica composites

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Bogatyrov, V. M.; Oranska, O. I.; Borysenko, L. I.; Skubiszewska-Zięba, J.; Książek, A.; Leboda, R.

    2013-07-01

    Nanocomposites with nanosilica A380 (SBET = 378 m2/g) and grafted ZnO or/and zinc silicate were prepared using zinc acetate adsorbed onto nanosilica and then treated at 600-900 °C. The samples studied using a variety of methods demonstrated the dependences of the textural and structural characteristics and phase transformations on the amounts of adsorbed precursor and treatment conditions. Thermodestruction of zinc acetate Zn(ac)2 at 600 °C results in the formation of ZnO which is amorphous according to XRD data. However, HRTEM images show the presence of a small amount of ZnO crystallites of 2-5 nm in size. A portion of surface silanols interacts with adsorbed Zn-containing compounds to form Sisbnd Osbnd Zn bonds, a number of which increases with increasing Zn(ac)2 content and heating temperature. Heating at 800-900 °C leads to transformation of ZnO and other structures into crystalline zinc silicate β-Zn2SiO4 with larger particles more strongly packed in aggregates. The specific surface area of the composites decreases with increasing zinc content and heating temperature.

  1. Thermodynamic Features of Structural Motifs Formed by β-L-RNA

    PubMed Central

    Szabat, Marta; Gudanis, Dorota; Kotkowiak, Weronika; Gdaniec, Zofia; Kierzek, Ryszard; Pasternak, Anna

    2016-01-01

    This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in β-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2′-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands. PMID:26908023

  2. Characterization of the Structural Features and Interactions of Sclerostin

    PubMed Central

    Veverka, Vaclav; Henry, Alistair J.; Slocombe, Patrick M.; Ventom, Andrew; Mulloy, Barbara; Muskett, Frederick W.; Muzylak, Mariusz; Greenslade, Kevin; Moore, Adrian; Zhang, Li; Gong, Jianhua; Qian, Xueming; Paszty, Chris; Taylor, Richard J.; Robinson, Martyn K.; Carr, Mark D.

    2009-01-01

    The secreted glycoprotein sclerostin has recently emerged as a key negative regulator of Wnt signaling in bone and has stimulated considerable interest as a potential target for therapeutics designed to treat conditions associated with low bone mass, such as osteoporosis. We have determined the structure of sclerostin, which resulted in the identification of a previously unknown binding site for heparin, suggestive of a functional role in localizing sclerostin to the surface of target cells. We have also mapped the interaction site for an antibody that blocks the inhibition of Wnt signaling by sclerostin. This shows minimal overlap with the heparin binding site and highlights a key role for this region of sclerostin in protein interactions associated with the inhibition of Wnt signaling. The conserved N- and C-terminal arms of sclerostin were found to be unstructured, highly flexible, and unaffected by heparin binding, which suggests a role in stabilizing interactions with target proteins. PMID:19208630

  3. Electrooptical properties and structural features of amorphous ITO

    SciTech Connect

    Amosova, L. P.

    2015-03-15

    Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms. At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.

  4. Structural features of the tmRNA-ribosome interaction.

    PubMed

    Bugaeva, Elizaveta Y; Surkov, Serhiy; Golovin, Andrey V; Ofverstedt, Lars-Göran; Skoglund, Ulf; Isaksson, Leif A; Bogdanov, Alexey A; Shpanchenko, Olga V; Dontsova, Olga A

    2009-12-01

    Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.

  5. Structural features of the tmRNA–ribosome interaction

    PubMed Central

    Bugaeva, Elizaveta Y.; Surkov, Serhiy; Golovin, Andrey V.; Öfverstedt, Lars-Göran; Skoglund, Ulf; Isaksson, Leif A.; Bogdanov, Alexey A.; Shpanchenko, Olga V.; Dontsova, Olga A.

    2009-01-01

    Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA–ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation. PMID:19861420

  6. Tictoid expanded pyridiniums: assessing structural, electrochemical, electronic, and photophysical features.

    PubMed

    Fortage, Jérôme; Tuyèras, Fabien; Peltier, Cyril; Dupeyre, Grégory; Calboréan, Adrian; Bedioui, Fethi; Ochsenbein, Philippe; Puntoriero, Fausto; Campagna, Sebastiano; Ciofini, Ilaria; Lainé, Philippe P

    2012-08-02

    In regard to semirigid donor-spacer-acceptor (D-S-A) dyads devised for photoinduced charge separation and built from an unsaturated spacer, there exists a strategy of design referred to as "geometrical decoupling" that consists in introducing an inner-S twist angle approaching 90° to minimize adverse D/A mutual electronic influence. The present work aims at gaining further insights into the actual impact of the use of bulky substituents (R) of the alkyl type on the electronic structure of spacers (S) of the oligo-p-phenylene type, which can be critical in the functioning of derived dyads. To this end, a series of 12 novel expanded pyridiniums (EPs), regarded as model S-A assemblies, was synthesized and its structural, electronic, and photophysical properties were investigated at both experimental and theoretical levels. These EPs result from the combination of 4 types of pyridinium-based acceptor moieties with the three following types of S subunits connected at position 4 of the pyridinum core: xylyl (X), xylyl-phenyl (XP), and xylyl-tolyl (XT). From comparison of collected data with those already reported for eight other EPs based on the same A components but linked to S fragments of two other types (i.e., phenyl, P, and biphenyl, PP), the following quantitative order in regard to the pivotal S-centered HOMO energy perturbation was derived (sorted by increasing destabilization): P < X ≪ PP ≈< XP ≈< XT. This indicates that spacers (S) are primarily distinguished on the basis of their mono- or biaryl composition and secondarily by their number of methyl substituents (R). The electron-donating inductive contribution of methyl substituents (HOMO destabilization) more than counterbalances the effect of conjugation disruption (HOMO stabilization). This "compensation effect" suggests that mildly electron-withdrawing hindering groups are better suited for "geometrical decoupling", given that high-energy S-centered occupied MOs can assist charge recombination

  7. Crystalline structure of accretion disks: Features of a global model

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. PlasmasPHPAEN1070-664X10.1063/1.1883667 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J.AJLEEY0004-637X10.1086/500315 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  8. Crystalline structure of accretion disks: features of a global model.

    PubMed

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. Plasmas 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J. 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  9. New structural features of Acacia tortuosa gum exudate.

    PubMed

    Martínez, Maritza; Beltrán, Olga; Rincón, Fernando; León de Pinto, Gladys; Igartuburu, José Manuel

    2015-09-01

    Acacia tortuosa produces a clear gum, very soluble in water. Previous reports showed that it was constituted by four fractions, one of them an arabinogalactan-protein complex. The elucidation of the A. tortuosa gum structure by the combination of classical chemical methods, size exclusion chromatography and NMR spectroscopy, was the objective of this investigation. The data obtained show that the heteropolysaccharide is an arabinogalactan type II, highly ramified, with lateral chains at C-2 as well as at C-6 of the galactose 3-O residues; mono-O-substituted galactoses were not detected. There are residues of mannose, the arabinose, pyranose predominantly, is terminal and 2-O-linked. The abundance of the 4-O-methyl-α-d-glucuronic acid was not previously reported. The proteic fraction is probably represented by an arabinogalactan-protein complex that binds poorly with β-glucosyl Yariv reagent, and two glycoproteins. The NMR spectra suggest that the carbohydrate links to hydroxyproline through the galactose (galactosylation).

  10. Structural and functional features of central nervous system lymphatics

    PubMed Central

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J.; Eccles, Jacob D.; Rouhani, Sherin J.; Peske, J. David; Derecki, Noel C.; Castle, David; Mandell, James W.; Kevin, S. Lee; Harris, Tajie H.; Kipnis, Jonathan

    2015-01-01

    One of the characteristics of the CNS is the lack of a classical lymphatic drainage system. Although it is now accepted that the CNS undergoes constant immune surveillance that takes place within the meningeal compartment1–3, the mechanisms governing the entrance and exit of immune cells from the CNS remain poorly understood4–6. In searching for T cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the CSF, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the CNS. The discovery of the CNS lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and shed new light on the etiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction. PMID:26030524

  11. Structural and functional features of central nervous system lymphatic vessels.

    PubMed

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  12. Chaotic features of nuclear structure and dynamics: selected topics

    NASA Astrophysics Data System (ADS)

    Zelevinsky, Vladimir; Volya, Alexander

    2016-03-01

    Quantum chaos has become an important element of our knowledge about physics of complex systems. In typical mesoscopic systems of interacting particles the dynamics invariably become chaotic when the level density, growing by combinatorial reasons, leads to the increasing probability of mixing simple mean-field (particle-hole) configurations. The resulting stationary states have exceedingly complicated structures that are comparable to those in random matrix theory. We discuss the main properties of mesoscopic quantum chaos and show that it can serve as a justification for application of statistical mechanics to mesoscopic systems. We show that quantum chaos becomes a powerful instrument for experimental, theoretical and computational work. The generalization to open systems and effects in the continuum are discussed with the help of the effective non-Hermitian Hamiltonian; it is shown how to formulate this approach for numerous problems of quantum signal transmission. The artificially introduced randomness can also be helpful for a deeper understanding of physics. We indicate the problems that require more investigation so as to be understood further.

  13. An atomic view of additive mutational effects in a protein structure

    SciTech Connect

    Skinner, M.M.; Terwilliger, T.C.

    1996-04-01

    Substitution of a single amino acid in a protein will often lead to substantial changes in properties. If these properties could be altered in a rational way then proteins could be readily generated with functions tailored to specific uses. When amino acid substitutions are made at well-separated locations in a single protein, their effects are generally additive. Additivity of effects of amino acid substitutions is very useful because the properties of proteins with any combination of substitutions can be inferred directly from those of the proteins with single changes. It would therefore be of considerable interest to have a means of knowing whether substitutions at a particular pair of sites in a protein are likely to lead to additive effects. The structural basis for additivity of effects of mutations on protein function was examined by determining crystal structures of single and double mutants in the hydrophobic core of gene V protein. Structural effects of mutations were found to be cumulative when two mutations were made in a single protein. Additivity occurs in this case because the regions structurally affected by mutations at the two sites do not overlap even though the sites are separated by only 9 {angstrom}. Structural distortions induced by mutations in gene V protein decrease rapidly, but not isotropically, with distance from the site of mutation. It is anticipated that cases where structural and functional effects of mutations will be additive could be identified simply by examining whether the regions structurally affected by each component mutation overlap.

  14. Application of frequency domain ARX features for linear and nonlinear structural damage identification

    NASA Astrophysics Data System (ADS)

    Adams, Douglas E.; Farrar, Charles R.

    2002-06-01

    Many different vibration-based dynamic input-output and output only data features have been used to identify structural damage and assess structural integrity. Since structural damage introduces linear or nonlinear variations into all of these features, all of them might give positive indications of damage but may not distinguish between linear or nonlinear types of damage. This information can sometimes be used to more reliably diagnose damage by first, helping to distinguish between damage, which is inherently nonlinear, and healthy nonlinearities in a baseline structure; and second, serving as an absolute damage prognosis indicator which, together with prior information about the structural mechanics, determined the degree to which a structure is damaged. A set of potential features that distinguish between linear and nonlinear damage are discussed here. These features are auto-regressive exogenous dynamic transmissiblity model coefficients in the frequency domain. The auto-regressive coefficients are used to characterize the nonlinear nature of damage states and the exogenous coefficients are used to characterize the linear nature of such states. After reviewing the theoretical development of this data model, experimental measurements from a three-story test structure are analyzed using these model coefficients and statistical features are extracted from the coefficients. By using two complementary features, a better indication of the severity of damage is obtained.

  15. Structural and Functional Features of Peroxidases with a Potential as Industrial Biocatalysts

    NASA Astrophysics Data System (ADS)

    Ruiz-Dueñas, Francisco J.; Martínez, Angel T.

    This chapter begins with a description of the main structural features of heme peroxidases representative of the two large superfamilies of plant-fungal-bacterial and animal peroxidases, and the four additional (super)families described to date. Then, we focus on several fungal peroxidases of high biotechnological potential as industrial biocatalysts. These include (1) ligninolytic peroxidases from white-rot basidiomycetes being able to oxidize high redox-potential substrates at an exposed protein radical; (2) heme-thiolate peroxidases that are structural hybrids of typical peroxidases and cytochrome P450 enzymes and, after their discovery in sooty molds, are being described in basidiomycetes with even more interesting catalytic properties, such as selective aromatic oxygenation; and (3) the so-called dye-decolorizing peroxidases that are still to be thoroughly investigated but have been identified in different basidiomycete genomes. The structural-functional description of these peroxidases includes an analysis of the heme environment and a description of their substrate oxidation sites, with the purpose of understanding their interesting catalytic properties and biotechnological potential.

  16. Structural Features of the Telomerase RNA Gene in the Naked Mole Rat Heterocephalus glaber

    PubMed Central

    Evfratov, S. A.; Smekalova, E. M.; Golovin, A. V.; Logvina, N. A.; Zvereva, M. I.; Dontsova, O. A.

    2014-01-01

    Telomere length, an important feature of life span control, is dependent on the activity of telomerase (a key enzyme of the telomere-length-maintaining system). Telomerase RNA is a component of telomerase and, thus, is crucial for its activity. The structures of telomerase RNA genes and their promoter regions were compared for the long-living naked mole rat and different organisms. Two rare polymorphisms in Heterocephalus glaber telomerase RNA (hgTER) were identified: A→G in the first loop of pseudoknot P2b-p3 (an equivalent of 111nt in hTR) and G→A in the scaRNA domain CR7-p8b (an equivalent of 421nt in hTR). Analysis of TER promoter regions allowed us to identify two new transcription factor binding sites. The first one is the ETS family site, which was found to be a conserved element for all the analyzed TER promoters. The second site is unique for the promoter region of TER of the naked mole rat and is a binding site for the SOX17 transcription factor. The absence of one Sp1 site in the TER promoter region of the naked small rat is an additional specific feature of the promoter area of hgTER. Such variation in the hgTER transcription regulation region and hgTER itself could provide increased telomerase activity in stem cells and an extended lifespan to H. glaber. PMID:25093110

  17. Coordination Analysis Using Global Structural Constraints and Alignment-based Local Features

    NASA Astrophysics Data System (ADS)

    Hara, Kazuo; Shimbo, Masashi; Matsumoto, Yuji

    We propose a hybrid approach to coordinate structure analysis that combines a simple grammar to ensure consistent global structure of coordinations in a sentence, and features based on sequence alignment to capture local symmetry of conjuncts. The weight of the alignment-based features, which in turn determines the score of coordinate structures, is optimized by perceptron training on a given corpus. A bottom-up chart parsing algorithm efficiently finds the best scoring structure, taking both nested or non-overlapping flat coordinations into account. We demonstrate that our approach outperforms existing parsers in coordination scope detection on the Genia corpus.

  18. Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins.

    PubMed

    Guerrero-Muñoz, Marcos J; Castillo-Carranza, Diana L; Kayed, Rakez

    2014-04-15

    Impaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others. Although the exact protein that aggregates varies between amyloid disorders, they all share common structural features that can be used as therapeutic targets. In this review, we focus on therapeutic approaches against shared features of toxic oligomeric structures and future directions.

  19. Comparison study of feature extraction methods in structural damage pattern recognition

    NASA Astrophysics Data System (ADS)

    Liu, Wenjia; Chen, Bo; Swartz, R. Andrew

    2011-04-01

    This paper compares the performance of various feature extraction methods applied to structural sensor measurements acquired in-situ, from a decommissioned bridge under realistic damage scenarios. Three feature extraction methods are applied to sensor data to generate feature vectors for normal and damaged structure data patterns. The investigated feature extraction methods include identification of both time domain methods as well as frequency domain methods. The evaluation of the feature extraction methods is performed by examining distance values among different patterns, distance values among feature vectors in the same pattern, and pattern recognition success rate. The test data used in the comparison study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case data sets, including undamaged cases and pier settlement cases (different depths), are used to test the separation of feature vectors among different patterns and the pattern recognition success rate for different feature extraction methods is reported.

  20. Diamond field emitter array cathodes and possibilities of employing additive manufacturing for dielectric laser accelerating structures

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric

    2017-03-01

    Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.

  1. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    SciTech Connect

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energy has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.

  2. Features of the electronic structure of the active center of an HbS molecule

    NASA Astrophysics Data System (ADS)

    Novoselov, D. Yu.; Korotin, Dm. M.; Anisimov, V. I.

    2016-01-01

    Features of the electronic structure of the nonprotein part of the mutant form of the human hemoglobin molecule, HbS, are studied along with the magnetic state of the iron ion that is the "nucleus" of the active center of the molecule. It is found that the mutant form of the HbS molecule differs from a normal hemoglobin molecule by the distortion of the local environment of the iron ion, which changes the energy level splitting by a crystal field. As a result of ab initio calculations, the magnetic transition in the iron atom from the high-spin state to the low-spin state upon the addition of molecular oxygen to hemoglobin molecule is reproduced. It is established for the first time that a change in the crystal and electronic structure of the active center as a result of a mutation can lead to a substantial change in the energy of the bond between the active center of the hemoglobin molecule and an oxygen molecule.

  3. Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of Cuscuta chinensis.

    PubMed

    Bao, Xingfeng; Wang, Zhan; Fang, Jinian; Li, Xiaoyu

    2002-03-01

    Three crude polysaccharide fractions, named CS-A, CS-B and CS-C, were prepared from the seeds of Cuscuta chinensis by hot water extraction and diluted alkali extraction subsequently, then EtOH precipitation, and tested for lymphocyte proliferation activity. CS-A showed a stimulating effect on concanavalin A or lipopolysaccharide induced mitogenic activity of lymphocytes. An acidic polysaccharide (CS-A-3beta) was purified from CS-A by anion exchange and gel filtration chromatography. The polysaccharide showed potent stimulating effects on lymphocyte proliferation and antibody production, but did not significantly influence the serum IgG level. Its structural features were elucidated by methylation analysis, partial acid hydrolysis, 1D and 2D NMR and ESI-mass spectroscopy. The data obtained indicated that CS-A-3beta had a backbone consisting of alpha-D-1,4-linked GalpA residues and beta-L-1,2-linked Rhap residues with branches at C-4 of Rhap residues and C-3 of GalpA residues, composed of arabinogalactan and glucobiose. This structure is typical for a pectic polysaccharide of the rhamnogalacturonan type. In addition, the effect of CS-A, CS-B, CS-C and CS-A-3beta on hydrogen peroxide induced cell lesion in rat pheochromocytoma line PC 12 was investigated. The results indicated that, besides its immunostimulating activity, CS-A-3beta had a protective effect against free radical-induced cell toxicity.

  4. Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities.

    PubMed

    Benard, Outhiriaradjou; Chi, Yuling

    2015-01-01

    The identification of biologically active and potentially therapeutically useful pharmacophores from natural products has been a long-term focus in the pharmaceutical industry. The recent emergence of a worldwide obesity and Type II diabetes epidemic has increased focus upon small molecules that can modulate energy metabolism, insulin sensitivity and fat biology. Interesting preliminary work done on mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L., portends potential for this pharmacophore as a novel parent compound for treating metabolic disorders. MGF is comprised of a C-glucosylated xanthone. Owing to the xanthone chemical structure, MGF has a redox active aromatic system and has antioxidant properties. MGF exerts varied and impressive metabolic effects in animals, improving metabolic disorders. For example we have discovered that MGF is a novel activator of the mammalian pyruvate dehydrogenase complex, leading to enhancement of carbohydrate utilization in oxidative metabolism, and leading to increased insulin sensitivity in animal models of obesity and insulin resistance. In addition, recent unbiased proteomics studies revealed that MGF upregulates proteins pivotal for mitochondrial bioenergetics and downregulates proteins controlling de novo lipogenesis in liver, helping to explain protective effects of MGF in prevention of liver steatosis. Several chemical studies have achieved synthesis of MGF, suggesting possible synthetic strategies to alter its chemical structure for development of structure-activity relationship (SAR) information. Ultimately, chemical derivatization studies could lead to the eventual development of novel therapeutics based upon the parent pharmacophore structure. Here we provide comprehensive review on chemical features of MGF, synthesis of its derivatives, its pharmacokinetics and biological activities.

  5. Probing Insect Odorant Receptors with their Cognate Ligands: Insights into Structural Features

    PubMed Central

    Xu, Pingxi; Leal, Walter S.

    2013-01-01

    Oodorant receptors (ORs) are essential for insect survival in the environment and thus are ideal molecular targets for the design of insect-inspired modern green chemicals to control populations of agricultural pests and insects of medical importance. Although insect ORs are known for more than a decade, their structural biology is still in its infancy. Here, we unravel the first structural features of ORs from the malaria mosquito, the Southern house mosquito and the silkworm moth. The second extracellular loops (ECL-2s) of their predicted structures are much longer than ECL-1s and ECL-3s. The 27 amino-acid-residue-long of the ECL-2s in mosquito and the 43 amino-acid-residue-long ECL2s in moth ORs are well-conserved. About one-third of the residues are identical, including 3-4 Pro residues. Thorough examination of well-conserved residues in these structures, by point mutation and functional assay with the Xenopus oocyte recording system, strongly suggest that these “loops” include three β-turns and some degree of folding. In the Southern house mosquito three Pro residues in ECL-2 are essential for full activation of the receptor, which is finely tuned to the oviposition attractant 3-methylindole. Additionally, the “corner residues” of prolines, including Gly, Tyr, and Leu are functionally important thus suggesting that turns are stabilized not only by backbone hydrogen bonds, but also by side-chain interactions. Examination of ECL-2s from a distant taxonomical group suggests these ECL-2 loops might be functionally important in all insect ORs. Two of the four Pro residues in the predicted ECL-2 of the bombykol receptor in the silkworm moth, BmorOR1, are essential for function. Experimental evidence indicates that these loops may not be specificity determinants, but they may form a cover to the yet-to-be-identified membrane embedded binding cavities of insect ORs. PMID:23673297

  6. The performance improvement of automatic classification among obstructive lung diseases on the basis of the features of shape analysis, in addition to texture analysis at HRCT

    NASA Astrophysics Data System (ADS)

    Lee, Youngjoo; Kim, Namkug; Seo, Joon Beom; Lee, JuneGoo; Kang, Suk Ho

    2007-03-01

    In this paper, we proposed novel shape features to improve classification performance of differentiating obstructive lung diseases, based on HRCT (High Resolution Computerized Tomography) images. The images were selected from HRCT images, obtained from 82 subjects. For each image, two experienced radiologists selected rectangular ROIs with various sizes (16x16, 32x32, and 64x64 pixels), representing each disease or normal lung parenchyma. Besides thirteen textural features, we employed additional seven shape features; cluster shape features, and Top-hat transform features. To evaluate the contribution of shape features for differentiation of obstructive lung diseases, several experiments were conducted with two different types of classifiers and various ROI sizes. For automated classification, the Bayesian classifier and support vector machine (SVM) were implemented. To assess the performance and cross-validation of the system, 5-folding method was used. In comparison to employing only textural features, adding shape features yields significant enhancement of overall sensitivity(5.9, 5.4, 4.4% in the Bayesian and 9.0, 7.3, 5.3% in the SVM), in the order of ROI size 16x16, 32x32, 64x64 pixels, respectively (t-test, p<0.01). Moreover, this enhancement was largely due to the improvement on class-specific sensitivity of mild centrilobular emphysema and bronchiolitis obliterans which are most hard to differentiate for radiologists. According to these experimental results, adding shape features to conventional texture features is much useful to improve classification performance of obstructive lung diseases in both Bayesian and SVM classifiers.

  7. Sturgeon osteocalcin shares structural features with matrix Gla protein: evolutionary relationship and functional implications.

    PubMed

    Viegas, Carla S B; Simes, Dina C; Williamson, Matthew K; Cavaco, Sofia; Laizé, Vincent; Price, Paul A; Cancela, M Leonor

    2013-09-27

    Osteocalcin (OC) and matrix Gla protein (MGP) are considered evolutionarily related because they share key structural features, although they have been described to exert different functions. In this work, we report the identification and characterization of both OC and MGP from the Adriatic sturgeon, a ray-finned fish characterized by a slow evolution and the retention of many ancestral features. Sturgeon MGP shows a primary structure, post-translation modifications, and patterns of mRNA/protein distribution and accumulation typical of known MGPs, and it contains seven possible Gla residues that would make the sturgeon protein the most γ-carboxylated among known MGPs. In contrast, sturgeon OC was found to present a hybrid structure. Indeed, although exhibiting protein domains typical of known OCs, it also contains structural features usually found in MGPs (e.g. a putative phosphorylated propeptide). Moreover, patterns of OC gene expression and protein accumulation overlap with those reported for MGP; OC was detected in bone cells and mineralized structures but also in soft and cartilaginous tissues. We propose that, in a context of a reduced rate of evolution, sturgeon OC has retained structural features of the ancestral protein that emerged millions of years ago from the duplication of an ancient MGP gene and may exhibit intermediate functional features.

  8. Prediction of structural features and application to outer membrane protein identification

    PubMed Central

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-01-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes. PMID:26104144

  9. Prediction of structural features and application to outer membrane protein identification

    NASA Astrophysics Data System (ADS)

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-06-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes.

  10. Estimation of Position Specific Energy as a Feature of Protein Residues from Sequence Alone for Structural Classification

    PubMed Central

    Iqbal, Sumaiya; Hoque, Md Tamjidul

    2016-01-01

    A set of features computed from the primary amino acid sequence of proteins, is crucial in the process of inducing a machine learning model that is capable of accurately predicting three-dimensional protein structures. Solutions for existing protein structure prediction problems are in need of features that can capture the complexity of molecular level interactions. With a view to this, we propose a novel approach to estimate position specific estimated energy (PSEE) of a residue using contact energy and predicted relative solvent accessibility (RSA). Furthermore, we demonstrate PSEE can be reasonably estimated based on sequence information alone. PSEE is useful in identifying the structured as well as unstructured or, intrinsically disordered region of a protein by computing favorable and unfavorable energy respectively, characterized by appropriate threshold. The most intriguing finding, verified empirically, is the indication that the PSEE feature can effectively classify disorder versus ordered residues and can segregate different secondary structure type residues by computing the constituent energies. PSEE values for each amino acid strongly correlate with the hydrophobicity value of the corresponding amino acid. Further, PSEE can be used to detect the existence of critical binding regions that essentially undergo disorder-to-order transitions to perform crucial biological functions. Towards an application of disorder prediction using the PSEE feature, we have rigorously tested and found that a support vector machine model informed by a set of features including PSEE consistently outperforms a model with an identical set of features with PSEE removed. In addition, the new disorder predictor, DisPredict2, shows competitive performance in predicting protein disorder when compared with six existing disordered protein predictors. PMID:27588752

  11. Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of

  12. Controlling crystalline structure of ZnS nanocrystals only by tuning sulfur precursor addition rate.

    PubMed

    Bi, Chong; Pan, Liqing; Xu, Mei; Xiao, John Q

    2010-12-01

    Unlike previous studies that emphasize the important role of thermodynamics or surface energy on the structure stabilization of ZnS nanocrystals, we successfully controlled the crystalline structure of ZnS nanocrystals simply by tuning sulfur precursor addition rate under exactly the same other conditions. We observed the structure of as prepared ZnS nanocrystals was evolved from wurtzite into zinc blende with increasing the addition rate of sulfur precursor. The method may extend to engineer other nanomaterials with desired physicochemical properties by controlling crystalline structure. On the other hand, it also makes a new approach to understand the crucial factors that determine the growth mechanism and the crystal structure of nanomaterials in theory.

  13. Infill Optimization for Additive Manufacturing -- Approaching Bone-like Porous Structures.

    PubMed

    Wu, Jun; Aage, Niels; Westermann, Ruediger; Sigmund, Ole

    2017-01-23

    Porous structures such as trabecular bone are widely seen in nature. These structures are lightweight and exhibit strong mechanical properties. In this paper, we present a method to generate bone-like porous structures as lightweight infill for additive manufacturing. Our method builds upon and extends voxel-wise topology optimization. In particular, for the purpose of generating sparse yet stable structures distributed in the interior of a given shape, we propose upper bounds on the localized material volume in the proximity of each voxel in the design domain. We then aggregate the local per-voxel constraints by their p-norm into an equivalent global constraint, in order to facilitate an efficient optimization process. Implemented on a high-resolution topology optimization framework, our results demonstrate mechanically optimized, detailed porous structures which mimic those found in nature. We further show variants of the optimized structures subject to different design specifications, and we analyze the optimality and robustness of the obtained structures.

  14. America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures

    DTIC Science & Technology

    2014-06-01

    titanium and nickel-base alloys after AM fabrication. 4.1 Additive Manufacturing Methods and Applications Three-dimensional printing ( 3D ...AM is defining the process of 3D printing , while additive manufacturing considers the broad application of 3D printing , and necessary manufacturing... printing could generate an economic impact of $230 billion to $550 billion per year by 2025.[4] According to the 2014 Wohlers Report, the 3D printing

  15. Clustering granulometric features

    NASA Astrophysics Data System (ADS)

    Brun, Marcel; Balagurunathan, Yoganand; Barrera, Junior; Dougherty, Edward R.

    2002-05-01

    Granulometric features have been widely used for classification, segmentation and recently in estimation of parameters in shape models. In this paper we study the inference of clustering based on granulometric features for a collection of structuring probes in the context of random models. We use random Boolean models to represent grains of different shapes and structure. It is known that granulometric features are excellent descriptors of shape and structure of grains. Inference based on clustering these features helps to analyze the consistency of these features and clustering algorithms. This greatly aids in classifier design and feature selection. Features and the order of their addition play a role in reducing the inference errors. We study four different types of feature addition methods and the effect of replication in reducing the inference errors.

  16. Specific features of the motion of neutrons in a medium with a helical magnetic structure

    SciTech Connect

    Fraerman, A. A. Udalov, O. G.

    2007-02-15

    The specific features of the motion of neutrons in a noncoplanar magnetic field are considered by an example of the magnetization distribution in the form of a conical helix. The reflection coefficients of neutrons from holmium crystals are calculated. It is shown that, for a noncoplanar distribution of a magnetic field in a crystal, the reflection coefficient of neutrons with spin flip exhibits an additional feature.

  17. Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features With Structure Preservation on 3-D Meshes.

    PubMed

    Han, Zhizhong; Liu, Zhenbao; Han, Junwei; Vong, Chi-Man; Bu, Shuhui; Chen, Chun Long Philip

    2016-06-30

    Discriminative features of 3-D meshes are significant to many 3-D shape analysis tasks. However, handcrafted descriptors and traditional unsupervised 3-D feature learning methods suffer from several significant weaknesses: 1) the extensive human intervention is involved; 2) the local and global structure information of 3-D meshes cannot be preserved, which is in fact an important source of discriminability; 3) the irregular vertex topology and arbitrary resolution of 3-D meshes do not allow the direct application of the popular deep learning models; 4) the orientation is ambiguous on the mesh surface; and 5) the effect of rigid and nonrigid transformations on 3-D meshes cannot be eliminated. As a remedy, we propose a deep learning model with a novel irregular model structure, called mesh convolutional restricted Boltzmann machines (MCRBMs). MCRBM aims to simultaneously learn structure-preserving local and global features from a novel raw representation, local function energy distribution. In addition, multiple MCRBMs can be stacked into a deeper model, called mesh convolutional deep belief networks (MCDBNs). MCDBN employs a novel local structure preserving convolution (LSPC) strategy to convolve the geometry and the local structure learned by the lower MCRBM to the upper MCRBM. LSPC facilitates resolving the challenging issue of the orientation ambiguity on the mesh surface in MCDBN. Experiments using the proposed MCRBM and MCDBN were conducted on three common aspects: global shape retrieval, partial shape retrieval, and shape correspondence. Results show that the features learned by the proposed methods outperform the other state-of-the-art 3-D shape features.

  18. Prediction of protein secondary structure using probability based features and a hybrid system.

    PubMed

    Ghanty, Pradip; Pal, Nikhil R; Mudi, Rajani K

    2013-10-01

    In this paper, we propose some co-occurrence probability-based features for prediction of protein secondary structure. The features are extracted using occurrence/nonoccurrence of secondary structures in the protein sequences. We explore two types of features: position-specific (based on position of amino acid on fragments of protein sequences) as well as position-independent (independent of amino acid position on fragments of protein sequences). We use a hybrid system, NEUROSVM, consisting of neural networks and support vector machines for classification of secondary structures. We propose two schemes NSVMps and NSVM for protein secondary structure prediction. The NSVMps uses position-specific probability-based features and NEUROSVM classifier whereas NSVM uses the same classifier with position-independent probability-based features. The proposed method falls in the single-sequence category of methods because it does not use any sequence profile information such as position specific scoring matrices (PSSM) derived from PSI-BLAST. Two widely used datasets RS126 and CB513 are used in the experiments. The results obtained using the proposed features and NEUROSVM classifier are better than most of the existing single-sequence prediction methods. Most importantly, the results using NSVMps that are obtained using lower dimensional features, are comparable to those by other existing methods. The NSVMps and NSVM are finally tested on target proteins of the critical assessment of protein structure prediction experiment-9 (CASP9). A larger dataset is used to compare the performance of the proposed methods with that of two recent single-sequence prediction methods. We also investigate the impact of presence of different amino acid residues (in protein sequences) that are responsible for the formation of different secondary structures.

  19. Adaptive cellular structures and devices with internal features for enhanced structural performance

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael Eugene

    and force inputs are contrasted in relation to these metrics. The key innovation to the early structural elements presented here is the combination of the VMT with the pin-jointed hexagonal cell. Chapter 3 explores several prototypes of repeatable structural elements for simultaneous load-carrying capability and energy dissipation that are based on this innovation. The final demonstration prototype presented in this chapter is a column-like element that is based on a hexagonal cell containing two horizontal springs and one vertical damper. The unit is enclosed by a pair of buckling plates that serve to give the prototype a high initial stiffness and load carrying capability. The prototype is tested in both displacement and force input and its behavior is compared to simulation. Chapter 4 builds on the conceptual designs of Chapter 3 with the introduction of a plate-like element, that contains two compact VMTs connected by a horizontally oriented damper. Pre-loaded springs are used in the prototype to perform the same load carrying function as the buckling plates in the column-like prototype with increased predictability. The plate-like prototype is studied under impact to demonstrate its effectiveness as a protective layer. It is shown to reduce peak impact loads transmitted to the base of the device by over 60%. In most cases, the prototype compares well with a conventional protective rubber layer, and in cases of extreme impact loads, it exceeds the performance of the rubber layer. In addition to impact testing, the prototype is also experimentally tested under harmonic displacement input, and is simulated under both harmonic displacement and force input. The experiments illustrate that while the VMT parameters of a single layer can be optimized to a particular harmonic load amplitude, having two layers with softer and stiffer VMTs allows the system to show good energy dissipation characteristics at different harmonic load amplitude levels. Chapter 5 examines using

  20. [Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-triticum aestivum].

    PubMed

    Pershina, L A; Deviatkina, E P; Belova, L I; Trubacheeva, N V; Arbuzova, V S; Kravtsova, L A

    2009-10-01

    Two alloplasmic wheat-barley substitution lines were studied: a line replaced at three pairs of chromosomes 1Hmr((IB), 5Hmar(5D), and 7Hmar(7D), and the disomic-substituted line 7Hma(7D). The lines were constructed on the basis of individual plants from BCIF8- and BC2F6 progeny of barley-wheat hybrids (H. marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) x T. aestivum L.) (2n = 42) (Pyrotrix 28), respectively. Moreover, the alloplasmic wheat-barley ditelosomic addition line 7HLma' isolated among plants from the BC1F6 progeny of a barley-wheat amphiploid was studied, which in this work corresponds to BC2F10 and BC2F11 progeny. It was ascertained that when grown in the field, these alloplasmic lines manifest stable self-fertility. Plants of the given lines are characterized by low height, shortened ears, the fewer number of stems and ears, and of spikelets in the ear, by decreased grain productivity and weight of 1000 grains, in comparison with the common wheat cultivar Pyrotrix 28. The inhibition of trait expression in alloplasmic wheat-barley substitution and addition lines may be connected not only with the influence of wild barley chromosomes functioning in the genotypic environment of common wheat, but also with the effect of the barley cytoplasm. The alloplasmic line with substitution of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D) or the alloplasmic line 7HLmar with ditelosomic addition have, in comparison with the common wheat cultivar Pyrotrix 28, an increased grain protein content, which is explained by the effect of wild barley H. marinum subsp. gussoneanum chromosomes.

  1. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure

    NASA Astrophysics Data System (ADS)

    Barthelat, F.; Tang, H.; Zavattieri, P. D.; Li, C.-M.; Espinosa, H. D.

    2007-02-01

    Mother-of-pearl, also known as nacre, is the iridescent material which forms the inner layer of seashells from gastropods and bivalves. It is mostly made of microscopic ceramic tablets densely packed and bonded together by a thin layer of biopolymer. The hierarchical microstructure of this biological material is the result of millions of years of evolution, and it is so well organized that its strength and toughness are far superior to the ceramic it is made of. In this work the structure of nacre is described over several length scales. The tablets were found to have wavy surfaces, which were observed and quantified using various experimental techniques. Tensile and shear tests performed on small samples revealed that nacre can withstand relatively large inelastic strains and exhibits strain hardening. In this article we argue that the inelastic mechanism responsible for this behavior is sliding of the tablets on one another accompanied by transverse expansion in the direction perpendicular to the tablet planes. Three dimensional representative volume elements, based on the identified nacre microstructure and incorporating cohesive elements with a constitutive response consistent with the interface material and nanoscale features were numerically analyzed. The simulations revealed that even in the absence of nanoscale hardening mechanism at the interfaces, the microscale waviness of the tablets could generate strain hardening, thereby spreading the inelastic deformation and suppressing damage localization leading to material instability. The formation of large regions of inelastic deformations around cracks and defects in nacre are believed to be an important contribution to its toughness. In addition, it was shown that the tablet junctions (vertical junctions between tablets) strengthen the microstructure but do not contribute to the overall material hardening. Statistical variations within the microstructure were found to be beneficial to hardening and to the

  2. Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features.

    PubMed

    Fraga, Irene; Coutinho, João; Bezerra, Rui M; Dias, Albino A; Marques, Guilhermina; Nunes, Fernando M

    2014-10-13

    In this work the effect of carbon and nitrogen levels and initial pH of the wheat extract culture medium of submerged culture of Ganoderma lucidum on the amount, purity and structural features of exopolysaccharides (EPS) were studied. A low peptone level (1.65 g L(-1)) favored mycelium biomass, EPS purity, but a higher supply of peptone (4.80 g L(-1)) is needed for maximum EPS production. The carbohydrate composition of the EPS and structural features also changed significantly according to the different growing conditions, being observed significant differences in the (1 → 3)/(1 → 4)-Glcp ratio and also on the branching degree of EPS. As the biological activities of EPS are highly dependent on the polysaccharide structural features, this variability can have implications on the EPS biological activities, but can also be used advantageously to produce tailor made polysaccharides with specific applications.

  3. Prediction of Protein Structural Class Based on Gapped-Dipeptides and a Recursive Feature Selection Approach.

    PubMed

    Liu, Taigang; Qin, Yufang; Wang, Yongjie; Wang, Chunhua

    2015-12-24

    The prior knowledge of protein structural class may offer useful clues on understanding its functionality as well as its tertiary structure. Though various significant efforts have been made to find a fast and effective computational approach to address this problem, it is still a challenging topic in the field of bioinformatics. The position-specific score matrix (PSSM) profile has been shown to provide a useful source of information for improving the prediction performance of protein structural class. However, this information has not been adequately explored. To this end, in this study, we present a feature extraction technique which is based on gapped-dipeptides composition computed directly from PSSM. Then, a careful feature selection technique is performed based on support vector machine-recursive feature elimination (SVM-RFE). These optimal features are selected to construct a final predictor. The results of jackknife tests on four working datasets show that our method obtains satisfactory prediction accuracies by extracting features solely based on PSSM and could serve as a very promising tool to predict protein structural class.

  4. The effect of additional exposure to the unique features in a perceptual learning task can be attributed to a location bias.

    PubMed

    Recio, Sergio A; Iliescu, Adela F; Bergés, Germán D; Gil, Marta; de Brugada, Isabel

    2016-04-01

    It has been suggested that human perceptual learning could be explained in terms of a better memory encoding of the unique features during intermixed exposure. However, it is possible that a location bias could play a relevant role in explaining previous results of perceptual learning studies using complex visual stimuli. If this were the case, the only relevant feature would be the location, rather than the content, of the unique features. To further explore this possibility, we attempted to replicate the results of Lavis, Kadib, Mitchell, and Hall (2011, Experiment 2), which showed that additional exposure to the unique elements resulted in better discrimination than simple intermixed exposure. We manipulated the location of the unique elements during the additional exposure. In one experiment, they were located in the same position as that when presented together with the common element. In another experiment, the unique elements were located in the center of the screen, regardless of where they were located together with the common element. Our results showed that additional exposure only improved discrimination when the unique elements were presented in the same position as when they were presented together with the common element. The results reported here do not provide support for the explanation of the effects of additional exposure of the unique elements in terms of a better memory encoding and instead suggest an explanation in terms of location bias.

  5. FIB-SEM: an additional technique for investigating internal structure of pollen walls.

    PubMed

    House, Alisoun; Balkwill, Kevin

    2013-12-01

    Pollen grain morphology has been widely used in the classification of the Acanthaceae, where external pollen wall features have proved useful in determining relationships between taxa. Although detailed information has been accumulated using light microscopy, transmission electron microscopy and scanning electron microscopy (SEM) techniques, internal pollen wall features lack investigation and the techniques are cumbersome. A new technique involving precise cross sectioning or slicing of pollen grains at a selected position for examining wall ultrastructure, using a focused ion beam-scanning electron microscope (FIB-SEM), has been explored and promising results have been obtained. The FIB-SEM offers a good technique for reliable, high resolution, three-dimensional (3D) viewing of the internal structure of the pollen grain wall.

  6. Purification, structural features, antioxidant and moisture-preserving activities of an exopolysaccharide from Lachnum YM262.

    PubMed

    Chen, Tianle; Xu, Ping; Zong, Shuai; Wang, Yufen; Su, Nana; Ye, Ming

    2017-03-01

    A water-soluble exopolysaccharide, designated as LEP-2a, was isolated from Lachnum YM262 and purified by DEAE-Cellulose 52 and Sepharose CL-6B chromatographic columns. LEP-2a was a homogeneous polysaccharide, with a molecular weight of 1.52×10(5) Da. It was composed of mannose and galactose in a molar ratio of 20.6:1.0. Its structural features were investigated and elucidated by methylation analysis, periodate oxidation and Smith degradation, FT-IR and NMR spectroscopy. Based on obtained data, the backbone of LEP-2a consisted of 1,2-linked-α-d-mannose, 1,3-linked-α-d-mannose, 1,2,6-linked-α-d-mannose and 1,3-linked-β-d-galactose and the side chains were attached to the backbone at O-6 position of 1,2,6-linked-α-d-mannose. In vitro antioxidant activity assay proved that LEP-2a possessed significant scavenging activities on superoxide, hydroxyl and DPPH radical. Furthermore, LEP-2a had strong in vitro moisture-absorption and -retention capacities as compared to chitosan and glycerol. These results suggested that LEP-2a might have a good potential to be applied as a multifunctional cosmetic additive in cosmetics.

  7. Representational Flexibility and Problem-Solving Ability in Fraction and Decimal Number Addition: A Structural Model

    ERIC Educational Resources Information Center

    Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti

    2016-01-01

    The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…

  8. Structural evaluation of mixer pump installed in Tank 241-AN-107 for caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1995-06-16

    This report documents the structural analysis and evaluation of a mixer pump and caustic addition system to be used in Tank 107-AN. This pump will be installed in the central pump pit of this double- shell tank for the purpose of bringing the hydroxide ion concentration into compliance with Tank Farm operating specifications.

  9. Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Jaquemet, S.; Ternon, J. F.; Kaehler, S.; Thiebot, J. B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.

    2014-02-01

    of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.

  10. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives.

    PubMed

    Desta, Seare T; Yuan, XianJun; Li, Junfeng; Shao, Tao

    2016-12-01

    Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility (ED) of Napier grass silage was examined. Napier grass ensiled with no additive control, 0.2% formic acid, 0.4% molasses, and 0.3% fibrolytic enzyme for, 7, 30, 60 and 90days. Additives increased lactic acid, soluble carbohydrate and decreased all of lignocellulosic contents except acid detergent lignin and pH than control. The highest value of nonstructural carbohydrate and large reduction in lignocellulosic contents was observed in formic acid and fibrolytic enzyme silage respectively. The content of glucose and fructose showed rapid drop in the first 7days of ensilage. Ensilage decreased lignocellulosic contents and increased ED compared to fresh material. The ED of formic acid and molasses silage was significantly higher than control and fibrolytic enzyme silages in all tested days. In summery the ensiling quality structural and nonstructural carbohydrate and ED value of mature Napier grass silage improved through additives.

  11. Role of strongly interacting additives in tuning the structure and properties of polymer systems

    NASA Astrophysics Data System (ADS)

    Daga, Vikram Kumar

    Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals

  12. The future of primordial features with large-scale structure surveys

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Dvorkin, Cora; Huang, Zhiqi; Namjoo, Mohammad Hossein; Verde, Licia

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  13. Characterization of mitochondrial ribosomal RNA genes in gadiformes: sequence variations, secondary structural features, and phylogenetic implications.

    PubMed

    Bakke, Ingrid; Johansen, Steinar

    2002-10-01

    Secondary structure features of mitochondrial ribosomal RNAs (mt-rRNAs) of bony fishes were investigated by a DNA sequence alignment approach. The small subunit (SSU) and large subunit (LSU) mt-rRNA genes were found to contain several additional variable regions compared to their mammalian counterparts. Fish mt-LSU rRNA genes were found to be longer than the mammalians due to increased length of some of the variable regions. The 5' and 3' ends of Atlantic cod mt-rRNAs were precisely mapped. The 3' ends of mt-SSU rRNAs were found to be homogenous and mono-adenylated, whereas that of the mt-LSU rRNAs were heterogenous and oligo-adenylated. The 5' ends of mt-SSU rRNAs appeared to be heterogenous, corresponding to the presumed first and second positions of the gene. Sequences of the central domain and the D-domain of the mt-SSU and mt-LSU rRNA genes, respectively, were determined and characterized for 11 gadiform species (representing the families Gadidae, Lotidae, Ranicipitidae, Merlucciidae, Phycidae, and Macrouridae) and one Lophiidae species. Detailed secondary structure models of the RNA regions are presented for the Atlantic cod (Gadus morhua) and Roundnose grenadier (Coryphaeonides rupestris). Saturation plots revealed that DNA nucleotide positions corresponding to unpaired RNA regions become saturated with transitions at sequence divergence levels about 0.15. Phylogenetic analyses revealed some aspects of gadiform relationships. Gadidae was identified as the most derived of the gadiform families. Lotidae was found to be the family closest related to Gadidae, and Ranicipitidae was also recognized as a derived gadiform taxon.

  14. Structural features important for the biological activity of the potassium channel blocking dendrotoxins.

    PubMed

    Hollecker, M; Marshall, D L; Harvey, A L

    1993-10-01

    1. Dendrotoxins from mamba snake venoms are small proteins that block neuronal K+ channels. In order to investigate structural features associated with their biological activity, partially folded versions of dendrotoxins I and K from black mamba (Dendroaspis polylepis) were prepared by selectively reducing one or more of their three S-S bonds. 2. The modified toxins were tested for ability to compete with 125I-labelled native toxin I to high affinity binding sites on rat brain synaptosomal membranes and for the ability to increase acetylcholine release in a neuromuscular preparation. 3. Binding affinity increased progressively as the toxins folded to the native conformation and the most biologically active of the modified species were those in which only the disulphide bond between residues 14 and 38 was not formed. These intermediates had native-like conformations as determined by circular dichroism but still had about 5-10 times lower affinity than native toxins. 4. Addition of negatively charged groups to block the free sulthydryls at positions 14 and 38 caused a further, marked loss of activity. 5. The results are consistent with the existence of two important regions in the dendrotoxin molecules. The region containing two of the disulphide bonds (around Cys5-Cys55 and Cys30-Cys51) and much of the secondary structure is essential for the binding affinity of the toxins, while the region around Cys14 and Cys38, equivalent to part of the antiprotease site of the homologous protease inhibitor from bovine pancreas (BPTI), plays an important role in the potency of dendrotoxins.

  15. Features and machine learning classification of connected speech samples from patients with autopsy proven Alzheimer's disease with and without additional vascular pathology.

    PubMed

    Rentoumi, Vassiliki; Raoufian, Ladan; Ahmed, Samrah; de Jager, Celeste A; Garrard, Peter

    2014-01-01

    Mixed vascular and Alzheimer-type dementia and pure Alzheimer's disease are both associated with changes in spoken language. These changes have, however, seldom been subjected to systematic comparison. In the present study, we analyzed language samples obtained during the course of a longitudinal clinical study from patients in whom one or other pathology was verified at post mortem. The aims of the study were twofold: first, to confirm the presence of differences in language produced by members of the two groups using quantitative methods of evaluation; and secondly to ascertain the most informative sources of variation between the groups. We adopted a computational approach to evaluate digitized transcripts of connected speech along a range of language-related dimensions. We then used machine learning text classification to assign the samples to one of the two pathological groups on the basis of these features. The classifiers' accuracies were tested using simple lexical features, syntactic features, and more complex statistical and information theory characteristics. Maximum accuracy was achieved when word occurrences and frequencies alone were used. Features based on syntactic and lexical complexity yielded lower discrimination scores, but all combinations of features showed significantly better performance than a baseline condition in which every transcript was assigned randomly to one of the two classes. The classification results illustrate the word content specific differences in the spoken language of the two groups. In addition, those with mixed pathology were found to exhibit a marked reduction in lexical variation and complexity compared to their pure AD counterparts.

  16. Ultra-low-molecular-weight heparins: precise structural features impacting specific anticoagulant activities.

    PubMed

    Lima, Marcelo A; Viskov, Christian; Herman, Frederic; Gray, Angel L; de Farias, Eduardo H C; Cavalheiro, Renan P; Sassaki, Guilherme L; Hoppensteadt, Debra; Fareed, Jawed; Nader, Helena B

    2013-03-01

    Ultra-low-molecular-weight heparins (ULMWHs) with better efficacy and safety ratios are under development; however, there are few structural data available. The main structural features and molecular weight of ULMWHs were studied and compared to enoxaparin. Their monosaccharide composition and average molecular weights were determined and preparations studied by nuclear magnetic resonance spectroscopy, scanning ultraviolet spectroscopy, circular dichroism and gel permeation chromatography. In general, ULMWHs presented higher 3-O-sulphated glucosamine and unsaturated uronic acid residues, the latter being comparable with their higher degree of depolymerisation. The analysis showed that ULMWHs are structurally related to LMWHs; however, their monosaccharide/oligosaccharide compositions and average molecular weights differed considerably explaining their different anticoagulant activities. The results relate structural features to activity, assisting the development of new and improved therapeutic agents, based on depolymerised heparin, for the prophylaxis and treatment of thrombotic disorders.

  17. Ten-Structure as Strategy of Addition 1-20 by Involving Spatial Structuring Ability for First Grade Students

    ERIC Educational Resources Information Center

    Salmah, Ummy; Putri, Ratu Ilma Indra; Somakim

    2015-01-01

    The aim of this study is to design learning activities that can support students to develop strategies for the addition of number 1 to 20 in the first grade by involving students' spatial structuring ability. This study was conducted in Indonesia by involving 27 students. In this paper, one of three activities is discussed namely ten-box activity.…

  18. Structural feature extraction protocol for classifying reversible membrane binding protein domains.

    PubMed

    Källberg, Morten; Lu, Hui

    2009-01-01

    Machine learning based classification protocols for automated function annotation of protein structures have in many instances proven superior to simpler sequence based procedures. Here we present an automated method for extracting features from protein structures by construction of surface patches to be used in such protocols. The utility of the developed patch-growing procedure is exemplified by its ability to identify reversible membrane binding domains from the C1, C2, and PH families.

  19. Students' Demand for Smartphones: Structural Relationships of Product Features, Brand Name, Product Price and Social Infuence

    ERIC Educational Resources Information Center

    Suki, Norazah Mohd

    2013-01-01

    Purpose: The study aims to examine structural relationships of product features, brand name, product price and social influence with demand for Smartphones among Malaysian students'. Design/methodology/approach: Data collected from 320 valid pre-screened university students studying at the pubic higher learning institution in Federal Territory of…

  20. The Discourse Structure and Linguistic Features of Research Article Abstracts in English by Indonesian Academics

    ERIC Educational Resources Information Center

    Arsyad, Safnil

    2014-01-01

    To effectively teach university lecturers or students to write a good research article (RA) abstract for publication in international journals, instructors need to know the present characteristics of abstracts written published in such journals. This study examines the discourse structure and linguistic features of RA abstracts written in English…

  1. 1. VIEW OF THE DUGOUT STRUCTURE (FEATURE B16), FACING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE DUGOUT STRUCTURE (FEATURE B-16), FACING WEST. FAMILY RESIDENCE (B-10) IS VISIBLE IN THE BACKGROUND ON THE UPPER RIGHT SIDE OF PHOTO. - Nevada Lucky Tiger Mill & Mine, Dugout, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  2. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features

    PubMed Central

    2013-01-01

    Background Named entity recognition (NER) is an important task in clinical natural language processing (NLP) research. Machine learning (ML) based NER methods have shown good performance in recognizing entities in clinical text. Algorithms and features are two important factors that largely affect the performance of ML-based NER systems. Conditional Random Fields (CRFs), a sequential labelling algorithm, and Support Vector Machines (SVMs), which is based on large margin theory, are two typical machine learning algorithms that have been widely applied to clinical NER tasks. For features, syntactic and semantic information of context words has often been used in clinical NER systems. However, Structural Support Vector Machines (SSVMs), an algorithm that combines the advantages of both CRFs and SVMs, and word representation features, which contain word-level back-off information over large unlabelled corpus by unsupervised algorithms, have not been extensively investigated for clinical text processing. Therefore, the primary goal of this study is to evaluate the use of SSVMs and word representation features in clinical NER tasks. Methods In this study, we developed SSVMs-based NER systems to recognize clinical entities in hospital discharge summaries, using the data set from the concept extration task in the 2010 i2b2 NLP challenge. We compared the performance of CRFs and SSVMs-based NER classifiers with the same feature sets. Furthermore, we extracted two different types of word representation features (clustering-based representation features and distributional representation features) and integrated them with the SSVMs-based clinical NER system. We then reported the performance of SSVM-based NER systems with different types of word representation features. Results and discussion Using the same training (N = 27,837) and test (N = 45,009) sets in the challenge, our evaluation showed that the SSVMs-based NER systems achieved better performance than the CRFs

  3. Lipophosphonoglycan of the plasma membrane of A canthamoeba castellanii. Inositol and phytosphingosine content and general structural features.

    PubMed

    Dearborn, D G; Smith, S; Korn, E D

    1976-05-25

    Lipophosphonoglycan, a major component of the plasma membrane of Acanthamoeba castellanii, has now been shown to contain 8% inositol and 13% C25- and C24-phytosphingosines in addition to the previously identified content of neutral sugars (26%), amino sugars (3%), aminophosphonates (10%), acidhydrolyzable phosphate (3%), and long chain fatty acids (14%). The fatty acids and phytosphingosines are in ceramide groups. Lipophosphonoglycan can be separated by dodecyl sulfate-polyacrylamide electrophoresis into two major components that are similar in composition except for different oligosaccharide groups. A tentative structural model incorporating these features is proposed in which each of the two components of lipophosphonoglycan is conceived as an oligomeric inositol-containing glycosphingolipid.

  4. Addition of three-dimensional isoparametric elements to NASA structural analysis program (NASTRAN)

    NASA Technical Reports Server (NTRS)

    Field, E. I.; Johnson, S. E.

    1973-01-01

    Implementation is made of the three-dimensional family of linear, quadratic and cubic isoparametric solid elements into the NASA Structural Analysis program, NASTRAN. This work included program development, installation, testing, and documentation. The addition of these elements to NASTRAN provides a significant increase in modeling capability particularly for structures requiring specification of temperatures, material properties, displacements, and stresses which vary throughout each individual element. Complete program documentation is presented in the form of new sections and updates for direct insertion to the three NASTRAN manuals. The results of demonstration test problems are summarized. Excellent results are obtained with the isoparametric elements for static, normal mode, and buckling analyses.

  5. Additional antitumor ecteinascidins from a Caribbean tunicate: crystal structures and activities in vivo.

    PubMed Central

    Sakai, R; Rinehart, K L; Guan, Y; Wang, A H

    1992-01-01

    Ecteinascidins (Ets), isolated from the Caribbean tunicate Ecteinascidia turbinata, protect mice in vivo against P388 lymphoma, B16 melanoma, M5076 ovarian sarcoma, Lewis lung carcinoma, and the LX-1 human lung and MX-1 human mammary carcinoma xenografts. Crystal structures of two tris(tetrahydroisoquinoline) Ets were investigated with single crystals of the 21-O-methyl-N12-formyl derivative of Et 729 and the natural N12-oxide of Et 743. Representatives of an additional class of Ets, Et 722 and Et 736, isolated from the same organism, were assigned tetrahydro-beta-carboline-substituted bis(tetrahydroisoquinoline) structures by NMR and fast atom bombardment MS spectra. PMID:1454834

  6. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    PubMed

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  7. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images

    PubMed Central

    Lu, Xiaobing; Yang, Yongzhe; Wu, Fengchun; Gao, Minjian; Xu, Yong; Zhang, Yue; Yao, Yongcheng; Du, Xin; Li, Chengwei; Wu, Lei; Zhong, Xiaomei; Zhou, Yanling; Fan, Ni; Zheng, Yingjun; Xiong, Dongsheng; Peng, Hongjun; Escudero, Javier; Huang, Biao; Li, Xiaobo; Ning, Yuping; Wu, Kai

    2016-01-01

    Abstract Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases. PMID:27472673

  8. [MORPHOLOGICAL DIVERSITY OF FLEAS' STRUCTURES (SIPHONAPTERA) PART 3: GENERAL CHARACTERISTICS AND FEATURES OF THORACIC SETATION].

    PubMed

    Medvedev, S G

    2015-01-01

    The paper continues a series of publications (Medvedev, 2015a, b) devoted to the analysis of flea structural features. In the present publication, structural features of flea thoracic setation are analyzed for the first time. Six characters with 53 states in the structure of the chaetom of the pronotum, meso-, and metathoracic. segments are distinguished. The author analyzes the cases of the formation of similar states stipulated by processes of reduction or, by contrast, by strengthening of the chaetom in fleas of separate genera belonging to different superfamilies in relation to the type or peculiarities of parasitism in different flea species. In spite of the presence of strong variability in arrangement and number of thoracic setae, some examples of marking of groups in the range families and superfamilies by certain states of the chaetotaxy of the pronotum and metepimera are revealed.

  9. Manipulating feature sizes in Si-based grating structures by thermal oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ji, Ran; Dai, Ning; Scholz, Roland; Steinhart, Martin; Nielsch, Kornelius; Gösele, Ulrich

    2008-08-01

    We report a method for manipulating feature sizes in Si-based grating structures by thermal oxidation, which allows the realization of fin width/period ratios not directly accessible by laser interference lithography. Taking advantage of the expansion in volume associated with the thermal oxidation of Si, grating structures with very high fin width/period ratios of the order of 0.96 were obtained, whereas subsequent chemical etching of the oxide yields grating structures with fin width/period ratios as small as ~0.06.

  10. Structural systematic features of photoelectric effect in aromatic polymers with polymethine dyes

    SciTech Connect

    Aleksandrova, E. L.

    2007-12-15

    The structural systematic features of quantum-yield variation in charge-carrier photogeneration are investigated for polymer systems with molecules into which polymethine dyes of various structures had been introduced. The correlations between the quantum yields and the second-harmonic-generation efficiency in the media containing such dyes are revealed, and relations of the quantum yields to such dye-molecule structural parameters as the ionization potential of its donor fragment, the electron affinity of its acceptor fragment, and the electron-transfer distance between donor and acceptor fragments of the dye molecule are established.

  11. New Features of Time Domain Electric-Field Structures in the Auroral Acceleration Region

    SciTech Connect

    Mozer, F.S.; Ergun, R.; Temerin, M.; Cattell, C.; Dombeck, J.; Wygant, J.

    1997-08-01

    The Polar Satellite carries the first three-axis electric field detector flown in the magnetosphere. Its direct measurement of electric field components perpendicular and parallel to the local magnetic field has revealed new classes and features of electric field structures associated with the plasma acceleration that produces discrete auroras and that populates the magnetosphere with plasma of ionospheric origin. These structures, associated with the hydrogen ion cyclotron mode, include very large solitary waves, spiky field structures, wave envelopes of parallel electric fields, and very large amplitude, nonlinear, coherent ion cyclotron waves. {copyright} {ital 1997} {ital The American Physical Society}

  12. Longitudinal Validation of General and Specific Structural Features of Personality Pathology

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Skodol, Andrew E.; Morey, Leslie C.

    2016-01-01

    Theorists have long argued that personality disorder (PD) is best understood in terms of general impairments shared across the disorders as well as more specific instantiations of pathology. A model based on this theoretical structure was proposed as part of the DSM-5 revision process. However, only recently has this structure been subjected to formal quantitative evaluation, with little in the way of validation efforts via external correlates or prospective longitudinal prediction. We used the Collaborative Longitudinal Study of Personality Disorders dataset to: (1) estimate structural models that parse general from specific variance in personality disorder features, (2) examine patterns of growth in general and specific features over the course of 10 years, and (3) establish concurrent and dynamic longitudinal associations in PD features and a host of external validators including basic personality traits and psychosocial functioning scales. We found that general PD exhibited much lower absolute stability and was most strongly related to broad markers of psychosocial functioning, concurrently and longitudinally, whereas specific features had much higher mean stability and exhibited more circumscribed associations with functioning. However, both general and specific factors showed recognizable associations with normative and pathological traits. These results can inform efforts to refine the conceptualization and diagnosis of personality pathology. PMID:27819472

  13. Structural details of the Orion Nebula - Detection of a network of stringlike ionized features

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.

    1990-09-01

    Continuum observations of the Orion Nebula, obtained at 20 cm using the A, B, C, and D configurations of the VLA during 1986-1987, are reported. Radio images of resolution 1.8 x 1.6 arcsec are presented and analyzed, with a focus on (1) the complex cone structure of M 42 and (2) an extended network of bright stringlike features concentrated near the Trapezium cluster. Possible theoretical explanations of these features are explored, starting from the blister model of H II regions developed by Tenorio and Tagle (1979).

  14. Structured additive distributional regression for analysing landings per unit effort in fisheries research.

    PubMed

    Mamouridis, Valeria; Klein, Nadja; Kneib, Thomas; Cadarso Suarez, Carmen; Maynou, Francesc

    2017-01-01

    We analysed the landings per unit effort (LPUE) from the Barcelona trawl fleet targeting the red shrimp (Aristeus antennatus) using novel Bayesian structured additive distributional regression to gain a better understanding of the dynamics and determinants of variation in LPUE. The data set, covering a time span of 17 years, includes fleet-dependent variables (e.g. the number of trips performed by vessels), temporal variables (inter- and intra-annual variability) and environmental variables (the North Atlantic Oscillation index). Based on structured additive distributional regression, we evaluate (i) the gain in replacing purely linear predictors by additive predictors including nonlinear effects of continuous covariates, (ii) the inclusion of vessel-specific effects based on either fixed or random effects, (iii) different types of distributions for the response, and (iv) the potential gain in not only modelling the location but also the scale/shape parameter of these distributions. Our findings support that flexible model variants are indeed able to improve the fit considerably and that additional insights can be gained. Tools to select within several model specifications and assumptions are discussed in detail as well.

  15. Large Structures of Drag-Reducing Pipe Flow by Surfactant Additives

    NASA Astrophysics Data System (ADS)

    Kishita, Yuki; Naka, Yoshitsugu; Minamoto, Yuki; Shimura, Masayasu; Tanahashi, Mamoru

    2016-11-01

    Characteristics of drag-reducing turbulent pipe flows with surfactant additives have been investigated using stereoscopic particle image velocimetry. Measurements have been performed for a case with surfactant solution of 150 ppm at different Reynolds numbers: Red = 31254 , 58268 , t 85556 , around the maximum drag-reduction. Two distinct peaks are observed in streamwise velocity fluctuations around y / R = 0 . 07 , 0 . 25 and weak peaks are observed in radial velocity fluctuations at the same locations, where the Reynolds shear stress is negative. The deviations toward uz' > 0 , ur' > 0 are observed at y / R = 0 . 215 , and these components are proved to contribute to the negative Reynolds stress. Drag reducing turbulent structures are investigated by means of snapshot POD analysis. The most energetic POD modes show flat periodic structures along the wall, and such structures indicate the relation with these fluctuation peaks and negative Reynolds shear stress.

  16. Structural features responsible for kinetic thermal stability of a carboxypeptidase from the archaebacterium Sulfolobus solfataricus.

    PubMed Central

    Villa, A; Zecca, L; Fusi, P; Colombo, S; Tedeschi, G; Tortora, P

    1993-01-01

    Investigations were performed on the structural features responsible for kinetic thermal stability of a thermostable carboxypeptidase from the thermoacidophilic archaebacterium Sulfolobus solfataricus which had been purified previously and identified as a zinc metalloprotease [Colombo, D'Auria, Fusi, Zecca, Raia and Tortora (1992) Eur. J. Biochem. 206, 349-357]. Removal of Zn2+ by dialysis led to reversible activity loss, which was promptly restored by addition of 80 microM ZnCl2 to the assay mixture. For the first-order irreversible thermal inactivation the metal-depleted enzyme showed an activation energy value of 205.6 kJ.mol-1, which is considerably lower than that of the holoenzyme (494.4 kJ.mol-1). The values of activation free energies, enthalpies and entropies also dropped with metal removal. Thermal inactivation of the apoenzyme was very quick at 80 degrees C, whereas the holoenzyme was stable at the same temperature. These findings suggest a major stabilizing role for the bivalent cation. Chaotropic salts strongly destabilized the holoenzyme, showing that hydrophobic interactions are involved in maintaining the native conformation of the enzyme. However, the inactivation rate was also increased by sodium sulphate, acetate and chloride, which are not chaotropes, indicating that one or more salt bridges concur in stabilizing the active enzyme. Furthermore, at the extremes of the pH-stability curve, NaCl did not affect the inactivation rate, confirming the stabilizing role of intramolecular ionic bonds, as a pH-dependent decrease in stability is likely to occur from breaking of salt bridges involved in maintaining the native conformation of the protein. PMID:8240298

  17. Structural features responsible for kinetic thermal stability of a carboxypeptidase from the archaebacterium Sulfolobus solfataricus.

    PubMed

    Villa, A; Zecca, L; Fusi, P; Colombo, S; Tedeschi, G; Tortora, P

    1993-11-01

    Investigations were performed on the structural features responsible for kinetic thermal stability of a thermostable carboxypeptidase from the thermoacidophilic archaebacterium Sulfolobus solfataricus which had been purified previously and identified as a zinc metalloprotease [Colombo, D'Auria, Fusi, Zecca, Raia and Tortora (1992) Eur. J. Biochem. 206, 349-357]. Removal of Zn2+ by dialysis led to reversible activity loss, which was promptly restored by addition of 80 microM ZnCl2 to the assay mixture. For the first-order irreversible thermal inactivation the metal-depleted enzyme showed an activation energy value of 205.6 kJ.mol-1, which is considerably lower than that of the holoenzyme (494.4 kJ.mol-1). The values of activation free energies, enthalpies and entropies also dropped with metal removal. Thermal inactivation of the apoenzyme was very quick at 80 degrees C, whereas the holoenzyme was stable at the same temperature. These findings suggest a major stabilizing role for the bivalent cation. Chaotropic salts strongly destabilized the holoenzyme, showing that hydrophobic interactions are involved in maintaining the native conformation of the enzyme. However, the inactivation rate was also increased by sodium sulphate, acetate and chloride, which are not chaotropes, indicating that one or more salt bridges concur in stabilizing the active enzyme. Furthermore, at the extremes of the pH-stability curve, NaCl did not affect the inactivation rate, confirming the stabilizing role of intramolecular ionic bonds, as a pH-dependent decrease in stability is likely to occur from breaking of salt bridges involved in maintaining the native conformation of the protein.

  18. Site selectivity for protein tyrosine nitration: insights from features of structure and topological network.

    PubMed

    Cheng, Shangli; Lian, Baofeng; Liang, Juan; Shi, Ting; Xie, Lu; Zhao, Yi-Lei

    2013-11-01

    Tyrosine nitration is a covalent post-translational modification, which regulates protein functions such as hindering tyrosine phosphorylation and affecting essential signal transductions in cells. Based on up-to-date proteomics data, tyrosine nitration appears to be a highly selective process since not all tyrosine residues in proteins or all proteins are nitrated in vivo. Quite a few investigations included the protein structural information from the RCSB PDB database, where near 100,000 high-quality three-dimensional structures are available. In this work, we analyzed the local protein structures and amino acid topological networks of the nitrated and non-nitrated tyrosine sites in nitrated proteins, including neighboring atomic distribution, amino acid pair (AAP) and amino acid triangle (AAT). It has been found that aromatic and aliphatic residues, particularly with large volume, aromatic, aliphatic, or acidic side chains, are disfavored for the nitration. After integrating these structural features and topological network features with traditional sequence features, the predictive model achieves a sensitivity of 63.30% and a specificity of 92.24%, resulting in a much better accuracy compared to the previous models with only protein sequence information. Our investigation implies that the site selectivity may stem from a more open, hydrophilic and high-pH chemical environment around the tyrosine residue.

  19. Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X.

    PubMed

    Faraggi, Eshel; Kloczkowski, Andrzej

    2017-01-01

    Accurate prediction of protein secondary structure and other one-dimensional structure features is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. SPINE-X is a software package to predict secondary structure as well as accessible surface area and dihedral angles ϕ and ψ. For secondary structure SPINE-X achieves an accuracy of between 81 and 84 % depending on the dataset and choice of tests. The Pearson correlation coefficient for accessible surface area prediction is 0.75 and the mean absolute error from the ϕ and ψ dihedral angles are 20(∘) and 33(∘), respectively. The source code and a Linux executables for SPINE-X are available from Research and Information Systems at http://mamiris.com .

  20. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities?

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hui; Liu, Yong-Le; Ning, Jing-Heng; Yu, Jian; Li, Xiang-Hong; Wang, Fa-Xiang

    2013-05-01

    Multifunctional peptides have attracted increasing attention in the food science community because of their therapeutic potential, low toxicity and rapid intestinal absorption. However, previous study demonstrated that the limited structural variations make it difficult to optimize dipeptide molecules in a good balance between desirable and undesirable properties (F. Tian, P. Zhou, F. Lv, R. Song, Z. Li, J. Pept. Sci. 13 (2007) 549-566). In the present work, we attempt to answer whether the structural diversity is sufficient for a tripeptide to have satisfactory multiple bioactivities. Statistical test, structural examination and energetic analysis confirm that peptides of three amino acids long can bind tightly to human angiotensin converting enzyme (ACE) and thus exert significant antihypertensive efficacy. Further quantitative structure-activity relationship (QSAR) modeling and prediction of all 8000 possible tripeptides reveal that their ACE-inhibitory potency exhibits a good (positive) relationship to antioxidative activity, but has only a quite modest correlation with bitterness. This means that it is possible to find certain tripeptide entities possessing the optimal combination of strong ACE-inhibitory potency, high antioxidative activity and weak bitter taste, which are the promising candidates for developing multifunctional food additives with satisfactory multiple bioactivities. The marked difference between dipeptide and tripeptide can be attributed to the fact that the structural diversity of peptides increases dramatically with a slight change in sequence length.

  1. Rigorous assessment and integration of the sequence and structure based features to predict hot spots

    PubMed Central

    2011-01-01

    Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine classifiers are quite

  2. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration

    PubMed Central

    Ibrahim, Ahmed S.; Mander, Suchreet; Hussein, Khaled A.; Elsherbiny, Nehal M.; Smith, Sylvia B.; Al-Shabrawey, Mohamed; Tawfik, Amany

    2016-01-01

    The disruption of retinal pigment epithelial (RPE) function and the degeneration of photoreceptors are cardinal features of age related macular degeneration (AMD); however there are still gaps in our understanding of underlying biological processes. Excess homocysteine (Hcy) has been reported to be elevated in plasma of patients with AMD. This study aimed to evaluate the direct effect of hyperhomocysteinemia (HHcy) on structure and function of RPE. Initial studies in a mouse model of HHcy, in which cystathionine-β-synthase (cbs) was deficient, revealed abnormal RPE cell morphology with features similar to that of AMD upon optical coherence tomography (OCT), fluorescein angiography (FA), histological, and electron microscopic examinations. These features include atrophy, vacuolization, hypopigmentation, thickened basal laminar membrane, hyporeflective lucency, choroidal neovascularization (CNV), and disturbed RPE–photoreceptor relationship. Furthermore, intravitreal injection of Hcy per se in normal wild type (WT) mice resulted in diffuse hyper-fluorescence, albumin leakage, and CNV in the area of RPE. In vitro experiments on ARPE-19 showed that Hcy dose-dependently reduced tight junction protein expression, increased FITC dextran leakage, decreased transcellular electrical resistance, and impaired phagocytic activity. Collectively, our results demonstrated unreported effects of excess Hcy levels on RPE structure and function that lead to the development of AMD-like features. PMID:26885895

  3. The role of emotion in musical improvisation: an analysis of structural features.

    PubMed

    McPherson, Malinda J; Lopez-Gonzalez, Monica; Rankin, Summer K; Limb, Charles J

    2014-01-01

    One of the primary functions of music is to convey emotion, yet how music accomplishes this task remains unclear. For example, simple correlations between mode (major vs. minor) and emotion (happy vs. sad) do not adequately explain the enormous range, subtlety or complexity of musically induced emotions. In this study, we examined the structural features of unconstrained musical improvisations generated by jazz pianists in response to emotional cues. We hypothesized that musicians would not utilize any universal rules to convey emotions, but would instead combine heterogeneous musical elements together in order to depict positive and negative emotions. Our findings demonstrate a lack of simple correspondence between emotions and musical features of spontaneous musical improvisation. While improvisations in response to positive emotional cues were more likely to be in major keys, have faster tempos, faster key press velocities and more staccato notes when compared to negative improvisations, there was a wide distribution for each emotion with components that directly violated these primary associations. The finding that musicians often combine disparate features together in order to convey emotion during improvisation suggests that structural diversity may be an essential feature of the ability of music to express a wide range of emotion.

  4. The Role of Emotion in Musical Improvisation: An Analysis of Structural Features

    PubMed Central

    McPherson, Malinda J.; Lopez-Gonzalez, Monica; Rankin, Summer K.; Limb, Charles J.

    2014-01-01

    One of the primary functions of music is to convey emotion, yet how music accomplishes this task remains unclear. For example, simple correlations between mode (major vs. minor) and emotion (happy vs. sad) do not adequately explain the enormous range, subtlety or complexity of musically induced emotions. In this study, we examined the structural features of unconstrained musical improvisations generated by jazz pianists in response to emotional cues. We hypothesized that musicians would not utilize any universal rules to convey emotions, but would instead combine heterogeneous musical elements together in order to depict positive and negative emotions. Our findings demonstrate a lack of simple correspondence between emotions and musical features of spontaneous musical improvisation. While improvisations in response to positive emotional cues were more likely to be in major keys, have faster tempos, faster key press velocities and more staccato notes when compared to negative improvisations, there was a wide distribution for each emotion with components that directly violated these primary associations. The finding that musicians often combine disparate features together in order to convey emotion during improvisation suggests that structural diversity may be an essential feature of the ability of music to express a wide range of emotion. PMID:25144200

  5. Classification of EEG with structural feature dictionaries in a brain computer interface.

    PubMed

    Göksu, Fikri; Ince, Nuri Firat; Tadipatri, Vijay Aditya; Tewfik, Ahmed H

    2008-01-01

    We present a new method for the classification of EEG in a brain computer interface by adapting subject specific features in spectral, temporal and spatial domain. For this particular purpose we extend our previous work on ECoG classification based on structural feature dictionary and apply it to extract the spectro-temporal patterns of multichannel EEG recordings related to a motor imagery task. The construction of the feature dictionary based on undecimated wavelet packet transform is extended to block FFT. We evaluate several subset selection algorithms to select a small number of features for final classification. We tested our proposed approach on five subjects of BCI Competition 2005 dataset- IVa. By adapting the wavelet filter for each subject, the algorithm achieved an average classification accuracy of 91.4% The classification results and characteristic of selected features indicate that the proposed algorithm can jointly adapt to EEG patterns in spectro-spatio-temporal domain and provide classification accuracies as good as existing methods used in the literature.

  6. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21

    NASA Astrophysics Data System (ADS)

    Li, Wentian; Miramontes, Pedro

    2006-08-01

    Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.

  7. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  8. Structural Features in Heat Transfer Modeling of PEM Fuel Cell Materials

    NASA Astrophysics Data System (ADS)

    Botelho, Steven Joseph

    In this thesis, the impact of incorporating high resolution structural features into the thermal modeling of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) and microporous layer (MPL) is studied. Atomic force microscopy (AFM) has been used to image the surfaces of untreated Toray GDL fibres, and the nano-sized particles within Sigracet MPL. The validity of the GDL smooth fibre assumption commonly employed in literature is studied using a thermal resistance network approach. The MPL, which has been found to show structural variability between manufacturers, was also analyzed using AFM to obtain distributions for the particle size and filling radius. The equivalent thermal resistance between MPL particles was computed using the Gauss-Seidel iterative method, and was found to be sensitive to the particle separation distance and filling radius. Finally, unit-cell analysis is presented as a methodology for incorporating MPL nano-features into modeling of the MPL bulk regions.

  9. Structural features affecting the enzymatic digestibility of pine wood pretreated with ionic liquids.

    PubMed

    Torr, Kirk M; Love, Karen T; Simmons, Blake A; Hill, Stefan J

    2016-03-01

    Pretreating lignocellulosic biomass with certain ionic liquids results in structural and chemical changes that make the biomass more digestible by enzymes. In this study, pine wood was pretreated with 1-ethyl-3-methylimidazolium chloride/acetate ([C2 mim]Cl and [C2 mim][OAc]) at different temperatures to investigate the relative importance of substrate features, such as accessible surface area, cellulose crystallinity, and lignin content, on enzymatic digestibility. The ionic liquid pretreatments resulted in glucan conversions ranging from 23% to 84% on saccharification of the substrates, with [C2 mim][OAc] being more effective than [C2 mim]Cl. The pretreatments resulted in no delignification of the wood, some loss of cellulose crystallinity under certain conditions, and varying levels of increased surface area. Enzymatic digestibility closely correlated with accessible surface area and porosity measurements obtained using Simons' staining and thermoporosimetry techniques. Increased accessible surface area was identified as the principal structural feature responsible for the improved enzymatic digestibility.

  10. Oxide Cathode Mechanisms: Electronic and Structural Features of Oxide Cathode Surfaces.

    DTIC Science & Technology

    1985-01-01

    journals shall ensue as follows: (i) in form by Elsevier under the title Isorption and (Cont) 17. COSATI CODES 18. SUBJECT TERMS ( Continue on reverse it...Lminescence from Oxide Surfaces 19. ABSTRACT ( Continue on reverse if necesary and identify by block number) Continued fran Blk 11: and Structural...Features of Oxide Cathode Surfaces. Continued fran Blk 16: Catalysis om Oxide Surfaces" (ii) in JCS Faraday Transaction I as two scientific papers

  11. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  12. Fabrication of small-scale structures with non-planar features

    DOEpatents

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  13. Fabrication method for small-scale structures with non-planar features

    DOEpatents

    Burckel, David Bruce; Ten Eyck, Gregory A.

    2016-09-20

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  14. Crystal structure features in a new compound C4B25Mg1.42

    NASA Astrophysics Data System (ADS)

    Konovalikhin, S. V.; Ponomarev, V. I.

    2015-09-01

    The composition of C4B25Mg1.42 crystal obtained by self-propagating high-temperature synthesis was determined using X-ray diffraction. This is the first crystalline structure where all boron atoms in the В12 icosahedron occupy crystallographically independent positions; this circumstance allowed us to analyze the effect of substituents on bond lengths in the icosahedron. The crystal structure features, including the channels filled with disordered Mg atoms and the spread of В—В endo- and exo-bond lengths in the icosahedra, are described. A crystallochemical analysis of pair bonds has been performed for the first time.

  15. Effect of boron addition on the structure and magnetic properties of CoPt nanoparticles

    SciTech Connect

    Khemjeen, Yutthaya; Pinitsoontorn, Supree Chompoosor, Apiwat

    2015-05-07

    The effect of B addition on CoPt nanoparticles was investigated. The CoPt-B nanoparticles were synthesized by means of the polyol process. Transmission electron microscopy has shown that the as-synthesized particles have a spherical morphology with average size about 2–3 nm. The X-ray absorption spectroscopy and the X-ray diffraction technique showed the effect of B concentration on phase transformation. The addition of B at up to 60% promoted the formation of the L1{sub 0} phase when the nanoparticles were subjected to annealing at 600 °C. If the B content is higher than 60%, the phase transition is suppressed. The evidence of B addition on the structure of CoPt nanoparticles was further supported by the magnetic measurements. The results show that the coercivity of the annealed CoPt-B nanoparticles was enhanced by the B additions from 20% to 60%, with the maximum coercivity of 12 000 Oe for the CoPt-40%B sample.

  16. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure.

    PubMed

    Crossa, José; Burgueño, Juan; Dreisigacker, Susanne; Vargas, Mateo; Herrera-Foessel, Sybil A; Lillemo, Morten; Singh, Ravi P; Trethowan, Richard; Warburton, Marilyn; Franco, Jorge; Reynolds, Matthew; Crouch, Jonathan H; Ortiz, Rodomiro

    2007-11-01

    Linkage disequilibrium can be used for identifying associations between traits of interest and genetic markers. This study used mapped diversity array technology (DArT) markers to find associations with resistance to stem rust, leaf rust, yellow rust, and powdery mildew, plus grain yield in five historical wheat international multienvironment trials from the International Maize and Wheat Improvement Center (CIMMYT). Two linear mixed models were used to assess marker-trait associations incorporating information on population structure and covariance between relatives. An integrated map containing 813 DArT markers and 831 other markers was constructed. Several linkage disequilibrium clusters bearing multiple host plant resistance genes were found. Most of the associated markers were found in genomic regions where previous reports had found genes or quantitative trait loci (QTL) influencing the same traits, providing an independent validation of this approach. In addition, many new chromosome regions for disease resistance and grain yield were identified in the wheat genome. Phenotyping across up to 60 environments and years allowed modeling of genotype x environment interaction, thereby making possible the identification of markers contributing to both additive and additive x additive interaction effects of traits.

  17. Structure and functional features of olive pollen pectin methylesterase using homology modeling and molecular docking methods.

    PubMed

    Jimenez-Lopez, Jose C; Kotchoni, Simeon O; Rodríguez-García, María I; Alché, Juan D

    2012-12-01

    Pectin methylesterases (PMEs), a multigene family of proteins with multiple differentially regulated isoforms, are key enzymes implicated in the carbohydrates (pectin) metabolism of cell walls. Olive pollen PME has been identified as a new allergen (Ole e 11) of potential relevance in allergy amelioration, since it exhibits high prevalence among atopic patients. In this work, the structural and functional characterization of two olive pollen PME isoforms and their comparison with other PME plants was performed by using different approaches: (1) the physicochemical properties and functional-regulatory motifs characterization, (2) primary sequence analysis, 2D and 3D comparative structural features study, (3) conservation and evolutionary analysis, (4) catalytic activity and regulation based on molecular docking analysis of a homologue PME inhibitor, and (5) B-cell epitopes prediction by sequence and structural based methods and protein-protein interaction tools, while T-cell epitopes by inhibitory concentration and binding score methods. Our results indicate that the structural differences and low conservation of residues, together with differences in physicochemical and posttranslational motifs might be a mechanism for PME isovariants generation, regulation, and differential surface epitopes generation. Olive PMEs perform a processive catalytic mechanism, and a differential molecular interaction with specific PME inhibitor, opening new possibilities for PME activity regulation. Despite the common function of PMEs, differential features found in this study will lead to a better understanding of the structural and functional characterization of plant PMEs and help to improve the component-resolving diagnosis and immunotherapy of olive pollen allergy by epitopes identification.

  18. High-throughput screening for thermoelectric sulphides by using crystal structure features as descriptors

    NASA Astrophysics Data System (ADS)

    Zhang, Ruizhi; Du, Baoli; Chen, Kan; Reece, Mike; Materials Research Insititute Team

    With the increasing computational power and reliable databases, high-throughput screening is playing a more and more important role in the search of new thermoelectric materials. Rather than the well established density functional theory (DFT) calculation based methods, we propose an alternative approach to screen for new TE materials: using crystal structural features as 'descriptors'. We show that a non-distorted transition metal sulphide polyhedral network can be a good descriptor for high power factor according to crystal filed theory. By using Cu/S containing compounds as an example, 1600+ Cu/S containing entries in the Inorganic Crystal Structure Database (ICSD) were screened, and of those 84 phases are identified as promising thermoelectric materials. The screening results are validated by both electronic structure calculations and experimental results from the literature. We also fabricated some new compounds to test our screening results. Another advantage of using crystal structure features as descriptors is that we can easily establish structural relationships between the identified phases. Based on this, two material design approaches are discussed: 1) High-pressure synthesis of metastable phase; 2) In-situ 2-phase composites with coherent interface. This work was supported by a Marie Curie International Incoming Fellowship of the European Community Human Potential Program.

  19. Characteristic structural features of indolicidin: effects of the cis-trans isomerism on its conformation.

    PubMed

    Leitgeb, Balázs

    2014-01-01

    Indolicidin is an antimicrobial peptide showing a broad spectrum of antibacterial and antifungal activities, and according to the cis-trans isomerism of three Xaa-Pro peptide bonds, eight different stereoisomers could be distinguished for this peptide. As the cis-trans isomerism about the Xaa-Pro peptide bonds was not considered in previous studies, the structural features of distinct stereoisomeric forms were not characterized in detail, so far. In this theoretical study, the influences of cis-trans isomerism on the conformation of indolicidin were investigated, as well as the typical structural properties of each stereoisomer were determined, focusing on the secondary structures and intramolecular interactions. Based on the results derived from the molecular dynamics simulations, it could be concluded that the eight different stereoisomeric forms of indolicidin adopted characteristic conformational features. Nevertheless, the appearance of various turn structures and intramolecular interactions proved to be dependent on the cis or trans nature of Xaa-Pro peptide bonds, indicating the relevant role of Pro amino acids in determining the three-dimensional structure of this peptide.

  20. Structural Features of the ATP-Binding Cassette (ABC) Transporter ABCA3

    PubMed Central

    Paolini, Alessandro; Baldassarre, Antonella; Del Gaudio, Ilaria; Masotti, Andrea

    2015-01-01

    In this review we reported and discussed the structural features of the ATP-Binding Cassette (ABC) transporter ABCA3 and how the use of bioinformatics tools could help researchers to obtain a reliable structural model of this important transporter. In fact, a model of ABCA3 is still lacking and no crystallographic structures (of the transporter or of its orthologues) are available. With the advent of next generation sequencing, many disease-causing mutations have been discovered and many more will be found in the future. In the last few years, ABCA3 mutations have been reported to have important pediatric implications. Thus, clinicians need a reliable structure to locate relevant mutations of this transporter and make genotype/phenotype correlations of patients affected by ABCA3-related diseases. In conclusion, we strongly believe that the model preliminarily generated by these novel bioinformatics tools could be the starting point to obtain more refined models of the ABCA3 transporter. PMID:26295388

  1. Analytical techniques and computer algorithms combined for the rapid characterization of structural peptide and protein features.

    PubMed

    Caporale, C

    1998-11-01

    The most recent algorithms based on the use of modern analytical techniques for the assessment of structural peptide and protein features have been reviewed. No algorithm devoted to the realization of predictive models or statistical analysis has been discussed, but only methods furnishing information on the real structure of the molecules. In particular, the procedures designed for handling sequence and mass spectrometric data obtained from the analysis of unfractionated digestion mixtures allow the user to get rapid information on the structure of the target polypeptide. Two classes of methods are illustrated: the first regards the determination of the amino acid sequence, whereas the second used its knowledge to supply data on the localization, function and three-dimensional structure of disulphides.

  2. Fiber Bragg grating spectral features for structural health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Webb, Sean; Peters, Kara; Zikry, Mohammed; Stan, Nikola; Chadderdon, Spencer; Selfridge, Richard; Schultz, Stephen

    2014-05-01

    We demonstrate the measurement of and applications for reflected spectral signatures obtained from FBG sen- sors in dynamic environments. Three uses of the spectral distortion measurements for monitoring of airframe structures are presented: the measurement of the dynamic response of a laminated plate to an impact event; the measurement of damage induced spectral distortion in a thin plate during vibration loading; and the measurement of the change in dynamic response of an adhesively bonded joint with the progression of fatigue damage.

  3. Hybrid Residual Flexibility/Mass-Additive Method for Structural Dynamic Testing

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.

    2003-01-01

    A large fixture was designed and constructed for modal vibration testing of International Space Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered during a checkout test of the common module prototype structure, mainly due to undesirable friction and excessive clearances in the test-article-to-fixture interface bearings. Measured mode shapes and frequencies were not representative of orbiter-constrained modes due to the friction and clearance effects in the bearings. As a result, a major redesign effort for the interface mechanisms was undertaken. The total cost of the fixture design, construction and checkout, and redesign was over $2 million. Because of the problems experienced with fixed-base testing, alternative free-suspension methods were studied, including the residual flexibility and mass-additive approaches. Free-suspension structural dynamics test methods utilize soft elastic bungee cords and overhead frame suspension systems that are less complex and much less expensive than fixed-base systems. The cost of free-suspension fixturing is on the order of tens of thousands of dollars as opposed to millions, for large fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO-1 Shuttle payload was done at the Kennedy Space Center launch site. In this Technical Memorandum, the mass-additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach that combines the best characteristics of each method follows and is the focus of the study.

  4. General features and master equations for structurization in complex dusty plasmas

    SciTech Connect

    Tsytovich, V. N.; Morfill, G. E.

    2012-02-15

    Dust structurization is considered to be typical for complex plasmas. Homogeneous dusty plasmas are shown to be universally unstable. The dusty plasma structurization instability is similar to the gravitational instability and can results in creation of different compact dust structures. A general approach for investigation of the nonlinear stage of structurization in dusty plasmas is proposed and master equations for the description of self-organized structures are formulated in the general form that can be used for any nonlinear model of dust screening. New effects due to the scattering of ions on the nonlinearly screened grains are calculated: nonlinear ion dust drag force and nonlinear ion diffusion. The physics of confinement of dust and plasma components in the equilibria of compact dust structures is presented and is supported by numerical calculations of master equations. The necessary conditions for the existence of equilibrium structures are found for an arbitrary nonlinearity in dust screening. Features of compact dust structures observed in recent experiments agree with the numerically calculated ones. Some proposals for future experiments in spherical chamber are given.

  5. Search for characteristic structural features of mammalian mitochondrial tRNAs.

    PubMed Central

    Helm, M; Brulé, H; Friede, D; Giegé, R; Pütz, D; Florentz, C

    2000-01-01

    A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies. PMID:11073213

  6. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    SciTech Connect

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148 km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.

  7. EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.

    PubMed

    Diykh, Mohammed; Li, Yan; Wen, Peng

    2016-11-01

    The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.

  8. Segmentation of vessel structures in serial whole slide sections using region-based context features

    NASA Astrophysics Data System (ADS)

    Schwier, Michael; Hahn, Horst K.; Dahmen, Uta; Dirsch, Olaf

    2016-03-01

    We present a method for the automatic segmentation of vascular structures in stacks of serial sections. It was initially motivated within the Virtual Liver Network research project that aims at creating a multi-scale virtual model of the liver. For this the vascular systems of several murine livers under different conditions need to be analyzed. To get highly detailed datasets, stacks of serial sections of the whole organs are prepared. Due to the huge amount of image data an automatic approach for segmenting the vessels is required. After registering the slides with an established method we use a set of Random Forest classifiers to distinguish vessels from tissue. Instead of a pixel-wise approach we perform the classification on small regions. This allows us to use more meaningful features. Besides basic intensity and texture features we introduce the concept of context features, which allow the classifiers to also consider the neighborhood of a region. Classification is performed in two stages. In the second stage the previous classification result of a region and its neighbors is used to refine the decision for a particular region. The context features and two stage classification process make our method very successful. It can handle different stainings and also detect vessels in which residue like blood cells remained. The specificity reaches 95%-99% for pure tissue, depending on staining and zoom level. Only in the direct vicinity of vessels the specificity declines to 88%-96%. The sensitivity rates reach between 89% and 98%.

  9. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  10. Detection and analysis of unusual features in the structural model and structure-factor data of a birch pollen allergen

    PubMed Central

    Rupp, Bernhard

    2012-01-01

    Physically improbable features in the model of the birch pollen structure Bet v 1d (PDB entry 3k78) are faithfully reproduced in electron density generated with the deposited structure factors, but these structure factors themselves exhibit properties that are characteristic of data calculated from a simple model and are inconsistent with the data and error model obtained through experimental measurements. The refinement of the 3k78 model against these structure factors leads to an isomorphous structure different from the deposited model with an implausibly small R value (0.019). The abnormal refinement is compared with normal refinement of an isomorphous variant structure of Bet v 1l (PDB entry 1fm4). A variety of analytical tools, including the application of Diederichs plots, Rσ plots and bulk-solvent analysis are discussed as promising aids in validation. The examination of the Bet v 1d structure also cautions against the practice of indicating poorly defined protein chain residues through zero occupancies. The recommendation to preserve diffraction images is amplified. PMID:22505400

  11. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    SciTech Connect

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have not been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.

  12. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    DOE PAGES

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; ...

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have notmore » been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.« less

  13. Biomechanical and Structural Features of CS2 Fimbriae of Enterotoxigenic Escherichia coli

    PubMed Central

    Mortezaei, Narges; Singh, Bhupender; Zakrisson, Johan; Bullitt, Esther; Andersson, Magnus

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in under-developed countries often leads to high mortality rates. Isolated ETEC expresses a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II, which are assembled via the alternate chaperone pathway (ACP), are among the most common. Fimbriae are filamentous structures whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical ability to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understanding about the role of fimbriae as virulence factors points to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modeling of its major structural subunit, CotA, reveals structural clues related to the niche in which they are expressed. Using optical-tweezers force spectroscopy, we found that CS2 fimbriae unwind at a constant force of 10 pN and have a corner velocity (i.e., the velocity at which the force required for unwinding rises exponentially with increased speed) of 1300 nm/s. The biophysical properties of CS2 fimbriae assessed in this work classify them into a low-force unwinding group of fimbriae together with the CFA/I and CS20 fimbriae expressed by ETEC strains. The three fimbriae are expressed by ETEC, colonize in similar gut environments, and exhibit similar biophysical features, but differ in their biogenesis. Our observation suggests that the environment has a strong impact on the biophysical characteristics of fimbriae expressed by ETEC. PMID:26153701

  14. Statistical identification of syndromes feature and structure of disease of western medicine based on general latent structure model.

    PubMed

    Yang, Wei; Yi, Dan-Hui; Xie, Yan-Ming; Tian, Feng

    2012-11-01

    Syndrome differentiation is the character of Chinese medicine (CM). Disease differentiation is the principle of Western medicine (WM). Identifying basic syndromes feature and structure of disease of WM is an important avenue for prevention and treatment of integrated Chinese and Western medicine. The idea here is first to divide all patients suffering from a disease of WM into several groups in the light of the stage of the disease, and secondly to identify basic syndromes feature in a distinct stage, and finally to achieve the purpose of syndrome differentiation. Syndrome differentiation is simply taken as a classifier that classifies patients into distinct classes primarily based on overall observation of their symptoms. Previous clustering methods are unable to cope with the complexity of CM. We therefore show a new multi-dimensional clustering method in the form of general latent structure (GLS) model, which is a suitable statistical learning technique of latent class analysis. In this paper, we learn an optimal GLS model which reflects much better model quality compared with other latent class models from the osteoporosis patient of community women (OPCW) real data including 40-65 year-old women whose bone mineral density (BMD) is less than mean-2.0 standard deviation (M-2.0SD). Further, we illustrate a case analysis of statistical identification of CM syndromes feature and structure of OPCW from qualitative and quantitative contents through the GLS model. Our analysis has discovered natural clusters and structures that correspond well to CM basic syndrome and factors of osteoporosis patients (OP). The GLS model suggests the possibility of establishing objective and quantitative diagnosis standards for syndrome differentiation on OPCW. Hence, for the future it can provide a reference for the similar study from the perspective of a combination of disease differentiation and syndrome differentiation.

  15. Effect of Polyaniline additions on structural and gas sensing behaviour of metal oxides thin films

    NASA Astrophysics Data System (ADS)

    Hj. Jumali, Mohammad H.; Izzuddin, Izura; Ramli, Norhashimah; Mat Salleh, Muhamad; Yahaya, Muhammad

    2009-07-01

    The structural and gas sensing behaviour of metal oxides namely TiO2 and ZnO thin films were investigated. In this paper, commercial Polyaniline (PANi) powder were added into two different metal oxides sol gel solutions with PANi : metal oxides weight ratios of 1wt.%, 2wt.% and 3wt.%. The thin films were fabricated using spin coating technique. Structural investigation using XRD presented that all films exhibited amorphous structure. Typical films surface morphology consists of agglomerated round shaped particles with the particles size varies between 57nm to 200nm. Addition of PANi formed network chains between the particles. Ethanol vapor detection test conducted at room temperature showed that both TiO2 and ZnO based films were capable to sense the vapor. The optimum ratio in sensing ethanol vapour for both PANi-TiO2 and PANi-ZnO films was 3:1. However, other issues such as reliability, selectability and repeatability remain as the major problems.

  16. Sedative effects of inhaled benzylacetone and structural features contributing to its activity.

    PubMed

    Miyoshi, Takashi; Ito, Michiho; Kitayama, Takashi; Isomori, Sachiko; Yamashita, Fumiyoshi

    2013-01-01

    Benzylacetone is released by heated agarwood, when inhaled it has a potent effect on reducing the locomotor activity of mice. This study investigated the relationships between the sedative activities of benzylacetone and its derivatives as well as the chemical structures of these compounds by comparing their activities in mice treated with a series of compounds. It was demonstrated that benzylacetone-like compounds had sedative activities and their intensities varied depending on the functional group in the carbon chain, the substituent in the benzene ring, and their combinations. A quantitative structure-activity relationship study was carried out using a series of 17 benzylacetone derivatives to determine the structural features with significant for the sedative activity.

  17. Semi-isometric registration of line features for flexible fitting of protein structures

    PubMed Central

    Abeysinghe, S.; Baker, M. L.; Chiu, W.; Ju, T.

    2010-01-01

    In this paper, we study a registration problem that is motivated by a practical biology problem - fitting protein structures to low-resolution density maps. We consider registration between two sets of lines features (e.g., helices in the proteins) that have undergone not a single, but multiple isometric transformations (e.g., hinge-motions). The problem is further complicated by the presence of symmetry in each set. We formulate the problem as a clique-finding problem in a product graph, and propose a heuristic solution that includes a fast clique-finding algorithm unique to the structure of this graph. When tested on a suite of real protein structures, the algorithm achieved high accuracy even for very large inputs containing hundreds of helices. PMID:21124809

  18. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function

    NASA Astrophysics Data System (ADS)

    Martin, O. C.; Krzywicki, A.; Zagorski, M.

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent ;motifs;, that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure.

  19. A Feature-based Developmental Model of the Infant Brain in Structural MRI

    PubMed Central

    Toews, Matthew; Wells, William M.; Zöllei, Lilla

    2014-01-01

    In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days. PMID:23286050

  20. Line-feature-based calibration method of structured light plane parameters for robot hand-eye system

    NASA Astrophysics Data System (ADS)

    Qi, Yuhan; Jing, Fengshui; Tan, Min

    2013-03-01

    For monocular-structured light vision measurement, it is essential to calibrate the structured light plane parameters in addition to the camera intrinsic parameters. A line-feature-based calibration method of structured light plane parameters for a robot hand-eye system is proposed. Structured light stripes are selected as calibrating primitive elements, and the robot moves from one calibrating position to another with constraint in order that two misaligned stripe lines are generated. The images of stripe lines could then be captured by the camera fixed at the robot's end link. During calibration, the equations of two stripe lines in the camera coordinate system are calculated, and then the structured light plane could be determined. As the robot's motion may affect the effectiveness of calibration, so the robot's motion constraints are analyzed. A calibration experiment and two vision measurement experiments are implemented, and the results reveal that the calibration accuracy can meet the precision requirement of robot thick plate welding. Finally, analysis and discussion are provided to illustrate that the method has a high efficiency fit for industrial in-situ calibration.

  1. A Principle for the Formation of the Spatial Structure of Cortical Feature Maps

    NASA Astrophysics Data System (ADS)

    Obermayer, K.; Ritter, H.; Schulten, K.

    1990-11-01

    Orientation-selective cells in the striate cortex of higher animals are organized as a hierarchical topographic map of two stimulus features: (i) position in visual space and (ii) orientation. We show that the observed structure of the topographic map can arise from a principle of continuous mapping. For the realization of this principle we use a mathematical model that can be interpreted as an adaptive process changing a set of synaptic weights, or synaptic connection strengths, between two layers of cells. The patterns of orientation preference and selectivity generated by the model are similar to the patterns seen in the visual cortex of macaque monkey and cat and correspond to a neural projection that maps a more than two-dimensional feature space onto a two-dimensional cortical surface under the constraint that shape and position of the receptive fields of the neurons vary smoothly over the cortical surface.

  2. Endotoxin structures in the psychrophiles Psychromonas marina and Psychrobacter cryohalolentis contain distinctive acyl features.

    PubMed

    Sweet, Charles R; Alpuche, Giancarlo M; Landis, Corinne A; Sandman, Benjamin C

    2014-07-09

    Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide), a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME) GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2-) units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments.

  3. Structural and ultra-structural features of the first mandibular molars of young rats submitted to pre and postnatal protein deficiencies.

    PubMed

    Gonçalves, L A; Boldrini, S C; Capote, T S O; Binotti, C B; Azeredo, R A; Martini, D T; Rosenberg, B; Bautz, W G; Liberti, E A

    2009-06-09

    The effects of protein malnutrition, both in utero and prior to weaning, on formation of the first mandibular molars were evaluated by phase-contrast and electron microscopy in rats. The nourished group (GI) received a diet that included 20% casein, while the malnourished group (GII) received 5% casein. The first mandibular molars from GII exhibited low density of cells and odontoblasts, which lacked regular organization compared with molars from GI. In addition, a difference in collagen type was observed between the groups, with a prevalence of Type III collagen fibers detected in the dentin, periodontal ligament, and alveolar bone of GII, and a prevalence of Type I collagen fibers in GI. Finally, examination of surface area in molar sagittal sections indicated 30% less dentin in GII, compared with GI. Our results suggest that structural and ultra-structural features of the dentin-pulp complex and periodontal components of rat molars are affected by protein deficiency.

  4. Structural and Ultra-Structural Features of the First Mandibular Molars of Young Rats Submitted to Pre and Postnatal Protein Deficiencies

    PubMed Central

    Gonçalves, L.A; Boldrini, S.C; Capote, T.S.O; Binotti, C.B; Azeredo, R.A; Martini, D.T; Rosenberg, B; Bautz, W.G; Liberti, E.A

    2009-01-01

    The effects of protein malnutrition, both in utero and prior to weaning, on formation of the first mandibular molars were evaluated by phase-contrast and electron microscopy in rats. The nourished group (GI) received a diet that included 20% casein, while the malnourished group (GII) received 5% casein. The first mandibular molars from GII exhibited low density of cells and odontoblasts, which lacked regular organization compared with molars from GI. In addition, a difference in collagen type was observed between the groups, with a prevalence of Type III collagen fibers detected in the dentin, periodontal ligament, and alveolar bone of GII, and a prevalence of Type I collagen fibers in GI. Finally, examination of surface area in molar sagittal sections indicated 30% less dentin in GII, compared with GI. Our results suggest that structural and ultra-structural features of the dentin-pulp complex and periodontal components of rat molars are affected by protein deficiency. PMID:19557153

  5. The RGD finger of Del-1 is a unique structural feature critical for integrin binding

    SciTech Connect

    Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan; Wang, Rui; Springer, Timothy A.; Wang, Jia-huai

    2012-11-13

    Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin {alpha}{sub V}{beta}{sub 3}. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' {beta} turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2 and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8. The RGD finger of Del-1 is a unique structural feature critical for integrin binding.

  6. Compression approach of street networks considering the structural and functional features of streets

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Zhang, Xiping

    2015-10-01

    The compression of networks is an important aspect of complex networks and spatial generalization. Previous studies show that the dual graph for street-street relationships more accurately reflects the morphological features of street networks than the traditional methods. In this study, a dual graph for street-street relationship is constructed based on complex networks theory. We introduce the concept of m-order neighbors and take into account the factors of the node’s degree, closeness centrality, betweenness centrality, and distance within the dual graph. We also consider the importance contributions of the node itself and its 1- to m-order neighbors and define the evaluation model of node importance. We then propose a street compression process based on the evaluation of node importance for dual graph by considering the structural and functional features of streets. The degree distribution and topological similarity index are introduced to evaluate the level of maintaining the global structure and topological characteristics of the road network and to validate the efficiency of the proposed method. A real urban road network is used for the experiments. Results show that the proposed approach can be used in selecting important streets that can retain the global structural properties and topological connectivity of the street network.

  7. Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing

    SciTech Connect

    List III, Frederick Alyious; Dehoff, Ryan R; Lowe, Larry E; Sames, William J

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand better these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  8. Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

    2010-01-01

    Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

  9. Application and testing of additive manufacturing for mirrors and precision structures

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Acreman, Martyn; Vettese, Tom; Myatt, Ray; Thompson, Mike

    2015-09-01

    Additive Manufacturing (aka AM, and 3-D printing) is widely touted in the media as the foundation for the next industrial revolution. Beneath the hype, AM does indeed offer profound advantages in lead-time, dramatically reduced consumption of expensive raw materials, while enabling new and innovative design forms that cannot be produced by other means. General Dynamics and their industry partners have begun to embrace this technology for mirrors and precision structures used in the aerospace, defense, and precision optical instrumentation industries. Aggressively lightweighted, open and closed back test mirror designs, 75-150 mm in size, were first produced by AM from several different materials. Subsequent optical finishing and test experiments have exceeded expectations for density, surface finish, dimensional stability and isotropy of thermal expansion on the optical scale of measurement. Materials currently under examination include aluminum, titanium, beryllium, aluminum beryllium, Inconel 625, stainless steel/bronze, and PEKK polymer.

  10. Structural damage identification using damping: a compendium of uses and features

    NASA Astrophysics Data System (ADS)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions

  11. ARX model-based damage sensitive features for structural damage localization using output-only measurements

    NASA Astrophysics Data System (ADS)

    Roy, Koushik; Bhattacharya, Bishakh; Ray-Chaudhuri, Samit

    2015-08-01

    The study proposes a set of four ARX model (autoregressive model with exogenous input) based damage sensitive features (DSFs) for structural damage detection and localization using the dynamic responses of structures, where the information regarding the input excitation may not be available. In the proposed framework, one of the output responses of a multi-degree-of-freedom system is assumed as the input and the rest are considered as the output. The features are based on ARX model coefficients, Kolmogorov-Smirnov (KS) test statistical distance, and the model residual error. At first, a mathematical formulation is provided to establish the relation between the change in ARX model coefficients and the normalized stiffness of a structure. KS test parameters are then described to show the sensitivity of statistical distance of ARX model residual error with the damage location. The efficiency of the proposed set of DSFs is evaluated by conducting numerical studies involving a shear building and a steel moment-resisting frame. To simulate the damage scenarios in these structures, stiffness degradation of different elements is considered. It is observed from this study that the proposed set of DSFs is good indicator for damage location even in the presence of damping, multiple damages, noise, and parametric uncertainties. The performance of these DSFs is compared with mode shape curvature-based approach for damage localization. An experimental study has also been conducted on a three-dimensional six-storey steel moment frame to understand the performance of these DSFs under real measurement conditions. It has been observed that the proposed set of DSFs can satisfactorily localize damage in the structure.

  12. Effect of Microgravity on Interface Structural Features in Space Crystal Growth

    NASA Astrophysics Data System (ADS)

    Chen, Wan-chun; W, Chen C.; Mai, Zhen-hong; Z, Mai H.; K, Kato

    1998-08-01

    The distribution of Ca2+ at boundary layer of α-LiIO3 crystal grown both in space and on earth was studied by the synchrotron x-ray fluorescence microanalysis. It was found that: (1) the Ca2+ concentration in the space-crystal is higher than that in the earth-crystal, (2) a sharp discontinuity of Ca2+ concentration is found at boundary layers of space-crystals alone. This finding provides an evidence of microgravity effect on interface structural features in space crystal growth.

  13. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  14. Influence of major structural features of cellulose on rate of enzymatic hydrolysis

    SciTech Connect

    Fan, L.T.; Lee, Y.H.; Beardmore, D.R.

    1981-02-01

    An attempt was made to determine the effect of two structural features of cellulose on its enzymatic hydrolysis: its crystallinity and its specific surface area. Solka Floc SW40 was pretreated in various ways prior to hydrolysis: ball milling, gamma radiation, pyrolysis, treatment by sodium hydroxide, treatment by CMCS, and treatment by sulfuric acid. Microcrystalline cellulose (Sigmacell 50) was also employed in the test. The culture filtrate of Trichoderma reesei QM9414 was the source of the enzyme. It was observed that, independent of the methods of treatment, the rate of hydrolysis would tend to increase with an increase in specific surface area and with a decrease in crystallinity index.

  15. Predicting the occurrence of wildfires with binary structured additive regression models.

    PubMed

    Ríos-Pena, Laura; Kneib, Thomas; Cadarso-Suárez, Carmen; Marey-Pérez, Manuel

    2017-02-01

    Wildfires are one of the main environmental problems facing societies today, and in the case of Galicia (north-west Spain), they are the main cause of forest destruction. This paper used binary structured additive regression (STAR) for modelling the occurrence of wildfires in Galicia. Binary STAR models are a recent contribution to the classical logistic regression and binary generalized additive models. Their main advantage lies in their flexibility for modelling non-linear effects, while simultaneously incorporating spatial and temporal variables directly, thereby making it possible to reveal possible relationships among the variables considered. The results showed that the occurrence of wildfires depends on many covariates which display variable behaviour across space and time, and which largely determine the likelihood of ignition of a fire. The joint possibility of working on spatial scales with a resolution of 1 × 1 km cells and mapping predictions in a colour range makes STAR models a useful tool for plotting and predicting wildfire occurrence. Lastly, it will facilitate the development of fire behaviour models, which can be invaluable when it comes to drawing up fire-prevention and firefighting plans.

  16. Effect of calcium chloride addition on ice cream structure and quality.

    PubMed

    Costa, F F; Resende, J V; Abreu, L R; Goff, H D

    2008-06-01

    The influence of calcium fortification by the addition of calcium chloride on quality parameters of ice cream based on physical properties was investigated, as was the effect of kappa-carrageenan at modifying the effects of this calcium fortification. Four ice cream mixes of conventional composition, with added kappa-carrageenan (0 or 0.025%) and added calcium chloride (0 or 4.4 g L(-1) = 40 mM of added Ca(2+)), were prepared. Modulated temperature-differential scanning calorimetry was used to investigate the effect of calcium chloride on the nucleation temperature, enthalpy of melting, and freezing point depression. The protein composition of 15.4% (wt/wt) reconstituted skim milk powder solutions with or without 4.4 g L(-1) added CaCl(2) and in the supernatant after ultracentrifugation was determined. Fat particle size distributions in ice cream were characterized by light scattering. Ice crystal sizes before and after temperature cycling were determined by cold-stage light microscopy. The results demonstrated that the addition of calcium chloride led to a substantial increase in ice crystal sizes and in fat partial coalescence, which were exacerbated by the addition of kappa-carrageenan. These results can be explained by the interaction between Ca(2+) ions and casein micelles, rather than any effects on freezing point depression. The calcium ions led to a more compact micelle, less serum beta-casein, and high fat destabilization, all of which would be expected to reduce macromolecular structure and volume occupancy in the unfrozen phase, which led to increased rates of ice recrystallization.

  17. Study of the structure of steel 12Kh12M1BFP modified with additions of fullerenes and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Glebov, V. A.; Bakulina, A. S.; Efremov, I. V.; Shchetinin, I. V.; Yagodkin, Yu. D.; Glezer, A. M.; Rashkovskii, A. Yu.; Vainshtein, D. L.

    2010-12-01

    X-ray structural analysis, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy are used to study the structure of compacted specimens of steel 12Kh12M1BFP, modified with additions of fullerenes and carbon nanotubes. The effect of additions on the microhardness of compacted specimens is established.

  18. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes.

    PubMed

    Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy

    2015-11-01

    Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.

  19. Weak conservation of structural features in the interfaces of homologous transient protein–protein complexes

    PubMed Central

    Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy

    2015-01-01

    Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures. PMID:26311309

  20. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study.

    PubMed Central

    Georis, J.; de Lemos Esteves, F.; Lamotte-Brasseur, J.; Bougnet, V.; Devreese, B.; Giannotta, F.; Granier, B.; Frère, J. M.

    2000-01-01

    In a general approach to the understanding of protein adaptation to high temperature, molecular models of the closely related mesophilic Streptomyces sp. S38 Xyl1 and thermophilic Thermomonospora fusca TfxA family 11 xylanases were built and compared with the three-dimensional (3D) structures of homologous enzymes. Some of the structural features identified as potential contributors to the higher thermostability of TfxA were introduced in Xyl1 by site-directed mutagenesis in an attempt to improve its thermostability and thermophilicity. A new Y11-Y16 aromatic interaction, similar to that present in TfxA and created in Xyl1 by the T11Y mutation, improved both the thermophilicity and thermostability. Indeed, the optimum activity temperature (70 vs. 60 degrees C) and the apparent Tm were increased by about 9 degrees C, and the mutant was sixfold more stable at 57 degrees C. The combined mutations A82R/F168H/N169D/delta170 potentially creating a R82-D169 salt bridge homologous to that present in TfxA improved the thermostability but not the thermophilicity. Mutations R82/D170 and S33P seemed to be slightly destabilizing and devoid of influence on the optimal activity temperature of Xyl1. Structural analysis revealed that residues Y11 and Y16 were located on beta-strands B1 and B2, respectively. This interaction should increase the stability of the N-terminal part of Xyl1. Moreover, Y11 and Y16 seem to form an aromatic continuum with five other residues forming putative subsites involved in the binding of xylan (+3, +2, +1, -1, -2). Y11 and Y16 might represent two additional binding subsites (-3, -4) and the T11Y mutation could thus improve substrate binding to the enzyme at higher temperature and thus the thermophilicity of Xyl1. PMID:10752608

  1. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds

    PubMed Central

    2013-01-01

    Background Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions. Results SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems. Conclusions In conclusion, the

  2. Structural Characterization of Pandoraea pnomenusa B-356 Biphenyl Dioxygenase Reveals Features of Potent Polychlorinated Biphenyl-Degrading Enzymes

    PubMed Central

    Chakko, Mathew N.; Sinha, Sangita C.; Powlowski, Justin B.; Eltis, Lindsay D.; Bolin, Jeffrey T.

    2013-01-01

    The oxidative degradation of biphenyl and polychlorinated biphenyls (PCBs) is initiated in Pandoraea pnomenusa B-356 by biphenyl dioxygenase (BPDOB356). BPDOB356, a heterohexameric (αβ)3 Rieske oxygenase (RO), catalyzes the insertion of dioxygen with stereo- and regioselectivity at the 2,3-carbons of biphenyl, and can transform a broad spectrum of PCB congeners. Here we present the X-ray crystal structures of BPDOB356 with and without its substrate biphenyl 1.6-Å resolution for both structures. In both cases, the Fe(II) has five ligands in a square pyramidal configuration: H233 Nε2, H239 Nε2, D386 Oδ1 and Oδ2, and a single water molecule. Analysis of the active sites of BPDOB356 and related ROs revealed structural features that likely contribute to the superior PCB-degrading ability of certain BPDOs. First, the active site cavity readily accommodates biphenyl with minimal conformational rearrangement. Second, M231 was predicted to sterically interfere with binding of some PCBs, and substitution of this residue yielded variants that transform 2,2′-dichlorobiphenyl more effectively. Third, in addition to the volume and shape of the active site, residues at the active site entrance also apparently influence substrate preference. Finally, comparison of the conformation of the active site entrance loop among ROs provides a basis for a structure-based classification consistent with a phylogeny derived from amino acid sequence alignments. PMID:23308114

  3. Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development

    PubMed Central

    Melero, José A.; Mas, Vicente; McLellan, Jason S.

    2016-01-01

    Extraordinary progress in the structure and immunobiology of the human respiratory syncytial virus glycoproteins has been accomplished during the last few years. Determination of the fusion (F) glycoprotein structure folded in either the prefusion or the postfusion conformation was an inspiring breakthrough not only to understand the structural changes associated with the membrane fusion process but additionally to appreciate the antigenic intricacies of the F molecule. Furthermore, these developments have opened new avenues for structure-based designs of promising hRSV vaccine candidates. Finally, recent advances in our knowledge of the attachment (G) glycoprotein and its interaction with cell-surface receptors have revitalized interest in this molecule as a vaccine, as well as its role in hRSV immunobiology. PMID:27692522

  4. On the use of attractor dimension as a feature in structural health monitoring

    USGS Publications Warehouse

    Nichols, J.M.; Virgin, L.N.; Todd, M.D.; Nichols, J.D.

    2003-01-01

    Recent works in the vibration-based structural health monitoring community have emphasised the use of correlation dimension as a discriminating statistic in seperating a damaged from undamaged response. This paper explores the utility of attractor dimension as a 'feature' and offers some comparisons between different metrics reflecting dimension. This focus is on evaluating the performance of two different measures of dimension as damage indicators in a structural health monitoring context. Results indicate that the correlation dimension is probably a poor choice of statistic for the purpose of signal discrimination. Other measures of dimension may be used for the same purposes with a higher degree of statistical reliability. The question of competing methodologies is placed in a hypothesis testing framework and answered with experimental data taken from a cantilivered beam.

  5. 3D Solar Wind Structure Features Characterizing the Rise of Cycle 24

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ellenburg, M. A.; Riley, P.; Lee, C. O.; Arge, C. N.; Jian, L.; Russell, C. T.; Simunac, K.; Galvin, A. B.; Petrie, G. J.

    2011-12-01

    Since the launch of the STEREO mission in 2006, there has been renewed interest in the 3D structure of the solar wind, spurred in part by the unusual cycle 23 solar minimum and current solar cycle rise. Of particular significance for this subject has been the ubiquitous occurrence of low latitude coronal holes and coronal pseudo-streamers. These coupled features have been common both because of the relative strength of high order spherical harmonic content of the global coronal field, and the weakness of the field compared to the previous two well-observed cycles. We consider the effects of the low latitude coronal holes and pseudo-streamers on the near-ecliptic solar wind and interplanetary field. In particular, we illustrate how the now common passage of streams with low latitude sources and pseudo-streamer boundaries is changing our traditional perceptions of local solar wind structures.

  6. Structural features of an arabinogalactan gum exudates from Spondias dulsis (Anacardiaceae).

    PubMed

    Martínez, Maritza; León de Pinto, Gladys; Sanabria, Lilian; Beltrán, Olga; Igartuburu, José M; Bahsas, Ali

    2003-03-28

    The tree Spondias dulcis, located in Venezuela, exudes a light-brown gum. The polysaccharide, isolated from the original gum, contains galactose, arabinose, mannose, rhamnose, glucuronic acid, and its 4-O-methyl derivative. Application of chemical methods, in combination with 1D and 2D NMR spectroscopy afforded interesting structural features of the gum polysaccharide. The unequivocal presence of rhamnose in the polymer structure was confirmed by chemical and spectral data [1H (1.03 ppm); 13C (16.92 ppm)]. Also confirmed was the existence of 3-O- and 6-O-substitutes galactose residues by the spectral data correlations observed in Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronuclear Multiple Bond Correlation (HMBC). Also observed were unequivocal resonances for beta-D-glucuronic acid and its 4-O-methyl derivative, and the presence of 3-O-alpha-L-arabinofuranose and 3-O-beta-L-arabinopyranose residues.

  7. Structural features and biological activity of xyloglucans from suspension-cultured plant cells.

    PubMed

    Joseleau, J P; Cartier, N; Chambat, G; Faik, A; Ruel, K

    1992-01-01

    Different xyloglucan (XG) fractions were isolated from Rubus fruticosus cells cultured in suspension. Sequential extraction showed that two distinct xyloglucans existed in the primary walls. The first could be easily extracted in alkali and the second was tightly associated to cellulose. A third fraction was isolated from the extracellular polysaccharides of the culture medium. The alkali-soluble XG and the extracellular XG showed many structural features in common. By use of an anti-XG polyclonal antibody, electron microscopy examination suggests that the extracellular hemicellulose is progressively released from the wall by a sloughing mechanism. Oligosaccharides prepared from the extracellular XG were purified and their structure examined by FAB-ms technique. When the nonasaccharide was added at low concentrations (10(-5) mg/ml) to the culture medium it was able to elicit several different glycanohydrolase activities associated to the cell wall.

  8. Specific features of the nonradiative relaxation of Er{sup 3+} ions in epitaxial Si structures

    SciTech Connect

    Kudryavtsev, K. E. Kryzhkov, D. I.; Antonov, A. V.; Shengurov, D. V.; Shmagin, V. B.; Krasilnik, Z. F.

    2014-12-15

    The specific features of the nonradiative relaxation of Er{sup 3+} ions in Si:Er layers grown by sublimation molecular-beam epitaxy (SMBE) are studied. In Si:Er/Si diode structures containing precipitation-type emitting centers, a resonance photoresponse at the wavelength λ ≈ 1.5 μm is observed, which is indicative of the nonradiative relaxation of Er3+ ions via the energy back-transfer mechanism. Saturation of the erbium-related photocurrent is for the first time observed at high temperatures. This allows estimation of the concentration of Er centers that undergo relaxation via the above-mentioned back-transfer mechanism (N{sub 0} ≈ 5 × 10{sup 16} cm{sup −3}). In terms of order of magnitude, the estimated concentration N{sub 0} corresponds to the concentration of optically active Er ions upon excitation of the Si:Er layers by means of the recombination mechanism. The features of the nonradiative relaxation of Er{sup 3+} ions in Si:Er/Si structures with different types of emitting centers are analyzed.

  9. Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling.

    PubMed

    Jayasinghe, Sajith A; Langen, Ralf

    2004-11-12

    Pancreatic amyloid deposits, composed primarily of the 37-residue islet amyloid polypeptide (IAPP), are a characteristic feature found in more than 90% of patients with type II diabetes. Although IAPP amyloid deposits are associated with areas of pancreatic islet beta-cell dysfunction and depletion and are thought to play a role in disease, their structure is unknown. We used electron paramagnetic resonance spectroscopy to analyze eight spin-labeled derivatives of IAPP in an effort to determine structural features of the peptide. In solution, all eight derivatives gave rise to electron paramagnetic resonance spectra with sharp lines indicative of rapid motion on the sub-nanosecond time scale. These spectra are consistent with a rapidly tumbling and highly dynamic peptide. In contrast, spectra for the fibrillar form exhibit reduced mobility and the presence of strong intermolecular spin-spin interactions. The latter implies that the peptide subunits are ordered and that the same residues from neighboring peptides are in close proximity to one another. Our data are consistent with a parallel arrangement of IAPP peptides within the amyloid fibril. Analysis of spin label mobility indicates a high degree of order throughout the peptide, although the N-terminal region is slightly less ordered. Possible similarities with respect to the domain organization and parallelism of Alzheimer's amyloid beta peptide fibrils are discussed.

  10. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766).

    PubMed

    Ciena, Adriano Polican; de Sousa Bolina, Cristina; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei

    2013-08-01

    The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae.

  11. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766)

    PubMed Central

    Ciena, Adriano Polican; Bolina, Cristina de Sousa; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei

    2013-01-01

    The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae. PMID:23701183

  12. Structural features of the pore formed by Staphylococcus aureus alpha-toxin inferred from chemical modification and primary structure analysis.

    PubMed

    Menestrina, G; Belmonte, G; Parisi, V; Morante, S

    1992-09-01

    Staphylococcus aureus alpha-toxin makes cells and model membranes permeable to ions and uncharged molecules by opening oligomeric pores of uniform size. Its primary sequence reveals peculiar features which give some hints on the structure of the pore. A flexible region separating the toxin into two halves, several amphiphilic beta-strands and two amphiphilic alpha-helices long enough to span the hydrophobic core of the lipid bilayer are predicted. In analogy to bacterial porins, we propose that the inner walls of the pore are, at least in part, built by an amphiphilic beta-barrel. The model is consistent with circular dichroism data and with the electrophysiological properties of the pore. Functional information on this toxin were obtained by chemical modification of its four histidine residues. Specific carbethoxylation suggested they have different roles: one is required for specific receptor binding, one for oligomerisation and two for unspecific lipid binding. A tentative assignment of each histidine to its specific role is done on the basis of the structural predictions. A functionally related hemolysin, Aeromonas hydrophyla aerolysin, reveals remarkably similar features including the presence and location of histidines involved in receptor binding and oligomerisation.

  13. Application of prestressed structural elements in the erection of heavy viscoelastic arched structures with the use of an additive technology

    NASA Astrophysics Data System (ADS)

    Manzhirov, A. V.; Parshin, D. A.

    2016-11-01

    The process of erection an object under the action of gravity forces in the absence of additional loads is studied together with the technology of application of prestressed structure elements. The mathematically two-dimensional engineering problem of mechanics of gradual building of a heavy semicircular vault from a prestressed viscoelastic homogeneously aging material is solved analytically. The vault fixation on a rigid horizontal base by sliding fixation, which ensures continuous smooth contact between the vault foot and the base, is considered. The performed computations permit demonstrating high efficiency of preliminary stress creation in the material elements added to the vault in the process of its building in order to control its technological stress state. It is shown that this measure permits significantly decreasing the final values of the separating contact stresses on the foot of the built vault and obtaining the final state of the whole structure which is safer with respect to the level of tensile stresses than that obtain by using unstressed elements.

  14. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    PubMed

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  15. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast

    PubMed Central

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-01-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA “intrinsic properties” (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome. PMID:26291518

  16. Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants.

    PubMed

    Wu, Shengde; Fisher, Joan; Naciff, Jorge; Laufersweiler, Michael; Lester, Cathy; Daston, George; Blackburn, Karen

    2013-12-16

    Developmental and reproductive toxicity (DART) end points are important hazard end points that need to be addressed in the risk assessment of chemicals to determine whether or not they are the critical effects in the overall risk assessment. These hazard end points are difficult to predict using current in silico tools because of the diversity of mechanisms of action that elicit DART effects and the potential for narrow windows of vulnerability. DART end points have been projected to consume the majority of animals used for compliance with REACH; thus, additional nonanimal predictive tools are urgently needed. This article presents an empirically based decision tree for determining whether or not a chemical has receptor-binding properties and structural features that are consistent with chemical structures known to have toxicity for DART end points. The decision tree is based on a detailed review of 716 chemicals (664 positive, 16 negative, and 36 with insufficient data) that have DART end-point data and are grouped into defined receptor binding and chemical domains. When tested against a group of chemicals not included in the training set, the decision tree is shown to identify a high percentage of chemicals with known DART effects. It is proposed that this decision tree could be used both as a component of a screening system to identify chemicals of potential concern and as a component of weight-of-evidence decisions based on structure-activity relationships (SAR) to fill data gaps without generating additional test data. In addition, the chemical groupings generated could be used as a starting point for the development of hypotheses for in vitro testing to elucidate mode of action and ultimately in the development of refined SAR principles for DART that incorporate mode of action (adverse outcome pathways).

  17. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    SciTech Connect

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.

  18. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK

    PubMed Central

    Brown, Nicholas R.; Korolchuk, Svitlana; Martin, Mathew P.; Stanley, Will A.; Moukhametzianov, Rouslan; Noble, Martin E. M.; Endicott, Jane A.

    2015-01-01

    CDK1 is the only essential cell cycle CDK in human cells and is required for successful completion of M-phase. It is the founding member of the CDK family and is conserved across all eukaryotes. Here we report the crystal structures of complexes of CDK1–Cks1 and CDK1–cyclin B–Cks2. These structures confirm the conserved nature of the inactive monomeric CDK fold and its ability to be remodelled by cyclin binding. Relative to CDK2–cyclin A, CDK1–cyclin B is less thermally stable, has a smaller interfacial surface, is more susceptible to activation segment dephosphorylation and shows differences in the substrate sequence features that determine activity. Both CDK1 and CDK2 are potential cancer targets for which selective compounds are required. We also describe the first structure of CDK1 bound to a potent ATP-competitive inhibitor and identify aspects of CDK1 structure and plasticity that might be exploited to develop CDK1-selective inhibitors. PMID:25864384

  19. Topological features in crystal structures: a quotient graph assisted analysis of underlying nets and their embeddings.

    PubMed

    Eon, Jean Guillaume

    2016-05-01

    Topological properties of crystal structures may be analysed at different levels, depending on the representation and the topology that has been assigned to the crystal. Considered here is the combinatorial or bond topology of the structure, which is independent of its realization in space. Periodic nets representing one-dimensional complexes, or the associated graphs, characterize the skeleton of chemical bonds within the crystal. Since periodic nets can be faithfully represented by their labelled quotient graphs, it may be inferred that their topological features can be recovered by a direct analysis of the labelled quotient graph. Evidence is given for ring analysis and structure decomposition into building units and building networks. An algebraic treatment is developed for ring analysis and thoroughly applied to a description of coesite. Building units can be finite or infinite, corresponding to 1-, 2- or even 3-periodic subnets. The list of infinite units includes linear chains or sheets of corner- or edge-sharing polyhedra. Decomposing periodic nets into their building units relies on graph-theoretical methods classified as surgery techniques. The most relevant operations are edge subdivision, vertex identification, edge contraction and decoration. Instead, these operations can be performed on labelled quotient graphs, evidencing in almost a mechanical way the nature and connection mode of building units in the derived net. Various examples are discussed, ranging from finite building blocks to 3-periodic subnets. Among others, the structures of strontium oxychloride, spinel, lithiophilite and garnet are addressed.

  20. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.

    PubMed

    Malavasi, Lorenzo; Fisher, Craig A J; Islam, M Saiful

    2010-11-01

    This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. After describing well-established classes such as fluorite- and perovskite-based oxides, new materials and structure-types are presented. These include a variety of molybdate, gallate, apatite silicate/germanate and niobate systems, many of which contain flexible structural networks, and exhibit different defect properties and transport mechanisms to the conventional materials. It is concluded that the rich chemistry of these important systems provides diverse possibilities for developing superior ionic conductors for use as solid electrolytes in fuel cells and related applications. In most cases, a greater atomic-level understanding of the structures, defects and conduction mechanisms is achieved through a combination of experimental and computational techniques (217 references).

  1. Structural features of endocrine active chemicals--A comparison of in vivo and in vitro data.

    PubMed

    Lewin, Geertje; Escher, Sylvia E; van der Burg, Bart; Simetska, Nelly; Mangelsdorf, Inge

    2015-08-01

    Studies on reproductive toxicity need high numbers of test animals. Therefore, we investigated whether chemical structural features (SF) in combination with in vitro data on specific adverse outcome pathways (AOPs) may be used for predicting reproductive toxicity of untested chemicals. Using the OECD Toolbox and expert judgment, we identified 89 structure groups for 275 chemicals for which the results of prenatal developmental toxicity or multigeneration studies were present in the Fraunhofer database on Fertility and Developmental Toxicity in experimental animals (FeDTex) database. Likewise, we evaluated 220 chemicals which had been tested in reporter gene assays on endocrine ((anti)estrogenic and (anti)androgenic) properties in the CALUX(®) test battery. There was a large spread of effect levels for substances within the chemical structure groups for both, in vivo and in vitro results. The groups of highest concern (diphenyl derivatives, planar conjugated systems with fused rings, phenols and organophosphates) correlated quite well, however, between the in vivo and in vitro data on estrogenic activity. For the 56 chemicals represented in both databases, lowest effect doses in vivo correlated well with the estrogenic activity in vitro. These results suggest that a panel of assays covering relevant AOPs and data on metabolism and toxicokinetics may allow prediction of relative reproductive or development toxicity potency within the identified chemical structure groups.

  2. The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer

    SciTech Connect

    Chen, Fang; Venugopal, Vandavasi; Murray, Beverly; Rudenko, Gabby

    2014-10-02

    {alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha} carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.

  3. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGES

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the averagemore » structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  4. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Korolchuk, Svitlana; Martin, Mathew P.; Stanley, Will A.; Moukhametzianov, Rouslan; Noble, Martin E. M.; Endicott, Jane A.

    2015-04-01

    CDK1 is the only essential cell cycle CDK in human cells and is required for successful completion of M-phase. It is the founding member of the CDK family and is conserved across all eukaryotes. Here we report the crystal structures of complexes of CDK1-Cks1 and CDK1-cyclin B-Cks2. These structures confirm the conserved nature of the inactive monomeric CDK fold and its ability to be remodelled by cyclin binding. Relative to CDK2-cyclin A, CDK1-cyclin B is less thermally stable, has a smaller interfacial surface, is more susceptible to activation segment dephosphorylation and shows differences in the substrate sequence features that determine activity. Both CDK1 and CDK2 are potential cancer targets for which selective compounds are required. We also describe the first structure of CDK1 bound to a potent ATP-competitive inhibitor and identify aspects of CDK1 structure and plasticity that might be exploited to develop CDK1-selective inhibitors.

  5. Using cuttlefish ink as an additive to produce -non-iridescent structural colors of high color visibility.

    PubMed

    Zhang, Yafeng; Dong, Biqin; Chen, Ang; Liu, Xiaohan; Shi, Lei; Zi, Jian

    2015-08-26

    Non-iridescent structural colors of high color visibility are produced by amorphous photonic structures, in which -natural cuttlefish ink is used as an additive to break down the long-range order of the structures. The color hue and its spectral purity can be tuned by adjusting the diameter of the polystyrene (PS) spheres and the proportion of ink particles.

  6. Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique.

    PubMed

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2009-07-01

    An experiment was conducted under laboratory conditions to investigate the effect of increasing concentrations of fenitrothion (2, 10 and 200 mg a.i./kg soil), diuron (1.5, 7.5 and 150 mg a.i./kg soil) and thiram (3.5, 17.5 and 350 mg a.i./kg soil) on soil respiration, bacterial counts and changes in culturable fraction of soil bacteria. To ascertain these changes, the community structure, bacterial biodiversity and process of colony formation, based on the r/K strategy concept, EP- and CD-indices and the FOR model, respectively, were determined. The results showed that the measured parameters were generally unaffected by the lowest dosages of pesticides, corresponding to the recommended field rates. The highest dosages of fenitrothion and thiram suppressed the peak SIR by 15-70% and 20-80%, respectively, while diuron increased respiration rate by 17-25% during the 28-day experiment. Also, the total numbers of bacteria increased in pesticide-treated soils. However, the reverse effect on day 1 and, in addition, in case of the highest dosages of insecticide on days 14 and 28, was observed. Analysis of the community structure revealed that in all soil treatments bacterial communities were generally dominated by K-strategists. Moreover, differences in the distribution of individual bacteria classes and the gradual domination of bacteria populations belonging to r-strategists during the experiment, as compared to control, was observed. However, on day 1, at the highest pesticide dosages, fast growing bacteria constituted only 1-10% of the total colonies number during 48 h of plate incubation, whereas in remaining samples they reached from 20 to 40% of total cfu. This effect, in case of fenitrothion, lasted till the end of the experiment. At the highest dosages of fenitrothion, diuron and at all dosages of thiram the decrease of biodiversity, as indicated by EP- and CD-indices on day 1, was found. At the next sampling time, no significant retarding or stimulating effect

  7. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.

    PubMed

    Chen, Fei; Hochleitner, Gernot; Woodfield, Tim; Groll, Juergen; Dalton, Paul D; Amsden, Brian G

    2016-01-11

    Melt electrospinning writing (MEW) is an emerging additive manufacturing technique that enables the design and fabrication of micrometer-thin fibrous scaffolds made of biocompatible and biodegradable polymers. By using a computer-aided deposition process, a unique control over pore size and interconnectivity of the resulting scaffolds is achieved, features highly interesting for tissue engineering applications. However, MEW has been mainly used to process low melting point thermoplastics such as poly(ε-caprolactone). Since this polymer exhibits creep and a reduction in modulus upon hydration, we manufactured scaffolds of poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) (poly(LLA-ε-CL-AC)), a photo-cross-linkable and biodegradable polymer, for the first time. We show that the stiffness of the scaffolds increases significantly (up to ∼10-fold) after cross-linking by UV irradiation at room temperature, compared with un-cross-linked microfiber scaffolds. The preservation of stiffness and high average fiber modulus (370 ± 166 MPa) within the cross-linked hydrated scaffolds upon repetitive loading (10% strain at 1 Hz up to 200,000 cycles) suggests that the prepared scaffolds may be of potential interest for soft connective tissue engineering applications. Moreover, the approach can be readily adapted through manipulation of polymer properties and scaffold geometry to prepare structures with mechanical properties suitable for other tissue engineering applications.

  8. Critical review of the safety assessment of nano-structured silica additives in food.

    PubMed

    Winkler, Hans Christian; Suter, Mark; Naegeli, Hanspeter

    2016-06-10

    The development of nano-materials is viewed as one of the most important technological advances of the 21st century and new applications of nano-sized particles in the production, processing, packaging or storage of food are expected to emerge soon. This trend of growing commercialization of engineered nano-particles as part of modern diet will substantially increase oral exposure. Contrary to the proven benefits of nano-materials, however, possible adverse health effects have generally received less attention. This problem is very well illustrated by nano-structured synthetic amorphous silica (SAS), which is a common food additive since several decades although the relevant risk assessment has never been satisfactorily completed. A no observed adverse effect level of 2500 mg SAS particles/kg body weight per day was derived from the only available long-term administration study in rodents. However, extrapolation to a safe daily intake for humans is problematic due to limitations of this chronic animal study and knowledge gaps as to possible local intestinal effects of SAS particles, primarily on the gut-associated lymphoid system. This uncertainty is aggravated by digestion experiments indicating that dietary SAS particles preserve their nano-sized structure when reaching the intestinal lumen. An important aspect is whether food-borne particles like SAS alter the function of dendritic cells that, embedded in the intestinal mucosa, act as first-line sentinels of foreign materials. We conclude that nano-particles do not represent a completely new threat and that most potential risks can be assessed following procedures established for conventional chemical hazards. However, specific properties of food-borne nano-particles should be further examined and, for that purpose, in vitro tests with decision-making cells of the immune system are needed to complement existing in vivo studies.

  9. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    SciTech Connect

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-15

    A new tetrapodal ligand 1,1,1-tetrakis{l_brace}[(2'-(2-furfurylaminoformyl))phenoxyl]methyl{r_brace}methane (L) has been prepared and their coordination chemistry with Ln{sup III} ions has been investigated. The structure of {l_brace}[Ln{sub 4}L{sub 3}(NO{sub 3}){sub 12}].H{sub 2}O{r_brace}{sub i}nfinity (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8{sup 6}){sub 3}(8{sup 3}){sub 4} notation. [DyL(NO{sub 3}){sub 3}(H{sub 2}O){sub 2}].0.5CH{sub 3}OH and [ErL(NO{sub 3}){sub 3}(H{sub 2}O) (CH{sub 3}OH)].CH{sub 3}COCH{sub 3} is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H{sub 2}O){sub 6}].3ClO{sub 4}.3H{sub 2}O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu{sup III} complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  10. Multiple Eyewall Structure and its Wind Features in 2012 Typhoon Bolaven

    NASA Astrophysics Data System (ADS)

    Origuchi, S.

    2015-12-01

    Typhoon 'Bolaven' passed the Okinawa Main Island at about 1200 UTC 26 August 2012, while moving northwestward. The radar images showed that 'Bolaven' had the multiple eyewall structure. The surface observation data at Nago of Okinawa showed that the precipitation and surface wind velocity in the typhoon's central region were weaker than those of the Japan Meteorological Agency (JMA)'s operational forecast. Cloud-resolving ensemble simulations were performed to investigate the relations between the multiple eyewall structure and the wind features in the typhoon's central regions. The ensemble simulations reproduced double eyewall structures in several members. To evaluate the reproducibility of multiple eyewall structures, the multi-eye index (MEI) was defined in this study. Compared with the members in which the typhoon had the spiral rainband structures, the pressure gradients in the typhoon's central region of the small MEI (multiple eyewall) members were weak. The precipitation and surface wind velocity were also weaker than those of the typhoons with spiral rainbands. In case of the multiple eyewall typhoon, the gentle pressure gradients and the associated weaker surface inflows suppressed convections in the inner eyewall. The statistical analysis was performed based on the ensemble prediction. A clear positive correlation was indicated between the MEI and the wind velocity (tangential wind and inward radial wind) in the typhoon's central region. This result explains the reason why the actual wind velocity was weaker than that of the original JMA's forecast. The relationship between the atmospheric environmental factors around the typhoon (e.g., level of free convection and convective available potential energy) and MEI was investigated from the outputs of ensemble simulations. The results indicated that there were no strong relations between them. This suggests that the formation of the multiple eyewall structures is not simply determined by the atmospheric

  11. Incidental and context-responsive activation of structure- and function-based action features during object identification.

    PubMed

    Lee, Chia-lin; Middleton, Erica; Mirman, Daniel; Kalénine, Solène; Buxbaum, Laurel J

    2013-02-01

    Previous studies suggest that action representations are activated during object processing, even when task-irrelevant. In addition, there is evidence that lexical-semantic context may affect such activation during object processing. Finally, prior work from our laboratory and others indicates that function-based ("use") and structure-based ("move") action subtypes may differ in their activation characteristics. Most studies assessing such effects, however, have required manual object-relevant motor responses, thereby plausibly influencing the activation of action representations. The present work uses eyetracking and a Visual World Paradigm task without object-relevant actions to assess the time course of activation of action representations, as well as their responsiveness to lexical-semantic context. In two experiments, participants heard a target word and selected its referent from an array of four objects. Gaze fixations on nontarget objects signal activation of features shared between targets and nontargets. The experiments assessed activation of structure-based (Experiment 1) or function-based (Experiment 2) distractors, using neutral sentences ("S/he saw the....") or sentences with a relevant action verb (Experiment 1: "S/he picked up the...."; Experiment 2: "S/he used the...."). We observed task-irrelevant activations of action information in both experiments. In neutral contexts, structure-based activation was relatively faster-rising but more transient than function-based activation. Additionally, action verb contexts reliably modified patterns of activation in both Experiments. These data provide fine-grained information about the dynamics of activation of function-based and structure-based actions in neutral and action-relevant contexts, in support of the "Two Action System" model of object and action processing (e.g., Buxbaum & Kalénine, 2010).

  12. Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence?

    PubMed

    Lindenmayer, David B; Candy, Steven G; MacGregor, Christopher I; Banks, Sam C; Westgate, Martin; Ikin, Karen; Pierson, Jennifer; Tulloch, Ayesha; Barton, Philip

    2016-10-01

    Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for

  13. Additional Constraints on the Shallow Seismic Velocity Structure of the Atlantis Massif Oceanic Core Complex

    NASA Astrophysics Data System (ADS)

    Henig, A. S.; Blackman, D. K.; Harding, A. J.; Kent, G. M.; Canales, J. P.

    2008-12-01

    We investigate the detailed structure of the uppermost ~km of Atlantis Massif, an oceanic core complex at 30°N on the Mid Atlantic Ridge, using pre-existing multichannel seismic data. The Synthetic On- Bottom Experiment (SOBE) method that we employ downward continues both the shots and receivers to a depth just above the seafloor. This allows us to pick refracted arrivals recorded on the streamer at very-near offset, providing constraints from rays that are received within the 300-2000 m range that was unavailable to earlier studies where standard shot gathers had been analyzed. Thus, we can better model the upper few hundred meters of the section which, in turn, adds confidence for determining the deeper (400-1500 m) structure. New work on a ridge-parallel line has been added to last year's work on a cross-axis line over the Central Dome of the massif. Tomographic results are similar for these crossing lines: a thin (100-150 m) low velocity (< 3 km/s) layer caps the dome; high horizontal gradients (>1.25 s-1) occur in local (1-2 km wide) regions within these 6-8 km long subsections of the MCS lines analyzed to date; and very high vertical velocity gradients, greater than 3.75 s-1, occur within the km just below the exposed detachment in these areas. We obtain general agreement with Canales et al., 2008, results over the Central Dome but our models suggest a finer scale lateral heterogeneity. We have begun analysis of additional and extended MCS lines over the domal core of the massif and our priority for this presentation is to assess the detailed structure of the Southern Ridge. In at least some areas the thin, low velocity layer contrasts sufficiently with underlying material that a clear refracted arrival is visible in supergathers. We will determine whether the low velocity layer persists over the whole dome or if it is restricted to the Central Dome. An important question is whether its thickness on the Southern Ridge, if it exists there, differs from that

  14. Robust Classification and Segmentation of Planar and Linear Features for Construction Site Progress Monitoring and Structural Dimension Compliance Control

    NASA Astrophysics Data System (ADS)

    Maalek, R.; Lichti, D. D.; Ruwanpura, J.

    2015-08-01

    The application of terrestrial laser scanners (TLSs) on construction sites for automating construction progress monitoring and controlling structural dimension compliance is growing markedly. However, current research in construction management relies on the planned building information model (BIM) to assign the accumulated point clouds to their corresponding structural elements, which may not be reliable in cases where the dimensions of the as-built structure differ from those of the planned model and/or the planned model is not available with sufficient detail. In addition outliers exist in construction site datasets due to data artefacts caused by moving objects, occlusions and dust. In order to overcome the aforementioned limitations, a novel method for robust classification and segmentation of planar and linear features is proposed to reduce the effects of outliers present in the LiDAR data collected from construction sites. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a robust clustering method. A method is also proposed to robustly extract the points belonging to the flat-slab floors and/or ceilings without performing the aforementioned stages in order to preserve computational efficiency. The applicability of the proposed method is investigated in two scenarios, namely, a laboratory with 30 million points and an actual construction site with over 150 million points. The results obtained by the two experiments validate the suitability of the proposed method for robust segmentation of planar and linear features in contaminated datasets, such as those collected from construction sites.

  15. Gram-Negative Marine Bacteria: Structural Features of Lipopolysaccharides and Their Relevance for Economically Important Diseases

    PubMed Central

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2014-01-01

    Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted. PMID:24796306

  16. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases.

    PubMed

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2014-04-30

    Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted.

  17. Stiffness tuning of FeGa structures manufactured by ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Dapino, Marcelo J.

    2014-03-01

    This paper investigates the use of Galfenol (FeGa) composite beams as solid-state, adaptive vibration absorbers that have an electrically-tunable sti ness. The study encompasses the manufacture of these structures by ultrasonic additive manufacturing (UAM) and the formulation of a continuous model for the beams' bending vibrations. The beams' 1st and 3rd resonant frequencies are calculated as a function of base acceleration, Galfenol volume fraction, and DC magnetic eld. The e ects of an axial force, viscoelastic material damping, beam nonuniformity, and Galfenol's nonlinear behavior are incorporated. Autoresonant feedback control is used as a numerical technique to maintain the resonant state under changes in the inputs. The model is validated by comparing (1) calculated and analytical frequency responses and (2) calculated and measured resonant frequencies and modes shapes of a Galfenol/Al 6061 composite beam that was manufactured using UAM. The modeling results show that by varying the DC magnetic eld, the resonant frequency can be tuned between 3 % and 51 % for Galfenol/Al 6061 composites containing from 10 % to 100 % Galfenol by volume, respectively. The magnitude of this change will increase for composites that have a softer matrix. The axial force was found to have only a small e ect on the maximum resonant frequency tunability, but, for high Galfenol volume fractions, was also found to broaden the region over which tuning can occur.

  18. Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.

    PubMed

    Melcher, Michael; Scharl, Theresa; Luchner, Markus; Striedner, Gerald; Leisch, Friedrich

    2017-02-01

    The quality of biopharmaceuticals and patients' safety are of highest priority and there are tremendous efforts to replace empirical production process designs by knowledge-based approaches. Main challenge in this context is that real-time access to process variables related to product quality and quantity is severely limited. To date comprehensive on- and offline monitoring platforms are used to generate process data sets that allow for development of mechanistic and/or data driven models for real-time prediction of these important quantities. Ultimate goal is to implement model based feed-back control loops that facilitate online control of product quality. In this contribution, we explore structured additive regression (STAR) models in combination with boosting as a variable selection tool for modeling the cell dry mass, product concentration, and optical density on the basis of online available process variables and two-dimensional fluorescence spectroscopic data. STAR models are powerful extensions of linear models allowing for inclusion of smooth effects or interactions between predictors. Boosting constructs the final model in a stepwise manner and provides a variable importance measure via predictor selection frequencies. Our results show that the cell dry mass can be modeled with a relative error of about ±3%, the optical density with ±6%, the soluble protein with ±16%, and the insoluble product with an accuracy of ±12%. Biotechnol. Bioeng. 2017;114: 321-334. © 2016 Wiley Periodicals, Inc.

  19. Sub-Tg features of glasses formed by cooling glycerol under pressure - Additional incompatibility of vibrational with configurational states in the depressurized, high density glass

    NASA Astrophysics Data System (ADS)

    Andersson, Ove; Johari, G. P.

    2016-11-01

    The vibrational state of a glass is naturally incompatible with its configurational state, which makes the glass structurally unstable. When a glass is kept at constant temperature, both the vibrational and configurational states of a glass change with time until it becomes metastable (equilibrium) liquid and the two states become compatible. The process, known as structural relaxation, occurs at a progressively higher rate during heating, and the properties of a glass change accordingly. We add to this incompatibility by depressurizing a glass that had been formed by cooling a liquid under a high pressure, p, and then investigate the effects of the added incompatibility by studying thermal conductivity, κ , and the heat capacity per unit volume ρ Cp of the depressurized glass. We use glycerol for the purpose and study first the changes in the features of κ and of ρ Cp during glass formation on cooling under a set of different p. We then partially depressurize the glass and study the effect of the p-induced instability on the features of κ and ρ Cp as the glass is isobarically heated to the liquid state. At a given low p, the glass configuration that was formed by cooling at high-p had a higher κ than the glass configuration that was formed by cooling at a low p. The difference is more when the glass is formed at a higher p and/or is depressurized to a lower p. On heating at a low p, its κ decreases before its glass-liquid transition range is reached. The effect is the opposite of the increase in κ observed on heating a glass at the same p under which it was formed. It is caused by thermally assisted loss of the added incompatibility of configurational and vibrational states of a high-p formed glass kept at low p. If a glass formed under a low-p is pressurized and then heated under high p, it would show the opposite effect, i.e., its κ would first increase to its high p value before its glass-to-liquid transition range.

  20. Assessment of the micro-structure and depletion potentials in two-dimensional binary mixtures of additive hard-disks

    NASA Astrophysics Data System (ADS)

    Perera-Burgos, Jorge Adrián; Méndez-Alcaraz, José Miguel; Pérez-Ángel, Gabriel; Castañeda-Priego, Ramón

    2016-09-01

    Depletion forces are a particular class of effective interactions that have been mainly investigated in binary mixtures of hard-spheres in bulk. Although there are a few contributions that point toward the effects of confinement on the depletion potential, little is known about such entropic potentials in two-dimensional colloidal systems. From theoretical point of view, the problem resides in the fact that there is no general formulation of depletion forces in arbitrary dimensions and, typically, any approach that works well in three dimensions has to be reformulated for lower dimensionality. However, we have proposed a theoretical framework, based on the formalism of contraction of the description within the integral equations theory of simple liquids, to account for effective interactions in colloidal liquids, whose main feature is that it does not need to be readapted to the problem under consideration. We have also shown that such an approach allows one to determine the depletion pair potential in three-dimensional colloidal mixtures even near to the demixing transition, provided the bridge functions are sufficiently accurate to correctly describe the spatial correlation between colloids [E. López-Sánchez et al., J. Chem. Phys. 139, 104908 (2013)]. We here report an extensive analysis of the structure and the entropic potentials in binary mixtures of additive hard-disks. In particular, we show that the same functional form of the modified-Verlet closure relation used in three dimensions can be straightforwardly employed to obtain an accurate solution for two-dimensional colloidal mixtures in a wide range of packing fractions, molar fractions, and size asymmetries. Our theoretical results are explicitly compared with the ones obtained by means of event-driven molecular dynamics simulations and recent experimental results. Furthermore, to assess the accuracy of our predictions, the depletion potentials are used in an effective one-component model to reproduce

  1. Assessment of the micro-structure and depletion potentials in two-dimensional binary mixtures of additive hard-disks.

    PubMed

    Perera-Burgos, Jorge Adrián; Méndez-Alcaraz, José Miguel; Pérez-Ángel, Gabriel; Castañeda-Priego, Ramón

    2016-09-14

    Depletion forces are a particular class of effective interactions that have been mainly investigated in binary mixtures of hard-spheres in bulk. Although there are a few contributions that point toward the effects of confinement on the depletion potential, little is known about such entropic potentials in two-dimensional colloidal systems. From theoretical point of view, the problem resides in the fact that there is no general formulation of depletion forces in arbitrary dimensions and, typically, any approach that works well in three dimensions has to be reformulated for lower dimensionality. However, we have proposed a theoretical framework, based on the formalism of contraction of the description within the integral equations theory of simple liquids, to account for effective interactions in colloidal liquids, whose main feature is that it does not need to be readapted to the problem under consideration. We have also shown that such an approach allows one to determine the depletion pair potential in three-dimensional colloidal mixtures even near to the demixing transition, provided the bridge functions are sufficiently accurate to correctly describe the spatial correlation between colloids [E. López-Sánchez et al., J. Chem. Phys. 139, 104908 (2013)]. We here report an extensive analysis of the structure and the entropic potentials in binary mixtures of additive hard-disks. In particular, we show that the same functional form of the modified-Verlet closure relation used in three dimensions can be straightforwardly employed to obtain an accurate solution for two-dimensional colloidal mixtures in a wide range of packing fractions, molar fractions, and size asymmetries. Our theoretical results are explicitly compared with the ones obtained by means of event-driven molecular dynamics simulations and recent experimental results. Furthermore, to assess the accuracy of our predictions, the depletion potentials are used in an effective one-component model to reproduce

  2. Catalogue of the morphological features in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Herrera-Endoqui, M.; Díaz-García, S.; Laurikainen, E.; Salo, H.

    2015-10-01

    Context. A catalogue of the features for the complete Spitzer Survey of Stellar Structure in Galaxies (S4G), including 2352 nearby galaxies, is presented. The measurements are made using 3.6 μm images, largely tracing the old stellar population; at this wavelength the effects of dust are also minimal. The measured features are the sizes, ellipticities, and orientations of bars, rings, ringlenses, and lenses. Measured in a similar manner are also barlenses (lens-like structures embedded in the bars), which are not lenses in the usual sense, being rather the more face-on counterparts of the boxy/peanut structures in the edge-on view. In addition, pitch angles of spiral arm segments are measured for those galaxies where they can be reliably traced. More than one pitch angle may appear for a single galaxy. All measurements are made in a human-supervised manner so that attention is paid to each galaxy. Aims: We create a catalogue of morphological features in the complete S4G. Methods: We used isophotal analysis, unsharp masking, and fitting ellipses to measured structures. Results: We find that the sizes of the inner rings and lenses normalized to barlength correlate with the galaxy mass: the normalized sizes increase toward the less massive galaxies; it has been suggested that this is related to the larger dark matter content in the bar region in these systems. Bars in the low mass galaxies are also less concentrated, likely to be connected to the mass cut-off in the appearance of the nuclear rings and lenses. We also show observational evidence that barlenses indeed form part of the bar, and that a large fraction of the inner lenses in the non-barred galaxies could be former barlenses in which the thin outer bar component has dissolved. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A86

  3. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga.

    PubMed

    Ago, Hideo; Adachi, Hideyuki; Umena, Yasufumi; Tashiro, Takayoshi; Kawakami, Keisuke; Kamiya, Nobuo; Tian, Lirong; Han, Guangye; Kuang, Tingyun; Liu, Zheyi; Wang, Fangjun; Zou, Hanfa; Enami, Isao; Miyano, Masashi; Shen, Jian-Ren

    2016-03-11

    Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ', a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ' subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ' were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII.

  4. An Individual with Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome (BPES) and Additional Features Expands the Phenotype Associated with Mutations in KAT6B

    PubMed Central

    Yu, Hung-Chun; Geiger, Elizabeth A.; Medne, Livija; Zackai, Elaine H.; Shaikh, Tamim H.

    2015-01-01

    Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome (BPES) is an autosomal dominant disorder caused by mutations in FOXL2. We identified an individual with BPES and additional phenotypic features who did not have a FOXL2 mutation. We used whole exome sequencing to identify a de novo mutation in KAT6B (lysine acetyltransferase 6B) in this individual. The mutation was a 2 bp insertion leading to a frameshift which resulted in a premature stop codon. The resulting truncated protein does not have the C-terminal serine/methionine transcription activation domain necessary for interaction with other transcriptional and epigenetic regulators. This mutation likely has a dominant-negative or gain-of-function effect, similar to those observed in other genetic disorders resulting from KAT6B mutations, including Say-Barber-Biesecker-Young-Simpson (SBBYSS) and Genitopatellar syndrome (GTPTS). Thus, our subject’s phenotype broadens the spectrum of clinical findings associated with mutations in KAT6B. Furthermore, our results suggest that individuals with BPES without a FOXL2 mutation should be tested for KAT6B mutations. The transcriptional and epigenetic regulation mediated by KAT6B appears crucial to early developmental processes, which when perturbed can lead to a wide spectrum of phenotypic outcomes. PMID:24458743

  5. An individual with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and additional features expands the phenotype associated with mutations in KAT6B.

    PubMed

    Yu, Hung-Chun; Geiger, Elizabeth A; Medne, Livija; Zackai, Elaine H; Shaikh, Tamim H

    2014-04-01

    Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is an autosomal dominant disorder caused by mutations in FOXL2. We identified an individual with BPES and additional phenotypic features who did not have a FOXL2 mutation. We used whole exome sequencing to identify a de novo mutation in KAT6B (lysine acetyltransferase 6B) in this individual. The mutation was a 2-bp insertion leading to a frameshift which resulted in a premature stop codon. The resulting truncated protein does not have the C-terminal serine/methionine transcription activation domain necessary for interaction with other transcriptional and epigenetic regulators. This mutation likely has a dominant-negative or gain-of-function effect, similar to those observed in other genetic disorders resulting from KAT6B mutations, including Say-Barber-Biesecker-Young-Simpson (SBBYSS) and genitopatellar syndrome (GTPTS). Thus, our subject's phenotype broadens the spectrum of clinical findings associated with mutations in KAT6B. Furthermore, our results suggest that individuals with BPES without a FOXL2 mutation should be tested for KAT6B mutations. The transcriptional and epigenetic regulation mediated by KAT6B appears crucial to early developmental processes, which when perturbed can lead to a wide spectrum of phenotypic outcomes.

  6. Crystal structure of human antibody 2909 reveals conserved features of quaternary structure-specific antibodies that potently neutralize HIV-1.

    PubMed

    Changela, Anita; Wu, Xueling; Yang, Yongping; Zhang, Baoshan; Zhu, Jiang; Nardone, Glenn A; O'Dell, Sijy; Pancera, Marie; Gorny, Miroslaw K; Phogat, Sanjay; Robinson, James E; Stamatatos, Leonidas; Zolla-Pazner, Susan; Mascola, John R; Kwong, Peter D

    2011-03-01

    Monoclonal antibody 2909 belongs to a class of potently neutralizing antibodies that recognize quaternary epitopes on HIV-1. Some members of this class, such as 2909, are strain specific, while others, such as antibody PG16, are broadly neutralizing; all, however, recognize a region on the gp120 envelope glycoprotein that includes two loops (V2 and V3) and forms appropriately only in the oligomeric HIV-1 spike (gp120(3)/gp41(3)). Here we present the crystal structure of 2909 and report structure-function analysis with antibody chimeras composed of 2909 and other members of this antibody class. The 2909 structure was dominated by a heavy-chain third-complementarity-determining region (CDR H3) of 21 residues, which comprised 36% of the combining surface and formed a β-hairpin club extending ∼20 Å beyond the rest of the antibody. Sequence analysis and mass spectrometry identified sites of tyrosine sulfation at the middle and top of CDR H3; substitutions with phenylalanine either ablated (middle substitution) or substantially diminished (top substitution) neutralization. Chimeric antibodies composed of heavy and light chains, exchanged between 2909 and other members of the class, indicated a substantial lack of complementation. Comparison of 2909 to PG16 (which is tyrosine sulfated and the only other member of the class for which a structure has previously been reported) showed that both utilize protruding, anionic CDR H3s for recognition. Thus, despite some diversity, members of this class share structural and functional similarities, with conserved features of the CDR H3 subdomain likely reflecting prevalent solutions by the human immune system for recognition of a quaternary site of HIV-1 vulnerability.

  7. Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity.

    PubMed

    Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2014-05-12

    Nanostructure based color filtering has been considered an attractive replacement for current colorant pigmentation in the display technologies, in view of its increased efficiencies, ease of fabrication and eco-friendliness. For such structural filtering, iridescence relevant to its angular dependency, which poses a detrimental barrier to the practical development of high performance display and sensing devices, should be mitigated. We report on a non-iridescent transmissive structural color filter, fabricated in a large area of 76.2 × 25.4 mm(2), taking advantage of a stack of three etalon resonators in dielectric films based on a high-index cavity in amorphous silicon. The proposed filter features a high transmission above 80%, a high excitation purity of 0.93 and non-iridescence over a range of 160°, exhibiting no significant change in the center wavelength, dominant wavelength and excitation purity, which implies no change in hue and saturation of the output color. The proposed structure may find its potential applications to large-scale display and imaging sensor systems.

  8. Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings

    NASA Astrophysics Data System (ADS)

    Hanifpour, M.; Francois, N.; Robins, V.; Kingston, A.; Vaez Allaei, S. M.; Saadatfar, M.

    2015-06-01

    Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕBernal≈0.64 . We study packings of monosized hard spheres whose density spans over a wide range (0.59 <ϕ <0.72 ) . These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕBernal≈0.64 and ϕc≈0.68 . These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable.

  9. Structure, Ferromagnetic, Dielectric and Electronic Features of the LaBiFe2O6 Material

    NASA Astrophysics Data System (ADS)

    Cuervo Farfán, J. A.; Aljure García, D. M.; Cardona, R.; Arbey Rodríguez, J.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2017-03-01

    In this paper, the synthesis and study of the structural, morphological, electrical, magnetic and electronic properties of the LaBiFe2O6 novel material are reported. The material was produced using the standard ceramic method. The Rietveld analysis of experimental data of X-ray diffraction showed that it synthesizes in an orthorhombic perovskite structure ( Pnma space group, # 62). Two types of grain, micro and sub-micrometric, with the LaBiFe2O6 stoichiometry were identified by scanning electron microscopy and X-ray dispersive spectroscopy. Results of electrical polarization and dielectric constant reveal the occurrence of hysteretic loops of polarization with evidences of dielectric loss. At room temperature, the material is ferromagnetic and exhibits an anomaly at T = 258 K, which is attributed to anisotropy effects. Results of diffuse reflectance suggest a semiconductor feature with energy gap Eg=2.17 eV, which is in agreement with calculations of band structure and density of states for one spin orientation, while for the other spin configuration from the calculations a conductor behavior is expected.

  10. Automatic registration of Iphone images to LASER point clouds of the urban structures using shape features

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R. C.; Menenti, M.

    2013-10-01

    Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile, we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching. Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and enhancing purposes.

  11. Fine structural features in {alpha}-silicon nitride powder particles and their implications

    SciTech Connect

    Wang, C.M.

    1995-12-01

    Commercial Si{sub 3}N{sub 4} powder particles have been studied with transmission electron microscopy. A vacancy type of dislocation loop is revealed to be a typical feature of as-grown {alpha}-Si{sub 3}N{sub 4} particles fabricated through the imide decomposition method. As a result of vacancy agglomeration on the (0001) plane, a stacking fault which is distinctively situated in the very middle of an individual particle with respect to the c-axis can be seen within some particles. In combination with three other recent publications reporting dislocation loops in {alpha}-Si{sub 3}N{sub 4} but produced by different methods, it seems that dislocation loops are a common feature of as-grown {alpha}-Si{sub 3}N{sub 4} even produced by distinctively different methods. Of the most relevance to the present observation, the controversy over the structural nature of {alpha}-Si{sub 3}N{sub 4} is discussed.

  12. Probabilistic uncertainty quantification of wavelet-transform-based structural health monitoring features

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Mao, Zhu

    2016-04-01

    In the application of Structural Health Monitoring (SHM), processing the online-acquired data plays a very important role, among which wavelet transform is an outstanding tool and compared to Fourier transform, it handles the nonstationary behaviors in the time series in an adaptive fashion. When dealing with time-variant data, there are uncertainties from numerous resources inherent to the feature estimation, such as measurement noise, operational and environmental variability, hardware limitation, etc. The corruption from uncertainty will make the data interpretation ambiguous and thereby dramatically degrades the decision quality with regard to the occurrence, location, severity, and extent of damages. This paper derives a probabilistic model to quantify analytically the uncertainty of wavelet transform feature as a random variable, and variance is derived analytically in this work. Considering central limit theorem, Gaussian probability density function characterizes the distribution and this has been validated via Monte Carlo testing. By fully characterizing the uncertainty, the damage detection implementations may be facilitated with a quantified false alarm rate and miss catch rate.

  13. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome.

    PubMed

    Zanardo, Évelin Aline; Piazzon, Flavia Balbo; Dutra, Roberta Lelis; Dias, Alexandre Torchio; Montenegro, Marília Moreira; Novo-Filho, Gil Monteiro; Costa, Thaís Virgínia Moura Machado; Nascimento, Amom Mendes; Kim, Chong Ae; Kulikowski, Leslie Domenici

    2014-12-01

    Genome rearrangements are caused by the erroneous repair of DNA double-strand breaks, leading to several alterations that result in loss or gain of the structural genomic of a dosage-sensitive genes. However, the mechanisms that promote the complexity of rearrangements of congenital or developmental defects in human disease are unclear. The investigation of complex genomic abnormalities could help to elucidate the mechanisms and causes for the formation and facilitate the understanding of congenital or developmental defects in human disease. We here report one case of a patient with atypical clinical features of the 1p36 syndrome and the use of cytogenomic techniques to characterize the genomic alterations. Analysis by multiplex ligation-dependent probe amplification and array revealed a complex rearrangement in the 1p36.3 region with deletions and duplication interspaced by normal sequences. We also suggest that chromoanagenesis could be a possible mechanism involved in the repair and stabilization of this rearrangement.

  14. Scattering characteristics of Lamb waves from debondings at structural features in composite laminates.

    PubMed

    Ng, Ching-Tai; Veidt, Martin

    2012-07-01

    This article investigates the scattering characteristics of Lamb waves from a debonding at a structural feature in a composite laminate. This study specifically focuses on the use of the low frequency fundamental antisymmetric (A(0)) Lamb wave as the incident wave for debonding detection. Three-dimensional finite element (FE) simulations and experimental measurements are used to investigate the scattering phenomena. Good agreement is obtained between the FE simulations and experimental results. Detailed parameter studies are carried out to further investigate the relationship between the scattering amplitudes and debonding sizes. The results show that the amplitude of the scattered A(0) Lamb wave is sensitive to the debonding size, which indicates the potential of using the low frequency A(0) Lamb wave as the interrogating wave for debonding detection and monitoring. The findings of the study provide improved physical insights into the scattering phenomena, which are important to further advance damage detection techniques and optimize transducer networks.

  15. Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features

    PubMed Central

    Speranzini, Valentina; Rotili, Dante; Ciossani, Giuseppe; Pilotto, Simona; Marrocco, Biagina; Forgione, Mariantonietta; Lucidi, Alessia; Forneris, Federico; Mehdipour, Parinaz; Velankar, Sameer; Mai, Antonello; Mattevi, Andrea

    2016-01-01

    Because of its involvement in the progression of several malignant tumors, the histone lysine-specific demethylase 1 (LSD1) has become a prominent drug target in modern medicinal chemistry research. We report on the discovery of two classes of noncovalent inhibitors displaying unique structural features. The antibiotics polymyxins bind at the entrance of the substrate cleft, where their highly charged cyclic moiety interacts with a cluster of positively charged amino acids. The same site is occupied by quinazoline-based compounds, which were found to inhibit the enzyme through a most peculiar mode because they form a pile of five to seven molecules that obstruct access to the active center. These data significantly indicate unpredictable strategies for the development of epigenetic inhibitors. PMID:27626075

  16. Yasny lode-placer cluster: Geological and structural features and gold potential

    NASA Astrophysics Data System (ADS)

    Mel'nikov, A. V.; Stepanov, V. A.

    2014-03-01

    The geological and structural features and gold potential of the Yasny lode-placer cluster in Amur province have been investigated. The lode-placer cluster is an intrusive domal uplift elongated in the nearmeridional direction and surrounded by Neogene loose sediments. The cluster comprises placers that yielded 15 t gold mined from there and small occurrences of gold-quartz and gold-base-metal lodes. Association of native gold with cinnabar in the Yasny Creek placer allows us to forecast a new source of gold-mercury mineralization in the basin of this creek, which could be compared with the Kyuchyus deposit in Yakutia. Gold nuggets 79 kg in total weight were mined from Gar-2 River placer. They are comparable in weight and association with quartz to the world's largest Holtermann Plate nugget from Australia. Gold-quartz lodes have been forecasted in the basin of the Gar-2 Creek.

  17. Raman imaging to study structural and chemical features of the dentin enamel junction

    NASA Astrophysics Data System (ADS)

    Alebrahim, M. Anwar; Krafft, C.; Popp, J.

    2015-10-01

    The structure and chemical features of the human dentin enamel junction (DEJ) were characterized using Raman spectroscopic imaging. Slices were prepared from 10 German, and 10 Turkish teeth. Raman images were collected at 785 nm excitation and the average Raman spectra were calculated for analysis. Univariate and multivariate spectral analysis were applied for investigation. Raman images were obtained based on the intensity ratios of CH at 1450 cm-1 (matrix) to phosphate at 960 cm-1 (mineral), and carbonate to phosphate (1070/960) ratios. Different algorithms (HCA, K-means cluster and VCA) also used to study the DEJ. The obtained results showed that the width of DEJ is about 5 pm related to univariate method while it varies from 6 to 12 μm based on multivariate spectral technique. Both spectral analyses showed increasing in carbonate content inside the DEJ compared to the dentin, and the amide I (collagen) peak in dentin spectra is higher than DEJ spectra peak.

  18. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability.

    PubMed

    Dams, T; Auerbach, G; Bader, G; Jacob, U; Ploom, T; Huber, R; Jaenicke, R

    2000-03-31

    Two high-resolution structures have been obtained for dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima in its unliganded state, and in its ternary complex with the cofactor NADPH and the inhibitor, methotrexate. While the overall fold of the hyperthermophilic enzyme is closely similar to monomeric mesophilic dihydrofolate reductase molecules, its quaternary structure is exceptional, in that T. maritima dihydrofolate reductase forms a highly stable homodimer. Here, the molecular reasons for the high intrinsic stability of the enzyme are elaborated and put in context with the available data on the physical parameters governing the folding reaction. The molecule is extremely rigid, even with respect to structural changes during substrate binding and turnover. Subunit cooperativity can be excluded from structural and biochemical data. Major contributions to the high intrinsic stability of the enzyme result from the formation of the dimer. Within the monomer, only subtle stabilizing interactions are detectable, without clear evidence for any of the typical increments of thermal stabilization commonly reported for hyperthermophilic proteins. The docking of the subunits is optimized with respect to high packing density in the dimer interface, additional salt-bridges and beta-sheets. The enzyme does not show significant structural changes upon binding its coenzyme, NADPH, and the inhibitor, methotrexate. The active-site loop, which is known to play an important role in catalysis in mesophilic dihydrofolate reductase molecules, is rearranged, participating in the association of the subunits; it no longer participates in catalysis.

  19. Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT*

    PubMed Central

    Kemble, David J.; Whitby, Frank G.; Robinson, Howard; McCullough, Laura L.; Formosa, Tim; Hill, Christopher P.

    2013-01-01

    The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins. PMID:23417676

  20. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50).

    PubMed

    Scaletti, Emma R; Luckner, Sylvia R; Krause, Kurt L

    2012-01-01

    Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (Alr(Sas)), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the Alr(Sas) structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting Alr(Sas).

  1. Features of sound propagation in the ocean with fine-structure inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gostev, V. S.; Mikryukov, A. V.; Popov, O. E.

    2016-09-01

    We analyze the results of an experiment using an explosive sound source in the tropical part of the Indian Ocean. We consider the time structure of sound signals in geometric shadow zones to a distance of 270 km and the scheme of how the sound field in the shadow zone is formed by rays reflected from horizontally extended fine-structured sound velocity layers. From the results of calculation using a wave program that realizes the method of psuedodifferential parabolic equations, we analyze the influence of signal scattering by fine-structure sound velocity inhomogeneities on the sound field distribution in a waveguide. We show that the field formed by spots of light in each of the shadow zones is generated by a regular field and propagates in parallel to it, taking energy from the regular zone in the near field and in each subsequent convergence zone. This mechanism causes an additional decrease in the field in illuminated zones, which can be interpreted as additional attenuation of the regular sound field.

  2. Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum.

    PubMed

    de Morais Lima, Maria; Carneiro, Lucia Cesar; Bianchini, Daniela; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa; Prentice, Carlos; Moreira, Angelita da Silveira

    2017-03-01

    Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest Tm and Δm H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films.

  3. Structural features of Ni-Cr-Si-B materials obtained by different technologies

    NASA Astrophysics Data System (ADS)

    Kornienko, E. E.; Nikulina, A. A.; Belousova, N. S.; Lazurenko, D. V.; Ivashutenko, A. S.; Kuz'min, V. I.

    2016-11-01

    This study considers the structural features of Ni-Cr-Si-B (Ni - base; 15.1 % Cr; 2 % Si; 2 % B; 0.4 % C) materials obtained by different methods. The self-fluxing coatings were deposited by plasma spraying on the tubes from low carbon steel. Bulk cylinder specimens of 20 mm diameter and 15 mm height were obtained by spark plasma sintering (SPS). The structure and phase composition of these materials were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The major phases of coatings and sintered materials are γ-Ni, Ni3B, CrB and Cr7C3. We demonstrate that the particle unmelted in the process of plasma spraying or SPS consist of γ-Ni-NEB eutectic and also CrB and Cr7C3 inclusions. The prolonged exposure of powder to high temperatures as well as slow cooling rates by SPS provide for the growth of the structural components as compared to those of plasma coatings materials. High cooling rates at the plasma spraying by melted particles contribute to the formation of supersaturated solid solution of Cr, Si and Fe in γ-Ni. The structure of the melted particles in sintering material has gradient composition: the core constituted of Ni grains of 10 μm with γ-Ni-Ni3B eutectic on the edges. The results of the experiment demonstrate that the sintering material has a smaller microhardness in comparison with plasma coatings (650 and 850 MPa, respectively), but at the same time the material has higher density (porosity less than 1 %) than plasma coatings (porosity about 2.. .3 %).

  4. Discrete and polymeric Cu(II) complexes featuring substituted indazole ligands: their synthesis and structural chemistry.

    PubMed

    Hawes, Chris S; Kruger, Paul E

    2014-11-21

    Reported here are the syntheses of four indazole-based ligands and the structural characterisation of four Cu(II) complexes derived from them. The ligands 1-(2-pyridyl)-1H-indazole, L1, and 2-(2-pyridyl)-2H-indazole, L2, have been characterised by single crystal X-ray diffraction methods for the first time. The intramolecular structural changes within L1 and L2 that result from the transition from the 1H to the 2H electronic configuration have been delineated. The synthesis of 1H-indazole-6-carboxylic acid, H2L3, and 1H-indazole-7-carboxylic acid, H2L4, is fully described and the structure of H2L4·H2O determined. The structures of two discrete mononuclear complexes {[Cu(L1)2(NO3)]·NO3·1.5H2O}, 1, and {[Cu(L2)2(NO3)]·NO3}, 2, have been determined and their molecular compositions corroborated by solution-based methods. Reaction of Cu(II) with H2L3 generates a 2D coordination polymer, [Cu3(HL3)4(NO3)2(EtOH)2]·3(C6H6)·2(H2O), 3, that features the archetypal [Cu2(OAc)4] paddlewheel motif and 1D channels; whereas reaction with H2L4 gives a discrete complex [Cu(HL4)2]·H2O·MeOH, 4, in which hydrogen bonding interactions link indazole dimers via a water molecule to yield a 1D network.

  5. Use of Data Assimilation to Determine Features of Neuron Structure and Connectivity

    NASA Astrophysics Data System (ADS)

    Eldridge, Michael J.

    Neurons and the synaptic connections between them underlie the computational power of the brain. We present numerical models of neural behavior and show how to tune these models based on experimental evidence. Though the basic principles behind the creation and propagation of action potentials are understood, it is experimentally feasible to measure only a small number of the quantities that go into our models, substantially increasing the difficulty of making accurate predictions. Additionally, because biologically motivated models are very often nonlinear, we will focus on tools and techniques which do not require linearity. We present novel methods of using time series of measurements to determine the features of nonlinear systems and predict their future behavior. We show how time-delayed coordinates can substitute for additional measurements and provide us with a better estimation of the state and parameters of the underlying system. A general expression for our objective function as a path integral is derived from probabilistic considerations and methods for evaluating the expression are discussed. We demonstrate how the techniques developed can be used to determine properties of a biophysical system from a realistic set of limited measurements. We examine experimental electrophysiological recordings of zebra finch neurons and use them to hone the predictive powers of our models for single cells. Then, moving beyond the single cell level, we demonstrate how our approach can be used to determine changes in network connectivity due to synaptic plasticity in ways that direct experiment cannot.

  6. Characterization of pulmonary nodules on computer tomography (CT) scans: the effect of additive white noise on features selection and classification performance

    NASA Astrophysics Data System (ADS)

    Osicka, Teresa; Freedman, Matthew T.; Ahmed, Farid

    2007-03-01

    The goal of this project is to use computer analysis to classify small lung nodules, identified on CT, into likely benign and likely malignant categories. We compared discrete wavelet transforms (DWT) based features and a modification of classical features used and reported by others. To determine the best combination of features for classification, several intensities of white noise were added to the original images to determine the effect of such noise on classification accuracy. Two different approaches were used to determine the effect of noise: in the first method the best features for classification of nodules on the original image were retained as noise was added. In the second approach, we recalculated the results to reselect the best classification features for each particular level of added noise. The CT images are from the National Lung Screening Trial (NLST) of the National Cancer Institute (NCI). For this study, nodules were extracted in window frames of three sizes. Malignant nodules were cytologically or histogically diagnosed, while benign had two-year follow-up. A linear discriminant analysis with Fisher criterion (FLDA) approach was used for feature selection and classification, and decision matrix for matched sample to compare the classification accuracy. The initial features mode revealed sensitivity to both the amount of noise and the size of window frame. The recalculated feature mode proved more robust to noise with no change in terms of classification accuracy. This indicates that the best features for computer classification of lung nodules will differ with noise, and, therefore, with exposure.

  7. Molecular dimensions and structural features of neutral polysaccharides from the seed mucilage of Hyptis suaveolens L.

    PubMed

    Praznik, Werner; Čavarkapa, Andrea; Unger, Frank M; Loeppert, Renate; Holzer, Wolfgang; Viernstein, Helmut; Mueller, Monika

    2017-04-15

    The seed mucilage of Hyptis suaveolens L. includes acid - and neutral heteropolysaccharides in a ratio of about 1:1. The anionic charged fraction responsible for swelling and viscous behaviour possesses an average molar mass of Mw=350kg/mol, Mn=255kg/mol. The neutral polysaccharide fraction shows an average molar mass of Mw=47kg/mol and Mn=28kg/mol and is composed of d-Galp-, d-Glcp- and d-Manp residues in a molar ratio of about 3:2:1. The structural features present galactoglucan (30%) and galactoglucomannan (70%) with a high level of terminal β-linked d-Galp residues (18%). Structural details of galactoglucomannan are derived by combined enzymatic and chemical methods as well as NMR spectroscopy. Sequences of octa/nonasaccharide β-d-Glcp-(1→4)[β-d-Galp-(1→2)-α-d-Galp-(1→6)]-β-d-Manp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→4)[β-d-Galp-(1→2)-α-d-Galp-(1→6)]-β-d-Manp and lower mass tetrasaccharide repeating units β-d-Glcp-(1→4)[β-d-Galp-(1→2)-α-d-Galp-(1→6)]-β-d-Manp were found. The level of the prebiotic activity is related to the availability of β-linked d-Galp residues in the side chains of the molecules.

  8. One-Pot Three-Component Condensation Synthesis and Structural Features of Organophosphorus-Sulfur Macrocycles.

    PubMed

    Hua, Guoxiong; Du, Junyi; Cordes, David B; Slawin, Alexandra M Z; Woollins, J Derek

    2016-05-20

    A new preparative route was developed to synthesize new phosphorus-sulfur [SP(═S)S moiety]-containing macrocycles via a one-pot and three-component domino reaction of four-membered ring thionation reagents such as 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide (LR, Lawesson's reagent) and 2,4-diferrocenyl-1,3,2,4-diathiadiphosphetane 2,4-disulfide (FcLR, a ferrocene analogue of Lawesson's reagent) and alkyldithiols(aryldithols) and dihaloalkanes in the presence of sodium hydride. Therefore, a series of 12- to 18-membered macrocycles incorporating two phosphorus and six sulfur atoms were synthesized. The synthesis features a novel application of the multicomponent reaction, providing an efficient route to the preparation of the new phosphorus-sulfur-containing macrocycles. Seven representative X-ray structures confirm the formation of these macrocycles and show the presence of a number of the intramolecular C-H···S hydrogen bonding, intermolecular C-H···S, C-H···Cl, and Cl···Cl short contacts and π-stacking interactions in their 3D network structures.

  9. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection.

    PubMed

    Gershon, H; Ghirlando, R; Guttman, S B; Minsky, A

    1993-07-20

    Complexes formed between cationic liposomes and nucleic acids represent a highly efficient vehicle for delivery of DNA and RNA molecules into a large variety of eukaryotic cells. By using fluorescence, gel electrophoresis, and metal-shadowing electron microscopy techniques, the factors that affect the, yet unclear, interactions between DNA and cationic liposomes as well as the structural features of the resulting complexes have been elucidated. A model is suggested according to which cationic liposomes bind initially to DNA molecules to form clusters of aggregated vesicles along the nucleic acids. At a critical liposome density, two processes occur, namely, DNA-induced membrane fusion, indicated by lipid mixing studies, and liposome-induced DNA collapse, pointed out by the marked cooperativity of the encapsulation processes, by their modulations by DNA-condensing agents, and also by their conspicuous independence upon DNA length. The DNA collapse leads to the formation of condensed structures which can be completely encapsulated within the fused lipid bilayers in a fast, highly cooperative process since their exposed surface is substantially smaller than that of extended DNA molecules. The formation of the transfecting DNA-liposome complexes in which the nucleic acids are fully encapsulated within a positively-charged lipid bilayer is proposed, consequently, to be dominated by mutual effects exerted by the DNA and the cationic liposomes, leading to interrelated lipid fusion and DNA collapse.

  10. Crystallographic features of the structure of a martensite packet of the NiMn intermetallic compound

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Belosludtseva, E. S.; Kazantsev, V. A.

    2016-06-01

    Optical microscopy, scanning electron microscopy, and X-ray diffraction are used to show that a pseudosingle crystal forms upon cooling of an alloy Ni49Mn51 single crystal below the temperature of the β→θ (bcc → fct) transformation. At room temperature, this pseudosingle crystal has the structure of tetragonal L10 martensite with parameters a = 0.3732 nm and c = 0.3537 nm and a tetragonality c/ a = 0.94775. The temperatures of the forward and reverse B2 → L10 transformations are determined. The crystallographic features of martensite packet formation are analyzed. As shown by EBSD, neighboring martensite packets always have three kinds of tetragonal martensite plates, which are in a twin position and have different tetragonality axis directions. Repeated heating and quenching of the pseudosingle crystal result in recrystallization with the formation of coarse grains. The packet structure of the tetragonal martensite is retained in this case, and the sizes of the packets formed within a grain decrease by a factor of 2-3 as compared to the initial pseudosingle crystal.

  11. Exploring polarization features in light reflection from beetles with structural colors

    NASA Astrophysics Data System (ADS)

    Arwin, Hans; Magnusson, Roger; Fernández del Río, Lía.; Landin, Jan; Mendoza-Galván, Arturo; Järrendahl, Kenneth

    2015-03-01

    A Mueller matrix of a sample can be used to determine the polarization of reflected light for incident light with arbitrary polarization. The polarization can be quantified in terms of ellipticity, polarization azimuth and degree of polarization. We apply spectroscopic Mueller-matrix ellipsometry at multiple angles of incidence to study the cuticle of beetles and derive polarization features for incident unpolarized light. In particular we address chiral phenomena in scarab beetles, the origin of their structural colors and the observed high degree of circular polarization is discussed. Results from beetles in Scarabaeidae subfamilies Cetoniinae and Rutelinae are presented including specimens with broad-band silver-or gold-like colors with metallic shine as well as specimens with narrow-band green or red reflectors. The variation of polarization with angle of incidence and occurrence of both left-handed and right-handed polarization from a single species are presented. We also use Mueller-matrix thicknesses and optical properties. Interference oscillations in the observed spectra are due to allowed optical modes and we show how to develop a structural model of a cuticle based on this effect. Sum decomposition of Mueller matrices measured on a depolarizing cuticle of a beetle is briefly discussed.

  12. Novel structural features of autoantibodies in murine lupus: a possible superantigen binding site?

    PubMed

    Zack, D J; Wong, A L; Weisbart, R H

    1994-12-01

    The stimulus for the production of anti-DNA autoantibodies in lupus remains unknown. Since double-stranded DNA (dsDNA) is a weak immunogen, other stimuli such as B cell superantigens or anti-idiotypic antibodies may provide an alternative mechanism for their production. The presence of regulatory determinants on autoantibodies might be revealed through their structural characterization, but they have eluded detection, perhaps because they may be three-dimensional and require closer analysis. In this report we cloned and sequenced the heavy chain variable region (VH) of a monoclonal anti-dsDNA antibody, mAb 3E10, derived from MRL/lpr mice with lupus nephritis previously shown to express an idiotype associated with nephritis in murine and human lupus. We now show that mAb 3E10 VH contains novel structural features unrelated to DNA binding which are shared only by a subset of autoantibodies expressed in murine lupus. These lupus autoantibodies can be distinguished from antibodies of non-autoimmune strains by the presence of a specific sequence at the junction of the diversity and joining genes combined with the use of variable region genes with conserved sequences in framework 1 (FR1) and FR3. The location of the novel sequences indicates the possibility of a three-dimensional solvent-exposed determinant located distant from the classical antigen binding site that could regulate their production, possibly through binding B cell superantigens or other infectious agents.

  13. Structural features and stability of an RNA triple helix in solution.

    PubMed Central

    Holland, J A; Hoffman, D W

    1996-01-01

    A 30 nt RNA with a sequence designed to form an intramolecular triple helix was analyzed by one-and two-dimensional NMR spectroscopy and UV absorption measurements. NMR data show that the RNA contains seven pyrimidine-purine-pyrimidine base triples stabilized by Watson-Crick and Hoogsteen interactions. The temperature dependence of the imino proton resonances, as well as UV absorption data, indicate that the triple helix is highly stable at acidic pH, melting in a single sharp transition centered at 62 degrees C at pH 4.3. The Watson-Crick and Hoogsteen pairings are disrupted simultaneously upon melting. The NMR data are consistent with a structural model where the Watson-Crick paired strands form an A-helix. Results of model building, guided by NMR data, suggest a possible hydrogen bond between the 2' hydroxyl proton of the Hoogsteen strand and a phosphate oxygen of the purine strand. The structural model is discussed in terms of its ability to account for some of the differences in stability reported for RNA and DNA triple helices and provides insight into features that are likely to be important in the design of RNA binding compounds. PMID:8759020

  14. A Pilot Study to Examine the Effect of Additional Structured Outdoor Playtime on Preschoolers' Physical Activity Levels

    ERIC Educational Resources Information Center

    Alhassan, Sofiya; Nwaokelemeh, Ogechi; Lyden, Kate; Goldsby, TaShauna; Mendoza, Albert

    2013-01-01

    The impact of additional structured outdoor playtime on preschoolers'; physical activity (PA) level is unclear. The purpose of this pilot study was to explore the effects of increasing structured outdoor playtime on preschoolers'; PA levels. Eight full-day classrooms (n = 134 children) from two preschool programmes were randomised into a treatment…

  15. Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota.

    PubMed

    Rumpagaporn, Pinthip; Reuhs, Brad L; Kaur, Amandeep; Patterson, John A; Keshavarzian, Ali; Hamaker, Bruce R

    2015-10-05

    Most soluble dietary fibers ferment rapidly in the proximal colon, potentially causing discomfort and poor tolerability. Alkali-extracted arabinoxylan isolates from corn, wheat, rice and sorghum brans were prepared, through hydrolysis (except sorghum) and ethanol fractionation, to have a broad range of initial fermentation rates, and their linkage patterns were determined to understand structural aspects related to slow fermentation rate. They were all highly branched polymers with degree of substitution greater than 64%. There was no relationship of molecular mass, arabinose:xylose ratio, or degree of substitution to fermentation rate patterns. Slow fermenting wheat and corn arabinoxylans had much higher amount of terminal xylose in branches than fast fermenting rice and sorghum arabinoxylans. The slowest fermenting wheat arabinoxylan additionally contained a complex trisaccharide side chain with two arabinoses linked at the O-2 and O-3 positions of an arabinose that is O-2 linked to the xylan backbone. Structural features were proposed for tolerable slowly fermentable arabinoxylan with possible beneficial fermentation function into the distal colon.

  16. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  17. Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces.

    PubMed

    Hayat, Maqsood; Tahir, Muhammad; Khan, Sher Afzal

    2014-04-07

    Proteins are the executants of biological functions in living organisms. Comprehension of protein structure is a challenging problem in the era of proteomics, computational biology, and bioinformatics because of its pivotal role in protein folding patterns. Owing to the large exploration of protein sequences in protein databanks and intricacy of protein structures, experimental and theoretical methods are insufficient for prediction of protein structure classes. Therefore, it is highly desirable to develop an accurate, reliable, and high throughput computational model to predict protein structure classes correctly from polygenetic sequences. In this regard, we propose a promising model employing hybrid descriptor space in conjunction with optimized evidence-theoretic K-nearest neighbor algorithm. Hybrid space is the composition of two descriptor spaces including Multi-profile Bayes and bi-gram probability. In order to enhance the generalization power of the classifier, we have selected high discriminative descriptors from the hybrid space using particle swarm optimization, a well-known evolutionary feature selection technique. Performance evaluation of the proposed model is performed using the jackknife test on three low similarity benchmark datasets including 25PDB, 1189, and 640. The success rates of the proposed model are 87.0%, 86.6%, and 88.4%, respectively on the three benchmark datasets. The comparative analysis exhibits that our proposed model has yielded promising results compared to the existing methods in the literature. In addition, our proposed prediction system might be helpful in future research particularly in cases where the major focus of research is on low similarity datasets.

  18. Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes.

    PubMed

    Nian, Jun-Nan; Chen, Shin-An; Tsai, Chien-Cheng; Teng, Hsisheng

    2006-12-28

    Copper oxide was deposited on tubular TiO2 via Cu2+ introduction into a titanate nanotube aggregate followed by calcination. The titanate has a layered structure allowing Cu intercalation and can readily transform into anatase TiO2 via calcination for condensation of the constituting layers. The activity of the tubular catalysts, with a Cu content of 2 wt %, in selective NO reduction with NH3 was compared with those of other 2 wt % Cu/TiO2 catalysts using TiO2 nanoparticles as the support. The Cu species supported on the nanotubes showed a higher activity than those supported on the nanoparticles. X-ray absorption near-edge structure (XANES) analysis showed that the Cu species on all the TiO2 supports are in the +2 state. Extended X-ray absorption fine structure (EXAFS) investigations of these catalysts reflected higher degrees of CuO dispersion and Cu2+ dissolution into the TiO2 lattice for the tubular Cu/TiO2 catalysts. Absence of CuO bulk detection by a temperature-programmed reduction analysis for the tubular catalysts confirmed the high CuO-dispersion feature of the tubular catalysts. The dissolution of Cu2+ to form a CuxTi1-xO2 type of solid solution was improved by using an in-situ ion-intercalation method for Cu deposition on the nanotubes. A fraction as high as 40% for Cu2+ dissolution was obtained for the tubular catalysts while only 20% was obtained for the particulate catalysts. The CuxTi1-xO2 species were considered one form of the active sites on the Cu/TiO2 catalysts.

  19. The Cenozoic volcanic province of Tibesti (Sahara of Chad): major units, chronology, and structural features

    NASA Astrophysics Data System (ADS)

    Deniel, C.; Vincent, P. M.; Beauvilain, A.; Gourgaud, A.

    2015-09-01

    Using both field relationships and some absolute ages, the sequence of volcanic units in the Cenozoic Tibesti Volcanic Province (TVP) (Chad) is established as follows: (1) plateau volcanism, between at least 17 and 8 Ma, consisting of flood basalts and silicic lava plugs, with intercalated ignimbritic sheets in the upper basalt succession increasing in amount upwards. Ages decrease from NE to SW, following the migration of the small NW-SE flexures concentrating the feeding dike swarms; (2) Late Miocene large central composite volcanoes exhibiting diverse and original structures. Some of them (Tarso Toon, Ehi Oyé, and Tarso Yéga) are located along a major NNE fault, representing the main tectonic direction in Tibesti since Precambrian times; (3) construction of three large ignimbritic volcanoes, associated with significant updoming of the basement, ending with the collapse of large calderas: Voon (about 5-7 Ma), Emi Koussi (2.4-1.33 Ma), and Yirrigué (0.43 Ma); (4) basaltic activity, starting at about 5-7 Ma, and essentially consisting of cinder cones and associated lava flows (Tarso Tôh, Tarso Ahon, and Tarso Emi Chi); and (5) final volcanic activity represented by post-Yirrigué caldera activity in the Tarso Toussidé Volcanic Complex, and especially Ehi Toussidé (the only active volcano in Tibesti), plus Ehi Timi and Ehi Mousgou volcanoes, similar to Ehi Toussidé. The two tectonic directions controlling some volcanic features of the province correspond to the major old lithospheric structures delimiting the volcanic province, namely, the great NW-SE Tassilian flexure to the SW and a major NE-NNE fault zone to the E. Unusual conditions of uplift and erosion in the TVP enable exceptional exposure of the internal structure of its volcanoes.

  20. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family

    PubMed Central

    Heinz, Eva; Stubenrauch, Christopher J.; Grinter, Rhys; Croft, Nathan P.; Purcell, Anthony W.; Strugnell, Richard A.; Dougan, Gordon; Lithgow, Trevor

    2016-01-01

    The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006

  1. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins

    PubMed Central

    Giladi, Moshe; Tal, Inbal; Khananshvili, Daniel

    2016-01-01

    Na+/Ca2+ exchanger (NCX) proteins extrude Ca2+ from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na+ and 1Ca2+, which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca2+-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca2+-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca2+. The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca2+-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca2+ (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium 45Ca2+ binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca2+ binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca2+ binding to CBD1 rigidifies local backbone

  2. Some volcanic and structural features of Mare Serenitatis. [as determined by low angle lighting in Apollo 17 photography

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.; Adams, M.

    1973-01-01

    Relationships between volcanic and structural features along the southern edge of Mare Serenitatis as determined from low angle lighting in Apollo 17 photographs are discussed. Observational summaries are given of: (1) contact relations between the dark border material and the central mare fill, (2) a late stage lava flow with associated cinder cones, and (3) certain structural features related to the development of the mare basin and its associated volcanic landforms. A chronologic summary is given of volcanic and structural events believed to be critical to understanding the development of Mare Serenitatis.

  3. Categorical Structure among Shared Features in Networks of Early-Learned Nouns

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Maouene, Mounir; Maouene, Josita; Sheya, Adam; Smith, Linda

    2009-01-01

    The shared features that characterize the noun categories that young children learn first are a formative basis of the human category system. To investigate the potential categorical information contained in the features of early-learned nouns, we examine the graph-theoretic properties of noun-feature networks. The networks are built from the…

  4. Impact of zeolite-based nanomodified additive on the structure and strength of the cement stone

    NASA Astrophysics Data System (ADS)

    Egorova, A. D.; Filippova, K. E.

    2015-01-01

    Portland cement is the main binder in the building materials industry; its properties strongly influence properties of mortars and concretes. Some regions experience difficulties with delivery and storage of Portland cement, raising the need to develop an effective additive from the available raw materials. Such materials for the Republic of Sakha (Yakutia) are zeolite-containing rocks. Studies have shown that introducing of dibutylphthalate to the composition of modified additive during mechanochemical activation leads to achievement of up to 11% of total amount particles with the size of 3-30 nm. After introducing 0.5% of the obtained additives, the compressive strength of cement-sand slurry samples increases up to 28%. Positive effect of additives introduction is also observed at high flow rate of water (W / C = 0.7). Gaining strength reaches 23%, allowing the efficient use of additive for movable mixtures with enhanced strength properties. In general, the proposed supplement allows reducing the water flow in the solution without decreasing its mobility, and increasing strength properties, which makes it possible to obtain a whole class of solutions of modified cement binder. The market value of the developed additives is 18 rubles per 1 kg, making sound competition in the market of modifying additives.

  5. Oceanic Domains - Observed Relationship With Tomographic Features and Inferred Mantle Structure

    NASA Astrophysics Data System (ADS)

    Loubet, M.

    A persistent contradiction exists between the current views of mantle stratification derived from geochemistry and number of geophysical and simulations which sug- gest the existence of a significant material exchange throughout the entire mantle and favor mixing processes. In this presentation, we will show that the common interpre- tation of oceanic basalt heterogeneities can be contested and that a new interpretation of these heterogeneities can be done which leads to interesting relationships between geochemical and geophysical (tomographic) features. The new approach is based on (a) identification of mantle heterogeneities at the scale of oceanic domains recovering in some cases MORB and OIB basalt types and (b) use of incompatible element ratios in (Cx/Cz,Cy/Cz) representations as in particular the (Th/La,Nb/La) representation. This last representation is very interesting for identification of magmatic processes and for estimating magma sources compositions. Analysis of oceanic basalts compo- sitions based on a large set of literature data leads to identify 4 (eventually 5) large scale oceanic domains: Atlantic East Pacific (AEP), Indian ocean (IO), South Central Pacific (SCP), Kerguelen South Atlantic (KSA) (and eventually Hawaï (H)). The two first ones which include MORB sources extend at upper mantle levels. The good geo- graphical recovery of the SCP and KSA domains with tomographic features assigned to take place within the mantle at the D" level in the Central Pacific and South Africa (Masters et al., 2000) leads to interpret the basalts from the KSA and SCP domains as issued from D" layer source. Two different mantle structures (general ones before discussing more complex ones), both comprising a D" layer (composed of recycled oceanic crust enriched materials) at the CMB, can be inferred from these oceanic basalt source interpretations: (a) a layered mantle with an upper and a lower mantle with primitive mantle material composing a significant part of

  6. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    PubMed Central

    Petrova, Tatiana E.; Artemova, Natalia V.; Boyko, Konstantin M.; Shabalin, Ivan G.; Rakitina, Tatiana V.; Polyakov, Konstantin M.; Popov, Vladimir O.

    2016-01-01

    We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution), three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å), and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å). The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues) and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel. PMID:27956891

  7. Structural Features Essential to the Antimicrobial Functions of Human SPLUNC1.

    PubMed

    Walton, William G; Ahmad, Saira; Little, Michael S; Kim, Christine S K; Tyrrell, Jean; Lin, Qiao; Di, Y Peter; Tarran, Robert; Redinbo, Matthew R

    2016-05-31

    SPLUNC1 is an abundantly secreted innate immune protein in the mammalian respiratory tract that exerts bacteriostatic and antibiofilm effects, binds to lipopolysaccharide (LPS), and acts as a fluid-spreading surfactant. Here, we unravel the structural elements essential for the surfactant and antimicrobial functions of human SPLUNC1 (short palate lung nasal epithelial clone 1). A unique α-helix (α4) that extends from the body of SPLUNC1 is required for the bacteriostatic, surfactant, and LPS binding activities of this protein. Indeed, we find that mutation of just four leucine residues within this helical motif to alanine is sufficient to significantly inhibit the fluid spreading abilities of SPLUNC1, as well as its bacteriostatic actions against Gram-negative pathogens Burkholderia cenocepacia and Pseudomonas aeruginosa. Conformational flexibility in the body of SPLUNC1 is also involved in the bacteriostatic, surfactant, and LPS binding functions of the protein as revealed by disulfide mutants introduced into SPLUNC1. In addition, SPLUNC1 exerts antibiofilm effects against Gram-negative bacteria, although α4 is not involved in this activity. Interestingly, though, the introduction of surface electrostatic mutations away from α4 based on the unique dolphin SPLUNC1 sequence, and confirmed by crystal structure, is shown to impart antibiofilm activity against Staphylococcus aureus, the first SPLUNC1-dependent effect against a Gram-positive bacterium reported to date. Together, these data pinpoint SPLUNC1 structural motifs required for the antimicrobial and surfactant actions of this protective human protein.

  8. Bio-inspired device: a novel smart MR spring featuring tendril structure

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  9. Assessment of additive/nonadditive effects in structure-activity relationships: implications for iterative drug design.

    PubMed

    Patel, Yogendra; Gillet, Valerie J; Howe, Trevor; Pastor, Joaquin; Oyarzabal, Julen; Willett, Peter

    2008-12-11

    Free-Wilson (FW) analysis is common practice in medicinal chemistry and is based on the assumption that the contributions to activity made by substituents at different substitution positions are additive. We analyze eight near complete combinatorial libraries assayed on several different biological response(s) (GPCR, ion channel, kinase and P450 targets) and show that only half-exhibit clear additive behavior, which leads us to question the concept of additivity that is widely taken for granted in drug discovery. Next, we report a series of retrospective experiments in which subsets are extracted from the libraries for FW analysis to determine the minimum attributes (size, distribution of substituents, and activity range) necessary to reach the same conclusion about additive/nonadditive effects. These attributes can provide guidelines on when it is appropriate to apply FW analysis as well as for library design, and they also have important implications for further steps in iterative drug design.

  10. Effects of meat addition on pasta structure, nutrition and in vitro digestibility.

    PubMed

    Liu, Tingting; Hamid, Nazimah; Kantono, Kevin; Pereira, Loveena; Farouk, Mustafa M; Knowles, Scott O

    2016-12-15

    In our study, semolina flour was substituted with beef emulsion (EM) at three different levels of 15, 30 and 45% (w/w) to develop a pasta with enhanced nutritional profile. The protein, fat, and water content significantly increased with addition of meat. The addition of meat enhanced the pasta gluten network. The redness and yellowness of cooked pasta increased with meat addition. Tensile strength increased from 0.018N/mm(2) in the control sample to 0.046N/mm(2) in 45% beef emulsion (45EM) sample. All meat-containing samples had significantly higher elasticity than control (0.039N/mm(2)). GI significantly decreased and IVPD value increased in 45EM sample. Five essential amino acids (leucine, lysine, methionine, threonine, tryptophan) in pasta digesta increased significantly with increasing meat addition.

  11. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    NASA Astrophysics Data System (ADS)

    Amin Yavari, S.; Wauthle, R.; Böttger, A. J.; Schrooten, J.; Weinans, H.; Zadpoor, A. A.

    2014-01-01

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO2 nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  12. Comparative analysis of genomic data: A global look at structural and regulatory features

    SciTech Connect

    Michaels, G.S.; Taylor, R.; Hagstrom, R.; Price, M.; Overbeek, R.

    1993-12-31

    One of the goals of any large scale DNA sequencing project is to understand the molecular details about the metabolic control sites that will be found in the sequence of the chromosome region being studied. In addition, once an interesting observation has been made, questions will quickly arise concerning the distribution of such sites within the genome and how well the same observations hold between related species. This paper will discuss the authors` approach toward building a flexible analysis environment that facilitates the analysis of genomic sequence data. The Integrated Genomic Database (IGD), developed by Ray Hagstrom, Ross Overbeek, Morgan Price and Dave Zawada at the Argonne National Laboratory, organizes genome mapping and sequencing data to provide a global chromosome view for multiple genomes. The authors describe here their use of the IGD system and how they employ it for relational analysis of sequence features that are found distributed throughout the genome under study. The primary goal of this work is to provide a system to support research on the global organization of genomic regulation patterns.

  13. B2 structure of high-entropy alloys with addition of Al

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhao, M.; Li, J. C.; Jiang, Q.

    2008-12-01

    A series of AlCrCoNiFe based alloys with equal percentage of principal components (high-entropy alloys or HE alloys) is fabricated. The related crystalline structures of the alloys are measured and calculated. Results show that the formed bcc phase is a compound based B2 structure where there is partial ionic bonding between Al and other transition metals. Thus, the bcc structure of the alloys should be a B2 instead of an A2 due to the large difference in electronegativities among the components consisting of the HE alloys.

  14. A structural feature of the non-peptide ligand interactions with mice mu-opioid receptors.

    PubMed

    Noori, Hamid R; Mucksch, Christian; Urbassek, Herbert M

    2014-01-01

    By binding to and activating the G-protein coupled μ-, κ- and δ-opioid receptors in the central nervous system, opiates are known to induce analgesic and sedative effects. In particular, non-peptide opioid ligands are often used in clinical applications to induce these therapeutically beneficial effects, due to their superior pharmacokinetics and bioavailability in comparison to endogenous neuropeptides. However, since opioid alkaloids are highly addictive substances, it is necessary to understand the exact mechanisms of their actions, specifically the ligand-binding properties of the target receptors, in order to safely apply opiates for therapeutic purposes. Using an in silico molecular docking approach (AutoDock Vina) combined with two-step cluster analysis, we have computationally obtained the docking scores and the ligand-binding pockets of twelve representative non-peptide nonendogenous agonists and antagonists at the crystallographically identified μ-opioid receptor. Our study predicts the existence of two main binding sites that are congruently present in all opioid receptor types. Interestingly, in terms of the agonist or antagonist properties of the substances on the receptors, the clustering analysis suggests a relationship with the position of the ligand-binding pockets, particularly its depth within the receptor structure. Furthermore, the binding affinity of the substances is directly correlated to the proximity of the binding pockets to the extracellular space. In conclusion, the results provide further insights into the structural features of the functional pharmacology of opioid receptors, suggesting the importance of the binding position of non-peptide agonists and antagonists- specifically the distance and the level of exposure to the extracellular space- to their dissociation kinetics and subsequent potency.

  15. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality.

  16. Structural and Functional Features of a Developmentally Regulated Lipopolysaccharide-Binding Protein

    PubMed Central

    Krasity, Benjamin C.; Troll, Joshua V.; Lehnert, Erik M.; Hackett, Kathleen T.; Dillard, Joseph P.; Apicella, Michael A.; Goldman, William E.

    2015-01-01

    ABSTRACT Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. PMID:26463160

  17. Crystal structures and inhibitor binding properties of plant class V chitinases: the cycad enzyme exhibits unique structural and functional features.

    PubMed

    Umemoto, Naoyuki; Kanda, Yuka; Ohnuma, Takayuki; Osawa, Takuo; Numata, Tomoyuki; Sakuda, Shohei; Taira, Toki; Fukamizo, Tamo

    2015-04-01

    A class V (glycoside hydrolase family 18) chitinase from the cycad Cycas revoluta (CrChiA) is a plant chitinase that has been reported to possess efficient transglycosylation (TG) activity. We solved the crystal structure of CrChiA, and compared it with those of class V chitinases from Nicotiana tabacum (NtChiV) and Arabidopsis thaliana (AtChiC), which do not efficiently catalyze the TG reaction. All three chitinases had a similar (α/β)8 barrel fold with an (α + β) insertion domain. In the acceptor binding site (+1, +2 and +3) of CrChiA, the Trp168 side chain was found to stack face-to-face with the +3 sugar. However, this interaction was not found in the identical regions of NtChiV and AtChiC. In the DxDxE motif, which is essential for catalysis, the carboxyl group of the middle Asp (Asp117) was always oriented toward the catalytic acid Glu119 in CrChiA, whereas the corresponding Asp in NtChiV and AtChiC was oriented toward the first Asp. These structural features of CrChiA appear to be responsible for the efficient TG activity. When binding of the inhibitor allosamidin was evaluated using isothermal titration calorimetry, the changes in binding free energy of the three chitinases were found to be similar to each other, i.e. between -9.5 and -9.8 kcal mol(-1) . However, solvation and conformational entropy changes in CrChiA were markedly different from those in NtChiV and AtChiC, but similar to those of chitinase A from Serratia marcescens (SmChiA), which also exhibits significant TG activity. These results provide insight into the molecular mechanism underlying the TG reaction and the molecular evolution from bacterial chitinases to plant class V chitinases.

  18. Melting and cataclastic features in shatter cones in basalt from the Vista Alegre impact structure, Brazil

    NASA Astrophysics Data System (ADS)

    Pittarello, Lidia; Nestola, Fabrizio; Viti, Cecilia; Crósta, Alvaro Penteado; Koeberl, Christian

    2015-07-01

    Shatter cones are one of the most widely recognized pieces of evidence for meteorite impact events on Earth, but the process responsible for their formation is still debated. Evidence of melting on shatter cone surfaces has been rarely reported in the literature from terrestrial impact craters but has been recently observed in impact experiments. Although several models for shatter cones formation have been proposed, so far, no one can explain all the observed features. Shatter cones' from the Vista Alegre impact structure, Brazil, formed in fine-grained basalt of the Jurassic-Cretaceous Serra Geral Formation (Paraná large igneous province). A continuous quenched melt film, consisting of a crystalline phase, mica, and amorphous material, decorates the striated surface. Ultracataclasites, containing subrounded pyroxene clasts in an ultrafine-grained matrix, occur subparallel to the striated surface. Several techniques were applied to characterize the crystalline phase in the melt, including Raman spectroscopy and transmission electron microscopy. Results are not consistent with any known mineral, but they do suggest a possible rare or new type of clinopyroxene. This peculiar evidence of melting and cataclasis in relation with shatter cone surfaces is interpreted as the result of tensile fracturing at the tip of a fast propagating shock-induced rupture, which led to the formation of shatter cones at the tail of the shock front, likely during the early stage of the impact events.

  19. The Structural Features of Sports and Race Betting Inducements: Issues for Harm Minimisation and Consumer Protection.

    PubMed

    Hing, Nerilee; Sproston, Kerry; Brook, Kate; Brading, Richard

    2016-09-08

    Minimal research has been published about inducements for sports and race betting, despite their ready availability and aggressive advertising. This paper aimed to document the range and structural features of these inducements, and analyse their alignment with the harm minimisation and consumer protection goals of responsible gambling. A scan of all inducements offered on the websites of 30 major race and sports betting brands located 223 separate inducements which we categorised into 15 generic types, all offering financial incentives to purchase. These comprised sign-up offers, refer-a-friend offers, happy hours, mobile betting bonuses, multi-bet offers, refund/stake-back offers, matching stakes/deposits, winnings paid for 'close calls', bonus or better odds, bonus or better winnings, competitions, reduced commission, free bets to selected punters, cash rebates and other free bets. All inducements were subject to numerous terms and conditions which were complex, difficult to find, and obscured by legalistic language. Play-through conditions of bonus bets were particularly difficult to interpret and failed basic requirements for informed choice. Website advertisements for inducements were prominently promoted but few contained a responsible gambling message. The results were analysed to generate 12 research propositions considered worthy of empirical research to inform much needed regulatory reform in this area.

  20. The effects of major structural features in Western China on explosion seismograms

    SciTech Connect

    Jones, E.M.; App, F.N.; Bos, R.J.

    1997-11-01

    Synthetic explosion seismograms have been calculated on paths from Lop Nor to the NIL station in northern Pakistan, from NIL to Lop Nor, and from Lop Nor to the TLY station in the Baikal Rift. Computational studies were done of the influence on the character of the seismograms of major structural features such as sedimentary basins, topography associated with the Himalayas and the Tibetan Plateau, roughness of the Moho, and the presence of a deep Moho depression under the Tibetan Plateau, roughness of the Moho, and the presence of a deep Moho done with a 1-Hz Kelly waves source and 500-m resolution. Uniform elastic constants and frequency-independent quality factors, Q{sub p} and Q{sub s}, were used in each of three materials: basin sediments, crust, and mantle. The deep basins which due to the generation of large-amplitude Rayleigh waves at source-ward basin edges. In simulations done with the effects of anelastic attenuation included, the amplitude of passage across the 800-km-wide Tarim Basin on the Lop Nor -> NIL path but not on the 200-km path across the basin that straddles the Lop Nor -> TLY path.

  1. Structural and immunological feature of rhamnogalacturonan I-rich polysaccharide from Korean persimmon vinegar.

    PubMed

    Kim, Hoon; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon

    2016-08-01

    The crude polysaccharide (KPV-0) isolated from Korean persimmon vinegar was fractionated using gel filtration chromatography to enhance the immunostimulatory activity and to identify the structural features of active fraction. Among three fractions, KPV-I obtained in a void volume, demonstrated the potent production of macrophage-stimulating mediators, including tumor necrosis factor-α, interleukin (IL)-6, IL-12, and nitric oxide. KPV-I showed a combined single peak with high molecular weight of 55,000Da by high performance size exclusion chromatography. Component sugar analysis revealed that KPV-I contained mainly of arabinose, mannose, galactose, rhamnose and galacturonic acid. Single radial gel diffusion assay using β-glucosyl Yariv reagent showed that KPV-I contained arabinogalactan protein with 13.7%. Methylation analysis indicated that KPV-I contained 21 kinds of neutral glycosidic linkages, which seemed to be composed three kinds of polysaccharide; that is a rhamnogalacturonan-I (65-70%) derived from persimmon as a raw material, a mannan (20-25%) derived from fermentation-associated microorganisms, and a linear glucans (less than 10%). In conclusion, polysaccharide isolated from persimmon vinegar could augment the macrophage stimulation, and a large amounts of RG-I polysaccharide derived from persimmon is likely a crucial role in expression of the activity in persimmon vinegar.

  2. Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors.

    PubMed

    Lesniak, Daine R; Marshall, Kara L; Wellnitz, Scott A; Jenkins, Blair A; Baba, Yoshichika; Rasband, Matthew N; Gerling, Gregory J; Lumpkin, Ellen A

    2014-01-01

    Touch is encoded by cutaneous sensory neurons with diverse morphologies and physiological outputs. How neuronal architecture influences response properties is unknown. To elucidate the origin of firing patterns in branched mechanoreceptors, we combined neuroanatomy, electrophysiology and computation to analyze mouse slowly adapting type I (SAI) afferents. These vertebrate touch receptors, which innervate Merkel cells, encode shape and texture. SAI afferents displayed a high degree of variability in touch-evoked firing and peripheral anatomy. The functional consequence of differences in anatomical architecture was tested by constructing network models representing sequential steps of mechanosensory encoding: skin displacement at touch receptors, mechanotransduction and action-potential initiation. A systematic survey of arbor configurations predicted that the arrangement of mechanotransduction sites at heminodes is a key structural feature that accounts in part for an afferent's firing properties. These findings identify an anatomical correlate and plausible mechanism to explain the driver effect first described by Adrian and Zotterman. DOI: http://dx.doi.org/10.7554/eLife.01488.001.

  3. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2

    PubMed Central

    Piserchio, Andrea; Ramakrishan, Venkatesh; Wang, Hsin; Kaoud, Tamer S.; Arshava, Boris; Dutta, Kaushik; Dalby, Kevin N.; Ghose, Ranajeet

    2015-01-01

    The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS. PMID:26054059

  4. Mental Imagery Scale: a new measurement tool to assess structural features of mental representations

    NASA Astrophysics Data System (ADS)

    D'Ercole, Martina; Castelli, Paolo; Giannini, Anna Maria; Sbrilli, Antonella

    2010-05-01

    Mental imagery is a quasi-perceptual experience which resembles perceptual experience, but occurring without (appropriate) external stimuli. It is a form of mental representation and is often considered centrally involved in visuo-spatial reasoning and inventive and creative thought. Although imagery ability is assumed to be functionally independent of verbal systems, it is still considered to interact with verbal representations, enabling objects to be named and names to evoke images. In literature, most measurement tools for evaluating imagery capacity are self-report instruments focusing on differences in individuals. In the present work, we applied a Mental Imagery Scale (MIS) to mental images derived from verbal descriptions in order to assess the structural features of such mental representations. This is a key theme for those disciplines which need to turn objects and representations into words and vice versa, such as art or architectural didactics. To this aim, an MIS questionnaire was administered to 262 participants. The questionnaire, originally consisting of a 33-item 5-step Likert scale, was reduced to 28 items covering six areas: (1) Image Formation Speed, (2) Permanence/Stability, (3) Dimensions, (4) Level of Detail/Grain, (5) Distance and (6) Depth of Field or Perspective. Factor analysis confirmed our six-factor hypothesis underlying the 28 items.

  5. Structural and morphological features of ultrathin epitaxial InSb films in AlAs matrix

    NASA Astrophysics Data System (ADS)

    Kolotovkina, D. A.; Gutakovskii, A. K.

    2016-11-01

    This work presents results of the investigation of structural and morphological features of epitaxial InSb layers in the AlAs matrix. Our research group used transmission electron microscopy (TEM). The specimens were grown by molecular beam epitaxy and prepared in the cross section (110) and plan view foils (100). We found a formation of the embedded epitaxial layer of solid solution InxAl1-xSbyAs1-y in the AlAs matrix during precipitation of In and Sb on the AlAs surface. The embedded layer had continuous area (wetting layer) and islands. The study revealed two types of islands in the epitaxial layer the first having coherent interfacing with the matrix lattice and the second a relaxed island. We estimated concentration of In, Sb in the solid solution by the indirect method. We used the method of geometric phase to analyze the distribution of misfit dislocation cores on the interface. Every misfit dislocation was formed by two close 600-dislocations with the Burgers vectors like a /2 <110>. The sum Burgers vector of the dislocation pair was in the plane of the interface.

  6. Segmentation of anatomical branching structures based on texture features and conditional random field

    NASA Astrophysics Data System (ADS)

    Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin

    2012-02-01

    This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.

  7. Features of Bayou Choctaw SPR caverns and internal structure of the salt dome.

    SciTech Connect

    Munson, Darrell E.

    2007-07-01

    The intent of this study is to examine the internal structure of the Bayou Choctaw salt dome utilizing the information obtained from graphical representations of sonar survey data of the internal cavern surfaces. Many of the Bayou Choctaw caverns have been abandoned. Some existing caverns were purchased by the Strategic Petroleum Reserve (SPR) program and have rather convoluted histories and complex cavern geometries. In fact, these caverns are typically poorly documented and are not particularly constructive to this study. Only two Bayou Choctaw caverns, 101 and 102, which were constructed using well-controlled solutioning methods, are well documented. One of these was constructed by the SPR for their use while the other was constructed and traded for another existing cavern. Consequently, compared to the SPR caverns of the West Hackberry and Big Hill domes, it is more difficult to obtain a general impression of the stratigraphy of the dome. Indeed, caverns of Bayou Choctaw show features significantly different than those encountered in the other two SPR facilities. In the number of abandoned caverns, and some of those existing caverns purchased by the SPR, extremely irregular solutioning has occurred. The two SPR constructed caverns suggest that some sections of the caverns may have undergone very regular solutioning to form uniform cylindrical shapes. Although it is not usually productive to speculate, some suggestions that point to the behavior of the Bayou Choctaw dome are examined. Also the primary differences in the Bayou Choctaw dome and the other SPR domes are noted.

  8. Tracking structural features leading to resistance of activated protein C to alpha 1-antitrypsin.

    PubMed

    Shen, L; Dahlbäck, B; Villoutreix, B O

    2000-03-21

    Activated protein C (APC) is a multi-modular anticoagulant serine protease, which degrades factor V/Va and factor VIIIa. Human APC (hAPC) is inhibited by human alpha 1-antitrypsin (AAT), while the bovine enzyme (bAPC) is fully resistant to this serpin. Structural features in the catalytic domains between the two species cause this difference, but detailed knowledge about the causal molecular difference is missing. To gain insight into the APC-AAT interaction and to create a human protein C resistant to AAT inhibition, we have used molecular modeling and site-directed mutagenesis. First, a structural model for bAPC based on the Gla-domainless X-ray structure of hAPC was built. Screening the molecular surface of the human and bovine APC enzymes suggested that a hAPC molecule resistant to AAT inhibition could be constructed by substituting only a few amino acids. We thus produced recombinant hAPC molecules with a single mutation (S173E, the numbering follows the chymotrypsinogen nomenclature), two mutations (E60aS/S61R) or a combination of all these substitutions (E60aS/S61R/S173E). Amidolytic and anticoagulant activities of the three mutant APC molecules were similar to those of wild-type hAPC. Inhibition of wild-type hAPC by AAT was characterized by a second-order rate constant (k2) of 2.71 M-1 s-1. The amino acid substitution at position 173 (S173E mutant) led to partial resistance to AAT (k2 = 0.84 M-1 s-1). The E60aS/S61R mutant displayed mild resistance to AAT inhibition (k2 = 1.70 M-1 s-1), whereas the E60aS/S61R/S173E mutant was inefficiently inactivated by AAT (k2 = 0.40 M-1 s-1). Inhibition of recombinant APC molecules by the serpin protein C inhibitor (PCI) in the presence and absence of heparin was also investigated.

  9. Influence of Additive and Multiplicative Structure and Direction of Comparison on the Reversal Error

    ERIC Educational Resources Information Center

    González-Calero, José Antonio; Arnau, David; Laserna-Belenguer, Belén

    2015-01-01

    An empirical study has been carried out to evaluate the potential of word order matching and static comparison as explanatory models of reversal error. Data was collected from 214 undergraduate students who translated a set of additive and multiplicative comparisons expressed in Spanish into algebraic language. In these multiplicative comparisons…

  10. Studies on the Food Additive Propyl Gallate: Synthesis, Structural Characterization, and Evaluation of the Antioxidant Activity

    ERIC Educational Resources Information Center

    Garrido, Jorge; Garrido, E. Manuela; Borges, Fernanda

    2012-01-01

    Antioxidants are additives largely used in industry for delaying, retarding, or preventing the development of oxidative deterioration. Propyl gallate (E310) is a phenolic antioxidant extensively used in the food, cosmetics, and pharmaceutical industries. A series of lab experiments have been developed to teach students about the importance and…

  11. Mutagenicity in a Molecule: Identification of Core Structural Features of Mutagenicity Using a Scaffold Analysis

    PubMed Central

    Hsu, Kuo-Hsiang; Su, Bo-Han; Tu, Yi-Shu; Lin, Olivia A.; Tseng, Yufeng J.

    2016-01-01

    With advances in the development and application of Ames mutagenicity in silico prediction tools, the International Conference on Harmonisation (ICH) has amended its M7 guideline to reflect the use of such prediction models for the detection of mutagenic activity in early drug safety evaluation processes. Since current Ames mutagenicity prediction tools only focus on functional group alerts or side chain modifications of an analog series, these tools are unable to identify mutagenicity derived from core structures or specific scaffolds of a compound. In this study, a large collection of 6512 compounds are used to perform scaffold tree analysis. By relating different scaffolds on constructed scaffold trees with Ames mutagenicity, four major and one minor novel mutagenic groups of scaffold are identified. The recognized mutagenic groups of scaffold can serve as a guide for medicinal chemists to prevent the development of potentially mutagenic therapeutic agents in early drug design or development phases, by modifying the core structures of mutagenic compounds to form non-mutagenic compounds. In addition, five series of substructures are provided as recommendations, for direct modification of potentially mutagenic scaffolds to decrease associated mutagenic activities. PMID:26863515

  12. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon.

    PubMed

    Vähä, Juha-Pekka; Erkinaro, Jaakko; Niemelä, Eero; Primmer, Craig R

    2007-07-01

    Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing

  13. Thermodynamic and Structural Properties of Methanol-Water Solutions Using Non-Additive Interaction Models

    PubMed Central

    Zhong, Yang; Warren, G. Lee; Patel, Sandeep

    2014-01-01

    We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be −5.6±0.2 kcal/mole, in respectable agreement with the experimental value of −5.1 kcal/mole. With respect to solution micro-structure, the present cluster analysis suggests that the micro-scale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bi-percolating network structure. PMID:18074339

  14. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.

    PubMed

    Kamkar, Iman; Gupta, Sunil Kumar; Phung, Dinh; Venkatesh, Svetha

    2015-02-01

    Modern healthcare is getting reshaped by growing Electronic Medical Records (EMR). Recently, these records have been shown of great value towards building clinical prediction models. In EMR data, patients' diseases and hospital interventions are captured through a set of diagnoses and procedures codes. These codes are usually represented in a tree form (e.g. ICD-10 tree) and the codes within a tree branch may be highly correlated. These codes can be used as features to build a prediction model and an appropriate feature selection can inform a clinician about important risk factors for a disease. Traditional feature selection methods (e.g. Information Gain, T-test, etc.) consider each variable independently and usually end up having a long feature list. Recently, Lasso and related l1-penalty based feature selection methods have become popular due to their joint feature selection property. However, Lasso is known to have problems of selecting one feature of many correlated features randomly. This hinders the clinicians to arrive at a stable feature set, which is crucial for clinical decision making process. In this paper, we solve this problem by using a recently proposed Tree-Lasso model. Since, the stability behavior of Tree-Lasso is not well understood, we study the stability behavior of Tree-Lasso and compare it with other feature selection methods. Using a synthetic and two real-world datasets (Cancer and Acute Myocardial Infarction), we show that Tree-Lasso based feature selection is significantly more stable than Lasso and comparable to other methods e.g. Information Gain, ReliefF and T-test. We further show that, using different types of classifiers such as logistic regression, naive Bayes, support vector machines, decision trees and Random Forest, the classification performance of Tree-Lasso is comparable to Lasso and better than other methods. Our result has implications in identifying stable risk factors for many healthcare problems and therefore can

  15. New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features

    NASA Astrophysics Data System (ADS)

    Muir, Barbara; Matusik, Jakub; Bajda, Tomasz

    2016-01-01

    The area of zeolites' application could be expanded by utilizing their surfaces. Zeolites are frequently modified to increase their hydrophobicity and to generate the negative charge of the surface. The main objective of the study was to investigate and compare the features of natural clinoptilolite and synthetic zeolite Na-P1 modified by selected surfactants involving quaternary ammonium salts. The FTIR study indicates that with increasing carbon chain length in the surfactant attached to the zeolites surface the molecules adopt a more disordered structure. FTIR was also used to determine the efficiency of surface modification. Thermal analysis revealed that the presence of surfactant results in additional exothermic effects associated with the breaking of electrostatic bonds between zeolites and surfactants. The mass losses are in line with ECEC and CHN data. The textural study indicates that the synthetic zeolite Na-P1 has better sorption properties than natural clinoptilolite. The modification process always reduces the SBET and porosity of the material. With an increasing carbon chain length of surfactants all the texture parameters decrease.

  16. Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS

    NASA Astrophysics Data System (ADS)

    Gray, G. T., III; Livescu, V.; Rigg, P. A.; Trujillo, C. P.; Cady, C. M.; Chen, S. R.; Carpenter, J. S.; Lienert, T. J.; Fensin, S.

    2015-09-01

    For additive manufacturing (AM), the certification and qualification paradigm needs to evolve as there exists no "ASTM-type" additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM) equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  17. Structural features of cross-bridges in isometrically contracting skeletal muscle.

    PubMed

    Kraft, Theresia; Mattei, Thomas; Radocaj, Ante; Piep, Birgit; Nocula, Christoph; Furch, Markus; Brenner, Bernhard

    2002-05-01

    Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.

  18. Structural and functional analysis of amphioxus HIFα reveals ancient features of the HIFα family.

    PubMed

    Gao, Shan; Lu, Ling; Bai, Yan; Zhang, Peng; Song, Weibo; Duan, Cunming

    2014-04-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to hypoxia. To gain insight into the structural and functional evolution of the HIF family, we characterized the HIFα gene from amphioxus, an invertebrate chordate, and identified several alternatively spliced HIFα isoforms. Whereas HIFα Ia, the full-length isoform, contained a complete oxygen-dependent degradation (ODD) domain, the isoforms Ib, Ic, and Id had 1 or 2 deletions in the ODD domain. When tagged with GFP and tested in mammalian cells, the amphioxus HIFα Ia protein level increased in response to hypoxia or CoCl2 treatment, whereas HIFα Ib, Ic, and Id showed reduced or no hypoxia regulation. Deletion of the ODD sequence in HIFα Ia up-regulated the HIFα Ia levels under normoxia. Gene expression analysis revealed HIFα Ic to be the predominant isoform in embryos and larvae, whereas isoform Ia was the most abundant form in the adult stage. The expression levels of Ib and Id were very low. Hypoxia treatment of adults had no effect on the mRNA levels of these HIFα isoforms. Functional analyses in mammalian cells showed all 4 HIFα isoforms capable of entering the nucleus and activating hypoxia response element-dependent reporter gene expression. The functional nuclear location signal (NLS) mapped to 3 clusters of basic residues. (775)KKARL functioned as the primary NLS, but (737)KRK and (754)KK also contributed to the nuclear localization. All amphioxus HIFα isoforms had 2 functional transactivation domains (TADs). Its C-terminal transactivation (C-TAD) shared high sequence identity with the human HIF-1α and HIF-2α C-TAD. This domain contained a conserved asparagine, and its mutation resulted in an increase in transcriptional activity. These findings reveal many ancient features of the HIFα family and provide novel insights into the evolution of the HIFα family.

  19. Structure-property effects of tantalum additions to nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Heckel, R. W.; Pletka, B. J.; Koss, D. A.; Jackson, M. R.

    1982-01-01

    The characterization of the effect of Ta on the structure of Ni base superalloys, the determination of the effects of Ta (structure) variations on the mechanical, thermal, and oxidation behavior, and the identification of alloying elements which have potential as substitutes for Ta are investigated. Mar M247 type alloys are emphasized; nominal and analyzed compositions of ten alloys under study are given. X-ray and composition analysis are being used to determine the partitioning of alloying elements between gamma, gamma primes, and MC (cubic) as a function of Ta content. The diffusional interactions of the Mar M247-type alloys with as cast beta + gamma alloys are studied to determine the effects of Ta on alloy/coating degradation.

  20. Contribution of rheological characteristics of pavement structure with addition of brick waste

    NASA Astrophysics Data System (ADS)

    Senisna, Zoubida; Bentebba, Med Tahar

    2017-02-01

    The construction and demolition waste at the end of the cycle are often a threat for the environment due to their congestion and biodegradability. The presented research work aims to develop these wastes such as the waste of pavements structure brick. It refers to the behavior of modified asphalt mixture (bituminous grave) by adding the waste of the grinding yellow brick, which is used in the construction of buildings. The objective of this experiment is to evaluate and compare the physical and mechanical performance roadway structure (modified bituminous Gravel (GB 0/20)) by replacing natural sand partly mix (0%, 25%, 50%, 75%, 100% or completely by brick waste sand) and determine the optimal composition. Mechanical and rheological performance give the best results. The results show that the use of brick waste sand leads to a reduction of the physical and mechanical properties of GB 0/20.

  1. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system.

    PubMed

    Restrepo-Flórez, Juan-Manuel; Bassi, Amarjeet; Rehmann, Lars; Thompson, Michael R

    2013-11-01

    Understanding changes in microbial structure due to biodiesel storage is important both for protecting integrity of storage systems and fuel quality management. In this work a simulated storage system was used to study the effect of biodiesel (0%, 25%, 50%, 75% and 100%) on a microbial population, which was followed by community level physiological profiling (CLPP), 16s rDNA analysis and plating in selective media. Results proved that structure and functionality were affected by biodiesel. CLPP showed at least three populations: one corresponding to diesel, one to biodiesel and one to blends of diesel and biodiesel. Analysis of 16s rDNA revealed that microbial composition was different for populations growing in diesel and biodiesel. Genera identified are known for degradation of hydrocarbons and emulsifier production. Maximum growth was obtained in biodiesel; however, microbial counts in standard media were lower for this samples. Acidification of culture media was observed at high biodiesel concentration.

  2. Chief Joseph Dam, Columbia River, Washington, Additional Units and Structural Modification Foundation Report

    DTIC Science & Technology

    1988-01-01

    that include granodiorite , granodiorite gneiss, dark schistose granodiorite , hornblende granodiorite , and lamprophyre. These various rock types...exhibit different characteristics of soundness as described in the paragraphs below: a. Granodiorite is the predominant rock type. It is hard, medium to...4 f22 b. Granodiorite gneiss is a hard, medium to coarse grained, light gray to gray colored rock which exhibits a banded structure with mineral

  3. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams

    SciTech Connect

    Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  4. [Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China].

    PubMed

    Yang, Shan; Li, Xiao-bing; Wang, Ru-zhen; Cai, Jiang-ping; Xu, Zhu-wen; Zhang, Yu-ge; Li, Hui; Jiang, Yong

    2015-03-01

    In this study, we measured the responses of soil bacterial diversity and community structure to nitrogen (N) and water addition in the typical temperate grassland in northern China. Results showed that N addition significantly reduced microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) under regular precipitation treatment. Similar declined trends of MBC and MBN caused by N addition were also found under increased precipitation condition. Nevertheless, water addition alleviated the inhibition by N addition. N addition exerted no significant effects. on bacterial α-diversity indices, including richness, Shannon diversity and evenness index under regular precipitation condition. Precipitation increment tended to increase bacterial α-diversity, and the diversity indices of each N gradient under regular precipitation were much lower than that of the corresponding N addition rate under increased precipitation. Correlation analysis showed that soil moisture, nitrate (NO3(-)-N) and ammonium (NH4+-N) were significantly negatively correlated with bacterial evenness index, and MBC and MBN had a significant positive correlation with bacterial richness and evenness. Non-metric multidimensional scaling (NMDS) ordination illustrated that the bacterial communities were significantly separated by N addition rates, under both water ambient and water addition treatments. Redundancy analysis (RDA) revealed that soil MBC, MBN, pH and NH4+-N were the key environmental factors for shaping bacterial communities.

  5. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study

    PubMed Central

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640

  6. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study.

    PubMed

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.

  7. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.

    PubMed

    Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.

  8. Characterization of embedded fiber optic strain sensors into metallic structures via ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Schomer, John J.; Hehr, Adam J.; Dapino, Marcelo J.

    2016-04-01

    Fiber Bragg Grating (FBG) sensors measure deviation in a reflected wavelength of light to detect in-situ strain. These sensors are immune to electromagnetic interference, and the inclusion of multiple FBGs on the same fiber allows for a seamlessly integrated sensing network. FBGs are attractive for embedded sensing in aerospace applications due to their small noninvasive size and prospect of constant, real-time nondestructive evaluation. In this study, FBG sensors are embedded in aluminum 6061 via ultrasonic additive manufacturing (UAM), a rapid prototyping process that uses high power ultrasonic vibrations to weld similar and dissimilar metal foils together. UAM was chosen due to the desire to embed FBG sensors at low temperatures, a requirement that excludes other additive processes such as selective laser sintering or fusion deposition modeling. In this paper, the embedded FBGs are characterized in terms of birefringence losses, post embedding strain shifts, consolidation quality, and strain sensing performance. Sensors embedded into an ASTM test piece are compared against an exterior surface mounted foil strain gage at both room and elevated temperatures using cyclic tensile tests.

  9. Influence of additives on the structure of surfactant-free microemulsions.

    PubMed

    Marcus, J; Touraud, D; Prévost, S; Diat, O; Zemb, T; Kunz, W

    2015-12-28

    We study the addition of electrolytes to surfactant-free microemulsions in the domain where polydisperse pre-Ouzo aggregates are present. As in previous studies, the microemulsion is the ternary system water/ethanol/1-octanol, where ethanol acts as co-solvent. Addition of electrolytes modifies the static X-ray and neutron scattering, and dynamic light scattering patterns, as well as the position of the miscibility gap, where spontaneous emulsification occurs upon dilution with water. All observations can be rationalized considering that electrolytes are either "salting out" the ethanol, which is the main component of the interface stabilizing the aggregates, or producing charge separation via the antagonistic ion effect discovered by Onuki et al. Amphiphilic electrolytes, such as sodium dodecylsulfate or sodium dietheylhexylphosphate, induce a gradual transition towards monodisperse ionic micelles with their characteristic broad scattering "peak". In these micelles the ethanol plays then the role of a cosurfactant. Dynamic light scattering can only be understood by combination of fluctuations of aggregate concentration due to the vicinity of a critical point and in-out fluctuations of ethanol.

  10. Effect of reduction of strategic Columbium addition in 718 Alloy on the structure and properties

    NASA Technical Reports Server (NTRS)

    Ziegler, K. R.; Wallace, J. F.

    1985-01-01

    A series of alloys was developed having a base composition similar to Inconel 718, with reduced Cb levels of 3.00 and 1.10 wt% Cb. Substitutions of 3.0% W, 3.0W + 0.9V or Mo increased from 3.0% to 5.8% were made for the Cb in these alloys. Two additional alloys, one containing 3.49% Cb and 1.10% Ti and another containing 3.89% Cb and 1.29% Ti were also studied. Tensile properties at rooom and elevated temperatures, stress-rupture tests, and an analysis of extracted phases were carried out for each of the alloys. Additions of solid solution elements to a reduced Cb alloy had no significant effect on the properties of the alloys under either process condition. The solution and age alloys with substitutions of 1.27% i at 3.89% Cb had tensile properties similar top hose of the original alloy and stress-rupture properties superior to the original alloy. The improved stress-rupture properties were the result of significant precipitation of Ni3Ti-gamma prime in the alloy, which is more stable than gamma' at the elevated temperatures. At lower temperatures, the new alloy benefits from gamma' strengthening. With more precise control and proper processing, the reduced Cb direct-age alloy could substitute for Alloy 718 in high strength applications.

  11. Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor

    PubMed Central

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016

  12. Visual odometry based on structural matching of local invariant features using stereo camera sensor.

    PubMed

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields.

  13. Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2.

    PubMed

    Ma, Dongge; Yan, Yan; Ji, Hongwei; Chen, Chuncheng; Zhao, Jincai

    2015-12-21

    TiO2 photocatalysis can be performed for the addition of pyridines to vinylarenes in an anti-Markovnikov manner. Seven examples with considerable yields (56-91%) and selectivity were demonstrated. A comparative survey of the involved process through ESR revealed a novel concerted two electron transfer pathway for these photocatalytic bimolecular addition reactions.

  14. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes

    PubMed Central

    Chiu, Hsiu-Ju; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P)+-dependent oxidative decarboxyl­ation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD+ has been determined to 2.0 Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/β dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α–β motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP+ and NAD+. The loop between β5 and β6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from the loop between β5 and β6) and Arg365′ (from the additional C-terminal helix of the adjacent monomer) is observed that might be involved in gating the active site. PMID:20944228

  15. Structural features and formation of lower Cretaceous AV1 layer in the Soviet oil field (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Zhamsaranova, A. B.; Osipova, E. N.; Gaydukova, T. A.; Aksenova, N. V.

    2016-09-01

    The analysis of the collected geological and geophysical information on AV1 layer known as Ryabchik formation is carried out. The facial conditions of this formation which define structural features of «Ryabchik» sandstones formations are considered. Maps characterizing permeability and porosity of reservoir are plotted. Areal tracking technique of sand streaks is given.

  16. Linguistic Features and Schematic Textual Structure in Look-Good Advertisements in the Indian Print Media in English

    ERIC Educational Resources Information Center

    Singh, Sukhdev; Bedi, Navkiran Kaur

    2013-01-01

    Every text has a communicative purpose that it performs by dividing itself into generic stages. These stages are assigned specific goals and have differing linguistic structures. This paper makes an attempt to investigate whether there is a definable co-relation between linguistic features and stages in the genre of look-good advertisements. It…

  17. Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus.

    PubMed

    Kerns, Robert J; Rybak, Michael J; Kaatz, Glenn W; Vaka, Flamur; Cha, Raymond; Grucz, Richard G; Diwadkar, Veena U

    2003-07-07

    We previously demonstrated that piperazinyl-linked fluoroquinolone dimers possess potent antibacterial activity against drug-resistant strains of Staphylococcus aureus. In this study, we report the preparation and evaluation of a series of incomplete dimers toward ascertaining structural features of piperazinyl-linked ciprofloxacin dimers that render these agents refractory to fluoroquinolone-resistance mechanisms in Staphylococcus aureus.

  18. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  19. Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure.

    PubMed

    Gunji, Yukio-Pegio; Shinohara, Shuji; Haruna, Taichi; Basios, Vasileios

    2017-02-01

    To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions.

  20. The addition of STEPPS in the treatment of patients with bipolar disorder and comorbid borderline personality features: a protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Bipolar disorder (BD) and borderline personality disorder (BPD) both are severe and chronic psychiatric disorders. Both disorders have overlapping symptoms, and current research shows that the presence of a BPD has an adverse effect on the course of BD. The limited research available shows an unfavorable illness course, a worse prognosis and response to medication, longer treatment duration, more frequent psychiatric admissions, higher drop-out, increased risk of substance abuse, increased risk of suicide, and more impairment of social and occupational functioning. However, there is no research available on the effect of specific psychotherapeutic treatment for this patients. Methods/Design This paper presents the protocol of a RCT to investigate the presence of borderline personality features in patients treated for BD (study part 1) and the effectiveness of STEPPS (Systems Training for Emotional Predictability and Problem Solving) added to treatment as usual (TAU) for BD compared to TAU in patients with BD and comorbid borderline personality features (study part 2). STEPPS is a validated and effective intervention for BPD. The study population consists of patients treated for BD at specialized outpatient clinics for BD in the Netherlands. At first the prevalence of comorbid borderline personality features in outpatients with BD is investigated. Inclusion criteria for study part 2 is defined as having three or more of the DSM-IV-TR diagnostic criteria of BPD, including impulsivity and anger bursts. Primary outcomes will be the frequency and severity of manic and depressive recurrences as well as severity, course and burden of borderline personality features. Secondary outcomes will be quality of life, utilizing mental healthcare and psychopathologic symptoms not primarily related to BD or BPD. Assessment will be at baseline, at the end of the intervention, and at 12 and 18 months follow-up. Discussion This will be the first randomized controlled trial

  1. Does My Face FIT?: A Face Image Task Reveals Structure and Distortions of Facial Feature Representation

    PubMed Central

    Fuentes, Christina T.; Runa, Catarina; Blanco, Xenxo Alvarez; Orvalho, Verónica; Haggard, Patrick

    2013-01-01

    Despite extensive research on face perception, few studies have investigated individuals’ knowledge about the physical features of their own face. In this study, 50 participants indicated the location of key features of their own face, relative to an anchor point corresponding to the tip of the nose, and the results were compared to the true location of the same individual’s features from a standardised photograph. Horizontal and vertical errors were analysed separately. An overall bias to underestimate vertical distances revealed a distorted face representation, with reduced face height. Factor analyses were used to identify separable subconfigurations of facial features with correlated localisation errors. Independent representations of upper and lower facial features emerged from the data pattern. The major source of variation across individuals was in representation of face shape, with a spectrum from tall/thin to short/wide representation. Visual identification of one’s own face is excellent, and facial features are routinely used for establishing personal identity. However, our results show that spatial knowledge of one’s own face is remarkably poor, suggesting that face representation may not contribute strongly to self-awareness. PMID:24130790

  2. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures.

    PubMed

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction.

  3. Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition.

    PubMed

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S A

    2013-06-20

    Experimental studies on the novel compositions of gel polymer electrolytes, comprised of plastic crystal succinonitrile (SN) dispersed with pyrrolidinium and imidazolium-based ionic liquids (ILs) entrapped in a host polymer poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), are reported. The gel electrolytes are in the form of free-standing films with excellent mechanical, thermal, and electrochemical stability. The introduction of even a small content (~1 wt %) of ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imide (BMPTFSI) or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf) in the PVdF-HFP/SN system (1:4 w/w) enhances the electrical conductivity by 4 orders of magnitude, that is, from ~10(-7) to ~10(-3) S cm(-1) at room temperature. The structural changes due to the entrapment of SN or SN/ILs mixtures and ion-SN-polymer interactions are examined by Fourier transform infrared (FTIR)/Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimmetry (DSC). Various physicochemical properties and fast ion conduction in the gel polymer membranes show their promising characteristics as electrolytes in different ionic devices including supercapacitors.

  4. Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Shigesato, Yuzo

    2017-02-01

    Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In2O3 phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In2O3 matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).

  5. SU-E-QI-16: Reproducibility of Computed Tomography Quantitative Structural Features Using the FDA Thoracic Phantom Image Database

    SciTech Connect

    Budzevich, M; Grove, O; Balagurunathan, Y; Gu, Y; Wang, H; Oliver, J; Latifi, K; Zhang, G; Dilling, T; Gillies, R; Moros, E; Lee, H.

    2014-06-15

    Purpose: To assess the reproducibility of quantitative structural features using images from the computed tomography thoracic FDA phantom database under different scanning conditions. Methods: Development of quantitative image features to describe lesion shape and size, beyond conventional RECIST measures, is an evolving area of research in need of benchmarking standards. Gavrielides et al. (2010) scanned a FDA-developed thoracic phantom with nodules of various Hounsfield units (HU) values, shapes and sizes close to vascular structures using several scanners and varying scanning conditions/parameters; these images are in the public domain. We tested six structural features, namely, Convexity, Perimeter, Major Axis, Minor Axis, Extent Mean and Eccentricity, to characterize lung nodules. Convexity measures lesion irregularity referenced to a convex surface. Previously, we showed it to have prognostic value in lung adenocarcinoma. The above metrics and RECIST measures were evaluated on three spiculated (8mm/-300HU, 12mm/+30HU and 15mm/+30HU) and two non-spiculated (8mm/+100HU and 10mm/+100HU) nodules (from layout 2) imaged at three different mAs values: 25, 100 and 200 mAs; on a Phillips scanner (16-slice Mx8000-IDT; 3mm slice thickness). The nodules were segmented semi-automatically using a commercial software tool; the same HU range was used for all nodules. Results: Analysis showed convexity having the lowest maximum coefficient of variation (MCV): 1.1% and 0.6% for spiculated and non-spiculated nodules, respectively, much lower compared to RECIST Major and Minor axes whose MCV were 10.1% and 13.4% for spiculated, and 1.9% and 2.3% for non-spiculated nodules, respectively, across the various mAs. MCVs were consistently larger for speculated nodules. In general, the dependence of structural features on mAs (noise) was low. Conclusion: The FDA phantom CT database may be used for benchmarking of structural features for various scanners and scanning conditions; we used

  6. The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR lymphography CAD system

    NASA Astrophysics Data System (ADS)

    Meijs, M.; Debats, O.; Huisman, H.

    2015-03-01

    In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.

  7. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  8. The Effect of Boron Addition on the Atomic Structure and Microwave Magnetic Properties of FeGaB Thin Films

    SciTech Connect

    Gao, J.; Yang, A; Chen, Y; Kirkland, J; Lou, J; Sun, N; Vittoria, C; Harris, V

    2009-01-01

    Varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films was investigated by extended x-ray absorption fine structure (EXAFS) analysis. The EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting increases as a function of boron addition and abruptly changes during the structural evolution from crystalline to amorphous that occurs near 9% B. Upon the onset of this transition the static and microwave magnetic properties became exceptionally soft, with values of coercivity and ferromagnetic linewidth reducing to less than 1 Oe and 25 Oe, respectively.

  9. The effect of boron addition on the atomic structure and microwave magnetic properties of FeGaB thin films

    NASA Astrophysics Data System (ADS)

    Gao, Jinsheng; Yang, Aria; Chen, Yajie; Kirkland, J. P.; Lou, Jing; Sun, Nian X.; Vittoria, Carmine; Harris, Vincent G.

    2009-04-01

    Varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films was investigated by extended x-ray absorption fine structure (EXAFS) analysis. The EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting increases as a function of boron addition and abruptly changes during the structural evolution from crystalline to amorphous that occurs near 9% B. Upon the onset of this transition the static and microwave magnetic properties became exceptionally soft, with values of coercivity and ferromagnetic linewidth reducing to less than 1 Oe and 25 Oe, respectively.

  10. Structural and phylogenetic analysis of Rhodobacter capsulatus NifF: uncovering general features of nitrogen-fixation (nif)-flavodoxins.

    PubMed

    Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A

    2013-01-09

    Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.

  11. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets.

  12. Effect of Nano-Particle Addition on Grain Structure Evolution of Friction Stir-Processed Al 6061 During Postweld Annealing

    NASA Astrophysics Data System (ADS)

    Guo, Junfeng; Lee, Bing Yang; Du, Zhenglin; Bi, Guijun; Tan, Ming Jen; Wei, Jun

    2016-08-01

    The fabrication of nano-composites is challenging because uniform dispersion of nano-sized reinforcements in metallic substrate is difficult to achieve using powder metallurgy or liquid processing methods. In the present study, Al-based nano-composites reinforced with Al2O3 particles have been successfully fabricated using friction stir processing. The effects of nano-Al2O3 particle addition on grain structure evolution of friction stir-processed Al matrix during post-weld annealing were investigated. It was revealed that the pinning effect of Al2O3 particles retarded grain growth and completely prevented abnormal grain growth during postweld annealing at 470°C. However, abnormal grain growth can still occur when the composite material was annealed at 530°C. The mechanism involved in the grain structure evolution and the effect of nano-sized particle addition on the mechanical properties were discussed therein.

  13. Improvement in the prediction of the translation initiation site through balancing methods, inclusion of acquired knowledge and addition of features to sequences of mRNA

    PubMed Central

    2011-01-01

    Background The accurate prediction of the initiation of translation in sequences of mRNA is an important activity for genome annotation. However, obtaining an accurate prediction is not always a simple task and can be modeled as a problem of classification between positive sequences (protein codifiers) and negative sequences (non-codifiers). The problem is highly imbalanced because each molecule of mRNA has a unique translation initiation site and various others that are not initiators. Therefore, this study focuses on the problem from the perspective of balancing classes and we present an undersampling balancing method, M-clus, which is based on clustering. The method also adds features to sequences and improves the performance of the classifier through the inclusion of knowledge obtained by the model, called InAKnow. Results Through this methodology, the measures of performance used (accuracy, sensitivity, specificity and adjusted accuracy) are greater than 93% for the Mus musculus and Rattus norvegicus organisms, and varied between 72.97% and 97.43% for the other organisms evaluated: Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Nasonia vitripennis. The precision increases significantly by 39% and 22.9% for Mus musculus and Rattus norvegicus, respectively, when the knowledge obtained by the model is included. For the other organisms, the precision increases by between 37.10% and 59.49%. The inclusion of certain features during training, for example, the presence of ATG in the upstream region of the Translation Initiation Site, improves the rate of sensitivity by approximately 7%. Using the M-Clus balancing method generates a significant increase in the rate of sensitivity from 51.39% to 91.55% (Mus musculus) and from 47.45% to 88.09% (Rattus norvegicus). Conclusions In order to solve the problem of TIS prediction, the results indicate that the methodology proposed in this work is adequate, particularly when using the

  14. Denoising of multiscale/multiresolution structural feature dictionaries for rapid training of a brain computer interface.

    PubMed

    Ince, Nuri Firat; Tadipatri, Vijay Aditya; Göksu, Fikri; Tewfik, Ahmed H

    2009-01-01

    Multichannel neural activities such as EEG or ECoG in a brain computer interface can be classified with subset selection algorithms running on large feature dictionaries describing subject specific features in spectral, temporal and spatial domain. While providing high accuracies in classification, the subset selection techniques are associated with long training times due to the large feature set constructed from multichannel neural recordings. In this paper we study a novel denoising technique for reducing the dimensionality of the feature space which decreases the computational complexity of the subset selection step radically without causing any degradation in the final classification accuracy. The denoising procedure was based on the comparison of the energy in a particular time segment and in a given scale/level to the energy of the raw data. By setting denoising threshold a priori the algorithm removes those nodes which fail to capture the energy in the raw data in a given scale. We provide experimental studies towards the classification of motor imagery related multichannel ECoG recordings for a brain computer interface. The denoising procedure was able to reach the same classification accuracy without denoising and a computational complexity around 5 times smaller. We also note that in some cases the denoised procedure performed better classification.

  15. Features of Household Lexics, Their Characteristics and Structural Analysis in the Modern English Language

    ERIC Educational Resources Information Center

    Yusifova, Aygun

    2014-01-01

    The present paper aims to analyze the most inherent features and characteristics of household lexis in English. Special emphasis has been placed on their names of the objects used in everyday life, kitchen utensils, animal and birds. Lexical units concerning ceremonies, habits and traditions are also among the scope of the paper. Moreover, the…

  16. Structural features of phenoxycarbonylimino neonicotinoids acting at the insect nicotinic receptor.

    PubMed

    Ohno, Ikuya; Tomizawa, Motohiro; Miyazu, Nozomi; Kushibiki, Gohito; Noda, Kumiko; Hasebe, Yasunori; Durkin, Kathleen A; Miyake, Taiji; Kagabu, Shinzo

    2010-10-01

    Substituted-phenoxycarbonylimino neonicotinoid ligands with an electron-donating group showed significantly higher affinity to the insect nicotinic receptor relative to that of the analogue with an electron-withdrawing substituent, thereby establishing in silico binding site interaction model featuring that the phenoxy ring of neonicotinoids and the receptor loop D tryptophan indole plane form a face-to-edge aromatic interaction.

  17. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  18. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Li, Denghua; Lu, Chunxiang; Du, Sujun; Wu, Gangping; Yang, Yu; Wang, Lina

    2016-11-01

    The structural features of polyacrylonitrile and pitch-based carbon fibers were analyzed from a comprehensive point of view by X-ray measurements and related techniques. The results indicated that the undulating graphite ribbon with embedded microvoid was the main structural unit for graphitic fibers. The void's parameters for these fibers could be obtained directly by small-angle X-ray scattering following the classic method deduced based on the typical two-phase system (i.e., Porod's law, Guinier's law and Debye's law). The non-graphitic fibers, however, were composed of two-dimensional turbostratic crystallites in the aggregation of microfibril and thus had a quasi two-phase structure (microfibril, interfibrillar amorphous structure and microvoid embedded within the microfibril). The extended Debye or Beaucage model in this case should be applied in order to obtain the structural parameters. It also revealed that the quasi two-phase system would complete its transformation to two-phase system during high-temperature graphitization. Therefore, the degree of graphitization was speculated to be the essential indicator distinguishing graphitic fibers from non-graphitic ones and would be helpful in understanding the transformation of structural features during the graphitization of carbon fibers.

  19. Modeling of geomagnetic activity due to passage of different structures and features of high speed streams

    NASA Astrophysics Data System (ADS)

    Mustajab, Fainana

    2016-07-01

    The modeling of terrestrial environment and relative geoeffectiveness due to high speed streams of different type and also compare their geoeffectiveness due to fine structures associated with streams, for example i) streams with different speed, ii) streams with different durations, iii) streams from different solar source and iv) associated fine structures. We also observed high speed streams during 1996 to 2011, and divided them into convenient groups based on their i) speed, ii) durations, iii) solar sources and iv) Dst groups. Performed them method of superposed-epoch analysis and other some statistical-analysis and correlation analysis between geomagnetic index Dst and plasma/field parameters during for both main phase and recovery phase. Streams having the passage duration ranging from 4.5 days to 10.5 days is 59% while other groups, having passage duration <4.5 days and > 10.5 days, contribute only near about 13%. When we observe group according to speed of streams, 30% of high speed streams are having the speed >650km/s and other groups are near about equally distributed in the range 400km/s to 650km/s. Out of 575 high speed streams, 45% streams are caused by single coronal hole, 20% due to multiple coronal hole, 24% by compound i.e: due to coronal hole and coronal mass ejections and only 10% from coronal mass ejections. The streams which are responsible for quiet, weak, moderate storms are nearly equal and only 12% streams cause severe storms. Dst gives best correlation with V(km/s) and BVres to the power 2 (x10res to the power 6) for over all storm time. B(nT) and BV(x10res to the power 3) represent good correlation with Dst during recovery phase duration for the speed groups. I observed the percentage of quiet storms decreases with increasing speed of streams. Near about equal percentage of weak storm are observed in each set of speed of stream. 17% moderate storms are found to contribute for the speed range 400-550km/s and ≈33% contribution is

  20. Multiscale features including water content of polymer-induced kaolinite floc structures

    NASA Astrophysics Data System (ADS)

    Sharma, Sugandha

    Despite their many uses, fine clay particles such as kaolinite are a nuisance in management of tailings in various industries such as the oil sands and phosphate processing industry. The effective flocculation, sedimentation, and consolidation of these fine particles are a major challenge. In industries, polymers are added to tailings suspension to facilitate formation and eventual sedimentation of flocs. The structure of floc and the water entrapped within the floc determine floc behavior and settling characteristics. The quantification of water entrapped within the kaolinite flocs has not been reported before. The information on kaolinite floc size and shape is also limited due to the challenges in experimental procedures for these delicate structures. In this thesis research, operating conditions for kaolinite flocculation were determined and a suitable polymer was chosen by settling experiments. Further investigation of the floc formed was done in suspended state as well as in sedimented state. The flocs were analyzed for their size, shape, water content, and microstructure. A pool of analytical techniques like the Particle Vision & Measurement (PVM), Dynamic Image Analysis (DIA), Scanning Electron Microscopy (SEM), High Resolution X-ray Microtomography (HRXMT), and image processing software like Fiji, Medical Image Processing Analysis & Visualization (MIPAV), and Drishti were used. The analysis of suspended flocs by PVM and DIA revealed a mean floc size of about 225 microm for high molecular weight, 5% anionic polyacrylamide-induced flocs. The low molecular weight, 70% cationic polymer-induced flocs were found to be smaller in size (145 microm). DIA was used to analyze the flocs at different solid concentration. It was found that the increase in solid concentration leads to increase in floc size. Floc circularity was also analyzed by using both these methods. Most flocs were irregular in shape with circularity ranging between 0.2-0.3. However, the circularity

  1. Studies on D-A-π-A structured porphyrin sensitizers with different additional electron-withdrawing unit

    NASA Astrophysics Data System (ADS)

    Lu, Futai; Wang, Xuexiang; Zhao, Yanming; Yang, Guang; Zhang, Jie; Zhang, Bao; Feng, Yaqing

    2016-11-01

    The introduction of an additional acceptor to a typical donor-π bridge-acceptor (D-π-A) type porphyrin sensitizer results in a D-A-π-A featured porphyrin. Two porphyrins containing an additional acceptor with different electron-withdrawing abilities such as 2,3-diphenylquinoxaline (DPQ) for LP-11 and 2,1,3-benzothiadiazole (BTD) for LP-12 between the porphyrin core and the anchoring group have been synthesized for use as sensitizers in dye-sensitized solar cells (DSCs). Compared to LP-11, LP-12 with the stronger electron-withdrawing additional acceptor BTD possesses better light harvesting properties with regard to red-shifted Q-band absorption and a broader IPCE spectrum, resulting in a greater short circuit photocurrent density (Jsc) output. Interestingly, the steric hindrance of the DPQ group is favorable for suppressing dye aggregation, leading to a larger open-circuit voltage (Voc) value for LP-11-based cell. However, the loss in Voc of LP-12 is overcompensated by an improvement in Jsc. The optimized cell based on LP-12 achieves the better performance with a Jsc of 15.51 mA cm-2, a Voc of 674 mV, a fill factor (FF) of 0.7 and an overall power conversion efficiency (PCE) of 7.37% under standard AM 1.5 G irradiation. The findings provide a guidance for the future molecular design of highly efficient porphyrin sensitizers for use in DSCs.

  2. The Vertical Structure of Major Meteorological Features on Jupiter: The Great Red Spot and White Ovals BC and DE

    NASA Astrophysics Data System (ADS)

    Baines, Kevin H.; Carlson, Robert W.

    1999-01-01

    Multi-spectral imagery of Jupiter's Great Red Spot (GRS) and two White ovals acquired by the Galileo/NIMS are used to constrain the spatial variability of the vertical aerosol structure and the distribution of ammonia in and around these most-prominent anti-cyclonic features. All three features exhibit a high-altitude core spanning about 3/4 of their visual size when viewed with moderate absorption wavelengths, indicating a bulk elliptical, "wedding cake" shape in their overall three-dimensional cloud structure. A distinctive spiral pattern within the GRS core is seen in moderate methane and hydrogen absorption bandpasses. This pattern - which has been modelled to show a 2 km variation in cloudtop pressure within the GRS - is inconsistent with a different spiral-shaped pattern observed in ammonia-sensitive wavelengths, thus indicating spatial variability not only in the column abundance of ammonia within the GRS, but in its mixing ratio as well. White Ovals BC and DE were observed in February 1997, just a year before their unusual merger into a single feature. At the time of these observations, the centers of the two anti-cyclones were about 16 degrees apart, separated by a complex cyclonic feature which exhibited unusual spatial variability in its appearance in images acquired at ammonia-sensitive wavelengths. In particular, the northern half of this feature has the largest ammonia column abundance seen within the environs around the white ovals, indicating unusual variability in either cloud structure/altitude and/or ammonia humidity within the cyclone.

  3. Distinctive Features of the Temperature Sensitivity of a Transistor Structure in a Bipolar Mode of Measurement

    NASA Astrophysics Data System (ADS)

    Karimov, A. V.; Dzhuraev, D. P.; Kuliev, Sh. M.; Turaev, A. A.

    2016-03-01

    Results are presented of an experimental investigation of the temperature sensitivity of an individual base-to-collector junction of a bipolar transistor structure and of this same structure in the case of series connection of blocking emitter and collector junctions. It is shown that the temperature-sensitivity coefficient of the transistor structure operating in a bipolar mode of measurement is an order of magnitude larger than an analogous coefficient of the base-to-collector junction.

  4. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    PubMed

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites.

  5. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design

    PubMed Central

    Hilbert, Brendan J.; Grossman, Steven R.; Schiffer, Celia A.; Royer, William E.

    2014-01-01

    The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory D-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD+ revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD+ phosphate. Neither feature is present in other D2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors. PMID:24657618

  6. Electromagnetic turbulent structures: A ubiquitous feature of the edge region of toroidal plasma configurations

    SciTech Connect

    Spolaore, M. Vianello, N.; Agostini, M.; Cavazzana, R.; De Masi, G.; Martines, E.; Momo, B.; Scaggion, A.; Scarin, P.; Spagnolo, S.; Spizzo, G.; Zuin, M.; Furno, I.; Avino, F.; Fasoli, A.; Theiler, C.; Carralero, D.; Alonso, J. A.; Hidalgo, C.

    2015-01-15

    Electromagnetic features of turbulent filaments, emerging from a turbulent plasma background, have been studied in four different magnetic configurations: the stellarator TJ-II, the Reversed Field Pinch RFX-mod, a device that can be operated also as a ohmic tokamak, and the Simple Magnetized Torus, TORPEX. By applying an analogous diagnostic concept in all cases, direct measurements of both field-aligned current density and vorticity were performed inside the filament. The inter-machine comparison reveals a clear dependence of the filament vorticity upon the local time-averaged E × B flow shear. Furthermore, a wide range of local beta was explored allowing concluding that this parameter plays a fundamental role in the appearance of filament electromagnetic features.

  7. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation

    PubMed Central

    Yurtsever, Zeynep; Scheaffer, Suzanne M.; Romero, Arthur G.; Holtzman, Michael J.; Brett, Tom J.

    2015-01-01

    The p38 MAP kinases (p38 MAPKs) represent an important family centrally involved in mediating extracellular signaling. Recent studies indicate that family members such as MAPK13 (p38δ) display a selective cellular and tissue expression and are therefore involved in specific diseases. Detailed structural studies of all p38 MAPK family members are crucial for the design of specific inhibitors. In order to facilitate such ventures, the structure of MAPK13 was determined in both the inactive (unphosphorylated; MAPK13) and active (dual phosphorylated; MAPK13/pTpY) forms. Here, the first preparation, crystallization and structure determination of MAPK13/pTpY are presented and the structure is compared with the previously reported structure of MAPK13 in order to facilitate studies for structure-based drug design. A comprehensive analysis of inactive versus active structures for the p38 MAPK family is also presented. It is found that MAPK13 undergoes a larger interlobe configurational rearrangement upon activation compared with MAPK14. Surprisingly, the analysis of activated p38 MAPK structures (MAP12/pTpY, MAPK13/pTpY and MAPK14/pTpY) reveals that, despite a high degree of sequence similarity, different side chains are used to coordinate the phosphorylated residues. There are also differences in the rearrangement of the hinge region that occur in MAPK14 compared with MAPK13 which would affect inhibitor binding. A thorough examination of all of the active (phosphorylated) and inactive (unphosphorylated) p38 MAPK family member structures was performed to reveal a common structural basis of activation for the p38 MAP kinase family and to identify structural differences that may be exploited for developing family member-specific inhibitors. PMID:25849390

  8. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation.

    PubMed

    Yurtsever, Zeynep; Scheaffer, Suzanne M; Romero, Arthur G; Holtzman, Michael J; Brett, Tom J

    2015-04-01

    The p38 MAP kinases (p38 MAPKs) represent an important family centrally involved in mediating extracellular signaling. Recent studies indicate that family members such as MAPK13 (p38δ) display a selective cellular and tissue expression and are therefore involved in specific diseases. Detailed structural studies of all p38 MAPK family members are crucial for the design of specific inhibitors. In order to facilitate such ventures, the structure of MAPK13 was determined in both the inactive (unphosphorylated; MAPK13) and active (dual phosphorylated; MAPK13/pTpY) forms. Here, the first preparation, crystallization and structure determination of MAPK13/pTpY are presented and the structure is compared with the previously reported structure of MAPK13 in order to facilitate studies for structure-based drug design. A comprehensive analysis of inactive versus active structures for the p38 MAPK family is also presented. It is found that MAPK13 undergoes a larger interlobe configurational rearrangement upon activation compared with MAPK14. Surprisingly, the analysis of activated p38 MAPK structures (MAP12/pTpY, MAPK13/pTpY and MAPK14/pTpY) reveals that, despite a high degree of sequence similarity, different side chains are used to coordinate the phosphorylated residues. There are also differences in the rearrangement of the hinge region that occur in MAPK14 compared with MAPK13 which would affect inhibitor binding. A thorough examination of all of the active (phosphorylated) and inactive (unphosphorylated) p38 MAPK family member structures was performed to reveal a common structural basis of activation for the p38 MAP kinase family and to identify structural differences that may be exploited for developing family member-specific inhibitors.

  9. Systematic analysis of non-structural protein features for the prediction of PTM function potential by artificial neural networks.

    PubMed

    Dewhurst, Henry M; Torres, Matthew P

    2017-01-01

    Post-translational modifications (PTMs) provide an extensible framework for regulation of protein behavior beyond the diversity represented within the genome alone. While the rate of identification of PTMs has rapidly increased in recent years, our knowledge of PTM functionality encompasses less than 5% of this data. We previously developed SAPH-ire (Structural Analysis of PTM Hotspots) for the prioritization of eukaryotic PTMs based on function potential of discrete modified alignment positions (MAPs) in a set of 8 protein families. A proteome-wide expansion of the dataset to all families of PTM-bearing, eukaryotic proteins with a representational crystal structure and the application of artificial neural network (ANN) models demonstrated the broader applicability of this approach. Although structural features of proteins have been repeatedly demonstrated to be predictive of PTM functionality, the availability of adequately resolved 3D structures in the Protein Data Bank (PDB) limits the scope of these methods. In order to bridge this gap and capture the larger set of PTM-bearing proteins without an available, homologous structure, we explored all available MAP features as ANN inputs to identify predictive models that do not rely on 3D protein structural data. This systematic, algorithmic approach explores 8 available input features in exhaustive combinations (247 models; size 2-8). To control for potential bias in random sampling for holdback in training sets, we iterated each model across 100 randomized, sample training and testing sets-yielding 24,700 individual ANNs. The size of the analyzed dataset and iterative generation of ANNs represents the largest and most thorough investigation of predictive models for PTM functionality to date. Comparison of input layer combinations allows us to quantify ANN performance with a high degree of confidence and subsequently select a top-ranked, robust fit model which highlights 3,687 MAPs, including 10,933 PTMs with a high

  10. Systematic analysis of non-structural protein features for the prediction of PTM function potential by artificial neural networks

    PubMed Central

    2017-01-01

    Post-translational modifications (PTMs) provide an extensible framework for regulation of protein behavior beyond the diversity represented within the genome alone. While the rate of identification of PTMs has rapidly increased in recent years, our knowledge of PTM functionality encompasses less than 5% of this data. We previously developed SAPH-ire (Structural Analysis of PTM Hotspots) for the prioritization of eukaryotic PTMs based on function potential of discrete modified alignment positions (MAPs) in a set of 8 protein families. A proteome-wide expansion of the dataset to all families of PTM-bearing, eukaryotic proteins with a representational crystal structure and the application of artificial neural network (ANN) models demonstrated the broader applicability of this approach. Although structural features of proteins have been repeatedly demonstrated to be predictive of PTM functionality, the availability of adequately resolved 3D structures in the Protein Data Bank (PDB) limits the scope of these methods. In order to bridge this gap and capture the larger set of PTM-bearing proteins without an available, homologous structure, we explored all available MAP features as ANN inputs to identify predictive models that do not rely on 3D protein structural data. This systematic, algorithmic approach explores 8 available input features in exhaustive combinations (247 models; size 2–8). To control for potential bias in random sampling for holdback in training sets, we iterated each model across 100 randomized, sample training and testing sets—yielding 24,700 individual ANNs. The size of the analyzed dataset and iterative generation of ANNs represents the largest and most thorough investigation of predictive models for PTM functionality to date. Comparison of input layer combinations allows us to quantify ANN performance with a high degree of confidence and subsequently select a top-ranked, robust fit model which highlights 3,687 MAPs, including 10,933 PTMs with a

  11. One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features

    DOEpatents

    Tsapstsis, Michael; Zhang, Xueyi

    2015-11-17

    A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.

  12. Design Features and Initial RF Performance of a Gradient Hardened 17 GHz TW Linac Structure

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    2009-01-22

    To avoid surface erosion damage and to assist in studying RF breakdown thresholds in 17 GHz TW linac structures, a gradient hardened structure has been fabricated with high temperature brazed and machined stainless steel surfaces located in the peak E-field region of the beam apertures and the peak H-field regions of the input coupler cavity. The microwave design parameters and physical dimensions of this 22 cavity, 120 degree phase advance structure were chosen to allow the high gradient performance to be compared against a similar design all-copper structure that has been tested in a dual ring, power recirculating amplifier system. The final design parameters of the gradient hardened structure are discussed; the influence of stainless steel RF losses on the power buildup of the resonant ring and on the structure gradient distribution are described; waveforms are shown of the unique ability of the power amplifier to rapidly quench RF breakdown discharges in the linac structure by automatically sensing and redirecting the RF source power to a matched load; and preliminary test results during high power RF processing of the gradient hardened linac structure are presented.

  13. Structural features of macrocyclic cobalt complexes - catalysts of chain transfer to a monomer in radical polymerization

    SciTech Connect

    Gridnev, A.A.; Lampeka, Ya.D.; Smirnov, B.R.; Yatsimirskii, K.B.

    1987-11-01

    Data are given on the catalytic activity of a series of cobalt coordination compounds with macrocyclic and acyclic ligsnds of different structures in radical polymerization reactions of methacrylic monomers. The influence of various factors (especially the structure of the ligand) on the manifestation of catalytic properties of the compounds studied is discussed.

  14. COSMO-DFTr study of cellulosic fragments: structural features, relative energy, and hydration energies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of cellulosic fragments by DFTr is a continuation of our efforts to produce quality structural data that will be valuable to those working in the field of cellulose structure and enzymatic degradation. Using a reduced basis set and density functional DFTr(B3LYP), the time and computer dem...

  15. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus

    PubMed Central

    Eyal, Zohar; Matzov, Donna; Krupkin, Miri; Wekselman, Itai; Paukner, Susanne; Zimmerman, Ella; Rozenberg, Haim; Bashan, Anat; Yonath, Ada

    2015-01-01

    The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus. PMID:26464510

  16. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus.

    PubMed

    Eyal, Zohar; Matzov, Donna; Krupkin, Miri; Wekselman, Itai; Paukner, Susanne; Zimmerman, Ella; Rozenberg, Haim; Bashan, Anat; Yonath, Ada

    2015-10-27

    The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus.

  17. Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus.

    PubMed

    Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde

    2010-11-01

    Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.

  18. Investigation of the role of template features on the electrically induced structure formation (EISF) for a faithful duplication.

    PubMed

    Tian, Hongmiao; Shao, Jinyou; Chen, Xiaoliang; Jiang, Wei; Wang, Li; Ding, Yucheng

    2017-03-17

    Electrically induced structure formation (EISF), as a physical approach to fabricate micro/nano-structures, has attracted much attention because of the simple process, low cost, high efficiency and wide applications on electronics, microfluidics, and so forth. Hitherto, the influence of some process parameters, such as voltage, air gap, film thickness, polymer properties, on the polymeric behavior and the structure formation has been explored, neglecting the effects of the template features, which affect the polymer deformation. Especially for the conductive protrusions directly contacting the polymer, the phenomenon of electric breakdown may occur, leading to a failure of structure formation. The limitation of the research on the template features triggers the necessity to study its influence for a faithful deformation. In this paper, three types of patterned template are studied based on the electric field at the air-polymer interface, consisting of completely conductive template, partially conductive template and dielectric template. Comprehensive consideration of the electric intensity for a sufficient driving pressure and the leaky current for preventing damaging the polymer, some guiding opinions on the template material and geometry can be provided to design the patterned template for the EISF process with a purpose for a faithful structure. This article is protected by copyright. All rights reserved.

  19. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    NASA Astrophysics Data System (ADS)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  20. Phase behavior and hydrated solid structure in lysophospholipid/long-chain alcohol/water system and effect of cholesterol addition.

    PubMed

    Konno, Yoshikazu; Naito, Noboru; Yoshimura, Akio; Aramaki, Kenji

    2010-01-01

    Phase behavior in lysophospholipid/long-chain alcohol/water system at 80°C was investigated using hexanol and oleyl alcohol as the long-chain alcohol. Similarly to hydrophilic surfactant, a micellar phase in a lysophospholipid/water system transitioned to a lamellar liquid-crystalline phase by the addition of long-chain alcohol. In the oleyl alcohol system the lamellar liquid-crystalline phase was observed in wider region compared to the hexanol system. The effect of cholesterol addition on the phase behavior was also studied. The region of liquid-crystalline phase and (reverse micellar + liquid-crystalline + water) phase shifted towards higher lysophospholipid concentrations. The structure of hydrated solid as well as the transition between lamellar liquid-crystalline phase and hydrated solid was analyzed by X-ray scattering measurement and differential scanning calorimetry measurement. It was revealed that the hydrated solid was α-type crystals with lamellar structure. The hydrated solid (gel)-liquid crystal transition temperature gradually decreased with increasing oleyl alcohol concentration and the decrement was enhanced by the addition of cholesterol.

  1. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 Å resolution

    PubMed Central

    CORRELL, CARL C.; SWINGER, KERREN

    2003-01-01

    GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 Å resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48°. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature. PMID:12592009

  2. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 A resolution.

    PubMed

    Correll, Carl C; Swinger, Kerren

    2003-03-01

    GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.

  3. An additional S-shaped structure for sensitivity improvement of coaxial probe for permittivity determination of low loss materials

    NASA Astrophysics Data System (ADS)

    Jiao, Xingmin; Jin, Wei; Yang, Xiaoqing

    2015-05-01

    Permittivity measurement of materials is important in microwave chemistry, microwave material processing and microwave heating. The open-ended coaxial line method is one of the most popular and effective means for permittivity measurement. However, the conventional coaxial probe has difficulty in distinguishing small permittivity variations for low loss media. In this paper an additional S-shaped structure is proposed for sensitivity improvement of a coaxial probe for permittivity determination of low loss materials at 2.45 GHz. The small permittivity variation can be distinguished due to field enhancement generated by the additional S-shaped structure. We studied the variation of reflection coefficient amplitude for three kinds of samples with different moisture content, within the probe at different insertion depths. We find that the conventional coaxial probe cannot distinguish small permittivity variations until the moisture content of materials reaches 3%. Meanwhile, the probe with the S-shaped structure can detect such small permittivity variations when the moisture content of samples changes by only 1%. The experimental results demonstrate that the new probe proposed in this paper is reliable and feasible.

  4. Structural Feature Ions for Distinguishing N- and O-Linked Glycan Isomers by LC-ESI-IT MS/MS

    NASA Astrophysics Data System (ADS)

    Everest-Dass, Arun V.; Abrahams, Jodie L.; Kolarich, Daniel; Packer, Nicolle H.; Campbell, Matthew P.

    2013-06-01

    Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure-function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.

  5. Features of electromagnetic radiation time-and-frequency fluctuation intensity distributions from human brain structures.

    PubMed

    Kublanov, V S; Gasilov, V L; Kazakov, Y E

    2000-01-01

    Time-and-frequency fluctuation intensity distributions' analysis is made of the electromagnetic radiation obtained from deep human brain structures. The role of monitoring the distribution changes due to various cerebral circulation disorders is explained.

  6. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio.

    PubMed

    Zhu, Jie; Zhang, Shuyan; Zhang, Binjia; Qiao, Dongling; Pu, Huayin; Liu, Siyuan; Li, Lin

    2017-04-01

    This work concerned the effects of amylose/amylopectin ratio on the structure and thermal stability of propionylated starches with high degree of substitution (DS). Four starches with different amylose content were used to obtain propionylated starches. Acylation partly disrupted granule morphology of native starches, and the imperfection and porous structures of starch granule were intensified along with the increased amylose content. It was noted that the crystalline structure of starch was destroyed and thus intense acylation occurred in both amorphous and crystalline regions. The acylated starch with high-amylose content displayed more ordered region compared to low-amylose starch. Acylation enhanced the thermal stability of starch, and this effect became more evident as the amylose content increased. Thus, the amylose/amylopectin ratio has been confirmed capable of affecting the structure and thermal behaviors of hydrophobic propionylated starch, which is of value for the design of starchy materials with tailored thermal stability.

  7. Structural and functional features of a collagen-binding matrix protein from the mussel byssus.

    PubMed

    Suhre, Michael H; Gertz, Melanie; Steegborn, Clemens; Scheibel, Thomas

    2014-02-26

    Blue mussels adhere to surfaces by the byssus, a holdfast structure composed of individual threads representing a collagen fibre reinforced composite. Here, we present the crystal structure and function of one of its matrix proteins, the proximal thread matrix protein 1, which is present in the proximal section of the byssus. The structure reveals two von Willebrand factor type A domains linked by a two-β-stranded linker yielding a novel structural arrangement. In vitro, the protein binds heterologous collagens with high affinity and affects collagen assembly, morphology and arrangement of its fibrils. By providing charged surface clusters as well as insufficiently coordinated metal ions, the proximal thread matrix protein 1 might interconnect other byssal proteins and thereby contribute to the integrity of the byssal threads in vivo. Moreover, the protein could be used for adjusting the mechanical properties of collagen materials, a function likely important in the natural byssus.

  8. On the gauge features of gravity on a Lie algebroid structure

    SciTech Connect

    Fabi, S. Harms, B. Hou, S.

    2014-03-15

    We present the geometric formulation of gravity based on the mathematical structure of a Lie Algebroid. We show that this framework provides the geometrical setting to describe the gauge propriety of gravity.

  9. Preflame zone structure and main features of fuel conversion in atmospheric pressure premixed laminar hydrocarbon flames

    SciTech Connect

    Ksandopulo, G.I.

    1995-08-25

    This report describes the structure study of the premixed hydrocarbon-oxidizer Bunsen flames burning at the atmospheric pressure and also the ones with some inhibitors added. Studies were performed on hexane, propane, methane, acetylene, and hexene flames.

  10. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features.

    PubMed

    Miller, Derick C; Thapa, Anil; Haberstroh, Karen M; Webster, Thomas J

    2004-01-01

    Biomaterials that successfully integrate into surrounding tissue should match not only the tissue's mechanical properties, but also its topography. The cellular response to a biomaterial may be enhanced in synthetic polymer formulations by mimicking the surface roughness created by the associated nano-structured extra-cellular matrix components of natural tissue. As a first step towards this endeavor, the goal of the present in vitro study was to use these design parameters to develop a synthetic, nano-structured, polymeric biomaterial that promotes cell adhesion and growth for vascular applications. In a novel manner, poly(lactic-co-glycolic acid) (PLGA) (50/50wt% mix) was synthesized to possess a range (from micron to nanometer) of surface features. Reduction of surface features was accomplished by treating conventional PLGA with various concentrations of NaOH for select periods of time. Results from cell experiments indicated that, compared to conventional PLGA, NaOH treated PLGA enhanced vascular smooth muscle cell adhesion and proliferation. However, PLGA prepared by soaking in NaOH decreased endothelial cell adhesion and proliferation compared to conventional PLGA. After further investigation, this finding was determined to be a result of chemical (and not topographical) changes during polymer synthesis. Surface chemistry effects were removed while retaining nano-structured topography by using polymer/elastomer casting methods. Results demonstrated that endothelial and smooth muscle cell densities increased on nano-structured cast PLGA. For these reasons, the present in vitro study provided the first evidence that nano-structured surface features can significantly improve vascular cell densities; such design criteria can be used in the synthesis of the next-generation of more successful tissue-engineered vascular grafts.

  11. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study.

    PubMed

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-02-14

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  12. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    SciTech Connect

    Raguvarun, K. Balasubramaniam, Krishnan Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  13. Structural features of transposed human VK genes and implications for the mechanism of their transpositions.

    PubMed

    Borden, P; Jaenichen, R; Zachau, H G

    1990-04-25

    The genes encoding the variable, joining and constant regions of human immunoglobulin light chains have been localized to the short arm of chromosome 2. However, several VK genes lie outside of the locus: a single copy cluster of five VK genes is located on chromosome 22; an isolated but amplified VkI gene is found on chromosome 1; and several isolated VkI genes are on as-yet-unidentified chromosomes other than chromosome 2. Vk genes not contained within the kappa locus are termed orphons. We have attempted to gain insight into the mechanism of transposition of both the chromosome 22 cluster and the several amplified VkI genes by searching in the kappa locus for a parent copy of the former, and by analyzing the junctions between transposed VKI-containing segments and adjacent non-amplified regions. The chromosome 22 orphon cluster must have been non-duplicatively transposed. Sequence features at the junctions of this and other orphon regions are direct and inverted repeats, and, in one case, an Alu repeat. These unusual features may have predisposed the orphon regions to transposition by serving as target sites for enzymes involved in recombination.

  14. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S.

    2006-12-01

    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)7. For H+(H2O)7 the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Møller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)7 [though nearly isoenergetic to the 3D structure for D+(D2O)7]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.

  15. Research Summary of an Additive Manufacturing Technology for the Fabrication of 3D Composites with Tailored Internal Structure

    NASA Astrophysics Data System (ADS)

    Holmes, Larry R.; Riddick, Jaret C.

    2014-01-01

    A novel additive manufacturing technology is used to create micro-composites, which can be tailored for specific end-use applications. The Field-Aided Laminar Composite (FALCom) process uses specifically focused electric fields to align nano- to micro-sized particles into chain-like structures, which are referred to as pseudo-fibers. These pseudo-fibers are then immediately frozen into place by incident ultraviolet radiation on the photopolymer matrix. The pseudo-fibers are arranged by design, and they are used to create three-dimensional composite structures. Multiple filler materials have been evaluated for use in the FALCom system; however, this report describes aluminum micro-particles that are aligned and oriented in an acrylic photopolymer matrix. A description of the technology and a review of experimental processing are shown, and conclusions, as well as, future work are discussed.

  16. Community-Based Health Education Programs Designed to Improve Clinical Measures Are Unlikely to Reduce Short-Term Costs or Utilization Without Additional Features Targeting These Outcomes.

    PubMed

    Burton, Joe; Eggleston, Barry; Brenner, Jeffrey; Truchil, Aaron; Zulkiewicz, Brittany A; Lewis, Megan A

    2016-06-07

    Stakeholders often expect programs for persons with chronic conditions to "bend the cost curve." This study assessed whether a diabetes self-management education (DSME) program offered as part of a multicomponent initiative could affect emergency department (ED) visits, hospital stays, and the associated costs for an underserved population in addition to the clinical indicators that DSME programs attempt to improve. The program was implemented in Camden, New Jersey, by the Camden Coalition of Healthcare Providers to address disparities in diabetes care. Data used are from medical records and from patient-level information about hospital services from Camden's hospitals. Using multivariate regression models to control for individual characteristics, changes in utilization over time and changes relative to 2 comparison groups were assessed. No reductions in ED visits, inpatient stays, or costs for participants were found over time or relative to the comparison groups. High utilization rates and costs for diabetes are associated with longer term disease progression and its sequelae; thus, DSME or peer support may not affect these in the near term. Some clinical indicators improved among participants, and these might lead to fewer costly adverse health events in the future. DSME deployed at the community level, without explicit segmentation and targeting of high health care utilizers or without components designed to affect costs and utilization, should not be expected to reduce short-term medical needs for participating individuals or care-seeking behaviors such that utilization is reduced. Stakeholders must include financial outcomes in a program's design if those outcomes are to improve. (Population Health Management 20XX;XX:XXX-XXX).

  17. The influence of contemporary and historic landscape features on the genetic structure of the sand dune endemic, Cirsium pitcheri (Asteraceae)

    PubMed Central

    Fant, J B; Havens, K; Keller, J M; Radosavljevic, A; Yates, E D

    2014-01-01

    Narrow endemics are at risk from climate change because of their restricted habitat preferences, lower colonization ability and dispersal distances. Landscape genetics combines new tools and analyses that allow us to test how both past and present landscape features have facilitated or hindered previous range expansion and local migration patterns, and thereby identifying potential limitations to future range shifts. We have compared current and historic habitat corridors in Cirsium pitcheri, an endemic of the linear dune ecosystem of the Great Lakes, to determine the relative contributions of contemporary migration and post-glacial range expansion on genetic structure. We used seven microsatellite loci to characterize the genetic structure for 24 populations of Cirsium pitcheri, spanning the center to periphery of the range. We tested genetic distance against different measures of geographic distance and landscape permeability, based on contemporary and historic landscape features. We found moderate genetic structure (Fst=0.14), and a north–south pattern to the distribution of genetic diversity and inbreeding, with northern populations having the highest diversity and lowest levels of inbreeding. High allelic diversity, small average pairwise distances and mixed genetic clusters identified in Structure suggest that populations in the center of the range represent the point of entry to the Lake Michigan and a refugium of diversity for this species. A strong association between genetic distances and lake-level changes suggests that historic lake fluctuations best explain the broad geographic patterns, and sandy habitat best explains local patterns of movement. PMID:24398882

  18. Structural and functional features of the NAD(P) dependent Gfo/Idh/MocA protein family oxidoreductases.

    PubMed

    Taberman, Helena; Parkkinen, Tarja; Rouvinen, Juha

    2016-04-01

    The Gfo/Idh/MocA protein family contains a number of different proteins, which almost exclusively consist of NAD(P)-dependent oxidoreductases that have a diverse set of substrates, typically pyranoses. In this study, to clarify common structural features that would contribute to their function, the available crystal structures of the members of this family have been analyzed. Despite a very low sequence identity, the central features of the three-dimensional structures of the proteins are surprisingly similar. The members of the protein family have a two-domain structure consisting of a N-terminal nucleotide-binding domain and a C-terminal α/β-domain. The C-terminal domain contributes to the substrate binding and catalysis, and contains a βα-motif with a central α-helix carrying common essential amino acid residues. The β-sheet of the α/β-domain contributes to the oligomerization in most of the proteins in the family.

  19. The influence of contemporary and historic landscape features on the genetic structure of the sand dune endemic, Cirsium pitcheri (Asteraceae).

    PubMed

    Fant, J B; Havens, K; Keller, J M; Radosavljevic, A; Yates, E D

    2014-05-01

    Narrow endemics are at risk from climate change because of their restricted habitat preferences, lower colonization ability and dispersal distances. Landscape genetics combines new tools and analyses that allow us to test how both past and present landscape features have facilitated or hindered previous range expansion and local migration patterns, and thereby identifying potential limitations to future range shifts. We have compared current and historic habitat corridors in Cirsium pitcheri, an endemic of the linear dune ecosystem of the Great Lakes, to determine the relative contributions of contemporary migration and post-glacial range expansion on genetic structure. We used seven microsatellite loci to characterize the genetic structure for 24 populations of Cirsium pitcheri, spanning the center to periphery of the range. We tested genetic distance against different measures of geographic distance and landscape permeability, based on contemporary and historic landscape features. We found moderate genetic structure (Fst=0.14), and a north-south pattern to the distribution of genetic diversity and inbreeding, with northern populations having the highest diversity and lowest levels of inbreeding. High allelic diversity, small average pairwise distances and mixed genetic clusters identified in Structure suggest that populations in the center of the range represent the point of entry to the Lake Michigan and a refugium of diversity for this species. A strong association between genetic distances and lake-level changes suggests that historic lake fluctuations best explain the broad geographic patterns, and sandy habitat best explains local patterns of movement.

  20. Contrasting effects of landscape features on genetic structure in different geographic regions in the ornate dragon lizard, Ctenophorus ornatus.

    PubMed

    Levy, Esther; Tomkins, Joseph L; Lebas, Natasha R; Kennington, W Jason

    2013-08-01

    Habitat fragmentation can have profound effects on the distribution of genetic variation within and between populations. Previously, we showed that in the ornate dragon lizard, Ctenophorus ornatus, lizards residing on outcrops that are separated by cleared agricultural land are significantly more isolated and hold less genetic variation than lizards residing on neighbouring outcrops connected by undisturbed native vegetation. Here, we extend the fine-scale study to examine the pattern of genetic variation and population structure across the species' range. Using a landscape genetics approach, we test whether land clearing for agricultural purposes has affected the population structure of the ornate dragon lizard. We found significant genetic differentiation between outcrop populations (FST  = 0.12), as well as isolation by distance within each geographic region. In support of our previous study, land clearing was associated with higher genetic divergences between outcrops and lower genetic variation within outcrops, but only in the region that had been exposed to intense agriculture for the longest period of time. No other landscape features influenced population structure in any geographic region. These results show that the effects of landscape features can vary across species' ranges and suggest there may be a temporal lag in response to contemporary changes in land use. These findings therefore highlight the need for caution when assessing the impact of contemporary land use practices on genetic variation and population structure.

  1. NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features.

    PubMed

    Ilc, Gregor; Giachin, Gabriele; Jaremko, Mariusz; Jaremko, Łukasz; Benetti, Federico; Plavec, Janez; Zhukov, Igor; Legname, Giuseppe

    2010-07-22

    Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrP(C)) conformer, denoted as infectious scrapie isoform or PrP(Sc). In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrP(Sc) in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90-124) and a globular domain (residues 125-231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the beta(2)-alpha(2) loop region. This structure might provide new insights into the early events of conformational transition of PrP(C) into PrP(Sc). Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of beta(2)-alpha(2) loop and alpha(3) helix.

  2. Nitrogen addition and harvest frequency rather than initial plant species composition determine vertical structure and light interception in grasslands.

    PubMed

    Petersen, Ute; Isselstein, Johannes

    2015-07-21

    In biodiversity experiments based on seeded experimental communities, species richness and species composition exert a strong influence on canopy structure and can lead to an improved use of aboveground resources. In this study, we want to explore whether these findings are applicable to agriculturally managed permanent grassland. Vertical layered profiles of biomass, leaf area (LA) and light intensity were measured in a removal-type biodiversity experiment (GrassMan) to compare the canopy structure in grassland vegetation of different plant species composition (called sward types). Additionally, the altered sward types were subjected to four different management regimes by a combination of the factors fertilization (unfertilized, NPK fertilized) and cutting frequency (one late cut or three cuts). In spite of large compositional differences (ratio grasses : non-leguminous forbs : leguminous forbs ranging from 93 : 7 : 0 to 39 : 52 : 9), the vegetation of the same management regime hardly differed in its canopy structure, whereas the different management regimes led to distinct vertical profiles in the vegetation. However, the allocation of biomass in response to cutting and fertilization differed among the sward types. Vegetation dominated by grasses was denser and had more LA when fertilized compared with vegetation rich in dicots which merely grew taller. In functionally more diverse vegetation, light interception was not increased compared with vegetation consisting of more than 90 % of grasses in terms of biomass. Management had a much stronger influence on structure and light interception than plant species composition in this grassland experiment.

  3. Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive

    NASA Astrophysics Data System (ADS)

    Wang, Xianshu; Zheng, Xiongwen; Liao, Youhao; Huang, Qiming; Xing, Lidan; Xu, Mengqing; Li, Weishan

    2017-01-01

    The specific capacity of lithium-ion battery with lithium cobalt oxide as cathode depends on the upper limitation voltage for charge/discharge cycling, but this oxide tends to be destructed structurally when it is cycled in carbonate-based electrolyte under high voltage. We report a novel electrolyte additive, fumaronitrile (FN, CNsbnd CHdbnd CHsbnd CN), which can maintain the structural integrity of lithium cobalt oxide. Electrochemical measurements indicate that lithium cobalt oxide exhibits poor cyclic stability when it is cycled under 4.5 V (vs. Li/Li+) and the charged cathode suffers serious self-discharge in a base electrolyte, 1.0 mol L-1 LiPF6 in EC/EMC/DEC (3:5:2, by weight). These issues can be overcome effectively by adding 0.5% FN into the base electrolyte. Physical and chemical characterizations demonstrate that the poor cyclic stability and self-discharge of lithium cobalt oxide result from its structural destruction caused by HF formed from electrolyte decomposition, and FN yields a protective cathode interphase film which maintains the structural integrity of lithium cobalt oxide.

  4. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces.

    PubMed

    Zhuang, X-M; Zhou, B; Ouyang, J-L; Sun, H-P; Wu, Y-L; Liu, Q; Deng, F-L

    2014-08-01

    Micro/nanotopographical modifications on titanium surfaces constitute a new process to increase osteoblast response to enhance bone formation. In this study, we utilized alkali heat treatment at high (SB-AH1) and low temperatures (SB-AH2) to nano-modify sandblasted titanium with microtopographical surfaces. Then, we evaluated the surface properties, biocompatibility and osteogenic capability of SB-AH1 and SB-AH2 in vitro and in vivo, and compared these with conventional sandblast-acid etching (SLA) and Ti control surfaces. SB-AH1 and SB-AH2 surfaces exhibited micro/nanotopographical modifications of nano-needle structures and nano-porous network layers, respectively, compared with the sole microtopographical surface of macro and micro pits on the SLA surface and the relatively smooth surface on the Ti control. SB-AH1 and SB-AH2 showed different roughness and elemental components, but similar wettability. MC3T3-E1 preosteoblasts anchored closely on the nanostructures of SB-AH1 and SB-AH2 surfaces, and these two surfaces more significantly enhanced cell proliferation and alkaline phosphatase (ALP) activity than others, while the SB-AH2 surface exhibited better cell proliferation and higher ALP activity than SB-AH1. All four groups of titanium domes with self-tapping screws were implanted in rabbit calvarial bone models, and these indicated that SB-AH1 and SB-AH2 surfaces achieved better peri-implant bone formation and implant stability, while the SB-AH2 surface achieved the best percentage of bone-implant contact (BIC%). Our study demonstrated that the micro/nanotopographical surface generated by sandblasting and alkali heat treatment significantly enhanced preosteoblast proliferation, ALP activity and bone formation in vitro and in vivo, and nano-porous network topography may further induce better preosteoblast proliferation, ALP activity and BIC%.

  5. Basaltic Ring Structures as an Analog for Ring Features in Athabasca Valles, Mars

    NASA Technical Reports Server (NTRS)

    Jaeger, W. L.; Keszthelyi, L. P.; Burr, D. M.; Emery, J. P.; Baker, V. R.; McEwen, A. S.; Miyamoto, H.

    2005-01-01

    Basaltic ring structures (BRSs) are enigmatic, quasi-circular landforms in eastern Washington State that were first recognized in 1965. They remained a subject of geologic scrutiny through the 1970 s and subsequently faded from the spotlight, but recent Mars Orbiter Camera (MOC) images showing morphologically similar structures in Athabasca Valles, Mars, have sparked renewed interest in BRSs. The only known BRSs occur in the Channeled Scabland, a region where catastrophic Pleistocene floods from glacial Lake Missoula eroded into the Miocene flood basalts of the Columbia Plateau. The geologic setting of the martian ring structures (MRSs) is similar; Athabasca Valles is a young channel system that formed when catastrophic aqueous floods carved into a volcanic substrate. This study investigates the formation of terrestrial BRSs and examines the extent to which they are appropriate analogs for the MRSs in Athabasca Valles.

  6. Flynn Creek Impact Structure: New Insights from Breccias, Melt Features, Shatter Cones, and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Evenick, J. C.; Lee, P.; Deane, B.

    2004-01-01

    The Flynn Creek impact structure is located in Tennessee, USA (36 deg.17 min.N, 85 deg.40 min.W). The structure was first mapped as a crypto-volcanic by Wilson and Born in 1936 [1]. Although they did not properly identify the stratigraphy within the crater or the causal mechanism, they did correctly define the horizontal extent of the crater. More detailed surface and subsurface research by Roddy (1979) accurately described the crater as being an impact structure with a diameter of 3.8 km. It formed around 360 Ma, which corresponds to the interval between the deposition of the Nashville Group and the Chattanooga Shale. Although there is limited rock outcrop in the area, there are exposed surface faults, folds, and large outcrops of impact breccia within the crater.

  7. Neutral and charged gallium clusters: structures, physical properties and implications for the melting features.

    PubMed

    Núñez, Sara; López, José M; Aguado, Andrés

    2012-10-21

    We report the putative Global Minimum (GM) structures and electronic properties of Ga(N)(+), Ga(N) and Ga(N)(-) clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of Ga(N)(+) and with photoelectron spectra of Ga(N)(-). The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for Ga(N)(+) clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from "non-melter" to "magic-melter" behaviour, experimentally observed between Ga(30)(+) and Ga(31)(+), is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims.

  8. Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that may Discriminate Substrates During DNA Repair

    PubMed Central

    Das, Debanu; Moiani, Davide; Axelrod, Herbert L.; Miller, Mitchell D.; McMullan, Daniel; Jin, Kevin K.; Abdubek, Polat; Astakhova, Tamara; Burra, Prasad; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Tainer, John A.; Wilson, Ian A.

    2010-01-01

    Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks (DSBs). As x-ray structural information has only been available for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is the Mre11 endo/exonuclease from T. maritima (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only ∼20%. However, they differ substantially in their DNA specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA specificity domain are not. The structural differences likely affect how Mre11s from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on ssDNA and dsDNA substrates, respectively. PMID:20122942

  9. Structure-function features of a Mycoplasma glycolipid synthase derived from structural data integration, molecular simulations, and mutational analysis.

    PubMed

    Romero-García, Javier; Francisco, Carles; Biarnés, Xevi; Planas, Antoni

    2013-01-01

    Glycoglycerolipids are structural components of mycoplasma membranes with a fundamental role in membrane properties and stability. Their biosynthesis is mediated by glycosyltransferases (GT) that catalyze the transfer of glycosyl units from a sugar nucleotide donor to diacylglycerol. The essential function of glycolipid synthases in mycoplasma viability, and the absence of glycoglycerolipids in animal host cells make these GT enzymes a target for drug discovery by designing specific inhibitors. However, rational drug design has been hampered by the lack of structural information for any mycoplasma GT. Most of the annotated GTs in pathogenic mycoplasmas belong to family GT2. We had previously shown that MG517 in Mycoplasma genitalium is a GT-A family GT2 membrane-associated glycolipid synthase. We present here a series of structural models of MG517 obtained by homology modeling following a multiple-template approach. The models have been validated by mutational analysis and refined by long scale molecular dynamics simulations. Based on the models, key structure-function relationships have been identified: The N-terminal GT domain has a GT-A topology that includes a non-conserved variable region involved in acceptor substrate binding. Glu193 is proposed as the catalytic base in the GT mechanism, and Asp40, Tyr126, Tyr169, Ile170 and Tyr218 define the substrates binding site. Mutation Y169F increases the enzyme activity and significantly alters the processivity (or sequential transferase activity) of the enzyme. This is the first structural model of a GT-A glycoglycerolipid synthase and provides preliminary insights into structure and function relationships in this family of enzymes.

  10. Structure-Function Features of a Mycoplasma Glycolipid Synthase Derived from Structural Data Integration, Molecular Simulations, and Mutational Analysis

    PubMed Central

    Romero-García, Javier; Francisco, Carles; Biarnés, Xevi; Planas, Antoni

    2013-01-01

    Glycoglycerolipids are structural components of mycoplasma membranes with a fundamental role in membrane properties and stability. Their biosynthesis is mediated by glycosyltransferases (GT) that catalyze the transfer of glycosyl units from a sugar nucleotide donor to diacylglycerol. The essential function of glycolipid synthases in mycoplasma viability, and the absence of glycoglycerolipids in animal host cells make these GT enzymes a target for drug discovery by designing specific inhibitors. However, rational drug design has been hampered by the lack of structural information for any mycoplasma GT. Most of the annotated GTs in pathogenic mycoplasmas belong to family GT2. We had previously shown that MG517 in Mycoplasma genitalium is a GT-A family GT2 membrane-associated glycolipid synthase. We present here a series of structural models of MG517 obtained by homology modeling following a multiple-template approach. The models have been validated by mutational analysis and refined by long scale molecular dynamics simulations. Based on the models, key structure-function relationships have been identified: The N-terminal GT domain has a GT-A topology that includes a non-conserved variable region involved in acceptor substrate binding. Glu193 is proposed as the catalytic base in the GT mechanism, and Asp40, Tyr126, Tyr169, Ile170 and Tyr218 define the substrates binding site. Mutation Y169F increases the enzyme activity and significantly alters the processivity (or sequential transferase activity) of the enzyme. This is the first structural model of a GT-A glycoglycerolipid synthase and provides preliminary insights into structure and function relationships in this family of enzymes. PMID:24312618

  11. Features of the formation of structure and properties of transition metals boridonitrides composite films

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander A.; Yunda, Andrey N.; Kołtunowicz, Tomasz N.

    2016-12-01

    Researches of formation features of nanostructured film condensates deposited by reactive magnetron (HF and DC) sputtering of transition metals diborides targets was analyzed. Amorphous-crystalline composite film (MeB2 + BN), consisting of grains of nanocrystalline phase MeB2 and amorphous graphite-like phase BN filling intergranular space, is formed at reactive sputtering in (Ar + N2) mixture. Investigations of composition and physico-mechanical properties of transition metals boridenitrides composite films were carried out. The amount of phase MeB2 decreases, and phase BN enlarges with an increase in percentage content of nitrogen in a mixture, that leads to hardness and elastic modulus reduction respectively and to elasticity increase of boridonitrides thin films compared with diborides films. It is shown that viscoelasticity of Me-B-N thin films is caused by the presence of amorphous boron nitride phase.

  12. Structural features of the L-argininamide-binding DNA aptamer studied with ESI-FTMS.

    PubMed

    Guo, Xinhua; Liu, Zhiqiang; Liu, Shuying; Bentzley, Catherine M; Bruist, Michael F

    2006-10-15

    The 24-mer DNA aptamer of Harada and Frankel (Harada, K.; Frankel, A. D. EMBO J. 1995, 14, 5798-5811) that binds L-argininamide (L-Arm) was studied by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). This DNA folds into a stem and loop such that the loop is able to engulf L-Arm. As controls, two derivatives of the same base composition, one with the same stem but a scrambled loop and the other with no ability to form a secondary structure, were studied. The two DNAs that could fold into stem-loop structures showed a more negatively charged distribution of ions than the linear control. This tendency was preserved in the presence of ligand; complexes expected to have more secondary structure had ions with more negative charges. Distinct species corresponding to no, one, and two bound L-Arm molecules were observed for each DNA. The fractional peak intensities were fit to a straightforward binding model and binding constants were obtained. Thus, ESI-FTMS can provide both qualitative and quantitative data regarding the structure of DNA and its interactions with noncovalent ligands.

  13. Spectral and structural features of Lu1 - x RE x BO3 compounds

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kedrov, V. V.; Kiselev, A. P.; Fursova, T. N.; Shmyt'ko, I. M.

    2015-08-01

    The luminescence spectra, luminescence excitation spectra, IR absorption spectra, and crystal structure of orthoborates Lu1 - x RE x BO3 ( RE = Eu, Gd, Tb, Y, Dy) have been investigated. It has been found that the solid solution consisting of a LuBO3 orthoborate, which has two stable structural modifications (calcite and vaterite), and an REBO3 orthoborate, which has one structural modification (vaterite), crystallizes only in the vaterite structure when the concentration of a rare-earth ion substituting for lutetium exceeds 15-20 at %. The investigation of the photoluminescence spectra has demonstrated that, for rare-earth ions Lu3+, Eu3+, Y3+, and Gd3+ in the vaterite modification of Lu1 - x RE x BO3 orthoborates, there are at least two positions that are not equivalent in the symmetry of the local environment. It has been established that the maximum intensity of the luminescence of the vaterite modification of Lu1 - x Tb x BO3 compounds synthesized at 970°C, which is observed at a terbium concentration of 15 at %, is several times higher than the maximum intensity of the luminescence of the calcite modification.

  14. Features of structure and phase transitions in pure uranium and U-Mo alloys: atomistic simulation

    NASA Astrophysics Data System (ADS)

    Kolotova, L. N.; Kuksin, A. Yu; Smirnova, D. E.; Starikov, S. V.; Tseplyaev, V. I.

    2016-11-01

    We study structural properties of cubic and tetragonal phases of U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. For pure uranium and U-Mo alloys at low temperatures we observe body-centered tetragonal (bct) structure, which is similar to the metastable γ°-phase found in the experiments. At higher temperatures bct structure transforms to a quasi body-centered cubic (q-bcc) phase that exhibits cubic symmetry just on the scale of several interatomic spacings or when averaged over time. Instantaneous pair distribution function (PDF) differs from PDF for the time-averaged atomic coordinates corresponding to the bcc lattice. The local positions of uranium atoms in q-bcc lattice correspond to the bct structure, which is energetically favourable due to f