Science.gov

Sample records for additional sulfur pollutant

  1. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  2. Improved Chromatographic Techniques for Sulfur Pollutants

    NASA Technical Reports Server (NTRS)

    Hartmann, C. H.

    1971-01-01

    This paper describes several improvements in instrumental techniques for the analysis of low ppb concentrations of sulfur gases using gas chromatography (G.C.). This work has focused on the analytical problem of ambient air monitoring of the two main sulfur gas pollutants, hydrogen sulfide and sulfur dioxide. The most significant technical improvement that will be reported here is the newly developed silica gel column for ppb concentrations of the light sulfur gases (COS, H2S, CS2, SO2, CH3SH). A simplified inlet system will be described which improves reliability of the GC system. The flame photometric detector is used as the means of selectively and sensitively detecting the low concentrations of sulfur gases. Improvements will be described which have yielded better performance than previously reported for this application of the detector. Also included in this paper will be a report of field monitoring using this improved GC system. Reliability and repeatability of performance at the low ppb concentrations of sulfur gases will be demonstrated.

  3. Sulfur and nitrogen uptake by loblolly pine seedlings as influenced by nitrogen and sulfur addition

    SciTech Connect

    Kelly, J.M.; Johnson, D.W.

    1982-12-01

    The influence of increasing levels of nitrogen addition at several levels of sulfur input on nitrogen and sulfur uptake by loblolly pine seedlings was evaluated in a greenhouse study. All possible combinations on nitrogen and sulfur were incorporated into soil collected from the A horizon of a southeastern forest soil at rates of 0, 200, 500, and 1,000 ..mu..g/g of N, and 0, 14, 35, and 70 ..mu..g/g of S. Soil samples collected at the end of the study indicated that a similar amount of soil SO/sub 4/-S had been mineralized in all treatment combinations, compared to a general pattern of increasing soil nitrogen mineralization with increasing nitrogen input. Most mineralized sulfate appeared to come from nonprotein organic compounds as there was not a significant concomitant release of nitrogen. Both shoot and root biomass responded significantly to nitrogen addition, but there was no sulfur or nitrogen-sulfur interaction response. Nitrogen treatment generally increased shoot nitrogen concentration compared to a general decrease in shoot total-, sulfate-, and organically bound-sulfur. Organically bound-sulfur concentrations were 26 to 60 percent below sulfur values calculated from an S/N ratio of 0.03 on a gram atom basis. The results show that increased nitrogen addition affected both growth and sulfur status of loblolly pine seedlings, but not entirely in the manner predicted by theoretical considerations.

  4. Sulfur and nitrogen uptake by loblolly pine seedlings as influenced by nitrogen and sulfur addition

    SciTech Connect

    Kelly, J.M.; Johnson, D.W.

    1982-12-01

    The influence of increasing levels of nitrogen addition at several levels of sulfur input on nitrogen and sulfur uptake by loblolly pine seedlings was evaluated in a greenhouse study. All possible combinations of nitrogen and sulfur were incorporated into soil collected from the A horizon of a southeastern forest soil at rates of 0, 200, 500, and 1,000 ..mu..g/g of N, and 0, 14, 35, and 70 ..mu..g/g of S. Soil samples collected at the end of the study indicated that a similar amount of soil SO/sub 4/-S had been mineralized in all treatment combinations, compared to a general pattern of increasing soil nitrogen mineralization with increasing nitrogen input. Most mineralized sulfate appeared to come from nonprotein organic compounds as there was not a significant concomitant release of nitrogen. Both shoot and root biomass responded significantly to nitrogen addition, but there was no sulfur or nitrogen-sulfur interaction response. Nitrogen treatment generally increased shoot nitrogen concentration compared to a general decrease in shoot total-, sulfate-, and organically bound-sulfur. Organically bound-sulfur concentrations were 26 to 60 percent below sulfur values calculated from an S/N ratio of 0.03 on a gram atom basis. The results show that increased nitrogen addition affected both growth and sulfur status of loblolly pine seedlings, but not entirely in the manner predicted by theoretical considerations.

  5. Effects of inorganic sulfur addition on fluxes of volatile sulfur compounds in Sphagnum peatlands

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in an artificially acidified (sulfuric and nitric acids) poor fen (Mire 239) at the Experimental Lakes Area (ELA), Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen) in Barrington, NH, USA. At Mire 239, emissions of VSC's were monitored, before and after acidification, at control (unacidified) and experimental sections within two major physiographic zones of the mire (oligotrophic and minerotrophic). The experimental segments of the mire received S amendments since 1983, in amounts equivalent to the annual S deposition in the highest polluted areas of Canada and U.S. Dimethyl sulfide (DMS) was the predominant VSC released from the mire and varied largely with time and space (i.e., from 2.5 to 127 nmol/m(sup -2)h(sup -1)). Sulfur addition did not affect DMS emissions in a period of hours to a few days, although it stimulated production of DMS and MSH in the anoxic surficial regions of the peat. DMS emissions in the experimental oligotrophic segment of the mire was approximately 3-fold greater than in the control oligotrophic segment, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were approximately 8 times higher from a Sphagnum site than from a bare peat site. Fluxes of VSC's were not significantly affected by sulfate amendments at both sites, while DMS and MSH concentrations increases greatly with time in the top 10 cm of the peat column. Our data indicated that although Sphagnum is not the direct source of DMS released from Sphagnum peatlands, it might play a role in regulating DMS emissions to the atmosphere.

  6. Low level atmospheric sulfur dioxide pollution and childhood asthma

    SciTech Connect

    Tseng, R.Y.; Li, C.K. )

    1990-11-01

    Quarterly analysis (1983-1987) of childhood asthma in Hong Kong from 13,620 hospitalization episodes in relation to levels of pollutants (SO{sub 2}, NO{sub 2}, NO, O{sub 3}, TSP, and RSP) revealed a seasonal pattern of attack rates that correlates inversely with exposure to sulfur dioxide (r = -.52, P less than .05). The same cannot be found with other pollutants. Many factors may contribute to the seasonal variation of asthma attacks. We speculate that prolonged exposure (in terms of months) to low level SO{sub 2} is one factor that might induce airway inflammation and bronchial hyperreactivity and predispose to episodes of asthma.

  7. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  8. The convention on long-range transboundary air pollution`s sulfur protocol

    SciTech Connect

    Leaf, D.

    1995-12-31

    The US is a signatory to the United Nations Economic Commission for Europe`s Convention on Long-Range Transboundary Air pollution (LRTAP). The signatories to the LRTAP Convention include most European countries, as well as the US and Canada. Over the past decade two Sulfur Protocols have been negotiated under the auspices of LRTAP; both were based on acidification concerns. The first, signed in 1985, committed countries to a 30% decrease in sulfur emissions relative to a 1980 baseline. The second, signed in 1994, committed countries to a 50--80% reduction in sulfur emissions. The latest protocol was based on the effects-based concept of critical loads of sulfur for protecting ecosystems from the effects of acidification. The US did not sign either sulfur protocol, but has participated in discussions leading up to both. This paper will present a discussion of the LRTAP Convention, the two sulfur protocols, the NO{sub x} Protocol, the US-Canada relationship on acid rain, the critical loads concept, and US participation in the LRTAP process (including the relationship between the sulfur protocols and Title IV of the Clean Air Act Amendments of 1990). The focus will be on key scientific and policy issues.

  9. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOEpatents

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  10. Sources of sulfur dioxide pollution in Hong Kong

    SciTech Connect

    Tsui, Wing-Sing; Pang, Sik-Wing; Chin, H.C.P.

    1996-12-31

    Sulfur dioxide pollution problem was serious in Hong Kong before the implementation of the fuel restriction regulations in July 1990, which restricted the use of low sulfur content fossil fuels. Since then SO{sub 2} concentrations dropped drastically. There was no exceedance of the Hong Kong Air Quality Objectives (AQO) in 1991, comparing to 13 exceedance in 1989, and the Hong Kong annual average reduced from 34 {mu}g/m{sup 3} in 1989 to 21 {mu}g/m{sup 3} in 1991. However, it doesn`t mean that SO{sub 2} can be neglected. In 1993, there were two exceedances of the 1-hour AQO of 800 {mu}g/m{sup 3}, and the Hong Kong annual average increased again to 26 {mu}g/m{sup 3}. The major emission sources of SO{sub 2} in Hong Kong are the power stations, which accounted for 84% of the total 185 K tonnes of SO{sub 2} emissions in 1993. Though these stations are at the down-wind side of the territory, the potential impact should not be over looked. Results are given.

  11. Potential effects of sulfur pollutants on grape production in New York State

    SciTech Connect

    Knudson, D.A.; Viessman, S.

    1983-01-01

    This paper presents the results of a prototype analysis of sulfur pollutants on graph production in New York State. Principal grape production areas for the state are defined and predictions of sulfur dioxide concentrations associated with present and projected sources are computed. Sulfur dioxide concentrations are based on the results of a multi-source dispersion model, whereas concentrations for other pollutants are derived from observations. This information is used in conjunction with results from experiments conducted to identify threshold levels of damage and/or injury to a variety of grape species to pollutants. Determination is then made whether the subject crop is at risk from present and projected concentrations of pollutants.

  12. Potential effects of sulfur pollutants on grape production in New York State

    SciTech Connect

    Viessman, S.M.; Knudson, D.A.; Streets, D.G.

    1982-08-01

    The purpose was to design and carry out a prototype assessment of the potential effects of sulfur pollutants on a crop of local economic significance; and, to identify the adequacy of existing research data and other information for quantifying the possible extent of adverse effects of such pollutants. Grape production in New York State was selected for this prototype assessment. The prototype assessment attempts to translate the emission characteristics of sources of sulfur pollutants into ambient concentrations of the pollutants in the vicinity of grape-producing regions. The ambient data are then compared with available dose-response data to estimate the potential effects on the grape crop.

  13. Biomonitoring of Sulfur-Containing Pollutants in an Urban Atmosphere by FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Notov, A. A.; Pakhomov, P. M.

    2014-09-01

    The relative content of sulfur-containing compounds in samples of epiphytic lichens Hypogymnia physodes collected at recreation zones of Tver city with different levels of air pollution was determined using FTIR spectroscopy. The sulfur dioxide (SO2) concentration was also measured at the same recreation zones using an IR gas analyzer. The measurements were compared by two methods. Maps of SO2 air pollution in Tver city were constructed.

  14. Assessment of the risk of pollution by sulfur compounds and heavy metals in soils located in the proximity of a disused for 20 years sulfur mine (SE Poland).

    PubMed

    Sołek-Podwika, Katarzyna; Ciarkowska, Krystyna; Kaleta, Dorota

    2016-09-15

    The study assessed the long-term effects of anthropogenic pressure of the sulfur industry on turf-covered soils located in the vicinity of the sulfur mine Grzybów. The study assumes that 20 years which elapsed since the end of the exploitation of sulfur is a period sufficiently long for the content of sulfur compounds in soils not to exceed the permissible level and that soil of the region can be classified as not contaminated. A part of the study involved identification of changes in the contents Stot. and SSO4(2-) in soils collected in the 1970s and early twenty-first century. It was also traced the relationship between the content of sulfur compounds and selected soil properties and estimated risk of soil environment pollution by heavy metals. Mean contents of trace elements studied amounted to 10.2-10.8 mg kg(-1) for Pb, 14.3-39.4 mg kg(-1) for Zn, 0.2-0.4 mg kg(-1) for Cd, 3.8-32.2 mg kg(-1) for Cr, 2.7-15.1 mg kg(-1) for Cu and 2.9-18.7 mg kg(-1) for Ni. Based on the results of SSO4(2-) content in soils collected at a distance of 1 km from the mine, it was found out that despite the passage of years, the amount of this type of sulfur still is increased and exceeds 0.14 g kg(-1). As the distance from the mine grew lower (from 0.017 to 0.03 g kg(-1)) average content of the sulfur form was observed. In the studied soil material we found generally positive, strong correlation between the Stot. and SSO4(2-) content and analyzed trace elements. The degree of contamination of examined soils with heavy metals was estimated on the basis of the integrated pollution index, which pointed to a moderate and low level of antropogenization of this area. In addition, the relationship between the determined characteristics of soils (Corg. contents, the fraction <0.002 mm and pH) and heavy metals confirms that the trace elements present in soils do not occur in mobile forms in the soil solution. PMID:27266650

  15. Mortality from asthma and chronic bronchitis associated with changes in sulfur oxides air pollution

    SciTech Connect

    Imai, M.; Yoshida, K.; Kitabatake, M.

    1986-01-01

    Death certificates issued in Yokkaichi, Japan, during the 21 yr from 1963 until 1983 were surveyed to determine the relationship between changes in air pollution and mortality due to bronchial asthma and chronic bronchitis. The following results were obtained. In response to worsening air pollution, mortality for bronchial asthma and chronic bronchitis began to increase. Mortality due to bronchial asthma decreased immediately in response to improvement of pollution, whereas mortality due to chronic bronchitis decreased to the level in the control area 4 to 5 yr after the concentration of sulfur dioxide (SO/sub 2/) began to satisfy the ambient air quality standard. In the polluted area, mortality due to bronchial asthma in subjects who were 20 yr of age was higher during the period in which higher concentrations of sulfur oxides were prevalent.

  16. SEEDLING RESPONSE TO SULFUR, NITROGEN, AND ASSOCIATED POLLUTANTS

    EPA Science Inventory

    In 1986, the National Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. eedling exposure studies were initiated to determine acute effects of simulated acid ...

  17. EFFECTS OF SULFUR OXIDE POLLUTANTS ON RESPIRATORY FUNCTION, PARTICLE DEPOSITION AND BRONCHIAL CLEARANCE

    EPA Science Inventory

    The effects of sulfur oxide pollutants on respiratory function, particle deposition, and bronchial clearance were explored in a series of three studies, two on donkeys and one on humans. In the first study, the effects of one-hour inhalation exposures to 0.3 - 0.6 micrograms H2SO...

  18. Ice core sulfur and methanesulfonic acid (MSA) records from southern Greenland document North American and European air pollution and suggest a decline in regional biogenic sulfur emissions.

    NASA Astrophysics Data System (ADS)

    Pasteris, D. R.; McConnell, J. R.; Burkhart, J. F.; Saltzman, E. S.

    2014-12-01

    Sulfate aerosols have an important cooling effect on the Earth because they scatter sunlight back to space and form cloud condensation nuclei. However, understanding of the atmospheric sulfur cycle is incomplete, leading to uncertainty in the assessment of past, present and future climate forcing. Here we use annually resolved observations of sulfur and methanesulfonic acid (MSA) concentration in an array of precisely dated Southern Greenland ice cores to assess the history of sulfur pollution emitted from North America and Europe and the history of biogenic sulfate aerosol derived from the North Atlantic Ocean over the last 250 years. The ice core sulfur time series is found to closely track sulfur concentrations in North American and European precipitation since records began in 1965, and also closely tracks estimated sulfur emissions since 1850 within the air mass source region as determined by back trajectory analysis. However, a decline to near-preindustrial sulfur concentrations in the ice cores after 1995 that is not so extensive in the source region emissions indicates that there has been a change in sulfur cycling over the last 150 years. The ice core MSA time series shows a decline of 60% since the 1860s, and is well correlated with declining sea ice concentrations around Greenland, suggesting that the phytoplankton source of biogenic sulfur has declined due to a loss of marginal sea ice zone habitat. Incorporating the implied decrease in biogenic sulfur in our analysis improves the match between the ice core sulfur record and the source region emissions throughout the last 150 years, and solves the problem of the recent return to near-preindustrial levels in the Greenland ice. These findings indicate that the transport efficiency of sulfur air pollution has been relatively stable through the industrial era and that biogenic sulfur emissions in the region have declined.

  19. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    PubMed Central

    Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D.; Chung, Kian Fan; Porter, Alexandra E.; Ryan, Mary; Kipen, Howard; Lioy, Paul J.; Mainelis, Gediminas

    2014-01-01

    Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NOx (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NOx, our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions. PMID:24144266

  20. Impacts of a nanosized ceria additive on diesel engine emissions of particulate and gaseous pollutants.

    PubMed

    Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D; Chung, Kian Fan; Porter, Alexandra E; Ryan, Mary; Kipen, Howard; Lioy, Paul J; Mainelis, Gediminas

    2013-11-19

    Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NO(x) (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NO(x), our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions. PMID:24144266

  1. Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultralow sulfur diesel fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of petroleum-derived additives is ubiquitous in fuels production, including biodiesel (BD) and ultra-low sulfur diesel (ULSD) fuels. Development and employment of domestically derived, biodegradable, renewable, and non-toxic additives is an attractive goal. As such, estolides (1, 2) and 2-...

  2. Sulfur-based autotrophic denitrification from the micro-polluted water.

    PubMed

    Zhou, Weili; Liu, Xu; Dong, Xiaojing; Wang, Zheng; Yuan, Ying; Wang, Hui; He, Shengbing

    2016-06-01

    Eutrophication caused by high concentrations of nutrients is a huge problem for many natural lakes and reservoirs. Removing the nitrogen contamination from the low C/N water body has become an urgent need. Autotrophic denitrification with the sulfur compound as electron donor was investigated in the biofilter reactors. Through the lab-scale experiment, it was found that different sulfur compounds and different carriers caused very different treatment performances. Thiosulfate was selected to be the best electron donor and ceramsite was chosen as the suitable carrier due to the good denitrification efficiency, low cost and the good resistibility against the high hydraulic loads. Later the optimum running parameters of the process were determined. Then the pilot-scale experiment was carried out with the real micro-polluted water from the West Lake, China. The results indicated that the autotrophic denitrification with thiosulfate as electron donor was feasible and applicable for the micro-polluted lake water. PMID:27266314

  3. Using pollution roses to assess sulfur dioxide impacts in a township downwind of a petrochemical complex.

    PubMed

    Shie, Ruei-Hao; Yuan, Tzu-Hsuen; Chan, Chang-Chuan

    2013-06-01

    This study used pollution roses to assess sulfur dioxide (SO) pollution in a township downwind of a large petrochemical complex based on data collected from a single air quality monitoring station. The pollution roses summarized hourly SO2 concentrations at the Taishi air quality monitoring station, located approximately 7.8-13.0 km south of the No. 6 Naphtha Cracking Complex in Taiwan, according to 36 sectors of wind direction during the preoperational period (1995-1999) and two postoperational periods (2000-2004 and 2005-2009). The 99th percentile of hourly SO2 concentrations 350 degrees downwind from the complex increased from 28.9 ppb in the preoperational period to 86.2-324.2 ppb in the two postoperational periods. Downwind SO2 concentrations were particularly high during 2005-2009 at wind speeds of 6-8 m/sec. Hourly SO2 levels exceeded the US. Environmental Protection Agency (EPA) health-based standard of 75 ppb only in the postoperational periods, with 65 exceedances from 0-10 degrees and 330-350 degrees downwind directions during 2001-2009. This study concluded that pollution roses based on a single monitoring station can be used to investigate source contributions to air pollution surrounding industrial complexes, and that it is useful to combine such directional methods with analyses of how pollution varies between different wind speeds, times of day, and periods of industrial development. PMID:23858996

  4. Ecological effects of nitrogen and sulfur air pollution in the US: what do we know?

    USGS Publications Warehouse

    Greaver, Tara L.; Sullivan, Timothy J.; Herrick, Jeffrey D.; Barber, Mary C.; Baron, Jill S.; Cosby, Bernard J.; Deerhake, Marion E.; Dennis, Robin L.; Dubois, Jean-Jacque B.; Goodale, Christine L.; Herlihy, Alan T.; Lawrence, Gregory B.; Liu, Lingli; Lynch, Jason A.; Novak, Kristopher J.

    2012-01-01

    Four decades after the passage of the US Clean Air Act, air-quality standards are set to protect ecosystems from damage caused by gas-phase nitrogen (N) and sulfur (S) compounds, but not from the deposition of these air pollutants to land and water. Here, we synthesize recent scientific literature on the ecological effects of N and S air pollution in the US. Deposition of N and S is the main driver of ecosystem acidification and contributes to nutrient enrichment in many natural systems. Although surface-water acidification has decreased in the US since 1990, it remains a problem in many regions. Perturbations to ecosystems caused by the nutrient effects of N deposition continue to emerge, although gas-phase concentrations are generally not high enough to cause phytotoxicity. In all, there is overwhelming evidence of a broad range of damaging effects to ecosystems in the US under current air quality conditions.

  5. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    NASA Technical Reports Server (NTRS)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  6. Space-based detection of missing sulfur dioxide sources of global air pollution

    NASA Astrophysics Data System (ADS)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-07-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world--over a third are clustered around the Persian Gulf--and add up to 7 to 14 Tg of SO2 yr-1, or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  7. [The role of additives in bio-mass coal briquette on sulfur retention enhancement].

    PubMed

    Lu, Yongqi; Xu, Kangfu; Ma, Yongliang; Wei, Tiejun; Hao, Jiming

    2002-01-30

    The research first conducted the sulfur-fixing experiment of bio-mass coal briquette in a tubular furnace. The impacts of three additives Al2O3, Fe2O3 and MnO2 on the sulfur retention by calcium-based sorbent in briquette were investigated, and only Al2O3 displayed the enhancement of sulfur retention. The TGA experiment was further carried out, and proved that the high-temperature decomposition of CaSO4 in the deoxidization atmosphere was effectively inhibited with the addition of Al2O3. The XPS and XRD analyses of briquette ash showed that due to the interaction among Al2O3, CaSO4 and CaO, the composite CaSO4.3CaO.3Al2O3 which has more thermal stability was formed. With its wrapping or binding onto the surface of CaSO4 crystal, the decomposition of CaSO4 was mitigated. PMID:11987400

  8. Effect of sulfur additions on soil and the nutrition of wheat

    SciTech Connect

    Mahler, R.J.; Maples, R.L.

    1987-01-01

    A field experiment was conducted for two years to determine the effects of four sulfur (S) sources applied at various rates on the elemental composition of Coker 747/sup 3/ wheat and on the soil S concentration. The concentration of S in plants increased by all sources of applied S. Increased S in the soil from S application decreased P concentrations in plants regardless of the S source used. Sulfur additions did not significantly affect the concentrations of Cu, Ca, Mg, or N in plants. The concentrations of Mn, Zn, and Fe in plants either increased or decreased depending on S source used. Analysis of the silt loam soil to a depth of 90 cm revealed that applied S moved readily from the surface to the lower depths and that the elemental form of S moved less rapidly than the more soluble forms of applied S.

  9. Influence of metal surface and sulfur addition on coke deposition in the thermal cracking of hydrocarbons

    SciTech Connect

    Reyniers, M.F.S.G.; Froment, G.F.

    1995-03-01

    Coke formation in the thermal cracking of hydrocarbons was studied in a pilot plant unit and in a microreactor with complete mixing of the gas phase, containing a hollow cylinder suspended at the arm of an electrobalance. The morphology of the coke was studied by SEM, while EDX was used to determine the concentration of metals in the coke layer. The influence of the metal surface composition, of it pretreatment, and of the addition of various sulfur compounds on the coking rate and CO production was investigated for condition typical for those in the cracking coil. The CO yield is not a measure of the coking rate. Sulfur compounds are very efficient in reducing the CO yield but promote coke formation.

  10. The effect of sulfur re-addition on H(2) photoproduction by sulfur-deprived green algae.

    PubMed

    Kosourov, Sergey; Makarova, Valeriya; Fedorov, Alexander S; Tsygankov, Anatoly; Seibert, Michael; Ghirardi, Maria L

    2005-09-01

    Sulfur deprivation of algal cultures selectively and partially inactivates photosystem II (PSII)-catalyzed O(2) evolution, induces anaerobiosis and hydrogenase expression, and results in sustained H(2) photoproduction for several days. We show that re-addition of limiting amounts of sulfate (1-10 microM final concentration) to the cultures during the H(2)-production phase temporarily reactivates PSII photochemical and O(2)-evolution activity and re-establishes higher rates of electron transport through the photosynthetic electron transport chain. The reactivation of PSII occurs by de novo D1 protein synthesis, but does not result in the re-establishment of aerobic conditions in the reactor, detectable by dissolved-O(2) sensors. However, concomitant H(2) photoproduction is inhibited, possibly due to excessive intra-cellular levels of photosynthetically-evolved O(2). The partial recovery of electron transport rates correlates with the re-oxidation of the plastoquinone (PQ) pool, as observed by pulse-amplitude modulated (PAM) and fluorescence-induction measurements. These results show that the presence of a more oxidized PQ pool releases some of the down-regulation of electron transport caused by the anaerobic conditions. PMID:16170632

  11. Effect of Addition of Allium hookeri on the Quality of Fermented Sausage with Meat from Sulfur Fed Pigs during Ripening

    PubMed Central

    Lim, Ki-Won

    2014-01-01

    The effect of the addition of Allium hookeri on the quality of fermented sausage made with meat from sulfur fed pigs was examined, throughout a 60 d ripening period. There were two treatments in animal management: normal feed fed pigs, and sulfur fed pigs given 0.3% sulfur mixed normal feed. Fermented sausage manufactured with meat from normal feed fed pigs, and with meat from sulfur fed pigs, and 1% A. hookeri-containing fermented sausage processed with meat from sulfur fed pigs, were determined at 1 d, 15 d, 30 d, and 60 d. The meat qualities in fermented sausage were measured by DPPH radical scavenging activity (DPPH), ABTS+ radical scavenging activity (ABTS+), total phenolic acids, and total flavonoid contents. Fermented sausage made from pigs that had been fed with 0.3% sulfur was protected from oxidation by reduced free radical, as shown by the significant increase in DPPH and ABTS+ values, compared with fermented sausage made from normal feed fed pigs (p<0.05). A. hookeri-added fermented sausage with sulfur fed pork was shown to increase the values in DPPH, ABTS+, total phenolic acid, and total flavonoid contents, by comparison with both the control sausage, and sausage with sulfur fed pork, at 60 d. These results suggest that A. hookeri in meat from sulfur fed pigs could be a source of natural addition, to increase quality in the food industry. PMID:26761166

  12. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition.

    PubMed

    Bustamante, M A; Ceglie, F G; Aly, A; Mihreteab, H T; Ciaccia, C; Tittarelli, F

    2016-11-01

    Rock phosphate constitutes a natural phosphorus (P) source for organic farming systems, but with a limiting direct agricultural use due to its poor inherent reactivity. Thus, this work studies the effect of the co-composting of rock phosphate with green wastes and elemental sulfur on phosphorus availability. Six composts were prepared combining different green wastes and rock phosphate in three different proportions (0%, 0.27% and 0.54% P fresh mass basis) and elemental sulfur in two proportions (0% and 0.5% S fresh mass basis). During composting, the temperature of the mixtures was monitored, as were physico-chemical and chemical parameters, especially those related to phosphorus. The co-composting of green wastes with rock phosphate improved phosphorus mobilization and also constituted a viable method to manage green wastes, obtaining P-enriched compost for organic farming systems. Sulfur addition favored the composting process and also phosphorus solubilization, especially in the mixture with the lowest proportion of rock phosphate. PMID:27543750

  13. Influence of sulfur addition and S-induced wall catalytic effect on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, C.; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(-1-naphthylmethyl)bibenzyl NMBB predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. In order to clarify the effect of sulfur alone on model compound conversion, NMBB was treated with sulfur in concentrations of 1.2 to 3.4 wt%, corresponding to conditions present in catalytic runs with sulfur. It was found that increasing sulfur concentrations leads to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non catalytic{close_quotes} runs after experiments with added sulfur yielded higher conversion than normal runs with new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath over night. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  14. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal.

    PubMed

    Zhao, Feng; Rahunen, Nelli; Varcoe, John R; Roberts, Alexander J; Avignone-Rossa, Claudio; Thumser, Alfred E; Slade, Robert C T

    2009-03-15

    A microbial fuel cell (MFC) has been developed for removal of sulfur-based pollutants and can be used for simultaneous wastewater treatment and electricity generation. This fuel cell uses an activated carbon cloth+carbon fibre veil composite anode, air-breathing dual cathodes and the sulfate-reducing species Desulfovibrio desulfuricans. 1.16gdm(-3) sulfite and 0.97gdm(-3) thiosulfate were removed from the wastewater at 22 degrees C, representing sulfite and thiosulfate removal conversions of 91% and 86%, respectively. The anode potential was controlled by the concentration of sulfide in the compartment. The performance of the cathode assembly was affected by the concentration of protons in the cation-exchanging ionomer with which the electrocatalyst is co-bound at the three-phase (air, catalyst and support) boundary. PMID:19022647

  15. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act.

    PubMed

    Thomas, Richard B; Spal, Scott E; Smith, Kenneth R; Nippert, Jesse B

    2013-09-17

    Using dendroisotopic techniques, we show the recovery of Juniperus virginiana L. (eastern red cedar) trees in the Central Appalachian Mountains from decades of acidic pollution. Acid deposition over much of the 20th century reduced stomatal conductance of leaves, thereby increasing intrinsic water-use efficiency of the Juniperus trees. These data indicate that the stomata of Juniperus may be more sensitive to acid deposition than to increasing atmospheric CO2. A breakpoint in the 100-y δ(13)C tree ring chronology occurred around 1980, as the legacy of sulfur dioxide emissions declined following the enactment of the Clean Air Act in 1970, indicating a gradual increase in stomatal conductance (despite rising levels of atmospheric CO2) and a concurrent increase in photosynthesis related to decreasing acid deposition and increasing atmospheric CO2. Tree ring δ(34)S shows a synchronous change in the sources of sulfur used at the whole-tree level that indicates a reduced anthropogenic influence. The increase in growth and the δ(13)C and δ(34)S trends in the tree ring chronology of these Juniperus trees provide evidence for a distinct physiological response to changes in atmospheric SO2 emissions since ∼1980 and signify the positive impacts of landmark environmental legislation to facilitate recovery of forest ecosystems from acid deposition. PMID:24003125

  16. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act

    PubMed Central

    Thomas, Richard B.; Spal, Scott E.; Smith, Kenneth R.; Nippert, Jesse B.

    2013-01-01

    Using dendroisotopic techniques, we show the recovery of Juniperus virginiana L. (eastern red cedar) trees in the Central Appalachian Mountains from decades of acidic pollution. Acid deposition over much of the 20th century reduced stomatal conductance of leaves, thereby increasing intrinsic water-use efficiency of the Juniperus trees. These data indicate that the stomata of Juniperus may be more sensitive to acid deposition than to increasing atmospheric CO2. A breakpoint in the 100-y δ13C tree ring chronology occurred around 1980, as the legacy of sulfur dioxide emissions declined following the enactment of the Clean Air Act in 1970, indicating a gradual increase in stomatal conductance (despite rising levels of atmospheric CO2) and a concurrent increase in photosynthesis related to decreasing acid deposition and increasing atmospheric CO2. Tree ring δ34S shows a synchronous change in the sources of sulfur used at the whole-tree level that indicates a reduced anthropogenic influence. The increase in growth and the δ13C and δ34S trends in the tree ring chronology of these Juniperus trees provide evidence for a distinct physiological response to changes in atmospheric SO2 emissions since ∼1980 and signify the positive impacts of landmark environmental legislation to facilitate recovery of forest ecosystems from acid deposition. PMID:24003125

  17. Improvements and Validation of Sulfur Dioxide Retrievals from Aura/OMI Observations of Anthropogenic Pollution

    NASA Astrophysics Data System (ADS)

    Yang, K.; Krotkov, N. A.; He, H.; Dickerson, R. R.; Li, C.

    2011-12-01

    Both natural and anthropogenic sources can release the trace gas, sulfur dioxide (SO2), into the atmosphere, in which it is usually oxidized to form sulfate aerosols, affecting the environment and climate. The largest contributions to the total annual sulfur budget are anthropogenic emissions from combustions of fossil fuels and smelting of metal ores. While these sources emit SO2 into the atmospheric planetary boundary layer (PBL), leading to air quality degradation near the source regions, the pollutants are sometimes lifted into the free troposphere and subsequently transported over long distances, affecting remote regions. It is therefore important to monitor the spatial and temporal distribution of SO2 over the globe. This can be accomplished with satellite UV remote sensing, as exemplified by the SO2 data derived from the global daily observations made by the Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's Aura spacecraft launched in July 2004. In this presentation, we describe the recent progress in developing an advanced algorithm to improve detection and quantification of anthropogenic SO2, and compare the new retrievals with the operational OMI SO2 products to show significant reduction in noise and bias. We also present validation results obtained by the comparisons with co-located in-situ aircraft measurements in China in 2005 - 2008 and during DISCOVER-AQ field experiment in Maryland in July 2011, to illustrate improved accuracy achieved with the advanced algorithm.

  18. Effects of sulfur oxide pollutants on respiratory function, particle deposition and bronchial clearance. Final report

    SciTech Connect

    Lippmann, M.

    1980-11-01

    The effects of sulfur oxide pollutants on respiratory function, particle deposition, and bronchial clearance were explored in a series of three studies, two on donkeys and one on humans. In the first study, the effects of one-hour inhalation exposures to 0.3 - 0.6 micrograms H/sub 2/SO/sub 4/ and (NH/sub 4/)/sub 2/SO/sub 4/ aerosols in the donkey were studied in terms of alterations in pulmonary flow resistance and dynamic compliance, and changes in the regional deposition and tracheobronchial mucociliary clearance of an inert test aerosol. In the second study, the effect of chronic inhalation exposures to sulfuric acid mist upon mucociliary clearance from the lungs was studied, using the donkey as an analogue for man. Four animals were exposed one hour per day, five days per week, for six months; two to a concentration of 102 micrograms/cu m, the other to 106 micrograms/cu m. In the final study, the mucociliary particle clearance and respiratory mechanics of twelve healty nonsmokers exposed to 1/2 micrometer H/sub 2/SO/sub 4/ at 0 (control), 100, 300, and 1,000 micrograms/cu m for one hour per day for four days were examined.

  19. Physiological Responses of Two Epiphytic Bryophytes to Nitrogen, Phosphorus and Sulfur Addition in a Subtropical Montane Cloud Forest

    PubMed Central

    Chen, Xi; Liu, Wen-yao; Song, Liang; Li, Su; Wu, Yi; Shi, Xian-meng; Huang, Jun-biao; Wu, Chuan-sheng

    2016-01-01

    Atmospheric depositions pose significant threats to biodiversity and ecosystem function. However, the underlying physiological mechanisms are not well understood, and few studies have considered the combined effects and interactions of multiple pollutants. This in situ study explored the physiological responses of two epiphytic bryophytes to combined addition of nitrogen, phosphorus and sulfur. We investigated the electrical conductivity (EC), total chlorophyll concentration (Chl), nutrient stoichiometry and chlorophyll fluorescence signals in a subtropical montane cloud forest in south-west China. The results showed that enhanced fertilizer additions imposed detrimental effects on bryophytes, and the combined enrichment of simulated fertilization exerted limited synergistic effects in their natural environments. On the whole, EC, Chl, the effective quantum yield of photosystem II (ΦPSII) and photochemical quenching (qP) were the more reliable indicators of increased artificial fertilization. However, conclusions on nutrient stoichiometry should be drawn cautiously concerning the saturation uptake and nutrient interactions in bryophytes. Finally, we discuss the limitations of prevailing fertilization experiments and emphasize the importance of long-term data available for future investigations. PMID:27560190

  20. Physiological Responses of Two Epiphytic Bryophytes to Nitrogen, Phosphorus and Sulfur Addition in a Subtropical Montane Cloud Forest.

    PubMed

    Chen, Xi; Liu, Wen-Yao; Song, Liang; Li, Su; Wu, Yi; Shi, Xian-Meng; Huang, Jun-Biao; Wu, Chuan-Sheng

    2016-01-01

    Atmospheric depositions pose significant threats to biodiversity and ecosystem function. However, the underlying physiological mechanisms are not well understood, and few studies have considered the combined effects and interactions of multiple pollutants. This in situ study explored the physiological responses of two epiphytic bryophytes to combined addition of nitrogen, phosphorus and sulfur. We investigated the electrical conductivity (EC), total chlorophyll concentration (Chl), nutrient stoichiometry and chlorophyll fluorescence signals in a subtropical montane cloud forest in south-west China. The results showed that enhanced fertilizer additions imposed detrimental effects on bryophytes, and the combined enrichment of simulated fertilization exerted limited synergistic effects in their natural environments. On the whole, EC, Chl, the effective quantum yield of photosystem II (ΦPSII) and photochemical quenching (qP) were the more reliable indicators of increased artificial fertilization. However, conclusions on nutrient stoichiometry should be drawn cautiously concerning the saturation uptake and nutrient interactions in bryophytes. Finally, we discuss the limitations of prevailing fertilization experiments and emphasize the importance of long-term data available for future investigations. PMID:27560190

  1. Influence of sulfur addition and S-induced wall catalytic effects on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, Chunshan; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl, designated as NMBB, predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. NMBB was also treated with sulfur alone in the absence of catalysts in concentrations of 1.2 to 3.4 wt, corresponding to conditions present in catalytic runs with added sulfur to precursors. It was found that increasing sulfur concentrations lead to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the stainless steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non-catalytic{close_quotes} runs which were done after experiments with added sulfur yielded higher conversions than normal runs done in new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath overnight. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  2. The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010

    NASA Astrophysics Data System (ADS)

    Ray, Sharmila; Kim, Ki-Hyun

    2014-10-01

    The pollution status of sulfur dioxide was analyzed using the datasets collected from seven major cities in Korea for the period of 1989-2010. Although there were moderate differences in SO2 levels between the cities, the temporal trends were seen to be rather distinctive between seasons or across the years. The SO2 levels consistently exhibited relative dominance during winter due to the combined effects of domestic heating and meteorological conditions. In contrast, the annual datasets underwent an abrupt decrease until the late 90s. As such, if the data are divided into two periods I (1989-1999) and II (2000-2010), the mean values were reduced considerably from a few tens of ppb (period I) to a few ppb levels (period II). This notable change is suspected to reflect the effect of gradual shift in fuel consumption patterns (e.g., from conventional fuels to cleaner renewal sources of energy). The results of the principal component analysis (PCA) indicated that emissions of SO2 are affected by the incomplete combustion of fossil fuels. According to the health risk assessment, the SO2 exposure to infants and adults should have decreased significantly from period I to period II (e.g., by 5-7 times).

  3. [Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM₂.₅ in Nanjing Region].

    PubMed

    Shi, Lei; Guo, Zhao-bing; Jiang, Wen-juan; Rui, Mao-ling; Zeng, Gang

    2016-01-15

    Potential pollution sources of atmospheric PM₂.₅ in Nanjing region were collected, and sulfur and carbon isotopic compositions were determined by EA-IRMS synchronously. The results showed that δ³⁴S and δ¹³C values ranged from 1.8‰-3.7‰ and -25.50‰- -23.57‰ in coal soot particles; 4.6‰-9.7‰ and -26.32‰- -23.57‰ in vehicle exhaust; 5.2‰-9.9‰ and -19.30‰- -30.42‰ in straw soot particles, respectively. Besides, the δ¹³C value of dust was -13.45‰. It can be observed that sulfur isotopic compositions in coal soot were lower, while the carbon isotopic composition in dust was higher. Comparing with δ³⁴S and δ¹³C values in domestic and foreign polluted sources, we found that sulfur and carbon isotopes in atmospheric PM₂.₅ in Nanjing region presented an obvious regional characteristics. Therefore, the source spectrum of sulfur and carbon isotopic compositions in Nanjing region might provide an insight into source apportionment of atmospheric PM₂.₅. PMID:27078936

  4. Effect of atmospheric sulfur pollutants derived from acid precipitation on the benthic dynamics of lakes

    SciTech Connect

    Mitchell, M.J.

    1982-11-01

    Sulfuric acid is a major contributor to acid precipitation in the United States. The relationship of acid precipitation to the sulfur dynamics of three lakes in New York was studied. For South Lake, which has probably been acidified, the sulfur profile in the sediment corresponded to historical changes in anthropogenic sulfur inputs. In all three study lakes, the organic sulfur constituents, which generally have been ignored in limnological investigations, played a major role in sulfur dynamics. The transformations and fluxes of inorganic and organic sulfur differed among the lakes and reflected characteristic abiotic and biotic properties, including productivity parameters. The community structure and secondary production of the invertebrate benthos were ascertained and, for South Lake, were similar to other acidified lakes. The importance of benthic insects on sulfur dynamics was demonstrated. Further studies on sulfur in lakes will enhance the understanding of the role of these anthropogenic inputs on lake systems and permit a more accurate appraisal of the present and future impacts of acidic deposition on water quality. 10 references.

  5. Health effects of air pollutants: Sulfuric acid, the old and the new

    SciTech Connect

    Amdur, M.O. )

    1989-05-01

    Data from exposure of experimental animals and human subjects to sulfuric acid presents a consistent picture of its toxicology. Effects on airway resistance in asthmatic subjects were well predicted by data obtained on guinea pigs. Sulfuric acid increases the irritant response to ozone in both rats and man. In donkeys, rabbits, and human subjects, sulfuric acid alters clearance of particles from the lung in a similar manner. These changes resemble those produced by cigarette smoke and could well lead to chronic bronchitis. Data obtained on guinea pigs indicate that very small amounts of sulfuric acid on the surface of ultrafine metal oxide aerosols produce functional, morphological, and biochemical pulmonary effects. Such particles are typical of those emitted from coal combustion and smelting operations. Sulfate is an unsatisfactory surrogate in existing epidemiology studies. Sulfuric acid measurement is a critical need in such studies. 31 references.

  6. Spinach and mustard greens response to soil type, sulfur addition and lithium level

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  7. Effect of Greens and Soil Type, Sulfur Addition and Lithium Level on Leaf Constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  8. Anthropogenic Sulfur Perturbations on Biogenic Oxidation: SO2 Additions Impact Gas-Phase OH Oxidation Products of α- and β-Pinene.

    PubMed

    Friedman, Beth; Brophy, Patrick; Brune, William H; Farmer, Delphine K

    2016-02-01

    In order to probe how anthropogenic pollutants can impact the atmospheric oxidation of biogenic emissions, we investigated how sulfur dioxide (SO2) perturbations impact the oxidation of two monoterpenes, α-and β-pinene. We used chemical ionization mass spectrometry to examine changes in both individual molecules and gas-phase bulk properties of oxidation products as a function of SO2 addition. SO2 perturbations impacted the oxidation systems of α-and β-pinene, leading to an ensemble of products with a lesser degree of oxygenation than unperturbed systems. These changes may be due to shifts in the OH:HO2 ratio from SO2 oxidation and/or to SO3 reacting directly with organic molecules. Van Krevelen diagrams suggest a shift from gas-phase functionalization by alcohol/peroxide groups to functionalization by carboxylic acid or carbonyl groups, consistent with a decreased OH:HO2 ratio. Increasing relative humidity dampens the impact of the perturbation. This decrease in oxygenation may impact secondary organic aerosol formation in regions dominated by biogenic emissions with nearby SO2 sources. We observed sulfur-containing organic compounds following SO2 perturbations of monoterpene oxidation; whether these are the result of photochemistry or an instrumental artifact from ion-molecule clustering remains uncertain. However, our results demonstrate that the two monoterpene isomers produce unique suites of oxidation products. PMID:26735899

  9. A synthesis of the ecological effects of air pollution from nitrogen and sulfur in the U.S

    USGS Publications Warehouse

    Greaver, T.L.; Sullivan, T.; Herrick, J.D.; Barber, M.; Baron, J.; Cosby, B.; Deerharke, M.; Dennis, R.; Dubois, J.J.D.; Goodale, C.; Herlihy, A.; Lawrence, G.; Liu, L.; Lynch, J.; Novak, K.

    2012-01-01

    Four decades after the passage of the US Clean Air Act, air-quality standards are set to protect ecosystems from damage caused by gas-phase nitrogen (N) and sulfur (S) compounds, but not from the deposition of these air pollutants to land and water. Here, we synthesize recent scientific literature on the ecological effects of N and S air pollution in the US. Deposition of N and S is the main driver of ecosystem acidification and contributes to nutrient enrichment in many natural systems. Although surface-water acidification has decreased in the US since 1990, it remains a problem in many regions. Perturbations to ecosystems caused by the nutrient effects of N deposition continue to emerge, although gas-phase concentrations are generally not high enough to cause phytotoxicity. In all, there is overwhelming evidence of a broad range of damaging effects to ecosystems in the US under current air quality conditions.

  10. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity.

    PubMed

    Browne, Mark Anthony; Niven, Stewart J; Galloway, Tamara S; Rowland, Steve J; Thompson, Richard C

    2013-12-01

    Inadequate products, waste management, and policy are struggling to prevent plastic waste from infiltrating ecosystems [1, 2]. Disintegration into smaller pieces means that the abundance of micrometer-sized plastic (microplastic) in habitats has increased [3] and outnumbers larger debris [2, 4]. When ingested by animals, plastic provides a feasible pathway to transfer attached pollutants and additive chemicals into their tissues [5-15]. Despite positive correlations between concentrations of ingested plastic and pollutants in tissues of animals, few, if any, controlled experiments have examined whether ingested plastic transfers pollutants and additives to animals. We exposed lugworms (Arenicola marina) to sand with 5% microplastic that was presorbed with pollutants (nonylphenol and phenanthrene) and additive chemicals (Triclosan and PBDE-47). Microplastic transferred pollutants and additive chemicals into gut tissues of lugworms, causing some biological effects, although clean sand transferred larger concentrations of pollutants into their tissues. Uptake of nonylphenol from PVC or sand reduced the ability of coelomocytes to remove pathogenic bacteria by >60%. Uptake of Triclosan from PVC diminished the ability of worms to engineer sediments and caused mortality, each by >55%, while PVC alone made worms >30% more susceptible to oxidative stress. As global microplastic contamination accelerates, our findings indicate that large concentrations of microplastic and additives can harm ecophysiological functions performed by organisms. PMID:24309271

  11. Method for Derivatization and Detection of Chemical Weapons Convention Related Sulfur Chlorides via Electrophilic Addition with 3-Hexyne.

    PubMed

    Goud, D Raghavender; Pardasani, Deepak; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar

    2015-07-01

    Sulfur monochloride (S2Cl2) and sulfur dichloride (SCl2) are important precursors of the extremely toxic chemical warfare agent sulfur mustard and classified, respectively, into schedule 3.B.12 and 3.B.13 of the Chemical Weapons Convention (CWC). Hence, their detection and identification is of vital importance for verification of CWC. These chemicals are difficult to detect directly using chromatographic techniques as they decompose and do not elute. Until now, the use of gas chromatographic approaches to follow the derivatized sulfur chlorides is not reported in the literature. The electrophilic addition reaction of sulfur monochloride and sulfur dichloride toward 3-hexyne was explored for the development of a novel derivatization protocol, and the products were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Among various unsaturated reagents like alkenes and alkynes, symmetrical alkyne 3-hexyne was optimized to be the suitable derivatizing agent for these analytes. Acetonitrile was found to be the suitable solvent for the derivatization reaction. The sample preparation protocol for the identification of these analytes from hexane spiked with petrol matrix was also optimized. Liquid-liquid extraction followed by derivatization was employed for the identification of these analytes from petrol matrix. Under the established conditions, the detection and quantification limits are 2.6 μg/mL, 8.6 μg/mL for S2Cl2 and 2.3 μg/mL, 7.7 μg/mL for SCl2, respectively, in selected ion monitoring (SIM) mode. The calibration curve had a linear relationship with y = 0.022x - 0.331 and r(2) = 0.992 for the working range of 10 to 500 μg/mL for S2Cl2 and y = 0.007x - 0.064 and r(2) = 0.991 for the working range of 10 to 100 μg/mL for SCl2, respectively. The intraday RSDs were between 4.80 to 6.41%, 2.73 to 6.44% and interday RSDs were between 2.20 to 7.25% and 2.34 to 5.95% for S2Cl2 and SCl2, respectively. PMID:26054007

  12. The South Karelia Air Pollution Study: acute health effects of malodorous sulfur air pollutants released by a pulp mill

    SciTech Connect

    Haahtela, T.; Marttila, O.; Vilkka, V.; Jaeppinen, P.J.; Jaakkola, J.J. )

    1992-04-01

    We evaluated the acute health effects of a strong emission of malodorous sulfur compounds released from a pulp mill in South Karelia, Finland. The 24-hour ambient air concentrations of hydrogen sulfide for the two emission days were 35 and 43 micrograms/m3 (maximum 4-hour 135 micrograms/m3). A questionnaire was distributed after the high exposure and later after a low exposure period to 29 households with 75 subjects living in the nearby community. During the high exposure, 63% of the respondents reported experience of at least one symptom compared to 26% during the reference period. Every third participant reported difficulties in breathing. In the 45 subjects responding to both questionnaires more eye, respiratory and neuropsychological symptoms occurred during the exposure compared to the reference period. The strong malodorous emission from a pulp mill caused an alarming amount of adverse effects in the exposed population.

  13. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.

    PubMed

    Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won

    2016-02-17

    Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells. PMID:26808673

  14. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-01

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g-1 at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  15. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    PubMed

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries. PMID:26778739

  16. Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants.

    PubMed

    Noji, M; Saito, M; Nakamura, M; Aono, M; Saji, H; Saito, K

    2001-07-01

    Cysteine (Cys) synthase [O-acetyl-L-Ser(thiol)-lyase, EC 4.2.99.8; CSase] is responsible for the final step in biosynthesis of Cys. Transgenic tobacco (Nicotiana tabacum; F(1)) plants with enhanced CSase activities in the cytosol and in the chloroplasts were generated by cross-fertilization of two transformants expressing cytosolic CSase or chloroplastic CSase. The F(1) transgenic plants were highly tolerant to toxic sulfur dioxide and sulfite. Upon fumigation with 0.1 microL L(-1) sulfur dioxide, the Cys and glutathione contents in leaves of F(1) plants were increased significantly, but not in leaves of non-transformed control plants. Furthermore, the leaves of F(1) plants exhibited the increased resistance to paraquat, a herbicide generating active oxygen species. PMID:11457948

  17. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-01

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species. PMID:27070292

  18. The South Karelia Air Pollution Study. The effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms

    SciTech Connect

    Jaakkola, J.J.; Vilkka, V.; Marttila, O.; Jaeppinen, P.H.; Haahtela, T. )

    1990-12-01

    The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasal and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.

  19. Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Liu, Yonglin; Luo, Kunli; Li, Ling; Shahid, Muhammad Zeeshaan

    2013-10-01

    The presented study aims to investigate the gaseous fluoride and sulfur dioxide (SO2) pollution level in the kitchen, traditional flue-curing barn and outdoor environment and to find economically feasible method to reduce fluorine and sulfur release. The gaseous fluoride and SO2 concentrations in air of outdoor environment, kitchen and traditional flue-curing barn were determined in 56 households in coal-burning endemic fluorosis areas of Zhaotong. Among these, 21 households in Yujiawan Village, Zhenxiong County, Zhaotong City were chosen for this experiment to reduce gaseous fluoride and SO2 concentration in traditional flue-curing barn air by using calcined dolomitic siliceous limestone (CDSL) instead of clay mixed with coal. The result showed that: (1) gaseous fluoride and SO2 concentration in the outdoor air in Mangbu Township area was 0.51 μg dm-2ṡday and <0.05 mg m-3, respectively and in Xiaolongdong Township was 2.7 μg dm-2 day and <0.05 mg m-3, respectively while in Zhaotong City these concentration were lower than the ambient air standard (3 μg dm-2ṡday and 0.5 mg m-3, respectively). (2) The indoor gaseous fluoride concentration (3.7 μg m-3) in air of kitchen with the improved coal stove was within the reference value (10 μg m-3); SO2 concentration (0.94 mg m-3) in kitchen air had decline, but its concentration was still higher than indoor air quality standard (0.5 mg m-3). (3) Average concentration of gaseous fluoride and SO2 in air of traditional flue-curing barn of Xiaolongdong Township was 7.2 μg m-3 and 6.8 mg m-3 respectively, and in Yujiawan village were 10.1 μg m-3 and 14.4 mg m-3, respectively. (4) After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air decreased of 45% and 91%, respectively. The gaseous fluoride and SO2 pollution in the traditional flue-curing barn is very serious. The corn and chili baked by open stoves in

  20. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    PubMed

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH<10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration. PMID:23465722

  1. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    SciTech Connect

    Peters, J.L.; Castillo, F.J.; Heath, R.L. )

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  2. HUMAN HEALTH DAMAGES FROM MOBILE SOURCE AIR POLLUTION: ADDITIONAL DELPHI DATA ANALYSIS. VOLUME II

    EPA Science Inventory

    The report contains the results of additional analyses of the data generated by a panel of medical experts for a study of Human Health Damages from Mobile Source Air Pollution (hereafter referred to as HHD) conducted by the California Air Resources Board in 1973-75 for the U.S. E...

  3. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery. PMID:26981849

  4. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D'Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K. W.; George, C.; Gnauk, T.; Henning, S.; Lee, T.; Mertes, S.; Roth, A.; Stratmann, F.; Borrmann, S.; Hoppe, P.; Herrmann, H.

    2014-01-01

    In-cloud production of sulfate modifies the aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in Autumn, 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4(g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4(g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

  5. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D'Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K. W.; George, C.; Gnauk, T.; Henning, S.; Lee, T.; Mertes, S.; Roth, A.; Stratmann, F.; Borrmann, S.; Hoppe, P.; Herrmann, H.

    2014-04-01

    In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4 (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4 (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

  6. New Insights into the Detection of Sulfur Trioxide Anion Radical by Spin Trapping: Radical Trapping versus Nucleophilic Addition

    PubMed Central

    Ranguelova, Kalina; Mason, Ronald P.

    2009-01-01

    It has recently been proposed that (bi)sulfite (hydrated sulfur dioxide) reacts with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in biological systems via a nonradical, nucleophilic reaction, implying that the radical adduct (DMPO/•SO3−) formation in these systems is an artifact and not the result of spin trapping of sulfur trioxide anion radical (•SO3−). Here, the one-electron oxidation of (bi)sulfite catalyzed by horseradish peroxidase/H2O2 has been re-investigated by ESR spin trapping with DMPO and oxygen uptake studies in order to obtain further evidence for the radical reaction mechanism. In the case of ESR experiments, the signal of DMPO/•SO3− radical adduct was detected, and the initial rate of its formation was calculated. Support for the radical pathway via •SO3− was obtained from the stoichiometry between the amount of consumed molecular oxygen and the amount of (bi)sulfite oxidized to sulfate (SO42−). When DMPO was incubated with (bi)sulfite, oxygen consumption was completely inhibited due to the efficiency of DMPO trapping. In the absence of DMPO, the initial rate of oxygen and H2O2 consumption was determined to be half of the initial rate of DMPO/•SO3− radical adduct formation as determined by ESR, demonstrating that DMPO forms the radical adduct by trapping the •SO3− exclusively. We conclude that DMPO is not susceptible to artifacts arising from nonradical chemistry (nucleophilic addition) except when both (bi)sulfite and DMPO concentrations are at nonphysiological levels of at least 0.1 M and the incubations are for longer time periods. PMID:19362142

  7. Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Chen, Zhong; Kulish, Vadym V.; Bai, Kewu; Wu, Ping

    2013-01-01

    Reactions of hydrogen sulfide (H2S) with Nickel/Ytrria-doped zirconia (Ni/YDZ) anode materials might cause degradation of the performance of solid oxide fuel cells when S containing fuels are used. In this paper, we employ density functional theory to investigate S adsorption on metal (M)-doped and undoped Ni(0 0 1) and Ni(1 1 1) surfaces. Based on the performed calculations, we analyze the effects of 12 alloying additions (Ag, Au, Al, Bi, Cd, Co, Cu, Fe, Sn, Sb, V, and Zn) on the temperature of transition between clean (S atoms do not adsorb on the surfaces) and contaminated (S atoms can adsorb on the surfaces spontaneously) M-doped Ni surfaces for different concentrations of H2S in the fuel. Predicted results are consistent with many experimental studies relevant to S poisoning of both Ni/YDZ and M-doped Ni/YDZ anode materials. This study is important to understand S poisoning phenomena and to develop new S tolerant anode materials.

  8. Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region

    SciTech Connect

    Ellis, M.S.; Stricker, G.D.; Flores, R.M.

    1994-12-31

    Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

  9. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. PMID:26024614

  10. Remediation of metal polluted soils by phytorremediation combined with biochar addition

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Paz-Ferreiro, Jorge; Gómez-Limón, Dulce; César Arranz, Julio; Saa, Antonio; Gascó, Gabriel

    2016-04-01

    The main objective of this work is to optimize and quantify the treatment of metal polluted soils through phytoremediation techniques combined with the addition of biochar. Biochar is a carbon rich material obtained by thermal treatment of biomass in inert atmosphere. In recent years, it has been attracted considerable interest due to their positive effect after soil addition. The use of biochar also seems appropriate for the treatment of metal-contaminated soils decreasing their mobility. Biochar properties highly depend on the raw material composition and manufacturing conditions. This paper is based on the use of manure wastes, rich in nutrients and therefore interesting raw materials for biochar production, especially when combined with phytoremediation techniques since the biochar act as conditioner and slow release fertilizer. We are very grateful to Ministerio de Economia y Competitividad (Spain) for financial support under Project CGL2014-58322-R.

  11. Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China

    SciTech Connect

    Yang, C.; Zeng, G.; Li, G.; Qiu, J.

    1999-07-01

    Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

  12. Sulfur pollution control. Phase II. The impact of stack gas cleanup on the sulfur mining industry of Texas and Louisiana. Open file report (final)

    SciTech Connect

    Rieber, M.; Barker, J.M.; Worrall, M.

    1981-01-01

    The impacts of various (reduced) levels of Frasch sulfur production on the States of Texas and Louisiana are analyzed. The analytic time basis is 1979. Industry labor and output characteristics are developed on a company and mine basis. State and local impacts (to the level of independent school districts) are developed on a scenario basis. The measures include income, unemployment, and taxes. Some data are presented on energy and water use.

  13. In situ sulfur isotopes (δ(34)S and δ(33)S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS.

    PubMed

    Fu, Jiali; Hu, Zhaochu; Zhang, Wen; Yang, Lu; Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4-8 ml min(-1) nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min(-1)). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis

  14. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  15. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia.

    PubMed

    Qu, Yu; An, Junling; He, Youjiang; Zheng, Jun

    2016-06-01

    The long-range transport of oxidized sulfur (sulfur dioxide (SO2) and sulfate) and oxidized nitrogen (nitrogen oxides (NOx) and nitrate) in East Asia is an area of increasing scientific interest and political concern. This paper reviews various published papers, including ground- and satellite-based observations and numerical simulations. The aim is to assess the status of the anthropogenic emissions of SO2 and NOx and the long-range transport of oxidized S and N pollutants over source and downwind region. China has dominated the emissions of SO2 and NOx in East Asia and urgently needs to strengthen the control of their emissions, especially NOx emissions. Oxidized S and N pollutants emitted from China are transported to Korea and Japan, due to persistent westerly winds, in winter and spring. However, the total contributions of China to S and N pollutants across Korea and Japan were not found to be dominant over longer time scales (e.g., a year). The source-receptor relationships for oxidized S and N pollutants in East Asia varied widely among the different studies. This is because: (1) the nonlinear effects of atmospheric chemistry and deposition processes were not well considered, when calculating the source-receptor relationships; (2) different meteorological and emission data inputs and solution schemes for key physical and chemical processes were used; and (3) different temporal and spatial scales were employed. Therefore, simulations using the same input fields and similar model configurations would be of benefit, to further evaluate the source-receptor relationships of the oxidized S and N pollutants. PMID:27266298

  16. CONTROL OF AIR POLLUTION EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 2. ALTERNATIVES FOR CONTROL OF WEAK SULFUR DIOXIDE EMISSIONS

    EPA Science Inventory

    This report covers the second phase of a three phase effort evaluating (1) characterization of particulate control of a molybdenum sulfide roasters, (2) assessment of sulfur dioxide abatement alternatives for nonferrous smelting and, in particular, for molybdenum roasting, and (3...

  17. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines.

    PubMed

    Garaguso, Ivana; Nardini, Mirella

    2015-07-15

    Wine exerts beneficial effects on human health when it is drunk with moderation. Nevertheless, wine may also contain components negatively affecting human health. Among these, sulfites may induce adverse effects after ingestion. We examined total polyphenols and flavonoids content, phenolics profile and antioxidant activity of eight organic red wines produced without sulfur dioxide/sulfites addition in comparison to those of eight conventional red wines. Polyphenols and flavonoids content were slightly higher in organic wines in respect to conventional wines, however differences did not reach statistical significance. The phenolic acids profile was quite similar in both groups of wines. Antioxidant activity was higher in organic wines compared to conventional wines, although differences were not statistically significant. Our results indicate that organic red wines produced without sulfur dioxide/sulfites addition are comparable to conventional red wines with regard to the total polyphenols and flavonoids content, the phenolics profile and the antioxidant activity. PMID:25722174

  18. Understanding the Effects of Dilute Sulfur Additions, and Metallization, on the Thermoelectric Properties of Pnictogen Chalcogenides and their Interfaces

    NASA Astrophysics Data System (ADS)

    Devender

    Realizing materials with high thermoelectric figure-of-merit ZT is an exacting challenge because it entails simultaneously obtaining a high Seebeck coefficient, a high electrical conductivity, and a low thermal conductivity, while these properties are usually unfavorably coupled. This thesis demonstrates multifold enhancements in the power factor in sulfur-doped binary and ternary pnictogen chalcogenide nanocrystals and assemblies, and describes the property enhancement mechanisms. The correlations between interfacial thermal and electronic transport, and interfacial diffusion and phase formation in metallized n- and p-type pnictogen chalcogenide structures are also revealed. We show that 400 ppm to 2 at.% sulfur doping can increase both Seebeck coefficient and electrical conductivity, while maintaining low thermal conductivity. Our results show that sulfur-induced property enhancements in Bi2Te 2Se are underpinned by increased density of states effective mass, unlike the mechanism of diminished bipolar charge carrier transport prevalent in sulfur-doped Bi2Te3. Exploiting such effects is anticipated to be attractive for realizing higher ZT nanomaterials. We also show that electrical contact conductivity in metallized pnictogen chalcogenide interfaces is sensitive to metal diffusion and telluride formation. In particular, Ni contacts yield the highest electrical contact conductivity and Cu the lowest, correlating with extent of metal diffusion and p-type metal-telluride formation. We finally show that pnictogen chalcogenides metallized with Sn-Ag-Cu/Ni solder-barrier bilayers exhibit ten-fold higher interfacial thermal conductance than that obtained with In/Ni bilayer metallization. Decreased interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher interfacial thermal conductance. Our findings should facilitate the design and development of pnictogen chalcogenide-based thermoelectric materials and devices.

  19. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    PubMed

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  20. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  1. The Sulfur Cycle

    ERIC Educational Resources Information Center

    Kellogg, W. W.; And Others

    1972-01-01

    A model estimating the contributions of sulfur compounds by natural and human activities, and the rate of removal of sulfur from the atmosphere, is based on a review of the existing literature. Areas requiring additional research are identified. (AL)

  2. The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: Decadal effects assessed using 210Pb peat chronologies

    NASA Astrophysics Data System (ADS)

    Olid, Carolina; Nilsson, Mats B.; Eriksson, Tobias; Klaminder, Jonatan

    2014-03-01

    Boreal peatlands are a major long-term reservoir of atmospheric carbon (C) and play an important role in the global C cycle. It is unclear how C accumulation in peatlands responds to changing temperatures and nutrients (specifically, nitrogen and sulfur). In this study, we assessed how the C input rate and C accumulation rate in decadal old peat layers respond to increased air temperatures (+3.6°C) during the growing season and the annual additions of nitrogen (N) and sulfur (S) (30 and 20 kg ha-1 yr-1, respectively) over 12 years of field treatments in a boreal mire. An empirical mass balance model was applied to 210Pb-dated peat cores to evaluate changes in C inputs, C mass loss, and net C accumulation rates in response to the treatments. We found that (i) none of the treatments generated a significant effect on peat mass loss decay rates, (ii) C input rates were positively affected by N additions and negatively affected by S additions, (iii) the C accumulation rate in the uppermost (10 to 12 cm) peat was increased by N additions and decreased by S additions, and (iv) only air temperature significantly affected the main effects induced by N and S additions. Based on our findings, we argue that C accumulation rates in surface peat layers of nutrient-poor boreal mires can increase despite the predicted rise in air temperatures as long as N loads increase and acid atmospheric S remains low.

  3. The south Karelia air pollution study: Effects of low-level expsoure to malodorous sulfur compounds on symptoms

    SciTech Connect

    Partti-Pellinen, K.; Marttila, O.; Vilkka, V.; Jaakkola, J.J. |

    1996-07-01

    Exposure to very low levels of ambient-air malodorous sulfur compounds and their effect on eye irritation, respiratory-tract symptoms, and central nervous system symptoms in adults were assessed. A cross-sectional self-administered questionnaire (response rate = 77%) was distributed during March and April 1992 to adults (n = 336) who lived in a neighborhood that contained a pulp mill and in a nonpolluted reference community (n = 380). In the exposed community, the measured annual mean concentrations of total reduced sulfur compounds and sulfur dioxide measured in two stations were 2 to 3 {mu}g/m{sup 3} and 1 {mu}g/m{sup 3}, respectively. In the reference community, the annual mean concentration of sulfur dioxide was 1 {mu}g/m{sup 3}. The residents of the community near the pulp mill reported an excess of cough, respiratory infections, and headache during the previous 4 wk, as well as during the preceding 12 mo. The relative risk for headache was increased significantly in the exposed community, compared with the reference area: the adjusted odds ratio (aOR) was 1.83 (95% confidence interval [95% Cl] = 1.06-3.15) during the previous 4 wk and 1.70 (95% Cl = 1.05-2.73) during the preceding 12 mo. The relative risk for cough was also increased during the preceding 12 mo (aOR = 1.64, 95% Cl = 1.01-2.64). These results indicated that adverse health effects of malodorous sulfur compounds occur at lower concentrations than reported previously. 25 refs., 3 tabs.

  4. Comparison of Thiyl, Alkoxyl, and Alkyl Radical Addition to Double Bonds: The Unusual Contrasting Behavior of Sulfur and Oxygen Radical Chemistry.

    PubMed

    Degirmenci, Isa; Coote, Michelle L

    2016-03-17

    High-level ab initio calculations have been used to compare prototypical thiyl, alkoxyl, and alkyl radical addition reactions. Thiyl radical addition to the sulfur center of thioketones is exothermic and rapid, occurring with negative enthalpic barriers and only weakly positive Gibbs free energy barriers. In stark contrast, alkoxyl radical addition to the oxygen center of ketones is highly endothermic and occurs with very high reaction barriers, though these are also suppressed. On the basis of analysis of the corresponding alkyl radical additions to these substrates and the corresponding reactions of these heteroatom radicals with alkenes, it suggested that addition reactions involving thiyl radicals have low intrinsic barriers because their unpaired electrons are better able to undergo stabilizing resonance interactions with the π* orbitals of the substrate in the transition state. PMID:26932454

  5. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  6. Additive genetic variation for tolerance to estrogen pollution in natural populations of Alpine whitefish (Coregonus sp., Salmonidae)

    PubMed Central

    Brazzola, Gregory; Chèvre, Nathalie; Wedekind, Claus

    2014-01-01

    The evolutionary potential of natural populations to adapt to anthropogenic threats critically depends on whether there exists additive genetic variation for tolerance to the threat. A major problem for water-dwelling organisms is chemical pollution, and among the most common pollutants is 17α-ethinylestradiol (EE2), the synthetic estrogen that is used in oral contraceptives and that can affect fish at various developmental stages, including embryogenesis. We tested whether there is variation in the tolerance to EE2 within Alpine whitefish. We sampled spawners from two species of different lakes, bred them in vitro in a full-factorial design each, and studied growth and mortality of embryos. Exposure to EE2 turned out to be toxic in all concentrations we tested (≥1 ng/L). It reduced embryo viability and slowed down embryogenesis. We found significant additive genetic variation in EE2-induced mortality in both species, that is, genotypes differed in their tolerance to estrogen pollution. We also found maternal effects on embryo development to be influenced by EE2, that is, some maternal sib groups were more susceptible to EE2 than others. In conclusion, the toxic effects of EE2 were strong, but both species demonstrated the kind of additive genetic variation that is necessary for an evolutionary response to this type of pollution. PMID:25553069

  7. Additive genetic variation for tolerance to estrogen pollution in natural populations of Alpine whitefish (Coregonus sp., Salmonidae).

    PubMed

    Brazzola, Gregory; Chèvre, Nathalie; Wedekind, Claus

    2014-11-01

    The evolutionary potential of natural populations to adapt to anthropogenic threats critically depends on whether there exists additive genetic variation for tolerance to the threat. A major problem for water-dwelling organisms is chemical pollution, and among the most common pollutants is 17α-ethinylestradiol (EE2), the synthetic estrogen that is used in oral contraceptives and that can affect fish at various developmental stages, including embryogenesis. We tested whether there is variation in the tolerance to EE2 within Alpine whitefish. We sampled spawners from two species of different lakes, bred them in vitro in a full-factorial design each, and studied growth and mortality of embryos. Exposure to EE2 turned out to be toxic in all concentrations we tested (≥1 ng/L). It reduced embryo viability and slowed down embryogenesis. We found significant additive genetic variation in EE2-induced mortality in both species, that is, genotypes differed in their tolerance to estrogen pollution. We also found maternal effects on embryo development to be influenced by EE2, that is, some maternal sib groups were more susceptible to EE2 than others. In conclusion, the toxic effects of EE2 were strong, but both species demonstrated the kind of additive genetic variation that is necessary for an evolutionary response to this type of pollution. PMID:25553069

  8. Sulfur and Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    D'Aquin, Gerard E.; Fell, Robert C.

    Sulfur is one of the few elements that is found in its elemental form in nature. Typical sulfur deposits occur in sedimentary limestone/gypsum formations, in limestone/anhydrite formations associated with salt domes, or in volcanic rock.1 A yellow solid at normal temperatures, sulfur becomes progressively lighter in color at lower temperatures and is almost white at the temperature of liquid air. It melts at 114-119°C (depending on crystalline form) to a transparent light yellow liquid as the temperature is increased. The low viscosity of the liquid begins to rise sharply above 160°C, peaking at 93 Pa·s at 188°C, and then falling as the temperature continues to rise to its boiling point of 445°C. This and other anomalous properties of the liquid state are due to equilibria between the various molecular species of sulfur, which includes small chains and rings.

  9. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash.

    PubMed

    Querol, Xavier; Alastuey, Andrés; Moreno, Natàlia; Alvarez-Ayuso, Esther; García-Sánchez, Antonio; Cama, Jordi; Ayora, Carles; Simón, Mariano

    2006-01-01

    The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis). PMID:16039695

  10. Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens

    SciTech Connect

    Garty, J.; Cohen, Y.; Kloog, N.; Karnieli, A.

    1997-07-01

    The fruticose lichen Ramalina duriaei is generally considered to be sensitive to air pollution. In the present study the authors sought to determine whether thalli of this lichen collected in a remote unpolluted site (the HaZorea Forest, northeast Israel) and transplanted to the Ashdod region (southwest Israel) could provide information on the quality of the air in this area. For this purpose, the concentrations of Pb, Cu, Cd, Ni, Mn, Fe, S, Ca, Mg, Na, and K were determined in in situ thalli collected in the HaZorea Forest in March 1993 and in in situ and transplanted thalli retrieved in June 1993. The concentration of these elements in R. duriaei thalli was analyzed in comparison with physiological parameters such as the integrity of cell membranes, chlorophyll content, and alterations in reflectance responses from lichen thalli. Thalli transplanted to several industrial sites in the town of Ashdod for a period of 100 d accumulated high concentrations of Pb, Cd, Ni, Fe, S, Mg, Na, Ca, and K. The concentration of S in thalli transplanted to the Ashdod region was found to correlate with damage caused to cell membranes and showed and inverse correlation with the chlorophyll content and with the reflectance response of the lichen. The electrical conductivity values corresponding to membrane integrity in the lichen thallus showed an inverse correlation with the ratio of chlorophyll a to pheophytin a, indicating the integrity of the photobiontic chlorophyll and with normalized-difference vegetation index values corresponding to the reflectance response of the thallus. The chlorophyll integrity correlated with the reflectance response. Magnesium accumulated in the lichen thalli in dusty sites and was found to correlate with damage caused to membranes.

  11. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    SciTech Connect

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Brunner, Gregory; Zhang, Jianshun; Fisk, William J.

    2011-05-01

    Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH). Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives

  12. Sulfur Mustard

    MedlinePlus

    ... the environment. Sulfur mustard was introduced in World War I as a chemical warfare agent. Historically it ... fatal. When sulfur mustard was used during World War I, it killed fewer than 5% of the ...

  13. Sulfur Dioxide and Material Damage

    ERIC Educational Resources Information Center

    Gillette, Donald G.

    1975-01-01

    This study relates sulfur dioxide levels with material damage in heavily populated or polluted areas. Estimates of loss were determined from increased maintenance and replacement costs. The data indicate a decrease in losses during the past five years probably due to decline in pollution levels established by air quality standards. (MR)

  14. Ultrasonic coal-wash for de-sulfurization.

    PubMed

    Ambedkar, B; Nagarajan, R; Jayanti, S

    2011-05-01

    Coal is the one of the world's most abundant fossil fuel resources. It is not a clean fuel, as it contains ash and sulfur. SOx as a pollutant are a real threat to both the ecosystem and to human health. There are numerous de-sulfurization methods to control SO(2) emissions. Nowadays, online flue gas de-sulfurization is being used as one such method to remove sulfur from coal during combustion. The biggest disadvantage associated with this method is formation of by-products (FGD gypsum). A way for effective usage of FGD gypsum has not yet been found. This will lead to acute and chronic effects to humans as well as plants. Power ultrasound can be used for the beneficiation of coal by the removal of sulfur from coal prior to coal combustion. The main effects of ultrasound in liquid medium are acoustic cavitation and acoustic streaming. The process of formation, growth and implosion of bubbles is called cavitation. Bulk fluid motion due to sound energy absorption is known as acoustic streaming. In addition, coupling of an acoustic field to water produces OH radicals, H(2)O(2), O(2), ozone and HO(2) that are strong oxidizing agents. Oxidation that occurs due to ultrasound is called Advanced Oxidation Process (AOP). It converts sulfur from coal to water-soluble sulphates. Conventional chemical-based soaking and stirring methods are compared here to ultrasonic methods of de-sulfurization. The main advantages of ultrasonic de-sulfurization over conventional methods, the mechanism involved in ultrasonic de-sulfurization and the difference between aqueous-based and solvent-based (2N HNO(3), 3-volume percentage H(2)O(2)) de-sulfurization are investigated experimentally. PMID:21115263

  15. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  16. New model for the sulfation of marble by dry deposition Sheltered marble—the indicator of air pollution by sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Lan, Tran Thi Ngoc; Nguyen, Thi Phuong Thoa; Nishimura, R.; Tsujino, Y.; Yokoi, M.; Maeda, Y.

    This paper was concerned with evaluating the effect of dry deposition on deterioration of marble. Two types of marble were exposed to atmospheric environment with a rain shelter at four exposure sites in the south of Vietnam for 3-month, 1-year and 2-year periods from July 2001 to September 2003. X-ray diffraction (XRD) and X-ray fluorescent (XRF) methods were applied to study the products of marble deterioration. Ion chromatography was used to analyze dry depositions on marble. The main product of marble deterioration was gypsum (CaSO 4·2H 2O). The amount of sulfate ions deposited on marble was found to be proportional to SO 2 concentration in the air, relative humidity and duration of the exposure. In addition, sulfation of marble caused by SO 2 at a relative humidity lower than 70% is almost half of that at relative humidity higher than 70%. Moreover, marble consisting of calcite (CaCO 3) was more sensitive to SO 2 than marble consisting of dolomite (CaCO 3 and MgCO 3). A good relation between the amount of sulfate ions deposited on marble and SO 2 concentration in the air suggested that marble could serve as an indicator for atmospheric pollution by SO 2.

  17. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  18. Lunar sulfur

    NASA Technical Reports Server (NTRS)

    Kuck, David L.

    1991-01-01

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  19. Pollution Measuring System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Research Ventures, Inc.'s visiplume is a portable, microprocessor-controlled air pollution monitor for measuring sulfur dioxide emissions from fossil fuel-fired power plants, and facilities that manufacture sulfuric acid. It observes smokestack plumes at a distance from the stack obviating the expense and difficulty of installing sample collectors in each stack and later analyzing the samples.

  20. Pollution Microbiology, A Laboratory Manual.

    ERIC Educational Resources Information Center

    Finstein, Melvin S.

    This manual is designed for use in the laboratory phase of courses dealing with microbial aspects of pollution. It attempts to cover the subject area broadly in four major categories: (1) microorganisms in clean and polluted waters, (2) carbonaceous pollutants, (3) nitrogen, phosphorus, iron, and sulfur as pollutants, and (4) sanitary…

  1. Addition of PM2.5 into the National Ambient Air Quality Standards of China and the Contribution to Air Pollution Control: The Case Study of Wuhan, China

    PubMed Central

    You, Mingqing

    2014-01-01

    PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly. PMID:24982994

  2. Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil.

    PubMed

    Rinklebe, Jörg; Shaheen, Sabry M

    2015-09-01

    The problem of copper (Cu) pollution in riverine ecosystems is world-wide and has significant environmental, eco-toxicological, and agricultural relevance. We assessed the suitability and effectiveness of application rate of 1% of activated charcoal, bentonite, biochar, cement kiln dust, chitosan, coal fly ash, limestone, nano-hydroxyapatite, organo-clay, sugar beet factory lime, and zeolite as soil amendments together with rapeseed as bioenergy crop as a possible remediation option for a heavily Cu polluted floodplain soil (total Cu=3041.9mgkg(-1)) that has a very high proportion of sorbed/carbonate fraction (484.6mgkg(-1)) and potential mobile fraction of Cu (1611.9mgkg(-1)). Application changed distribution of Cu among geochemical fractions: alkaline materials lead to increased carbonate bounded fraction and the acid rhizosphere zone might cause release of this Cu. Thus, mobilization of Cu and uptake of Cu by rapeseed were increased compared to the control (except for organo-clay) under the prevailing conditions. PMID:25968602

  3. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  4. Identifying the change in atmospheric sulfur sources in China using isotopic ratios in mosses

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2009-08-01

    A considerable number of studies on rainwater sulfur isotopic ratios (δ34Srain) have been conducted to trace sulfur sources at a large number of sites in the past. If longitudinal studies on the isotope composition of precipitation sulfate were conducted, it is possible to relate that to changes in sulfur emissions. But direct measurement needs considerable labor and time. So, in this study, sulfur isotopic ratios in rainwater and mosses were analyzed at Guiyang and Nanchang to evaluate the possibility of using mosses as a substitute for rainwater. We found that present moss sulfur isotopic ratios were comparable to those of present rainwater. Additionally, we investigated the changes of atmospheric sulfur sources and sulfur concentrations using an isotopic graphic analysis at five industrial cities, two forested areas, and two remote areas in China. Mosses in industrial cities show a wide range of δ34S values, with the highest occurring at Chongqing (+3.9‰) and the lowest at Guiyang (-3.1‰). But as compared to those in forested and remote areas, δ34S values of mosses in all the five industrial cities are lower. On the basis of isotopic comparisons between past rainwater (reported in the literature) and present mosses, in the plot of δ34Smoss versus δ34Srain, six zones indicating different atmospheric sulfur change are separated by the 1:1 line and δ34S values of potential sulfur sources. Our results indicate that atmospheric sulfur pollution in most of the industrial cities decreased, while at the two forested areas, no significant changes were observed, and a new anxiousness coming from new energy sources (e.g., oil) appeared in some cities. Studies on the change of ambient SO2 concentrations support these results.

  5. Sulfur-doped ordered mesoporous carbons: A stability-improving sulfur host for lithium-sulfur battery cathodes

    NASA Astrophysics Data System (ADS)

    Nitze, Florian; Fossum, Kjell; Xiong, Shizhao; Matic, Aleksandar; Palmqvist, Anders E. C.

    2016-06-01

    We report on sulfur-functionalized ordered mesoporous carbons aimed for lithium-sulfur battery electrode applications with improved charge capacity retention. The carbons were obtained by a hard-template strategy using a mixture of furfuryl alcohol and furfuryl mercaptan. For the application as electrode material in lithium-sulfur batteries, the carbons were additionally loaded with sulfur following a traditional melt-diffusion approach. It was found that the sulfur interacts stronger with the sulfur-functionalized carbon matrix than with the non-functionalized material. Electrodes showed very high capacity in the second discharge-charge cycle amounting to approximately 1500, 1200 and 1400 mAh/g (sulfur) for carbon materials with no, medium and high degrees of sulfur functionalization, respectively. More importantly, the sulfur-functionalization of the carbon was found to increase the capacity retention after 50 discharge-charge cycles by 8 and 5% for the carbons with medium and high degrees of sulfur-functionalization, respectively, compared to carbon with no sulfur-functionalization. We attribute this significant improvement to the presence of covalently bound sulfur groups at the internal surface of the functionalized carbon providing efficient anchoring sites for catenation to the sulfur loaded into the pores of the carbons and provide experimental support for this in the form of results from cyclic voltammetry and X-ray photoelectron spectroscopy.

  6. Multiple heteroatom containing sulfur compounds in coals

    SciTech Connect

    Winans, R.E.; Neill, P.H.

    1989-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system, and the products characterized by High Resolution Mass Spectrometry (HRMS). A significant number of products were identified which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracted and liquefaction products. 25 refs., 5 figs., 4 tabs.

  7. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  8. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus).

    PubMed

    Lewińska, K; Karczewska, A

    2013-01-01

    Four kinds of soil material were used in a pot experiment with velvetgrass (Holcus lanatus). Two unpolluted soils: sand (S) and loam (L) were spiked with sodium arsenite (As II) and arsenate (As V), to obtain total arsenic (As) concentrations of 500 mg As kg(-1). Two other soils (ZS I, ZS III), containing 3320 and 5350 mg As kg(-1), were collected from Zloty Stok where gold and arsenic ores were mined and processed for several centuries. The effects of phosphate addition on plants growth and As uptake were investigated. Phosphate was applied to soils in the form of NH4H2PO4 at the rate 0.2 g P/kg. Average concentrations of arsenic in the shoots of velvetgrass grown in spiked soils S and L without P amendment were in the range 18-210 mg As kg(-1) d.wt., whereas those in plants grown on ZS I and ZS II soils were considerably lower, and varied in the range 11-52 mg As kg(-1) d.wt. The addition of phosphate caused a significant increase in plant biomass and therefore the total amounts of As taken up by plants, however, the differences in As concentrations in the shoots of velvetgrass amended and non-amended with phosphate were not statistically significant. PMID:23487988

  9. Antibotulinal efficacy of sulfur dioxide in meat.

    PubMed Central

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  10. Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lichtenberg, H.; Prange, A.; Modrow, H.; Hormes, J.

    2007-02-01

    In this `feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of `standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts.

  11. Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy

    SciTech Connect

    Lichtenberg, H.; Hormes, J.; Prange, A.; Modrow, H.

    2007-02-02

    In this 'feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of 'standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts.

  12. Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernardo S.; Jerrett, Michael; Martin, Randall V.; van Donkelaar, Aaron; Ross, Zev; Burnett, Richard T.

    2013-10-01

    Land use regression (LUR) models are widely employed in health studies to characterize chronic exposure to air pollution. The LUR is essentially an interpolation technique that employs the pollutant of interest as the dependent variable with proximate land use, traffic, and physical environmental variables used as independent predictors. Two major limitations with this method have not been addressed: (1) variable selection in the model building process, and (2) dealing with unbalanced repeated measures. In this paper, we address these issues with a modeling framework that implements the deletion/substitution/addition (DSA) machine learning algorithm that uses a generalized linear model to average over unbalanced temporal observations. Models were derived for fine particulate matter with aerodynamic diameter of 2.5 microns or less (PM2.5) and nitrogen dioxide (NO2) using monthly observations. We used 4119 observations at 108 sites and 15,301 observations at 138 sites for PM2.5 and NO2, respectively. We derived models with good predictive capacity (cross-validated-R2 values were 0.65 and 0.71 for PM2.5 and NO2, respectively). By addressing these two shortcomings in current approaches to LUR modeling, we have developed a framework that minimizes arbitrary decisions during the model selection process. We have also demonstrated how to integrate temporally unbalanced data in a theoretically sound manner. These developments could have widespread applicability for future LUR modeling efforts.

  13. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES.

    PubMed

    Zeng, Jianrong; Zhang, Guilin; Bao, Liangman; Long, Shilei; Tan, Mingguang; Li, Yan; Ma, Chenyan; Zhao, Yidong

    2013-03-01

    Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology. A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs), which were sampled from 5 local fields in Shanghai, China. Annual SO2 concentration, SO4(2-) concentration in atmospheric particulate, SO4(2-) and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs. Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg. The mainly detected sulfur states and their corresponding compounds were +6 (sulfate, include inorganic sulfate and organic sulfate), +5.2 (sulfonate), +2.2 (suloxides), +0.6 (thiols and thiothers), +0.2 (organic sulfides). Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977, which suggested that sulfur accumulated in CTLs as sulfate form. Reduced sulfur compounds (organic sulfides, thiols, thioethers, sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg. The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination. From urban to suburb place, sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced, but a dramatic increase presented near the seashore, where the marine sulfate emission and maritime activity pollution were significant. The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment. PMID:23923435

  14. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  15. Effect of acid scavengers on electrochemical performance of lithium-sulfur batteries: Functional additives for utilization of LiPF6

    NASA Astrophysics Data System (ADS)

    Yim, Taeeun; Kang, Kyoung Seok; Yu, Ji-Sang; Kim, Ki Jae; Park, Min-Sik; Woo, Sang-Gil; Jeong, Goojin; Jo, Yong Nam; Im, Keun Yung; Kim, Jae-Hun; Kim, Young-Jun

    2014-08-01

    We investigated a novel approach for utilizing LiPF6 as the lithium salt for Li-S batteries and verifying its chemical reactivity with the main solvent. It is found that the main obstacle for the adoption of LiPF6 is the undesired acid-catalyzed, cascade-type polymerization reaction between cyclic ether components in the solvent and LiPF6. Therefore, several kinds of acid scavengers are proposed to enhance the chemical stability between the main solvent and LiPF6. Simple storage tests indicate that polymerization occurred as acid residue is removed from the electrolyte. Consequently, the cell with a modified electrolyte shows excellent discharge capacity and moderate retention based on its improved chemical stability. These results indicate that assuring the chemical stability is the most important factor to utilizing LiPF6 as the main lithium salt for a Li-S cell. Additionally, it is believed that an understanding of the nature of chemical reactivity will be beneficial to constructing more efficient electrolyte systems owing to enhanced electrochemical performance of many kinds of energy storage systems including Li-S, Li-air, and metal-air batteries.

  16. Neutralization and biodegradation of sulfur mustard. Final report, October 1995-June 1996

    SciTech Connect

    Harvey, S.P.; Szafraniec, L.L.; Beaudry, W.T.; Earley, J.T.; Irvine, R.L.

    1997-02-01

    The chemical warfare agent sulfur mustard was hydrolyzed to products that were biologically mineralized in sequencing batch reactors seeded with activated sludge. Greater than 90% carbon removal was achieved using laboratory scale bioreactors processing hydrolyzed munitions grade sulfur mustard obtained directly from the U.S. Chemical Stockpile. The bioreactor effluent was nontoxic and contained no detectable sulfur mustard or priority pollutants. The sulfur mustard hydrolysis biodegradation process has potential application to the congressionally mandated disposal of sulfur mustard stockpiles.

  17. PROCEEDINGS ON SYNCHROTRON RADIATION: Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong

    2009-11-01

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.

  18. Uses of lunar sulfur

    NASA Technical Reports Server (NTRS)

    Vaniman, D.; Pettit, D.; Heiken, G.

    1992-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource.

  19. Steps Towards Controlling the "Export" of Air Pollution

    ERIC Educational Resources Information Center

    OECD Observer, 1977

    1977-01-01

    Results of a five year study to measure the movement of sulfur pollutants across Europe found these pollutants move hundreds or thousands of kilometers before being deposited in large quantities in countries far from where they originate. The need for cooperation among countries to control sulfur pollutants is stressed. (Author/MA)

  20. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  1. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than

  2. THERMOCHEMISTRY AND KINETICS OF SULFUR CONTAINING MOLECULES AND RADICALS

    EPA Science Inventory

    The relevant thermochemistry of sulfur oxides is discussed, and selected 'best' thermochemical values for use in kinetic systems are presented. Although the kinetics of air pollution and combustion involve mostly homogeneous gas phase reactions, the data taken from condensed phas...

  3. A Conductivity Device for Measuring Sulfur Dioxide in the Air

    ERIC Educational Resources Information Center

    Craig, James C.

    1972-01-01

    Described is a general electroconductivity device enabling students to determine sulfur dioxide concentration in a particular location, hopefully leading to a deeper understanding of the problem of air pollution. (DF)

  4. Acidophilic sulfur disproportionation

    NASA Astrophysics Data System (ADS)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  5. Recovery of soil properties after seedlings Inoculation with AM fungi and addition of composted olive mill waste in the regeneration of a heavy metal polluted environment

    NASA Astrophysics Data System (ADS)

    curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; del Mar Alguacil, Maria; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) on the establishment of Tetraclinis articulata and soil properties in a heavy metal polluted soil. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96% and 60% respectively. These treatments trended to improve the soils properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided G-mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs; because it promotes soil properties, a better performance of plants for supporting the stress in heavy-metal contaminated soils derived from mining process, and also can be a good way for olive mill wastes disposal.

  6. Volcanic sulfur

    NASA Astrophysics Data System (ADS)

    Hobbs, Peter V.

    Although I may be overly demanding in expecting a member of the Eos staff to be familiar with recent articles in AGU journals, I am moved to make a mild protest concerning attribution in the “Volcanic Sulfur Dynamics” news item by Mario E. Godinez (Eos, June 14, 1983, p. 411).Since the news story stated that an important result of the RAVE experiment was to estimate the SO2 flux from Mount St. Helens on just one day, I must point out that both my research group and USGS scientists have monitored the emissions from Mount St. Helens and estimated SO2 (and other) fluxes over extended periods of time. Our results, which were based on in situ airborne measurements carried out over a period of a year, include estimates of the flux rates of SO2, H2S, H2O, sulfates, halides, and various other particles, prior to, during, and after the explosive eruption of Mount St. Helens on May 18, 1980 [Hobbs et al., 1983]. The USGS measurements, which are made remotely through use of an airborne correlation spectrometer, also commenced in 1980 a n d have provided data several times a week since that time [Casadevall et al., 1981]. We have also estimated the fluxes of various materials (including SO2) from eight other volcanos [Radke et al.., 1976; Stith et al.., 1978; Radke, 1982].

  7. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol.

    PubMed

    Jiang, Jun; Xu, Ren-kou; Jiang, Tian-yu; Li, Zhuo

    2012-08-30

    To develop new remediation methods for acidic soils polluted by heavy metals, the chemical fractions of Cu(II), Pb(II) and Cd(II) in an Ultisol with and without rice straw biochar were compared and the effect of biochar incorporation on the mobility and bioavailability of these metals was investigated. In light of the decreasing zeta potential and increasing CEC, the incorporation of biochar made the negative soil surface charge more negative. Additionally, the soil pH increased markedly after the addition of biochar. These changes in soil properties were advantageous for heavy metal immobilization in the bulk soil. The acid soluble Cu(II) and Pb(II) decreased by 19.7-100.0% and 18.8-77.0%, respectively, as the amount of biochar added increased. The descending range of acid soluble Cd(II) was 5.6-14.1%, which was much lower than that of Cu(II) and Pb(II). When 5.0 mmol/kg of these heavy metals was added, the reducible Pb(II) for treatments containing 3% and 5% biochar was 2.0 and 3.0 times higher than that of samples without biochar, while the reducible Cu(II) increased by 61.6% and 132.6% for the corresponding treatments, respectively. When 3% and 5% biochar was added, the oxidizable portion of Pb(II) increased by 1.18 and 1.94 times, respectively, while the oxidizable portion of Cu(II) increased by 8.13 and 7.16 times, respectively, primarily due to the high adsorption affinity of functional groups of biochar to Cu(II). The residual heavy metal contents were low and changed little with the incorporation of biochar. PMID:22704774

  8. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  9. DOAS URBAN POLLUTION MEASUREMENTS

    EPA Science Inventory

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. ver path 1 (1099 m) and path 2 (1824 m), ozone (O3), sulfur dioxide (SO2), nitrogen d...

  10. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  11. Estimating uncertainty in policy analysis: health effects from inhaled sulfur oxides

    SciTech Connect

    Amaral, D.A.L.

    1983-01-01

    This study presents methods for the incorporation of uncertainty into quanitative analysis of the problem of estimating health risks from coal-fired power plants. Probabilistic long-range models of sulfur material balance and sets of plume trajectories are combined to produce probabilistic estimates of population exposure to sulfur air pollution for the addition of a hypothetical coal-burning power plant in the Ohio River Valley. In another segment, the change in population exposure which might occur if ambient sulfate were to be reduced everywhere in the northeastern United States is calculated. A third case is made up of a set of hypothetical urban and rural scenarios representing typical northeastern situations. Models of health impacts obtained through the elicitation of subjective expert judgment are applied to each of these population exposure estimates. Seven leading experts in the field of sulfur air pollution and health participated, yielding five quantitative models for morbidity and/or mortality effects from human exposure to ambient sulfate. In each case analyzed, the predictions based on probability distributions provided by the experts spanned several orders of magnitude, including some predictions of zero effects and some of up to a few percent of the total morality. It is concluded that uncertainty about whether sulfate has adverse effects dominates the scientific uncertainty about the atmospheric processes which generate and transport this pollutant.

  12. Western forests and air pollution

    SciTech Connect

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses.

  13. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  14. Pollution's Price--The Cost in Human Health

    ERIC Educational Resources Information Center

    Newill, Vaun A.

    1973-01-01

    Discusses the detrimental effects of air pollution, and especially sulfur dioxide, on human health. Any relaxation of existing national air pollution standards because of the energy crisis could be costly in terms of the nation's health. (JR)

  15. INTERNATIONAL APPROACHES TO DEVELOPING STANDARDS FOR NONCRITERIA POLLUTANTS

    EPA Science Inventory

    Much of the initial interest in the control of pollutants, both in the United States and abroad, focused on such "traditional" pollutants as sulfur dioxide, particulate matter, Total Suspended Particulate (TSP) and particulate matter, nitrogen oxides, carbon monoxide, ozone, and ...

  16. Thermolysis of bibenzyl: roles of sulfur and hydrogen sulfide

    SciTech Connect

    Stenberg, V.I.; Hei, R.D.

    1985-05-31

    The presence of sulfur in the thermolysis of bibenzyl considerably reduces the severity of the conditions required to cleave the aliphatic carbon-carbon bond. Bibenzyl rapidly reacts with sulfur at 425/sup 0/C to give nine fully characterized products: benzene, toluene, ethylbenzene, diphenylmethane, 1,1-diphenylethane, trans-stilbene, phenanthrene, 2-phenylbenzothiophene, and 2,3,4,5-tetraphenylthiophene. Toluene is the principal product, and its yields are dependent on reaction time, temperature, and sulfur loading. With the addition of H/sub 2/S to the sulfur-bibenzyl reaction mixture, the required elemental sulfur loading for maximum toluene yields is greatly decreased, and the mass recovery decreases with amounts of sulfur loaded. The two minor products, 2-phenylbenzothiophene and 2,3,4,5-tetraphenylthiophene, give evidence of sulfur incorporation under these sulfur concentration conditions. The addition of hydrogen to the reaction mixtures improves mass recovery and decreases conversion. 27 references, 4 figures, 4 tables.

  17. Examining food additives and spices for their anti-oxidant ability to counteract oxidative damage due to chronic exposure to free radicals from environmental pollutants

    NASA Astrophysics Data System (ADS)

    Martinez, Raul A., III

    The main objective of this work was to examine food additives and spices (from the Apiaceae family) to determine their antioxidant properties to counteract oxidative stress (damage) caused by Environmental pollutants. Environmental pollutants generate Reactive Oxygen species and Reactive Nitrogen species. Star anise essential oil showed lower antioxidant activity than extracts using DPPH scavenging. Dill Seed -- Anethum Graveolens -the monoterpene components of dill showed to activate the enzyme glutathione-S-transferase , which helped attach the antioxidant molecule glutathione to oxidized molecules that would otherwise do damage in the body. The antioxidant activity of extracts of dill was comparable with ascorbic acid, alpha-tocopherol, and quercetin in in-vitro systems. Black Cumin -- Nigella Sativa: was evaluated the method 1,1-diphenyl2-picrylhhydrazyl (DPPH) radical scavenging activity. Positive correlations were found between the total phenolic content in the black cumin extracts and their antioxidant activities. Caraway -- Carum Carvi: The antioxidant activity was evaluated by the scavenging effects of 1,1'-diphenyl-2-picrylhydrazyl (DPPH). Caraway showed strong antioxidant activity. Cumin -- Cuminum Cyminum - the major polyphenolic were extracted and separated by HPTLC. The antioxidant activity of the cumin extract was tested on 1,1'-diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging. Coriander -- Coriandrum Sativum - the antioxidant and free-radical-scavenging property of the seeds was studied and also investigated whether the administration of seeds curtails oxidative stress. Coriander seed powder not only inhibited the process of Peroxidative damage, but also significantly reactivated the antioxidant enzymes and antioxidant levels. The seeds also showed scavenging activity against superoxides and hydroxyl radicals. The total polyphenolic content of the seeds was found to be 12.2 galic acid equivalents (GAE)/g while the total flavonoid content

  18. Pulmonary response to threshold levels of sulfur dioxide (1. 0 ppm) and ozone (0. 3 ppm) (journal version)

    SciTech Connect

    Folinsbee, L.J.; Bedi, J.F.; Horvath, S.M.

    1985-01-01

    The authors exposed 22 healthy adult non-smoking men for 2 hours to either filtered air, 1.0 ppm sulfur dioxide, 0.30 ppm ozone, or the combination of 1.0 ppm sulfur dioxide plus 0.30 ppm ozone. It was hypothesized that exposure to near-threshold concentrations of these pollutants would show any interaction between the two pollutants that might have been masked by the more-obvious response to the higher concentrations of ozone used in previous studies. Each subject alternated 30-minute treadmill exercise with 10-minute rest periods for the 2 hours. Following ozone exposure alone, forced expiratory measurements (FVC, FEV-1, and FEF25-75%) were significantly decreased. The combined exposure to SO/sub 2/ plus O/sub 3/ produced similar but smaller decreases in these measures. There were small but significant differences between the ozone and the ozone plus sulfur dioxide exposure for FVC, FEV-1,-2,-3, and FEF25-75% at the end of the 2-hour exposure. It was concluded that, with these pollutant concentrations, there is no additive or synergistic effect of the two pollutants on pulmonary function.

  19. 40 CFR 80.213 - What alternative sulfur standards and requirements apply to transmix processors and transmix...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What alternative sulfur standards and... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.213 What alternative sulfur standards and... TGP meets the applicable sulfur standards under § 80.210 or § 80.220, prior to the TGP leaving...

  20. 40 CFR 80.213 - What alternative sulfur standards and requirements apply to transmix processors and transmix...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What alternative sulfur standards and... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.213 What alternative sulfur standards and... TGP meets the applicable sulfur standards under § 80.210 or § 80.220, prior to the TGP leaving...

  1. 40 CFR 80.213 - What alternative sulfur standards and requirements apply to transmix processors and transmix...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What alternative sulfur standards and... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.213 What alternative sulfur standards and... TGP meets the applicable sulfur standards under § 80.210 or § 80.220, prior to the TGP leaving...

  2. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  3. Sulfur tolerant anode materials

    SciTech Connect

    Not Available

    1987-02-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  4. KINETIC STUDIES OF SIMULATED POLLUTED ATMOSPHERES

    EPA Science Inventory

    The kinetics and reaction mechanisms of several important atmospheric contaminants - SO2, formaldehyde, nitrous acid, and the nitrosamines - were assessed to help quantify some key aspects of the chemistry of polluted atmospheres. The reactions and lifetimes of excited sulfur dio...

  5. Seeking More Effective Management of Freshwater Pollution

    EPA Science Inventory

    The atmosphere contains airborne pollutants such as mercury, nitrogen oxides, and sulfur oxides released from automobiles, factories, and power plants. Similarly, land surfaces such as croplands, feedlots, logged forests, construction sites, and urban land surfaces may be reserv...

  6. Drug Targets in Mycobacterial Sulfur Metabolism

    PubMed Central

    Bhave, Devayani P.; Muse, Wilson B.; Carroll, Kate S.

    2011-01-01

    The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress in the development of inhibitors of sulfur metabolism enzymes. PMID:17970225

  7. Transformations in understanding the health impacts of air pollutants in the 20th century

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2009-02-01

    The transformations of air pollution in the 20th century are well known. The century opened with urban atmospheres polluted by the combustion products of burning coal: smoke and sulfur dioxide. At the millennium these pollutants had almost vanished, replaced by the pollutants, both primary and secondary, a function of fossil-fuelled vehicles. However transitions in terms of health outcomes have been equally dramatic. Fine particulate matter causes notable cardiovascular problems such as increased incidence of stroke and heart attack, although the mechanism remains somewhat unclear. Cancer inducing air pollutants remain a concern, but in addition more recently there has been a rising interest in the presence of neurotoxins and endocrine disrupting substances in the environment.

  8. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur standards? 80.240 Section 80.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur...

  9. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose...

  10. 40 CFR 80.295 - How is a refinery sulfur baseline determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery sulfur baseline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Abt Program-Baseline Determination § 80.295 How is a refinery sulfur baseline determined? (a) A refinery's gasoline sulfur...

  11. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers?...

  12. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose...

  13. 40 CFR 80.295 - How is a refinery sulfur baseline determined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How is a refinery sulfur baseline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Abt Program-Baseline Determination § 80.295 How is a refinery sulfur baseline determined? (a) A refinery's gasoline sulfur...

  14. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur standards? 80.240 Section 80.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur...

  15. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur standards? 80.240 Section 80.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur...

  16. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose...

  17. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers?...

  18. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur standards? 80.240 Section 80.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur...

  19. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose...

  20. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose...

  1. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur standards? 80.240 Section 80.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur...

  2. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers?...

  3. 40 CFR 80.295 - How is a refinery sulfur baseline determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How is a refinery sulfur baseline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Abt Program-Baseline Determination § 80.295 How is a refinery sulfur baseline determined? (a) A refinery's gasoline sulfur...

  4. 40 CFR 80.1603 - Gasoline sulfur standards for refiners and importers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Gasoline sulfur standards for refiners... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1603 Gasoline sulfur standards for refiners and importers. (a) Sulfur standards—(1) Annual average standard....

  5. 40 CFR 80.295 - How is a refinery sulfur baseline determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How is a refinery sulfur baseline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Abt Program-Baseline Determination § 80.295 How is a refinery sulfur baseline determined? (a) A refinery's gasoline sulfur...

  6. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers?...

  7. 40 CFR 80.295 - How is a refinery sulfur baseline determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How is a refinery sulfur baseline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Abt Program-Baseline Determination § 80.295 How is a refinery sulfur baseline determined? (a) A refinery's gasoline sulfur...

  8. Examining food additives and spices for their anti-oxidant ability to counteract oxidative damage due to chronic exposure to free radicals from environmental pollutants

    NASA Astrophysics Data System (ADS)

    Martinez, Raul A., III

    The main objective of this work was to examine food additives and spices (from the Apiaceae family) to determine their antioxidant properties to counteract oxidative stress (damage) caused by Environmental pollutants. Environmental pollutants generate Reactive Oxygen species and Reactive Nitrogen species. Star anise essential oil showed lower antioxidant activity than extracts using DPPH scavenging. Dill Seed -- Anethum Graveolens -the monoterpene components of dill showed to activate the enzyme glutathione-S-transferase , which helped attach the antioxidant molecule glutathione to oxidized molecules that would otherwise do damage in the body. The antioxidant activity of extracts of dill was comparable with ascorbic acid, alpha-tocopherol, and quercetin in in-vitro systems. Black Cumin -- Nigella Sativa: was evaluated the method 1,1-diphenyl2-picrylhhydrazyl (DPPH) radical scavenging activity. Positive correlations were found between the total phenolic content in the black cumin extracts and their antioxidant activities. Caraway -- Carum Carvi: The antioxidant activity was evaluated by the scavenging effects of 1,1'-diphenyl-2-picrylhydrazyl (DPPH). Caraway showed strong antioxidant activity. Cumin -- Cuminum Cyminum - the major polyphenolic were extracted and separated by HPTLC. The antioxidant activity of the cumin extract was tested on 1,1'-diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging. Coriander -- Coriandrum Sativum - the antioxidant and free-radical-scavenging property of the seeds was studied and also investigated whether the administration of seeds curtails oxidative stress. Coriander seed powder not only inhibited the process of Peroxidative damage, but also significantly reactivated the antioxidant enzymes and antioxidant levels. The seeds also showed scavenging activity against superoxides and hydroxyl radicals. The total polyphenolic content of the seeds was found to be 12.2 galic acid equivalents (GAE)/g while the total flavonoid content

  9. Effects of variation of dietary sulfur on movement of sulfur in sheep rumen

    SciTech Connect

    Kandylis, K.; Bray, A.C.

    1987-01-01

    Effects of variations in dietary sulfur on rumen sulfur dynamics were studied under steady state conditions. In the first experimental period, three sheep were given 33.3 g of a pelleted diet hourly containing 1.59 g sulfur/kg (low) and in the second period the sulfur content was increased to 3.21 g/kg (high) by the addition of sodium sulfate. The daily sulfur intake was 1.158 g on the low sulfur diet and .545 g of this passed from the rumen in protein, .614 g was calculated to be absorbed from the rumen as sulfide, and .052 g was estimated to be recycled to the rumen. For sheep with daily intakes of 2.317 g sulfur, 1.212 g passed from the rumen in protein, 1.078 g was absorbed from the rumen, and .093 g was estimated to be recycled. It was estimated that 127 and 165 g microbial protein were synthesized/kg organic matter truly digested in the rumen for low and high sulfur diets, respectively. A simple model using simultaneous equations was proposed to describe rumen sulfur metabolism.

  10. Air pollution and venous thrombosis: a meta-analysis

    PubMed Central

    Tang, Liang; Wang, Qing-Yun; Cheng, Zhi-Peng; Hu, Bei; Liu, Jing-Di; Hu, Yu

    2016-01-01

    Exposure to air pollution has been linked to cardiovascular and respiratory disorders. However, the effect of air pollution on venous thrombotic disorders is uncertain. We performed a meta-analysis to assess the association between air pollution and venous thrombosis. PubMed, Embase, EBM Reviews, Healthstar, Global Health, Nursing Database, and Web of Science were searched for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matters) and venous thrombosis. Using a random-effects model, overall risk estimates were derived for each increment of 10 μg/m3 of pollutant concentration. Of the 485 in-depth reviewed studies, 8 citations, involving approximately 700,000 events, fulfilled the inclusion criteria. All the main air pollutants analyzed were not associated with an increased risk of venous thrombosis (OR = 1.005, 95% CI = 0.998–1.012 for PM2.5; OR = 0.995, 95% CI = 0.984–1.007 for PM10; OR = 1.006, 95% CI = 0.994–1.019 for NO2). Based on exposure period and thrombosis location, additional subgroup analyses provided results comparable with those of the overall analyses. There was no evidence of publication bias. Therefore, this meta analysis does not suggest the possible role of air pollution as risk factor for venous thrombosis in general population. PMID:27600652

  11. Air pollution and venous thrombosis: a meta-analysis.

    PubMed

    Tang, Liang; Wang, Qing-Yun; Cheng, Zhi-Peng; Hu, Bei; Liu, Jing-Di; Hu, Yu

    2016-01-01

    Exposure to air pollution has been linked to cardiovascular and respiratory disorders. However, the effect of air pollution on venous thrombotic disorders is uncertain. We performed a meta-analysis to assess the association between air pollution and venous thrombosis. PubMed, Embase, EBM Reviews, Healthstar, Global Health, Nursing Database, and Web of Science were searched for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matters) and venous thrombosis. Using a random-effects model, overall risk estimates were derived for each increment of 10 μg/m(3) of pollutant concentration. Of the 485 in-depth reviewed studies, 8 citations, involving approximately 700,000 events, fulfilled the inclusion criteria. All the main air pollutants analyzed were not associated with an increased risk of venous thrombosis (OR = 1.005, 95% CI = 0.998-1.012 for PM2.5; OR = 0.995, 95% CI = 0.984-1.007 for PM10; OR = 1.006, 95% CI = 0.994-1.019 for NO2). Based on exposure period and thrombosis location, additional subgroup analyses provided results comparable with those of the overall analyses. There was no evidence of publication bias. Therefore, this meta analysis does not suggest the possible role of air pollution as risk factor for venous thrombosis in general population. PMID:27600652

  12. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  13. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System.

    PubMed

    Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases. PMID:26839635

  14. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System

    PubMed Central

    Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases. PMID:26839635

  15. DSRP, Direct Sulfur Production

    SciTech Connect

    Gangwal, S.K.; McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B.; Chen, D.H.; Hopper, J.R.

    1993-08-01

    Hot-gas desulfurization processes for IGCC and other advanced power applications utilize regenerable mixed-metal oxide sorbents to remove hydrogen sulfide (H{sub 2}S) from raw coal gas. Regeneration of these sorbents produces an off-gas typically containing I to 3 percent sulfur dioxide (SO{sub 2}). Production of elemental sulfur is a highly desirable option for the ultimate disposal of the SO{sub 2} content of this off-gas. Elemental sulfur, an essential industrial commodity, is easily stored and transported. As shown in Figure 1, the DSRP consists of two catalytic reactors, each followed by a sulfur condenser. Hot regenerator off-gas is mixed with a hot coal-gas slip stream and fed to the first DSRP reactor. Approximately 95 percent of the sulfur gas in the inlet stream of the first reactor is converted to elemental sulfur. The outlet gas of the first DSRP reactor is cooled, condensing out sulfur. The gas could be recycled after the Stage I condenser. Alteratively, by adjusting the proportion of coal gas to regenerator off-gas, the effluent composition of the first reactor can be controlled to produce an H{sub 2}S-to-SO{sub 2} ratio of 2 to 1 at 95 percent sulfur conversion. The cooled gas stream is then passed to the second DSRP reactor where 80 to 90 percent of the remaining sulfur compounds are converted to elemental sulfur via the modified Claus reaction at high pressure. The total efficiency of the two reactors for the conversion of sulfur compounds to elemental sulfur is projected to be about 99.5 percent.

  16. A screening procedure to evaluate air pollution effects on Class I wilderness areas

    SciTech Connect

    Fox, D.G.; Bartuska, A.M.; Byrne, J.G.; Cowling, E.; Fisher, R.; Likens, G.E.; Lindberg, S.E.; Linthurst, R.A.; Messer, J.; Nichols, D.S.

    1989-01-01

    This book presents a screening procedure, intended to help wilderness managers conduct adverse impact determinations as part of Prevention of Significant Deterioration (PSD) applications for sources that emit air pollutants that might impact class I wildernesses. This procedure provides an initial estimate of susceptibility to critical loadings for sulfur, nitrogen, and ozone. It also provides a basis for requesting necessary additional information where potential adverse impacts are identified.

  17. Generation of Sulfur-rich, Sulfur-undersaturated Basaltic Melts in Oxidized Arc Sources.

    NASA Astrophysics Data System (ADS)

    Jugo, P. J.; Luth, R. W.; Richards, J. P.

    2003-12-01

    Although sulfur is a minor element in the Earth, it has a disproportionate impact because it commonly occurs as sulfide. Sulfides largely control the behavior of chalcophile (e.g., Cu, Ni) and highly siderophile elements (Ru, Rh, Pd, Re, Os, Ir, Pt, and Au) that are of interest because either they are economically important or because they provide valuable information about geochemical processes. Island arc basalts are more oxidized than basalts from other tectonic settings and therefore, in these settings, sulfur maybe present not as sulfide but as sulfate. In addition to the impact on the behavior of chalcophile and siderophile elements, sulfur speciation as sulfate may have a role on the occurrence of sulfur-rich explosive volcanism, which has been linked to significant short-term variations in global climate. However, little is known about the range in oxygen fugacity for the transition from solubility as sulfide to solubility as sulfate. We used experimental data on the solubility of sulfur in basaltic melts saturated with either sulfide or sulfate at different oxygen fugacities to model this transition. Our model shows that the ten-fold increase in the solubility of sulfur (from 0.14 wt.% to 1.5 wt.%) observed experimentally occurs at oxygen fugacities between ˜FMQ+1 and ˜FMQ+2, conditions under which many arc magmas are thought to be generated. The increase in the solubility of sulfur with increasing oxygen fugacity implies that in oxidized arc sources very low degrees of partial melting are sufficient to generate basaltic melts that are simultaneously sulfur-rich and sulfur-undersaturated. In the absence of sulfides, oxides and metallic alloys may influence the behavior of some (but not all) the highly siderophile elements whereas the chalcophile and some siderophile elements become incompatible. As a consequence, melting of oxidized sources in which sulfides are not stable would favor incorporation of metals such as Cu, Ni, Au and Pd in the melts and

  18. EPA rule could cut pollutants

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Environmental Protection Agency issued a rule on November 14 that it claims could nearly eliminate dioxin discharges into waterways and reduce other toxic pollutants into the air and water from 155 pulp and paper mills.EPA estimates that results will include a 96% reduction in dioxin and a nearly 60% reduction in toxic air pollutants. Also, volatile organic compounds and sulfur emissions could be cut in half, with particulate matter cut by 37%.

  19. Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control

    DOEpatents

    Boardman, Richard D.; Carrington, Robert A.

    2008-06-10

    A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.

  20. Future Sulfur Dioxide Emissions

    SciTech Connect

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  1. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  2. Large sulfur isotope fractionation does not require disproportionation.

    PubMed

    Sim, Min Sub; Bosak, Tanja; Ono, Shuhei

    2011-07-01

    The composition of sulfur isotopes in sedimentary sulfides and sulfates traces the sulfur cycle throughout Earth's history. In particular, depletions of sulfur-34 ((34)S) in sulfide relative to sulfate exceeding 47 per mil (‰) often serve as a proxy for the disproportionation of intermediate sulfur species in addition to sulfate reduction. Here, we demonstrate that a pure, actively growing culture of a marine sulfate-reducing bacterium can deplete (34)S by up to 66‰ during sulfate reduction alone and in the absence of an extracellular oxidative sulfur cycle. Therefore, similar magnitudes of sulfur isotope fractionation in sedimentary rocks do not unambiguously record the presence of other sulfur-based metabolisms or the stepwise oxygenation of Earth's surface environment during the Proterozoic. PMID:21719675

  3. Organic Sulfur Gas Production in Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Engel, A. S.; Bennett, P. C.

    2001-12-01

    Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic

  4. Acute effects of a winter air pollution episode on pulmonary function and respiratory symptoms of children

    SciTech Connect

    Hoek, G.; Brunekreef, B. )

    1993-09-01

    The acute respiratory effects of a wintertime air pollution episode were studied in a general population sample of 112 children who were 7-12 y of age and who lived in a nonurban community. Spirometry was performed on 6 d, with a fixed interval of 3 wk between successive tests. During an air pollution episode, an additional pulmonary function test was made. Acute respiratory symptoms of the children were noted in a diary. Ambient concentrations of sulfur dioxide, black smoke, particulate matter with an aerodynamic diameter less than 10 microns, and nitrogen dioxide were considered as exposure variables. The association of air pollution with pulmonary function and prevalence of acute respiratory symptoms was assessed by individual linear regression analysis and time series analysis, respectively. In February 1991, an air pollution episode occurred during which daily average sulfur dioxide concentrations were slightly above 100 micrograms/m3, and particulate matter (with an aerodynamic diameter of less than 10 microns) concentrations reached 174 micrograms/m3. During the episode, forced vital capacity, forced expiratory volume in 1 s, and maximal mid-expiratory flow were lower than on baseline tests. Significant negative associations were found between the concentration of sulfur dioxide, black smoke, and particulate matter with an aerodynamic diameter of less than 10 microns. No association between prevalence of acute respiratory symptoms and the concentration of these compounds was found.

  5. Examination of sulfur forms in coal by direct pyrolysis and flameless ozone-sulfur chemiluminescence detection

    SciTech Connect

    Glinski, R.J.; Xu, Xiaoyang; McGowan, C.W.

    1995-12-31

    The extremely high selectivity of the newly developed ozone-sulfur chemiluminescence detector (SCD) has been coupled with controlled-temperature pyrolysis to allow qualitative and semiquantitative determination of sulfur forms in coal. Pyrolysis products from the heating of a sulfur containing solid sample were swept directly through a high-temperature conversion tube and into the SCD to yield a strong signal. Upon heating the pyrolysis tube from room temperature to 700 degrees C, several distinct peaks were observed by the SCD, identified as being due to aliphatic sulfides and thiols, elemental sulfur, simple thiophenes, pyrite, and complex thiophenes. Standard addition of the pure inorganic substances provided semiquantitative determinations. Three coals were examined and could be quickly and easily distinguished by their sulfur forms. The results are compared with those of other pyrolysis methods.

  6. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite.

    PubMed

    Zhu, Wei; Xia, Jin-Lan; Yang, Yi; Nie, Zhen-yuan; Zheng, Lei; Ma, Chen-yan; Zhang, Rui-yong; Peng, An-an; Tang, Lu; Qiu, Guan-zhou

    2011-02-01

    The sulfur oxidation activities of four pure thermophilic archaea Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and their mixture in bioleaching chalcopyrite were compared. Meanwhile, the relevant surface sulfur speciation of chalcopyrite leached with the mixed thermophilic archaea was investigated. The results showed that the mixed culture, with contributing significantly to the raising of leaching rate and accelerating the formation of leaching products, may have a higher sulfur oxidation activity than the pure cultures, and jarosite was the main passivation component hindering the dissolution of chalcopyrite, while elemental sulfur seemed to have no influence on the dissolution of chalcopyrite. In addition, the present results supported the former speculation, i.e., covellite might be converted from chalcocite during the leaching experiments, and the elemental sulfur may partially be the derivation of covellite and chalcocite. PMID:21194927

  7. Relations between sulfur and heavy elements in rural atmospheres

    NASA Astrophysics Data System (ADS)

    Navarre, J. L.; Priest, P.; Ronneau, C.

    Sulfur dioxide was used as an indicator of the occurrence of air pollution episodes in a rural area of Belgium. Provided air particulates sampling operations are strictly synchronized with SO 2 immission episodes, correlations appeared between the levels in air of sulfur and the levels of some toxic metals. Comparing the relative proportions of sulfur and metals in air with emission data for combustion sources in Belgium (coal especially) leads to the conclusion that combustion is probably the main source of toxic elements likely to contaminate rural atmospheres. On the other hand, it appears that industrial zone characterization is feasible by comparing the relative proportions of some specific metals in air.

  8. The Phases of Sulfur.

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.

    1995-01-01

    Presents a demonstration that illustrates the dramatic changes that sulfur undergoes upon heating to 200 degrees centigrade and then cooling to room temperature. Supplements the demonstration of the rubberlike properties of catenasulfur made by rapid cooling of the sulfur melt in ice water. (JRH)

  9. Sulfur isotopic data

    SciTech Connect

    Rye, R.O.

    1987-01-01

    Preliminary sulfur isotope data have been determined for samples of the Vermillion Creek coal bed and associated rocks in the Vermillion Creek basin and for samples of evaporites collected from Jurassic and Triassic formations that crop out in the nearby Uinta Mountains. The data are inconclusive, but it is likely that the sulfur in the coal was derived from the evaporites.

  10. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    USGS Publications Warehouse

    Hackley, Keith C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W.

    1990-01-01

    Hot tetrachloroethene (perchloroethylene, PCE) extracts significant amounts of elemental sulfur (So) from weathered coals but not from pristine coals. The objective of this study was to determine whether So extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted So was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The So was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, So and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. ?? 1990.

  11. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  12. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  13. Nanostructured sulfur cathodes.

    PubMed

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. PMID:23325336

  14. Aircraft exhaust sulfur emissions

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Anderson, M. R.; Miake-Lye, R. C.; Kolb, C. E.; Sorokin, A. A.; Buriko, Y. Y.

    The conversion of fuel sulfur to S(VI) (SO3 + H2SO4) in supersonic and subsonic aircraft engines is estimated numerically. Model results indicate between 2% and 10% of the fuel sulfur is emitted as S(VI). It is also shown that, for a high sulfur mass loading, conversion in the turbine is kinetically limited by the level of atomic oxygen. This results in a higher oxidation efficiency at lower sulfur loadings. SO3 is the primary S(VI) oxidation product and calculated H2SO4 emission levels were less than 1% of the total fuel sulfur. This source of S(VI) can exceed the S(VI) source due to gas phase oxidation in the exhaust wake.

  15. Regional river sulfur runoff

    SciTech Connect

    Husar, R.B.; Husar, J.D.

    1985-01-20

    The water and sulfur runoff data for 54 large river basins were assembled, covering 65% of the nondesert land area of the world. The sulfur concentration ranges from 0.5 mg S/L for the West African rivers Niger and Volta to 100 mg S/L in the Colorado River; the world average is 3.2 mg S/L. The concentrations in central and eastern Europe as well as central and eastern North America exceed 8 mg S/L. The sulfur runoff density is also highest in the river basins over these industrialized regions, exceeding 2 g S/m/sup 2//yr. However, high sulfur runoff density in excess of 3 g S/m/sup 2//yr is also measured over the Pacific islands New Zealand and New Guinea and the archipelagos of Indonesia and the Philippines. The natural background sulfur runoff was estimated by assuming that South America, Africa, Australia, and the Pacific Islands are unperturbed by man and that the average river sulfur concentration is in the range 1--3 mg S/L. Taking these background concentration values, the man-induced sulfur runoff for Europe ranges between 2 and 8 times the natural flow, and over North America, man's contribution ranges between 1 and 5 times the natural runoff. The global sulfur flow from nondesert land to the oceans and the Caspian Sea is estimated as 131 Tg S/yr, of which 46--85 Tg S/yr is attributed to natural causes. The regional river sulfur runoff pattern discussed in this paper does not have enough spatial resolution to be directly applicable to studies of the environmental effects of man-induced sulfur flows. However, it points to the continental-size regions where those perturbations are most evident and to the magnitude of the perturbations as expressed in units of the natural flows.

  16. Regional river sulfur runoff

    NASA Astrophysics Data System (ADS)

    Husar, Rudolf B.; Husar, Janja Djukic

    1985-01-01

    The water and sulfur runoff data for 54 large river basins were assembled, covering 65% of the nondesert land area of the world. The sulfur concentration ranges from 0.5 mg S/L for the West African rivers Niger and Volta to 100 mg S/L in the Colorado River; the world average is 3.2 mg S/L. The concentrations in central and eastern Europe as well as central and eastern North America exceed 8 mg S/L. The sulfur runoff density is also highest in the river basins over these industrialized regions, exceeding 2 g S/m2/yr. However, high sulfur runoff density in excess of 3 g S/m2/yr is also measured over the Pacific islands New Zealand and New Guinea and the archipelagos of Indonesia and the Philippines. The natural background sulfur runoff was estimated by assuming that South America, Africa, Australia, and the Pacific Islands are unperturbed by man and that the average river sulfur concentration is in the range 1-3 mg S/L. Taking these background concentration values, the man-induced sulfur runoff for Europe ranges between 2 and 8 times the natural flow, and over North America, man's contribution ranges between 1 and 5 times the natural runoff. The global sulfur flow from nondesert land to the oceans and the Caspian Sea is estimated as 131 Tg S/yr, of which 46-85 Tg S/yr is attributed to natural causes. The regional river sulfur runoff pattern discussed in this paper does not have enough spatial resolution to be directly applicable to studies of the environmental effects of man-induced sulfur flows. However, it points to the continental-size regions where those perturbations are most evident and to the magnitude of the perturbations as expressed in units of the natural flows.

  17. Response of radish to nitrogen dioxide, sulfur dioxide, and ozone, alone and in combination

    SciTech Connect

    Reinert, R.A.; Gray, T.N.

    1981-04-01

    Effects on radish (Raphanus sativus L.) cv. Cherry Belle of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and ozone (O/sub 3/) alone and in combination at 0.2 and 0.4 ppM of each pollutant were studied. There was no difference in foilage or root weight of radish between exposure durations of 3 to 6 hours, and no significant interaction of hours with air pollutant and concentration. Ozone reduced root dry weight more at 0.4 ppM than at 0.2 ppM. Sulfur dioxide depressed the root/shoot ratio at both 0.2 and 0.4 ppM; however, when NO/sub 2/ and SO/sub 2/ were both present there was synergistic depression of the root/shoot ratio at 0.4 ppM. The average O/sub 3/-induced reduction in root weight of radish (1.75 g fresh and 101 mg dry, per plant) was additive in the presence of NO/sub 2/ and SO/sub 2/. The weight of the root was reduced even though the foilage was the direct receptor of the pollutant stress.

  18. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.

    PubMed

    Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming

    2013-06-25

    Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries. PMID:23672616

  19. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites.

    PubMed

    Wei, Shuya; Ma, Lin; Hendrickson, Kenville E; Tu, Zhengyuan; Archer, Lynden A

    2015-09-23

    Sulfur/polyacrylonitrile composites provide a promising route toward cathode materials that overcome multiple, stubborn technical barriers to high-energy, rechargeable lithium-sulfur (Li-S) cells. Using a facile thermal synthesis procedure in which sulfur and polyacrylonitrile (PAN) are the only reactants, we create a family of sulfur/PAN (SPAN) nanocomposites in which sulfur is maintained as S3/S2 during all stages of the redox process. By entrapping these smaller molecular sulfur species in the cathode through covalent bonding to and physical confinement in a conductive host, these materials are shown to completely eliminate polysulfide dissolution and shuttling between lithium anode and sulfur cathode. We also show that, in the absence of any of the usual salt additives required to stabilize the anode in traditional Li-S cells, Li-SPAN cells cycle trouble free and at high Coulombic efficiencies in simple carbonate electrolytes. Electrochemical and spectroscopic analysis of the SPAN cathodes at various stages of charge and discharge further show a full and reversible reduction and oxidation between elemental sulfur and Li-ions in the electrolyte to produce Li2S as the only discharge product over hundreds of cycles of charge and discharge at fixed current densities. PMID:26325146

  20. Process for production of synthesis gas with reduced sulfur content

    DOEpatents

    Najjar, Mitri S.; Corbeels, Roger J.; Kokturk, Uygur

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  1. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  2. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China. PMID:25903190

  3. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOEpatents

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  4. Atmospheric deposition of nitrogen and sulfur in Louisiana

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guo, H.

    2015-12-01

    Wet deposition and dry deposition reduce their concentrations of sulfur and nitrogen contained air pollutants in atmosphere, but lead to increase of sulfur and nitrogen fluxes to the surface. Atmospheric deposition of sulfur and nitrogen can lead to acidification of surface water bodies (lakes, rivers, and coasts) and subsequent damage to aquatic ecosystems as well as damage to forests and vegetation. Louisiana has abundant water resources with approximately 11% of the total surface area composed of water bodies. It is important to protect water resources from excessive atmospheric deposition of sulfur and nitrogen. However, the information obtained from the observation systems for understanding the deposition of sulfur and nitrogen and the adverse effects in Louisiana is limited. This study uses a source-oriented CMAQ model to simulate emission, formation, transport, and deposition of sulfur and nitrogen species in Louisiana. WRF is used to generate the meteorological inputs and SMOKE is used to generate the emissions based on national emission inventory (NEI). The forms and quantities of sulfur and nitrogen deposition from wet and dry processes in Louisiana will be discovered. The spatial and temporal variations of sulfur and nitrogen fluxes will be quantified and contributions of major source sectors or source regions will be quantified.

  5. Study of air pollutant detectors

    NASA Technical Reports Server (NTRS)

    Gutshall, P. L.; Bowles, C. Q.

    1974-01-01

    The application of field ionization mass spectrometry (FIMS) to the detection of air pollutants was investigated. Current methods are reviewed for measuring contaminants of fixed gases, sulfur compounds, nitrogen oxides, hydrocarbons, and particulates. Two enriching devices: the dimethyl silicone rubber membrane separator, and the selective adsorber of polyethylene foam were studied along with FIMS. It is concluded that the membrane enricher system is not a suitable method for removing air pollutants. However, the FIMS shows promise as a useable system for air pollution detection.

  6. Sulfur isotope fractionation during the reduction of elemental sulfur and thiosulfate by Dethiosulfovibrio spp.

    NASA Astrophysics Data System (ADS)

    Surkov, A. V.; Böttcher, M. E.; Kuever, J.

    2009-04-01

    Thiosulfate and elemental sulfur are typical by-products of the oxidation of dissolved sulfide and important sulfur intermediates in the biogeochemical sulfur cycle of natural sediments where they can be further transformed by microbial or chemical oxidation, reduction, or disproportionation. Due to the often superimposing reaction pathways of the sulfur intermediates in natural environments specific tracers are needed to better resolve the complex microbial and biogeochemical reactions. An important fingerprint for sulfur cycling is provided by the microbial fractionation of the stable sulfur isotopes S-34 and S-32. Proper interpretation of isotope signals in nature, however, is only possible by the calibration with results obtained with pure cultures under defined experimental conditions. In addition, sulfur isotope discrimination may provide informations about specific encymatic biochemical pathways within the bacterial cells. In this study, we report the results for the discrimination of stable sulfur isotopes S-32 and S-34 during reduction of thiosulfate and elemental sulfur by non-sulfate, but sulfur- and thiosulfate-reducing bacteria which are phylogenetically not related to sulfate-reducing bacteria. Experiments with were conducted at known cell-specific thiosulfate reduction rates. Stable sulfur isotope fractionation was investigated during reduction of thiosulfate and elemental sulfur at 28°C by growing batch cultures of Dethiosulfovibrio marinus WS100 (type strain DSM 12537) and Dethiosulfovibrio russensis (type strain DSM 12538) using citrate as carbon and energy source. The cell-specific reduction rates were 0.3 to 2.4 fmol cell-1 d-1 (thiosulfate) and 31 to 38 fmol cell-1 d-1 (elemental sulphur), respectively. The sulfide produced was depleted in S-34 by 12 per mil compared to total thiosulfate sulfur, close to previous results observed for sulfate-reducing bacteria, indicating that the thiosulfate-reducing mechanism of sulfate reducers is similar to

  7. The Sources of Air Pollution and Their Control.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  8. Ammonia scrubbing makes high sulfur fuels economical

    SciTech Connect

    Brown, G.N.

    1998-04-01

    The first commercial insitu forced oxidation ammonia scrubber system developed by Marsulex Environmental Technologies (MET), formerly GE Environmental Systems (GEESI), was completed at the Dakota Gasification Company`s Great Plains Synfuels Plant near Beulah, North Dakota, USA. The patented MET ammonia scrubbing system simultaneously removes acid gases while producing a high value byproduct, ammonium sulfate. The MET process was developed to eliminate performance issues associated with first generation ammonia scrubbing systems by unique application of standard, proven FGD equipment. The MET ammonia scrubbing process is particularly attractive for application on units which can reduce power generating costs by firing high sulfur content fuels. In contrast to the ever increasing cost of lower sulfur fuels, the increasing levels of sulfur in the fuel can represent a greater economic benefit to the utility by burning a lower cost fuel, coupled with production of a high value byproduct. The sale of the byproduct, ammonium sulfate, offsets most of the scrubber capital and operating costs and, in some cases, can generate revenue for the utility. This, in combination with the increasing need to replenish depleted sulfur from soil, makes production of ammonium sulfate an ideal product for sale in the agricultural market. In this paper, the 300 MW commercial ammonium sulfate process installed in North Dakota is described. The results of initial operation and testing are discussed. Current photos that illustrate the unique equipment and materials selection are presented. The ammonia scrubbing process economics for application using various sulfur fuels are compared. An economic comparison, in $/mmBTU, which incorporates reduced high sulfur fuel cost and the life cycle economics of the air pollution control system is also presented.

  9. Ammonia scrubbing makes high sulfur fuels economical

    SciTech Connect

    Brown, G.N.

    1998-07-01

    The first commercial in situ forced oxidation ammonia scrubber system developed by marsulex Environmental Technologies (MET), formerly GE Environmental Systems (GEESI), was completed at the Dakota Gasification Company's Great Plains Synfuels Plant near Beulah, North Dakota, USA. The patented MET ammonia scrubbing system simultaneously removes acid gases while producing a high value byproduct, ammonium sulfate. The MET process was developed to eliminate performance issues associated with first generation ammonia scrubbing systems by unique application of standard, proven FGD equipment. The MET ammonia scrubbing process is particularly attractive for application on units which can reduce power generating costs by firing high sulfur content fuels. In contrast to the ever increasing cost of lower sulfur fuels, the increasing levels of sulfur in the fuel can represent a greater economic benefit to the utility by burning a lower cost fuel, coupled with production of a high value byproduct. The sale of the byproduct, ammonium sulfate, offsets most of the scrubber capital and operating costs and, in some cases, can generate revenue for the utility. This, in combination with the increasing need to replenish depleted sulfur from soil, makes production of ammonium sulfate an ideal product for sale in the agricultural market. In this paper, the 300 MW commercial ammonium sulfate process installed in North Dakota is described. The results of initial operation and testing are discussed. Current photos that illustrate the unique equipment and materials selection are presented. The ammonia scrubbing process economics for application using various sulfur fuels are compared. An economic comparison, in $/mmBTU, which incorporates reduced high sulfur fuel cost and the life cycle economics of the air pollution control system is also presented.

  10. 78 FR 5346 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... Sulfur Emissions From Stationary Boilers AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed... pollutant to PM 2.5 ), from industrial boilers. EPA is approving this revision because it strengthens...

  11. Perspective on Air Pollution: The Canadian Scene

    PubMed Central

    Shephard, R. J.

    1975-01-01

    Despite the large ratio of land mass to population, Canada has significant air pollution problems, some being due to our cold climate, the long arctic nights, and a mineral-based economy. Routes of intoxication include the respiration of polluted air and the secondary contamination of food and water. Although pollution is often measured in terms of industrial emissions, the physician must be concerned rather with the dose of pollutants to which the individual is exposed. The principal air pollutants, in terms of emitted tonnage, are carbon monoxide, sulfur dioxide, hydrocarbons, particulates, and oxides of nitrogen. Sources of these various materials are discussed. PMID:20469224

  12. Observations of Sub-3 nm Particles and Sulfuric acid Concentrations during the Summer in Long Island, New York

    NASA Astrophysics Data System (ADS)

    You, Y.; Yu, H.; Weech, D.; Haller, G.; Mccubbin, I. B.; Chirokova, G.; Sedlacek, A. J.; Springston, S. R.; Wang, J.; Kuang, C.; McGraw, R. L.; Kanawade, V. P.; Lee, S.

    2011-12-01

    Atmospheric new particle formation (NPF) is an important source of aerosol particles. But the NPF processes are not well understood, in part because of our limited understanding of the formation of atmospheric sub-3 nm size aerosols and because of the limited number of simultaneous observations of particle size distributions and the aerosol nucleation precursors. During the 2011 (July - August) Aerosol Life Cycle Intensive Observation Period in Long Island, New York, we have measured aerosol number concentrations down to 1 nm with a particle size magnifier (a new technique developed by Airmodus to detect sub-3nm particles), aerosol size distributions larger than 3 nm with a scanning mobility particle spectrometer (SMPS), and concentrations of sulfuric acid (a key aerosol precursor) with a chemical ionization mass spectrometer (CIMS), along with a number of atmospheric trace gases and micron and sub-micron size particles. There were several different types of airmasses in our observation site during the summer, including long-range transported polluted or less polluted continental airmasses and relatively clean marine airmasses, mixed with local biogenic emissions. Our observation results show a very similar diurnal trend of sulfuric acid and total aerosol concentrations down to 1 nm during the daytime, consistent with our recent laboratory studies of sulfuric acid-ammonia-amine-water multicomponent nucleation that the formation of atmospheric sub-3 nm particles is largely due to sulfuric acid. However, the rise of sub-3 nm particle concentrations didn't always lead to NPF events characterized by typical banana shaped aerosol size distributions measured by SMPS. Additionally, there were also unexpected rises of sub-3 nm particles during the nighttime, with no sulfuric acid and when there were no NPF events. These results provide unique observation data needed to understand the atmospheric NPF processes in this observation site.

  13. Analysis of Regional Budgets of Sulfur Species Modeled for the COSAM Exercise

    SciTech Connect

    Roelofs, G.-J.; Kasibhatla, P.; Barrie, Leonard A.; Bergmann, D.; Bridgeman, C.; Chin, M.; Christensen, J.; Easter, Richard C.; Feichter, J.; Jeuken, A.; Kjellstrom, E.; Koch, D.; Land, C.; Lohmann, U.; Rasch, P.

    2001-11-01

    The COSAM intercomparison exercise (comparison of large-scale sulfur models) was organized to compare and evaluate the performance of global sulfur cycle models. Eleven models participated, and from these models the simulated surface concentrations, vertical profiles and budget terms were submitted. This study focuses on simulated budget terms for the sources and sinks of SO2 and sulfate in three polluted regions in the Northern Hemisphere, i.e., eastern North America, Europe, and Southeast Asia. Qualitatively, features of the sulfur cycle are modeled quite consistently between models, such as the relative importance of dry deposition as a removal mechanism for SO2, the important of aqueous phase oxidation over gas phase oxidation for SO2, and the importance of wet over dry deposition for removal of sulfate aerosol. Quantitatively, however, models may show large differences, especially for cloud-related processes, i.e., aqueous phase oxidation of SO2 and sulfate wet deposition. In some cases a specific behavior can be related to the treatment of oxidants for aqueous phase SO2 oxidation, or the vertical resolution applied in models. Generally, however, the differences between models appear to be related to simulated cloud (micro-)physics and distributions, whereas differences in vertical transport efficiencies related to convection play an additional role. The estimated sulfur column burdens, lifetimes and export budgets vary between models by about a factor of 2 or 3. It can be expected that uncertainties in related effects which are derived from global sulfur model calculations, such as direct and indirect climate forcing estimates by sulfate aerosol, are at least of similar magnitude.

  14. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  15. COMBINED EFFECT OF OZONE AND SULFURIC ACID ON PULMONARY FUNCTION IN MAN (JOURNAL VERSION)

    EPA Science Inventory

    A potential synergistic effect of ozone and sulfuric acid mist (H2SO4) on respiratory function has been postulated for humans exposed to these two pollutants simultaneously. Nine young men were exposed to 0.25 ppm ozone (03), 1200-1600 mcg/cu m sulfuric acid aerosol (H2SO4), and ...

  16. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  17. Advances in Monitoring of Global Sulfur Dioxide Sources with Aura/OMI

    NASA Astrophysics Data System (ADS)

    Krueger, Arlin; Krotkov, Nick; Yang, Kai; Carn, Simon

    Sulfur dioxide is produced by volcanoes, smelters, and from combustion of fossil fuels. It is rapidly oxidized to sulfate aerosols, which affect climate by reflecting sunlight. Volcanic eruption sulfur dioxide masses have been measured for nearly 30 years with Total Ozone Mapping Spectrometer (TOMS) instruments. Smaller sources were immeasurable because the TOMS selection of six discrete wavelengths was far from optimal for discriminating sulfur dioxide from ozone, thus limiting the observations to large column amounts (˜10 Dobson Units (DU)). With full UV spectrum data from GOME, SCIAMACHY, and OMI, the sulfur dioxide amounts are retrieved with twenty times greater precision. The daily global coverage and the high spatial resolution of OMI provides a wealth of new geophysical information. The OMI SO2 algorithm uses residuals generated by the GSFC total ozone algorithm at TOMS wavelengths, augmented by wavelengths in the SO2 bands near 310 nm. Effective cloud top pressures derived from UV rotational Raman scattering have further reduced errors in ozone retrievals due to clouds. Thus, the sulfur dioxide retrieval noise level is reduced to 0.2 - 1.5 DU depending on altitude. In addition to volcanic eruptions, we are now able to monitor passive degassing of volcanoes, which is diagnostic for magma movements. In addition, we have daily monitoring of sulfate ore smelters and the major sources of fossil fuel combustion. These emissions in the planetary boundary layer are the largest global source of sulfate but are difficult to detect because of the low altitude. Nevertheless, large air pollution sulfur dioxide clouds appear in OMI data nearly every day, particularly over China. Finally, volcanic ash is a hazard to aviation that is accompanied by sulfur dioxide in explosive magmatic eruption clouds. A near real-time OMI SO2 data production capability has been developed using KNMI/ GSFC facilities. NOAA/NESDIS distributes data products via Internet to decision support

  18. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average...

  19. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average...

  20. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average...

  1. 40 CFR 80.1604 - Gasoline sulfur standards and requirements for parties downstream of refiners and importers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Gasoline sulfur standards and... ADDITIVES Gasoline Sulfur § 80.1604 Gasoline sulfur standards and requirements for parties downstream of refiners and importers. (a) The sulfur standard for gasoline at any downstream location shall be...

  2. 40 CFR 80.1641 - Alternative sulfur standards and requirements that apply to importers who transport gasoline by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Alternative sulfur standards and... ADDITIVES Gasoline Sulfur § 80.1641 Alternative sulfur standards and requirements that apply to importers... gasoline under § 80.1630, and the annual sulfur average and per-gallon cap standards otherwise...

  3. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  4. Marine pollution

    SciTech Connect

    Albaiges, J. )

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

  5. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  6. Screening procedure to evaluate air pollution effects on Class I wilderness areas. Forest Service general technical report (Final)

    SciTech Connect

    Fox, D.G.; Bartuska, A.M.; Byrne, J.G.; Cowling, E.; Fisher, R.

    1989-03-01

    The screening procedure is intended to help wilderness managers conduct Adverse impact determinations as part of Prevention of Significant Deterioration (PSD) applications for sources that emit air pollutants that might impact class I wildernesses. The process provides an initial estimate of susceptibility to critical loadings for sulfur, nitrogen, and ozone. It also provides a basis for requesting necessary additional information where potential adverse impacts are identified.

  7. Sulfur cycling in freshwater sediments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.

    1985-01-01

    Organic sulfur containing compounds represent greater than 80% of the total sulfur in sediments of eutrophic freshwater lakes. Although sedimentary sulfur is predominantly in the form of organic compounds, more sulfur is transformed by sulfate reduction than by any other process. Rates of sulfate reduction in these sediments average 7 mmol/sq m/day. This rate is 19 times greater than the net rate of production of inorganic sulfur from organic compounds on an annual basis.

  8. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    SciTech Connect

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  9. Impact of the preparation conditions in the sulfur distribution of a new sulfurized porous adsorbent

    SciTech Connect

    Guijarro, M.I.; Mendioroz, S. . Inst. Catalisis y Petroleoquimica); Munoz, V. . Dept. de Quimica Inorganica y Quimica Tecnica)

    1994-02-01

    Fibrous natural silicates (sepiolite), instead of more conventional active carbon, have been sulfurized to be used as remover agents of mercury vapors from contaminated industrial waste gases. The Claus reaction, 2nH[sub 2]S + nSO[sub 2] [r arrow] (3n/x)S[sub x] + 2nH[sub 2]O, at low temperature (<400 K) and reactant concentration (2--3% molar) has been used as the sulfur source, thus being an additional way of eliminating SO[sub 2] from metallurgical processes and urban areas. The process has been carried out in a fluidized bed reactor of the semicontinuous type, and various homogeneous materials with sulfur contents in the range 3--40% S were generated. Sulfur condensation results in catalyst deactivation but, prior to its stabilization as monoclinic sulfur, also acts as cocatalyst of the reaction contributing to its overall kinetics. A study of the operating conditions, temperature, reactant concentration, and textural properties of the solid on the yield of sulfur deposited has been made. Different pore-plugging mechanisms have been applied, and from them, the influence of temperature in sulfur distribution has been concluded. In this paper, TA, N[sub 2] adsorption at 77 K, and mercury-intrusion porosimetry were used to characterize the resulting adsorbents.

  10. Abatement of indoor air pollution achieved with coal-biomass household briquettes

    NASA Astrophysics Data System (ADS)

    Yamada, Kimiko; Sorimachi, Atsuyuki; Wang, Qingyue; Yi, Jing; Cheng, Shuqun; Zhou, Yanrong; Sakamoto, Kazuhiko

    We investigated the abatement of indoor pollution achieved when two types of coal-biomass briquettes (L-BBs and H-BBs) were used in place of honeycombed coal briquettes (H-coal) in household stoves in rural Chongqing, China. Indoor concentrations of sulfur dioxide (SO 2), carbon monoxide (CO), and gaseous fluoride were measured. Additionally, we evaluated the factors that affected indoor concentrations of these gases, including the amount of fuel used as well as its sulfur content, the sulfur-emission ratio determined from the amount of sulfur retained in the combustion ash, and the combustion temperature in the stoves. The average 8-h and 24-h SO 2 concentrations for L-BBs were nearly equal to or less than the World Health Organization's 40 ppb guideline, whereas those for H-coal and H-BBs exceeded the guideline. The average 8-h SO 2 concentrations for L-BBs were from 63 to 89% lower than those for H-coal, even though the 8-h average weight of fuel and its sulfur content for L-BBs were equal to those of H-coal. A chemical analysis of combustion ash indicated that the sulfur-emission ratio was from 26 to 48% for L-BBs, as compared with 86% for H-coal, and this difference resulted in reduction of indoor SO 2 concentrations for L-BBs as compared with H-coal. Most of the 8-h average concentrations of CO and gaseous fluoride for all fuels were lower than the WHO guidelines. We concluded that BBs are a useful domestic fuel for the abatement of indoor air pollution.

  11. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    This book addresses air pollution's sources and movement; biochemical, cellular, and whole-plant effects, impacts on agricultural and natural systems; and control. The effects of convective turbulence and atmospheric stability are well illustrated. The diagnosis of air pollution injury to plants and mimicking symptoms are discussed. The environmental and source variables that affect pollutant dispersion are explained by use of the Gaussian dispersion model. An overview is presented of the effects of sulfur dioxide, photochemical oxidants, and fluoride on stomatal function, photosynthesis, respiration, and metabolic processes and products. Information is discussed concerning combinations of air pollutants, impacts on lichens, and effects of trace metals on plants. The relationship between air pollutants and diseases or other stress factors is evaluated.

  12. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  13. Noise Pollution

    MedlinePlus

    ... here: EPA Home Air and Radiation Noise Pollution Noise Pollution This page has moved. You should be ... epa.gov/clean-air-act-overview/title-iv-noise-pollution Local Navigation Air & Radiation Home Basic Information ...

  14. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  15. Water Pollution

    ERIC Educational Resources Information Center

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  16. The Speciation of Sulfur in an Ocean on Europa

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Yu.; Shock, E. L.

    2002-01-01

    Stability of native sulfur, iron sulfides, and aqueous sulfur compounds is evaluated at assumed P-T conditions of the Europa's ocean floor. Pyrite, gypsum, and ferric hydroxides can coexist in contact with sulfate-rich oceanic water. Additional information is contained in the original extended abstract.

  17. Reduced sulfur cycling in the marine boundary layer

    SciTech Connect

    Cooper, D.J.

    1989-01-01

    This study is a field and laboratory investigation of the cycling of biogenic sulfur gases over the oceans. The sources of atmospheric reduced sulfur compounds are characterized over the remote oceans. Possible conversion pathways and turnover times are assessed on both clean marine air and more polluted air. The role of biogenic emissions in the global sulfur cycle is assessed. Implications for the origin of non-sea-salt sulfate over the oceans are discussed. Field data from the remote marine atmosphere are reported in this study in reasonable agreement with previous work. Simultaneous measurements of dimethylsulfide (DMS) with hydrogen sulfide (H{sub 2}S) and carbon disulfide (CS{sub 2}) suggest that estimates of the contribution of the latter two compounds to the sulfur burden of the marine atmosphere may have been overestimated in the past. Measurements of DMS in the pollutant plume over the western Atlantic ocean show significant diurnal variation, in contrast to previous reports. This report can be explained largely through meteorological effects, but also indicates a higher DMS loss rate during the day than seen in more remote locations. This daytime loss rate is also higher than evident at night. These observations suggest that the presence of pollutants leads to enhanced daytime oxidation rather than enhanced nighttime oxidation, as previously suggested. Both the field data and the results of laboratory gas exchange experiments indicate that the flux of dimethylsulfide from the sea surface to the atmosphere is approximately a factor of two lower than previously believed. Using this lowered flux in models of sulfur cycling resolves many of the current inconsistencies in the literature concerning DMS levels and diurnal cycling. This lower flux suggests that biogenic sulfur plays only a minor role in the global sulfur cycle.

  18. Air pollution threatens the health of children in China

    SciTech Connect

    Millman, A.; Tang, D.L.; Perera, F.P.

    2008-09-15

    China's rapid economic development has come at the cost of severe environmental degradation, most notably from coal combustion. Outdoor air pollution is associated with >300 000 deaths, 20 million cases of respiratory illness, and a health cost of >500 billion renminbi (>3% of gross domestic product) annually. The young are particularly susceptible to air pollution, yet there has been only limited recognition of its effects on children's health and development. To fill this gap, we reviewed relevant published environmental studies, biomedical and molecular/epidemiologic research, and economic and policy analyses. China relies on coal for about 70% to 75% of its energy needs, consuming 1.9 billion tons of coal each year. In addition to CO{sub 2}, the major greenhouse gas, coal burning in China emits vast quantities of particulate matter, polycyclic aromatic hydrocarbons, sulfur dioxide, arsenic, and mercury. Seventy percent of Chinese households burn coal or biomass for cooking and heating, which contaminates indoor air. Adverse effects of combustion-related air pollution include reduced fetal and child growth, pulmonary disease including asthma, developmental impairment, and increased risk of cancer. A prospective molecular epidemiologic study of newborns in Chongqing has demonstrated direct benefits to children's health and development from the elimination of a coal-burning plant. Recognition of the full health and economic cost of air pollution to Chinese children and the benefits of pollution reduction should spur increased use of renewable energy, energy efficiency, and clean-fuel vehicles. This is a necessary investment for China's future.

  19. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOEpatents

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  20. [Determination of sulfur dioxide residues in sulfur fumigated Chinese herbs with headspace gas chromatography].

    PubMed

    Jia, Zheng-Wei; Mao, Bei-Ping; Miao, Shui; Mao, Xiu-Hong; Ji, Shen

    2014-02-01

    This paper aims to establish a method for the determination of sulfur dioxide in sulfur fumigation Chinese herbs. Sample powder and hydrochloric acid solution were isolated by paraffin layer in order to avoid early reactions, with the generation of sulfur dioxide, headspace with airtight needle was used to transfer sulfur dioxide into gas chromatograph, and detected with thermal conductivity detector. The analytical performance was demonstrated by the analysis of 12 herbs, spiked at four concentration levels. In general, the recoveries ranging from 70% to 110%, with relative standard deviations (RSDs) within 15%, were obtained. The limit of detection (LOD) was below 10 mg x kg(-1). Standard addition can be used for low recovery samples. The method is simple, less time-consuming, specific and sensitive. Methods comparison revealed that gas chromatography is better than traditional titration in terms of method operability, accuracy and specificity, showing good application value. PMID:24761623

  1. PILOT STUDY OF AMBIENT AIR POLLUTION AND SURVIVAL FROM CANCER

    EPA Science Inventory

    The study was concerned with investigating the potential influence exerted by ambient concentrations of particulate and sulfur dioxide air pollutants upon the length of survival for diagnosed cancer patients. Monitoring data from the National Aerometric Data Bank for particulates...

  2. Mortality and air pollution in Helsinki.

    PubMed

    Pönkä, A; Savela, M; Virtanen, M

    1998-01-01

    In Helsinki, Finland, from 1987 to 1993, the authors studied the associations between daily concentrations of sulphur dioxide, nitrogen dioxide, ozone, total suspended particulates, and particulates with aerodynamic diameters less than 10 microm (PM10), and the daily number of deaths from all causes and from cardiovascular causes. Investigators used Poisson regressions to conduct analyses in two age groups, and they controlled for temperature, relative humidity, day of the week, month, year, long-term trend, holidays, and influenza epidemics. The PM10 levels were associated significantly with all-cause and cardiovascular mortality among persons under the age of 65 y of age. In the less-than-65-y age group, sulfur dioxide and ozone were also associated significantly with cardiovascular mortality. The effect of ozone was independent of the PM10 effect, whereas sulfur dioxide became nonsignificant when modeled with PM10. An increase of 10 microg/m3 in PM10 resulted in increases in total mortality and cardiovascular mortality of 3.5% (95% confidence interval=1.0, 5.8) and 4.1% (95% confidence interval=0.4, 10.3), respectively. A 20 microg/m3 increase in ozone was associated with a 9.9% (95% confidence interval=1.1, 19.5) increase in cardiovascular mortality; however, ozone results were inconsistent. Moreover, in addition to their separate effects, high concentrations of PM10, ozone, and nitrogen dioxide had a further harmful additive effect. Typically, PM10 was a better indicator of particulate pollution than total suspended particulates. The authors' findings suggest that (a) even low levels of particulates are related to an increase in cardiovascular mortality; (b) ozone--even in low concentrations--is associated, independently, with cardiovascular mortality; and (c) PM10, ozone, and nitrogen dioxide--the essential components of summertime pollution--have harmful interactions at high concentrations. PMID:9709992

  3. Advanced sulfur control concepts

    SciTech Connect

    Harrison, D.P.; Lopez-Ortiz, A.; White, J.D.; Groves, F.R. Jr.

    1995-11-01

    The primary objective of this study is the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Three possible regeneration concepts were identified as a result of a literature search. The potential for elemental sulfur production from a number of candidate metal oxide sorbents using each regeneration concept was evaluated on the basis of a thermodynamic analysis. Two candidate sorbents, Fe{sub 2}O{sub 3} and CeO{sub 2} were chosen for experimental testing. The experimental test program using both electrobalance and fixed-bed reactor sis now getting underway. The objective is to determine reaction conditions--temperature, pressure, space velocity, and regeneration feed gas composition--which will maximize the yield of elemental sulfur in the regeneration product gas. Experimental results are to be used to define a conceptual desulfurization-regeneration process and to provide a preliminary economic evaluation.

  4. Interstellar sulfur chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Huntress, W. T., Jr.

    1980-01-01

    The results of a chemical model of SO, CS, and OCS chemistry in dense clouds are summarized. The results are obtained from a theoretical study of sulfur chemistry in dense interstellar clouds using a large-scale time-dependent model of gas-phase chemistry. Among the results are the following: (1) owing to activation energy, the reaction of CS with O atoms is efficient as a loss mechanism of CS during the early phases of cloud evolution or in hot and oxygen-rich sources such as the KL nebula; (2) if sulfur is not abnormally depleted in dense clouds, then the observed abundances of SO, SO2, H2S, CS, OCS, H2CS, and SiS indicate that sulfur is mostly atomic in dense clouds; and (3) OCS is stable against reactions with neutral atoms and radicals in dense clouds.

  5. Sodium sulfur battery seal

    DOEpatents

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  6. Photochemical oxidants potentiate yield losses in snap beans attributable to sulfur dioxide

    SciTech Connect

    Heggestad, H.E.; Bennett, J.H.

    1981-08-28

    Field-grown snap beans (Phaseolus vulgaris) were given recurring midday exposures to sulfur dioxide in open-top field chambers containing ambient photochemical oxidants. There was a linear correlation (correlation coefficient = -.99) between increasing concentrations of sulfur dioxide and the yields of snap beans. Synergism was indicated for the mixtures of ambient ozone plus sulfur dioxide, leading to threefold greater yield losses in nonfiltered air than in charcoal-filtered air (to remove the ozone). Even the lowest sulfur dioxide dose in nonfiltered air reduced the yields of Astro, a cultivar that exhibited no visible pollutant-induced foliar injury. 16 referances, 1 figure, 1 table.

  7. 40 CFR 80.190 - Who must register with EPA under the sulfur program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who...

  8. 40 CFR 80.370 - What are the sulfur reporting requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the sulfur reporting... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Recordkeeping and Reporting Requirements § 80.370 What are the sulfur reporting requirements? Beginning with the 2004 averaging period,...

  9. 40 CFR 80.245 - How does a small refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur baseline? 80.245 Section 80.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.245 How does a small refiner apply for a sulfur baseline? (a) Any refiner seeking...

  10. 40 CFR 80.290 - How does a refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How does a refiner apply for a sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Averaging, Banking and Trading (abt) Program-General Information § 80.290 How does a refiner apply for a sulfur baseline? (a)...

  11. 40 CFR 80.370 - What are the sulfur reporting requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the sulfur reporting... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Recordkeeping and Reporting Requirements § 80.370 What are the sulfur reporting requirements? Beginning with the 2004 averaging period,...

  12. 40 CFR 80.190 - Who must register with EPA under the sulfur program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who...

  13. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall:...

  14. 40 CFR 80.290 - How does a refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How does a refiner apply for a sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Averaging, Banking and Trading (abt) Program-General Information § 80.290 How does a refiner apply for a sulfur baseline? (a)...

  15. 40 CFR 80.290 - How does a refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How does a refiner apply for a sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Averaging, Banking and Trading (abt) Program-General Information § 80.290 How does a refiner apply for a sulfur baseline? (a)...

  16. 40 CFR 80.370 - What are the sulfur reporting requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the sulfur reporting... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Recordkeeping and Reporting Requirements § 80.370 What are the sulfur reporting requirements? Beginning with the 2004 averaging period,...

  17. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable...

  18. 40 CFR 80.290 - How does a refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How does a refiner apply for a sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Averaging, Banking and Trading (abt) Program-General Information § 80.290 How does a refiner apply for a sulfur baseline? (a)...

  19. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable...

  20. 40 CFR 80.245 - How does a small refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur baseline? 80.245 Section 80.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.245 How does a small refiner apply for a sulfur baseline? (a) Any refiner seeking...

  1. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall:...

  2. 40 CFR 80.370 - What are the sulfur reporting requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the sulfur reporting... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Recordkeeping and Reporting Requirements § 80.370 What are the sulfur reporting requirements? Beginning with the 2004 averaging period,...

  3. 40 CFR 80.245 - How does a small refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur baseline? 80.245 Section 80.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.245 How does a small refiner apply for a sulfur baseline? (a) Any refiner seeking...

  4. 40 CFR 80.290 - How does a refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How does a refiner apply for a sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Averaging, Banking and Trading (abt) Program-General Information § 80.290 How does a refiner apply for a sulfur baseline? (a)...

  5. 40 CFR 80.370 - What are the sulfur reporting requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the sulfur reporting... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Recordkeeping and Reporting Requirements § 80.370 What are the sulfur reporting requirements? Beginning with the 2004 averaging period,...

  6. 40 CFR 80.190 - Who must register with EPA under the sulfur program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who...

  7. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable...

  8. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall:...

  9. 40 CFR 80.245 - How does a small refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur baseline? 80.245 Section 80.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.245 How does a small refiner apply for a sulfur baseline? (a) Any refiner seeking...

  10. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable...

  11. 40 CFR 80.245 - How does a small refiner apply for a sulfur baseline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur baseline? 80.245 Section 80.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.245 How does a small refiner apply for a sulfur baseline? (a) Any refiner seeking...

  12. 40 CFR 80.190 - Who must register with EPA under the sulfur program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who...

  13. 40 CFR 80.190 - Who must register with EPA under the sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who...

  14. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  15. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  16. Sulfur in achondritic meteorites

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Moore, C. B.; Primus, T. M.; Lewis, C. F.

    1985-01-01

    The sulfur abundances of samples of nearly 50 achondrites were examined to enlarge the database on the sulfur contents of various categories of achondrites. The study covered eucrites, howardites, diogenites, shergottites, chassignites, nakhilites, aubrites and three unique specimens. The study was spurred by the possibility that the S abundances could help identify the meteorites as originating on Mars or Venus. The S abundances and distributions varied widely, but confirmed that the data were valid indicators of the brecciation and thermal metamorphic history of each meteorite.

  17. Sulfur dioxide removal from gas streams

    SciTech Connect

    Urban, P.; Ginger, E.A.

    1986-11-11

    A process is described for removal of sulfur dioxide pollutant gas from gas stream which comprises contacting the gas stream with pretreated shale in the form of an aqueous solution of aluminum sulfate including from about 0.1 to about 2.0% by weight of the pretreated shale. The pretreatment of the shale comprises the heating of the shale in the presence of a gas unable to support combustion at a temperature in a range of from about 340/sup 0/C. to about 480/sup 0/C.

  18. Localized Metal Solubilization in the Rhizosphere of Salix smithiana upon Sulfur Application

    PubMed Central

    2015-01-01

    A metal-accumulating willow was grown under greenhouse conditions on a Zn/Cd-polluted soil to investigate the effects of sulfur (S0) application on metal solubility and plant uptake. Soil porewater samples were analyzed 8 times during 61 days of growth, while DGT-measured metal flux and O2 were chemically mapped at selected times. Sulfur oxidation resulted in soil acidification and related mobilization of Mn, Zn, and Cd, more pronounced in the rooted compared to bulk soil. Chemical imaging revealed increased DGT-measured Zn and Cd flux at the root-soil interface. Our findings indicated sustained microbial S0 oxidation and associated metal mobilization close to root surfaces. The localized depletion of O2 along single roots upon S0 addition indicated the contribution of reductive Mn (oxy)hydoxide dissolution with Mn eventually becoming a terminal electron acceptor after depletion of O2 and NO3–. The S0 treatments increased the foliar metal concentrations (mg kg–1 dwt) up to 10-fold for Mn, (5810 ± 593), 3.3-fold for Zn (3850 ± 87.0), and 1.7-fold for Cd (36.9 ± 3.35), but had no significant influence on biomass production. Lower metal solubilization in the bulk soils should translate into reduced leaching, offering opportunities for using S0 as environmentally favorable amendment for phytoextraction of metal-polluted soils. PMID:25782052

  19. Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application.

    PubMed

    Hoefer, Christoph; Santner, Jakob; Puschenreiter, Markus; Wenzel, Walter W

    2015-04-01

    A metal-accumulating willow was grown under greenhouse conditions on a Zn/Cd-polluted soil to investigate the effects of sulfur (S(0)) application on metal solubility and plant uptake. Soil porewater samples were analyzed 8 times during 61 days of growth, while DGT-measured metal flux and O2 were chemically mapped at selected times. Sulfur oxidation resulted in soil acidification and related mobilization of Mn, Zn, and Cd, more pronounced in the rooted compared to bulk soil. Chemical imaging revealed increased DGT-measured Zn and Cd flux at the root-soil interface. Our findings indicated sustained microbial S(0) oxidation and associated metal mobilization close to root surfaces. The localized depletion of O2 along single roots upon S(0) addition indicated the contribution of reductive Mn (oxy)hydoxide dissolution with Mn eventually becoming a terminal electron acceptor after depletion of O2 and NO3(-). The S(0) treatments increased the foliar metal concentrations (mg kg(-1) dwt) up to 10-fold for Mn, (5810 ± 593), 3.3-fold for Zn (3850 ± 87.0), and 1.7-fold for Cd (36.9 ± 3.35), but had no significant influence on biomass production. Lower metal solubilization in the bulk soils should translate into reduced leaching, offering opportunities for using S(0) as environmentally favorable amendment for phytoextraction of metal-polluted soils. PMID:25782052

  20. Method for preventing sulfur emissions from vessels containing molten sulfur

    SciTech Connect

    Hass, R. H.

    1984-10-23

    Emissions from sulfur pits or other vessels containing molten sulfur are prevented or minimized by use of an air purge drawn into the vessel from the atmosphere and subsequently utilized as a portion of the oxidant required in a process for oxidizing hydrogen sulfide to elemental sulfur.

  1. Sulfur 'Concrete' for Lunar Applications - Environmental Considerations

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. For the purpose of this Technical Memorandum, it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, bricks. With this stipulation, it is then noted that the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. The work presented here evaluates two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar simulant as an aggregate addition. One set was subjected to extended periods in high vacuum to evaluate sublimation issues, and the other was cycled between room and liquid nitrogen temperatures to investigate their subsequent mechanical integrity. Results are presented from both investigations, discussed, and put into the context of the lunar environment.

  2. Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Moon, San; Jung, Young Hwa; Kim, Do Kyung

    2015-10-01

    Due to the extraordinarily high theoretical capacity of sulfur (1675 mAh g-1), the lithium-sulfur (Li-S) battery has been considered a promising candidate for future high-energy battery applications. Li-S batteries, however, have suffered from limited cycle lives, mainly due to the formation of soluble polysulfides, which prevent the practical application of this attractive technology. The encapsulation of sulfur with various conductive materials has addressed this issue to some extent. Nevertheless, most approaches still present partial encapsulation of sulfur and moreover require a large quantity of conductive material (typically, >30 wt%), making the use of sulfur less desirable from the viewpoint of capacity. Here, we address these chronic issues of Li-S cells by developing a graphene oxide-sulfur composite with a thin crosslinked polyaniline (PANI) layer. Graphene oxide nanosheets with large surface area, high conductivity and a uniform conductive PANI layer, which are synthesized by a layer-by-layer method, have a synergetic interaction with a large portion of the sulfur in the active material. Furthermore, a simple crosslinking process efficiently prevents polysulfide dissolution, resulting in unprecedented electrochemical performance, even with a high sulfur content (∼75%): a high capacity retention of ∼80% is observed, in addition to 97.53% of the average Coulombic efficiency being retained after 500 cycles. The performance we demonstrate represents an advance in the field of lithium-sulfur batteries for applications such as power tools.

  3. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Kositanont, Charnwit; Schwarzer, Klaus; Prietzel, Jörg; Hirunyatrakul, Phoosak; Kittikoon, Itthipon

    2012-01-01

    This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD) and Germanium detector (GeD), were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN) at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP) and particulate matter of less than 10 millionths of a meter (PM10) collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA) and principal component analysis (PCA) has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD) from typical marine sediments (TMS). PMID:23193498

  4. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  5. Mapping Air Pollution Concentrations and Sources in China from Ground-Level Observations

    NASA Astrophysics Data System (ADS)

    Rohde, R. A.; Muller, R. A.

    2014-12-01

    China has recently established an extensive air quality monitoring system with over 1500 sites providing hourly data on airborne particulate matter (PM2.5 / PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO). Based on Kriging interpolation of these surface data, we derive a detailed map of air pollution across the eastern half of China. In northern and central China, the pollution is widespread; contrary to popular belief, pollution is not simply localized to major cities such as Beijing, Shanghai, or Chongqing, or in geologic basins. Pollution levels are lower in southern China, in part due to frequent rains. By incorporating wind measurements and estimating pollution transport, we also infer source distributions for key pollutants. Sources are widespread, but many of the largest sources are often situated in or near major population centers. A northeast corridor extending from near Shanghai to north of Beijing includes many of the most significant pollution sources in China. Roughly 5% of the study region accounts for 25% of observed particulate matter emissions. During the analysis period, roughly half of the population of China was subjected to a long-term average pollution level in the unhealthy range, according to standards used by the US Environmental Protection Agency. In addition, nearly all of China's population (>90%) was exposed to unhealthy levels of air pollution at least some of the time. Based on health impact estimates from the Huai River Study, we estimate that the observed levels of particulate matter pollution contribute to about 1.4 million deaths every year in China, about 3500 per day, in agreement with prior estimates. Identification of sources from pollution data was facilitated by the reporting of hourly measurements, and we encourage other nations around the world to follow China's example and provide such time-resolved data.

  6. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  7. COAL SULFUR MEASUREMENTS

    EPA Science Inventory

    The report describes a new technique for sulfur forms analysis based on low-temperature oxygen plasma ashing. The technique involves analyzing the low-temperature plasma ash by modified ASTM techniques after selectively removing the organic material. The procedure has been tested...

  8. Sodium sulfur battery seal

    DOEpatents

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  9. Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang; Gordin, Mikhail L.; Regula, Michael; Kim, Dong Hyeon; Jung, Yoon Seok; Song, Jiangxuan; Wang, Donghai

    2016-01-01

    Pyrolyzed porous spherical composites of polyacrylonitrile-Ketjenblack carbon and sulfur (pPAN-KB/S) with a high sulfur content (ca. 72%) and enhanced conductivity and porosity (pore volume: 1.42 cm3/g; BET surface area: 727 m2/g) were prepared by an aerosol-assisted process and applied as cathode for lithium-sulfur batteries. Electrochemical tests showed that the pPAN-KB/S composite exhibited a high capacity of 866 mAh/g (based on sulfur) after 100 cycles at 0.5C (1C = 1.68 A/g) and a good rate performance at high current density (431 mAh/g at 5C). In addition, a pPAN-KB/S composite electrode with high sulfur loading (ca. 4.4 mg-S/cm2) exhibited impressive electrochemical performance with a reversible capacity of 513 mAh/g and 576 mAh/cm3 (based on sulfur) and a coulombic efficiency >99% after 100 cycles at 0.5C.

  10. Effect of sulfur on the growth of carbon nanotubes by detonation-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Can; Zhan, Liang; Wang, Yan-li; Qiao, Wen-Ming; Liang, Xiaoyi; Ling, Li-Cheng

    2010-11-01

    Thiophene was introduced as an additive in detonation-assisted chemical vapor deposition to investigate the effect of sulfur on the growth of carbon nanotubes. The results reveal that sulfur promoted the growth of hollow tubes, instead of bamboo-like carbon nanotubes without sulfur addition. Structural characterization of products indicates that the dynamic reshaping of the catalyst assisted bamboo-like carbon nanotube growth and the bamboo knots preferentially nucleated on the Ni-graphite step edges. It is suggested that sulfur suppressed the bamboo knot growth through blocking the step sites. The findings are important for understanding of nanotube growth mechanism and the role of sulfur often involved in catalytic reactions.

  11. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  12. SULFUR POLYMER ENCAPSULATION.

    SciTech Connect

    KALB, P.

    2001-08-22

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  13. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter

  14. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect

    Chou, M.I.M.; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K.; Buchanan, D.H.; Stucki, J.W.; Huffman, G.P.; Huggins, F.E.

    1993-12-31

    The Midwest Ore Processing Co. (MWOPC) has reported a precombustion coal desulfurization process using perchloroethylene (PCE) at 120 C to remove up to 70% of the organic sulfur. The purposes of this research were to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization and to verify the ASTM forms-of-sulfur determination for evaluation of the process. An additional goal was to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal. A laboratory scale operation of the MWOPC PCE desulfurization process was demonstrated, and a dechlorination procedure to remove excess PCE from the PCE-treated coal was developed. The authors have determined that PCE desulfurization removed mainly elemental sulfur from coal. The higher the level of coal oxidization, the larger the amount of elemental sulfur that is removed by PCE extraction. The increased elemental sulfur during short-term preoxidation is found to be pH dependent and is attributed to coal pyrite oxidation under acidic (pH < 2) conditions. The non-ASTM sulfur analyses confirmed the hypothesis that the elemental sulfur produced by oxidation of pyrite complicates the interpretation of analytical data for PCE process evaluations when only the ASTM forms-of-sulfur is used. When the ASTM method is used alone, the elemental sulfur removed during PCE desulfurization is counted as organic sulfur. A study using model compounds suggests that mild preoxidation treatment of coal described by MWOPC for removal of organic sulfur does not produce enough oxidized organic sulfur to account for the amounts of sulfur removal reported. Furthermore, when oxidation of coal-like organosulfur compounds does occur, the products are inconsistent with production of elemental sulfur, the product reported by MWOPC. Overall, it is demonstrated that the PCE process is not suitable for organic sulfur removal.

  15. Proof of concept for a novel, binder-free and conducting carbon-free sulfur battery cathode: Composite electroformation of copper foil with incorporated polythiophene wrapped sulfur particles

    NASA Astrophysics Data System (ADS)

    Erhardt, Claudia; Sörgel, Şeniz; Meinhard, Sandra; Sörgel, Timo

    2015-11-01

    This work, for the first time, presents sulfur electrodes for lithium/sulfur (Li/S) batteries produced by a newly developed single-step electroforming process, which allows simultaneous sulfur incorporation during electroformation of an electrically conducting electrode. This metal is used as binding matrix for the sulfur particles and thereby makes any binder and conducting carbon additives redundant. Furthermore, it serves by itself as the current collector, so that all functionalities (current collector, binder and electrical conductor towards sulfur) are fulfilled by the electroformed metal, while modified sulfur particles are directly incorporated (composite electroformation). In this way, the sulfur cathode can be produced in a single continuous step in form of a metal foil with adjustable thickness and sulfur loading. The process requires functionalization of sulfur to improve its wettability, incorporation homogeneity and volume which is provided by wrapping sulfur particles with polythiophene. Electroformed copper-sulfur composite foils are chosen as a first proof of the new concept. The achieved battery capacity, cycling stability and coulombic efficiency are presented. It is shown that the electroformed copper-sulfur composite foil operates very well as a battery cathode and a discharge capacity of over 400 mAh g-1 at a rate of 0.5 C over 100 cycles is preserved.

  16. Air pollutants and health outcomes: Assessment of confounding by influenza

    NASA Astrophysics Data System (ADS)

    Thach, Thuan-Quoc; Wong, Chit-Ming; Chan, King-Pan; Chau, Yuen-Kwan; Neil Thomas, G.; Ou, Chun-Quan; Yang, Lin; Peiris, Joseph S. M.; Lam, Tai-Hing; Hedley, Anthony J.

    2010-04-01

    We assessed confounding of associations between short-term effects of air pollution and health outcomes by influenza using Hong Kong mortality and hospitalization data for 1996-2002. Three measures of influenza were defined: (i) intensity: weekly proportion of positive influenza viruses, (ii) epidemic: weekly number of positive influenza viruses ≥4% of the annual number for ≥2 consecutive weeks, and (iii) predominance: an epidemic period with co-circulation of respiratory syncytial virus <2% of the annual positive isolates for ≥2 consecutive weeks. We examined effects of influenza on associations between nitrogen dioxide (NO 2), sulfur dioxide (SO 2), particulate matter with aerodynamic diameter ≤10 μm (PM 10) and ozone (O 3) and health outcomes including all natural causes mortality, cardiorespiratory mortality and hospitalization. Generalized additive Poisson regression model with natural cubic splines was fitted to control for time-varying covariates to estimate air pollution health effects. Confounding with influenza was assessed using an absolute difference of >0.1% between unadjusted and adjusted excess risks (ER%). Without adjustment, pollutants were associated with positive ER% for all health outcomes except asthma and stroke hospitalization with SO 2 and stroke hospitalization with O 3. Following adjustment, changes in ER% for all pollutants were <0.1% for all natural causes mortality, but >0.1% for mortality from stroke with NO 2 and SO 2, cardiac or heart disease with NO 2, PM 10 and O 3, lower respiratory infections with NO 2 and O 3 and mortality from chronic obstructive pulmonary disease with all pollutants. Changes >0.1% were seen for acute respiratory disease hospitalization with NO 2, SO 2 and O 3 and acute lower respiratory infections hospitalization with PM 10. Generally, influenza does not confound the observed associations of air pollutants with all natural causes mortality and cardiovascular hospitalization, but for some pollutants

  17. Regional and Global Perspective of Megacity Air Pollution

    NASA Astrophysics Data System (ADS)

    Carmichael, G. R.; Adhikary, B.; Mena, M. A.

    2007-05-01

    Megacities are leading drivers of economic and environmental change. Fueled by high population growth and vibrant economies, energy consumption in megacities are large and growing. In Asia megacities are projected to account for ~40% of their country's GNP (gross national product) by 2030. Because fossil fuels will provide much of this energy, emissions of greenhouse gases and air pollutants such as sulfur and nitrogen oxides and particulates could dramatically increase. Without strong intervention the situation will inevitably worsen. The motorization of urban environments all around the world has produced local smog in hundreds of cities. In aggregate, pollution from megacities and surrounding areas can grow to create regional and global problems. The current interest in transboundary and hemispheric transport of pollutants reflect this. The pressing environmental problems of urban pollution and climate change are closely linked megacity problems sharing common causes and solutions. The fact that air pollution problems and greenhouse gas emissions arise largely from fossil fuel combustion and the important role of aerosols in both air pollution and climate change are illustrative examples. Globally many megacities represent atmospheric brown cloud hotspots; regions with large aerosol radiative forcing of the atmosphere and surface (dimming), with annual mean surface dimming in most tropical mega cities exceeding 20 Wm-2, equivalent to reducing solar irradiance at the top of the atmosphere by more than 10%. The increase in solar energy absorbed by aerosols over the atmosphere of some of these mega cities is comparable to the heat input by energy consumption. Thus in addition to contributing to regional and global climate change, the atmospheric forcing may also contribute to the urban heat island effect. In this paper the impacts of megacities on regional and global pollution are discussed, drawing upon finding from current international activities including

  18. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to...

  19. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to...

  20. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to...

  1. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to...

  2. Microbial stabilization of sulfur-laden sorbents. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Miller, K.W.; Hillyer, D.

    1993-12-31

    Clean coal technologies that involve limestone for sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur can result in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide or sulfite can serve as growth substrates for sulfur-oxidizing bacteria, which convert all sulfur to sulfate. The goals of this project are the following: (1) to optimize conditions for sulfate generation from sulfide, thiosulfate, and sulfite; (2) to test and optimize the effectiveness of microbial processing on spent sorbents from flue gas desulfurization, coal gasification, and fluidized bed combustion; (3) to search for hyperalkalinophilic thiobacilli, which would be effective up to pH 11.

  3. New Targets and Inhibitors of Mycobacterial Sulfur Metabolism§

    PubMed Central

    Paritala, Hanumantharao; Carroll, Kate S.

    2015-01-01

    The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes. PMID:23808874

  4. The source and longevity of sulfur in an Icelandic flood basalt eruption plume

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Edmonds, Marie; Mather, Tamsin; Schmidt, Anja; Hartley, Margaret; Oppenheimer, Clive; Pope, Francis; Donovan, Amy; Sigmarsson, Olgeir; Maclennan, John; Shorttle, Oliver; Francis, Peter; Bergsson, Baldur; Barsotti, Sara; Thordarson, Thorvaldur; Bali, Eniko; Keller, Nicole; Stefansson, Andri

    2015-04-01

    The Holuhraun fissure eruption (Bárðarbunga volcanic system, central Iceland) has been ongoing since 31 August 2014 and is now the largest in Europe since the 1783-84 Laki event. For the first time in the modern age we have the opportunity to study at first hand the environmental impact of a flood basalt fissure eruption (>1 km3 lava). Flood basalt eruptions are one of the most hazardous volcanic scenarios in Iceland and have had enormous societal and economic consequences across the northern hemisphere in the past. The Laki eruption caused the deaths of >20% of the Icelandic population by environmental pollution and famine and potentially also increased European levels of mortality through air pollution by sulphur-bearing gas and aerosol. A flood basalt eruption was included in the UK National Risk Register in 2012 as one of the highest priority risks. The gas emissions from Holuhraun have been sustained since its beginning, repeatedly causing severe air pollution in populated areas in Iceland. During 18-22 September, SO2 fluxes reached 45 kt/day, a rate of outgassing rarely observed during sustained eruptions, suggesting that the sulfur loading per kg of erupted magma exceeds both that of other recent eruptions in Iceland and perhaps also other historic basaltic eruptions globally. This raises key questions regarding the origin of these prodigious quantities of sulphur. A lack of understanding of the source of this sulfur, the conversion rates of SO2 gas into aerosol, the residence times of aerosol in the plume and the dependence of these on meteorological factors is limiting our confidence in the ability of atmospheric models to forecast gas and aerosol concentrations in the near- and far-field from Icelandic flood basalt eruptions. In 2015 our group is undertaking a project funded by UK NERC urgency scheme to investigate several aspects of the sulfur budget at Holuhraun using a novel and powerful approach involving simultaneous tracking of sulfur and

  5. Environmental Pollution

    ERIC Educational Resources Information Center

    Breitbeil, Fred W., III

    1973-01-01

    Presents a thorough overview of the many factors contributing to air and water pollution, outlines the chemical reactions involved in producing toxic end-products, and describes some of the consequences of pollutants on human health and ecosystems. (JR)

  6. Social Pollution

    ERIC Educational Resources Information Center

    Esser, Aristide Henri

    1971-01-01

    Social pollution provides the matrix for the pollution of the physical environment. This stems from man's present inability to function synergistically. To find new freedoms in purposeful evolution, we will have to start cleansing our Mind. (Author/SD)

  7. Mechanistic investigations reveal that dibromobimane extrudes sulfur from biological sulfhydryl sources other than hydrogen sulfide† †Electronic supplementary information (ESI) available: Experimental details, pH stability data for BTE, NMR spectra. See DOI: 10.1039/c4sc01875c Click here for additional data file.

    PubMed Central

    Montoya, Leticia A.; Shen, Xinggui; McDermott, James J.

    2015-01-01

    Hydrogen sulfide (H2S) has emerged as an important biological signaling molecule in the last decade. During the growth of this field, significant controversy has arisen centered on the physiological concentrations of H2S. Recently, a monobromobimane (mBB) method has been developed for the quantification of different biologically-relevant sulfide pools. Based on the prevalence of the mBB method for sulfide quantification, we expand on this method to report the use of dibromobimane (dBB) for sulfide quantification. Reaction of H2S with dBB results in formation of highly-fluorescent bimane thioether (BTE), which is readily quantifiable by HPLC. Additionally, the reaction of sulfide with dBB to form BTE is significantly faster than the reaction of sulfide with mBB to form sulfide dibimane. Using the dBB method, BTE levels as low as 0.6 pM can be detected. Upon use of the dBB method in wild-type and CSE–/– mice, however, dBB reports significantly higher sulfide levels than those measured using mBB. Further investigation revealed that dBB is able to extract sulfur from other sulfhydryl sources including thiols. Based on mechanistic studies, we demonstrate that dBB extracts sulfur from thiols with α- or β-hydrogens, thus leading to higher BTE formation than from sulfide alone. Taken together, the dBB method is a highly sensitive method for H2S but is not compatible for use in studies in which other thiols are present. PMID:25632344

  8. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect

    Grant, K E

    2008-02-07

    . Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300

  9. MIDWEST INTERSTATE SULFUR TRANSFORMATION AND TRANSPORT PROJECT: AERIAL MEASUREMENTS OF URBAN AND POWER PLANT PLUMES, SUMMER 1974

    EPA Science Inventory

    A portion of the research activities of the Midwest Interstate Sulfur Transformation and Transport Project (Project MISTT) during the summer of 1974 is documented. Using a light plane equipped with instruments for measuring air pollutants and meteorological parameters, investigat...

  10. Association between air pollution and daily mortality and hospital admission due to ischaemic heart diseases in Hong Kong

    NASA Astrophysics Data System (ADS)

    Tam, Wilson Wai San; Wong, Tze Wai; Wong, Andromeda H. S.

    2015-11-01

    Ischaemic heart disease (IHD) is one of the leading causes of death worldwide. The effects of air pollution on IHD mortalities have been widely reported. Fewer studies focus on IHD morbidities and PM2.5, especially in Asia. To explore the associations between short-term exposure to air pollution and morbidities and mortalities from IHD, we conducted a time series study using a generalized additive model that regressed the daily numbers of IHD mortalities and hospital admissions on daily mean concentrations of the following air pollutants: nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter less than 10 μm (PM10), particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5), ozone (O3), and sulfur dioxide (SO2). The relative risks (RR) of IHD deaths and hospital admissions per 10 μg/m3 increase in the concentration of each air pollutant were derived in single pollutant models. Multipollutant models were also constructed to estimate their RRs controlling for other pollutants. Significant RRs were observed for all five air pollutants, ranging from 1.008 to 1.032 per 10 μg/m3 increase in air pollutant concentrations for IHD mortality and from 1.006 to 1.021 per 10 μg/m3 for hospital admissions for IHD. In the multipollutant model, only NO2 remained significant for IHD mortality while SO2 and PM2.5 was significantly associated with hospital admissions. This study provides additional evidence that mortalities and hospital admissions for IHD are significantly associated with air pollution. However, we cannot attribute these health effects to a specific air pollutant, owing to high collinearity between some air pollutants.

  11. SOA FORMATION FROM THE IRRADIATION OF A-PINENE-NOX IN THE ABSENCE AND PRESENCE OF SULFUR DIOXIDE

    EPA Science Inventory

    Sulfur dioxide (SO2) is an important constituent in the polluted atmosphere. It is emitted from combustion sources using fuels that contain sulfur. Emissions of SO2 in the United States were reportedly 17 Tg in 1996 with most coming from coal and petroleum combustion. The pr...

  12. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  13. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  14. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  15. Chamber exposures of children to mixed ozone, sulfur dioxide, and sulfuric acid.

    PubMed

    Linn, W S; Gong, H; Shamoo, D A; Anderson, K R; Avol, E L

    1997-01-01

    To help assess acute health effects of summer air pollution in the eastern United States, we simulated ambient "acid summer haze" as closely as was practical in a laboratory chamber. We exposed young volunteers who were thought to be sensitive to this pollutant mixture on the basis of previous epidemiologic evidence. Specifically, we exposed 41 subjects aged 9-12 y to mixed ozone (0.10 ppm), sulfur dioxide (0.10 ppm), and 0.6-microm sulfuric acid aerosol (100 +/- 40 microg/m3, mean +/- standard deviation) for 4 h, during which there was intermittent exercise. Fifteen subjects were healthy, and 26 had allergy or mild asthma. The entire group responded nonsignificantly (p > .05) to pollution exposure (relative to clean air), as determined by spirometry, symptoms, and overall discomfort level during exercise. Subjects with allergy/asthma showed a positive association (p = .01) between symptoms and acid dose; in healthy subjects, that association was negative (p = .08). In these chamber-exposure studies, we noted less of an effect than was reported in previous epidemiologic studies of children exposed to ambient "acid summer haze." PMID:9169627

  16. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. Lunar Sulfur Capture System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  18. Methodological issues in studies of air pollution and reproductive health

    EPA Science Inventory

    In the past decade there have been an increasing number of scientific studies describing possible effects of air pollution on perinatal health. These papers have mostly focused on commonly monitored air pollutants, primarily ozone (O3), particulate matter (PM), sulfur dioxide (S...

  19. Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis

    EPA Science Inventory

    Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...

  20. Effects of sulfur dioxide and ozone on yield and quality of potatoes: Final report

    SciTech Connect

    Pell, E.J.; Pearson, N.S.; Vinten-Johansen, C.; McGruer, G.; Yang, Y.

    1989-01-01

    The objectives of this project were to develop an outdoor fumigation facility designed to expose plants to ozone (O3) and sulfur dioxide (SO2) and to conduct experiments that would examine the impact of the two gases alone and in combination on field grown potato plants. Two systems of dispensing and monitoring pollutants were contrasted, one using miniature solenoid valves and the other using critical orifices. Both systems provided excellent pollutant control. The orifices were relatively inexpensive and required less maintenance than did the solenoid valve system. Two field experiments were conducted, one in 1985 and and the other in 1986. Potato plants were exposed to charcoal filtered air, nonfiltered air, nonfiltered air supplemented with O3 at levels which resulted in 1.33, 1.66 or 1.99 times ambient O3 concentrations or charcoal filtered air plus 0.14, 0.28 or 0.56 ppM SO2. There were additional treatments combining the two pollutant regimes. Ozone induced a linear reduction in yield reflected by decreases in weight and number of tubers > 6.35 cm in diameter. In general effects on number and weight of smaller tubers were not detected. Ozone also induced a decrease in the percent dry matter and reducing sugar content of potato tubers. Sulfur dioxide affected number of Grade One tubers in both years and percent dry matter and sucrose content in 1986 only. While dose-response curves for all SO2 effects fit quadratic curves the impact of SO2 doses used in these experiments were stimulatory. No important interactions were observed between O3 and SO2. 36 refs., 5 figs., 31 tabs.

  1. Regional emissions of air pollutants in China.

    SciTech Connect

    Streets, D. G.

    1998-10-05

    As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.

  2. Immobilization of sulfur in microgels for lithium-sulfur battery.

    PubMed

    Chang, Aiping; Wu, Qingshi; Du, Xue; Chen, Shoumin; Shen, Jing; Song, Qiuyi; Xie, Jianda; Wu, Weitai

    2016-03-25

    Immobilization of sulfur in microgels is achieved via free radical polymerization of commercial poly(ethylene glycol) dimethacrylate in the solution of sulfur-terminated poly(3-oligo(ethylene oxide)4-thiophene), a copolymer prepared by the inverse vulcanization of S8 with allyl-terminated poly(3-oligo(ethylene oxide)4-thiophene). This microgelation leads to enhanced Li-S battery performance over the sulfur-terminated polymer. PMID:26936016

  3. System for Removing Pollutants from Incinerator Exhaust

    NASA Technical Reports Server (NTRS)

    Wickham, David t.; Bahr, James; Dubovik, Rita; Gebhard, Steven C.; Lind, Jeffrey

    2008-01-01

    A system for removing pollutants -- primarily sulfur dioxide and mixed oxides of nitrogen (NOx) -- from incinerator exhaust has been demonstrated. The system is also designed secondarily to remove particles, hydrocarbons, and CO. The system is intended for use in an enclosed environment, for which a prior NOx-and-SO2-removal system designed for industrial settings would not be suitable.

  4. Air Pollutants and Health: An Epidemiologic Approach

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1977-01-01

    A ten year study, being conducted by the Harvard School of Public Health in six cities since 1974, is a survey of children and adults for the health effects of pollutant levels. The environment is being monitored for: (1) sulfur dioxide, (2) sulfates, and (3) respirable particulates. (BT)

  5. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  6. Tetrasulfide extreme pressure lubricant additives

    SciTech Connect

    Gast, L.E.; Kenney, H.E.; Schwab, A.W.

    1980-08-19

    A novel class of compounds has been prepared comprising the tetrasulfides of /sup 18/C hydrocarbons, /sup 18/C fatty acids, and /sup 18/C fatty and alkyl and triglyceride esters. These tetrasulfides are useful as extreme pressure lubricant additives and show potential as replacements for sulfurized sperm whale oil.

  7. Sulfur Upwelling off the African Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though these aquamarine clouds in the waters off the coast of northern Namibia may look like algae blooms, they are in fact clouds of sulfur produced by anaerobic bacteria on the ocean's floor. This image of the sulfur-filled water was taken on April 24, 2002, by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the Orbview-2 satellite. The anaerobic bacteria (bacteria that can live without oxygen) feed upon algae carcasses that exist in abundance on the ocean's floor off of Namibia. As the bacteria ingest the algae husks, they produce hydrogen sulfide, which slowly builds up in the sea-floor sediments. Eventually, the hydrogen sulfide reaches the point where the sediment can no longer contain it, and it bubbles forth. When this poisonous chemical reaches the surface, it combines with the oxygen in the upper layers of the ocean to create clouds of pure sulfur. The sulfur causes the Namibian coast to smell like rotten eggs, and the hydrogen sulfide will often kill fish and drive lobsters away. For more information, read: A Bloom By Any Other Name A high-resolution (250 meters per pixel) image earlier on the 24th taken from the Moderate-Resolution Imaging Spectroradiometer (MODIS) shows additional detail in the plumes. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE. MODIS image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  8. Improving the reliability of road materials based on micronized sulfur composites

    NASA Astrophysics Data System (ADS)

    Abdrakhmanova, K. K.

    2015-01-01

    The work contains the results of a nano-structural modification of sulfur that prevents polymorphic transformations from influencing the properties of sulfur composites where sulfur is present in a thermodynamic stable condition that precludes destruction when operated. It has been established that the properties of sulfur-based composite materials can be significantly improved by modifying sulfur and structuring sulfur binder by nano-dispersed fiber particles and ultra-dispersed state filler. The paper shows the possibility of modifying Tengiz sulfur by its fragmenting which ensures that the structured sulfur is structurally changed and stabilized through reinforcement by ultra-dispersed fiber particles allowing the phase contact area to be multiplied. Interaction between nano-dispersed fibers of chrysotile asbestos and sulfur ensures the implementation of the mechanical properties of chrysotile asbestos tubes in reinforced composite and its integrity provided that the surface of chrysotile asbestos tubes are highly moistened with molten sulfur and there is high adhesion between the tubes and the matrix that, in addition to sulfur, contains limestone microparticles. Ability to apply materials in severe operation conditions and possibility of exposure in both aggressive medium and mechanical loads makes produced sulfur composites required by the road construction industry.

  9. Air pollution problem in the Mexico City metropolitan zone: Photochemical pollution

    SciTech Connect

    Alvarez, H.B.; Alvarez, P.S.; Echeverria, R.S.; Jardon, R.T.

    1997-12-31

    Mexico City Metropolitan Zone (MCMZ) represents an example of a megacity where the air pollution problem has reached an important evolution in a very short time, causing a risk in the health of a population of more than 20 million inhabitants. The atmospheric pollution problem in the MCMZ, began several decades ago, but it increased drastically in the middle of the 80`s. It is important to recognize that in the 60`s, 70`s and the first half of the 80`s the main pollutants were sulfur dioxide and total suspended particles. However since the second half of the 80`s until now, ozone is the most important air pollutant besides of the suspended particles (PM{sub 10}) and other toxic pollutants (1--8). The purpose of this paper is to discuss the evolution of the ozone atmospheric pollution problem in the MCMZ, as well as to analyze the results of several implemented air pollution control strategies.

  10. Using community level strategies to reduce asthma attacks triggered by outdoor air pollution: a case crossover analysis

    PubMed Central

    2014-01-01

    Background Evidence indicates that asthma attacks can be triggered by exposure to ambient air pollutants, however, detailed pollution information is missing from asthma action plans. Asthma is commonly associated with four criteria pollutants with standards derived by the United States Environmental Protection Agency. Since multiple pollutants trigger attacks and risks depend upon city-specific mixtures of pollutants, there is lack of specific guidance to reduce exposure. Until multi-pollutant statistical modeling fully addresses this gap, some guidance on pollutant attack risk is required. This study examines the risks from exposure to the asthma-related pollutants in a large metropolitan city and defines the city-specific association between attacks and pollutant mixtures. Our goal is that city-specific pollution risks be incorporated into individual asthma action plans as additional guidance to prevent attacks. Methods Case-crossover analysis and conditional logistic regression were used to measure the association between ozone, fine particulate matter, nitrogen dioxide, sulfur dioxide and carbon monoxide pollution and 11,754 emergency medical service ambulance treated asthma attacks in Houston, Texas from 2004-2011. Both single and multi-pollutant models are presented. Results In Houston, ozone and nitrogen dioxide are important triggers (RR = 1.05; 95% CI: 1.00, 1.09), (RR = 1.10; 95% CI: 1.05, 1.15) with 20 and 8 ppb increase in ozone and nitrogen dioxide, respectively, in a multi-pollutant model. Both pollutants are simultaneously high at certain times of the year. The risk attributed to these pollutants differs when they are considered together, especially as concentrations increase. Cumulative exposure for ozone (0-2 day lag) is of concern, whereas for nitrogen dioxide the concern is with single day exposure. Persons at highest risk are aged 46-66, African Americans, and males. Conclusions Accounting for cumulative and concomitant outdoor

  11. 33 CFR 146.45 - Pollution incidents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pollution incidents. 146.45...) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS OCS Facilities § 146.45 Pollution incidents. Oil pollution.... Additional provisions concerning liability and compensation because of oil pollution are contained...

  12. 33 CFR 146.45 - Pollution incidents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pollution incidents. 146.45...) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS OCS Facilities § 146.45 Pollution incidents. Oil pollution.... Additional provisions concerning liability and compensation because of oil pollution are contained...

  13. 33 CFR 146.45 - Pollution incidents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pollution incidents. 146.45...) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS OCS Facilities § 146.45 Pollution incidents. Oil pollution.... Additional provisions concerning liability and compensation because of oil pollution are contained...

  14. 33 CFR 146.45 - Pollution incidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Pollution incidents. 146.45...) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS OCS Facilities § 146.45 Pollution incidents. Oil pollution.... Additional provisions concerning liability and compensation because of oil pollution are contained...

  15. 33 CFR 146.45 - Pollution incidents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pollution incidents. 146.45...) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS OCS Facilities § 146.45 Pollution incidents. Oil pollution.... Additional provisions concerning liability and compensation because of oil pollution are contained...

  16. Rethinking the Ancient Sulfur Cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  17. Effects of ozone, sulfur dioxide, and alpha and delta races of Colletotrichum Lindemuthianum (Sacc. and Magn. ) Bri and Cav. on bean (Phaseolus vulgaris L. )

    SciTech Connect

    Achwanya, O.S.

    1984-01-01

    A number of bean (Phaseolus vulgaris L.) cultivars were evaluated for their responses to the air pollutants ozone and sulfur dioxide singly and in combination, as well as for their reaction to the alpha and delta races of Colletotrichum lindemuthianum (Sacc. and Magn.) Bri and Cav. Variation in response to both the pollutants and the fungus was noted among the cultivars. Anthracnose caused a reduction in the biomass of some cultivars of the order of 50%. A negative correlation of (r = -0.72, p < 0.0001) was found between the disease severity and the total plant biomass. Greater than additive effects of O/sub 3/ + SO/sub 2/ mixtures were demonstrated. Chlorophyll content and biomass were found to be reliable variables for assessing treatment effects. The pollutants appeared to stimulate the disease development. Greater pollutant injury was also in the presence of the anthracnose disease. The results indicated that there was an interaction between the fungal disease and the air pollutants. Implications for evaluating bean cultivars for resistance to C. lindemuthianum under polluted atmosphere are suggested.

  18. Engine tests using high-sulfur diesel fuel. Final report

    SciTech Connect

    Frame, E.A.; Moon, R.B.

    1980-09-01

    This report covers the engine test evaluation of an organo-zinc additive for its effectiveness in combating the deleterious effects of using high-sulfur diesel fuel in a two-cycle U.S. Army diesel engine. The report also covers the 6V-53T testing of a preservative engine oil which in previous testing had shown promise in controlling the effects of using high-sulfur fuel.

  19. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOEpatents

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  20. Benzothiazole Sulfinate: a Water-Soluble and Slow-Releasing Sulfur Dioxide Donor.

    PubMed

    Day, Jacob J; Yang, Zhenhua; Chen, Wei; Pacheco, Armando; Xian, Ming

    2016-06-17

    Sulfur dioxide (SO2) has long been considered a toxic environmental pollutant and byproduct of industrial processing. Recently it has become evident that SO2 may also have regulatory functions in mammalian pulmonary systems. However, the study of these effects has proven to be challenging due to the difficulty in administering SO2 in a reliable manner. In this work, we report the discovery of a new pH-dependent and water-soluble SO2 donor, benzothiazole sulfinate (BTS). We have found BTS to have slow and sustained SO2 release at physiological pH. Additionally, we have explored its vasorelaxation properties as compared to the authentic SO2 gas solutions. The slow release of BTS should make it a useful tool for the study of endogenously generated SO2. PMID:27031093

  1. A statistical study of the macroepidemiology of air pollution and total mortality

    SciTech Connect

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  2. [Air pollution].

    PubMed

    Bauters, Christophe; Bauters, Gautier

    2016-01-01

    Short-term exposure to particulate matter (PM) air pollution is associated with an increased cardiovascular mortality. Chronic exposure to PM is also associated with cardiovascular risk. Myocardial infarction and heart failure are the most common cardiovascular events associated with PM pollution. The pathophysiological mechanisms related to PM pollution are inflammation, thrombosis, vasomotion abnormalities, progression of atherosclerosis, increased blood pressure, and cardiac remodeling. A decrease in PM exposure may be particularly beneficial in subjects with a high cardiovascular risk. PMID:26547674

  3. Process for removing sulfur from sulfur-containing gases

    DOEpatents

    Rochelle, Gary T.; Jozewicz, Wojciech

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  4. Exploring Water Pollution. Part 3

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1976-01-01

    Lists over 30 outdoor science activities dealing with water formation, erosion, pollution, and other water-related topics. Provides, in addition, a selected bibliography of films, tapes, booklets and pamphlets, and filmstrips as additional reference materials. (CP)

  5. Ambient air concentration of sulfur dioxide affects flight activity in bees

    SciTech Connect

    Ginevan, M.E.; Lane, D.D.; Greenberg, L.

    1980-10-01

    Three long-term (16 to 29 days) low-level (0.14 to 0.28 ppM) sulfur dioxide fumigations showed that exposure tothis gas has deleterious effects on male sweat bees (Lasioglossum zephrum). Although effects on mortality were equivocal, flight activity was definitely reduced. Because flight is necessary for successful mating behavior, the results suggest that sulfur dioxide air pollution could adversely affect this and doubtless other terrestrial insects.

  6. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  7. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  8. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  9. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  10. 40 CFR 60.4315 - What pollutants are regulated by this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What pollutants are regulated by this... Stationary Combustion Turbines Emission Limits § 60.4315 What pollutants are regulated by this subpart? The pollutants regulated by this subpart are nitrogen oxide (NOX) and sulfur dioxide (SO2)....

  11. Efficacy of a novel biofilter in hatchery sanitation: II. Removal of odorogenous pollutants.

    PubMed

    Tymczyna, Leszek; Chmielowiec-Korzeniowska, Anna; Drabik, Agata; Skórska, Czesława; Sitkowska, Jolanta; Cholewa, Grazyna; Dutkiewicz, Jacek

    2007-01-01

    The present research assessed the treatment efficiency of odorogenous pollutants in air from a hatchery hall vented on organic and organic-mineral beds of an enclosed-container biofilter. In this study, the following media were used: organic medium containing compost and peat (OM); organic-mineral medium containing bentonite, compost and peat (BM); organic-mineral medium containing halloysite, compost and peat (HM). The concentration of odorogenous gaseous pollutants (sulfur compounds and amines) in the hatching room air and in the air after biotreatment were determined by gas chromatography. In the hatchery hall among the typical odorogenous pollutants, there were determined 2 amines: 2-butanamine and 2-pentanamine, hydrogen sulfide, sulfur dioxide, carbon disulfide, sulfides and mercaptans. Ethyl mercaptan showed the highest levels as its mean concentration in the hatchery hall air exceeded 60 microg/m3 and in single samples even 800 microg/m3. A mean concentration of 2-butanamine and sulfur dioxide in the examined air also appeared to be relatively high--21.405 microg/m3 and 15.279 microg/m3, respectively. In each filter material, the air treatment process ran in a different mode. As the comparison reveals, the mean reduction of odorogenous contaminants recorded in the hall and subjected to biotreatment was satisfying as it surpassed 60% for most established pollutants. These high removal values were confirmed statistically only for single compounds. However, a low removal level was reported for hydrogen sulfide and sulfur dioxide. No reduction was recorded in the bentonite supplemented medium (BM) for sulfur dioxide and methyl mercaptan. In the organic medium (OM) no concentration fall was noted for dipropyl sulfide either. In all the media investigated, the highest removal rate (100%), not confirmed statistically, was observed for carbon disulfide. Very good results were obtained in the medium with a bentonite additive (BM) for both identified amines, whose

  12. Sulfur dynamics in an impoundment receiving acid mine drainage

    SciTech Connect

    Herlihy, A.T.

    1987-01-01

    To quantify the importance of bacterial sulfate reduction (SR) in an acidified system, a sulfate influx-efflux budget was constructed for Lake Anna, an impoundment receiving acid mine drainage. Forty eight percent of the entering sulfate was removed from the water column within the 2 km arm of the lake that receives the pollution. Directly measured SR equaled 200% of the sulfate removal calculated in the budget. Thus, sulfide oxidation must be an important process in these sediments. The calculated alkalinity generated by sulfate removal was more than twice that necessary to account for the observed pH increase in the impoundment. Inorganic sulfur concentrations in the sediments of the impacted arm of Lake Anna were significantly greater than those in unpolluted sections of the lake. Label experiments showed that FeS and elemental sulfur (S{degree}) were the major products of SR in the impacted sediments. Inorganic sulfur (FeS, S{degree}, and pyrite) made up to 60% to 100% of the total sediment sulfur concentration. Pyrite concentrations were high and decreased exponentially with distance from the AMD source, indicating that the pyrite is stream detrius. FeS and S{degree} concentrations were highest at a station 1 km away from the AMD inflow, indicating in situ formation. There was no evidence for the formation of organic sulfur species.

  13. Liquid sulfur mustard exposure.

    PubMed

    Newmark, Jonathan; Langer, Janice M; Capacio, Benedict; Barr, John; McIntosh, Roger G

    2007-02-01

    A 35-year-old active duty service member sustained a 6.5% body surface area burn as a result of exposure to the chemical warfare agent sulfur mustard, which is the most severe mustard exposure of a U.S. military member since World War II that is known to us. New techniques were used to demonstrate the detectable persistence of mustard metabolites in the patient's blood for at least 41 days after exposure, validating these techniques for the first time for a human mustard patient; they were also used for the first time with human mustard blister fluid. The techniques extend eightfold the period of time that mustard exposure can be definitively diagnosed, compared with previous techniques. Although this patient's lesions were never life-threatening, he required 2 weeks of intensive burn care. He has been left with ongoing posttraumatic stress disorder and has had an incomplete dermatological recovery. In a major terrorist attack involving many patients exposed to sulfur mustard, care resources would be depleted quickly. PMID:17357776

  14. Sulfur in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.

    1997-01-01

    The computer-intensive project consisted of the analysis and synthesis of existing data on composition of comet Halley dust particles. The main objective was to obtain a complete inventory of sulfur containing compounds in the comet Halley dust by building upon the existing classification of organic and inorganic compounds and applying a variety of statistical techniques for cluster and cross-correlational analyses. A student hired for this project wrote and tested the software to perform cluster analysis. The following tasks were carried out: (1) selecting the data from existing database for the proposed project; (2) finding access to a standard library of statistical routines for cluster analysis; (3) reformatting the data as necessary for input into the library routines; (4) performing cluster analysis and constructing hierarchical cluster trees using three methods to define the proximity of clusters; (5) presenting the output results in different formats to facilitate the interpretation of the obtained cluster trees; (6) selecting groups of data points common for all three trees as stable clusters. We have also considered the chemistry of sulfur in inorganic compounds.

  15. 40 CFR 80.350 - What alternative sulfur standards and requirements apply to importers who transport gasoline by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What alternative sulfur standards and... ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.350 What alternative sulfur standards and requirements apply to importers who transport gasoline by...

  16. 40 CFR 80.350 - What alternative sulfur standards and requirements apply to importers who transport gasoline by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What alternative sulfur standards and... ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.350 What alternative sulfur standards and requirements apply to importers who transport gasoline by...

  17. 40 CFR 80.350 - What alternative sulfur standards and requirements apply to importers who transport gasoline by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What alternative sulfur standards and... ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.350 What alternative sulfur standards and requirements apply to importers who transport gasoline by...

  18. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes

    NASA Astrophysics Data System (ADS)

    McDermott, Jill M.; Ono, Shuhei; Tivey, Margaret K.; Seewald, Jeffrey S.; Shanks, Wayne C.; Solow, Andrew R.

    2015-07-01

    disproportionation is an additional process that contributes sulfur to a different back-arc system and to acid spring-type hydrothermal fluid circulation. At the sedimented Guaymus Basin, near-zero Δ33S values are also observed, despite negative δ34S values that indicate inputs of biogenic pyrite for some samples. In contrast with previous studies reporting isotope disequilibrium between H2S and chalcopyrite, the δ34S values of chalcopyrite sampled from the inner 1-2 mm of a chimney wall are within ±1‰ of δ34S values for H2S in the paired vent fluid, suggesting equilibrium fluid-mineral sulfur isotope exchange at 300-400 °C. Isotopic equilibrium between hydrothermal fluid H2S and precipitating chalcopyrite implies that sulfur isotopes in the chalcopyrite lining across a chimney wall may accurately record past hydrothermal activity.

  19. Gas chromatography combined with mass spectrometry for the identification of organic sulfur compounds in shellfish and fish

    SciTech Connect

    Ogata, M.; Miyake, Y.

    1980-11-01

    The authors determined that the organic sulfur compounds usually contained in crude oil can be used as a marker of oil pollution in shellfish and fish. Short-necked clams and eels were maintained in a controlled laboratory environment in water with suspension of crude oil. Mass spectra and mass chromatograms of short-necked clam extract showed the presence of organic sulfur compounds. Capillary column gas chromatography-mass chromatograms of crude oil and extract from the soft body of a short-necked clam showed the presence of organic sulfur compounds. Besides sulfur components, various other compounds were contained in crude oil and short-necked clam. Mass chromatograms of crude oil and the extract from eel flesh showed the presence of alkyl benzothiophene, dibenzothiophene, naphthalene, and alkyl naphthalene. Data indicated that the organic sulfur compounds and polyaromatic compounds could serve as markers of oil pollution in shellfish and fish.

  20. Demonstrating Allotropic Modifications of Sulfur.

    ERIC Educational Resources Information Center

    McCarty, Jillian L.; Dragojlovic, Veljko

    2002-01-01

    Shows how a common demonstration that consists of slowly heating sulfur powder in a test tube to illustrate sulfur's allotropic modifications can convince students of conclusions about the moon Io which they often find surprising. Describes the demonstration in full. (Author/MM)

  1. Volume efficient sodium sulfur battery

    DOEpatents

    Mikkor, Mati

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  2. SULFUR RETENTION IN COAL ASH

    EPA Science Inventory

    The report gives results of an analytical study to assess the potential for sulfur retention in various types of coal-fired boilers. Results of a field test of 10 industrial coal-fired boilers were used to evaluate the impact on sulfur retention of the operating variables (load a...

  3. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Lixia; Yuan, Huiping; Qiu, Xinping; Chen, Liquan; Zhu, Wentao

    A novel sulfur-coated multi-walled carbon nanotubes composite material (S-coated-MWCNTs) was prepared through capillarity between the sulfur and multi-walled carbon nanotubes. The results of the TEM and XRD measurements reveal that S-coated-MWCNTs have a typical core-shell structure, and the MWCNTs serve as the cores and are dispersed individually into the sulfur matrices. The charge-discharge experiments of the lithium/sulfur cells demonstrated that the S-coated-MWCNTs cathode could maintain a reversible capacity of 670 mAh g -1 after 60 cycles, showing a greatly enhanced cycle ability as compared with the sulfur cathode with simple MWCNTs addition (S/MWCNTs) and the cathode using sulfur-coated carbon black composite (S-coated-CB). The EIS and SEM techniques were used to define and understand the impact of the microstructure of the composite electrode on its electrochemical performance. Derived from these studies, the main key factors to the improvement in the cycle life of the sulfur cathode were discussed.

  4. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan

    2001-12-01

    We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

  5. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  6. Particle Pollution

    MedlinePlus

    ... EPA Air Quality Index (AQI) tells you when air pollution is likely to reach levels that could be ... high, take steps to limit the amount of air you breathe in while you're outside. ... pollution levels are usually lower. Choose easier outdoor activities ( ...

  7. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  8. Sulfur Metabolism in the Extreme Acidophile Acidithiobacillus Caldus

    PubMed Central

    Mangold, Stefanie; Valdés, Jorge; Holmes, David S.; Dopson, Mark

    2011-01-01

    Given the challenges to life at low pH, an analysis of inorganic sulfur compound (ISC) oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of ISCs. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and ISC metabolism predicted genes included: sulfide–quinone reductase (sqr), tetrathionate hydrolase (tth), two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ), sulfur oxygenase reductase (sor), and various electron transport components. RNA transcript profiles by semi quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC) in A. caldus ISC metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur. PMID:21687411

  9. Transient Studies of a Sodium Sulfur Cell

    NASA Astrophysics Data System (ADS)

    Caprio, Sarah

    Modern grids will include input from fossil-fueled power generation facilities as well as renewable energy sources, and these are expected to work together actively. One major problem with this integrated power production is that most renewable energy sources are intermittent and variable, and thus introduce a very challenging situation with regard to grid stability and reliability. Also, fossil-fueled power generation facilities have load cycles based on expected usage. A non-reliable power source cannot feasibly be used to supply the grid with proper amounts of energy needed in peak times. A solution to this dilemma is power storage. The sodium-sulfur battery has high potential for electrical storage at the grid level due to its high energy density, low cost of the reactants, and high open-circuit voltage. However, the use of sodium-sulfur batteries at the grid level requires high current density operation that can cause cell deterioration, leading to lower sulfur utilization and lower energy efficiency. In addition, it can result in undesired thermal runaway leading to potentially hazardous situations. A rigorous, dynamic model of a sodium-sulfur battery can be used to study these phenomena, design the battery for optimal transient performance, and develop mitigation strategies. Most literature on sodium-sulfur batteries is concerned the dynamics of the sulfur electrode (a sodium-polysulfide melt). There is limited data in the open literature for dynamics of an entire cell. With this motivation, a first-principles dynamic model of a sodium-sulfur cell (with beta"-alumina electrolyte) has been developed. The state of discharge (SOD) of a sodium-sulfur cell significantly affects the heat generation rate, rates of electrochemical reactions, and internal resistance. To capture these phenomena correctly, a fully coupled thermal-electrochemical model has been developed. The thermal model considers heat generation due to Ohmic loss, Peltier heat, and heat due to the

  10. Air pollution and daily mortality in Shenyang, China

    SciTech Connect

    Xu, Z.; Yu, D.; Jing, L.; Xu, X.

    2000-04-01

    The authors analyzed daily mortality data in Shenyang, China, for calendar year 1992 to identify possible associations with ambient sulfur dioxide and total suspended particulates. Both total suspended particulate concentrations and sulfur dioxide concentrations far exceeded the World Health Organizations' recommended criteria. An average of 45.5 persons died each day. The lagged moving averages of air-pollution levels, calculated as the mean of the nonmissing air-pollution levels of the concurrent and 3 preceding days, were used for all analyses. Locally weighted regression analysis, including temperature, humidity, day of week, and a time variable, showed a positive association between daily mortality and both total suspended particulates and sulfur dioxide. When the authors included total suspended particulates and sulfur dioxide separately in the model, both were highly significant predictors of daily mortality. The risk of all-cause mortality increased by an estimated 1.7% and 2.4% with a 100-{micro}g/m{sup 3} concomitant increase in total suspended particulate and sulfur dioxide, respectively. When the authors analyzed mortality separately by cause of death, the association with total suspended particulates was significant for cardiovascular disease, but not statistically significant for chronic obstructive pulmonary diseases. In contrast, the association with sulfur dioxide was significant for chronic obstructive pulmonary diseases, but not for cardiovascular disease. The mortality from cancer was not associated significantly with total suspended particles or with sulfur dioxide. The correlation between sulfur dioxide and total suspended particulates was high. When the authors included sulfur dioxide and total suspended particulates simultaneously in the model, the association between total suspended particulates and mortality from all causes and cardiovascular diseases remained significant. Sulfur dioxide was associated significantly with increased

  11. Petroleum and diesel sulfur degradation under gamma radiation

    NASA Astrophysics Data System (ADS)

    Andrade, Luana dos Santos; Calvo, Wilson Aparecido Parejo; Sato, Ivone Mulako; Duarte, Celina Lopes

    2015-10-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries to remove sulfur compounds from petroleum fractions. However, it is not highly effective for removing thiophene compounds such as benzothiophene. Additionally, this process generates high costs for the oil industry. In the present work, ionizing radiation was used in order to study the effect on the degradation of petroleum and diesel sulfur compounds. Crude oil and diesel fuel samples were studied, without any pretreatment, and irradiated using a cobalt-60 gamma cell in a batch system at absorbed doses of 30 kGy and 50 kGy. The sulfur compounds were extracted and then analyzed by gas chromatography associated with mass spectrometry (GCMS). A high efficiency of ionizing radiation was observed regarding the degradation of sulfur compounds such as benzothiophene and benzenethiol and the formation of fragments, for example 1.2-dimethylbenzene and toluene.

  12. Nitrogen-sulfur compounds in stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Farlow, N. H.; Snetsinger, K. G.; Hayes, D. M.; Lem, H. Y.; Tooper, B. M.

    1978-01-01

    Two forms of nitrosyl sulfuric acid (NOHSO4 and NOHS2O7) have been tentatively identified in stratospheric aerosols. The first of these can be formed either directly from gas reactions of NO2 with SO2 or by gas-particle interactions between NO2 and H2SO4. The second product may form when SO3 is involved. Estimates based on these reactions suggest that the maximum quantity of NO that might be absorbed in stratospheric aerosols could vary from one-third to twice the amount of NO in the surrounding air. If these reactions occur in the stratosphere, then a mechanism exists for removing nitrogen oxides from that region by aerosol particle fallout. This process may typify another natural means that helps cleanse the lower stratosphere of excessive pollutants.

  13. Selective Sulfidation of Lead Smelter Slag with Sulfur

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  14. Modeling total reduced sulfur and sulfur dioxide emissions from a kraft recovery boiler using an artificial neural network, and, Investigating volatile organic compounds in an urban intermountain valley using a TD/GC/MS methodology and intrinsic tracer molecules

    NASA Astrophysics Data System (ADS)

    Wrobel, Christopher Louis

    2000-11-01

    Back-propagation neural networks were trained to predict total reduced sulfur (TRS) and SO2 emissions from kraft recovery boiler operational data. A 0.721 coefficient of correlation was achieved between actual and predicted sulfur emissions on test data withheld from network training. The artificial neural network (ANN) models found an inverse, linear relationship between TRS/SO2 emissions and percent opacity. A number of relationships among operating parameters and sulfur emissions were identified by the ANN models. These relationships were used to formulate strategies for reducing sulfur emissions. Disagreement between ANN model predictions on a subsequent data set revealed an additional scenario for sulfur release not present in the training data. ANN modeling was demonstrated to be an effective tool for analyzing process variables when balancing productivity and environmental concerns. Five receptor sites distributed in the Missoula Valley, Montana, were employed to investigate possible VOC (benzene, 2,3,4-trimethylpentane, toluene, ethylbenzene, m-/p-xylene, o-xylene, naphthalene, acetone, chloroform, α-pinene, β-pinene, p-cymene and limonene) sources. The most dominant source of VOCs was found to be vehicle emissions. Furthermore, anthropogenic sources of terpenoids overwhelmed biogenic emissions, on a local scale. Difficulties correlating wind direction and pollutant levels could be explained by wind direction variability, low wind speed and seasonally dependent meteorological factors. Significant evidence was compiled to support the use of p-cymene as a tracer molecule for pulp mill VOC emissions. Apportionment techniques using o-xylene and p-cymene as tracers for automobile and pulp mill emissions, respectively, were employed to estimate each source's VOC contribution. Motor vehicles were estimated to contribute between 56 and 100 percent of the aromatic pollutants in the Missoula Valley airshed, depending upon the sampling location. Pulp mill emissions

  15. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    SciTech Connect

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  16. Release of sulfur and chlorine during cofiring RDF and coal in an internally circulating fluidized bed

    SciTech Connect

    Xiaolin Wei; Yang Wang; Dianfu Liu; Hongzhi Sheng; Wendong Tian; Yunhan Xiao

    2009-03-15

    An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO{sub 2}, HCl, and SO{sub 2} were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO{sub 2} is relatively low because alkaline metal in the fuel ash can absorb SO{sub 2}. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfurization ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur. 35 refs., 18 figs., 2 tabs.

  17. Sulfur deposition simulations over China, Japan, and Korea: a model intercomparison study for abating sulfur emission.

    PubMed

    Kim, Cheol-Hee; Chang, Lim-Seok; Meng, Fan; Kajino, Mizuo; Ueda, Hiromasa; Zhang, Yuanhang; Son, Hye-Young; Lee, Jong-Jae; He, Youjiang; Xu, Jun; Sato, Keiichi; Sakurai, Tatsuya; Han, Zhiwei; Duan, Lei; Kim, Jeong-Soo; Lee, Suk-Jo; Song, Chang-Keun; Ban, Soo-Jin; Shim, Shang-Gyoo; Sunwoo, Young; Lee, Tae-Young

    2012-11-01

    In response to increasing trends in sulfur deposition in Northeast Asia, three countries in the region (China, Japan, and Korea) agreed to devise abatement strategies. The concepts of critical loads and source-receptor (S-R) relationships provide guidance for formulating such strategies. Based on the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project, this study analyzes sulfur deposition data in order to optimize acidic loads over the three countries. The three groups involved in this study carried out a full year (2002) of sulfur deposition modeling over the geographic region spanning the three countries, using three air quality models: MM5-CMAQ, MM5-RAQM, and RAMS-CADM, employed by Chinese, Japanese, and Korean modeling groups, respectively. Each model employed its own meteorological numerical model and model parameters. Only the emission rates for SO(2) and NO(x) obtained from the LTP project were the common parameter used in the three models. Three models revealed some bias from dry to wet deposition, particularly the latter because of the bias in annual precipitation. This finding points to the need for further sensitivity tests of the wet removal rates in association with underlying cloud-precipitation physics and parameterizations. Despite this bias, the annual total (dry plus wet) sulfur deposition predicted by the models were surprisingly very similar. The ensemble average annual total deposition was 7,203.6 ± 370 kt S with a minimal mean fractional error (MFE) of 8.95 ± 5.24 % and a pattern correlation (PC) of 0.89-0.93 between the models. This exercise revealed that despite rather poor error scores in comparison with observations, these consistent total deposition values across the three models, based on LTP group's input data assumptions, suggest a plausible S-R relationship that can be applied to the next task of designing cost-effective emission abatement strategies. PMID:22869502

  18. A Combined Proteomic and Transcriptomic Analysis on Sulfur Metabolism Pathways of Arabidopsis thaliana under Simulated Acid Rain

    PubMed Central

    Wang, Wenhua; Simon, Martin; Wu, Feihua; Hu, Wenjun; Chen, Juan B.; Zheng, Hailei

    2014-01-01

    With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress. PMID:24595051

  19. Mortality and air pollution in Helsinki

    SciTech Connect

    Poenkae, A.; Savela, M.; Virtanen, M.

    1998-07-01

    In Helsinki, Finland, from 1987 to 1993, the authors studied the associations between daily concentrations of sulphur dioxide, nitrogen dioxide, ozone, total suspended particulates, and particulates with aerodynamic diameters less than 10 {micro}m (PM{sub 10}), and the daily number of deaths from all causes and from cardiovascular causes. Investigators used Poisson regressions to conduct analyses in two age groups, and they controlled for temperature, relative humidity, day of the week, month, year, long-term trend, holidays, and influenza epidemics. The PM{sub 10} levels were associated significantly with all-cause and cardiovascular mortality among persons under the age of 65 y of age. In the less-than-65-y age group, sulfur dioxide and ozone were also associated significantly with cardiovascular mortality. The effect of the ozone was independent of the PM{sub 10} effect, whereas sulfur dioxide became nonsignificant when modeled with PM{sub 10}. An increase of 10 {micro}g/m{sup 3} in PM{sub 10} resulted in increases in total mortality and cardiovascular mortality of 3.5% (95% confidence interval = 1.0, 5.8) and 4.1% (95% confidence interval = 0.4, 10.3), respectively. A 20 {micro}g/m{sup 3} increase in ozone was associated with a 9.9% (95% confidence interval = 1.1, 19.5) increase in cardiovascular mortality; however, ozone results were inconsistent. Moreover, in addition to their separate effects, high concentrations of PM{sub 10}, ozone, and nitrogen dioxide had a further harmful additive effect. Typically, PM{sub 10} was a better indicator of particulate pollution than total suspended particulates. The authors` findings suggest that (a) even low levels of particulates are related to an increase in cardiovascular mortality; (b) ozone--even in low concentrations--is associated, independently, with cardiovascular mortality; and (c) PM{sub 10}, ozone, and nitrogen dioxide--the essential components of summertime pollution--have harmful interactions at high

  20. RESPONSE OF FOREST TREES TO SULFUR, NITROGEN, AND ASSOCIATED POLLUTANTS

    EPA Science Inventory

    The National Acid Precipitation Assessment Program created Forest Response Program (FRP) to assess the effects of acidic deposition on trees and forests in regions of the United States. esearch front the FRP and other programs is summarized in four Major Program Output documents ...

  1. Ambient air pollution and years of life lost in Ningbo, China

    NASA Astrophysics Data System (ADS)

    He, Tianfeng; Yang, Zuyao; Liu, Tao; Shen, Yueping; Fu, Xiaohong; Qian, Xujun; Zhang, Yuelun; Wang, Yong; Xu, Zhiwei; Zhu, Shankuan; Mao, Chen; Xu, Guozhang; Tang, Jinling

    2016-03-01

    To evaluate the burden of air pollution on years of life lost (YLL) in addition to mortality, we conducted a time series analysis based on the data on air pollution, meteorological conditions and 163,704 non-accidental deaths of Ningbo, China, 2009-2013. The mean concentrations of particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide were 84.0 μg/m3, 60.1 μg/m3, 25.1 μg/m3 and 41.7 μg/m3, respectively. An increase of 10-μg/m3 in particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide was associated with 4.27 (95% confidence interval [CI] 1.17-7.38), 2.97 (95% CI -2.01-7.95), 29.98 (95% CI 19.21-40.76) and 16.58 (95% CI 8.19-24.97) YLL, respectively, and 0.53% (95% CI 0.29-0.76%), 0.57% (95% CI 0.20-0.95%), 2.89% (95% CI 2.04-3.76%), and 1.65% (95% CI 1.01-2.30%) increase of daily death counts, respectively. The impact of air pollution lasted for four days (lag 0-3), and were more significant in the elderly than in the young population for both outcomes. These findings clarify the burden of air pollution on YLL and highlight the importance and urgency of air pollution control in China.

  2. Ambient air pollution and years of life lost in Ningbo, China

    PubMed Central

    He, Tianfeng; Yang, Zuyao; Liu, Tao; Shen, Yueping; Fu, Xiaohong; Qian, Xujun; Zhang, Yuelun; Wang, Yong; Xu, Zhiwei; Zhu, Shankuan; Mao, Chen; Xu, Guozhang; Tang, Jinling

    2016-01-01

    To evaluate the burden of air pollution on years of life lost (YLL) in addition to mortality, we conducted a time series analysis based on the data on air pollution, meteorological conditions and 163,704 non-accidental deaths of Ningbo, China, 2009–2013. The mean concentrations of particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide were 84.0 μg/m3, 60.1 μg/m3, 25.1 μg/m3 and 41.7 μg/m3, respectively. An increase of 10-μg/m3 in particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide was associated with 4.27 (95% confidence interval [CI] 1.17–7.38), 2.97 (95% CI −2.01–7.95), 29.98 (95% CI 19.21–40.76) and 16.58 (95% CI 8.19–24.97) YLL, respectively, and 0.53% (95% CI 0.29–0.76%), 0.57% (95% CI 0.20–0.95%), 2.89% (95% CI 2.04–3.76%), and 1.65% (95% CI 1.01–2.30%) increase of daily death counts, respectively. The impact of air pollution lasted for four days (lag 0–3), and were more significant in the elderly than in the young population for both outcomes. These findings clarify the burden of air pollution on YLL and highlight the importance and urgency of air pollution control in China. PMID:26927539

  3. Laboratory Evaluation of Sulfur Modified Iron for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2009-12-01

    Where subsurface drainage practices are employed, fertilizer nutrients and pesticides applied on farm fields and municipal locations are commonly intercepted by the buried drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these surface water bodies. On-site water filter treatment systems can be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. Sulfur modified iron is a relatively unknown industrial product that may have promise for use as a filter material to remove contaminants from subsurface drainage waters. Sulfur modified iron (SMI) is a high surface area iron powder (zero valent iron) that has been altered via chemical reaction with pure sulfur to produce a sulfur/iron surface coating on the iron particles. A laboratory investigation was conducted with contaminant removal batch tests, saturated falling-head hydraulic conductivity tests, and saturated solute transport column experiments to evaluate the feasibility for using SMI to treat subsurface drainage waters. Contaminant removal batch tests showed that three SMI samples were much more effective removing nitrate (> 94% nitrate removed) than three zero valent iron samples (< 10% nitrate removed). Batch test results additionally showed that SMI removed greater that 94% of dissolved phosphate, but was not particularly effective removing the pesticide, atrazine (< 37% atrazine removed). Hydraulic conductivity tests indicated that all three SMI samples that were evaluated had sufficient hydraulic conductivity, much greater than the 1 x 10-3 cm/s standard used for stormwater sand filters. The saturated solute transport tests confirmed that SMI can be effective removing nitrate and phosphate from drainage waters. Analysis of column effluent also showed that the large majority of nitrate removed by SMI was converted to ammonium. Consequently, these laboratory findings support the use of SMI in

  4. Season and humidity dependence of the effects of air pollution on COPD hospitalizations in Hong Kong

    NASA Astrophysics Data System (ADS)

    Qiu, Hong; Yu, Ignatius Tak Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-01

    Associations between ambient pollution and respiratory morbidity including chronic obstructive pulmonary disease (COPD) have been confirmed. Weather factors, such as temperature, season and relative humidity (RH), may modify the effects of air pollution. This time series study was conducted to examine whether the effects of air pollution on emergency COPD hospital admissions in Hong Kong varied across seasons and RH levels, and explore the possible joint modification of season and RH on the effects of pollution. Data of daily air pollution concentrations mean temperature and RH, and COPD hospital admissions from 1998 to 2007 were collected. Generalized additive Poisson models with interaction terms were used to estimate the effects of pollution across seasons and RH levels. We observed an increase in the detrimental effects of air pollution in the cool season and on low humidity days. On the cool and dry days, a 10 μg m-3 increment of lag03 exposure was associated with an increase in emergency COPD admissions by 1.76% (95%CI: 1.19-2.34%), 3.43% (95%CI: 2.80-4.07%), and 1.99% (95%CI: 0.90-3.09%) for nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2), respectively, all of which were statistically significantly higher than those on the other days. No consistent modification of weather factors was found for the effects of particles with an aerodynamic diameter less than 10 μm (PM10). The results suggested that season and RH jointly modified the effects of gaseous pollutants, resulting in increased emergency COPD hospitalizations on the cool and dry days.

  5. Denitrification in a BTEX Contaminated Aquifer Containing Reduced Sulfur

    NASA Astrophysics Data System (ADS)

    Eckert, P.; Appelo, C.; Wisotzky, F.; Obermann, P.

    2001-05-01

    prior to the reaction of the organic pollutants. Thus, reduction products which accumulated earlier during the natural attenuation of BTEX were the first to react when nitrate was added as electron acceptor for enhanced bioremediation of the pollution. For BTEX degradation, a rate law based on Monod kinetics for natural organic matter was adapted to fit the observed decrease of nitrate. Sulfides may be common at other petroleum polluted sites, and enhanced remediation by addition of oxidants may be retarded by the unintended and possibly unexpected oxidation of these solids. The Duesseldorf case is therefore of interest for indicating the complex geochemical reactions which occur when other electron donors are present in the aquifer besides the aromatic compounds targeted for the remediation.

  6. Removal of Sulfur from Natural Gas to Reduce Particulate Matter Emission from a Turbine Engine

    NASA Astrophysics Data System (ADS)

    Spang, Brent Loren

    The present work investigates the effect of natural gas fuel sulfur on particulate emissions from stationary gas turbine engines used for electricity generation. Fuel sulfur from standard line gas was scrubbed using a system of fluidized reactor beds containing a specially designed activated carbon purpose built for sulfur absorption. A sulfur injection system using sonic orifices was designed and constructed to inject methyl mercaptan into the scrubbed gas stream at varying concentrations. Using these systems, particulate emissions created by various fuel sulfur levels between 0 and 8.3 ppmv were investigated. Particulate samples were collected from a Capstone C65 microturbine generator system using a Horiba MDLT-1302TA micro dilution tunnel and analyzed using a Horiba MEXA-1370PM particulate analyzer. In addition, ambient air samples were collected to determine incoming particulate levels in the combustion air. The Capstone C65 engine air filter was also tested for particulate removal efficiency by sampling downstream of the filter. To further differentiate the particulate entering the engine in the combustion air from particulate being emitted from the exhaust stack, two high efficiency HEPA filters were installed to eliminate a large portion of incoming particulate. Variable fuel sulfur testing showed that there was a strong correlation between total particulate emission factor and fuel sulfur concentration. Using eleven variable sulfur tests, it was determined that an increase of 1 ppmv fuel sulfur will produce an increase of approximately 3.2 microg/m3 total particulate. Also, the correlation also predicted that, for this particular engine, the total particulate emission factor for zero fuel sulfur was approximately 19.1 microg/m3. With the EC and OC data removed, the correlation became 3.1 microg/m3 of sulfur particulate produced for each ppmv of fuel sulfur. The correlation also predicted that with no fuel sulfur present, 6.6 microg/m3 of particulate will

  7. Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Brune, D.; Poplawski, R.; Schmidt, T. M.

    1985-01-01

    Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied.

  8. Air pollution and hospital emergency room admissions for chronic obstructive pulmonary disease in Valencia, Spain.

    PubMed

    Tenías, José Maria; Ballester, Ferran; Pérez-Hoyos, Santiago; Rivera, María Luisa

    2002-01-01

    The short-term relationship between levels of air pollution and emergency room admissions for chronic obstructive pulmonary disease was assessed in Valencia, Spain. The design was an ecological time-series study in which daily variation in air pollution was related to emergency chronic obstructive pulmonary disease visits to one of the city's hospitals. The pollutants under investigation were Black Smoke, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone. The degree of association was analyzed with Poisson autoregressive regression, for which trend, seasonal patterns, temperature, humidity, days of the week, and incidence of influenza were controlled. Increases of 10 microg/m3 in ozone levels (lag 5) and of 1 mg/m3 in carbon monoxide (lag 1) were associated with increases of 6.1% (95% confidence interval [CI] = 2.2%, 10.1%) and of 3.9% (95% CI = 1.4%, 6.6%), respectively, in the expected chronic obstructive pulmonary disease cases. There was no significant association for the remainder of the pollutants. The described effects persisted even when the authors used models of differing specifications and when generalized additive models were used. The authors concluded that the results of this investigation, together with results of earlier research, demonstrate the significant effect of pollution on various health indicaors within Valencia. PMID:12071359

  9. Sulfur condensation in Claus catalyst

    SciTech Connect

    Schoffs, G.R.

    1985-02-01

    The heterogeneous reactions in which catalyst deactivation by pore plugging occur are listed and include: coke formation in petroleum processing, especially hydrocracking and hydrodesulfurization catalysts; steam reforming and methnation catalysts; ammonia synthesis catalyst; and automobile exhause catalysts. The authors explain how the Claus process converts hydrogen sulfide produced by petroleum desulfurization units and gas treatment processes into elemental sulfur and water. More than 15 million tons of sulfur are recovered annually by this process. Commercial Claus plants appear to operate at thermodynamic equilibrium. Depending on the H2S content of the feed and the number of reactors, total H2S conversion to elemental sulfur can exceed 95%.

  10. Impact of air pollutants on athletic performance

    SciTech Connect

    Pierson, W.E. )

    1989-05-01

    Human controlled and observational studies both lead to the conclusion of air pollution adversely affecting athletic performance during training and competition. The dosage of various air pollutants during exercise is much higher due to the marked increase in ventilatory rate and concomitant nasal and oral breathing. This is particularly true for sulfur dioxide which is a highly water-soluble gas and is normally absorbed in the upper airway during nasal breathing. With heavy exercise, oral pharyngeal breathing is the predominant mode of breathing and much larger amounts of sulfur dioxide are delivered to the lower airway resulting in significant impact upon the lower respiratory tract. More recently, several controlled human studies have shown that a combination of exercise and air pollutants such as ozone (O3) or sulfur dioxides (SO2) cause a significant increase in bronchoconstriction and air flow obstruction when compared to the same exposure at rest. In strenuous athletic competition such as the Olympic Games where small increments of time often determine the ultimate success of athletes, the impact of air pollutants and subsequent adverse ventilatory changes can affect athletic performance. 62 references.

  11. Evaluation of health effects of air pollution in the Chestnut Ridge area

    SciTech Connect

    Gruhl, J.; Schweppe, F.C.

    1980-01-01

    This project involves several tasks designed to take advantage of a very extensive air pollution monitoring system that is operating in the Chestnut Ridge region of Western Pennsylvania and the very well developed analytic dispersion models that have been previously fine-tuned to this particular area. The major task in this project is to establish, through several distinct epidemiologic approaches, health data to be used to test hypotheses about relations of air pollution exposures to morbidity and mortality rates in this region. This project affords a cost-effective opportunity for state-of-the-art techniques to be used in both costly areas of air pollution and health effects data collection. The closely spaced network of monitors, plus the dispersion modeling capabilities, allow for the investigation of health impacts of various pollutant gradients in neighboring geographic areas, thus minimizing the confounding effects of social, ethnic, and economic factors. The pollutants that are monitored in this network include total gaseous sulfur, sulfates, total suspended particulates, NOx, NO, ozone/oxidants, and coefficient of haze. In addition to enabling the simulation of exposure profiles between monitors, the air quality modeling, along with extensive source and background inventories, will allow for upgrading the quality of the monitored data as well as simulating the exposure levels for about 25 additional air pollutants. Another important goal of this project is to collect and test the many available models for associating health effects with air pollution, to determine their predictive validity and their usefulness in the choice and siting of future energy facilities.

  12. CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE

    EPA Science Inventory

    Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...

  13. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe.

    PubMed

    Bloem, Elke; Haneklaus, Silvia; Schnug, Ewald

    2014-01-01

    Until the 1970's of the last century sulfur (S) was mainly regarded as a pollutant being the main contributor of acid rain, causing forest dieback in central Europe. When Clean Air Acts came into force at the start of the 1980's SO2 contaminations in the air were consequently reduced within the next years. S changed from an unwanted pollutant into a lacking plant nutrient in agriculture since agricultural fields were no longer "fertilized" indirectly by industrial pollution. S deficiency was first noticed in Brassica crops that display an especially high S demand because of its content of S-containing secondary metabolites, the glucosinolates. In Scotland, where S depositions decreased even faster than in continental Europe, an increasing disease incidence with Pyrenopeziza brassicae was observed in oilseed rape in the beginning 1990's and the concept of sulfur-induced-resistance (SIR) was developed after a relationship between the S status and the disease incidence was uncovered. Since then a lot of research was carried out to unravel the background of SIR in the metabolism of agricultural crops and to identify metabolites, enzymes and reactions, which are potentially activated by the S metabolism to combat fungal pathogens. The S status of the crop is affecting many different plant features such as color and scent of flowers, pigments in leaves, metabolite concentrations and the release of gaseous S compounds which are directly influencing the desirability of a crop for a variety of different organisms from microorganisms, over insects and slugs to the point of grazing animals. The present paper is an attempt to sum up the knowledge about the effect of the S nutritional status of agricultural crops on parameters that are directly related to their health status and by this to SIR. Milestones in SIR research are compiled, open questions are addressed and future projections were developed. PMID:25642233

  14. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe

    PubMed Central

    Bloem, Elke; Haneklaus, Silvia; Schnug, Ewald

    2015-01-01

    Until the 1970's of the last century sulfur (S) was mainly regarded as a pollutant being the main contributor of acid rain, causing forest dieback in central Europe. When Clean Air Acts came into force at the start of the 1980's SO2 contaminations in the air were consequently reduced within the next years. S changed from an unwanted pollutant into a lacking plant nutrient in agriculture since agricultural fields were no longer “fertilized” indirectly by industrial pollution. S deficiency was first noticed in Brassica crops that display an especially high S demand because of its content of S-containing secondary metabolites, the glucosinolates. In Scotland, where S depositions decreased even faster than in continental Europe, an increasing disease incidence with Pyrenopeziza brassicae was observed in oilseed rape in the beginning 1990's and the concept of sulfur-induced-resistance (SIR) was developed after a relationship between the S status and the disease incidence was uncovered. Since then a lot of research was carried out to unravel the background of SIR in the metabolism of agricultural crops and to identify metabolites, enzymes and reactions, which are potentially activated by the S metabolism to combat fungal pathogens. The S status of the crop is affecting many different plant features such as color and scent of flowers, pigments in leaves, metabolite concentrations and the release of gaseous S compounds which are directly influencing the desirability of a crop for a variety of different organisms from microorganisms, over insects and slugs to the point of grazing animals. The present paper is an attempt to sum up the knowledge about the effect of the S nutritional status of agricultural crops on parameters that are directly related to their health status and by this to SIR. Milestones in SIR research are compiled, open questions are addressed and future projections were developed. PMID:25642233

  15. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  16. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  17. Water Pollution

    MedlinePlus

    ... to survive. Many different pollutants can harm our rivers, streams, lakes, and oceans. The three most common ... and bacteria. Rain washes soil into streams and rivers. The soil can kill tiny animals and fish ...

  18. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  19. Deep sulfur cycle

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Mandeville, C. W.

    2009-12-01

    Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with δ34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (δ34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to δ34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with δ34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, δ34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2

  20. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  1. Production of sulfur from sulfur dioxide obtained from flue gas

    SciTech Connect

    Miller, R.

    1989-06-06

    This patent describes a regenerable process for recovery of elemental sulfur from a gas containing sulfur dioxide comprising the steps of: contacting the gas with an aqueous, alkaline reaction medium containing sodium sulfite in concentration sufficient so that a slurry containing solid sodium sulfide is formed to react sulfur dioxide with sodium sulfite to form a solution containing dissolved sodium pyrosulfite and sodium sulfite; separating sulfur dioxide from the solution produced to leave a residual mixture containing water, sodium sulfite and a sodium pyrosulfite, the amount of sulfur dioxide separated being equal to about one-third the amount of sulfur dioxide which reacted with sodium sulfite; adding, in substantial absence of air, sufficient water and sodium bicarbonate to the residual mixture to react with the dissolved sodium pyrsulfide and form a slurry of solid sodium sulfite suspended in the resulting aqueous, alkaline reaction medium and gaseous carbon dioxide; separating the gaseous carbon dioxide; separating the solid sodium sulfite from the aqueous alkaline reaction medium and recycling the separated reaction medium; reducing the separated sodium sulfite to sodium sulfide; adding the sodium sulfide to an aqueous reaction medium containing sodium bicarbonate and, in the substantial absence of air, carbonating the resulting mixture with the gaseous carbon dioxide to form a slurry of solid particles of sodium bicarbonate dispersed in an aqueous reactor medium containing sodium bicarbonate, along with a gas composed primarily of hydrogen sulfide.

  2. SURVEY OF EFFECTS OF GASEOUS AND AEROSOL POLLUTANTS ON PULMONARY FUNCTION OF NORMAL MALES

    EPA Science Inventory

    A total of 231 normal male human subjects were exposed for 4 hr to air, ozone, nitrogen dioxide, or sulfur dioxide; to sulfuric acid, ammonium bisulfate, ammonium sulfate, or ammonium nitrate aerosols; or to mixtures of these gaseous and aerosol pollutants. Only one concentration...

  3. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon...

  4. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon...

  5. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon...

  6. Asthma and Air Pollution in Two Inner City Areas in New York City

    ERIC Educational Resources Information Center

    Goldstein, Inge F.; Block, Gloria

    1974-01-01

    Reports a study of the relationship of visits for asthma to the emergency room to daily temperature and air pollution levels measured in Harlem and Brooklyn. In Harlem no relationship between visits and levels of either smokeshade or sulfur dioxide were found. In Brooklyn a strong relationship was found for levels of sulfur dioxide but not for…

  7. Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The mechanisms by which various fuel component hydrocarbons related to both heavy petroleum and coal-derived liquids are converted to hydrogen without forming carbon were investigated. Reactive differences between paraffins and aromatics in autothermal reforming (ATR) were shown to be responsible for the observed fuel-specific carbon formation characteristics. The types of carbon formed in the reformer were identified by SEM and XRD analyses of catalyst samples and carbon deposits. From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation. The effects of propylene addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics, synergistic effects on conversion characteristics were identified. Indications that the sulfur content of the fuel may be the limiting factor for efficient ATR operation were found. The conversion and degradation effects of the sulfur additive (thiophene) were examined.

  8. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  9. Sulfuric Acid in the Venus Clouds

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1972-01-01

    The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine, produced by the photolytic decomposition of hydrogen bromide.

  10. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  11. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  12. Single cell visualization of sulfur cycling in intertidal microbial mats

    NASA Astrophysics Data System (ADS)

    Dawson, K.; Green, A.; Orphan, V. J.

    2014-12-01

    Chemoautrophic microbial mats form in shallow intertidal pools adjacent to sulfidic hydrothermal vents in San Pedro, CA. Sulfide is primarily geologically derived. However, microscopy revealed deltaproteobacteria closely associated with Beggiatoa -like filaments, indicating an additional biogenic sulfide source, derived from sulfate reduction or sulfur disproportionation. At small scales the intercellular interaction of sulfide producing and sulfide consuming bacteria may play a important role in biogeochemical sulfur cycling. We explored the intracellular transfer of biologically derived sulfide in this system with triple and quadruple stable isotope labeling experiments: 13C, 15N, 33S, and 34S. Silicon wafers colonized by microbial mats in situ, were then incubated with 34SO42- or 34SO42- and 33S0 as well as 13C-acetate and 15NH4+and analyzed by fluorescent in situ hybridization (FISH) coupled to nanometer-scale secondary ion mass spectrometry (NanoSIMS). We observed enrichment of 34S and 33S in both deltaproteobacteria and sulfide oxidizing gammaproteobacteria. Greater enrichment relative to killed controls occurred in deltaproteobacteria than the sulfide oxidizers during both sulfate reducing (Δ34Sdelta-killed = 240‰, Δ34Sgamma-killed = 40‰) and sulfur disproportionating incubations (Δ33Sdelta-killed = 1730‰, Δ33Sgamma-killed = 1050‰). These results provide a direct visualization of interspecies sulfur transfer and indicate that biogenic sulfide derived from either sulfate or intermediate oxidation state sulfur species plays a role in sulfur cycling in this system.

  13. Toxicology of sulfur in ruminants: review

    SciTech Connect

    Kandylis, K.

    1984-10-01

    This review deals with the toxicology of sulfur in ruminants including toxicity, neurotoxic effects, and mechanism of toxic action of hydrogen sulfide, clinical signs, and treatment. It will report effects of excessive intake of sulfur by ruminants on feed intake, animal performance, ruminal digestion and motility, rumination, and other physiological functions. Poisoning of animals with sulfur from industrial emissions (sulfur dioxide) also is discussed. Excessive quantities of dietary sulfur (above .3 to .4%) as sulfate or elemental sulfur may cause toxic effects and in extreme cases can be fatal. The means is discussed whereby consumption of excessive amounts of sulfur leads to toxic effects. 53 references, 1 table.

  14. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  15. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  16. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  17. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  18. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  19. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  20. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  1. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  2. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  3. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  4. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  5. Genome-wide transcriptional profiling of the purple sulfur bacterium Allochromatium vinosum DSM 180T during growth on different reduced sulfur compounds.

    PubMed

    Weissgerber, Thomas; Dobler, Nadine; Polen, Tino; Latus, Jeanette; Stockdreher, Yvonne; Dahl, Christiane

    2013-09-01

    The purple sulfur bacterium Allochromatium vinosum DSM 180(T) is one of the best-studied sulfur-oxidizing anoxygenic phototrophic bacteria, and it has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism's high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur, or sulfite compared to photoorganoheterotrophic growth on malate. Differential expression of 1,178 genes was observed, corresponding to 30% of the A. vinosum genome. Relative transcription of 551 genes increased significantly during growth on one of the different sulfur sources, while the relative transcript abundance of 627 genes decreased. A significant number of genes that revealed strongly enhanced relative transcription levels have documented sulfur metabolism-related functions. Among these are the dsr genes, including dsrAB for dissimilatory sulfite reductase, and the sgp genes for the proteins of the sulfur globule envelope, thus confirming former results. In addition, we identified new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Those four genes for hypothetical proteins that exhibited the strongest increases of mRNA levels on sulfide and elemental sulfur, respectively, were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for sulfur globule formation during the oxidation of sulfide and thiosulfate and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria. PMID:23873913

  6. Genome-Wide Transcriptional Profiling of the Purple Sulfur Bacterium Allochromatium vinosum DSM 180T during Growth on Different Reduced Sulfur Compounds

    PubMed Central

    Weissgerber, Thomas; Dobler, Nadine; Polen, Tino; Latus, Jeanette; Stockdreher, Yvonne

    2013-01-01

    The purple sulfur bacterium Allochromatium vinosum DSM 180T is one of the best-studied sulfur-oxidizing anoxygenic phototrophic bacteria, and it has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism's high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur, or sulfite compared to photoorganoheterotrophic growth on malate. Differential expression of 1,178 genes was observed, corresponding to 30% of the A. vinosum genome. Relative transcription of 551 genes increased significantly during growth on one of the different sulfur sources, while the relative transcript abundance of 627 genes decreased. A significant number of genes that revealed strongly enhanced relative transcription levels have documented sulfur metabolism-related functions. Among these are the dsr genes, including dsrAB for dissimilatory sulfite reductase, and the sgp genes for the proteins of the sulfur globule envelope, thus confirming former results. In addition, we identified new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Those four genes for hypothetical proteins that exhibited the strongest increases of mRNA levels on sulfide and elemental sulfur, respectively, were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for sulfur globule formation during the oxidation of sulfide and thiosulfate and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria. PMID:23873913

  7. Sulfur diagenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Goldhaber, M.

    1985-01-01

    Bacterial sulfate reduction occurs in all marine sediments that contain organic matter. Aqueous sulfide (HS-, H2S), one of the initial products of bacterial sulfide reduction, is extremely reactive with iron bearing minerals: sulfur is fixed into sediments as iron sulfide (first FeS and then Fe2S2). A working definition is given of sulfur diagenesis in marine sediments. Controls and consequences of sulfate reduction rates in marine sediments are examined.

  8. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  9. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover.

    PubMed

    Cheah, Singfoong; Malone, Shealyn C; Feik, Calvin J

    2014-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600-800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). Biochars produced under pyrolysis conditions at 500-600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77-100%. Biochars produced in gasification conditions at 850 °C contain 73-100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix. PMID:25003702

  10. Non-sulfate sulfur in fine aerosols across the United States: Insight for organosulfate prevalence

    NASA Astrophysics Data System (ADS)

    Shakya, Kabindra M.; Peltier, Richard E.

    2015-01-01

    We investigated the discrepancies in long-term sulfur measurements from 2000 to 2012 by two separate speciation methods, X-ray fluorescence (XRF) spectroscopy and ion chromatography (IC) across the United States (334 sites). Overall, there was a good correlation between sulfur measurements by XRF spectroscopy and IC (R ≥ 0.90 for most of the sites). However, the inorganic sulfate measured by ion chromatography was not sufficient to account for all the sulfur measured by XRF spectroscopy at many of the sites. Discrepancies were observed with the high ratios of sulfur measured by XRF spectroscopy to that by IC. Such high ratios also exhibited seasonal variation, and differed across land use types; significant differences occurred at locations classified as forest, agriculture, and mobile, but not in locations classified as commercial, desert, industrial, and residential. On average, the excess, or non-sulfate, sulfur (unmeasured organic sulfur or other inorganic species of sulfur) was variable and observed as high as ∼13% of organic carbon and ∼2% of PM2.5. The contribution of such assumed organosulfur was larger in the eastern region than other geographical locations in the United States. Besides the temporal and spatial trends, the additional sulfur was found to be related to other factors such as aerosol acidity and emission sources. The results suggest that these unmeasured sulfur species could have significant contribution to aerosol burden, and the understanding of these could help to control PM2.5 levels and to assess other effects of sulfur aerosols.

  11. Non-sulfate sulfur in fine aerosols across the United States: Insight for organosulfate prevalence

    PubMed Central

    Shakya, Kabindra M.; Peltier, Richard E.

    2014-01-01

    We investigated the discrepancies in long-term sulfur measurements from 2000 to 2012 by two separate speciation methods, X-ray fluorescence (XRF) spectroscopy and ion chromatography (IC) across the United States (334 sites). Overall, there was a good correlation between sulfur measurements by XRF spectroscopy and IC (R ≥ 0.90 for most of the sites). However, the inorganic sulfate measured by ion chromatography was not sufficient to account for all the sulfur measured by XRF spectroscopy at many of the sites. Discrepancies were observed with the high ratios of sulfur measured by XRF spectroscopy to that by IC. Such high ratios also exhibited seasonal variation, and differed across land use types; significant differences occurred at locations classified as forest, agriculture, and mobile, but not in locations classified as commercial, desert, industrial, and residential. On average, the excess, or non-sulfate, sulfur (unmeasured organic sulfur or other inorganic species of sulfur) was variable and observed as high as ~13% of organic carbon and ~2% of PM2.5. The contribution of such assumed organosulfur was larger in the eastern region than other geographical locations in the United States. Besides the temporal and spatial trends, the additional sulfur was found to be related to other factors such as aerosol acidity and emission sources. The results suggest that these unmeasured sulfur species could have significant contribution to aerosol burden, and the understanding of these could help to control PM2.5 levels and to assess other effects of sulfur aerosols. PMID:25620874

  12. Speciation of Sulfur in Biochar Produced from Pyrolysis and Gasification of Oak and Corn Stover

    PubMed Central

    2015-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600–800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS). Biochars produced under pyrolysis conditions at 500–600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77–100%. Biochars produced in gasification conditions at 850 °C contain 73–100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix. PMID:25003702

  13. Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hapke, B.; Nelson, R.

    1975-01-01

    The decrease in the reflectivity of Venus in the near-UV can be explained if the clouds contain particles of elemental sulfur in addition to sulfuric acid. The low-resolution McDonald-Pittsburgh spectrum can be fitted by two sulfur-containing, multiple-scattering cloud models: (1) a mixed cloud consisting of one particle of elemental sulfur of radius 10 microns for every 670 particles of sulfuric acid of radius 1 micron, and (2) a layered cloud of optical thickness tau = 1.0 consisting of one-micron particles of sulfuric acid overlying a thick cloud of elemental sulfur particles of radius 3.6 microns. Some of the sulfur is incompletely polymerized. The source of the sulfur is photo-dissociation of COS, although some may also be recycled from the lower atmosphere. The sulfur plays a crucial role in the planetary meteorology of Venus since it is responsible for the bulk of the absorption of solar energy.

  14. Sulfur minimization in bacterial leaching

    SciTech Connect

    Seth, R.; Prasad, D.; Henry, J.G.

    1996-11-01

    The production of sewage biosolids in Ontario in 1989 was estimated to be 7 million m{sup 3} of wet sludge per year. Of this amount, land application accounts for between 20 and 30% of the total. Unfortunately, the use of sewage biosolids on agricultural land is often prohibited because of heavy metal contamination of the biosolids. High cost and operational problems have made chemical methods of metal extraction unattractive. Consequently, microbiological methods of leaching of heavy metals have been studied for over a decade. A relatively simple microbiological process has been investigated in recent years in flask level experiments and recently in a semicontinuous system. The process exploits nonacidophilic and acidophilic indigenous thiobacilli to extract heavy metals from sewage biosolids. These thiobacilli use elemental sulfur as the energy source, producing sulfuric acid. However, the resulting decontaminated biosolids can cause environmental problems like acidification of the soil, when acid is generated from the residual sulfur in the biosolids. The present study examines the possibility of reducing the amount of sulfur added in batch and semicontinuous bacterial leaching systems, and maximizing sulfur oxidation efficiency, thereby reducing the residual sulfur in leached biosolids.

  15. Plant sulfur and Big Data.

    PubMed

    Kopriva, Stanislav; Calderwood, Alexander; Weckopp, Silke C; Koprivova, Anna

    2015-12-01

    Sulfur is an essential mineral nutrient for plants, therefore, the pathways of its uptake and assimilation have been extensively studied. Great progress has been made in elucidation of the individual genes and enzymes and their regulation. Sulfur assimilation has been intensively investigated by -omics technologies and has been target of several genome wide genetic approaches. This brought a significant step in our understanding of the regulation of the pathway and its integration in cellular metabolism. However, the large amount of information derived from other experiments not directly targeting sulfur has also brought new and exciting insights into processes affecting sulfur homeostasis. In this review we will integrate the findings of the targeted experiments with those that brought unintentional progress in sulfur research, and will discuss how to synthesize the large amount of information available in various repositories into a meaningful dissection of the regulation of a specific metabolic pathway. We then speculate how this might be used to further advance knowledge on control of sulfur metabolism and what are the main questions to be answered. PMID:26706053

  16. Assessment of sulfur removal processes for advanced fuel cell systems

    SciTech Connect

    Lorton, G.A.

    1980-01-01

    This study consisted of a technical evaluation and economic comparison of sulfur removal processes for integration into a coal gasification-molten carbonate (CGMC) fuel cell power plant. Initially, the performance characteristics of potential sulfur removal processes were evaluated and screened for conformance to the conditions and requirements expected in commercial CGMC power plants. Four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen-blown and air-blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas (1 ppMv or 25 ppMv). The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed for the essentially complete removal of sulfur compounds. The impact on the overall plant performance was also determined. The total capital requirement for sulfur removal schemes ranged from $59.4/kW to $84.8/kW for the oxygen-blown cases and from $89.5/kW to $133/kW for the air-blown cases. The O and M costs for sulfur removal for 70% plant capacity factor ranged from 0.82 mills/kWh to 2.76 mills/kWh for the oxygen-blown cases and from 1.77 mills/kWh to 4.88 mills/kWh for the air-blown cases. The Selexol process benefitted the most from the addition of COS hydrolysis pretreatment.

  17. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries

    PubMed Central

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-01-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g−1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles. PMID:26842015

  18. Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur chemical state in anaerobic granular sludge

    NASA Astrophysics Data System (ADS)

    van Hullebusch, E.; Rossano, S.; Farges, F.; Lenz, M.; Labanowski, J.; Lagarde, P.; Flank, A.-M.; Lens, P.

    2009-11-01

    Sulfur is an essential biological element, yet its biochemistry in anaerobic biofilm is poorly understood because there are few tools for studying this element in biological systems. X-ray absorption spectroscopy provides a unique approach to determining the chemical speciation of sulfur in intact biological samples. When treating sulfate containing wastewaters in full scale up-flow anaerobic sludge bed bioreactors, microbial activity forms biofilms, consisting of a complex mixture of cells and associated extracellular substances as well as undefined inorganic precipitates. In addition to the anaerobic sludges, a large variety of model compounds of S (esp. sulfides) were investigated to find consistencies in the XANES that were used to model each "valence state" of S. The results confirmed that attributing a specific valence to most sulfides is impossible as we measured a continuum of edge shifts from sulfur "-2" to "-1", depending on the electronic structure of S in the probed sulfides. In the sludges, various sulfur hot spots were probed for speciation, despite photo-reduction was sometimes a problem. First, we index the main features of complex K-edge XANES spectra for S2--type units and sulfate units. Organic sulfur compounds were also shown to contribute significantly to the sulfur species present in some anaerobic granular sludge.

  19. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries.

    PubMed

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-01-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g(-1) at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles. PMID:26842015

  20. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.

    PubMed

    Yang, Xi; Zhang, Long; Zhang, Fan; Huang, Yi; Chen, Yongsheng

    2014-05-27

    Because of advantages such as excellent electronic conductivity, high theoretical specific surface area, and good mechanical flexibility, graphene is receiving increasing attention as an additive to improve the conductivity of sulfur cathodes in lithium-sulfur (Li-S) batteries. However, graphene is not an effective substrate material to confine the polysulfides in cathodes and stable the cycling. Here, we designed and synthesized a graphene-based layered porous carbon material for the impregnation of sulfur as cathode for Li-S battery. In this composite, a thin layer of porous carbon uniformly covers both surfaces of the graphene and sulfur is highly dispersed in its pores. The high specific surface area and pore volume of the porous carbon layers not only can achieve a high sulfur loading in highly dispersed amorphous state, but also can act as polysulfide reservoirs to alleviate the shuttle effect. When used as the cathode material in Li-S batteries, with the help of the thin porous carbon layers, the as-prepared materials demonstrate a better electrochemical performance and cycle stability compared with those of graphene/sulfur composites. PMID:24749945

  1. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-02-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g-1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.

  2. Photoreductive degradation of sulfur hexafluoride in the presence of styrene.

    PubMed

    Huang, Li; Gu, Dinghong; Yang, Longyu; Xia, Lanyan; Zhang, Renxi; Hou, Huiqi

    2008-01-01

    Sulfur hexafluoride (SF6) is known as one of the most powerful greenhouse gases in the atmosphere. Reductive photodegradation of SF6 by styrene has been studied with the purpose of developing a novel remediation for sulfur hexafluoride pollution. Effects of reaction conditions on the destruction and removal efficiency (DRE) of SF6 are examined in this study. Both initial styrene-to-SF6 ratio and initial oxygen concentration exert a significant influence on DRE. SF6 removal efficiency reaches a maximum value at the initial styrene-to-SF6 ratio of 0.2. It is found that DRE increases with oxygen concentration over the range of 0 to 0.09 mol/m3 and then decreases with increasing oxygen concentration. When water vapor is fed into the gas mixture, DRE is slightly enhanced over the whole studied time scale. The X-ray Photoelectron Spectroscopy (XPS) analysis, together with gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared spectroscopy (FT-IR) analysis, prove that nearly all the initial fluorine residing in the gas phase is in the form of SiF4, whereas, the initial sulfur is deposited in the form of elemental sulfur, after photodegradation. Free from toxic byproducts, photodegradation in the presence of styrene may serve as a promising technique for SF6 abatement. PMID:18574959

  3. Emissions of sulfur trioxide from coal-fired power plants.

    PubMed

    Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R

    2004-06-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist. PMID:15242154

  4. Relative humidity: important modifier of pollutant uptake by plants

    SciTech Connect

    McLaughlin, S.B.; Taylor, G.E.

    1981-01-09

    Laboratory measurements of foliar uptake of sulfur dioxide and ozone by red kidney beans demonstrated a strong effect of relative humidity on internal pollutant dose. Foliar uptake was enhanced two- to threefold for sulfur dioxide and three- to fourfold for ozone by an increase in relative humidity from 35 to 75 percent. For the same exposure concentration, vegetation growing in humid areas (such as the eastern United States) may experience a significantly greater internal flux of pollutants than that in more arid regions. 22 references, 1 figure, 1 table.

  5. Production of sulfur trioxide, sulfuric acid and oleum

    SciTech Connect

    Daley, W.D.; Jaffe, J.

    1987-02-17

    A process is described for the production of sulfur trioxide which comprises the steps: (a) feeding a gas mixture having a sulfur dioxide partial pressure of at least about 0.5 atmosphere, an oxygen partial pressure of at least about 0.37 atmosphere, an oxygen:-sulfur dioxide mole ratio of between about 0.7:1 and about 1:1. It also has a total pressure between about 1 atmosphere and about 10 atmospheres in plug flow through a bed of a conversion catalyst selected from the group consisting of vanadium oxide conversion catalysts and platinum conversion catalysts; (b) cooling the catalyst bed to produce a first zone wherein the gas mixture increases in temperature from the inlet temperature to a temperature between about 475/sup 0/C. and about 575/sup 0/C., a second zone wherein the temperature is substantially constant at a temperature between about 450/sup 0/C. and about 575/sup 0/C. and a third zone wherein the temperature is declining from a temperature between about 450/sup 0/C. and about 575/sup 0/C. to a temperature between about 325/sup 0/C. and about 400/sup 0/C., (c) passing the gas mixture successively through the first, second and third zones with sufficient contact times in the second and third zones to produce a product gas mixture with a sulfur trioxide to sulfur dioxide mole ratio of at least about 99:1, (d) cooling the product gas mixture to a temperature between about 35/sup 0/C. and about 45/sup 0/C. to produce liquid sulfur trioxide, and (e) separating the liquid sulfur trioxide from the remaining gas stream.

  6. Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions

    NASA Astrophysics Data System (ADS)

    Kattner, L.; Mathieu-Üffing, B.; Burrows, J. P.; Richter, A.; Schmolke, S.; Seyler, A.; Wittrock, F.

    2015-09-01

    In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO2) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO2) and SO2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.

  7. A Comparative Quantitative Proteomic Study Identifies New Proteins Relevant for Sulfur Oxidation in the Purple Sulfur Bacterium Allochromatium vinosum

    PubMed Central

    Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena

    2014-01-01

    In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515). PMID:24487535

  8. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Wang, Zhaoxiang; Chen, Liquan

    2013-11-01

    A reduced graphene oxide (rGO) based film is sandwiched between a sulfur cathode and the separator, acting as a shuttle inhibitor to the sulfur and polysulfides. The lithium-sulfur cell with such a configuration shows an initial discharge capacity of 1260 mAh g-1 and the capacity remains at 895 mAh g-1 after 100 cycles. The excellent electrochemical performance of the cell is attributed to both the functional groups on the rGO sheets that anchor the sulfur and polysulfides and the carbon additive that helps to produce channels for the electrolyte and polysulfide to enter.

  9. Stomatal Conductance and Sulfur Uptake of Five Clones of Populus tremuloides Exposed to Sulfur Dioxide 1

    PubMed Central

    Kimmerer, Thomas W.; Kozlowski, T. T.

    1981-01-01

    Plants of five clones of Populus tremuloides Michx. were exposed to 0, 0.2 or 0.5 microliter per liter SO2 for 8 hours in controlled environment chambers. In the absence of the pollutant, two pollution-resistant clones maintained consistently lower daytime diffusive conductance (LDC) than did a highly susceptible clone or two moderately resistant clones. Differences in LDC among the latter three clones were not significant. At 0.2 microliter per liter SO2, LDC decreased in the susceptible clone after 8 hours fumigation while the LDC of the other clones was not affected. Fumigation with 0.5 microliter per liter SO2 decreased LDC of all five clones during the fumigation. Rates of recovery following fumigation varied with the clone, but the LDC of all clones had returned to control values by the beginning of the night following fumigation. Night LDC was higher in the susceptible clone than in the other clones. Fumigation for 16 hours (14 hours day + 2 hours night) with 0.4 microliter per liter SO2 decreased night LDC by half. Sulfur uptake studies generally confirmed the results of the conductance measurements. The results show that stomatal conductance is important in determining relative susceptibility of the clones to pollution stress. PMID:16661807

  10. Possibilities of observing air pollution from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Barringer, A.

    1972-01-01

    Research carried out over a number of years has indicated the feasibility of monitoring global air pollution from orbiting satellites. Optical methods show considerable promise of measuring the burdens of pollution, both gaseous and particulates. Important pollution gases, such as sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone, as well as some hydrocarbon vapors, appear amenable to optical remote sensing. Satellite platforms for carrying out this work would not compete with ground monitoring stations but rather supplement them with a different type of data which could be integrated with ground level measurements to provide an all-embracing picture of pollution buildup, mass migration, and dissipation.

  11. Sulfur Transfer via Gas Phase in Iron-making Blast Furnace under Intensive Coal Injection

    NASA Astrophysics Data System (ADS)

    Yoshiyuki, Matsui; Rikizou, Tadai; Kenji, Ito; Tadasu, Matsuo; Korehito, Kadoguchi; Reiji, Ono

    The steel industry will move toward more value additive products in the future. In order to support the value additive steel products, iron sources have to be secured with stable operation of furnaces and control of furnace have to be evolved. Environment consciousness including CO2 reduction leads more toward lower reducing agents ratio operation. It is common technical issue on both the more value additive products the environment consciousness to control the sulfur in the hot metal, slag and gas phase.In the present study, the amount of sulfur gasification was measured by combustion experiments with the attention on the simultaneous gasification of sulfur with carbon. By description of sulfurization from gas to burden materials based on the temperature distribution measured in actual furnace, the amount of sulfur transferred to gas was evaluated.

  12. Process for removing sulfur and sulfur compounds from the effluent of industrial processes

    SciTech Connect

    Sims, A.V.

    1981-03-10

    Sulfur dioxide in the stack gas from an industrial process is converted to elemental sulfur in a claus reactor at low temperature to produce sulfur fume. The sulfur is condensed by direct heat transfer with a continuously flowing countercurrent recirculating catalyst and a substantially sulfur dioxide-free gas is discharged. Catalyst and condensed sulfur are fed into the top of a sulfur recovery column and heated in the top of the column by direct heat transfer with a countercurrent stream of recycle gas. The sulfur and catalyst descend into a vaporization zone of the column where sulfur is vaporized. The vaporized sulfur is carried by the recycle gas back towards the top of the column and condensed to a fume by incoming sulfur bearing catalyst. The sulfur fume is carried from the top of the column in cold recycle gas. Hot catalyst from the vaporization section of the column is cooled by recycle gas entering the bottom of the column. Sulfur fume is recovered conventionally. Regenerated catalyst from the column is returned to the sulfur dioxide reactor. Claus plant tail gas with air passes into the base of an incinerator and passes countercurrent to recycled heat transfer solids and is oxidized to convert sulfur and sulfur bearing compounds to sulfur dioxide. The sulfur dioxide is then converted to sulfur in the process just described.

  13. Metabolite profiling of Arabidopsis seedlings in response to exogenous sinalbin and sulfur deficiency.

    PubMed

    Zhang, Jixiu; Sun, Xiumei; Zhang, Zhiping; Ni, Yuwen; Zhang, Qing; Liang, Xinmiao; Xiao, Hongbin; Chen, Jiping; Tokuhisa, James G

    2011-10-01

    In order to determine how plant uptake of a sulfur-rich secondary metabolite, sinalbin, affects the metabolic profile of sulfur-deficient plants, gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), in combination with liquid chromatography-mass spectrometry (LC-MS), was used to survey the metabolome of Arabidopsis seedlings grown in nutrient media under different sulfur conditions. The growth media had either sufficient inorganic sulfur for normal plant growth or insufficient inorganic sulfur in the presence or absence of supplementation with organic sulfur in the form of sinalbin (p-hydroxybenzylglucosinolate). A total of 90 metabolites were identified by GC-TOF-MS and their levels were compared across the three treatments. Of the identified compounds, 21 showed similar responses in plants that were either sulfur deficient or sinalbin supplemented compared to sulfur-sufficient plants, while 12 metabolites differed in abundance only in sulfur-deficient plants. Twelve metabolites accumulated to higher levels in sinalbin-supplemented than in the sulfur-sufficient plants. Secondary metabolites such as flavonol conjugates, sinapinic acid esters and glucosinolates, were identified by LC-MS and their corresponding mass fragmentation patterns were determined. Under sinalbin-supplemented conditions, sinalbin was taken up by Arabidopsis and contributed to the endogenous formation of glucosinolates. Additionally, levels of flavonol glycosides and sinapinic acid esters increased while levels of flavonol diglycosides with glucose attached to the 3-position were reduced. The exogenously administered sinalbin resulted in inhibition of root and hypocotyl growth and markedly influenced metabolite profiles, compared to control and sulfur-deficient plants. These results indicate that, under sulfur deficient conditions, glucosinolates can be a sulfur source for plants. This investigation defines an opportunity to elucidate the mechanism of glucosinolate degradation in

  14. Optimizing stratospheric sulfur geoengineering by seasonally changing sulfur injections

    NASA Astrophysics Data System (ADS)

    Laakso, Anton; Partanen, Antti-Ilari; Kokkola, Harri; Lehtinen, Kari; Korhonen, Hannele

    2015-04-01

    Solar radiation management (SRM) by stratospheric sulfur injection has been shown to have potential in counteracting global warming if reducing of greenhouse gases has not been achieved fast enough and if climate warming will continue. Injecting large amounts of sulfate particles to the stratosphere would increase the reflectivity of the atmosphere and less sunlight would reach the surface. However, the effectivity (per injected sulphur mass unit) of this kind of geoengineering would decrease when amount of injected sulfur is increased. When sulfur concentration increases, stratospheric particles would grow to larger sizes which have larger gravitational settling velocity and which do not reflect radiation as efficiently as smaller particles. In many previous studies, sulfur has been assumed to be injected along the equator where yearly mean solar intensity is the highest and from where sulfur is spread equally to both hemispheres. However, the solar intensity will change locally during the year and sulfate has been assumed to be injected and spread to the hemisphere also during winter time, when the solar intensity is low. Thus sulfate injection could be expected to be more effective, if sulfur injection area is changed seasonally. Here we study effects of the different SRM injection scenarios by using two versions of the MPI climate models. First, aerosol spatial and temporal distributions as well as the resulting radiative properties from the SRM are defined by using the global aerosol-climate model ECHAM6.1-HAM2.2-SALSA. After that, the global and regional climate effects from different injection scenarios are predicted by using the Max Planck Institute's Earth System Model (MPI-ESM). We carried out simulations, where 8 Tg of sulfur is injected as SO2 to the stratosphere at height of 20-22 km in an area ranging over a 20 degree wide latitude band. Results show that changing the sulfur injection area seasonally would lead to similar global mean shortwave

  15. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... gasoline. The requirements of this section apply to any refiner approved for small refiner standards...

  16. EFFECTS OF ENDOGENOUS AMMONIA ON NEUTRALIZATION OF INHALED SULFURIC ACID AEROSOLS

    EPA Science Inventory

    Nine male beagle dogs were exposed by inhalation to 0, 6 and 10.5 mg/cu.m sulfuric acid aerosols with normal ammonia, increased blood ammonia, and increased inhaled ammonia to determine whether the addition of ammonia affected the toxicity of sulfuric acid aerosols. Exhaled conce...

  17. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.255 Compliance plans and demonstration of commitment to produce low...

  18. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.255 Compliance plans and demonstration of commitment to produce low...

  19. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.255 Compliance plans and demonstration of commitment to produce low...

  20. Selective catalytic reduction of sulfur dioxide to elemental sulfur

    SciTech Connect

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-01-01

    Elemental sulfur recovery from SO[sub 2]-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO[sub 2] with coke) and Claus plants(reaction of SO[sub 2] with H[sub 2]S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO[sub 2] to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO[sub 2] reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO[sub 2] reduction planned over various CeO[sub 2]-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought Claus-alternative'' for coal-fired power plant applications.

  1. Smaller sulfur molecules promise better lithium-sulfur batteries.

    PubMed

    Xin, Sen; Gu, Lin; Zhao, Na-Hong; Yin, Ya-Xia; Zhou, Long-Jie; Guo, Yu-Guo; Wan, Li-Jun

    2012-11-14

    The lithium-sulfur battery holds a high theoretical energy density, 4-5 times that of today's lithium-ion batteries, yet its applications have been hindered by poor electronic conductivity of the sulfur cathode and, most importantly, the rapid fading of its capacity due to the formation of soluble polysulfide intermediates (Li(2)S(n), n = 4-8). Despite numerous efforts concerning this issue, combatting sulfur loss remains one of the greatest challenges. Here we show that this problem can be effectively diminished by controlling the sulfur as smaller allotropes. Metastable small sulfur molecules of S(2-4) were synthesized in the confined space of a conductive microporous carbon matrix. The confined S(2-4) as a new cathode material can totally avoid the unfavorable transition between the commonly used large S(8) and S(4)(2-). Li-S batteries based on this concept exhibit unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior rate capability, which promise a practicable battery with high energy density for applications in portable electronics, electric vehicles, and large-scale energy storage systems. PMID:23101502

  2. AIR QUALITY CRITERIA FOR PARTICULATE MATTER AND SULFUR OXIDES (Final, 1982)

    EPA Science Inventory

    Particulate matter and sulfur oxides are two of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S. Clean Air Act. As mandated by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) must periodically review the scienti...

  3. REGIONAL TRENDS IN RURAL SULFUR DIOXIDE CONCENTRATIONS OVER THE EASTERN U.S.

    EPA Science Inventory

    Emission reductions were mandated in the Clean Air Art Amendments of 1990 with the expectation that they would result in corresponding reductions in air pollution. The 1990 amendments include new requirements that appreciably reduced sulfur dioxide (SO2) emissions in two phases o...

  4. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  5. MORPHOLOGICAL EFFECTS OF PROLONGED EXPOSURE TO OZONE AND SULFURIC ACID AEROSOL ON THE RAT LUNG

    EPA Science Inventory

    The purpose of this study was to determine the pulmonary effects of a combination of ozone (0.5 ppm) and sulfuric acid aerosol (1 mg/cu. m.) and to assess the possibility of interactive effects. Groups of Sprague-Dawley rats were continously exposed to the pollutants, either indi...

  6. PHYSIOLOGY OF ECOTYPIC PLANT RESPONSE TO SULFUR DIOXIDE IN 'GERANIUM CAROLINIANUM' L

    EPA Science Inventory

    Populations of Geranium carolinianum, winter annual plant common in disturbed habitats vary in their folair response to sulfur dioxide and pollution resistance is characteristic of populations sampled from areas in which SO2 has been a prominent stress. The physiological basis of...

  7. COMBINED EFFECT OF SULFUR DIOXIDE AND OZONE ON BEAN AND TOBACCO PLANTS

    EPA Science Inventory

    Plants of two cultivars of Phaseolus vulgaris and one cultivar of Nicotiana tabacum were exposed to a replicated series of concentrations of sulfur dioxide (SO2), ozone (03), and combinations of these two air pollutants for single four-hour periods. Experiments were performed in ...

  8. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly. PMID:19710121

  9. Greenidge Multi-Pollutant Control Project

    SciTech Connect

    Connell, Daniel

    2008-10-18

    CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. About 44% of the funding for the project was provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and the remaining 56% was provided by AES Greenidge. Project goals included reducing high-load NO{sub x} emissions to {le} 0.10 lb/mmBtu; reducing SO{sub 2}, SO{sub 3}, HCl, and HF emissions by at least 95%; and reducing Hg emissions by at least 90% while the unit fired 2-4% sulfur eastern U.S. bituminous coal and co-fired up to 10% biomass. This report details the final results from the project. The multi-pollutant control system was constructed in 2006, with a total plant cost of $349/kW and a footprint of 0.4 acre - both substantially less than would have been required to retrofit AES Greenidge Unit 4 with a conventional SCR and wet scrubber. Start-up of the multi-pollutant control system was completed in March 2007, and the performance of the system was then evaluated over an approximately 18-month period of commercial operation. Guarantee tests conducted in March-June 2007 demonstrated attainment of all of the emission reduction goals listed above. Additional tests completed throughout the performance evaluation period showed 96% SO{sub 2} removal, 98% mercury removal (with no activated carbon injection), 95% SO{sub 3} removal, and 97% HCl removal during longer-term operation. Greater than 95% SO{sub 2} removal efficiency was observed even when the unit fired high-sulfur coals containing up to 4.8 lb SO{sub 2}/mmBtu. Particulate matter emissions were reduced by more than 98% relative to the emission rate observed prior to installation of the technology. The performance of the hybrid SNCR/SCR system was affected by problems with large particle ash, ammonia slip, and nonideal combustion characteristics, and high-load NO{sub x} emissions averaged 0.14 lb

  10. Review of the Health Effects of Sulfur Oxides

    PubMed Central

    Rall, David P.

    1974-01-01

    The pollution in the air is a complex mixture of chemical substances of varying toxicity of which the sulfur oxides are a principal component. Those components which pose the primary hazards to human health have not yet been fully identified, nor have their respective contributions to human disease been fully determined. Efficient and effective control strategies are dependent upon the identification and understanding of these toxic components. Ultimately, the goal of standard-setting should be the development of composite pollution indices rather than control of individual pollutants. Concentrations of SO2 in the ambient air twice the current standards are associated with adverse health effects. A considerable body of evidence suggests that there may be discernible human health effects from exposure to concentrations approximating the current standards. There is therefore no basis for relaxation of the present standards for sulfur oxides at this time. Since the scientific basis for this judgment is incomplete, further scientific information will be required either to validate the present standards or to justify alteration of these standards. PMID:4470921

  11. The impact of energy, transport, and trade on air pollution in China

    SciTech Connect

    Poon, J.P.H.; Casas, I.; He, C.F.

    2006-09-15

    A team of U.S.- and China-based geographers examines the relationship between China's economic development and its environment by modeling the effects of energy, transport, and trade on local air pollution emissions (sulfur dioxide and soot particulates) using the Environmental Kuznets model. Specifically, the latter model is investigated using spatial econometrics that take into account potential regional spillover effects from high-polluting neighbors. The analysis finds an inverted-U relationship for sulfur dioxide but a U-shaped curve for soot particulates. This suggests that soot particulates such as black carbon may pose a more serious environmental problem in China than sulfur dioxide.

  12. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    SciTech Connect

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    , the kinetic activity decreases. We recommend further testing to determine if these binary alloys will provide the increased reaction kinetic needed to meet the targets. We also plan to test the performance of these catalyst materials for both proton and sulfur dioxide reduction. The latter may provide another parameter by which we can control the reduction of sulfur dioxide upon transport to the cathode catalyst surface. A small scale electrolyzer (2 cm{sup 2}) has been fabricated and successfully installed as an additional tool to evaluate the effect of different operating conditions on electrolyzer and MEA performance. Currently this electrolyzer is limited to testing at temperatures up to 80 C and at atmospheric pressure. Selected electrochemical performance data from the single cell sulfur dioxide depolarized electrolyzer were analyzed with the aid of an empirical equation which takes into account the overpotential of each of the components. By using the empirical equation, the performance data was broken down into its components and a comparison of the potential losses was made. The results indicated that for the testing conditions of 80 C and 30 wt% sulfuric acid, the major overpotential contribution ({approx}70 % of all losses) arise from the slow reaction rate of oxidation of sulfur dioxide. The results indicate that in order to meet the target of hydrogen production at 0.5 A/cm{sup 2} at 0.6 V and 50 wt% sulfuric acid, identification of a better catalyst for sulfur dioxide oxidation will provide the largest gain in electrolyzer performance.

  13. Water Pollution

    MedlinePlus

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  14. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  15. Pollution Solution

    ERIC Educational Resources Information Center

    Vannan, Donald A.

    1972-01-01

    Stresses briefly the need for individuals' actions for controlling the environmental pollution. A number of projects are suggested for teachers to involve children in this area. Simulated discussion groups of sellers'' and consumers, use of pictures, onion juice, and a water filtration contest are a few of the sources used. (PS)

  16. A high energy density lithium/sulfur-oxygen hybrid battery

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this paper we introduce a lithium/sulfur-oxygen (Li/S-O 2) hybrid cell that is able to operate either in an air or in an environment without air. In the cell, the cathode is a sulfur-carbon composite electrode containing appropriate amount of sulfur. In the air, the cathode first functions as an air electrode that catalyzes the reduction of oxygen into lithium peroxide (Li 2O 2). Upon the end of oxygen reduction, sulfur starts to discharge like a normal Li/S cell. In the absence of oxygen or air, sulfur alone serves as the active cathode material. That is, sulfur is first reduced to form a soluble polysulfide (Li 2S x, x ≥ 4) that subsequently discharges into Li 2S through a series of disproportionations and reductions. In general, the Li/S-O 2 hybrid cell presents two distinct discharge voltage plateaus, i.e., one at ∼2.7 V attributing to the reduction of oxygen and the other one at ∼2.3 V attributing to the reduction of sulfur. Since the final discharge products of oxygen and sulfur are insoluble in the organic electrolyte, it is shown that the overall specific capacity of Li/S-O 2 hybrid cell is determined by the carbon composite electrode, and that the specific capacity varies with the discharge current rate and electrode composition. In this work, we show that a composite electrode composed by weight of 70% M-30 activated carbon, 22% sulfur and 8% polytetrafluoroethylene (PTFE) has a specific capacity of 857 mAh g -1 vs. M-30 activated carbon at 0.2 mA cm -2 in comparison with 650 mAh g -1 of the control electrode consisting of 92% M-30 and 8% PTFE. In addition, the self-discharge of the Li/S-O 2 hybrid cell is expected to be substantially lower when compared with the Li/S cell since oxygen can easily oxidize the soluble polysulfide into insoluble sulfur.

  17. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.

    PubMed

    Qifeng, Wei; Xiulian, Ren; Jingjing, Guo; Yongxing, Chen

    2016-03-01

    The recovery and simultaneous separation of sulfuric acid and iron from dilute acidic sulfate effluent (DASE) and waste sulfuric acid (WSA) have been an earnest wish for researchers and the entire sulfate process-based titanium pigment industry. To reduce the pollution of the waste acid and make a comprehensive use of the iron and sulfuric acid in it, a new environmentally friendly recovery and separation process for the DASE and the WSA is proposed. This process is based on the reactive extraction of sulfuric acid and Fe(III) from the DASE. Simultaneously, stripping of Fe(III) is carried out in the loaded organic phase with the WSA. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and iron from the DASE, and the stripping of Fe(III) from the loaded organic phase with the WSA. Trioctylamine (TOA) and tributyl phosphate (TBP) in kerosene (10-50%) were used as organic phases for solvent extraction. Under the optimal conditions, about 98% of Fe(III) and sulfuric acid were removed from the DASE, and about 99.9% of Fe(III) in the organic phase was stripped with the WSA. PMID:26546698

  18. The sulfurized InP surface

    SciTech Connect

    Wilmsen, C. W.; Geib, K. M.; Shin, J.; Iyer, R.; Lile, D. L.; Pouch, J. J.

    1989-07-01

    Sulfur treatments have previously been shown to improve the electrical characteristics of InP and GaAs devices. This paper reports the results of an Auger/x-ray photoelectron spectroscopy investigation of the InP surface after sulfur treatment. It is shown that the sulfur remains on the surface bonded to indium. There is no indication of elemental sulfur or sulfur bonded to phosphorus. This suggests that the sulfur has replaced phosphorus on the surface and has filled the phosphorus vacancies.

  19. Sulfur capture in combination bark boilers

    SciTech Connect

    Someshwar, A.V.; Jain, A.K. )

    1993-07-01

    A review of sulfur dioxide emission data for eight combination bark boilers in conjunction with the sulfur contents of the fuels reveals significant sulfur capture ranging from 10% to over 80% within the solid ash phase. Wood ash characteristics similar to activated carbon as well as the significant wood ash alkali oxide and carbonate fractions are believed responsible for the sulfur capture. Sulfur emissions from combination bark-fossil fuel firing are correlated to the sulfur input per ton of bark or wood residue fired.

  20. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  1. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  2. Sulfur and oxygen isotope studies of sulfate reduction

    NASA Astrophysics Data System (ADS)

    Farquhar, J.; Canfield, D. E.; Bao, H.; Masterson, A.; Johnston, D. T.; Wing, B. A.

    2007-12-01

    I will discuss insights into sulfur and oxygen isotope fractionations of dissimilatory sulfate reduction and specifically insight provided by experiments with natural populations of sulfate-reducing bacteria from Faellestrand, Denmark. The experiments yielded relatively large magnitude sulfur isotope fractionations for dissimilatory sulfate reduction (up to approximately 45 ‰ for 34S/32S), with higher δ18O accompanying higher δ34S, similar to that observed in previous studies. The seawater used in the experiments was spiked by addition of 17O-labelled water and the 17O content of residual sulfate was found to depend on the fraction of sulfate reduced in the experiments. The 17O data provides evidence for recycling of sulfur from metabolic intermediates and for an 18O/16O fractionation of ~25-30 ‰ for dissimilatory sulfate reduction, a magnitude that is consistent with isotopic exchange between a sulfite species and cell water. The molar ratio of oxygen exchange to sulfate reduction was found to be about 2.5. Using recent models of sulfur isotope fractionations we find that our combined sulfur and oxygen isotopic data places constraints on the proportion of sulfate recycled to the medium (78-96 %), the proportion of sulfur intermediate sulfite that was recycled by way of APS to sulfate and released back to the external sulfate pool (~70%) and also that a fraction of the sulfur intermediates between sulfite and sulfide were recycled to sulfate. These parameters can be constrained because of the independent information provided by δ18O, δ34S, 17O labels, and Δ33S.

  3. Factor of safety method, application to air and noise pollution

    SciTech Connect

    Green, A.E.S.; Buckley, T.J.; Rio, D.E.; Makarewicz, R.; MacEachern, A.

    1980-01-01

    Technical report:Air quality indexes were used to calculate air and noise pollution factors of safety for 82 U.S. cities. Pollutants considered in the safety study are: total suspended particulates, sulfur dioxide, carbon monoxide, nitrogen dioxide, and ozone. Mathematical models that were used to calculate the factors of safety are presented. The utilization of air quality indexes for regional planning and decision-making is discussed. (5 graphs, 3 photos, 25 references, 6 tables)

  4. Biochemistry of Dissimilatory Sulfur Oxidation

    SciTech Connect

    Blake II, R.

    2003-05-30

    The long term goals of this research were to define the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during the dissimilatory oxidation of sulfur practiced by various species of the thiobacilli. Specific adhesion of the thiobacilli to elemental sulfur was studied by electrical impedance, dynamic light scattering, laser Doppler velocimetry, and optical trapping methods. The conclusion is that the thiobacilli appear to express specific receptors that enable the bacteria to recognize and adhere to insoluble sulfur. The enzyme tetrathionate oxidase was purified from two species of the thiobacilli. Extensive structural and functional studies were conducted on adenosine 5'-phosphosulfate reductase purified from cell-free extracts of Thiobacillus denitrificans. The kinetic mechanism of rhodanese was studied.

  5. Monoclinic sulfur cathode utilizing carbon for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Jung, Sung Chul; Han, Young-Kyu

    2016-09-01

    Sulfur cathodes for lithium-sulfur batteries have been designed to be combined with conductive carbon because the insulating nature of sulfur causes low active material utilization and poor rate capability. This paper is the first to report that carbon can induce a phase transition in a sulfur cathode. The stable form of a sulfur crystal at ambient temperature is orthorhombic sulfur. We found that monoclinic sulfur becomes more stable than orthorhombic sulfur if carbon atoms penetrate into the sulfur at elevated temperatures and the carbon density exceeds a threshold of C0.3S8. The high stability of the carbon-containing monoclinic sulfur persists during lithiation and is attributed to locally formed linear SC3S chains with marked stability. This study provides a novel perspective on the role of carbon in the sulfur cathode and suggests control of the crystal phase of electrodes by composite elements as a new way of designing efficient electrode materials.

  6. Reaction of allyltrimethylsilane with elementary sulfur in presence of triiron dodecacarbonyl

    SciTech Connect

    Chernyshev, E.A.; Kuz'min, O.V.; Lebedev, A.V.; Mrachkovskaya, T.A.; Gusev, A.I.; Kirillova, N.I.; Kisin, A.V.

    1986-08-10

    The authors have previously reported on the reaction of trimethylvinylsilane and of 1,1-dimethylsilacyclopent-3-ene with elementary sulfur in presence of iron carbonyls. According to the experimental data, these reactions go by the mechanism of the electrophilic addition of sulfur to the double bond of the unsaturated silanes. This view is supported by the absence of H/sub 2/S among the reaction products, by the rise in its rate with rise in the polarity of the solvent, and the absence of products of the addition of sulfur at the double bond in the reaction of (2-chlorovinyl)trimethylsilane with a strong electronegative substituent at the double bond, weakening the electrophilic attack by sulfur atoms by lowering the electron density on the carbon atoms of the vinyl group. In the present communication they present data on the reaction of allyltrimethylsilane with elementary sulfur in presence of triiron dodecacarbonyl.

  7. Heterogeneous Photochemical Oxidation of Sulfur Dioxide

    NASA Astrophysics Data System (ADS)

    El-Zanan, H. S.; Stockwell, W. R.

    2007-12-01

    The gas phase oxidation of sulfur dioxide by the hydroxyl radical is a significant source of sulfate aerosol in the troposphere and stratosphere. Stockwell and Calvert (1983) performed fifteen chamber experiments where mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. They found that the atmospheric oxidation of SO2 by hydroxyl radical was a chain process that occurs through the production of an HO2 radical followed by reaction with NO to reproduce HO. We have reanalyzed this dataset and we have found that a very large amount of the observed SO2 oxidation (70.0 ± 9.1 %) is not explained through the HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. A mechanism consisting of photochemical heterogeneous reactions is proposed to account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation. The analysis showed that the measured time dependent SO2, CO2 and nitrogenous compound concentrations could be simulated by the photochemical heterogeneous mechanism in conjunction with the RACM2 mechanism.

  8. Factorization of air pollutant emissions: projections versus observed trends in Europe.

    PubMed

    Rafaj, Peter; Amann, Markus; Siri, José G

    2014-10-01

    This paper revisits the emission scenarios of the European Commission's 2005 Thematic Strategy on Air Pollution (TSAP) in light of today's knowledge. We review assumptions made in the past on the main drivers of emission changes, i.e., demographic trends, economic growth, changes in the energy intensity of GDP, fuel-switching, and application of dedicated emission control measures. Our analysis shows that for most of these drivers, actual trends have not matched initial expectations. Observed ammonia and sulfur emissions in European Union in 2010 were 10% to 20% lower than projected, while emissions of nitrogen oxides and particulate matter exceeded estimates by 8% to 15%. In general, a higher efficiency of dedicated emission controls compensated for a lower-than-expected decline in total energy consumption as well as a delay in the phase-out of coal. For 2020, updated projections anticipate lower sulfur and nitrogen oxide emissions than those under the 2005 baseline, whereby the degree to which these emissions are lower depends on what assumptions are made for emission controls and new vehicle standards. Projected levels of particulates are about 10% higher, while smaller differences emerge for other pollutants. New emission projections suggest that environmental targets established by the TSAP for the protection of human health, eutrophication and forest acidification will not be met without additional measures. PMID:25058894

  9. The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1988-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys (less than 500 ppma), the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S(0.2) (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggest that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  10. The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  11. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  12. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  13. Microbial stabilization of sulfur-laden sorbents. Technical report, December 1, 1992--February 29, 1993

    SciTech Connect

    Miller, K.W.; Banerjee, D.

    1993-05-01

    Clean coal technologies that involve limestone for in situ sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur frequently results in undesirable release of SO{sub 2}. Microbial oxidation may provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide or sulfite can serve as growth substrates for sulfur-oxidizing bacteria, which convert all sulfur to sulfate. The goals of this project are to optimize conditions for sulfate generation from sulfide and sulfite on prepared lime/limestone mixtures; to test and optimize the effectiveness of microbial processing on spent sorbents from coal gasification, in-duct sorbent injection, and fluidized bed combustion; and to search for hyperalkalinophilic thiobacilli, which would be effective up to pH 11. We report here progress toward controlling the pH of culture media, and determining the highest pH at which several environmental isolates and named strains could initiate sulfur oxidation.

  14. Advances in the measurement of sulfur isotopes using laser ablation MC-ICP- MS

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Pribil, M. J.; Koenig, A. E.; Fayek, M.; Slack, J. F.

    2008-05-01

    Although sulfur is poorly ionized in an argon plasma, there are many applications for sulfur isotope analysis using an ICP source. Studies using a desolvation system (DSN) and an aqueous source of sulfur, where the sulfur is complexed with a cation to form a sulfur salt, e.g., calcium or sodium to provide a stable delivery of sulfur through the sample introduction system indicate that precision (~ 0.3 per mil) and accuracy are maintained at sulfur concentrations as low as 1 mg/L. Based on this data, solid sampling of sulfides and sulfates can provide an adequate amount supply of sulfur to an ICP source, even allowing for the relatively poor transport efficiency of laser ablation systems. The main limitations on accuracy and precision are the initial sampling volume, principally a function of spot size and laser fluence and the decreased instrument sensitivity resulting from the pseudo- medium or high resolution mode of analysis required to eliminate polyatomic isobaric interferences. These factors, in turn, determine the minimal grain size necessary for analysis. There are also fit-for-purpose considerations. For instance, many base metal sulfide systems have large variations in sulfur isotope composition, so that precision as poor as one per mil can still provide useful information. Here, we describe the methodology used at the USGS for laser ablation analysis of sulfides and sulfates using a second generation MC-ICP-MS and demonstrate the accuracy of the method based upon a grain-by-grain comparison of laser ablation and ion microprobe sulfur isotope data. A laser ablation MC-ICP-MS study of base metal mineralization at Dry Creek deposit, east-central Alaska demonstrates that the range in sulfur isotope composition of pyrite, sphalerite and galena, based on analysis of individual grains, is almost twice that reported for any other individual VMS deposit. Analysis on the microscopic scale thus provides additional insights into the potential sources of sulfur for

  15. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans

    PubMed Central

    2014-01-01

    Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. Results The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Conclusion Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence

  16. Images of Jupiter's Sulfur Ring.

    PubMed

    Pilcher, C B

    1980-01-11

    Images of the ring of singly ionized sulfur encircling Jupiter obtained on two successive nights in April 1979 show that the ring characteristics may change dramatically in approximately 24 hours. On the first night the ring was narrow and confined to the magnetic equator inside Io's orbit. On the second it was confined symmetrically about the centrifugal symmetry surface and showed considerable radial structure, including a "fan" extending to Io's orbit. Many of the differences in the ring on the two nights can be explained in terms of differences in sulfur plasma temperature. PMID:17809102

  17. Novel approach to the reduction of pollution from low emission sources

    SciTech Connect

    Jozewicz, W.; Natschke, D.F.; Steer, J.; Smolka, A.

    1994-12-31

    The novel approach is described for the reduction of pollution from coal-fired low emission sources (LES) in Krakow, Poland. Coal-based clean burning briquettes will be manufactured and sold in Poland by a new US/Polish joint venture company formed as a result of a program sponsored by the US Department of Energy (DOE) and the US Agency for International Development (AID). Briquettes will be primarily distributed to the residential market; however, their potential for use in boiler houses and district heating systems will also be investigated. The key advantage of this project is that the level of pollutants (particulate matter, sulfur dioxide, and hydrocarbons) currently generated from the stove burning of coal in private houses and in small hand-fed boiler houses will be reduced by approximately 70 percent. This significant air pollution reduction will take place without disrupting traffic or requiring heavy investment like other air pollution methods considered. An additional benefit to the consumer is that there is absolutely no cost or investment by home or apartment owners.

  18. Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones

    NASA Astrophysics Data System (ADS)

    de Hoog, J. C. M.; Taylor, B. E.; van Bergen, M. J.

    2001-07-01

    We report sulfur isotope compositions of basaltic and basaltic andesite lavas from selected volcanoes in the Indonesian arc system covering the spectrum from low-K tholeiitic to high-K calc-alkaline compositions. The results of 25 samples from seven volcanoes, which are associated with different subduction regimes, show a range in δ34S values of +2.0-+7.8‰ (VCDT) with an average of +4.7±1.4‰ (1σ). Averages and within-suite variations of two larger sets of samples from Batur and Soputan volcanoes (+4.2±1.3‰ with n=9 and +5.7±1.4‰ with n=7, respectively) are comparable to those of the entire sample set. Sulfur concentrations are low (mostly between 2 and 74 ppm, average=19 ppm) and do not show correlations with sulfur isotope composition and whole-rock chemistry, or systematic changes with time in any of the lava suites. From model calculations we infer that basaltic magmas will undergo sulfur isotope fractionation during degassing, most commonly towards lower δ34S values, but that the extent is limited at P-T conditions and oxidation states of interest. Hence, δ34S signatures of basaltic lavas will generally be within a few permil from primary magmatic values, even in cases of extensive sulfur loss. Consequently, magmas in the Indonesian arc system originate from mantle sources that are enriched in 34S relative to MORB and OIB sources and are likely to have δ34S values of about +5-+7‰. The enrichment in 34S is considered to reflect addition of slab-derived material, presumably from sediments rather than altered oceanic crust, with fluids being the most likely transport medium. Absence of correlation between δ34S values of Indonesian basalts and chemical proxies for source components or processes at the slab-wedge interface suggests that sulfur isotopes are relatively insensitive to variations in subduction setting and dynamics. This is supported by the modest range in δ34S of the Indonesian volcanoes studied despite significant variations in the

  19. Synergistic capture mechanisms for alkali and sulfur species from combustion

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Wu, Baochun.

    1992-01-10

    Due to the generation of a wide variety of pollutants during coal combustion, research on the development of a multifunction sorbent for adsorbing SO{sub 2} and alkali compounds simultaneously is ongoing at the University of Arizona. The current work focuses on the thermodynamic behavior of the reacting system for alkali adsorption especially in gas phase. The temperature and pressure effects on sodium species and on the system are intensively investigated under the simulated flue gas composition condition. The interaction of sulfur dioxide with sodium chloride vapor and some other system elements is also explored.

  20. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.