Science.gov

Sample records for additional therapeutic strategies

  1. Targeted Strategies for Henipavirus Therapeutics

    PubMed Central

    Bossart, Katharine N; Bingham, John; Middleton, Deborah

    2007-01-01

    Hendra and Nipah viruses are related emergent paramyxoviruses that infect and cause disease in animals and humans. Disease manifests as a generalized vasculitis affecting multiple organs, but is the most severe in the respiratory and central nervous systems. The high case fatality and person-to-person transmission associated with the most recent NiV outbreaks, and the recent re-emergence of HeV, emphasize the importance and necessity of effective therapeutics for these novel agents. In recent years henipavirus research has revealed a more complete understanding of pathogenesis and, as a consequence, viable approaches towards vaccines and therapeutics have emerged. All strategies target early steps in viral replication including receptor binding and membrane fusion. Animal models have been developed, some of which may prove more valuable than others for evaluating the efficacy of therapeutic agents and regimes. Assessments of protective host immunity and drug pharmacokinetics will be crucial to the further advancement of therapeutic compounds. PMID:19440455

  2. Therapeutic Strategies in Huntington's Disease

    PubMed Central

    2006-01-01

    This article provides an overview of the therapeutic strategies, from ordinary classical drugs to the modern molecular strategy at experimental level, for Huntington's disease. The disease is characterized by choreic movements, psychiatric disorders, striatal atrophy with selective small neuronal loss, and autosomal dominant inheritance. The genetic abnormality is CAG expansion in huntingtin gene. Mutant huntingtin with abnormally long glutamine stretch aggregates and forms intranuclear inclusions. In this review, I summarize the results of previous trials from the following aspects; 1. symptomatic/palliative therapies including drugs, stereotaxic surgery and repetitive transcranial magnetic stimulation, 2. anti-degenerative therapies including anti-excitotoxicity, reversal of mitochondrial dysfunction and anti-apoptosis, 3. restorative/reparative therapies including neural trophic factors and tissue or stem cell transplantation, and 4. molecular targets in specific and radical therapies including inhibition of truncation of huntingtin, inhibition of aggregate formation, normalization of transcriptional dysregulation, enhancement of autophagic clearance of mutant huntingtin, and specific inhibition of huntingtin expression by sRNAi. Although the strategies mentioned in the latter two categories are mostly at laboratory level at present, we are pleased that one can discuss such "therapeutic strategies", a matter absolutely impossible before the causal gene of Huntington's disease was identified more than 10 years ago. It is also true, however, that some of the "therapeutic strategies" mentioned here would be found difficult to implement and abandoned in the future. PMID:20396523

  3. Therapeutic Strategies to Inhibit MYC

    PubMed Central

    McKeown, Michael R.; Bradner, James E.

    2014-01-01

    MYC is a master regulator of stem cell state, embryogenesis, tissue homeostasis, and aging. As in health, in disease MYC figures prominently. Decades of biological research have identified a central role for MYC in the pathophysiology of cancer, inflammation, and heart disease. The centrality of MYC to such a vast breadth of disease biology has attracted significant attention to the historic challenge of developing inhibitors of MYC. This review will discuss therapeutic strategies toward the development of inhibitors of MYC-dependent transcriptional signaling, efforts to modulate MYC stability, and the elusive goal of developing potent, direct-acting inhibitors of MYC. PMID:25274755

  4. Therapeutic Strategies in Pulmonary Hypertension

    PubMed Central

    Fuso, Leonello; Baldi, Fabiana; Perna, Alessandra Di

    2011-01-01

    Pulmonary hypertension (PH) is a life-threatening condition characterized by elevated pulmonary arterial pressure. It is clinically classified into five groups: patients in the first group are considered to have pulmonary arterial hypertension (PAH) whereas patients of the other groups have PH that is due to cardiopulmonary or other systemic diseases. The management of patients with PH has advanced rapidly over the last decade and the introduction of specific treatments especially for PAH has lead to an improved outcome. However, despite the progress in the treatment, the functional limitation and the survival of these patients remain unsatisfactory and there is no cure for PAH. Therefore the search for an “ideal” therapy still goes on. At present, two levels of treatment can be identified: primary and specific therapy. Primary therapy is directed at the underlying cause of the PH. It also includes a supportive therapy consisting in oxygen supplementation, diuretics, and anticoagulation which should be considered in all patients with PH. Specific therapy is directed at the PH itself and includes treatment with vasodilatators such as calcium channel blockers and with vasodilatator and pathogenetic drugs such as prostanoids, endothelin receptor antagonists and phosphodiesterase type-5 inhibitors. These drugs act in several pathogenetic mechanisms of the PH and are specific for PAH although they might be used also in the other groups of PH. Finally, atrial septostomy and lung transplantation are reserved for patients refractory to medical therapy. Different therapeutic approaches can be considered in the management of patients with PH. Therapy can be established on the basis of both the clinical classification and the functional class. It is also possible to adopt a goal-oriented therapy in which the timing of treatment escalation is determined by inadequate response to known prognostic indicators. PMID:21687513

  5. International intellectual property strategies for therapeutic antibodies

    PubMed Central

    2011-01-01

    Therapeutic antibodies need international patent protection as their markets expand to include industrialized and emerging countries. Because international intellectual property strategies are frequently complex and costly, applicants require sound information as a basis for decisions regarding the countries in which to pursue patents. While the most important factor is the size of a given market, other factors should also be considered. PMID:22123063

  6. Sterile Neuroinflammation and Strategies for Therapeutic Intervention

    PubMed Central

    2017-01-01

    Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed. PMID:28127491

  7. Complex adaptive therapeutic strategy (CATS) for cancer.

    PubMed

    Cho, Yong Woo; Kim, Sang Yoon; Kwon, Ick Chan; Kim, In-San

    2014-02-10

    Tumors begin with a single cell, but as each tumor grows and evolves, it becomes a wide collection of clones that display remarkable heterogeneity in phenotypic features, which has posed a big challenge to current targeted anticancer therapy. Intra- and inter-tumoral heterogeneity is attributable in part to genetic mutations but also to adaptation and evolution of tumors to heterogeneity in tumor microenvironments. If tumors are viewed not only as a disease but also as a complex adaptive system (CAS), tumors should be treated as such and a more systemic approach is needed. Some of many tumors therapeutic strategies are discussed here from a view of a tumor as CAS, which can be collectively called a complex adaptive therapeutic strategy (CATS). The central theme of CATS is based on three intermediate concepts: i) disruption of artifacts, ii) disruption of connections, and iii) reprogramming of cancer-immune dynamics. Each strategy presented here is a piece of the puzzle for CATS. Although each piece by itself may be neither novel nor profound, an assembled puzzle could be a novel and innovative cancer therapeutic strategy.

  8. Therapeutic strategies targeting cancer stem cells

    PubMed Central

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-01-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  9. Therapeutic Strategies Based on Polymeric Microparticles

    PubMed Central

    Vilos, C.; Velasquez, L. A.

    2012-01-01

    The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases. PMID:22665988

  10. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  11. Myasthenia gravis: subgroup classification and therapeutic strategies.

    PubMed

    Gilhus, Nils Erik; Verschuuren, Jan J

    2015-10-01

    Myasthenia gravis is an autoimmune disease that is characterised by muscle weakness and fatigue, is B-cell mediated, and is associated with antibodies directed against the acetylcholine receptor, muscle-specific kinase (MUSK), lipoprotein-related protein 4 (LRP4), or agrin in the postsynaptic membrane at the neuromuscular junction. Patients with myasthenia gravis should be classified into subgroups to help with therapeutic decisions and prognosis. Subgroups based on serum antibodies and clinical features include early-onset, late-onset, thymoma, MUSK, LRP4, antibody-negative, and ocular forms of myasthenia gravis. Agrin-associated myasthenia gravis might emerge as a new entity. The prognosis is good with optimum symptomatic, immunosuppressive, and supportive treatment. Pyridostigmine is the preferred symptomatic treatment, and for patients who do not adequately respond to symptomatic therapy, corticosteroids, azathioprine, and thymectomy are first-line immunosuppressive treatments. Additional immunomodulatory drugs are emerging, but therapeutic decisions are hampered by the scarcity of controlled studies. Long-term drug treatment is essential for most patients and must be tailored to the particular form of myasthenia gravis.

  12. [Therapeutic strategies in the first psychotic episode].

    PubMed

    Douki, S; Taktak, M J; Ben Zineb, S; Cheour, M

    1999-11-01

    A first psychotic episode includes a wide range of disorders with different outcomes: schizophrenia, bipolar disorder, schizophreniform disorder, schizoaffective disorder, drug-induced psychosis, brief reactive psychosis, organic psychoses and delusional disorder. The course and outcome of a first psychotic episode is greatly dependent on its initial management. Major clinical, etiopathogenic and therapeutic advances have been achieved in this field and have allowed specific management strategies to be adopted. The primary task of therapists involved in the management of patients who have experienced a first episode of psychosis is promotion of recovery and prevention of secondary morbidity, relapse and persistent disability. The main guidelines of an early psychosis management are:--to keep in mind that early psychosis is not early schizophrenia. Thus, clinicians and therapists should avoid an early diagnosis of schizophrenia. Diagnosis in early psychosis can be highly unstable. A diagnosis of schizophrenia, with its implications of pessimism, relapse and disability, does not contribute anything positive in terms of guiding treatment. On the contrary, such a diagnosis may damage the patient and family by stigmatizing them and affecting the way they are viewed and managed by healthcare professionals.--To integrate biological, psychological and social interventions: effective medications is useful in reducing the risk of relapse, but is not a guarantee against it. Psychological and social interventions can greatly help promote recovery.--To tailor the various strategies to met the needs of an individual: as an example, it is important to formulate appropriate strategies for the different stages of the illness (prodromal phase, acute phase, early recovery phase and late recovery phase) because patients have different therapeutic needs at each stage.--In the acute treatment, not to concentrate on short-term goals in indicating antipsychotic treatment: prescribing

  13. Diagnostic and therapeutic strategies for eosinophilic esophagitis

    PubMed Central

    Zaidi, Asifa K; Mussarat, Ahad; Mishra, Anil

    2014-01-01

    Eosinophilic esophagitis (EoE) is a recently recognized allergic disorder, characterized by eosophageal dysfunction, accumulation of ≥15 eosinophils/high-powered field, eosinophil microabssess, basal cell hyperplasia, extracellular eosinophilic granules in the esophageal epithelial mucosal biopsy and a lack of response to a 8-week proton pump inhibitor treatment. Despite the increased incidences and considerable progress made in understanding EoE pathogenesis, there are limited diagnostic and therapeutic options available for EoE. Currently, the only criterion for diagnosing EoE is repetitive esophageal endoscopic biopsies and histopathological evaluation. Antigen elimination or corticosteroid therapies are effective therapies for EoE but are expensive and have limitations, if continued in the long term. Hence, there is a great necessity for novel noninvasive diagnostic biomarkers that can easily diagnose EoE and assess effectiveness of therapy. Herein, we have provided an update on key molecules involved in the disease initiation, and progression and proposed novel noninvasive diagnostic molecules and strategies for EoE therapy. PMID:25400904

  14. Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases

    PubMed Central

    Lee, Chang Youn; Lee, Jihyun; Oh, Sekyung; Lee, Hojin; Lee, Minyoung; Kim, Jongmin

    2016-01-01

    Despite development of medicine, cardiovascular diseases (CVDs) are still the leading cause of mortality and morbidity worldwide. Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are characterized by a broad range of pathological reactions including inflammation, necrosis, hyperplasia, and hypertrophy. However, the causes of CVDs are still unclear. While there is a limit to the currently available target-dependent treatments, the therapeutic potential of stem cells is very attractive for the treatment of CVDs because of their paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. Various studies have recently reported increased therapeutic potential of transplantation of microRNA- (miRNA-) overexpressing stem cells or small-molecule-treated cells. In addition to treatment with drugs or overexpressed miRNA in stem cells, stem cell-derived extracellular vesicles also have therapeutic potential because they can deliver the stem cell-specific RNA and protein into the host cell, thereby improving cell viability. Here, we reported the state of stem cell-based therapy for the treatment of CVDs and the potential for cell-free based therapy. PMID:27829839

  15. Therapeutic vaccination strategies to treat nasopharyngeal carcinoma.

    PubMed

    Taylor, Graham S; Steven, Neil M

    2016-04-01

    Epstein-Barr virus (EBV) infects most people worldwide. EBV has oncogenic potential and is strongly associated with several lymphomas and carcinomas, including nasopharyngeal carcinoma (NPC), that together total 200,000 cases of cancer each year. All EBV-associated cancers express viral proteins that allow highly selective immunotherapeutic targeting of the malignant cells. A number of therapeutic EBV vaccines have been tested in clinical trials with evidence of immune boosting and clinical responses in NPC patients. Therapeutic vaccination could be used after adoptive T-cell transfer to increase and sustain the number of infused T-cells or combined with immunotherapies acting at different stages of the cancer immunity cycle to increase efficacy. The therapeutic EBV vaccines tested to date have been well tolerated with minimal off-target toxicity. A safe therapeutic vaccine that was also able to be mass produced could, in principle, be used to vaccinate large numbers of patients after first line therapy to reduce recurrence.

  16. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    PubMed

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.

  17. Therapeutic Strategies in HCC: Radiation Modalities

    PubMed Central

    Gallicchio, R.; Nardelli, A.; Mainenti, P.; Nappi, A.; Capacchione, D.; Simeon, V.; Sirignano, C.; Abbruzzi, F.; Barbato, F.; Landriscina, M.

    2016-01-01

    Patients with hepatocellular carcinoma (HCC) comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE) and transarterial metabolic radiotherapy (TAMR) have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx) by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with 131I Lipiodol or 90Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment. PMID:27563661

  18. Therapeutic strategies to combat antibiotic resistance.

    PubMed

    Brooks, Benjamin D; Brooks, Amanda E

    2014-11-30

    With multidrug resistant bacteria on the rise, new antibiotic approaches are required. Although a number of new small molecule antibiotics are currently in the development pipeline with many more in preclinical development, the clinical options and practices for infection control must be expanded. Biologics and non-antibiotic adjuvants offer this opportunity for expansion. Nevertheless, to avoid known mechanisms of resistance, intelligent combination approaches for multiple simultaneous and complimentary therapies must be designed. Combination approaches should extend beyond biologically active molecules to include smart controlled delivery strategies. Infection control must integrate antimicrobial stewardship, new antibiotic molecules, biologics, and delivery strategies into effective combination therapies designed to 1) fight the infection, 2) avoid resistance, and 3) protect the natural microbiome. This review explores these developing strategies in the context of circumventing current mechanisms of resistance.

  19. Therapeutic Strategies for Localized Prostate Cancer II

    PubMed Central

    Weil, Michael D; Porter, Arthur T; Beyer, David C; Albert, Peter S; Chinn, Douglas; Harris, Michael J

    2000-01-01

    Application of improved imaging, diagnostic, and computer techniques is beginning to have an impact on the management of localized prostate cancer. It is possible to perform a range of surgical and radiation procedures with less morbidity than in the past. The changes in therapy for patients with localized disease derive from better knowledge of anatomy for invasive procedures and optimization of virtual planning for noninvasive methods. Perineal prostatectomy and combinations of beam and seed radiation offer both patient and physician reasonable therapeutic options. PMID:16986038

  20. Therapeutic strategies in multiple sclerosis. I. Immunotherapy.

    PubMed Central

    Hohlfeld, R

    1999-01-01

    This review first addresses several general aspects of the immunotherapy of multiple sclerosis. Next, two approved immunomodulatory treatments, interferon-beta and copolymer-1 (glatiramer acetate), are reviewed in more detail. Finally, other immunosuppressive therapies and experimental strategies are briefly discussed. PMID:10603621

  1. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  2. Current guidelines in defining therapeutic strategies.

    PubMed

    Ferrajoli, Alessandra; Keating, Michael J

    2004-08-01

    The past three decades have brought major changes in the approach toward chronic lymphocytic leukemia (CLL). This disease was considered a simple form of leukemia for which the only goal of treatment was control of the leukocytosis and of the symptoms related to disease expansion. Many biologic discoveries have increased our understanding of the disease process. New prognostic markers have been identified and are being incorporated into clinical practice. Now, CLL is considered a complex and challenging leukemia for which multiple treatment options are emerging, from chemotherapy to monoclonal antibodies, from vaccines to immunomodulatory strategies. The evaluation of treatment results also has been revolutionized: clones carrying genetic aberrations are monitored, and patients who have had a response are assessed for the presence of minimal residual disease.

  3. Current and Potential Therapeutic Strategies for Hemodynamic Cardiorenal Syndrome

    PubMed Central

    Obi, Yoshitsugu; Kim, Taehee; Kovesdy, Csaba P.; Amin, Alpesh N.; Kalantar-Zadeh, Kamyar

    2016-01-01

    Background Cardiorenal syndrome (CRS) encompasses conditions in which cardiac and renal disorders co-exist and are pathophysiologically related. The newest classification of CRS into seven etiologically and clinically distinct types for direct patient management purposes includes hemodynamic, uremic, vascular, neurohumoral, anemia- and/or iron metabolism-related, mineral metabolism-related and protein-energy wasting-related CRS. This classification also emphasizes the pathophysiologic pathways. The leading CRS category remains hemodynamic CRS, which is the most commonly encountered type in patient care settings and in which acute or chronic heart failure leads to renal impairment. Summary This review focuses on selected therapeutic strategies for the clinical management of hemodynamic CRS. This is often characterized by an exceptionally high ratio of serum urea to creatinine concentrations. Loop diuretics, positive inotropic agents including dopamine and dobutamine, vasopressin antagonists including vasopressin receptor antagonists such as tolvaptan, nesiritide and angiotensin-neprilysin inhibitors are among the pharmacologic agents used. Additional therapies include ultrafiltration (UF) via hemofiltration or dialysis. The beneficial versus unfavorable effects of these therapies on cardiac decongestion versus renal blood flow may act in opposite directions. Some of the most interesting options for the outpatient setting that deserve revisiting include portable continuous dobutamine infusion, peritoneal dialysis and outpatient UF via hemodialysis or hemofiltration. Key Messages The new clinically oriented CRS classification system is helpful in identifying therapeutic targets and offers a systematic approach to an optimal management algorithm with better understanding of etiologies. Most interventions including UF have not shown a favorable impact on outcomes. Outpatient portable dobutamine infusion is underutilized and not well studied. Revisiting traditional and

  4. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  5. Increased osmolality of breast milk with therapeutic additives

    PubMed Central

    Srinivasan, L; Bokiniec, R; King, C; Weaver, G; Edwards, A

    2004-01-01

    Aim: To evaluate the changes in the osmolality of expressed breast milk (EBM) after the addition of seven additives and four proprietary fortifiers commonly used during neonatal intensive care. Methods: The osmolality of 5 ml EBM was measured with increasing doses of 6% NaCl, caffeine, sodium ironedetate, folic acid, and multivitamin drops. Sodium acid phosphate and chloral hydrate were added to 8 ml EBM, and the fortifiers were added to standard volumes of EBM. Dose-effect curves were plotted, and the volume of milk that must be added to the above additives to maintain osmolality below 400 mOsm/kg was calculated. Results: The osmolality of the pure additives ranged from 242 to 951 mOsm/kg. There was a significant increase in the osmolality of EBM with increasing doses of all additives except caffeine. The osmolality of EBM with many additives in clinically used dosages potentially exceeded 400 mOsm/kg. The greatest increase occurred with sodium ironedetate syrup, where the osmolality of EBM increased to 951.57 (25.36) mOsm/kg. Proprietary fortifiers increased the osmolality of EBM to a maximum of 395 mOsm/kg. Conclusion: Routine additives can significantly increase the osmolality of EBM to levels that exceed current guidelines for premature infant feeding. A simple guide for clinical use is presented, which indicates the amount of milk required as diluent if hyperosmolality is to be avoided. PMID:15499144

  6. Acute Myeloid Leukemia: Focus on Novel Therapeutic Strategies

    PubMed Central

    Lin, Tara L.; Levy, M. Yair

    2012-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease with variable clinical outcomes. Cytogenetic analysis reveals which patients may have favorable risk disease, but 5-year survival in this category is only approximately 60%, with intermediate and poor risk groups faring far worse. Advances in our understanding of the biology of leukemia pathogenesis and prognosis have not been matched with clinical improvements. Unsatisfactory outcomes persist for the majority of patients with AML, particularly the elderly. Novel agents and treatment approaches are needed in the induction, post-remission and relapsed settings. The additions of clofarabine for relapsed or refractory disease and the hypomethylating agents represent recent advances. Clinical trials of FLT3 inhibitors have yielded disappointing results to date, with ongoing collaborations attempting to identify the optimal role for these agents. Potential leukemia stem cell targeted therapies and treatments in the setting of minimal residual disease are also under investigation. In this review, we will discuss recent advances in AML treatment and novel therapeutic strategies. PMID:22654526

  7. Therapeutic and prevention strategies against human enterovirus 71 infection

    PubMed Central

    Kok, Chee Choy

    2015-01-01

    Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved. PMID:25964873

  8. [Objectives and therapeutic strategy in type 2 diabetes mellitus].

    PubMed

    Calvo Romero, J M; Lima Rodríguez, E M

    2001-07-01

    United Kingdom Prospective Diabetes Study (UKPDS) has demonstrated definitively that patients with type 2 diabetes mellitus (DM) benefit from intensive blood glucose control, because it diminishes the risk to develop microvascular complications. The therapeutic targets in the type 2 DM have been modified in order to reduce the risk of these complications. However, aggressive treatment may be disastrous for patients with microvascular complications and/or an increased risk of hypoglycemic unawareness, and neither it would be advised in older patients or with short life expectancy. The available drugs for treatment of type 2 DM offer many options for achieving these therapeutic targets, based on the need of the individual patient. In this job we review the targets in the metabolic control of type 2 DM and their backgrounds, and we describe briefly the therapeutic strategy recommended for reaching these targets, with special attention to the new oral antidiabetic agents (repaglinide and thiazolidinediones).

  9. Synthetic biology and therapeutic strategies for the degenerating brain

    PubMed Central

    Agustín-Pavón, Carmen; Isalan, Mark

    2014-01-01

    Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining ‘protect and repair’ strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients. PMID:25100403

  10. Therapeutic siRNA: Principles, Challenges, and Strategies

    PubMed Central

    Gavrilov, Kseniya; Saltzman, W. Mark

    2012-01-01

    RNA interference (RNAi) is a remarkable endogenous regulatory pathway that can bring about sequence-specific gene silencing. If harnessed effectively, RNAi could result in a potent targeted therapeutic modality with applications ranging from viral diseases to cancer. The major barrier to realizing the full medicinal potential of RNAi is the difficulty of delivering effector molecules, such as small interfering RNAs (siRNAs), in vivo. An effective delivery strategy for siRNAs must address limitations that include poor stability and non-targeted biodistribution, while protecting against the stimulation of an undesirable innate immune response. The design of such a system requires rigorous understanding of all mechanisms involved. This article reviews the mechanistic principles of RNA interference, its potential, the greatest challenges for use in biomedical applications, and some of the work that has been done toward engineering delivery systems that overcome some of the hurdles facing siRNA-based therapeutics. PMID:22737048

  11. [New therapeutical strategies in metastatic hormone-dependent breast cancer].

    PubMed

    Vilquin, Paul; Cohen, Pascale; Maudelonde, Thierry; Tredan, Olivier; Treilleux, Isabelle; Bachelot, Thomas; Heudel, Pierre-Etienne

    2015-04-01

    Hormone-dependent breast cancer is the first example of cancer treated by targeted therapy for more than 30 years. Blocking estrogen pathway was the first therapeutical strategy for this subtype of breast cancer, and remains the principle of current standard treatment. Despite the efficacy of drugs used in endocrine therapy, hormone resistance is a major problem for the management of patients with hormone-dependent breast cancer. In this review, we will discuss the development of strategies targeting the PI3K/Akt/mTOR pathway, CDK4/6 (Cyclin Dependent Kinase 4/6) and FGFR (Fibroblast Growth Factor Receptor) in hormone-dependent metastatic breast cancer (ER+). Recent results of clinical trials showed that combination of endocrine therapy with such pharmacological inhibitors is a promising strategy to overcome endocrine resistance. Mutated forms and isoforms of ERα have been recently discovered and its targeting could represent an therapeutic alternative. Future progress will focus on the identification of new compounds and combinations with other targeted therapies to improve the efficacy of such inhibitors in clinical practice.

  12. Potential therapeutic strategy to treat substance abuse related disorders.

    PubMed

    Chang, Sulie L

    2013-12-01

    The "Potential Therapeutic Strategy to Treat Substance Abuse Related Disorders" session was chaired by Dr. Sulie Chang, director of NeuroImmune Phamacology at Seton University. The four presenters (and their topics) were: Dr. Wen-zhe Ho (Miniway to stop HIV/HCV), Dr. Ru-Band Lu (Low dose of memantine in the treatment of opioid dependence in human), Dr. Ping Zhang (Treatment of alcohol-related disorders-Learning from stem/progenitor cell), and Chia-Hsiang Chen (Treatment of methamphetamine abuse: an antibody-based immunotherapy approach).

  13. Improving therapeutic strategies for secondary bacterial pneumonia following influenza

    PubMed Central

    McCullers, Jonathan A.; English, B. Keith

    2008-01-01

    Summary Secondary bacterial pneumonia following influenza is an old problem which is re-emerging. Despite rapid advances in our armamentarium of antimicrobials, the case-fatality rate for this frequent complication of influenza remains high. In some settings, common treatment options may actually contribute to poor outcomes, as rapid lysis of pathogenic bacteria on the backdrop of an activated immune system responding to influenza may lead to inflammatory damage in the lung. An understanding of the interrelated contributions of the antecedent viral infection, the invading bacteria, and the host immune response is necessary to formulate an appropriate therapeutic approach. Prevention and resolution of these fulminant infections will require new approaches including alternate treatment strategies, combination therapies targeting several aspects of the pathogenic process, and, potentially, immunomodulation. In the not-so-distant future, strategies aimed at disarming pathogens without eliminating them may be more effective than our current treatment paradigms. PMID:18651811

  14. Potential Therapeutic Strategies of Regenerative Medicine for Renal Failure.

    PubMed

    Mata-Miranda, Monica Maribel; Delgado-Macuil, Raul Jacobo; Rojas-Lopez, Marlon; Martinez-Flores, Ricardo; Vazquez-Zapien, Gustavo Jesus

    2017-03-17

    Kidney diseases are a public health problem worldwide; the mortality rate is between 50 and 80%. Available therapies include replacement function by dialysis or transplant, associated with a high morbidity and mortality; kidney transplantation is limited by the shortage of donor organs, immune rejection and lifelong treatment with immunosuppressive. Likewise, none of these treatments compensates all kidney functions. There is a great concern in developing more effective therapies with the ability to replace the wide range of renal functions, so that, new researches on developing therapeutic strategies have focused on regenerative medicine, science that includes artificial creation of tissues and organs, in order to repair or replace a tissue or organ function. The aim of this paper is to review the new advances in regenerative medicine strategies for treatment of renal failure. Generally, regenerative medicine comprises two therapeutic strategies: cell therapy and tissue engineering. Cell therapy techniques depend on cell and tissue culture, with the aim to grow specific cells that will replace morphological structures, tissues and functions. In this area, some investigations that include the use of stem cells have been carried out. Tissue engineering complements cell therapy combining techniques of biological sciences and engineering to create structures and devices as scaffolds, matrices or biocompatible materials, which alone or in combination will give support and facilitate the repair of damaged tissue. Even though there is a great advance in regenerative medicine strategies, we are far from using any of its techniques on health institutions, due to it is necessary to evaluate side effects, biodistribution, dosage, type of administration, vehicle of cell therapy, as well as the evaluation of response time and long-term studies, among other studies.

  15. Faster, better, stronger: towards new antidepressant therapeutic strategies.

    PubMed

    O'Leary, Olivia F; Dinan, Timothy G; Cryan, John F

    2015-04-15

    Major depression is a highly prevalent disorder and is predicted to be the second leading cause of disease burden by 2020. Although many antidepressant drugs are currently available, they are far from optimal. Approximately 50% of patients do not respond to initial first line antidepressant treatment, while approximately one third fail to achieve remission following several pharmacological interventions. Furthermore, several weeks or months of treatment are often required before clinical improvement, if any, is reported. Moreover, most of the commonly used antidepressants have been primarily designed to increase synaptic availability of serotonin and/or noradrenaline and although they are of therapeutic benefit to many patients, it is clear that other therapeutic targets are required if we are going to improve the response and remission rates. It is clear that more effective, rapid-acting antidepressants with novel mechanisms of action are required. The purpose of this review is to outline the current strategies that are being taken in both preclinical and clinical settings for identifying superior antidepressant drugs. The realisation that ketamine has rapid antidepressant-like effects in treatment resistant patients has reenergised the field. Further, developing an understanding of the mechanisms underlying the rapid antidepressant effects in treatment-resistant patients by drugs such as ketamine may uncover novel therapeutic targets that can be exploited to meet the Olympian challenge of developing faster, better and stronger antidepressant drugs.

  16. Diverse molecular targets for therapeutic strategies in Alzheimer's disease.

    PubMed

    Han, Sun-Ho; Mook-Jung, Inhee

    2014-07-01

    Alzheimer's disease (AD) is the most common form of dementia caused by neurodegenerative process and is tightly related to amyloid β (Aβ) and neurofibrillary tangles. The lack of early diagnostic biomarker and therapeutic remedy hinders the prevention of increasing population of AD patients every year. In spite of accumulated scientific information, numerous clinical trials for candidate drug targets have failed to be preceded into therapeutic development, therefore, AD-related sufferers including patients and caregivers, are desperate to seek the solution. Also, effective AD intervention is desperately needed to reduce AD-related societal threats to public health. In this review, we summarize various drug targets and strategies in recent preclinical studies and clinical trials for AD therapy: Allopathic treatment, immunotherapy, Aβ production/aggregation modulator, tau-targeting therapy and metabolic targeting. Some has already failed in their clinical trials and the others are still in various stages of investigations, both of which give us valuable information for future research in AD therapeutic development.

  17. Therapeutic strategies in multiple sclerosis. II. Long-term repair.

    PubMed Central

    Scolding, N

    1999-01-01

    Spontaneous myelin repair in multiple sclerosis (MS) provides a striking example of the brain's inherent capacity for sustained and stable regenerative tissue repair--but also clearly emphasizes the limitations of this capacity; remyelination ultimately fails widely in many patients, and disability and handicap accumulate. The observation of endogenous partial myelin repair has raised the possibility that therapeutic interventions designed to supplement or promote remyelination might have a useful and significant impact both in the short term, in restoring conduction, and in the long term, in safeguarding axons. Therapeutic remyelination interventions must involve manipulations to either the molecular or the cellular environment within lesions; both depend crucially on a detailed understanding of the biology of the repair process and of those glia implicated in spontaneous repair, or capable of contributing to exogenous repair. Here we explore the biology of myelin repair in MS, examining the glia responsible for successful remyelination, oligodendrocytes and Schwann cells, their 'target' cells, neurons and the roles of astrocytes. Options for therapeutic remyelinating strategies are reviewed, including glial cell transplantation and treatment with growth factors or other soluble molecules. Clinical aspects of remyelination therapies are considered--which patients, which lesions, which stage of the disease, and how to monitor an intervention--and the remaining obstacles and hazards to these approaches are discussed. PMID:10603622

  18. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy.

    PubMed

    Solá, Ricardo J; Griebenow, Kai

    2010-02-01

    During their development and administration, protein-based drugs routinely display suboptimal therapeutic efficacies due to their poor physicochemical and pharmacological properties. These innate liabilities have driven the development of molecular strategies to improve the therapeutic behavior of protein drugs. Among the currently developed approaches, glycoengineering is one of the most promising, because it has been shown to simultaneously afford improvements in most of the parameters necessary for optimization of in vivo efficacy while allowing for targeting to the desired site of action. These include increased in vitro and in vivo molecular stability (due to reduced oxidation, cross-linking, pH-, chemical-, heating-, and freezing-induced unfolding/denaturation, precipitation, kinetic inactivation, and aggregation), as well as modulated pharmacodynamic responses (due to altered potencies from diminished in vitro enzymatic activities and altered receptor binding affinities) and improved pharmacokinetic profiles (due to altered absorption and distribution behaviors, longer circulation lifetimes, and decreased clearance rates). This article provides an account of the effects that glycosylation has on the therapeutic efficacy of protein drugs and describes the current understanding of the mechanisms by which glycosylation leads to such effects.

  19. Diverse Molecular Targets for Therapeutic Strategies in Alzheimer's Disease

    PubMed Central

    Han, Sun-Ho

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia caused by neurodegenerative process and is tightly related to amyloid β (Aβ) and neurofibrillary tangles. The lack of early diagnostic biomarker and therapeutic remedy hinders the prevention of increasing population of AD patients every year. In spite of accumulated scientific information, numerous clinical trials for candidate drug targets have failed to be preceded into therapeutic development, therefore, AD-related sufferers including patients and caregivers, are desperate to seek the solution. Also, effective AD intervention is desperately needed to reduce AD-related societal threats to public health. In this review, we summarize various drug targets and strategies in recent preclinical studies and clinical trials for AD therapy: Allopathic treatment, immunotherapy, Aβ production/aggregation modulator, tau-targeting therapy and metabolic targeting. Some has already failed in their clinical trials and the others are still in various stages of investigations, both of which give us valuable information for future research in AD therapeutic development. PMID:25045220

  20. Unraveling the complexity of hepatitis B virus: from molecular understanding to therapeutic strategy in 50 years.

    PubMed

    Liu, Bo; Wen, Xin; Huang, Canhua; Wei, Yuquan

    2013-09-01

    Hepatitis B virus (HBV) is a well-known hepadnavirus with a double-stranded circular DNA genome. Although HBV was first described approximately 50 years ago, the precise mechanisms of HBV infection and effective therapeutic strategies remain unclear. Here, we focus on summarizing the complicated mechanisms of HBV replication and infection, as well as genomic factors and epigenetic regulation. Additionally, we discuss in vivo models of HBV, as well as diagnosis, prevention and therapeutic drugs for HBV. Together, the data in this 50-year review may provide new clues to elucidate molecular mechanisms of HBV pathogenesis and shed new light on the future HBV therapies.

  1. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development.

    PubMed

    Cacabelos, Ramón; Cacabelos, Pablo; Torrellas, Clara; Tellado, Iván; Carril, Juan C

    2014-01-01

    Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.

  2. Spinal muscular atrophy: from tissue specificity to therapeutic strategies

    PubMed Central

    Iascone, Daniel M.; Lee, Justin C.

    2015-01-01

    Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value. PMID:25705387

  3. Therapeutic strategies to prevent motor complications in Parkinson's disease.

    PubMed

    Kieburtz, Karl

    2008-08-01

    Dopaminergic treatment of Parkinson's disease (PD) leads to significant improvement in Parkinsonian features; however, the treatment response is hampered by the appearance of motor complications, including dyskinesias and motor fluctuations. These motor complications have a significant negative impact on quality-of-life. Therapeutic strategies using different types and timing of dopaminergic therapy may influence the emergence of motor complications. While sustained release preparations of levodopa have not shown benefit over immediate release preparations, the early combination of a dopamine agonist with levodopa appears to reduce the onset of motor fluctuations. An even larger body of evidence has found that initiating treatment with a dopamine receptor agonist (as compared to immediate release levodopa) is associated with a reduction in motor fluctuations, particularly dyskinesias. These data have led to evidence-based medicine evaluations indicating that the use of dopamine agonists is efficacious and clinically useful for the prevention of motor complications.

  4. Therapeutic strategies for Leber's hereditary optic neuropathy: A current update.

    PubMed

    Gueven, Nuri; Faldu, Dharmesh

    2013-11-01

    Leber's hereditary optic neuropathy (LHON) is a rare mitochondrial retinopathy, caused by mutations in subunits of complex I of the respiratory chain, which leads to elevated levels of oxidative stress and an insufficient energy supply. This molecular pathology is thought to be responsible for the dysfunction and eventual apoptotic loss of retinal ganglion cells in the eye, which ultimately results in blindness. Many strategies, ranging from neuroprotectants, antioxidants, anti-apoptotic- and anti-inflammatory compounds have been tested with mixed results. Currently, the most promising compounds are short-chain quinones that have been shown to protect the vision of LHON patients during the early stages of the disease. This commentary gives a brief overview on the current status of tested therapeutics and also addresses future developments such as the use of gene therapy that hopefully will provide safe and efficient therapy options for all LHON patients.

  5. Current therapeutic strategies for premature ejaculation and future perspectives

    PubMed Central

    Xin, Zhong-Cheng; Zhu, Yi-Chen; Yuan, Yi-Ming; Cui, Wan-Shou; Jin, Zhe; Li, Wei-Ren; Liu, Tao

    2011-01-01

    Premature ejaculation (PE) is a common sexual disorder in men that is mediated by disturbances in the peripheral and central nervous systems. Although all pharmaceutical treatments for PE are currently used ‘off-label', some novel oral agents and some newer methods of drug administration now provide important relief to PE patients. However, the aetiology of this condition has still not been unified, primarily because of the lack of a standard animal model for basic research and the absence of a widely accepted definition and assessment tool for evidence-based clinical studies in patients with PE. In this review, we focus on the current therapeutic strategies and future treatment perspectives for PE. PMID:21532601

  6. Attacking HIV provirus: therapeutic strategies to disrupt persistent infection.

    PubMed

    Margolis, David M; Archin, Nancy M

    2006-12-01

    The therapeutic armamentarium for human immunodeficiency virus type 1 (HIV-1) infection continues to expand. New targets such as entry and integration have recently been successfully exploited. However, HIV-infected patients in need of treatment are currently committed to lifelong suppressive therapy. The persistence of integrated HIV DNA genomes capable of producing virus is a fundamental obstacle to the eradication or cure of HIV infection. Rational molecular or pharmacologic strategies to eliminate persistent HIV proviral genomes are an unaddressed therapeutic need. Coupled with potent antiretroviral therapy, treatments that could efficiently deplete the persistent DNA reservoir of HIV could radically alter treatment paradigms. Prior attempts to target persistent proviral infection deployed intensive antiretroviral therapy (ART) in combination with global inducers of T-cell activation. Initial trials of this approach were unsuccessful. Non-specific T-cell activation may induce high-level viral replication above a level that can be fully contained by ART, while increasing the susceptibility of uninfected cells. Selective targeting of HIV provirus via agents that induce the expression of quiescent HIV, but have limited effects on the uninfected host cell is an alternate approach to attack latent HIV. Recent studies define the role of repressive chromatin structure in maintaining HIV quiescence, and suggest that mechanisms that remodel chromatin about the HIV promoter are a possible therapeutic target. Other studies have uncovered specific factors that may act to induce or maintain latency by limiting the efficiency of HIV gene expression. Attempts to deplete latent HIV using drugs that alter chromatin structure have entered clinical study.

  7. Novel Therapeutic Strategies in MDS: Do Molecular Genetics Help?

    PubMed Central

    Chung, Stephen S.

    2016-01-01

    Purpose of Review Many studies over the past decade have together identified genes that are recurrently mutated in the myelodysplastic syndromes (MDS). We will summarize how this information has informed our understanding of disease pathogenesis and behavior, with an emphasis on how this information may inform therapeutic strategies. Recent findings Genomic sequencing techniques have allowed for the identification of many recurrently mutated genes in MDS, with the most common mutations being found in epigenetic modifiers and components of the splicing machinery. While many mutations are associated with clinical outcomes and disease phenotypes, at the current time they add relatively little to already robust clinical prognostic algorithms. However, as molecular genetic data is accumulated in larger numbers of patients, it is likely that the clinical significance of co-occurring mutations and less common mutations will come to light. Finally, mutated genes may identify biologically distinct subgroups of MDS that may benefit from novel therapies, and a subset of these genes may themselves serve as therapeutic targets. Summary Advances in our knowledge of the molecular genetics of MDS have significantly improved our understanding of the disease biology and promise to improve tools for clinical decision-making and identify new therapies for patients. PMID:26825694

  8. Notochordal Cell-Derived Therapeutic Strategies for Discogenic Back Pain

    PubMed Central

    Purmessur, D.; Cornejo, M. C.; Cho, S. K.; Hecht, A. C.; Iatridis, J. C.

    2013-01-01

    An understanding of the processes that occur during development of the intervertebral disk can help inform therapeutic strategies for discogenic pain. This article reviews the literature to identify candidates that are found in or derived from the notochord or notochordal cells and evaluates the theory that such factors could be isolated and used as biologics to target the structural disruption, inflammation, and neurovascular ingrowth often associated with discogenic back pain. A systematic review using PubMed was performed with a primary search using keywords “(notochordal OR notochord) And (nerves OR blood vessels OR SHH OR chondroitin sulfate OR notch OR CTGF) NOT chordoma.” Secondary searches involved keywords associated with the intervertebral disk and pain. Several potential therapeutic candidates from the notochord and their possible targets were identified. Studies are needed to further identify candidates, explore mechanisms for effect, and to validate the theory that these candidates can promote structural restoration and limit or inhibit neurovascular ingrowth using in vivo studies. PMID:24436871

  9. Targeting SOX2 as a Therapeutic Strategy in Glioblastoma

    PubMed Central

    Garros-Regulez, Laura; Garcia, Idoia; Carrasco-Garcia, Estefania; Lantero, Aquilino; Aldaz, Paula; Moreno-Cugnon, Leire; Arrizabalaga, Olatz; Undabeitia, Jose; Torres-Bayona, Sergio; Villanua, Jorge; Ruiz, Irune; Egaña, Larraitz; Sampron, Nicolas; Matheu, Ander

    2016-01-01

    Glioblastoma is the most common and malignant brain cancer in adults. Current therapy consisting of surgery followed by radiation and temozolomide has a moderate success rate and the tumor reappears. Among the features that a cancer cell must have to survive the therapeutic treatment and reconstitute the tumor is the ability of self-renewal. Therefore, it is vital to identify the molecular mechanisms that regulate this activity. Sex-determining region Y (SRY)-box 2 (SOX2) is a transcription factor whose activity has been associated with the maintenance of the undifferentiated state of cancer stem cells in several tissues, including the brain. Several groups have detected increased SOX2 levels in biopsies of glioblastoma patients, with the highest levels associated with poor outcome. Therefore, SOX2 silencing might be a novel therapeutic approach to combat cancer and particularly brain tumors. In this review, we will summarize the current knowledge about SOX2 in glioblastoma and recapitulate several strategies that have recently been described targeting SOX2 in this malignancy. PMID:27822457

  10. Integrated strategy for the production of therapeutic retroviral vectors.

    PubMed

    Carrondo, Manuel; Panet, Amos; Wirth, Dagmar; Coroadinha, Ana Sofia; Cruz, Pedro; Falk, Haya; Schucht, Roland; Dupont, Francis; Geny-Fiamma, Cécile; Merten, Otto-Wilhelm; Hauser, Hansjörg

    2011-03-01

    The broad application of retroviral vectors for gene delivery is still hampered by the difficulty to reproducibly establish high vector producer cell lines generating sufficient amounts of highly concentrated virus vector preparations of high quality. To enhance the process for producing clinically relevant retroviral vector preparations for therapeutic applications, we have integrated novel and state-of-the-art technologies in a process that allows rapid access to high-efficiency vector-producing cells and consistent production, purification, and storage of retroviral vectors. The process has been designed for various types of retroviral vectors for clinical application and to support a high-throughput process. New modular helper cell lines that permit rapid insertion of DNA encoding the therapeutic vector of interest at predetermined, optimal chromosomal loci were developed to facilitate stable and high vector production levels. Packaging cell lines, cultivation methods, and improved medium composition were coupled with vector purification and storage process strategies that yield maximal vector infectivity and stability. To facilitate GMP-grade vector production, standard of operation protocols were established. These processes were validated by production of retroviral vector lots that drive the expression of type VII collagen (Col7) for the treatment of a skin genetic disease, dystrophic epidermolysis bullosa. The potential efficacy of the Col7-expressing vectors was finally proven with newly developed systems, in particular in target primary keratinocyte cultures and three-dimensional skin tissues in organ culture.

  11. The immune system and cancer evasion strategies: therapeutic concepts.

    PubMed

    Muenst, S; Läubli, H; Soysal, S D; Zippelius, A; Tzankov, A; Hoeller, S

    2016-06-01

    The complicated interplay between cancer and the host immune system has been studied for decades. New insights into the human immune system as well as the mechanisms by which tumours evade immune control have led to the new and innovative therapeutic strategies that are considered amongst the medical breakthroughs of the last few years. Here, we will review the current understanding of cancer immunology in general, including immune surveillance and immunoediting, with a detailed look at immune cells (T cells, B cells, natural killer cells, macrophages and dendritic cells), immune checkpoints and regulators, sialic acid-binding immunoglobulin-like lectins (Siglecs) and other mechanisms. We will also present examples of new immune therapies able to reverse immune evasion strategies of tumour cells. Finally, we will focus on therapies that are already used in daily oncological practice such as the blockade of immune checkpoints cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1) in patients with metastatic melanoma or advanced lung cancer, or therapies currently being tested in clinical trials such as adoptive T-cell transfer.

  12. Tremor retrainment as therapeutic strategy in psychogenic (functional) tremor

    PubMed Central

    Espay, AJ; Edwards, MJ; Oggioni, GD; Phielipp, N; Cox, B; Gonzalez-Usigli, H; Pecina, C; Heldman, DA; Mishra, J; Lang, AE

    2014-01-01

    Background Entrainment, the change or elimination of tremor as patients perform a voluntary rhythmical movement by the unaffected limb, is a key diagnostic hallmark of psychogenic tremor. Objective To evaluate the feasibility of using entrainment as a bedside therapeutic strategy (‘retrainment’) in patients with psychogenic tremor. Methods Ten patients with psychogenic tremor (5 women, mean age, 53.6 ± 12.8 years; mean disease duration 4.3 ± 2.7 years) were asked to participate in a pilot proof-of-concept study aimed at “retraining” their tremor frequency. Retrainment was facilitated by tactile and auditory external cueing and real-time visual feedback on a computer screen. The primary outcome measure was the Tremor subscale of the Rating Scale for Psychogenic Movement Disorders. Results Tremor improved from 22.2 ± 13.39 to 4.3 ± 5.51 (p = 0.0019) at the end of retrainment. The benefits were maintained for at least 1 week and up to 6 months in 6 patients, with relapses occurring in 4 patients between 2 weeks and 6 months. Three subjects achieved tremor freedom. Conclusions Tremor retrainment may be an effective short-term treatment strategy in psychogenic tremor. Although blinded evaluations are not feasible, future studies should examine the long-term benefits of tremor retrainment as adjunctive to psychotherapy or specialized physical therapy. PMID:24679736

  13. Tackling Ebola: new insights into prophylactic and therapeutic intervention strategies

    PubMed Central

    2011-01-01

    Since its discovery in 1976, Ebolavirus has caused periodic outbreaks of viral hemorrhagic fever associated with severe and often fatal disease. Ebolavirus is endemic in Central Africa and the Philippines. Although there is currently no approved treatment available, the past 10 years has seen remarkable progress in our understanding of the pathogenicity of Ebolavirus and the development of prophylactic and post-exposure therapies against it. In vitro and in vivo experiments have shown that Ebolavirus pathogenicity is multifactorial, including viral and host determinants. Besides their function in the virus replication cycle, the viral glycoprotein, nucleoprotein, minor matrix protein and polymerase cofactor are viral determinants of pathogenicity, with evasion of the host innate and adaptive immune responses as the main mechanism. Although no licensed Ebolavirus vaccines are currently available, vaccine research in non-human primates, the 'gold standard' animal model for Ebolavirus, has produced several promising candidates. A combination of DNA vaccination and a recombinant adenovirus serotype 5 boost resulted in cross-protective immunity in non-human primates. A recombinant vesicular stomatitis vaccine vector protected non-human primates in pre- and post-exposure challenge studies. Several antiviral therapies are currently under investigation, but only a few of these have been tested in non-human primate models. Antisense therapies, in which oligonucleotides inhibit viral replication, have shown promising results in non-human primates following post-exposure treatment. In light of the severity of Ebolavirus disease and the observed increase in Ebolavirus outbreaks over the past decade, the expedited translation of potential candidate therapeutics and vaccines from bench to bedside is currently the most challenging task for the field. Here, we review the current state of Ebolavirus research, with emphasis on prophylactic and therapeutic intervention strategies

  14. Hepatitis C virus-host interactions: Etiopathogenesis and therapeutic strategies

    PubMed Central

    Hassan, Mohamed; Selimovic, Denis; El-Khattouti, Abdelouahid; Ghozlan, Hanan; Haikel, Youssef; Abdelkader, Ola

    2012-01-01

    Hepatitis C virus (HCV) is a significant health problem facing the world. This virus infects more than 170 million people worldwide and is considered the major cause of both acute and chronic hepatitis. Persons become infected mainly through parenteral exposure to infected material by blood transfusions or injections with nonsterile needles. Although the sexual behavior is considered as a high risk factor for HCV infection, the transmission of HCV infection through sexual means, is less frequently. Currently, the available treatment for patients with chronic HCV infection is interferon based therapies alone or in combination with ribavirin and protease inhibitors. Although a sustained virological response of patients to the applied therapy, a great portion of patients did not show any response. HCV infection is mostly associated with progressive liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma. Although the focus of many patients and clinicians is sometimes limited to that problem, the natural history of HCV infection (HCV) is also associated with the development of several extrahepatic manifestations including dermatologic, rheumatologic, neurologic, and nephrologic complications, diabetes, arterial hypertension, autoantibodies and cryglobulins. Despite the notion that HCV-mediated extrahepatic manifestations are credible, the mechanism of their modulation is not fully described in detail. Therefore, the understanding of the molecular mechanisms of HCV-induced alteration of intracellular signal transduction pathways, during the course of HCV infection, may offer novel therapeutic targets for HCV-associated both hepatic and extrahepatic manifestations. This review will elaborate the etiopathogenesis of HCV-host interactions and summarize the current knowledge of HCV-associated diseases and their possible therapeutic strategies. PMID:24520529

  15. Molecular Markers for Novel Therapeutic Strategies in Pancreatic Endocrine Tumors

    PubMed Central

    Gilbert, Judith A.; Adhikari, Laura J.; Lloyd, Ricardo V.; Halfdanarson, Thorvardur R.; Muders, Michael H.; Ames, Matthew M.

    2012-01-01

    Objectives Pancreatic endocrine tumors (PETs) share numerous features with gastrointestinal neuroendocrine (carcinoid) tumors. Targets of novel therapeutic strategies previously assessed in carcinoid tumors were analyzed in PETs (44 cases). Methods Activating mutations in EGFR, KIT, and PDGFRA, and non-response mutations in KRAS, were evaluated. Copy number of EGFR and HER-2/neu was quantified by fluorescence in situ hybridization. Expression of EGFR, PDGFRA, VEGFR1, TGFBR1, Hsp90, SSTR2A, SSTR5, IGF1R, mTOR, and MGMT was measured immunohistochemically. Results Elevated EGFR copy number was found in 38% of cases, but no KRAS non-response mutations. VEGFR1, TGFBR1, PDGFRA, SSTR5, SSTR2A, and IGF1R exhibited the highest levels of expression in the largest percentages of PETs. Anticancer drugs BMS-754807 (selective for IGF1R/IR), 17-(allylamino)-17-demethoxygeldanamycin (17-AAG, targeting Hsp90), and axitinib (directed toward VEGFR1–3/PDGFRA-B/KIT) induced growth inhibition of human QGP-1 PET cells with IC50 values (nM) of 273, 723, and 743, respectively. At growth-inhibiting concentrations, BMS-754807 inhibited IGF1R phosphorylation; 17-AAG induced loss of EGFR, IGF1R, and VEGFR2; and axitinib increased p21Waf1/Cip1(CDKN1A) expression without inhibiting VEGFR2 phosphorylation. Conclusions Results encourage further research into multi-drug strategies incorporating inhibitors targeting IGF1R or Hsp90 and into studies of axitinib combined with conventional chemotherapeutics toxic to tumor cells in persistent growth arrest. PMID:23211371

  16. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies.

    PubMed

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-02-21

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required.

  17. ERYTHROPOIETIN: ELUCIDATING NEW CELLULAR TARGETS THAT BROADEN THERAPEUTIC STRATEGIES

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Li, Faqi; Shang, Yan Chen

    2008-01-01

    Given that erythropoietin (EPO) is no longer believed to have exclusive biological activity in the hematopoietic system, EPO is now considered to have applicability in a variety of nervous system disorders that can overlap with vascular disease, metabolic impairments, and immune system function. As a result, EPO may offer efficacy for a broad number of disorders that involve Alzheimer’s disease, cardiac insufficiency, stroke, trauma, and diabetic complications. During a number of clinical conditions, EPO is robust and can prevent metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. Yet, use of EPO is not without its considerations especially in light of frequent concerns that may compromise clinical care. Recent work has elucidated a number of novel cellular pathways governed by EPO that can open new avenues to avert deleterious effects of this agent and offer previously unrecognized perspectives for therapeutic strategies. Obtaining greater insight into the role of EPO in the nervous system and elucidating its unique cellular pathways may provide greater cellular viability not only in the nervous system but also throughout the body. PMID:18396368

  18. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies

    PubMed Central

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-01-01

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required. PMID:26900286

  19. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    PubMed

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  20. Sarcopenia in heart failure: mechanisms and therapeutic strategies

    PubMed Central

    Collamati, Agnese; Marzetti, Emanuele; Calvani, Riccardo; Tosato, Matteo; D'Angelo, Emanuela; Sisto, Alex N; Landi, Francesco

    2016-01-01

    Chronic heart failure (CHF) is a highly prevalent condition among the elderly and is associated with considerable morbidity, institutionalization and mortality. In its advanced stages, CHF is often accompanied by the loss of muscle mass and strength. Sarcopenia is a geriatric syndrome that has been actively studied in recent years due to its association with a wide range of adverse health outcomes. The goal of this review is to discuss the relationship between CHF and sarcopenia, with a focus on shared pathophysiological pathways and treatments. Malnutrition, systemic inflammation, endocrine imbalances, and oxidative stress appear to connect sarcopenia and CHF. At the muscular level, alterations of the ubiquitin proteasome system, myostatin signaling, and apoptosis have been described in both sarcopenia and CHF and could play a role in the loss of muscle mass and function. Possible therapeutic strategies to impede the progression of muscle wasting in CHF patients include protein and vitamin D supplementation, structured physical exercise, and the administration of angiotensin-converting enzyme inhibitors and β-blockers. Hormonal supplementation with growth hormone, testosterone, and ghrelin is also discussed as a potential treatment. PMID:27605943

  1. Comprehensive review on therapeutic strategies of gouty arthritis.

    PubMed

    Akram, Muhammad; Usmanghani, Khan; Ahmed, Iqbal; Azhar, Iqbal; Hamid, Abdul

    2014-09-01

    Traditional medicines are practiced worldwide for treatment of gouty arthritis since ancient times. Herbs and plants always have been used in the treatment of different diseases such as gout. The present article deals with the therapeutic strategies and options for the cure of gouty arthritis. Bibliographic investigation was carried out by analyzing classical textbooks and peer reviewed papers, consulting worldwide accepted scientific databases. In this article a detailed introduction, classification, epidemiology, risk factors, symptoms, diagnosis and treatment of gout with reference to modern and Unani system of medicines have been discussed. It is also tried to provide a list of plants used in the treatment of gout along with their formulations used in Unani system of medicine. The herbs and formulations have been used in different systems of medicine particularly Unani system of medicines exhibit their powerful role in the management and cure of gout and arthritis. Most of herbs and plants have been chemically evaluated and some of them are in clinical trials. Their results are magnificent and considerable. However their mechanisms of actions are still on the way.

  2. CCR5 inhibitors: Emerging promising HIV therapeutic strategy.

    PubMed

    Rao, Padmasri Kutikuppala Surya

    2009-01-01

    safety issues do not emerge, these compounds could be positioned for use from very early stage of HIV infection to salvage strategies that would be an emerging therapeutic novel strategy for HIV/AIDS patients.

  3. Enteric microbiota leads to new therapeutic strategies for ulcerative colitis.

    PubMed

    Chen, Wei-Xu; Ren, Li-Hua; Shi, Rui-Hua

    2014-11-14

    Ulcerative colitis (UC) is a leading form of inflammatory bowel disease that involves chronic relapsing or progressive inflammation. As a significant proportion of UC patients treated with conventional therapies do not achieve remission, there is a pressing need for the development of more effective therapies. The human gut contains a large, diverse, and dynamic population of microorganisms, collectively referred to as the enteric microbiota. There is a symbiotic relationship between the human host and the enteric microbiota, which provides nutrition, protection against pathogenic organisms, and promotes immune homeostasis. An imbalance of the normal enteric microbiota composition (termed dysbiosis) underlies the pathogenesis of UC. A reduction of enteric microbiota diversity has been observed in UC patients, mainly affecting the butyrate-producing bacteria, such as Faecalibacterium prausnitzii, which can repress pro-inflammatory cytokines. Many studies have shown that enteric microbiota plays an important role in anti-inflammatory and immunoregulatory activities, which can benefit UC patients. Therefore, manipulation of the dysbiosis is an attractive approach for UC therapy. Various therapies targeting a restoration of the enteric microbiota have shown efficacy in treating patients with active and chronic forms of UC. Such therapies include fecal microbiota transplantation, probiotics, prebiotics, antibiotics, helminth therapy, and dietary polyphenols, all of which can alter the abundance and composition of the enteric microbiota. Although there have been many large, randomized controlled clinical trials assessing these treatments, the effectiveness and safety of these bacteria-driven therapies need further evaluation. This review focuses on the important role that the enteric microbiota plays in maintaining intestinal homeostasis and discusses new therapeutic strategies targeting the enteric microbiota for UC.

  4. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  5. Therapeutic strategies for Alzheimer's disease in clinical trials.

    PubMed

    Godyń, Justyna; Jończyk, Jakub; Panek, Dawid; Malawska, Barbara

    2016-02-01

    Alzheimer's disease (AD) is considered to be the most common cause of dementia and is an incurable, progressive neurodegenerative disorder. Current treatment of the disease, essentially symptomatic, is based on three cholinesterase inhibitors and memantine, affecting the glutamatergic system. Since 2003, no new drugs have been approved for treatment of AD. This article presents current directions in the search for novel, potentially effective agents for the treatment of AD, as well as selected promising treatment strategies. These include agents acting upon the beta-amyloid, such as vaccines, antibodies and inhibitors or modulators of γ- and β-secretase; agents directed against the tau protein as well as compounds acting as antagonists of neurotransmitter systems (serotoninergic 5-HT6 and histaminergic H3). Ongoing clinical trials with Aβ antibodies (solanezumab, gantenerumab, crenezumab) seem to be promising, while vaccines against the tau protein (AADvac1 and ACI-35) are now in early-stage trials. Interesting results have also been achieved in trials involving small molecules such as inhibitors of β-secretase (MK-8931, E2609), a combination of 5-HT6 antagonist (idalopirdine) with donepezil, inhibition of advanced glycation end product receptors by azeliragon or modulation of the acetylcholine response of α-7 nicotinic acetylcholine receptors by encenicline. Development of new effective drugs acting upon the central nervous system is usually a difficult and time-consuming process, and in the case of AD to-date clinical trials have had a very high failure rate. Most phase II clinical trials ending with a positive outcome do not succeed in phase III, often due to serious adverse effects or lack of therapeutic efficacy.

  6. [Therapeutic and toxic theophylline levels in asthma attacks--is there a need for additional theophylline?].

    PubMed

    Zeidman, A; Gardyn, J; Fradin, Z; Fink, G; Mittelman, M

    1997-07-01

    Although first-line therapy for bronchial asthma has changed over the past decade to anti-inflammatory medication such as inhaled corticosteroids and cromolyn with possible addition of beta-agonists, theophylline is still useful and therefore widely used. However, several studies have raised serious questions regarding its efficacy in acute asthmatic exacerbations. These studies, the narrow therapeutic range of the drug, the frequency of side effects and interactions with common drugs, and individual variation in clearance and metabolism, have prompted its reevaluation in the management of asthma. Therapeutic serum levels of theophylline are between 10 to 20 mcg/ml. Most adults achieve these concentrations with daily slow-release oral theophylline preparations, 200-400 mg (approximately 10 mg/Kg) twice a day. However, when such a patient presents to the emergency room (ER) in an asthmatic attack, immediate intravenous theophylline is often given, regardless of maintenance treatment. Since the rationale for this common therapeutic approach has been challenged, the current study was undertaken. Serum theophylline levels were measured in 23 consecutive asthmatics presenting to the ER in an acute attack. 15 (68%) had therapeutic levels (above 10 mcg/ml) and 2 had toxic levels (above 20 mcg/ml), prior to receiving the standard intravenous theophylline dose given for an attack. These data indicate that most patients with bronchial asthma on oral maintenance theophylline do not require additional intravenous theophylline when in an attack. It probably will not benefit them and may even induce serious theophylline toxicity.

  7. Current therapeutics and practical management strategies for pulmonary arterial hypertension.

    PubMed

    Agarwal, Richa; Gomberg-Maitland, Mardi

    2011-08-01

    Pulmonary arterial hypertension (PAH) develops from an abnormal interaction between the endothelium and smooth muscle cells in the pulmonary vasculature and is characterized by a progressive rise in pulmonary vascular resistance resulting from vascular remodeling, vasoconstriction, and cellular proliferation. Currently, 3 classes of drugs are approved for the treatment of PAH based on results from small short-term clinical trials-prostacyclin analogues, endothelin receptor antagonists, and phosphodiesterase type 5 inhibitors. The pharmacologic management of PAH is rapidly evolving as newer therapeutic targets that stabilize or reverse pulmonary vascular disease and target right ventricular function are being sought and as clinical practice patterns shift in favor of earlier diagnosis and aggressive treatment. This manuscript will review the practical management aspects of currently approved PAH treatments and briefly discuss combination therapy and novel pharmacologic targets. In addition, the treatment of acute right ventricular failure and evidence (or lack thereof) for therapies in non-PAH pulmonary hypertension, such as pulmonary hypertension from left side of the heart disease, are addressed.

  8. Hepatitis C virus-associated pruritus: Etiopathogenesis and therapeutic strategies.

    PubMed

    Alhmada, Youssef; Selimovic, Denis; Murad, Fadi; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mossaad; Hannig, Matthias; Hassan, Mohamed

    2017-02-07

    In addition to its contributing role in the development of chronic liver diseases, chronic hepatitis C virus (HCV) infection is associated with extrahepatic manifestations, particularly, cutaneous-based disorders including those with pruritus as a symptom. Pruritus is frequently associated with the development of chronic liver diseases such as cholestasis and chronic viral infection, and the accumulation of bile acids in patients' sera and tissues as a consequence of liver damage is considered the main cause of pruritus. In addition to their role in dietary lipid absorption, bile acids can trigger the activation of specific receptors, such as the G protein-coupled bile acid receptor (GPBA/ TGR5). These types of receptors are known to play a crucial role in the modulation of the systemic actions of bile acids. TGR5 expression in primary sensory neurons triggers the activation of the transient receptor potential vanilloid 1 (TRPV1) leading to the induction of pruritus by an unknown mechanism. Although the pathologic phenomenon of pruritus is common, there is no uniformly effective therapy available. Understanding the mechanisms regulating the occurrence of pruritus together with the conduction of large-scale clinical and evidence-based studies, may help to create a standard treatment protocol. This review focuses on the etiopathogenesis and treatment strategies of pruritus associated with chronic HCV infection.

  9. Hepatitis C virus-associated pruritus: Etiopathogenesis and therapeutic strategies

    PubMed Central

    Alhmada, Youssef; Selimovic, Denis; Murad, Fadi; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mossaad; Hannig, Matthias; Hassan, Mohamed

    2017-01-01

    In addition to its contributing role in the development of chronic liver diseases, chronic hepatitis C virus (HCV) infection is associated with extrahepatic manifestations, particularly, cutaneous-based disorders including those with pruritus as a symptom. Pruritus is frequently associated with the development of chronic liver diseases such as cholestasis and chronic viral infection, and the accumulation of bile acids in patients’ sera and tissues as a consequence of liver damage is considered the main cause of pruritus. In addition to their role in dietary lipid absorption, bile acids can trigger the activation of specific receptors, such as the G protein-coupled bile acid receptor (GPBA/ TGR5). These types of receptors are known to play a crucial role in the modulation of the systemic actions of bile acids. TGR5 expression in primary sensory neurons triggers the activation of the transient receptor potential vanilloid 1 (TRPV1) leading to the induction of pruritus by an unknown mechanism. Although the pathologic phenomenon of pruritus is common, there is no uniformly effective therapy available. Understanding the mechanisms regulating the occurrence of pruritus together with the conduction of large-scale clinical and evidence-based studies, may help to create a standard treatment protocol. This review focuses on the etiopathogenesis and treatment strategies of pruritus associated with chronic HCV infection. PMID:28223719

  10. Strategy for Texture Management in Metals Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Kirka, M. M.; Lee, Y.; Greeley, D. A.; Okello, A.; Goin, M. J.; Pearce, M. T.; Dehoff, R. R.

    2017-03-01

    Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Proposed in this work is a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials can be controlled. Through this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.

  11. Passive solar addition to therapeutic pre-school. Final technical report

    SciTech Connect

    Not Available

    1983-10-01

    This project consisted of designing and constructing a passive solar system on a new classroom addition to the Peanut Butter and Jelly Therapeutic Pre-School in Albuquerque, NM. The purpose of this project was to demonstrate the applicability of solar space heating systems to large institutional buildings, and to demonstrate the energy and cost savings available through the use of such systems. Preliminary estimates indicated that the passive solar systems will provide about 90 percent of the heating and cooling needs for the new classroom addition to the school.

  12. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  13. Therapeutic Strategies to Treat Dry Eye in an Aging Population

    PubMed Central

    Ezuddin, Nisreen S.; Alawa, Karam A.; Galor, Anat

    2015-01-01

    Dry eye (DE) is a prevalent ocular disease that primarily affects the elderly. Affecting up to 30% of adults aged 50 years and older, dry eye affects both visual function and quality of life. Symptoms of dry eye which include ocular pain (aching, burning), visual disturbances, and tearing can be addressed with therapeutic agents that target dysfunction of the meibomian glands, lacrimal glands, goblet cells, ocular surface and/or neural network. This review provides an overview of the efficacy, use, and limitations of current therapeutic interventions being used to treat DE. PMID:26123947

  14. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.

    PubMed

    Zhang, Fan; Zhang, Liang; Zhang, Caiguo

    2016-01-01

    The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.

  15. Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives

    PubMed Central

    Sarkar, Sumit; Raymick, James; Imam, Syed

    2016-01-01

    Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology. PMID:27338353

  16. Potential therapeutic benefits of strategies directed to mitochondria.

    PubMed

    Camara, Amadou K S; Lesnefsky, Edward J; Stowe, David F

    2010-08-01

    The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.

  17. Collateral Lethality: A new therapeutic strategy in oncology

    PubMed Central

    Muller, Florian L.; Aquilanti, Elisa A.; DePinho, Ronald A.

    2016-01-01

    Genomic deletion of tumor suppressor genes (TSG) is a rite of passage for virtually all human cancers. The synthetic lethal paradigm has provided a framework for the development of molecular targeted therapeutics that are functionally linked to the loss of specific TSG functions. In the course of genomic events that delete TSGs, a large number of genes with no apparent direct role in tumor promotion also sustain deletion as a result of chromosomal proximity to the target TSG. In this perspective, we review the novel concept of “collateral lethality”, which has served to identify cancer-specific therapeutic vulnerabilities resulting from co-deletion of passenger genes neighboring TSG. The large number of collaterally deleted genes, playing diverse functions in cell homeostasis, offers a rich repertoire of pharmacologically targetable vulnerabilities presenting novel opportunities for the development of personalized anti-neoplastic therapies. PMID:26870836

  18. Novel Therapeutic Strategy for the Prevention of Bone Fractures

    DTIC Science & Technology

    2011-06-01

    loss of muscle and bone mass with age Aging; Osteoporosis ; Fractures 7 mhamrick@georgiahealth.edu Table of Contents...the bone marrow microenvironment with aging, revealing a novel therapeutic target for the prevention of osteoporosis .  Discovery that the myostatin...expression. Growth Factors. 2011 Hamrick, MW. A role for myokines in muscle-bone interactions. Exercise & Sports Science Reviews 39: 43-47

  19. Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies

    PubMed Central

    2013-01-01

    Along with rising numbers of patients with metabolic syndrome, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased in proportion with the obesity epidemic. While there are no established treatments for NAFLD, current research is targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. This review discusses some of these emerging molecular mechanisms and their therapeutic implications for the treatment of NAFLD. The basic research that has identified potential molecular targets for pharmacotherapy will be outlined. PMID:24209497

  20. Language Learning Strategies of Multilingual Adults Learning Additional Languages

    ERIC Educational Resources Information Center

    Dmitrenko, Violetta

    2017-01-01

    The main goal consisted in identifying and bringing together strategies of multilinguals as a particular learner group. Therefore, research was placed in the intersection of the three fields: language learning strategies (LLS), third language acquisition (TLA), and the didactics of plurilingualism. First, the paper synthesises the major findings…

  1. Prescribing the Families Own Dysfunctional Rules as a Therapeutic Strategy.

    ERIC Educational Resources Information Center

    Andolfi, Maurizio

    1980-01-01

    The use of paradox-strategy in therapy is motivated by the fact that many families request help but at the same time seem to reject all offers of help. By prescribing its own dysfunctional rules to the family, the therapist can stimulate the tendencies toward change present in the system. (Author)

  2. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  3. Potential Therapeutic Benefits of Strategies Directed to Mitochondria

    PubMed Central

    Lesnefsky, Edward J.; Stowe, David F.

    2010-01-01

    Abstract The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279–347. PMID:20001744

  4. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed Central

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C.

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy. PMID:27721701

  5. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles.

    PubMed

    Péladeau, Christine; Ahmed, Aatika; Amirouche, Adel; Crawford Parks, Tara E; Bronicki, Lucas M; Ljubicic, Vladimir; Renaud, Jean-Marc; Jasmin, Bernard J

    2016-01-01

    Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.

  6. Targeting TNF: a therapeutic strategy for Alzheimer's disease.

    PubMed

    Cheng, Xin; Shen, Yong; Li, Rena

    2014-11-01

    Tumor necrosis factor (TNF), a ligand cytokine, is involved in systemic inflammation. Apart from the well-known pharmacological effects of TNF inhibitors on autoimmune disorders, interest in the effects of TNF in neurodegenerative disorders such as Alzheimer disease (AD) is increasing. TNF and its type 1 receptor (TNFRI) are not only involved in AD-related brain neuroinflammation, but also contribute to amyloidogenesis via β-secretase regulation, suggesting TNF as a promising candidate for future AD therapy. Although the potential adverse effects of TNF-based AD therapies have been of concerns, here we summarize recent discoveries relating to TNF and TNFRI-mediated signal transduction as potential therapeutic targets in AD pathology and clinical investigations.

  7. Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases.

    PubMed

    Tian, Ye; Chen, Jian; Zahtabi, Fatemeh; Keijzer, Richard; Xing, Malcolm

    2013-11-01

    Nanomedicine is a rapidly emerging technology and represents an innovative field for therapy. Nanomaterials have intrinsically defined features for biomedical applications due to the high specific surface area, the amazing diversity, versatility in structure and function and the possibility of surface charge. In particular, the functionalization of targeting or stimuli-responsive unit on the surface of these materials gives them specific targeted therapeutic properties. There are many pediatric lung diseases that could potentially benefit from nanomedicine. Herein, we aim to review various drug carrier systems and release systems specifically targeting pediatric lung diseases. The injection of nanomedicine into in vivo models and their elimination will also be discussed. Finally, the potential toxicity of nanomaterials will be addressed.

  8. [Mantle cell lymphoma: Towards a personalized therapeutic strategy?].

    PubMed

    Navarro Matilla, Belén; García-Marco, José A

    2015-06-22

    Mantle cell lymphoma (MCL) is a clinically heterogeneous non-Hodgkin lymphoma with an aggressive clinical behaviour and short survival in some cases and an indolent course in others. Advances in the biology and pathogenesis of MCL have unveiled several genes involved in deregulation of cell cycle checkpoints and the finding of subclonal populations with specific recurrent mutations (p53, ATM, NOTCH2) with an impact on disease progression and refractoriness to treatment. Prognostic stratification helps to distinguish between indolent and aggressive forms of MCL. Currently, younger fit patients benefit from more intensive front line chemotherapy regimens and consolidation with autologous transplantation, while older or frail patients are treated with less intensive regimens and rituximab maintenance. For relapsing disease, the introduction of bortezomib and lenalidomide containing regimens and B-cell receptor pathway inhibitors such as ibrutinib and idelalisib in combination with immunochemotherapy have emerged as therapeutic agents with promising clinical outcomes.

  9. [Laboratory tests and therapeutic strategies for the porphyrias].

    PubMed

    Poblete-Gutiérrez, P; Wiederholt, T; Merk, H F; Frank, J

    2006-06-01

    The porphyrias are a heterogeneous group of predominantly hereditary metabolic diseases resulting from a dysfunction of heme biosynthesis. Most of the porphyrias can manifest with a broad range of cutaneous symptoms on the sun-exposed areas of the body, whereas other variants reveal life-threatening acute neurological attacks. Further, mixed types of porphyrias exist. Besides the skin, other organs can be affected, such as the liver and the central nervous system. Therefore, interdisciplinary supervision of these patients is mandatory. In this review we will first present the clinical picture and diagnosis of the porphyrias, including the specific biochemical laboratory tests and a diagnostic algorithm. Thereafter, the current therapeutic concepts will be briefly addressed. Finally, we introduce the European Porphyria Initiative (EPI), an association of various European porphyria centers that is aiming at gathering the broad experience of internationally renowned porphyria experts for the development of European consensus guidelines for diagnosis and treatment of these metabolic disorders.

  10. PHARMACOLOGICAL ANTIOXIDANT STRATEGIES AS THERAPEUTIC INTERVENTIONS FOR COPD

    PubMed Central

    2011-01-01

    Cigarette/tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress are intimately associated with the progression and exacerbation of chronic obstructive pulmonary disease (COPD). Therefore, targeting systemic and local oxidative stress with antioxidants/redox modulating agents, or boosting the endogenous levels of antioxidants are likely to have beneficial effects in the treatment/management of COPD. Various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine), all have been reported to modulate various cellular and biochemical aspects of COPD. These antioxidants have been found to scavenge and detoxify free radicals and oxidants, regulate of glutathione biosynthesis, control nuclear factor-kappaB (NF-kappaB) activation, and hence inhibiting inflammatory gene expression. Synthetic molecules, such as specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, iNOS inhibitors, lipid peroxidation inhibitors/blockers edaravone, and lazaroids/tirilazad have also been shown to have beneficial effects by inhibiting the cigarette smoke-induced inflammatory responses and other carbonyl/oxidative stress-induced cellular alterations. A variety of oxidants, free radicals, and carbonyls/aldehydes are implicated in the pathogenesis of COPD, it is therefore, possible that therapeutic administration or supplementation of multiple antioxidants and/or boosting the endogenous levels of antioxidants will be beneficial in the treatment of COPD. This review discusses various novel pharmacological approaches adopted to enhance lung antioxidant levels, and various emerging beneficial and/or prophylactic effects of antioxidant therapeutics in halting or intervening the progression of COPD. PMID:22101076

  11. Ebola virus outbreak, updates on current therapeutic strategies.

    PubMed

    Elshabrawy, Hatem A; Erickson, Timothy B; Prabhakar, Bellur S

    2015-07-01

    Filoviruses are enveloped negative-sense single-stranded RNA viruses, which include Ebola and Marburg viruses, known to cause hemorrhagic fever in humans with a case fatality of up to 90%. There have been several Ebola virus outbreaks since the first outbreak in the Democratic Republic of Congo in 1976 of which, the recent 2013-2015 epidemic in Guinea, Liberia, and Sierra Leone is the largest in recorded history. Within a few months of the start of the outbreak in December 2013, thousands of infected cases were reported with a significant number of deaths. As of March 2015, according to the Centers for Disease Control and Prevention, there have been nearly 25,000 suspected cases, with 15,000 confirmed by laboratory testing, and over 10,000 deaths. The large number of cases and the high mortality rate, combined with the lack of effective Food and Drug Administration-approved treatments, necessitate the development of potent and safe therapeutic measures to combat the current and future outbreaks. Since the beginning of the outbreak, there have been considerable efforts to develop and characterize protective measures including vaccines and antiviral small molecules, and some have proven effective in vitro and in animal models. Most recently, a cocktail of monoclonal antibodies has been shown to be highly effective in protecting non-human primates from Ebola virus infection. In this review, we will discuss what is known about the nature of the virus, phylogenetic classification, genomic organization and replication, disease transmission, and viral entry and highlight the current approaches and efforts, in the development of therapeutics, to control the outbreak.

  12. New therapeutic strategy for chronifying back pain. The multimodal, interdisciplinary therapeutic program.

    PubMed

    Casser, H-R; Riedel, T; Schrembs, C; Ingenhorst, A; Kühnau, D

    1999-11-01

    The epidemic-like rise in chronic low back pain in western industrial nations is less an expression of a medical than a psychosocial phenomenon. Differentiation between acute, chronic or chronifying pain is of crucial importance for therapeutic procedures. Pain syndromes in the muscular-skeletal system tend to become chronic to a far larger extent than expected. More than 80 % of low back pain represents a functional pain syndrome and does not show any pathoanatomical correlate. Pain existing independently seems to be predestined by a somatic and psychosocial deconditioning syndrome. Those at risk of chronifying pain or those whose pain is already chronic should be given an interdisciplinary, multimodal therapeutic program. A pilot study was carried out in our clinic: multidisciplinary treatment was given to our patients (of which over 90 % belonged to stages II and III on the Gerbershagen scale) and the result was significant improvement in the measurements of pain intensity, sensoric and affective pain perception, their list of complaints, the common scale of depression and the pain disability index. Taking previously published studies into consideration, it is safe to say that a multidisciplinary, multimodal program of therapy even after stay in hospital results in considerable relief of pain and improvement in the ability to cope with the pain for patients with chronified pain syndromes in the muscular-skeletal system which are resistant to treatment on an outpatient basis.

  13. Management of constipation in the elderly: emerging therapeutic strategies.

    PubMed

    Kapoor, Shailendra

    2008-09-07

    A number of new, novel strategies for managing constipation in the elderly have emerged over the past few years. Prucalopride is one such new agent that is highly efficacious in managing chronic constipation. In fact, Camilleri et al in a recent study reported that the average number of bowel movements increased by at least one in nearly 47% of the patients who were administered a dose of 4 mg. Lubiprostone is another new agent recently approved by the FDA that shows efficacy in managing the symptoms of constipation. Neostigmine has also been successfully used for the management of recalcitrant constipation. Most of these studies have used subcutaneous neostigmine. Symbiotic yogurt containing components, such as Bifidobacterium and fructoligosaccharide, have also been recently shown to be highly effective in improving symptoms of constipation. Elderly patients especially those in hospices and nursing homes are often on opioids for pain management. Constipation secondary to opioid use is extremely common in nursing homes. Subcutaneous methylnaltrexone has recently been shown to be highly effective in the management of opioid-related constipation, and was recently approved by the FDA. Sacral nerve stimulation is another emerging strategy. A recent analysis by Mowatt et al supports the efficacy of this technique. Botulinum toxin is another agent that has already been successfully used for the management of chronic, refractory constipation in children and may be very effective for elderly constipation. Further larger studies are needed to confirm the findings noted in these studies. Constipation is clearly a major issue in the elderly and these new, emerging strategies will hopefully improve the quality of life and relieve the symptoms of constipation in this population.

  14. The multifaceted mitochondrion: An attractive candidate for therapeutic strategies.

    PubMed

    Strappazzon, Flavie; Cecconi, Francesco

    2015-09-01

    Mitochondria are considered the powerhouse of the cell and disturbances in mitochondrial functions are involved in several disorders such as neurodegeneration and mitochondrial diseases. This review summarizes pharmacological strategies that aim at modifying the number of mitochondria, their dynamics or the mitochondrial quality-control mechanisms, in several pathological instances in which any of these mechanisms are impaired or abnormal. The interplay between different cellular pathways that involve mitochondria in order to respond to stress is highlighted. Such a high mitochondrial plasticity could be exploited for new treatments.

  15. Current therapeutic strategies for inflammation following traumatic spinal cord injury☆

    PubMed Central

    Singh, Priyanka L.; Agarwal, Nitin; Barrese, James C.; Heary, Robert F.

    2012-01-01

    Damage from spinal cord injury occurs in two phases – the trauma of the initial mechanical insult and a secondary injury to nervous tissue spared by the primary insult. Apart from damage sustained as a result of direct trauma to the spinal cord, the post-traumatic inflammatory response contributes significantly to functional motor deficits exacerbated by the secondary injury. Attenuating the detrimental aspects of the inflammatory response is a promising strategy to potentially ameliorate the secondary injury, and promote significant functional recovery. This review details how the inflammatory component of secondary injury to the spinal cord can be treated currently and in the foreseeable future. PMID:25624806

  16. Therapeutic strategies in the choice of antiepileptic drugs.

    PubMed

    de Borchgrave, V; Delvaux, V; de Tourchaninoff, M; Dubru, J M; Ghariani, S; Grisar, Th; Legros, B; Ossemann, M; Sadzot, B; Tugendhaft, P; Van Bogaert, P; van Rijckevorsel, K

    2002-03-01

    The choice of treatment of newly diagnosed epilepsy involves many factors such as age, sex, life style, general health and concomitant medication. The seizure type, syndrome, and the pharmacology, efficacy and safety of the antiepileptic drugs (AEDs) should also be considered. Some of the new AEDs appear to provide at least equivalent efficacy with better tolerability. Some of these drugs have the potential to become drugs of first choice in newly diagnosed epilepsy. At the present time, we also must consider the criteria of reimbursement of these drugs. In this paper, we try to describe common and practical strategies to start a treatment of newly diagnosed epilepsy.

  17. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect

    PubMed Central

    Chen, Xi-sha; Li, Lan-ya; Guan, Yi-di; Yang, Jin-ming; Cheng, Yan

    2016-01-01

    Tumor cells rely mainly on glycolysis for energy production even in the presence of sufficient oxygen, a phenomenon termed the Warburg effect, which is the most outstanding characteristic of energy metabolism in cancer cells. This metabolic adaptation is believed to be critical for tumor cell growth and proliferation, and a number of onco-proteins and tumor suppressors, including the PI3K/Akt/mTOR signaling pathway, Myc, hypoxia-inducible factor and p53, are involved in the regulation of this metabolic adaptation. Moreover, glycolytic cancer cells are often invasive and impervious to therapeutic intervention. Thus, altered energy metabolism is now appreciated as a hallmark of cancer and a promising target for cancer treatment. A better understanding of the biology and the regulatory mechanisms of aerobic glycolysis has the potential to facilitate the development of glycolysis-based therapeutic interventions for cancer. In addition, glycolysis inhibition combined with DNA damaging drugs or chemotherapeutic agents may be effective anticancer strategies through weakening cell damage repair capacity and enhancing drug cytotoxicity. PMID:27374491

  18. Nanoparticulate strategies for effective delivery of poorly soluble therapeutics.

    PubMed

    Gokce, Evren H; Ozyazici, Mine; Souto, Eliana B

    2010-07-01

    The pharmacological activity of a drug molecule depends on its ability to dissolve and interact with its biological target, either through dissolution and absorption, or through dissolution and receptor interaction. The low bioavailability that characterizes poorly water-soluble drugs is usually attributed to the dissolution kinetic profile. Novel strategies to effectively deliver these drugs include nanoparticulate approaches that either increase the surface area of the drug or improve the solubility characteristics of the drug. Nanosizing approaches are based on the production of drug nanocrytals dispersed in an aqueous surfactant solution, whereas other possibilities include drug loading in nanoparticles. Promising nanoparticulate approaches include the development of lipid-based nanocarriers to increase drug solubility followed by enhanced bioavailability. To select the best approach there are, however, some critical considerations to take into account, for example the physicochemical properties of the drug, the possibility to scale-up the production process, the toxicological considerations of the use of solvents and cosolvents, the selection of an environmentally sustainable methodology and the development of a more patient-friendly dosage form. This article addresses these relevant questions and provides feasible examples of novel strategies with respect to relevant administration routes.

  19. Plasma cells in immunopathology: concepts and therapeutic strategies.

    PubMed

    Tiburzy, Benjamin; Kulkarni, Upasana; Hauser, Anja Erika; Abram, Melanie; Manz, Rudolf Armin

    2014-05-01

    Plasma cells are terminally differentiated B cells that secrete antibodies, important for immune protection, but also contribute to any allergic and autoimmune disease. There is increasing evidence that plasma cell populations exhibit a considerable degree of heterogeneity with respect to their immunophenotype, migration behavior, lifetime, and susceptibility to immunosuppressive drugs. Pathogenic long-lived plasma cells are refractory to existing therapies. In contrast, short-lived plasma cells can be depleted by steroids and cytostatic drugs. Therefore, long-lived plasma cells are responsible for therapy-resistant autoantibodies and resemble a challenge for the therapy of antibody-mediated autoimmune diseases. Both lifetime and therapy resistance of plasma cells are supported by factors produced within their microenviromental niches. Current results suggest that plasma cell differentiation and survival factors such as IL-6 also signal via mammalian miRNAs within the plasma cell to modulate downstream transcription factors. Recent evidence also suggests that plasma cells and/or their immediate precursors (plasmablasts) can produce important cytokines and act as antigen-presenting cells, exhibiting so far underestimated roles in immune regulation and bone homeostasis. Here, we provide an overview on plasma cell biology and discuss exciting, experimental, and potential therapeutic approaches to eliminate pathogenic plasma cells.

  20. Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies.

    PubMed

    Laviano, Alessandro; Meguid, Michael M; Rossi-Fanelli, Filippo

    2003-11-01

    Anorexia and reduced food intake are important issues in the management of patients with cancer because they contribute to the development of malnutrition, increase morbidity and mortality, and impinge on quality of life. Accumulating evidence indicates that cancer anorexia is multifactorial in its pathogenesis, and most of the hypothalamic neuronal signalling pathways modulating energy intake are likely to be involved. Several factors are considered to be putative mediators of cancer anorexia, including hormones (eg, leptin), neuropeptides (eg, neuropeptide Y), cytokines (eg, interleukin 1 and 6, and tumour necrosis factor), and neurotransmitters (eg, serotonin and dopamine). These pathways are not isolated and distinct pathogenic mechanisms but are closely inter-related. However, convincing evidence suggests that cytokines have a vital role, triggering the complex neurochemical cascade which leads to the onset of cancer anorexia. Increased expression of cytokines during tumour growth prevents the hypothalamus from responding appropriately to peripheral signals, by persistently activating anorexigenic systems and inhibiting prophagic pathways. Hypothalamic monoaminergic neurotransmission may contribute to these effects. Thus, the optimum therapeutic approach to anorectic cancer patients should include changes in dietary habits, achieved via nutritional counselling, and drug therapy, aimed at interfering with cytokine expression or hypothalamic monoaminergic neurotransmission.

  1. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies

    PubMed Central

    Patil, Shankargouda; Rao, Roopa S.; Majumdar, Barnali; Anil, Sukumaran

    2015-01-01

    Candida species present both as commensals and opportunistic pathogens of the oral cavity. For decades, it has enthralled the clinicians to investigate its pathogenicity and to improvise newer therapeutic regimens based on the updated molecular research. Candida is readily isolated from the oral cavity, but simple carriage does not predictably result in development of an infection. Whether it remains as a commensal, or transmutes into a pathogen, is usually determined by pre-existing or associated variations in the host immune system. The candida infections may range from non-life threatening superficial mucocutaneous disorders to invasive disseminated disease involving multiple organs. In fact, with the increase in number of AIDS cases, there is a resurgence of less common forms of oral candida infections. The treatment after confirmation of the diagnosis should include recognizing and eliminating the underlying causes such as ill-fitting oral appliances, history of medications (antibiotics, corticosteroids, etc.), immunological and endocrine disorders, nutritional deficiency states and prolonged hospitalization. Treatment with appropriate topical antifungal agents such as amphotericin, nystatin, or miconazole usually resolves the symptoms of superficial infection. Occasionally, administration of systemic antifungal agents may be necessary in immunocompromised patients, the selection of which should be based upon history of recent azole exposure, a history of intolerance to an antifungal agent, the dominant Candida species and current susceptibility data. PMID:26733948

  2. New Therapeutic Strategies for Triple-Negative Breast Cancer.

    PubMed

    Székely, Borbála; Silber, Andrea L M; Pusztai, Lajos

    2017-02-15

    Relatively few clinically important therapeutic advances have occurred in the treatment of triple-negative breast cancer (TNBC) since the introduction of taxanes as adjuvant therapy over 20 years ago. However, this is rapidly changing due to a variety of conceptually important clinical trials and emerging new options such as immune checkpoint inhibitors and antibody-drug conjugates. Evidence also increasingly supports that platinum drugs and inhibitors of poly (ADP-ribose) polymerase, or PARP, are particularly effective in the treatment of germline BRCA-mutant cancers, including TNBC. An important development in early-stage TNBC was the recognition that extensive residual cancer after neoadjuvant chemotherapy identifies patients who remain at high risk for recurrence. This has led to the design of two ongoing adjuvant trials (one testing pembrolizumab, the other investigating platinum drugs and capecitabine) that offer a "second chance" to improve the survival of patients with residual cancer after neoadjuvant chemotherapy. Genomic analysis of TNBC has revealed large-scale transcriptional, mutational, and copy number heterogeneity, without any frequently recurrent mutations, other than TP53. Consistent with this molecular heterogeneity, most targeted agents, so far, have demonstrated low overall activity in unselected TNBC, but important "basket" trials are ongoing.

  3. [Weighing use and safety of therapeutic agents and feed additives (author's transl)].

    PubMed

    van der Wal, P

    1982-02-01

    (1) The pros and cons of using feed additives and therapeutic agents may be successfully weighed in the light of carefully considered consumer requirements. (2) The socio-economic interests of the producer and the welfare of the animal will also determine the response of the production apparatus to consumer requirements. (3) Consumption of the current amounts of products of animal origin and maintenance of price and quality will only be feasible in the event of rational large-scale production in which constituents used in nutrition, prophylaxis and therapeutics are highly important factors. (4) Using these ingredients should be preceded by accurate evaluation of their use and safety. Testing facilities, conduct of studies and reporting should be such as to make the results nationally and internationally acceptable to all those concerned. (5) In deciding whether feed constituents are acceptable in view of the established use and safety, compliance will have to be sought with those standards which are accepted in other fields of society. Measures which result in raising the price of food without actually helping to reduce the risks to the safety of man, animals and environment, are likely to be rejected by any well-informed consumer who is aware of the facts. (6) For accurate weighing of use and safety at a national level, possibilities are hardly adequate in Europe. Decisions reached within the framework of the European Community, also tuned to U.S.A.- conditions are rightly encouraged. A centrally managed professionally staffed and equipped test system in the European Community would appear to be indispensable.

  4. Development of Optimized Guidelines for Therapeutic Strategies for Organophosphate Poisoning

    DTIC Science & Technology

    2011-03-01

    uses including insecticides, flame retardants, plasticizers, emulsifiers, and additives to lubricating oil (Szinicz, 2005; Cannard, 2006...others, 2005) and later expanded that model to incorporate the nerve agent pretreatment by carbamates such as pyridostigmine (Worek and others, 2007...compounds (Cannard, 2006). Pyridostigmine bromide, a pretreatment for a potential soman exposure, is a member of the carbamate family (Cannard, 2006

  5. Allopurinol hypersensitivity reactions: desensitization strategies and new therapeutic alternative molecules.

    PubMed

    Calogiuri, Gianfranco; Nettis, Eustachio; Di Leo, Elisabetta; Foti, Caterina; Ferrannini, Antonio; Butani, Lavjay

    2013-02-01

    Allopurinol, an analog of hypoxanthine has been worldwide used for the treatment of hyperuricemia and gout for over 40 years. Unfortunately some patients assuming this medication have developed hypersensitivity reactions ranging from mild cutaneous eruption to more severe clinical manifestations such as allopurinol hypersensitivity syndrome or Steven-Johnson syndrome and lethal toxic epidermal necrolysis. Various strategies of slow desensitization have been elaborated to reintroduce allopurinol in a part of these patients, mainly patients affected by mild skin reactions as fixed drug eruption or exanthema. However, several new uricosuric therapies have been recently introduced. Actually drugs as recombinant urate oxidase and febuxostat are under post-marketing surveillance to control potential adverse effects related to their immunogenicity even.

  6. Protein Processing and Inflammatory Signaling in Cystic Fibrosis: Challenges and Therapeutic Strategies

    PubMed Central

    Belcher, C.N.; Vij, N.

    2010-01-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (ΔF508) in CFTR is the most common mutation that results in a temperature sensitive folding defect, retention of the protein in the endoplasmic reticulum (ER), and subsequent degradation by the proteasome. ER associated degradation (ERAD) is a major quality control pathway of the cell. The majority (99%) of the protein folding, ΔF508-, mutant of CFTR is known to be degraded by this pathway to cause CF. Recent studies have revealed that inhibition of ΔF508-CFTR ubiquitination and proteasomal degradation can increase its cell surface expression and may provide an approach to treat CF. The finely tuned balance of ER membrane interactions determine the cytosolic fate of newly synthesized CFTR. These ER membrane interactions induce ubiquitination and proteasomal targeting of ΔF508- over wild type- CFTR. We discuss here challenges and therapeutic strategies targeting protein processing of ΔF508-CFTR with the goal of rescuing functional ΔF508-CFTR to the cell surface. It is evident from recent studies that CFTR plays a critical role in inflammatory response in addition to its well-described ion transport function. Previous studies in CF have focused only on improving chloride efflux as a marker for promising treatment. We propose that methods quantifying the therapeutic efficacy and recovery from CF should not include only changes in chloride efflux, but also recovery of the chronic inflammatory signaling, as evidenced by positive changes in inflammatory markers (in vitro and ex vivo), lung function (pulmonary function tests, PFT), and chronic lung disease (state of the art molecular imaging, in vivo). This will provide novel therapeutics with greater opportunities of potentially

  7. Current therapeutic strategies for invasive and metastatic bladder cancer

    PubMed Central

    Vishnu, Prakash; Mathew, Jacob; Tan, Winston W

    2011-01-01

    Background Bladder cancer is one of the most common cancers in Europe, the United States, and Northern African countries. Muscle-invasive bladder cancer is an aggressive epithelial tumor, with a high rate of early systemic dissemination. Superficial, noninvasive bladder cancer can most often be cured; a good proportion of invasive cases can also be cured by a combined modality approach of surgery, chemotherapy, and radiation. Recurrences are common and mostly manifest as metastatic disease. Those with distant metastatic disease can sometime achieve partial or complete remission with combination chemotherapy. Recent developments Better understanding of the biology of the disease has led to the incorporation of molecular and genetic features along with factors such as tumor grade, lympho-vascular invasion, and aberrant histology, thereby allowing identification of ‘favorable’ and ‘unfavorable’ cancers which helps a more accurate informed and objective selection of patients who would benefit from neoadjuvant and adjuvant chemotherapy. Gene expression profiling has been used to find molecular signature patterns that can potentially be predictive of drug sensitivity and metastasis. Understanding the molecular pathways of invasive bladder cancer has led to clinical investigation of several targeted therapeutics such as anti-angiogenics, mTOR inhibitors, and anti-EGFR agents. Conclusion With improvements in the understanding of the biology of bladder cancer, clinical trials studying novel and targeted agents alone or in combination with chemotherapy have increased the armamentarium for the treatment of bladder cancer. Although the novel biomarkers and gene expression profiles have been shown to provide important predictive and prognostic information and are anticipated to be incorporated in clinical decision-making, their exact utility and relevance calls for a larger prospective validation. PMID:21792316

  8. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases.

    PubMed

    Brennan, Frank R; Cauvin, Annick; Tibbitts, Jay; Wolfreys, Alison

    2014-05-01

    An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and

  9. [Therapeutic strategies in acute decompensated heart failure and cardiogenic shock].

    PubMed

    Buerke, M; Lemm, H; Russ, M; Schlitt, A; Werdan, K

    2010-08-01

    As the population of elderly people is increasing, the number of patients requiring hospitalization for acute exacerbations is rising. Traditionally, these episodes of hemodynamic instability were viewed as a transient event characterized by systolic dysfunction, low cardiac output, and fluid overload. Diuretics, along with vasodilator and inotropic therapy, eventually became elements of standard care. In a multicenter observational registry (ADHERE--Acute Decompensated Heart Failure National Registry) of more than 275 hospitals, patients with acute decompensated heart failure were analyzed for their characteristics and treatments options. These data have shown that this population consists of multiple types of heart failure, various forms of acute decompensation, combinations of comorbidities, and varying degrees of disease severity. The challenges in the treatment require multidisciplinary approaches since patients typically are elderly and have complex combinations of comorbidities. So far only a limited number of drugs is currently available to treat the different groups. Over the past years it was shown that even "standard drugs" might be deleterious by induction of myocardial injury, worsening of renal function or increasing mortality upon treatment. Therefore, based on pathophysiology, different types of acute decompensated heart failure require specialized treatment strategies.

  10. Current Research Therapeutic Strategies for Alzheimer's Disease Treatment

    PubMed Central

    Folch, Jaume; Petrov, Dmitry; Ettcheto, Miren; Abad, Sonia; Sánchez-López, Elena; García, M. Luisa; Olloquequi, Jordi; Beas-Zarate, Carlos; Auladell, Carme; Camins, Antoni

    2016-01-01

    Alzheimer's disease (AD) currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ) peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a) to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b) to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR) activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC). PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5). Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease. PMID:26881137

  11. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy

    PubMed Central

    Guiraud, Simon; Chen, Huijia; Burns, David T.

    2015-01-01

    New Findings What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X‐linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene‐replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re‐establish muscle function. PMID:26140505

  12. Diagnostic and therapeutic strategy for confounding radiation myelitis.

    PubMed

    Higashida, Tetsuhiro; Colen, Chaim B; Guthikonda, Murali

    2010-05-01

    We report a case of confounding radiation myelitis to demonstrate the usefulness of surgical biopsy in ensuring the correct diagnosis and to avoid unnecessary treatment. The patient was a 40-year-old man with a history of epiglottis carcinoma and sarcoidosis. Six months after radiation therapy and chemotherapy for epiglottis carcinoma, he noticed paresthesia and dysesthesia in the left arm and leg. Two months after that, he complained of severe neck pain and rapidly progressing weakness in all extremities. MRI showed an enhanced intramedullary lesion with extensive edema in the cervical spinal cord. Radiation myelitis, intramedullary spinal tumor, and neurosarcoidosis were considered as differential diagnoses. Spinal cord biopsy with laminectomy was performed and radiation myelitis was diagnosed. After the surgery, the lesion was significantly decreased in size even though corticosteroid therapy was rapidly tapered. We emphasize that a spinal cord biopsy is indicated to obtain a pathological diagnosis and to make a clear treatment strategy for patients with associated diseases causing lesions of the spinal cord.

  13. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    PubMed

    Pertwee, Roger G

    2012-12-05

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'.

  14. Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics

    PubMed Central

    Kim, Eunhee G.; Kim, Kristine M.

    2015-01-01

    Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris® (anti-CD30-drug conjugate) and Kadcyla® (anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed. PMID:26535074

  15. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities

    PubMed Central

    Pertwee, Roger G.

    2012-01-01

    Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’. PMID:23108552

  16. Pivotal Cytoprotective Mediators and Promising Therapeutic Strategies for Endothelial Progenitor Cell-Based Cardiovascular Regeneration

    PubMed Central

    Kim, Sujin

    2016-01-01

    Cardiovascular diseases (CVDs), including atherosclerosis, stroke, and myocardial infarction, is a major cause of death worldwide. In aspects of cell therapy against CVD, it is generally accepted that endothelial progenitor cells (EPCs) are potent neovascular modulators in ischemic tissues. In response to ischemic injury signals, EPCs located in a bone marrow niche migrate to injury sites and form new vessels by secreting various vasculogenic factors including VEGF, SDF-1, and FGF, as well as by directly differentiating into endothelial cells. Nonetheless, in ischemic tissues, most of engrafted EPCs do not survive under harsh ischemic conditions and nutrient depletion. Therefore, an understanding of diverse EPC-related cytoprotective mediators underlying EPC homeostasis in ischemic tissues may help to overcome current obstacles for EPC-mediated cell therapy for CVDs. Additionally, to enhance EPC's functional capacity at ischemic sites, multiple strategies for cell survival should be considered, that is, preconditioning of EPCs with function-targeting drugs including natural compounds and hormones, virus mediated genetic modification, combined therapy with other stem/progenitor cells, and conglomeration with biomaterials. In this review, we discuss multiple cytoprotective mediators of EPC-based cardiovascular repair and propose promising therapeutic strategies for the treatment of CVDs. PMID:28090210

  17. Children's strategies to solving additive inverse problems: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Ding, Meixia; Auxter, Abbey E.

    2017-03-01

    Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.

  18. Children's strategies to solving additive inverse problems: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Ding, Meixia; Auxter, Abbey E.

    2017-01-01

    Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.

  19. Strength in numbers: Combining neck vibration and prism adaptation produces additive therapeutic effects in unilateral neglect

    PubMed Central

    Saevarsson, Styrmir; Kristjánsson, Árni; Halsband, Ulrike

    2010-01-01

    Unilateral neglect is a multifaceted disorder. Many authors have, for this reason, speculated that the best treatment for neglect will involve combinations of different therapeutic techniques. Two well known interventions, neck vibration (NV) and prism adaptation (PA), have often been considered to be among the most effective treatments for neglect. Here, two experiments were performed to explore possible additive benefits when these interventions are used in combination to treat chronic neglect. Both experimental groups received NV for 20 minutes, while the second group received simultaneous PA. The effects of treatment were measured with a time-restricted and feedback-based visual search task, which has previously been found to abolish the beneficial effects of PA, and with standard neglect tests. Baseline and intervention measures were performed on separate days. Findings for both groups indicated improved visual search following intervention, but the patients that underwent the combined intervention (NVPA) showed clear improvements on visual search based paper and pencil neglect tests unlike the NV-only group. Overall, our results suggest that PA strengthens the effects of NV and that feedback-based tasks do not abolish beneficial effects of PA, when NV is applied simultaneously. The results support the view that the most effective treatment for neglect will involve the combination of different treatments. PMID:20503132

  20. Cardiorenal axis and arrhythmias: Will renal sympathetic denervation provide additive value to the therapeutic arsenal?

    PubMed

    van Brussel, Peter M; Lieve, Krystien V V; de Winter, Robbert J; Wilde, Arthur A M

    2015-05-01

    Disruption of sympathetic tone may result in the occurrence or maintenance of cardiac arrhythmias. Multiple arrhythmic therapies that intervene by influencing cardiac sympathetic tone are common in clinical practice. These vary from pharmaceutical (β-blockers, angiotensin-converting enzyme inhibitors, and calcium antagonists) to percutaneous/surgical (cardiac sympathetic denervation) interventions. In some patients, however, these therapies have insufficient prophylactic and therapeutic capabilities. A safe and effective additional therapy wherein sympathetic drive is further attenuated would be expedient. Recently, renal sympathetic denervation (RSD) has been subject of research for various sympathetic nervous system-related diseases. By its presumed afferent and efferent sympatholytic effects, RSD might indirectly attenuate sympathetic outflow via the brain to the heart but might also reduce systemic catecholamine excretion and might therefore reduce catecholamine-sensitive arrhythmias. RSD is subject of research for various sympathetically driven arrhythmias, both supraventricular and ventricular. In this review, we give an overview of the rationale behind RSD as potential therapy in mediating arrhythmias that are triggered by a disrupted sympathetic nervous system and discuss the presently available results from animal and human studies.

  1. Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies

    PubMed Central

    Yu-Wai-Man, Patrick; Griffiths, Philip G.; Chinnery, Patrick F.

    2011-01-01

    paraplegia, and multiple sclerosis, where mitochondrial dysfunction is also thought to be an important pathophysiological player. A number of vertebrate and invertebrate disease models has recently been established to circumvent the lack of human tissues, and these have already provided considerable insight by allowing direct RGC experimentation. The ultimate goal is to translate these research advances into clinical practice and new treatment strategies are currently being investigated to improve the visual prognosis for patients with mitochondrial optic neuropathies. PMID:21112411

  2. Therapeutic communication part 2: strategies that can enhance the quality of the emergency care consultation.

    PubMed

    O'gara, Paula E; Fairhurst, Wendy

    2004-10-01

    Therapeutic, patient-centred communication as well as being desirable in its own right may also have the potential to improve satisfaction, health outcomes and change health behaviours in Emergency Care. This paper, the second of two, identifies from a substantive literature review five specific communication strategies that, when employed in an Emergency Care consultation, could significantly enhance its therapeutic potential. The five strategies: questioning, listening and noticing, communicating empathy, establishing and incorporating the patient's cares and concerns and concluding the consultation have been derived from the purposeful selection and analysis of communication research between 1990 and 2002.

  3. Novel therapeutic strategies for patients with triple-negative breast cancer

    PubMed Central

    Zhang, Jun-Fei; Liu, Jia; Wang, Yu; Zhang, Bin

    2016-01-01

    Triple-negative breast cancer (TNBC) represents a very heterogeneous group of breast diseases. Currently, the backbone of therapy for TNBC is mainly chemotherapy as there are no effective specific targeted agents approved to treat TNBC. Despite initial responses to chemotherapy, resistance frequently and rapidly develops and metastatic TNBC has a poor prognosis. Therefore, new targeted strategies are, accordingly, urgently needed. This article discusses the recent developments in targeted agents explored for TNBC, aiming to offer novel therapeutic strategies that can potentially assist in designing personalized therapeutics in the future as well as provide the basis for further research in an attempt to target TNBC. PMID:27799799

  4. A mutational signature in gastric cancer suggests therapeutic strategies

    DOE PAGES

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Siu, Hoi Cheong; ...

    2015-10-29

    Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden in samples harbouring BRCA1 or BRCA2 mutations. In pancreatic cancer, all responders to platinum therapy exhibit this mutational signature including a sample that lacked any defects in BRCA1 or BRCA2. Here, we examine 10,250 cancer genomes across 36 types of cancer andmore » demonstrate that, in addition to breast, ovarian and pancreatic cancers, gastric cancer is another cancer type that exhibits this mutational signature. Furthermore, our results suggest that 7–12% of gastric cancers have defective double-strand DNA break repair by homologous recombination and may benefit from either platinum therapy or PARP inhibitors.« less

  5. A mutational signature in gastric cancer suggests therapeutic strategies

    SciTech Connect

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Siu, Hoi Cheong; Leung, Suet Yi; Stratton, Michael R.

    2015-10-29

    Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden in samples harbouring BRCA1 or BRCA2 mutations. In pancreatic cancer, all responders to platinum therapy exhibit this mutational signature including a sample that lacked any defects in BRCA1 or BRCA2. Here, we examine 10,250 cancer genomes across 36 types of cancer and demonstrate that, in addition to breast, ovarian and pancreatic cancers, gastric cancer is another cancer type that exhibits this mutational signature. Furthermore, our results suggest that 7–12% of gastric cancers have defective double-strand DNA break repair by homologous recombination and may benefit from either platinum therapy or PARP inhibitors.

  6. [Mineralocorticoid receptor antagonists and therapeutic strategies of cardiovascular damage].

    PubMed

    Verdugo, Fernando J; Montellano, Felipe A; Carreño, Juan E; Marusic, Elisa T

    2014-01-01

    In recent years, much attention has focused on the role of aldosterone and mineralocorticoid receptors (MRs) in the pathophysiology of hypertension and cardiovascular disease. Patients with primary aldosteronism, in whom angiotensin II levels are low, have a higher incidence of cardiovascular complications than patients with essential hypertension. The Randomized Aldactone Evaluation Study (RALES) demonstrated that adding a non-specific MR antagonist, spironolactone, to a standard therapy that included angiotensin-converting enzyme (ACE) inhibitors, loop diuretics, and digoxin, significantly reduced morbidity and mortality in patients with moderate to severe heart failure. Similarly, the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) showed that the addition of a selective MR antagonist (ARM), eplerenone, to an optimal medical therapy reduces morbidity and mortality among patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure. These data suggest that aldosterone induces cardiac injury through activation of MRs and support the notion that MR blockade has beneficial effects on aldosterone-dependent cardiac injury, through mechanisms that cannot be simply explained by hemodynamic changes. Although, MRA are highly effective in patients with heart failure, the risk of hyperkalemia should not be overlooked. Serious hyperkalemia events were reported in some MRA clinical trials; however these risks can be mitigated through appropriate patient selection, dose selection, patient education, monitoring, and follow-up.

  7. A mutational signature in gastric cancer suggests therapeutic strategies

    PubMed Central

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Siu, Hoi Cheong; Leung, Suet Yi; Stratton, Michael R

    2015-01-01

    Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden in samples harbouring BRCA1 or BRCA2 mutations. In pancreatic cancer, all responders to platinum therapy exhibit this mutational signature including a sample that lacked any defects in BRCA1 or BRCA2. Here, we examine 10,250 cancer genomes across 36 types of cancer and demonstrate that, in addition to breast, ovarian and pancreatic cancers, gastric cancer is another cancer type that exhibits this mutational signature. Our results suggest that 7–12% of gastric cancers have defective double-strand DNA break repair by homologous recombination and may benefit from either platinum therapy or PARP inhibitors. PMID:26511885

  8. Mitigating cold flow problems of biodiesel: Strategies with additives

    NASA Astrophysics Data System (ADS)

    Mohanan, Athira

    The present thesis explores the cold flow properties of biodiesel and the effect of vegetable oil derived compounds on the crystallization path as well as the mechanisms at play at different stages and length scales. Model systems including triacylglycerol (TAG) oils and their derivatives, and a polymer were tested with biodiesel. The goal was to acquire the fundamental knowledge that would help design cold flow improver (CFI) additives that would address effectively and simultaneously the flow problems of biodiesel, particularly the cloud point (CP) and pour point (PP). The compounds were revealed to be fundamentally vegetable oil crystallization modifiers (VOCM) and the polymer was confirmed to be a pour point depressant (PPD). The results obtained with the VOCMs indicate that two cis-unsaturated moieties combined with a trans-/saturated fatty acid is a critical structural architecture for depressing the crystallization onset by a mechanism wherein while the straight chain promotes a first packing with the linear saturated FAMEs, the kinked moieties prevent further crystallization. The study of model binary systems made of a VOCM and a saturated FAME with DSC, XRD and PLM provided a complete phase diagram including the thermal transformation lines, crystal structure and microstructure that impact the phase composition along the different crystallization stages, and elicited the competing effects of molecular mass, chain length mismatch and isomerism. The liquid-solid boundary is discussed in light of a simple thermodynamic model based on the Hildebrand equation and pair interactions. In order to test for synergies, the PP and CP of a biodiesel (Soy1500) supplemented with several VOCM and PLMA binary cocktails were measured using a specially designed method inspired by ASTM standards. The results were impressive, the combination of additives depressed CP and PP better than any single additive. The PLM and DSC results suggest that the cocktail additives are most

  9. Data Collection Strategies and Measurement Tools for Assessing Academic and Therapeutic Outcomes in Recovery Schools

    PubMed Central

    Botzet, Andria M.; McIlvaine, Patrick W.; Winters, Ken C.; Fahnhorst, Tamara; Dittel, Christine

    2014-01-01

    Accurate evaluation and documentation of the efficacy of recovery schools can be vital to the continuation and expansion of these beneficial resources. A very limited data set currently exists that examines the value of specific schools established to support adolescents and young adults in recovery; additional research is necessary. The following article outlines the methodology utilized in a current quasi-experimental study evaluating both academic and therapeutic outcomes of adolescents attending recovery high schools as compared to traditional (non-recovery-based) high schools. The developmental considerations in assessing adolescents in recovery and their parents is delineated in this article, which underscores the need for extensive knowledge of adolescent substance abuse and other mental health issues. In addition, sensitivity around privacy among adolescents, parents, schools, and health providers is highlighted, as well as the validity of assessment. Key assessment strategies, including protocol of recruitment and interviewing techniques, are also presented along with a list of parent and adolescent assessment instruments and their corresponding interpretive variables. Protocol recommendations for future research are also outlined. PMID:25018573

  10. Emerging therapeutic strategies for Epstein-Barr virus+ post-transplant lymphoproliferative disorder.

    PubMed

    Hatton, Olivia; Martinez, Olivia M; Esquivel, Carlos O

    2012-05-01

    De novo malignancies represent an increasing concern in the transplant population, particularly as long-term graft and patient survival improves. EBV-associated B-cell lymphoma in the setting of PTLD is the leading malignancy in children following solid organ transplantation. Therapeutic strategies can be categorized as pharmacologic, biologic, and cell-based but the variable efficacy of these approaches and the complexity of PTLD suggest that new treatment options are warranted. Here, we review current therapeutic strategies for treatment of PTLD. We also describe the life cycle of EBV, addressing the viral mechanisms that contribute to the genesis and persistence of EBV+ B-cell lymphomas. Specifically, we focus on the oncogenic signaling pathways activated by the EBV LMP1 and LMP2a to understand the underlying mechanisms and mediators of lymphomagenesis with the goal of identifying novel, rational therapeutic targets for the treatment of EBV-associated malignancies.

  11. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders.

    PubMed

    Bhatti, J S; Kumar, S; Vijayan, M; Bhatti, G K; Reddy, P H

    2017-01-01

    Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.

  12. Targeting cancer’s weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model

    PubMed Central

    Lineweaver, Charles H.; Davies, Paul C.W.; Vincent, Mark D.

    2014-01-01

    In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation. PMID:25043755

  13. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration.

    PubMed

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    Acute traumatic injuries and chronic degenerative diseases represent the world's largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37 °C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration.

  14. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies

    PubMed Central

    Pistritto, Giuseppa; Trisciuoglio, Daniela; Ceci, Claudia; Garufi, Alessia; D'Orazi, Gabriella

    2016-01-01

    Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed. PMID:27019364

  15. Current therapeutic strategies of anti-HER2 treatment in advanced breast cancer patients

    PubMed Central

    Nowara, Elżbieta

    2016-01-01

    The HER2/neu (ERBB2) oncogene is amplified and/or overexpressed in approximately 20% of breast cancers, and is a strong prognostic factor for relapse and poor overall survival, particularly in node-positive patients. It is also an important predictor for response to trastuzumab, which has established efficacy against breast cancer with overexpression or amplification of the HER2 oncogene. Treatment with the anti-HER2 humanized monoclonal antibody – trastuzumab significantly improves progression-free and overall survival among patients with HER2-positive breast cancer. However, in most patients with HER2-positive metastatic breast cancer, the disease progresses occurred, what cause the need for new targeted therapies for advanced disease. In clinical trials, there are tested new drugs to improve the results of treatment for this group of patients. This paper presents new drugs introduced into clinical practice for treatment of advanced breast cancer, whose molecular target are receptors of the HER2 family. In addition, new therapeutic strategies and drugs that are currently in clinical researches are discussed. PMID:27095932

  16. Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis

    PubMed Central

    Misra, Ashish; Sheikh, Abdul Q.; Kumar, Abhishek; Luo, Jiesi; Zhang, Jiasheng; Hinton, Robert B.; Smoot, Leslie; Kaplan, Paige; Urban, Zsolt; Qyang, Yibing; Tellides, George

    2016-01-01

    The aorta is the largest artery in the body, yet processes underlying aortic pathology are poorly understood. The arterial media consists of circumferential layers of elastic lamellae and smooth muscle cells (SMCs), and many arterial diseases are characterized by defective lamellae and excess SMCs; however, a mechanism linking these pathological features is lacking. In this study, we use lineage and genetic analysis, pharmacological inhibition, explant cultures, and induced pluripotent stem cells (iPSCs) to investigate supravalvular aortic stenosis (SVAS) patients and/or elastin mutant mice that model SVAS. These experiments demonstrate that multiple preexisting SMCs give rise to excess aortic SMCs in elastin mutants, and these SMCs are hyperproliferative and dedifferentiated. In addition, SVAS iPSC-derived SMCs and the aortic media of elastin mutant mice and SVAS patients have enhanced integrin β3 levels, activation, and downstream signaling, resulting in SMC misalignment and hyperproliferation. Reduced β3 gene dosage in elastin-null mice mitigates pathological aortic muscularization, SMC misorientation, and lumen loss and extends survival, which is unprecedented. Finally, pharmacological β3 inhibition in elastin mutant mice and explants attenuates aortic hypermuscularization and stenosis. Thus, integrin β3–mediated signaling in SMCs links elastin deficiency and pathological stenosis, and inhibiting this pathway is an attractive therapeutic strategy for SVAS. PMID:26858344

  17. Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection.

    PubMed

    Nitta, Masayuki; Muragaki, Yoshihiro; Maruyama, Takashi; Ikuta, Soko; Komori, Takashi; Maebayashi, Katsuya; Iseki, Hiroshi; Tamura, Manabu; Saito, Taiichi; Okamoto, Saori; Chernov, Mikhail; Hayashi, Motohiro; Okada, Yoshikazu

    2015-01-01

    OBJECT There is no standard therapeutic strategy for low-grade glioma (LGG). The authors hypothesized that adjuvant therapy might not be necessary for LGG cases in which total radiological resection was achieved. Accordingly, they established a treatment strategy based on the extent of resection (EOR) and the MIB-1 index: patients with a high EOR and low MIB-1 index were observed without postoperative treatment, whereas those with a low EOR and/or high MIB-1 index received radiotherapy (RT) and/or chemotherapy. In the present retrospective study, the authors reviewed clinical data on patients with primarily diagnosed LGGs who had been treated according to the above-mentioned strategy, and they validated the treatment policy. Given their results, they will establish a new treatment strategy for LGGs stratified by EOR, histological subtype, and molecular status. METHODS One hundred fifty-three patients with diagnosed LGG who had undergone resection or biopsy at Tokyo Women's Medical University between January 2000 and August 2010 were analyzed. The patients consisted of 84 men and 69 women, all with ages ≥ 15 years. A total of 146 patients underwent surgical removal of the tumor, and 7 patients underwent biopsy. RESULTS Postoperative RT and nitrosourea-based chemotherapy were administered in 48 and 35 patients, respectively. Extent of resection was significantly associated with both overall survival (OS; p = 0.0096) and progression-free survival (PFS; p = 0.0007) in patients with diffuse astrocytoma but not in those with oligodendroglial subtypes. Chemotherapy significantly prolonged PFS, especially in patients with oligodendroglial subtypes (p = 0.0009). Patients with a mutant IDH1 gene had significantly longer OS (p = 0.034). Multivariate analysis did not identify MIB-1 index or RT as prognostic factors, but it did identify chemotherapy as a prognostic factor for PFS and EOR as a prognostic factor for OS and PFS. CONCLUSIONS The findings demonstrated that EOR was

  18. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model.

    PubMed

    Mukherjee, Jean; Tremblay, Jacqueline M; Leysath, Clinton E; Ofori, Kwasi; Baldwin, Karen; Feng, Xiaochuan; Bedenice, Daniela; Webb, Robert P; Wright, Patrick M; Smith, Leonard A; Tzipori, Saul; Shoemaker, Charles B

    2012-01-01

    Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant 'targeting agent' that binds a toxin at two unique sites and a 'clearing Ab' that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab V(H) (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit.

  19. The central nervous system--an additional consideration in 'rotator cuff tendinopathy' and a potential basis for understanding response to loaded therapeutic exercise.

    PubMed

    Littlewood, Chris; Malliaras, Peter; Bateman, Marcus; Stace, Richmond; May, Stephen; Walters, Stephen

    2013-12-01

    Tendinopathy is a term used to describe a painful tendon disorder but despite being a well-recognised clinical presentation, a definitive understanding of the pathoaetiology of rotator cuff tendinopathy remains elusive. Current explanatory models, which relate to peripherally driven nocioceptive mechanisms secondary to structural abnormality, or failed healing, appear inadequate on their own in the context of current literature. In light of these limitations this paper presents an extension to current models that incorporates the integral role of the central nervous system in the pain experience. The role of the central nervous system (CNS) is described and justified along with a potential rationale to explain the favourable response to loaded therapeutic exercises demonstrated by previous studies. This additional consideration has the potential to offer a useful way to explain pain to patients, for clinicians to prescribe appropriate therapeutic management strategies and for researchers to advance knowledge in relation to this clinically challenging problem.

  20. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies.

    PubMed

    Malhotra, Meenakshi; Toulouse, André; Godinho, Bruno M D C; Mc Carthy, David John; Cryan, John F; O'Driscoll, Caitriona M

    2015-10-01

    Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.

  1. [Surgical therapeutic strategy in vital risk polytrauma with multiple organ injuries, case report].

    PubMed

    Munteanu, Iulia; Stefan, S; Isloi, Anca; Coca, I C; Baroi, Genoveva; Radu, L; Lăpuşneanu, A; Tamaş, Camelia

    2008-01-01

    The medical interest for trauma pathology is incresing, due to the gravity of the given injuries. The surgical therapeutic strategy used is directly related to the localization and to the type of the trauma. The supplementary lesions and their vital risk also matter. The multidisciplinary team approach is the key to resolve this type of lesions with a good outcome. We recently observed an increasing tendency toward the rise of number and variety of patients with trauma, due to the great diversity of the etiopathogenic agents. The most important factor, during the assessment of a politraumatised patient is to diagnose correctly the functional deficits of vital organs and establish the vital prognosis. It is necessary to adopt the best and fast therapeutic strategy in order to obtain rapid life-saving decisions.

  2. Emerging therapeutic strategies to prevent infection-related microvascular endothelial activation and dysfunction

    PubMed Central

    Darwish, Ilyse; Liles, W Conrad

    2013-01-01

    Recent evidence suggests that loss of endothelial barrier function and resulting microvascular leak play important mechanistic roles in the pathogenesis of infection-related end-organ dysfunction and failure. Several distinct therapeutic strategies, designed to prevent or limit infection-related microvascular endothelial activation and permeability, thereby mitigating end-organ injury/dysfunction, have recently been investigated in pre-clinical models. In this review, these potential therapeutic strategies, namely, VEGFR2/Src antagonists, sphingosine-1-phosphate agonists, fibrinopeptide Bβ15–42, slit2N, secinH3, angiopoietin-1/tie-2 agonists, angiopoietin-2 antagonists, statins, atrial natriuretic peptide, and mesenchymal stromal (stem) cells, are discussed in terms of their translational potential for the management of clinical infectious diseases. PMID:23863603

  3. [Work-related musculoskeletal disorders in dentistry professionals. 2. Prevention, ergonomic strategies and therapeutic programs].

    PubMed

    Sartorio, F; Franchignoni, F; Ferriero, G; Vercelli, S; Odescalchi, L; Augusti, D; Migliario, M

    2005-01-01

    In dental professionals the risk of developing work-related musculoskeletal disorders (WMSD) can be minimized through a combination of prevention, ergonomic strategies, and specific therapeutic programs. Prevention includes early identification of symptoms, analysis of working posture and activity, and the evaluation of equipment (such as dental instruments, position of the dental unit, patient and operator chairs, and lighting). The ergonomic strategies are based on identifying the best daily timetable (including periodic pauses) and most efficient team organization, as well as establishing the correct position that should be held at the patient chair. Finally specific therapeutic programs are very important in preventing or treating WMSD. In fact, fitness exercises such as mobilization, stretching or muscular and cardiovascular training are recognized as fundamental for dental professionals, and when WMSD occurs physiatric care and physical therapy are recommended.

  4. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    PubMed

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  5. Risk factors and therapeutic strategy after failure of free flap coverage for lower-limb defects.

    PubMed

    Perrot, Pierre; Bouffaut, Anne-Laure; Perret, Christophe; Connault, Jérôme; Duteille, Franck

    2011-03-01

    From 2004 to 2007, 148 limb free flaps were performed in a series of 138 patients at the University Hospital in Nantes, France. Flaps were successful in 127 instances (rate: 86%; group A) and failed in 21 (group B). An analysis of the various factors (pre-, intra-, and postoperative) in both groups that may have influenced the outcome of surgery identified the following: operating time, cold ischemia time, and the interval before reoperation. This report is based on our experience in managing 21 free flap failures during reconstructive surgery of the limbs. The causes of failure were analyzed, and possible therapeutic strategies defined (i.e., a second free flap procedure, a pedicle flap, coverage with artificial dermis, or amputation). In our opinion, careful analysis of the causes of flap failure is essential to an appropriate choice of subsequent therapeutic strategy.

  6. A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis

    PubMed Central

    2011-01-01

    Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis. PMID:21345267

  7. Human Papillomavirus: Current and Future RNAi Therapeutic Strategies for Cervical Cancer

    PubMed Central

    Jung, Hun Soon; Rajasekaran, Nirmal; Ju, Woong; Shin, Young Kee

    2015-01-01

    Human papillomaviruses (HPVs) are small DNA viruses; some oncogenic ones can cause different types of cancer, in particular cervical cancer. HPV-associated carcinogenesis provides a classical model system for RNA interference (RNAi) based cancer therapies, because the viral oncogenes E6 and E7 that cause cervical cancer are expressed only in cancerous cells. Previous studies on the development of therapeutic RNAi facilitated the advancement of therapeutic siRNAs and demonstrated its versatility by siRNA-mediated depletion of single or multiple cellular/viral targets. Sequence-specific gene silencing using RNAi shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, siRNA-based targeting requires further validation of its efficacy in vitro and in vivo, for its potential off-target effects, and of the design of conventional therapies to be used in combination with siRNAs and their drug delivery vehicles. In this review we discuss what is currently known about HPV-associated carcinogenesis and the potential for combining siRNA with other treatment strategies for the development of future therapies. Finally, we present our assessment of the most promising path to the development of RNAi therapeutic strategies for clinical settings. PMID:26239469

  8. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  9. Current therapeutic strategies for advanced pancreatic cancer: A review for clinicians

    PubMed Central

    Spadi, Rosella; Brusa, Federica; Ponzetti, Agostino; Chiappino, Isabella; Birocco, Nadia; Ciuffreda, Libero; Satolli, Maria Antonietta

    2016-01-01

    Pancreatic cancer (PC) would become the second leading cause of cancer death in the near future, despite representing only 3% of new cancer diagnosis. Survival improvement will come from a better knowledge of risk factors, earlier diagnosis, better integration of locoregional and systemic therapies, as well as the development of more efficacious drugs rising from a deeper understanding of disease biology. For patients with unresectable, non-metastatic disease, combined strategies encompassing primary chemotherapy and radiation seems to be promising. In fit patients, new polychemotherapy regimens can lead to better outcomes in terms of slight but significant survival improvement associated with a positive impact on quality of life. The upfront use of these regimes can also increase the rate of radical resections in borderline resectable and locally advanced PC. Second line treatments showed to positively affect both overall survival and quality of life in fit patients affected by metastatic disease. At present, oxaliplatin-based regimens are the most extensively studied. Nonetheless, other promising drugs are currently under evaluation. Presently, in addition to surgery and conventional radiation therapy, new locoregional treatment techniques are emerging as alternative options in the multimodal approach to patients or diseases not suitable for radical surgery. As of today, in contrast with other types of cancer, targeted therapies failed to show relevant activity either alone or in combination with chemotherapy and, thus, current clinical practice does not include them. Up to now, despite the fact of extremely promising results in different tumors, also immunotherapy is not in the actual therapeutic armamentarium for PC. In the present paper, we provide a comprehensive review of the current state of the art of clinical practice and research in PC aiming to offer a guide for clinicians on the most relevant topics in the management of this disease. PMID:26862489

  10. Replication Study: BET bromodomain inhibition as a therapeutic strategy to target c-Myc

    PubMed Central

    Aird, Fraser; Kandela, Irawati; Mantis, Christine

    2017-01-01

    In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Kandela et al., 2015) that described how we intended to replicate selected experiments from the paper "BET bromodomain inhibition as a therapeutic strategy to target c-Myc" (Delmore et al., 2011). Here we report the results of those experiments. We found that treatment of human multiple myeloma (MM) cells with the small-molecular inhibitor of BET bromodomains, (+)-JQ1, selectively downregulated MYC transcription, which is similar to what was reported in the original study (Figure 3B; Delmore et al., 2011). Efficacy of (+)-JQ1 was evaluated in an orthotopically xenografted model of MM. Overall survival was increased in (+)-JQ1 treated mice compared to vehicle control, similar to the original study (Figure 7E; Delmore et al., 2011). Tumor burden, as determined by bioluminescence, was decreased in (+)-JQ1 treated mice compared to vehicle control; however, while the effect was in the same direction as the original study (Figure 7C-D; Delmore et al., 2011), it was not statistically significant. The opportunity to detect a statistically significant difference was limited though, due to the higher rate of early death in the control group, and increased overall survival in (+)-JQ1 treated mice before the pre-specified tumor burden analysis endpoint. Additionally, we evaluated the (−)-JQ1 enantiomer that is structurally incapable of inhibiting BET bromodomains, which resulted in a minimal impact on MYC transcription, but did not result in a statistically significant difference in tumor burden or survival distributions compared to treatment with (+)-JQ1. Finally, we report meta-analyses for each result. DOI: http://dx.doi.org/10.7554/eLife.21253.001 PMID:28100400

  11. Strategies of Pre-Service Primary School Teachers for Solving Addition Problems with Negative Numbers

    ERIC Educational Resources Information Center

    Almeida, Rut; Bruno, Alicia

    2014-01-01

    This paper analyses the strategies used by pre-service primary school teachers for solving simple addition problems involving negative numbers. The findings reveal six different strategies that depend on the difficulty of the problem and, in particular, on the unknown quantity. We note that students use negative numbers in those problems they find…

  12. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases

    PubMed Central

    Vieira, Angélica Thomaz; Fukumori, Claudio; Ferreira, Caroline Marcantonio

    2016-01-01

    The interaction between the gut microbiota and the host immune system is very important for balancing and resolving inflammation. The human microbiota begins to form during childbirth; the complex interaction between bacteria and host cells becomes critical for the formation of a healthy or a disease-promoting microbiota. C-section delivery, formula feeding, a high-sugar diet, a high-fat diet and excess hygiene negatively affect the health of the microbiota. Considering that the majority of the global population has experienced at least one of these factors that can lead to inflammatory disease, it is important to understand strategies to modulate the gut microbiota. In this review, we will discuss new insights into gut microbiota modulation as potential strategies to prevent and treat inflammatory diseases. Owing to the great advances in tools for microbial analysis, therapeutic strategies such as prebiotic, probiotic and postbiotic treatment and fecal microbiota transplantation have gained popularity. PMID:27757227

  13. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome

    PubMed Central

    Krishnan, Navasona; Krishnan, Keerthi; Connors, Christopher R.; Choy, Meng S.; Page, Rebecca; Peti, Wolfgang; Van Aelst, Linda; Shea, Stephen D.; Tonks, Nicholas K.

    2015-01-01

    The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG–binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2–/y) mice and improved behavior in female heterozygous (Mecp2–/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs. PMID:26214522

  14. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome.

    PubMed

    Krishnan, Navasona; Krishnan, Keerthi; Connors, Christopher R; Choy, Meng S; Page, Rebecca; Peti, Wolfgang; Van Aelst, Linda; Shea, Stephen D; Tonks, Nicholas K

    2015-08-03

    The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG-binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2-/y) mice and improved behavior in female heterozygous (Mecp2-/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs.

  15. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    PubMed Central

    Ji, Seung Taek; Yun, Jisoo

    2017-01-01

    The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs) are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration. PMID:28303152

  16. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  17. Potential Therapeutic Strategies for Alzheimer's Disease Targeting or Beyond β-Amyloid: Insights from Clinical Trials

    PubMed Central

    Jia, Qiutian; Qing, Hong

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease. PMID:25136630

  18. A Readily Applicable Strategy to Convert Peptides to Peptoid-based Therapeutics

    PubMed Central

    Park, Minyoung; Wetzler, Modi; Jardetzky, Theodore S.; Barron, Annelise E.

    2013-01-01

    Incorporation of unnatural amino acids and peptidomimetic residues into therapeutic peptides is highly efficacious and commonly employed, but generally requires laborious trial-and-error approaches. Previously, we demonstrated that C20 peptide has the potential to be a potential antiviral agent. Herein we report our attempt to improve the biological properties of this peptide by introducing peptidomimetics. Through combined alanine, proline, and sarcosine scans coupled with a competitive fluorescence polarization assay developed for identifying antiviral peptides, we enabled to pinpoint peptoid-tolerant peptide residues within C20 peptide. The synergistic benefits of combining these (and other) commonly employed methods could lead to a easily applicable strategy for designing and refining therapeutically-attractive peptidomimetics. PMID:23555603

  19. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  20. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    PubMed

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges.

  1. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them.

    PubMed

    Brannon, John R; Hadjifrangiskou, Maria

    2016-01-01

    Pathogens deploy an arsenal of virulence factors (VFs) to establish themselves within their infectious niche. The discovery of antimicrobial compounds and their development into therapeutics has made a monumental impact on human and microbial populations. Although humans have used antimicrobials for medicinal and agricultural purposes, microorganism populations have developed and shared resistance mechanisms to persevere in the face of classical antimicrobials. However, a positive substitute is antivirulence therapy; antivirulence therapeutics prevent or interrupt an infection by counteracting a pathogen's VFs. Their application can reduce the use of broad-spectrum antimicrobials and dampen the frequency with which resistant strains emerge. Here, we summarize the contribution of VFs to various acute and chronic infections. In correspondence with this, we provide an overview of the research and development of antivirulence strategies.

  2. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them

    PubMed Central

    Brannon, John R; Hadjifrangiskou, Maria

    2016-01-01

    Pathogens deploy an arsenal of virulence factors (VFs) to establish themselves within their infectious niche. The discovery of antimicrobial compounds and their development into therapeutics has made a monumental impact on human and microbial populations. Although humans have used antimicrobials for medicinal and agricultural purposes, microorganism populations have developed and shared resistance mechanisms to persevere in the face of classical antimicrobials. However, a positive substitute is antivirulence therapy; antivirulence therapeutics prevent or interrupt an infection by counteracting a pathogen’s VFs. Their application can reduce the use of broad-spectrum antimicrobials and dampen the frequency with which resistant strains emerge. Here, we summarize the contribution of VFs to various acute and chronic infections. In correspondence with this, we provide an overview of the research and development of antivirulence strategies. PMID:27313446

  3. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies.

    PubMed

    Bhatti, Jasvinder Singh; Bhatti, Gurjit Kaur; Reddy, P Hemachandra

    2016-11-09

    Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca(2+) regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.

  4. Towards Therapeutic Delivery of Extracellular Vesicles: Strategies for In Vivo Tracking and Biodistribution Analysis

    PubMed Central

    Di Rocco, Giuliana; Baldari, Silvia

    2016-01-01

    Extracellular vesicles (EVs), such as microvesicles and exosomes, are membranous structures containing bioactive material released by several cells types, including mesenchymal stem/stromal cells (MSCs). Increasing lines of evidences point to EVs as paracrine mediators of the beneficial effects on tissue remodeling associated with cell therapy. Administration of MSCs-derived EVs has therefore the potential to open new and safer therapeutic avenues, alternative to cell-based approaches, for degenerative diseases. However, an enhanced knowledge about in vivo EVs trafficking upon delivery is required before effective clinical translation. Only a few studies have focused on the biodistribution analysis of exogenously administered MSCs-derived EVs. Nevertheless, current strategies for in vivo tracking in animal models have provided valuable insights on the biodistribution upon systemic delivery of EVs isolated from several cellular sources, indicating in liver, spleen, and lungs the preferential target organs. Different strategies for targeting EVs to specific tissues to enhance their therapeutic efficacy and reduce possible off-target effects have been investigated. Here, in the context of a possible clinical application of MSC-derived EVs for tissue regeneration, we review the existing strategies for in vivo tracking and targeting of EVs isolated from different cellular sources and the studies elucidating the biodistribution of exogenously administered EVs. PMID:27994623

  5. Amplification of TRIM44: Pairing a Prognostic Target With Potential Therapeutic Strategy

    PubMed Central

    Ong, Chin-Ann Johnny; Shannon, Nicholas B.; Ross-Innes, Caryn S.; O’Donovan, Maria; Rueda, Oscar M.; Hu, De-en; Kettunen, Mikko I.; Walker, Christina Elaine; Noorani, Ayesha; Hardwick, Richard H.; Caldas, Carlos; Brindle, Kevin

    2014-01-01

    Background Many prognostic biomarkers have been proposed recently. However, there is a lack of therapeutic strategies exploiting novel prognostic biomarkers. We aimed to propose therapeutic options in patients with overexpression of TRIM44, a recently identified prognostic gene. Methods Genomic and transcriptomic data of epithelial cancers (n = 1932), breast cancers (BCs; n = 1980) and esophago-gastric cancers (EGCs; n = 163) were used to identify genomic aberrations driving TRIM44 overexpression. The driver gene status of TRIM44 was determined using a small interfering RNA (siRNA) screen of the 11p13 amplicon. Integrative analysis was applied across multiple datasets to identify pathway activation and potential therapeutic strategies. Validation of the in silico findings were performed using in vitro assays, xenografts, and patient samples (n = 160). Results TRIM44 overexpression results from genomic amplification in 16.1% of epithelial cancers, including 8.1% of EGCs and 6.1% of BCs. This was confirmed using fluorescent in situ hybridization. The siRNA screen confirmed TRIM44 to be a driver of the amplicon. In silico analysis revealed an association between TRIM44 and mTOR signalling, supported by a decrease in mTOR signalling after siRNA knockdown of TRIM44 in cell lines and colocalization of TRIM44 and p-mTOR in patient samples. In vitro inhibition studies using an mTOR inhibitor (everolimus) decreased cell viability in two TRIM44-amplified cells lines by 88% and 70% compared with 35% in the control cell line. These findings were recapitulated in xenograft models. Conclusions Genomic amplification drives TRIM44 overexpression in EGCs and BCs. Targeting the mTOR pathway provides a potential therapeutic option for TRIM44-amplified tumors. PMID:24777112

  6. Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action.

    PubMed

    Cico, Alba; Andrieu-Soler, Charlotte; Soler, Eric

    2016-11-01

    Cellular differentiation requires precisely regulated tissue-specific and developmental stage-specific gene expression patterns. Numerous studies have highlighted the predictive power of enhancers on lineage-specific gene expression programs and have started to unravel their mechanisms of action. We review here the dynamics of the enhancer landscape during hematopoietic differentiation and how enhancers function in the context of the 3D organization of the genome. We further discuss the involvement of aberrant enhancer activity in human diseases and emerging strategies aiming at controlling enhancer activity and chromosome topology for therapeutic purposes.

  7. Pathogenesis and Therapeutic Strategies in Alzheimer's Disease: From Brain to Periphery.

    PubMed

    Yu, Jin-Tai; Zhang, Can

    2016-02-01

    Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disorder. At present, there are no effective disease-modifying therapies, and the cause of the disease remains unclear. Previously, almost all researchers focus on the brain for exploring the pathogenesis and therapeutic strategies in AD. A recent study by Xiang et al. (Acta Neuropathol 130:487-499, 2015) reported the significance of the physiological capacity of peripheral tissues and organs in clearing brain-derived amyloid-beta (Aβ), which opens a novel avenue to understand the AD pathogenesis and develop therapies for AD.

  8. The porphyrias: clinic, diagnostics, novel investigative tools and evolving molecular therapeutic strategies.

    PubMed

    van Serooskerken, A-M van Tuyll; Poblete-Gutiérrez, P; Frank, J

    2010-01-01

    The porphyrias are clinically and genetically heterogeneous metabolic disorders resulting from a predominantly hereditary dysfunction of specific enzymes involved in heme biosynthesis. Today, the clinical, biochemical, and genetic characteristics of this fascinating group of diseases are well established. Recently, different in vitro and animal models have facilitated the investigation of etiopathologic mechanisms in the different types of porphyria and the development of causal treatment strategies such as pathway interference, enzyme replacement, and gene therapy. The continuous progress in basic science has made an invaluable contribution to the rapid translation of discoveries made in the laboratory into new diagnostics and therapeutics in the near future.

  9. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies

    PubMed Central

    Tyrrell, Jean

    2016-01-01

    Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy. PMID:26643057

  10. Assay strategies for identification of therapeutic leads that target protein trafficking

    PubMed Central

    Conn, P. Michael; Spicer, Timothy P.; Scampavia, Louis; Janovick, Jo Ann

    2015-01-01

    Receptors, enzymes and ion channels are traditional targets of therapeutic development. A common strategy is to target these proteins with agents that either activate or suppress their activity with ligands or substrates that occupy orthosteric sites or have allosteric interactions. An alternative approach involves regulation of protein trafficking. In principle, this approach enables (i) “rescue” of misfolded and misrouted mutant proteins to restore function, (ii) “shipwrecking” of undesirable proteins by targeting them for destruction and (iii) regulation of levels of partially expressed wild-type (WT) proteins at their functional sites of action. Presented here are drug discovery strategies that identify “pharmacoperones,” small molecules that serve as molecular templates and cause otherwise-misfolded mutant proteins to fold and route correctly. PMID:26067100

  11. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson’s disease

    PubMed Central

    Olson, Katherine E.; Gendelman, Howard E.

    2015-01-01

    While immune control is associated with nigrostriatal neuroprotection for Parkinson’s disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology. PMID:26571205

  12. Inhibition of HDAC3 as a strategy for developing novel diabetes therapeutics.

    PubMed

    Meier, Bennett C; Wagner, Bridget K

    2014-04-01

    Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. Recent studies have put a greater spotlight on metabolic diseases, in particular Type 1 and Type 2 diabetes, as potential indications for which HDAC inhibition could be beneficial. Evidence suggests that inhibition of HDAC3 protects β-cells from cytokine-induced apoptosis, an important event in the development of Type 1 diabetes. On the other hand, the pathogenesis of Type 2 diabetes involves a combination of peripheral insulin resistance and pancreatic β-cell failure. Again, data from the literature indicate that HDAC3 regulates genes involved in key metabolic events. Together, these results suggest that selective inhibition of HDAC3 may be an attractive strategy for targeting these diseases.

  13. Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses.

    PubMed

    Rex, J H; Walsh, T J; Nettleman, M; Anaissie, E J; Bennett, J E; Bow, E J; Carillo-Munoz, A J; Chavanet, P; Cloud, G A; Denning, D W; de Pauw, B E; Edwards Jr, J E; Hiemenz, J W; Kauffman, C A; Lopez-Berestein, G; Martino, P; Sobel, J D; Stevens, D A; Sylvester, R; Tollemar, J; Viscoli, C; Viviani, M A; Wu, T

    2001-07-01

    Studies of invasive fungal infections have been and remain difficult to implement. Randomized clinical trials of fungal infections are especially slow and expensive to perform because it is difficult to identify eligible patients in a timely fashion, to prove the presence of the fungal infection in an unequivocal fashion, and to evaluate outcome in a convincing fashion. Because of these challenges, licensing decisions for antifungal agents have to date depended heavily on historical control comparisons and secondary advantages of the new agent. Although the availability of newer and potentially more effective agents makes these approaches less desirable, the fundamental difficulties of trials of invasive fungal infections have not changed. Therefore, there is a need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses, and this article summarizes the possible strategies in this area.

  14. A test strategy for the assessment of additive attributed toxicity of tobacco products.

    PubMed

    Kienhuis, Anne S; Staal, Yvonne C M; Soeteman-Hernández, Lya G; van de Nobelen, Suzanne; Talhout, Reinskje

    2016-08-01

    The new EU Tobacco Product Directive (TPD) prohibits tobacco products containing additives that are toxic in unburnt form or that increase overall toxicity of the product. This paper proposes a strategy to assess additive attributed toxicity in the context of the TPD. Literature was searched on toxicity testing strategies for regulatory purposes from tobacco industry and governmental institutes. Although mainly traditional in vivo testing strategies have been applied to assess toxicity of unburnt additives and increases in overall toxicity of tobacco products due to additives, in vitro tests combined with toxicogenomics and validated using biomarkers of exposure and disease are most promising in this respect. As such, tests are needed that are sensitive enough to assess additive attributed toxicity above the overall toxicity of tobacco products, which can associate assay outcomes to human risk and exposure. In conclusion, new, sensitive in vitro assays are needed to conclude whether comparable testing allows for assessment of small changes in overall toxicity attributed to additives. A more pragmatic approach for implementation on a short-term is mandated lowering of toxic emission components. Combined with risk assessment, this approach allows assessment of effectiveness of harm reduction strategies, including banning or reducing of additives.

  15. [Integration without equalization: on necessary modifications of therapeutic strategies in the treatment of migrants].

    PubMed

    Behrens, Katharina; Calliess, Iris Tatjana

    2008-12-01

    Given an increased knowledge for the special requirements of patients with a history of migration in mental health care, different approaches varying between an adaptation of existing systems and the implementation of specialized institutions are being discussed. The present study investigates the treatment courses of 55 first generation immigrants and a control sample of 55 native patients treated in a psychiatric day clinic of a university clinic. Besides the application of questionnaires concerning treatment outcome, a detailed content analysis of treatment records was performed investigating the preference for different therapeutic approaches, migration- and culture-related aspects as well as language problems. Treatment outcome and the reactions to different therapeutic strategies (i. e., verbal-oriented vs. body-centered approaches) suggest a good fit of a common treatment concept also for patients from different countries of origin and ethnic backgrounds. Qualitative analyses, however, imply that migration biography and cultural diversity should be included in diagnostic and therapeutic considerations to a much bigger extent. Language problems, in contrast, appeared to be less salient in the present study.

  16. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine

    PubMed Central

    Nguyen, Minh Khanh; Alsberg, Eben

    2014-01-01

    Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years. PMID:25242831

  17. New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology

    PubMed Central

    Roulston, Anne; Shore, Gordon C.

    2016-01-01

    ABSTRACT Nicotinamide phosphoribosyltransferase (NAMPT) is crucial for nicotinamide adenine dinucleotide (NAD+) biosynthesis in mammalian cells. NAMPT inhibitors represent multifunctional anticancer agents that act on NAD+ metabolism to shut down glycolysis, nucleotide biosynthesis, and ATP generation and act indirectly as PARP and sirtuin inhibitors. The selectivity of NAMPT inhibitors preys on the increased metabolic requirements to replenish NAD+ in cancer cells. Although initial clinical studies with NAMPT inhibitors did not achieve single-agent therapeutic levels before dose-limiting toxicities were reached, a new understanding of alternative rescue pathways and a biomarker that can be used to select patients provides new opportunities to widen the therapeutic window and achieve efficacious doses in the clinic. Recent work has also illustrated the potential for drug combination strategies to further enhance the therapeutic opportunities. This review summarizes recent discoveries in NAD+/NAMPT inhibitor biology in the context of exploiting this new knowledge to optimize the clinical outcomes for this promising new class of agents. PMID:27308565

  18. Therapeutic Strategies in Fragile X Syndrome: Dysregulated mGluR Signaling and Beyond

    PubMed Central

    Gross, Christina; Berry-Kravis, Elizabeth M; Bassell, Gary J

    2012-01-01

    Fragile X syndrome (FXS) is an inherited neurodevelopmental disease caused by loss of function of the fragile X mental retardation protein (FMRP). In the absence of FMRP, signaling through group 1 metabotropic glutamate receptors is elevated and insensitive to stimulation, which may underlie many of the neurological and neuropsychiatric features of FXS. Treatment of FXS animal models with negative allosteric modulators of these receptors and preliminary clinical trials in human patients support the hypothesis that metabotropic glutamate receptor signaling is a valuable therapeutic target in FXS. However, recent research has also shown that FMRP may regulate diverse aspects of neuronal signaling downstream of several cell surface receptors, suggesting a possible new route to more direct disease-targeted therapies. Here, we summarize promising recent advances in basic research identifying and testing novel therapeutic strategies in FXS models, and evaluate their potential therapeutic benefits. We provide an overview of recent and ongoing clinical trials motivated by some of these findings, and discuss the challenges for both basic science and clinical applications in the continued development of effective disease mechanism-targeted therapies for FXS. PMID:21796106

  19. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-01-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm(3) absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  20. From molecular insight to therapeutic strategy: The holistic approach for treating triple negative breast cancer.

    PubMed

    Bhattacharya, Rittwika; Banerjee, Koyel; Mukherjee, Nupur; Sen, Minakshi; Mukhopadhyay, Ashis

    2017-03-01

    Aim of the present study was to analyze the molecular pathogenesis of TNBC, therapeutic practice, challenges, and future goals in treatment strategies. Based on the alterations of distinct pathways, Lehmann's subgroups of TNBCs were further categorized. Those with defective DNA damage repair and replication pathways, viz. Basal Like 1 & 2 (BL1, BL2) were found susceptible to DNA intercalating drugs while those with upregulated cell signalling & motility (mesenchymal (M), mesemchymal stem like (MSL)), cell survival (BL2, M, MSL), angiogenesis (BL2, MSL), T cell signalling (Immunomodulatory/IM) pathways required targeted therapies. Our Meta-analysis categorized 12 randomized previous trial cases, solely under the following drug regimens: [1] DNA destabilizers, [2] PARP inhibitors, [3] Microtubule stabilizers, [4] Angiogenesis inhibitors, [5] Antimetabolite, [6] T cell targeted therapy; as single or combinational therapy. Best therapeutic efficacies of DNA destabilizers with angiogenesis inhibitors in combination than monotherapy with either (OR: 5.011-7.286; p value<0.001) indicated a significant prevalence of BL1 type TNBCs in populations. Statistical significance with antimetabolites as combination therapy (OR: 2.343; p value: 0.018) and not with microtubule stabilizer (OR: 0.377) were observed. Thus, for best ORR in TNBC, personalized medicine should be the therapeutic choice for the clinicians.

  1. Mechanisms of drug resistance in colon cancer and its therapeutic strategies

    PubMed Central

    Hu, Tao; Li, Zhen; Gao, Chun-Ying; Cho, Chi Hin

    2016-01-01

    Drug resistance develops in nearly all patients with colon cancer, leading to a decrease in the therapeutic efficacies of anticancer agents. This review provides an up-to-date summary on over-expression of ATP-binding cassette (ABC) transporters and evasion of apoptosis, two representatives of transport-based and non-transport-based mechanisms of drug resistance, as well as their therapeutic strategies. Different ABC transporters were found to be up-regulated in colon cancer, which can facilitate the efflux of anticancer drugs out of cancer cells and decrease their therapeutic effects. Inhibition of ABC transporters by suppressing their protein expressions or co-administration of modulators has been proven as an effective approach to sensitize drug-resistant cancer cells to anticancer drugs in vitro. On the other hand, evasion of apoptosis observed in drug-resistant cancers also results in drug resistance to anticancer agents, especially to apoptosis inducers. Restoration of apoptotic signals by BH3 mimetics or epidermal growth factor receptor inhibitors and inhibition of cancer cell growth by alternative cell death pathways, such as autophagy, are effective means to treat such resistant cancer types. Given that the drug resistance mechanisms are different among colon cancer patients and may change even in a single patient at different stages, personalized and specific combination therapy is proposed to be more effective and safer for the reversal of drug resistance in clinics. PMID:27570424

  2. Translational strategies for therapeutic development in nicotine addiction: Rethinking the conventional bench to bedside approach

    PubMed Central

    Foll, Bernard Le; Pushparaj, Abhiram; Pryslawsky, Yaroslaw; Forget, Benoit; Vemuri, Kiran; Makriyannis, Alexandros; Trigo, Jose M.

    2014-01-01

    Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A `bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A `bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence. PMID:24140878

  3. Translational strategies for therapeutic development in nicotine addiction: rethinking the conventional bench to bedside approach.

    PubMed

    Le Foll, Bernard; Pushparaj, Abhiram; Pryslawsky, Yaroslaw; Forget, Benoit; Vemuri, Kiran; Makriyannis, Alexandros; Trigo, Jose M

    2014-07-03

    Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A 'bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A 'bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence.

  4. Simultaneous interpenetrating silicone hydrogel based on radical/addition polymerization for extended release of ocular therapeutics.

    PubMed

    Xu, Jinku; Zhang, Leilei; Zhang, Yongchun; Li, Tianduo; Huo, Guanghua

    2014-01-01

    Hydrogels with interpenetrating network (IPN) can overcome thermodynamic incompatibility and obtain transparent materials with limited phase separation. In this report, hydroxyl-grafting polysiloxane (HPSO) was synthesized and transparent silicone hydrogels with interpenetrating network were simultaneously prepared based on radical polymerization of methacrylic monomer of 3-methacryloxypropyl tris(trimethylsiloxy)silane/N,N-dimethylacrylamide and addition polymerization of HPSO/isophorone diisocyanate. The silicone hydrogels were characterized by dehydration kinetics, tensile tester, light transmittance, ion permeability, oxygen permeability, and lysozyme deposition. The results show that increasing the proportion of hydrophobic network of HPSO in the IPN silicone hydrogel decreases equilibrium swelling ratio, ion permeability, Young's modulus, and lysozyme deposition; on the contrary, increased tensile strength, elongation at break and oxygen permeability. Puerarin and ketoconazole were used as models to evaluate the drug loading and in vitro release behavior of the silicone hydrogels. It is revealed that the amount of loaded drugs in the hydrogel decreases with the increase of HPSO network in the hydrogels. All the silicone hydrogels exhibit extended release behavior, especially for ketoconazole, the in vitro release is divided into two phases corresponding to the rapid release at initial 24 h and relatively slow release from 125 to 360 h.

  5. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders.

    PubMed

    Muro, Silvia

    2012-06-01

    Lysosomal storage disorders (LSDs) are a group of about fifty life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.

  6. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies

    PubMed Central

    Mileo, Anna Maria; Miccadei, Stefania

    2016-01-01

    Cancer onset and progression have been linked to oxidative stress by increasing DNA mutations or inducing DNA damage, genome instability, and cell proliferation and therefore antioxidant agents could interfere with carcinogenesis. It is well known that conventional radio-/chemotherapies influence tumour outcome through ROS modulation. Since these antitumour treatments have important side effects, the challenge is to develop new anticancer therapeutic strategies more effective and less toxic for patients. To this purpose, many natural polyphenols have emerged as very promising anticancer bioactive compounds. Beside their well-known antioxidant activities, several polyphenols target epigenetic processes involved in cancer development through the modulation of oxidative stress. An alternative strategy to the cytotoxic treatment is an approach leading to cytostasis through the induction of therapy-induced senescence. Many anticancer polyphenols cause cellular growth arrest through the induction of a ROS-dependent premature senescence and are considered promising antitumour therapeutic tools. Furthermore, one of the most innovative and interesting topics is the evaluation of efficacy of prooxidant therapies on cancer stem cells (CSCs). Several ROS inducers-polyphenols can impact CSCs metabolisms and self-renewal related pathways. Natural polyphenol roles, mainly in chemoprevention and cancer therapies, are described and discussed in the light of the current literature data. PMID:26649142

  7. [Pregnant opioid addicted patients and additional drug intake. Part I. Toxic effects and therapeutic consequences].

    PubMed

    Hoell, Imke; Havemann-Reinecke, Ursula

    2011-10-01

    Opioid dependent patients often are dependent from the illegal consumption of heroin and, in addition, perform a polytoxicomanic way of consuming drugs. They suffer of various somatic and psychiatric diseases. Moreover, pregnancies of drug addicted women are classified as high-risk pregnancies. With respect to the particular consumed drug substances other than opioids during pregnancy variable forms of teratogenic and toxic effects can be assigned to the baby. Critical values of maternal substance abuse referring to fetal impairment do not exist. With regard to the possible teratogenic and toxic fetal effects of maternal consume of alcohol, tobacco, sedativa, cannabis, cocaine and amphetamines, withdrawal treatment of polytoxicomanic pregnant patients under inpatient medical supervision including medication if necessary represent the first-line-treatment. With respect to smoking, it is possible to detoxicate the patients also by an outpatient treatment. However, referring to heroin addiction, a maintenance therapy with L-methadone, D/L-methadone or buprenorphine should be preferred since fetal withdrawal symptoms of opioids otherwise can cause severe complications which even can lead to the loss of the fetus and also increase the risks for the mother. Increasing the dose of the opioid substitute may be necessary, for example, to avoid premature uterus contractions. It is to be pointed out that substitution treatment with methadone or buprenorphine also improve the medicinal compliance and psychosocial circumstances of the pregnant patients. Subsequent to delivery, the maintenance treatment should initially be pursued over a further period of time. In the follow up, the question of continuing with maintenance treatment or starting a withdrawal treatment of opioids should be discussed on an individual basis. To sum up, proceeded interdisciplinary care during pregnancy and afterwards by all the professions involved like general practioners as well as social workers

  8. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    PubMed

    Yoshida, Go J

    2017-03-09

    The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy-lysosome flux leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic vacuolization of the cytoplasm. However, autophagy is a "double-edged sword" for cancer cells as it can either promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of drug re-positioning suggest that "conventional" agents used to treat diseases other than cancer can have antitumor therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost associated with anticancer drug development, this therapeutic development strategy has attracted increasing

  9. Facing Facts: Can the Face-Name Mnemonic Strategy Accommodate Additional Factual Information?

    ERIC Educational Resources Information Center

    Carney, Russell N.; Levin, Joel R.

    2012-01-01

    In 3 experiments, undergraduates used their own best method (control) or an "imposed" face-name mnemonic strategy to associate 18 caricatured faces, names, and additional facts. On all immediate tests (prompted by the faces), and on the delayed tests of Experiments 2a and 2b combined, mnemonic students statistically outperformed control students…

  10. Measuring Children's Proportional Reasoning, The "Tendency" for an Additive Strategy and The Effect of Models

    ERIC Educational Resources Information Center

    Misailadou, Christina; Williams, Julian

    2003-01-01

    We report a study of 10-14 year old children's use of additive strategies while solving ratio and proportion tasks. Rasch methodology was used to develop a diagnostic instrument that reveals children's misconceptions. Two versions of this instrument, one with "models" thought to facilitate proportional reasoning and one without were…

  11. Haptic Exploratory Strategies and Children Who Are Blind and Have Additional Disabilities

    ERIC Educational Resources Information Center

    McLinden, Mike

    2004-01-01

    This study of the haptic exploratory strategies used by nine children with visual impairments and additional disabilities when interacting with portable and freely manipulable objects found that a broader approach to assessment and analysis is required than is used with typically developing children. An "adaptive-tasks" approach is proposed as a…

  12. Strategies and Performance in Elementary Students' Three-Digit Mental Addition

    ERIC Educational Resources Information Center

    Csíkos, Csaba

    2016-01-01

    The focus of this study is the relationship between students' performance in mental calculation and the strategies they use when solving three-digit mental addition problems. The sample comprises 78 4th grade students (40 boys and 38 girls). Their mean age was 10 years and 4 months. The main novelties of the current research include (1)…

  13. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy.

    PubMed

    Park, Geon-Tae; Choi, Kyung-Chul

    2016-09-06

    The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field.

  14. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy

    PubMed Central

    Park, Geon-Tae; Choi, Kyung-Chul

    2016-01-01

    The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field. PMID:27494901

  15. The potential utilizations of hydrogen as a promising therapeutic strategy against ocular diseases

    PubMed Central

    Tao, Ye; Geng, Lei; Xu, Wei-Wei; Qin, Li-Min; Peng, Guang-Hua; Huang, Yi-Fei

    2016-01-01

    Hydrogen, one of the most well-known natural molecules, has been used in numerous medical applications owing to its ability to selectively neutralize cytotoxic reactive oxygen species and ameliorate hazardous inflammations. Hydrogen can exert protective effects on various reactive oxygen species-related diseases, including the transplantation-induced intestinal graft injury, chronic inflammation, ischemia–reperfusion injuries, and so on. Especially in the eye, hydrogen has been used to counteract multiple ocular pathologies in the ophthalmological models. Herein, the ophthalmological utilizations of hydrogen are systematically reviewed and the underlying mechanisms of hydrogen-induced beneficial effects are discussed. It is our hope that the protective effects of hydrogen, as evidenced by these pioneering studies, would enrich our pharmacological knowledge about this natural element and cast light into the discovery of a novel therapeutic strategy against ocular diseases. PMID:27279745

  16. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies

    PubMed Central

    Kufareva, Irina; Salanga, Catherina L.; Handel, Tracy M.

    2015-01-01

    The control of cell migration by chemokines involves interactions with two types of receptors: seven transmembrane chemokine-type G protein-coupled receptors and cell surface or extracellular matrix associated glycosaminoglycans. Coordinated interaction of chemokines with both types of receptors is required for directional migration of cells in numerous physiological and pathological processes. Accumulated structural information, culminating most recently in the structure of a chemokine receptor in complex with a chemokine, has led to a view where chemokine oligomers bind to glycosaminoglycans through epitopes formed when chemokine subunits come together, while chemokine monomers bind to receptors in a pseudo two-step mechanism of receptor activation. Exploitation of this structural knowledge has and will continue to provide important information for therapeutic strategies, as described in this review. PMID:25708536

  17. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    PubMed Central

    Yhee, Ji Young; Im, Jintaek; Nho, Richard Seonghun

    2016-01-01

    Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed. PMID:27657144

  18. Therapeutic strategies for harnessing human eosinophils in allergic inflammation, hypereosinophilic disorders, and cancer.

    PubMed

    Amini-Vaughan, Zhaleh J; Martinez-Moczygemba, Margarita; Huston, David P

    2012-10-01

    The eosinophil is a multifunctional granulocyte best known for providing host defense against parasites. Paradoxically, eosinophils are also implicated in the pathogenesis of allergic inflammation, asthma, and hypereosinophilic syndromes. Emerging evidence also supports the potential for harnessing the cytotoxic power of eosinophils and redirecting it to kill solid tumors. Central to eosinophil physiology is interleukin-5 (IL-5) and its receptor (IL-5R) which is composed of a ligand-specific alpha chain (IL-5Rα) and the common beta chain (βc). Eosinophil activation can lead to their degranulation, resulting in rapid release of an arsenal of tissue-destructive proinflammatory mediators and cytotoxic proteins that can be both beneficial and detrimental to the host. This review discusses eosinophil immunobiology and therapeutic strategies for targeting of IL-5 and IL-5R, as well as the potential for harnessing eosinophil cytotoxicity as a tumoricide.

  19. Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA).

    PubMed

    Zanetta, Chiara; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Faravelli, Irene; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-02-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell-mediated approaches for the treatment of SMA.

  20. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  1. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer

    PubMed Central

    Hasima, N; Ozpolat, B

    2014-01-01

    Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer. PMID:25375374

  2. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases.

    PubMed

    Forte, Maurizio; Conti, Valeria; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine; Carrizzo, Albino

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.

  3. Variables and Strategies in Development of Therapeutic Post-Transcriptional Gene Silencing Agents

    PubMed Central

    Sullivan, Jack M.; Yau, Edwin H.; Kolniak, Tiffany A.; Sheflin, Lowell G.; Taggart, R. Thomas; Abdelmaksoud, Heba E.

    2011-01-01

    Post-transcriptional gene silencing (PTGS) agents such as ribozymes, RNAi and antisense have substantial potential for gene therapy of human retinal degenerations. These technologies are used to knockdown a specific target RNA and its cognate protein. The disease target mRNA may be a mutant mRNA causing an autosomal dominant retinal degeneration or a normal mRNA that is overexpressed in certain diseases. All PTGS technologies depend upon the initial critical annealing event of the PTGS ligand to the target RNA. This event requires that the PTGS agent is in a conformational state able to support hybridization and that the target have a large and accessible single-stranded platform to allow rapid annealing, although such platforms are rare. We address the biocomplexity that currently limits PTGS therapeutic development with particular emphasis on biophysical variables that influence cellular performance. We address the different strategies that can be used for development of PTGS agents intended for therapeutic translation. These issues apply generally to the development of PTGS agents for retinal, ocular, or systemic diseases. This review should assist the interested reader to rapidly appreciate critical variables in PTGS development and facilitate initial design and testing of such agents against new targets of clinical interest. PMID:21785698

  4. Peptide inhibition of p22phox and Rubicon interaction as a therapeutic strategy for septic shock.

    PubMed

    Kim, Ye-Ram; Koh, Hyun-Jung; Kim, Jae-Sung; Yun, Jin-Seung; Jang, Kiseok; Lee, Joo-Youn; Jung, Jae U; Yang, Chul-Su

    2016-09-01

    Sepsis is a clinical syndrome that complicates severe infection and is characterized by the systemic inflammatory response syndrome (SIRS), is a life threatening disease characterized by inflammation of the entire body. Upon microbial infection, p22phox-gp91phox NADPH oxidase (NOX) complexes produce reactive oxygen species (ROS) that are critical for the elimination of invading microbes. However, excess production of ROS represents a key element in the cascade of deleterious processes in sepsis. We have previously reported direct crosstalk between autophagy and phagocytosis machineries by demonstrating that the Rubicon protein interacts with p22phox upon microbial infection, facilitating phagosomal trafficking of the p22phox-gp91phox NOX complex to induce a ROS burst, inflammatory cytokine production, and thereby, potent anti-microbial activities. Here, we showed N8 peptide, an N-terminal 8-amino acid peptide derived from p22phox, was sufficient for Rubicon interaction and thus, capable of robustly blocking the Rubicon-p22phox interaction and profoundly suppressing ROS and inflammatory cytokine production. Consequently, treatment with the Tat-N8 peptide or a N8 peptide-mimetic small-molecule dramatically reduced the mortality associated with Cecal-Ligation-and-Puncture-induced polymicrobial sepsis in mice. This study demonstrates a new anti-sepsis therapeutic strategy by blocking the crosstalk between autophagy and phagocytosis innate immunity machineries, representing a potential paradigm shift for urgently needed therapeutic intervention against this life-threatening SIRS.

  5. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    PubMed

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2016-12-12

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain.

  6. Targeting the kynurenine pathway-related alterations in Alzheimer's disease: a future therapeutic strategy.

    PubMed

    Plangár, Imola; Zádori, Dénes; Klivényi, Péter; Toldi, József; Vécsei, László

    2011-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder associated with dementia as a main feature. Despite decades of thorough research in the field of AD, the pathomechanism is still not fully understood. The development of novel experimental models can help us in the discovery of both genetic and non-genetic components of disease pathogenesis. As currently available therapies in AD can provide merely moderate or only temporary symptomatic relief, there is a great demand for the development of new drugs with higher therapeutic potential. Some of the candidates would be those targeting the kynurenine pathway, the neuroactive metabolites of which are surely involved in both neurodegeneration and neuroprotection, mainly in relation with glutamate excitotoxicity and oxidative stress. Both analogs of the neuroprotective kynurenic acid and small molecule enzyme inhibitors preventing the formation of neurotoxic compounds may have potential therapeutic significance. However, there is a great need for new strategies to improve efficacy, transport across the blood-brain barrier and bioavailability, naturally with simultaneous minimization of the adverse side-effects.

  7. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back.

    PubMed

    Gross, Christina; Hoffmann, Anne; Bassell, Gary J; Berry-Kravis, Elizabeth M

    2015-07-01

    Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.

  8. Therapeutic Strategies for Neuropathic Pain: Potential Application of Pharmacosynthetics and Optogenetics

    PubMed Central

    Lee, Gum Hwa; Kim, Sang Seong

    2016-01-01

    Chronic pain originating from neuronal damage remains an incurable symptom debilitating patients. Proposed molecular modalities in neuropathic pain include ion channel expressions, immune reactions, and inflammatory substrate diffusions. Recent advances in RNA sequence analysis have discovered specific ion channel expressions in nociceptors such as transient receptor potential (TRP) channels, voltage-gated potassium, and sodium channels. G protein-coupled receptors (GPCRs) also play an important role in triggering surrounding immune cells. The multiple protein expressions complicate therapeutic development for neuropathic pain. Recent progress in optogenetics and pharmacogenetics may herald the development of novel therapeutics for the incurable pain. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) facilitate the artificial manipulation of intracellular signaling through excitatory or inhibitory G protein subunits activated by biologically inert synthetic ligands. Expression of excitatory channelrhodopsins and inhibitory halorhodopsins on injured neurons or surrounding cells can attenuate neuropathic pain precisely controlled by light stimulation. To achieve the discrete treatment of injured neurons, we can exploit the transcriptome database obtained by RNA sequence analysis in specific neuropathies. This can recommend the suitable promoter information to target the injury sites circumventing intact neurons. Therefore, novel strategies benefiting from pharmacogenetics, optogenetics, and RNA sequencing might be promising for neuropathic pain treatment in future. PMID:26884648

  9. Initiating therapeutic relaxation in Britain: a twentieth-century strategy for health and wellbeing

    PubMed Central

    Nathoo, Ayesha

    2016-01-01

    In 1972, a British charity, Relaxation for Living, was established “to promote the teaching of physical relaxation, to combat stress, strain, anxiety and the tension of modern life, and to reduce fatigue”. This article explores the origins and development of “physical relaxation” techniques and ideologies, starting in the interwar period, and the development of practical, therapeutic, social and cultural frameworks necessary for such an organization to come into being in 1970s Britain. It traces how relaxation was reconstituted as a scientifically-based skill that could be learnt and taught, imbued with therapeutic value for combating and preventing specific physical ailments and enhancing individual health and wellbeing. The article explores how relaxation techniques gained currency among particular demographic and clinical groups, ranging from middle-class, child-bearing women to middle-aged, “coronary-prone” men. This analysis highlights the role that relaxation practitioners played in both creating and responding to demand for individualistic health-management strategies, many of which have shaped contemporary health and wellbeing agendas. This article is published as part of a collection entitled “On balance: lifestyle, mental health and wellbeing”. PMID:27563437

  10. TU-EF-210-00: Therapeutic Strategies and Image Guidance

    SciTech Connect

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  11. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells.

    PubMed

    Schinke, Carolina; Giricz, Orsolya; Li, Weijuan; Shastri, Aditi; Gordon, Shanisha; Barreyro, Laura; Barreryo, Laura; Bhagat, Tushar; Bhattacharyya, Sanchari; Ramachandra, Nandini; Bartenstein, Matthias; Pellagatti, Andrea; Boultwood, Jacqueline; Wickrema, Amittha; Yu, Yiting; Will, Britta; Wei, Sheng; Steidl, Ulrich; Verma, Amit

    2015-05-14

    Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML.

  12. New therapeutic strategies for the treatment of male lower urinary tract symptoms

    PubMed Central

    Dimitropoulos, Konstantinos; Gravas, Stavros

    2016-01-01

    Male lower urinary tract symptoms (LUTS) are prevalent in the general population, especially in those of advanced age, and are characterized by notable diversity in etiology and presentation, and have been proven to cause various degrees of impairment on quality of life. The prostate has traditionally been regarded as the core cause of male LUTS. As a result, medical treatment aims to provide symptomatic relief and effective management of progression of male LUTS due to benign prostatic enlargement. In this context, α1-blockers, phosphodiesterase-5 inhibitors, and 5α-reductase inhibitors have long been used as monotherapies or in combination treatment to control voiding LUTS. There is accumulating evidence, however, that highlights the role of the bladder in the pathogenesis of male LUTS. Current research interests have shifted to bladder disorders, and medical management is aimed at the bladder. Muscarinic receptor antagonists and the newly approved β3-adrenergic agonist mirabegron aim to alleviate the most bothersome storage LUTS and thus improve quality of life. As voiding and storage LUTS frequently coexist, combination therapeutic strategies with α1-blockers and antimuscarinics or β3-agonists have been introduced to manage symptoms effectively. Anti-inflammatory agents, vitamin D3-receptor analogs, and cannabinoids represent treatment modalities currently under investigation for use in LUTS patients. Furthermore, luteinizing hormone-releasing hormone antagonists, transient receptor-potential channel blockers, purinergic neurotransmission antagonists, Rho-kinase inhibitors, and inhibitors of endothelin-converting enzymes could have therapeutic potential in LUTS management, but still remain in the experimental setting. This article reviews new strategies for the medical treatment of male LUTS, which are dictated by the potential role of the bladder and the risk of benign prostatic hyperplasia progression. Moreover, combination treatments and therapies

  13. Targeting metabolic inflammation in Parkinson's disease: implications for prospective therapeutic strategies.

    PubMed

    Lu, Ming; Hu, Gang

    2012-06-01

    1. Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the aetiology of PD has not been clarified as yet, it is believed that ageing, diet, diabetes and adiposity are associated with PD. 2. Type 2 diabetes and lipid abnormalities share multiple common pathophysiological mechanisms with PD. In particular, inflammation plays a critical role in the destruction of both pancreatic islet β-cells and dopaminergic neurons in the substantia nigra. Emerging evidence indicates that dysfunctions of energy metabolism evoke metabolic inflammation, which differs to the narrow concept of inflammation, participating in systemic pathological processes such as neurodegenerative disease and diabetes. 3. The brain is considered an immunologically privileged organ, free from immune reactions, because it is protected by the blood-brain barrier (BBB). However, studies have shown that there is gradual impairment of neurovascular function with ageing and in neurodegenerative disorders, resulting in abnormal states, including increased BBB permeability. Consequently, harmful elements that would not normally be able to cross the BBB, such as pro-inflammatory factors, reactive oxygen species and neurotoxins, infiltrate into the brain, triggering neural injury. 4. Currently, the drugs available for the treatment of PD only ameliorate the symptoms of the disease. Therapeutic strategies aimed at stopping or modifying disease progression are still being sought. Most recent studies suggest that both central and peripheral inflammation may be dysregulated in PD. Therefore, therapeutic strategies aimed at modulating systemic inflammatory reactions or energy metabolism may represent a goal in neuroprotection in PD.

  14. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    PubMed

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-06-30

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury.

  15. Therapeutic strategies to improve drug delivery across the blood-brain barrier

    PubMed Central

    Azad, Tej D.; Pan, James; Connolly, Ian D.; Remington, Austin; Wilson, Christy M.; Grant, Gerald A.

    2015-01-01

    Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining malignant cell populations. Targeting these populations stands to reduce tumor recurrence and offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible for much of this difficulty but also provides an essential separation from systemic circulation. Due to the BBB’s physical and chemical constraints, many current therapies, from cytotoxic drugs to antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics of the BBB and associated changes wrought by the presence of a tumor. Current strategies for enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent it. PMID:25727231

  16. The value of mammalian models for duchenne muscular dystrophy in developing therapeutic strategies.

    PubMed

    Banks, Glen B; Chamberlain, Jeffrey S

    2008-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy. There is no effective treatment and patients typically die in approximately the third decade. DMD is an X-linked recessive disease caused by mutations in the dystrophin gene. There are three mammalian models of DMD that have been used to understand better the pathogenesis of disease and develop therapeutic strategies. The mdx mouse is the most widely used model of DMD that displays some features of muscle degeneration, but the pathogenesis of disease is comparatively mild. The severity of disease in mice lacking both dystrophin and utrophin is similar to DMD, but one has to account for the discrete functions of utrophin. Canine X-linked muscular dystrophy (cxmd) is the best representation of DMD, but the phenotype of the most widely used golden retriever (GRMD) model is variable, making functional endpoints difficult to ascertain. Although each mammalian model has its limitations, together they have been essential for the development of several treatment strategies for DMD that target dystrophin replacement, disease progression, and muscle regeneration.

  17. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells.

    PubMed

    Kim, Hyunyun; Yun, Jisoo; Kwon, Sang-Mo

    Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.

  18. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells

    PubMed Central

    Yun, Jisoo

    2016-01-01

    Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair. PMID:27668035

  19. A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets.

    PubMed

    Grade, Marian; Hummon, Amanda B; Camps, Jordi; Emons, Georg; Spitzner, Melanie; Gaedcke, Jochen; Hoermann, Patrick; Ebner, Reinhard; Becker, Heinz; Difilippantonio, Michael J; Ghadimi, B Michael; Beissbarth, Tim; Caplen, Natasha J; Ried, Thomas

    2011-03-01

    Genes that are highly overexpressed in tumor cells can be required for tumor cell survival and have the potential to be selective therapeutic targets. In an attempt to identify such targets, we combined a functional genomics and a systems biology approach to assess the consequences of RNAi-mediated silencing of overexpressed genes that were selected from 140 gene expression profiles from colorectal cancers (CRCs) and matched normal mucosa. In order to identify credible models for in-depth functional analysis, we first confirmed the overexpression of these genes in 25 different CRC cell lines. We then identified five candidate genes that profoundly reduced the viability of CRC cell lines when silenced with either siRNAs or short-hairpin RNAs (shRNAs), i.e., HMGA1, TACSTD2, RRM2, RPS2 and NOL5A. These genes were further studied by systematic analysis of comprehensive gene expression profiles generated following siRNA-mediated silencing. Exploration of these RNAi-specific gene expression signatures allowed the identification of the functional space in which the five genes operate and showed enrichment for cancer-specific signaling pathways, some known to be involved in CRC. By comparing the expression of the RNAi signature genes with their respective expression levels in an independent set of primary rectal carcinomas, we could recapitulate these defined RNAi signatures, therefore, establishing the biological relevance of our observations. This strategy identified the signaling pathways that are affected by the prominent oncogenes HMGA1 and TACSTD2, established a yet unknown link between RRM2 and PLK1 and identified RPS2 and NOL5A as promising potential therapeutic targets in CRC.

  20. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy.

    PubMed

    Silva, Renata; Vilas-Boas, Vânia; Carmo, Helena; Dinis-Oliveira, Ricardo Jorge; Carvalho, Félix; de Lourdes Bastos, Maria; Remião, Fernando

    2015-05-01

    P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.

  1. Mysteries of α1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease

    PubMed Central

    Ghouse, Raafe; Chu, Andrew; Wang, Yan; Perlmutter, David H.

    2014-01-01

    The classical form of α1-antitrypsin deficiency (ATD) is an autosomal co-dominant disorder that affects ~1 in 3000 live births and is an important genetic cause of lung and liver disease. The protein affected, α1-antitrypsin (AT), is predominantly derived from the liver and has the function of inhibiting neutrophil elastase and several other destructive neutrophil proteinases. The genetic defect is a point mutation that leads to misfolding of the mutant protein, which is referred to as α1-antitrypsin Z (ATZ). Because of its misfolding, ATZ is unable to efficiently traverse the secretory pathway. Accumulation of ATZ in the endoplasmic reticulum of liver cells has a gain-of-function proteotoxic effect on the liver, resulting in fibrosis, cirrhosis and/or hepatocellular carcinoma in some individuals. Moreover, because of reduced secretion, there is a lack of anti-proteinase activity in the lung, which allows neutrophil proteases to destroy the connective tissue matrix and cause chronic obstructive pulmonary disease (COPD) by loss of function. Wide variation in the incidence and severity of liver and lung disease among individuals with ATD has made this disease one of the most challenging of the rare genetic disorders to diagnose and treat. Other than cigarette smoking, which worsens COPD in ATD, genetic and environmental modifiers that determine this phenotypic variability are unknown. A limited number of therapeutic strategies are currently available, and liver transplantation is the only treatment for severe liver disease. Although replacement therapy with purified AT corrects the loss of anti-proteinase function, COPD progresses in a substantial number of individuals with ATD and some undergo lung transplantation. Nevertheless, advances in understanding the variability in clinical phenotype and in developing novel therapeutic concepts is beginning to address the major clinical challenges of this mysterious disorder. PMID:24719116

  2. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy

    PubMed Central

    Harris, Zoey; Donovan, Micah G.; Branco, Gisele Morais; Limesand, Kirsten H.; Burd, Randy

    2016-01-01

    Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase – a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables, and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anticancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review, we explore the potential of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a “four-focus area strategy” to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to (i) modulate cellular bioreduction potential and associated signaling cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, and (iv) develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects. PMID:27843913

  3. Novel therapeutic strategies using hypomethylating agents in the treatment of myelodysplastic syndrome.

    PubMed

    Ishikawa, Takayuki

    2014-02-01

    Myelodysplastic syndrome (MDS) is a clonal hematopoietic neoplasm with high rates of leukemic transformation. MDS had been an intractable disease for which the mainstream of therapeutic approach was best supportive care. Recently, however, treatment of hematological malignancies has benefited from advances in molecular targeted drug discovery such as the revolutionary drug imatinib for chronic myeloid leukemia, and from the reappraisal of forgotten drugs such as thalidomide for multiple myeloma. Two azanucleotide drugs, azacitidine (AZA) and decitabine, were created as anti-neoplastic drugs in the 1960s with little success. In the 1980s, they were reassessed as hypomethylating agents (HMAs), and the introduction of low-dose schedules of them has shown dramatic effects in the delay of leukemic evolution for high-risk MDS. AZA was approved in Japan in March 2011 and has become a standard drug of choice in the treatment of high-risk MDS. Its position as a treatment for low-risk MDS remains to be established. Only half of patients with high-risk MDS can gain benefit from AZA. For example, those with complex karyotypes experience only a limited extension in survival. In addition, AZA resistance develops sooner or later. To achieve a more sustained disease control of high-risk MDS, the combined use of HMAs with other therapeutic approaches will be inevitable. Clinical trials of histone deacetylase inhibitors, lenalidomide, thrombopoietin agonists, or anticancer drugs in combination with HMAs are ongoing. In addition, HMAs are being used as a bridging therapy prior to allogeneic stem cell transplantation (AHSCT) and the salvage therapy of relapsed disease after AHSCT. Thus, HMAs will continue to be key drugs for the management of MDS.

  4. Therapeutic strategies to correct proteostasis-imbalance in chronic obstructive lung diseases.

    PubMed

    Bodas, M; Tran, I; Vij, N

    2012-08-01

    Proteostasis is a critical cellular homeostasis mechanism that regulates the concentration of all cellular proteins by controlling protein- synthesis, processing and degradation. This includes protein-conformation, binding interactions and sub-cellular localization. Environmental, genetic or age-related pathogenetic factors can modulate the proteostasis (proteostasis-imbalance) through transcriptional, translational and post-translational changes that trigger the development of several complex diseases. Although these factors are known to be involved in pathogenesis of chronic obstructive pulmonary disease (COPD), the role of proteostasis mechanisms in COPD is scarcely investigated. As a proof of concept, our recent data reveals a novel role of proteostasis-imbalance in COPD pathogenesis. Briefly, cigarette- and biomass- smoke induced proteostasis-imbalance may aggravate chronic inflammatory-oxidative stress and/or protease-anti-protease imbalance resulting in pathogenesis of severe emphysema. In contrast, pathogenesis of other chronic lung diseases like ΔF508-cystic fibrosis (CF), α1-anti-trypsin-deficiency (α-1 ATD) and pulmonary fibrosis (PF) is regulated by other proteostatic mechanisms, involving the degradation of misfolded proteins (ΔF508-CFTR/α1-AT- Z variant) or regulating the concentration of signaling proteins (such as TGF-β1) by the ubiquitin-proteasome system (UPS). The therapeutic strategies to correct proteostasis-imbalance in misfolded protein disorders such as ΔF508-CF have been relatively well studied and involve strategies that rescue functional CFTR protein to treat the underlying cause of the disease. While in the case of COPD-emphysema and/or PF, identification of novel proteostasis-regulators that can control inflammatory-oxidative stress and/or protease-anti-protease balance is warranted.

  5. [Modulating the survival and maturation system of B lymphocytes: Current and future new therapeutic strategies in systemic lupus erythematosus].

    PubMed

    Valor, Lara; López-Longo, Francisco Javier

    2015-09-07

    Systemic lupus erythematosus is an autoimmune disease associated with an aberrant production of autoantibodies by self-reactive B lymphocytes. The study of the phenotypic characteristics of B lymphocytes and the identification of their surface receptors such as BAFF-R, TACI and BCMA, which are responsible of their survival and maturation, have contributed to the development of new therapeutic strategies in recent years.

  6. Additional Navigational Strategies Can Augment Odor-Gated Rheotaxis for Navigation under Conditions of Variable Flow.

    PubMed

    Vasey, Gabrielle; Lukeman, Ryan; Wyeth, Russell C

    2015-09-01

    The navigation strategies animals use to find sources of odor depend on the olfactory stimuli, the properties of flowing fluids, and the locomotory capabilities of the animal. In high Reynolds number environments, animals typically use odor-gated rheotaxis to find the source of turbulent odor plumes. This strategy succeeds because, although turbulence creates an intermittent chemical cue, the animal follows the (continuous) directional cue created by the flow that is transporting the chemical. However, in nature, animals may lose all contact with an odor plume as variations in the direction of bulk flow cause the plume to be rotated away before the animal reaches the source of the odor. Our goal was to use a mathematical model to test the hypothesis that strategies that augment odor-gated rheotaxis would be beneficial for finding the source of an odor plume in such variable flow. The model links a stochastic variable-direction odor plume with a turbulence-based intermittent chemical signal and four different movement strategies, including: odor-gated rheotaxis alone (as a control), odor-gated rheotaxis augmented by further rheotaxis in the absence of odor, odor-gated rheotaxis augmented by a random walk, and odor-gated rheotaxis augmented by movement actively guided by the heading of the flow when the odor was still present. We found that any of the three augmented strategies could improve on strict odor-gated rheotaxis. Moreover, variations in performance caused the best strategy to depend on the speed of movement of the animal and the magnitude of the variation in flow, and more subtly on the duration over which the augmented strategy was performed. For most combinations of parameters in the model, either augmenting with a random walk or following the last-known heading were the best-performing strategies. Overall, our results suggest that marine animals that rely on odor cues to navigate in turbulent environments may augment odor-gated rheotaxis with additional

  7. Polar/apolar chemical inducers of differentiation of transformed cells: strategies to improve therapeutic potential.

    PubMed Central

    Marks, P A; Breslow, R; Rifkind, R A; Ngo, L; Singh, R

    1989-01-01

    N,N'-Hexamethylenebisacetamide (HMBA) induces transformed cells to differentiate, accompanied by suppression of oncogenicity. Clinical trials have shown that HMBA can cause positive therapeutic responses in some cancer patients, but clinical efficacy may be limited, in part, by dose-related toxicity. Potential improvements in efficacy may be accomplished by changes in the chemical structure of inducing agents and by increasing the sensitivity of tumor cells to inducers of differentiation. We have previously described an approach to improving tumor cell responsiveness to inducing agents. Transformed cell lines that have acquired low levels of resistance to vincristine display a markedly increased sensitivity to HMBA. We now report on a series of hybrid polar/apolar compounds--some of which are as active as HMBA and several of which are significantly more active than HMBA in vitro--whose chemical structures make it likely that they have different pharmacokinetics. Vincristine-resistant murine erythroleukemia cells also are shown to have marked increased sensitivity to these hybrid polar/apolar compounds. Thus these findings suggest potentially useful strategies for the application of polar/apolar inducers of differentiation to the treatment of cancers. These studies also provide approaches to further understanding of the biological process of terminal differentiation. PMID:2762329

  8. Role of Nitrosative Stress and Peroxynitrite in the Pathogenesis of Diabetic Complications. Emerging New Therapeutical Strategies

    PubMed Central

    Pacher, Pál; Obrosova, Irina G.; Mabley, Jon G.; Szabó, Csaba

    2008-01-01

    Macro- and microvascular disease are the most common causes of morbidity and mortality in patients with diabetes mellitus. Diabetic cardiovascular dysfunction represents a problem of great clinical importance underlying the development of various severe complications including retinopathy, nephropathy, neuropathy and increase the risk of stroke, hypertension and myocardial infarction. Hyperglycemic episodes, which complicate even well-controlled cases of diabetes, are closely associated with increased oxidative and nitrosative stress, which can trigger the development of diabetic complications. Hyperglycemia stimulates the production of advanced glycosylated end products, activates protein kinase C, and enhances the polyol pathway leading to increased superoxide anion formation. Superoxide anion interacts with nitric oxide, forming the potent cytotoxin peroxynitrite, which attacks various biomolecules in the vascular endothelium, vascular smooth muscle and myocardium, leading to cardiovascular dysfunction. The pathogenetic role of nitrosative stress and peroxynitrite, and downstream mechanisms including poly(ADP-ribose) polymerase (PARP) activation, is not limited to the diabetes-induced cardiovascular dysfunction, but also contributes to the development and progression of diabetic nephropathy, retinopathy and neuropathy. Accordingly, neutralization of peroxynitrite or pharmacological inhibition of PARP is a promising new approach in the therapy and prevention of diabetic complications. This review focuses on the role of nitrosative stress and downstream mechanisms including activation of PARP in diabetic complications and on novel emerging therapeutical strategies offered by neutralization of peroxynitrite and inhibition of PARP. PMID:15723618

  9. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  10. Gene control of synaptic plasticity and memory formation: implications for diseases and therapeutic strategies.

    PubMed

    Vaillend, C; Rampon, C; Davis, S; Laroche, S

    2002-11-01

    There has been nearly a century of interest in the idea that information is stored in the brain as changes in the efficacy of synaptic connections between neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular and molecular bases of learning and memory. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. Here we briefly review these mechanisms and illustrate with a few examples of animal models of neurological disorders how new knowledge about these mechanisms can provide valuable insights into identifying the mechanisms that go awry when memory is deficient, and how, in turn, characterisation of the dysfunctional mechanisms offers prospects to design and evaluate molecular and biobehavioural strategies for therapeutic prevention and rescue.

  11. New Strategies in Myeloproliferative Neoplasms: The Evolving Genetic and Therapeutic Landscape

    PubMed Central

    Patel, Ami B.; Vellore, Nadeem A.; Deininger, Michael W.

    2015-01-01

    The classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) include essential thrombocythemia (ET), polycythemia vera (PV) and myelofibrosis (MF). While these clonal disorders share certain clinical and genetic features, MF in particular is distinct for its complex mutational landscape, severe disease phenotype and poor prognosis. The genetic complexity inherent to MF has made this disease extremely challenging to treat. Pharmacologic JAK inhibition has proven to be a transformative therapy in MPNs, alleviating symptom burden and improving survival, but has been hampered by off-target toxicities and, as monotherapy, has shown limited effects on mutant allele burden. In this review, we discuss the genetic heterogeneity contributing to the pathogenesis of MPNs, focusing on novel driver and epigenetic mutations and how they relate to combination therapeutic strategies. We discuss results from ongoing studies of new JAK inhibitors and report on new drugs and drug combinations that have demonstrated success in early preclinical and clinical trials, including Type II JAK inhibitors, anti-fibrotic agents and telomerase inhibitors. PMID:26933174

  12. NF-κB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies

    PubMed Central

    2013-01-01

    Chronic inflammation is a major biological mechanism underpinning biological ageing process and age-related diseases. Inflammation is also the key response of host defense against pathogens and tissue injury. Current opinion sustains that during evolution the host defense and ageing process have become linked together. Thus, the large array of defense factors and mechanisms linked to the NF-κB system seem to be involved in ageing process. This concept leads us in proposing inductors of NF-κB signaling pathway as potential ageing biomarkers. On the other hand, ageing biomarkers, represented by biological indicators and selected through apposite criteria, should help to characterize biological age and, since age is a major risk factor in many degenerative diseases, could be subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. In this report, some inflammatory biomarkers will be discussed for a better understanding of the concept of biological ageing, providing ideas on eventual working hypothesis about potential targets for the development of new therapeutic strategies and improving, as consequence, the quality of life of elderly population. PMID:23786653

  13. Therapeutic strategies and mechanisms of drug resistance in Anaplastic Lymphoma Kinase (ALK)-rearranged lung cancer.

    PubMed

    Katayama, Ryohei

    2017-02-06

    Anaplastic lymphoma kinase (ALK) gene encoding the receptor tyrosine kinase ALK is expressed as a fusion gene in a variety of carcinomas. The expression of ALK is nearly undetectable in adults, and its activation is normally regulated by its ligands, FAM150A/B. However, ALK gene rearrangements result in different ALK fusion proteins that are constitutively expressed via the active promoter of fusion partner genes. ALK fusion proteins dimerize in a ligand-independent manner and lead to the dysregulation of cell proliferation via abnormal constitutive activation of ALK tyrosine kinase. Many ALK tyrosine kinase inhibitors (TKIs) have been developed to date, are three of which are currently in clinical use for the treatment of ALK-rearranged non-small cell lung cancer (NSCLC). ALK TKIs often achieve marked tumor regression in NSCLC patients with ALK rearrangements; however, ALK TKI-resistant tumors inevitably emerge within a few years in most cases. In this review, we summarize diverse ALK TKI resistance mechanisms identified in NSCLC with ALK rearrangements, and review potential therapeutic strategies to overcome ALK TKI resistance in these patients.

  14. Selection of chemotherapy for non-small cell lung cancer is facilitated by new therapeutic strategies

    PubMed Central

    Wang, Zhehai

    2014-01-01

    Nowadays, advanced non-small cell lung cancer is still an incurable disease. Recent researches have led to considerable progress in the treatment of non-small cell lung cancer. This article reviews the main studies on chemotherapy on non-small cell lung cancer and discusses the new therapeutic strategies available to date. Stable disease (SD) is necessary in chemotherapy for tumor. The proportion of population with responders or SD basically maintained similar regardless of regimens. The overall survival after chemotherapy for patients with SD was lower than patients with responders, and higher than patients with progressive disease. Greater benefits could be achieved in patients with effective induction chemotherapy using chemotherapeutic agents for maintenance therapy, whereas the benefits were relatively small for patients with SD. It has been found that epidermal growth factor receptor (EGFR) mutation status had certain correlation with the efficacy of chemotherapy. First-line chemotherapy has shown advantages in effective rate and progression free survival on EGFR mutant. EGFR mutation produced significant effects on the efficacy of postoperative adjuvant chemotherapy. Patients with EGFR mutation had a higher effective rate than wild-type EGFR patients, and patients with responders had a greater benefit in progression free survival from maintenance therapy. However, it is still necessary to carry out more careful and deeper studies and analyses on traditional cytotoxic chemotherapy, to further optimize cytotoxic chemotherapy and to use molecular targeted agents with different mechanisms. PMID:25550891

  15. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies

    PubMed Central

    Zhao, Mingyi; Zhu, Ping; Fujino, Masayuki; Zhuang, Jian; Guo, Huiming; Sheikh, IdrisAhmed; Zhao, Lingling; Li, Xiao-Kang

    2016-01-01

    Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply and is, thus, extremely sensitive to hypoxia. Strong evidence indicates that oxidative stress plays an important role in pathogenesis and progression. Following hypoxia and ischemia, reactive oxygen species (ROS) production rapidly increases and overwhelms antioxidant defenses. A large excess of ROS will directly modify or degenerate cellular macromolecules, such as membranes, proteins, lipids, and DNA, and lead to a cascading inflammatory response, and protease secretion. These derivatives are involved in a complex interplay of multiple pathways (e.g., inflammation, apoptosis, autophagy, and necrosis) which finally lead to brain injury. In this review, we highlight the molecular mechanism for oxidative stress in HIE, summarize current research on therapeutic strategies utilized in combating oxidative stress, and try to explore novel potential clinical approaches. PMID:27973415

  16. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach

    PubMed Central

    Bilia, Anna Rita; Guccione, Clizia; Isacchi, Benedetta; Righeschi, Chiara; Firenzuoli, Fabio; Bergonzi, Maria Camilla

    2014-01-01

    Essential oils are complex blends of a variety of volatile molecules such as terpenoids, phenol-derived aromatic components, and aliphatic components having a strong interest in pharmaceutical, sanitary, cosmetic, agricultural, and food industries. Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, and other medicinal properties such as analgesic, sedative, anti-inflammatory, spasmolytic, and locally anaesthetic remedies. In this review their nanoencapsulation in drug delivery systems has been proposed for their capability of decreasing volatility, improving the stability, water solubility, and efficacy of essential oil-based formulations, by maintenance of therapeutic efficacy. Two categories of nanocarriers can be proposed: polymeric nanoparticulate formulations, extensively studied with significant improvement of the essential oil antimicrobial activity, and lipid carriers, including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and microemulsions. Furthermore, molecular complexes such as cyclodextrin inclusion complexes also represent a valid strategy to increase water solubility and stability and bioavailability and decrease volatility of essential oils. PMID:24971152

  17. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities.

    PubMed

    O'Reilly, Ciaran; Doroudian, Mohammad; Mawhinney, Leona; Donnelly, Seamas C

    2016-05-01

    Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.

  18. HDAC4 Reduction: A Novel Therapeutic Strategy to Target Cytoplasmic Huntingtin and Ameliorate Neurodegeneration

    PubMed Central

    Mielcarek, Michal; Landles, Christian; Weiss, Andreas; Bradaia, Amyaouch; Seredenina, Tamara; Inuabasi, Linda; Osborne, Georgina F.; Wadel, Kristian; Touller, Chrystelle; Butler, Rachel; Robertson, Janette; Franklin, Sophie A.; Smith, Donna L.; Park, Larry; Marks, Paul A.; Wanker, Erich E.; Olson, Eric N.; Luthi-Carter, Ruth; van der Putten, Herman; Beaumont, Vahri; Bates, Gillian P.

    2013-01-01

    Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics. PMID:24302884

  19. New strategies in metastatic melanoma: oncogene-defined taxonomy leads to therapeutic advances.

    PubMed

    Flaherty, Keith T; Fisher, David E

    2011-08-01

    The discovery of BRAF and KIT mutations provided the first basis for a molecular classification of cutaneous melanoma on therapeutic grounds. As BRAF-targeted therapy quickly moves toward regulatory approval and incorporation as standard therapy for patients with metastatic disease, proof of concept has also been established for targeting mutated KIT in melanoma. NRAS mutations have long been known to be present in a subset of melanomas and represent an elusive subgroup for targeted therapies. Matching patient subgroups defined by genetic aberrations in the phosphoinositide 3-kinase and p16/cyclin dependent kinase 4 (CDK4) pathways with appropriate targeted therapies has not yet been realized. And, an increasing understanding of lineage-specific transcriptional regulators, most notably MITF, and how they may play a role in melanoma pathophysiology, has provided another axis to approach with therapies. The foundation has been established for individual oncogene targeting, and current investigations seek to understand the intersection of these susceptibilities and other described potential targets and pathways. The melanoma field stands poised to take the lead among cancer subtypes in advancing combination therapy strategies that simultaneously target multiple biologic underpinnings of the disease.

  20. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    PubMed Central

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  1. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy

    PubMed Central

    Pobbati, Ajaybabu V.; Han, Xiao; Hung, Alvin W.; Weiguang, Seetoh; Huda, Nur; Chen, Guo-Ying; Kang, CongBao; Chia, Cheng San Brian; Luo, Xuelian; Hong, Wanjin; Poulsen, Anders

    2015-01-01

    SUMMARY The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD’s co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small molecule inhibitors. Our X-ray crystallography studies reveal that flufenamic acid, a non-steroidal anti-inflammatory drug (NSAID), binds to the central pocket of TEAD2 YBD. Our biochemical and functional analyses further demonstrate that binding of NSAIDs to TEAD inhibits TEAD-YAP-dependent transcription, cell migration and proliferation, indicating that the central pocket is important for TEAD function. Therefore, our studies discover a novel way of targeting TEAD transcription factors and set the stage for therapeutic development of specific TEAD-YAP inhibitors against human cancers. PMID:26592798

  2. Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies.

    PubMed

    Sharma, Sabeena; Singh, Samardeep; Sharma, Vishavdeep; Singh, Vijay Pal; Deshmukh, Rahul

    2015-03-01

    Parkinson's disease (PD) is a neurological disorder characterized by tremors, rigidity and bradykinesia. PD is caused by selective degeneration of the dopaminergic neurons, which originate in the substantia nigra pars compacta (SNc) and project into the striatum. Levodopa is the most effective drug, used in the treatment of PD. However, the long-term use of levodopa produce complications which are highly disabling fluctuations and dyskinesias and representing one of the major challenge to the existing drug therapy of PD. Recent studies has indicated that the pulsatile stimulation of striatal postsynaptic receptors led to sensitization of dopaminergic receptors which leads to levodopa induced dyskinesias. In spite of the extensive research in this field, the pathogenesis of levodopa induced dyskinesia is still unclear. In recent years animal models of PD has provided important information to understand the effect of specific receptors and post-receptor molecular mechanisms underlying the development of dyskinetic movements. The present review is aimed to discuss the neurobiological mechanisms of levodopa induced dyskinesia and the therapeutic strategies to overcome this problem.

  3. Low Grade Serous Ovarian Carcinoma: from the molecular characterization to the best therapeutic strategy.

    PubMed

    Della Pepa, Chiara; Tonini, Giuseppe; Santini, Daniele; Losito, Simona; Pisano, Carmela; Di Napoli, Marilena; Cecere, Sabrina Chiara; Gargiulo, Piera; Pignata, Sandro

    2015-02-01

    Low Grade Serous Ovarian Carcinoma, LGSOC, is certainly a rare disease, accounting for only a small proportion of all ovarian carcinomas, nevertheless in the last decade we have acquired many data about its molecular and clinical features and it has been largely accepted that it has distinct pathogenesis, genetic aberrations and clinical behavior compared to High Grade Serous Ovarian Carcinoma, HGSOC, which is the most common ovarian cancer histotype. A large number of series pointed out the high rate of KRAS and BRAF mutations in LGSOCs and Serous Borderline Tumors, SBLTs, in contrast with their rarity in HGSOC. Such finding, together with the recurrent observation of focus of LGSOC associated with areas of SBLT in the same lesion, led to abandon the traditional histology classification, defining three types of serous carcinomas, in favor of a new dualistic grading system which recognizes only LG and HG carcinomas corresponding to distinct tumorigenesis pathways, the former based on KRAS/BRAF mutations and alteration of the MAP/ERK signaling, the latter characterized by early genetic instability and wild type status of KRAS and BRAF. LGSOC shows favorable overall survival, compared to general ovarian cancer population, but worrying resistance to conventional treatments. MEK inhibitors are emerging as active agents and may well represent an effective therapeutic strategy in the near future.

  4. Farletuzumab for NSCLC: exploiting a well-known metabolic pathway for a new therapeutic strategy.

    PubMed

    Bronte, Giuseppe; Lo Vullo, Francesca; Pernice, Gianfranco; Galvano, Antonio; Fiorentino, Eugenio; Cicero, Giuseppe; Bazan, Viviana; Rolfo, Christian; Russo, Antonio

    2015-01-01

    Introduction: The therapeutic options for NSCLC are limited barring targeted drugs, such as EGFR tyrosine-kinase inhibitors and anaplastic lymphoma kinase inhibitors, for patients bearing oncogenic mutations. Platinum-based chemotherapy remains the best strategy for most patients. New targeted drugs, including mAbs and small molecules, are currently under clinical investigation for treating NSCLC patients. Areas covered: The authors of this article focus on farletuzumab , a mAb targeting folate receptor, which has been studied in ovarian cancer and various other malignancies. In this review, the authors review its potential as therapy for NSCLC, because of the biological rationale provided by the expression of folate receptor α in most of lung adenocarcinoma. The authors provide details of farletuzumab's mechanism of action and discuss the results from completed Phase I and Phase II clinical trials. They also highlight ongoing trials. Expert opinion: There are an increasing number of treatment options for NSCLC and it is hoped that farletuzumab could be added to them. That being said, further evidence for its use with NSCLC patients is still needed. It could have a synergic effect with pemetrexed, because these two drugs have a similar target, namely the folate pathway. This combined action could provide an improved efficacy, although there are some concerns about increased toxicity. However, the authors do note that the combination of farletuzumab with other cytotoxic drugs has not been shown to increase toxicity alone.

  5. Extreme protraction for low-grade gliomas: theoretical proof of concept of a novel therapeutical strategy.

    PubMed

    Pérez-García, Víctor M; Pérez-Romasanta, Luis A

    2016-09-01

    Grade II gliomas are slowly growing primary brain tumours that affect mostly young patients and become fatal after a variable time period. Current clinical handling includes surgery as first-line treatment. Cytotoxic therapies (radiotherapy RT or chemotherapy QT) are used initially only for patients having a bad prognosis. Therapies are administered following the 'maximum dose in minimum time' principle, which is the same schedule used for high-grade brain tumours. Using mathematical models describing the growth of these tumours in response to radiotherapy, we find that an extreme protraction therapeutical strategy, i.e. enlarging substantially the time interval between RT fractions, may lead to better tumour control. Explicit formulas are found providing the optimal spacing between doses in a very good agreement with the simulations of the full 3D mathematical model approximating the tumour spatiotemporal dynamics. This idea, although breaking the well-established paradigm, has biological meaning since, in these slowly growing tumours, it may be more favourable to treat the tumour as the tumour cells leave the quiescent compartment and move into the cell cycle.

  6. Cardiovascular pleiotropic actions of DPP-4 inhibitors: a step at the cutting edge in understanding their additional therapeutic potentials.

    PubMed

    Balakumar, Pitchai; Dhanaraj, Sokkalingam A

    2013-09-01

    Dipeptidyl peptidase 4 (DPP-4) is a serine protease enzyme expressed widely in many tissues, including the cardiovascular system. The incretin hormones such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from the small intestine into the vasculature during a meal, and these incretins have a potential to release insulin from pancreatic beta cells of islets of Langerhans, affording a glucose-lowering action. However, both incretins are hurriedly degraded by the DPP-4. Inhibitors of DPP-4, therefore, enhance the bioavailability of GLP-1 and GIP, and thus have been approved for better glycemic management in patients afflicted with type 2 diabetes mellitus (T2DM). Five different DPP-4 inhibitors, often called as 'gliptins', namely sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin have been approved hitherto for clinical use. These drugs are used along with diet and exercise to lower blood sugar in diabetic subjects. T2DM is intricately related with an increased risk of cardiovascular disease. Growing body of evidence suggests that gliptins, in addition to their persuasive anti-diabetic action, have a beneficial pleiotropic action on the heart and vessels. In view of the fact of cardiovascular disease susceptibility of patients afflicted with T2DM, gliptins might offer additional therapeutic benefits in treating diabetic cardiovascular complications. Exploring further the cardiovascular pleiotropic potentials of gliptins might open a panorama in impeccably employing these agents for the dual management of T2DM and T2DM-associated perilous cardiovascular complications. This review will shed lights on the newly identified beneficial pleiotropic actions of gliptins on the cardiovascular system.

  7. Decomposition strategies in the problems of simulation of additive laser technology processes

    NASA Astrophysics Data System (ADS)

    Khomenko, M. D.; Dubrov, A. V.; Mirzade, F. Kh.

    2016-11-01

    The development of additive technologies and their application in industry is associated with the possibility of predicting the final properties of a crystallized added material. This paper describes the problem characterized by a dynamic and spatially nonuniform computational complexity, which, in the case of uniform decomposition of a computational domain, leads to an unbalanced load on computational cores. The strategy of partitioning of the computational domain is used, which minimizes the CPU time losses in the serial computations of the additive technological process. The chosen strategy is optimal from the standpoint of a priori unknown dynamic computational load distribution. The scaling of the computational problem on the cluster of the Institute on Laser and Information Technologies (RAS) that uses the InfiniBand interconnect is determined. The use of the parallel code with optimal decomposition made it possible to significantly reduce the computational time (down to several hours), which is important in the context of development of the software package for support of engineering activity in the field of additive technology.

  8. Muscle Wasting in Hemodialysis Patients: New Therapeutic Strategies for Resolving an Old Problem

    PubMed Central

    Chen, Chun-Ting; Lin, Shih-Hua; Chen, Jin-Shuen

    2013-01-01

    Muscle wasting has long been recognized as a major clinical problem in hemodialysis (HD) patients. In addition to its impact on quality of life, muscle wasting has been proven to be associated with increased mortality rates. Identification of the molecular mechanisms underlying muscle wasting in HD patients provides opportunities to resolve this clinical problem. Several signaling pathways and humeral factors have been reported to be involved in the pathogenic mechanisms of muscle wasting in HD patients, including ubiquitin-proteasome system, caspase-3, insulin/insulin-like growth factor-1 (IGF-1) signaling, endogenous glucocorticoids, metabolic acidosis, inflammation, and sex hormones. Targeting the aforementioned crucial signaling and molecules to suppress protein degradation and augment muscle strength has been extensively investigated in HD patients. In addition to exercise training, administration of megestrol acetate has been proven to be effective in improving anorexia and muscle wasting in HD patients. Correction of metabolic acidosis through sodium bicarbonate supplements can decrease muscle protein degradation and hormone therapy with nandrolone decanoate has been reported to increase muscle mass. Although thiazolidinedione has been shown to improve insulin sensitivity, its role in the treatment of muscle wasting remains unclear. This review paper focuses on the molecular pathways and potential new therapeutic approaches to muscle wasting in HD patients. PMID:24382946

  9. Immunology and breast cancer: toward a new way of understanding breast cancer and developing novel therapeutic strategies.

    PubMed

    Gingras, Isabelle; Azim, Hatem A; Ignatiadis, Michail; Sotiriou, Christos

    2015-06-01

    Every cancer triggers an immune response that constitutes an important first-line protection against cancer progression. In breast cancer, there is an increasing awareness of the relationship between the immune system and tumor evolution. The tumor microenvironment is composed of a variety of immune cells that can control or arrest malignant progression. Chemotherapy and targeted therapy have been shown to modulate this immune microenvironment. Recently, tumor-infiltrating lymphocytes have emerged as a predictive and prognostic biomarker in early breast cancer. In addition, immune gene expression signatures have been shown to be associated with prognosis in triple-negative and human epidermal growth factor receptor 2-positive breast cancer. Such findings have increased interest in the development of immunotherapeutic agents for breast cancer, and multiple clinical trials of anticancer vaccines and immune checkpoint inhibitors are ongoing. In this review, we summarize what is known about the relationship between immunity and breast carcinoma, explore the relevance of this information to the clinical and research settings, and give a portrait of new therapeutic strategies using immunotherapy in breast cancer.

  10. Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    PubMed Central

    Geiselhart, Anja; Lier, Amelie; Walter, Dagmar; Milsom, Michael D.

    2012-01-01

    Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients. PMID:22675615

  11. Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC

    PubMed Central

    Shi, Bowen; Zhang, Lianmin; Qian, Dong; Li, Chenguang; Zhang, Hua; Wang, Shengguang; Zhu, Jinfang; Gao, Liuwei; Zhang, Qiang; Jia, Bin; Hao, Ligang; Wang, Changli; Zhang, Bin

    2017-01-01

    As shortened telomeres inhibit tumor formation and prolong life span in a KrasG12D mouse lung cancer model, we investigated the implications of telomerase in Kras-mutant NSCLC. We found that Kras mutations increased TERT (telomerase reverse transcriptase) mRNA expression and telomerase activity and telomere length in both immortalized bronchial epithelial cells (BEAS-2B) and lung adenocarcinoma cells (Calu-3). MEK inhibition led to reduced TERT expression and telomerase activity. Furthermore, telomerase inhibitor BIBR1532 shortened telomere length and inhibited mutant Kras-induced long-term proliferation, colony formation and migration capabilities of BEAS-2B and Calu-3 cells. Importantly, BIBR1532 sensitized oncogenic Kras expressing Calu-3 cells to chemotherapeutic agents. The Calu-3-KrasG12D xenograft mouse model confirmed that BIBR1532 enhanced the antitumor efficacy of paclitaxel in vivo. In addition, higher TERT expression was seen in Kras-mutant NSCLC than that with wild-type Kras. Our data suggest that Kras mutations increase telomerase activity and telomere length by activating the RAS/MEK pathway, which contributes to an aggressive phenotype of NSCLC. Kras mutations-induced lung tumorigenesis and chemoresistance are attenuated by telomerase inhibition. Targeting telomerase/telomere may be a promising therapeutic strategy for patients with Kras-mutant NSCLC. PMID:27329725

  12. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions.

    PubMed

    Isaac, M E; Harmand, J M; Drevon, J J

    2011-05-15

    There remains conflicting evidence on the relationship between P supply and biological N(2)-fixation rates, particularly N(2)-fixing plant adaptive strategies under P limitation. This is important, as edaphic conditions inherent to many economically and ecologically important semi-arid leguminous tree species, such as Acacia senegal, are P deficient. Our research objective was to verify N acquisition strategies under phosphorus limitations using isotopic techniques. Acacia senegal var. senegal was cultivated in sand culture with three levels of exponentially supplied phosphorus [low (200 μmol of P seedling(-1) over 12 weeks), mid (400 μmol) and high (600 μmol)] to achieve steady-state nutrition over the growth period. Uniform additions of N were also supplied. Plant growth and nutrition were evaluated. Seedlings exhibited significantly greater total biomass under high P supply compared to low P supply. Both P and N content significantly increased with increasing P supply. Similarly, N derived from solution increased with elevated P availability. However, both the number of nodules and the N derived from atmosphere, determined by the (15)N natural abundance method, did not increase along the P gradient. Phosphorus stimulated growth and increased mineral N uptake from solution without affecting the amount of N derived from the atmosphere. We conclude that, under non-limiting N conditions, A. senegal N acquisition strategies change with P supply, with less reliance on N(2)-fixation when the rhizosphere achieves a sufficient N uptake zone.

  13. Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy

    NASA Astrophysics Data System (ADS)

    García-San-Miguel, D.; Lerma, J. L.

    2013-05-01

    Terrestrial laser scanning systems are steadily increasing in many fields of engineering, geoscience and architecture namely for fast data acquisition, 3-D modeling and mapping. Similarly to other precision instruments, these systems provide measurements with implicit systematic errors. Systematic errors are physically corrected by manufacturers before delivery and sporadically afterwards. The approach presented herein tackles the raw observables acquired by a laser scanner with additional parameters, a set of geometric calibration parameters that model the systematic error of the instrument to achieve the most accurate point cloud outputs, improving eventual workflow owing to less filtering, better registration and best 3D modeling. This paper presents a fully automatic strategy to calibrate geometrically terrestrial laser scanning datasets. The strategy is tested with multiple scans taken by a FARO FOCUS 3D, a phase-based terrestrial laser scanner. A calibration with local parameters for datasets is undertaken to improve the raw observables and a weighted mathematical index is proposed to select the most significant set of additional parameters. The improvements achieved are exposed, highlighting the necessity of correcting the terrestrial laser scanner before handling multiple data sets.

  14. Early treatment with addition of low dose prednisolone to methotrexate improves therapeutic outcome in severe psoriatic arthritis.

    PubMed

    Mahajan, Vikram K; Sharma, Anju Lath; Chauhan, Pushpinder S; Mehta, Karaninder S; Sharma, Nand Lal

    2013-05-01

    Psoriatic arthritis (PsA) is increasingly being recognized to cause progressive joint damage and disability. PsA unresponsive to non-steroidal anti-inflammatory drugs (NSAIDs), the conventional first-line choice of treatment, is usually managed with disease-modifying antirheumatic drugs (DMARDs) especially methotrexate. An 18-year-old HIV-negative male had progressively severe PsA of 4-month duration that was nearly confining him to a wheel chair. He did not respond to multiple NSAIDs, alone or in combination with methotrexate (15 mg/week), given for 4 weeks. Addition of prednisolone (10 mg on alternate days) controlled his symptoms within a week. The NSAIDs could be withdrawn after 4 weeks as the treatment progressed. The doses were tapered for methotrexate (5 mg/week) and prednisolone (2.5 mg on alternate days) every 8 weekly subsequently during 15 months of follow-up without recurrence/deformities or drug toxicity. For years, the use of corticosteroids in psoriasis has been criticized for their propensity to exacerbate the skin disease on withdrawal. However, monitored use of corticosteroids, even in low doses, combined with DMARDs may be a good therapeutic option in early stage of the PsA rather than 'steroid rescue' later. This will help in early control of joint inflammation, prevent joint damage and maintain long-term good functional capacity and quality of life. This may be useful when the cost or availability of biologics precludes their use. However, we discourage the use of corticosteroids as monotherapy.

  15. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments

    PubMed Central

    Mouriño, Viviana; Cattalini, Juan Pablo; Boccaccini, Aldo R.

    2012-01-01

    This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted. PMID:22158843

  16. Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies

    PubMed Central

    Braida, D; Guerini, F R; Ponzoni, L; Corradini, I; De Astis, S; Pattini, L; Bolognesi, E; Benfante, R; Fornasari, D; Chiappedi, M; Ghezzo, A; Clerici, M; Matteoli, M; Sala, M

    2015-01-01

    Synaptosomal-associated protein of 25 kDa (SNAP-25) is involved in different neuropsychiatric disorders, including schizophrenia and attention-deficit/hyperactivity disorder. Consistently, SNAP-25 polymorphisms in humans are associated with hyperactivity and/or with low cognitive scores. We analysed five SNAP-25 gene polymorphisms (rs363050, rs363039, rs363043, rs3746544 and rs1051312) in 46 autistic children trying to correlate them with Childhood Autism Rating Scale and electroencephalogram (EEG) abnormalities. The functional effects of rs363050 single-nucleotide polymorphism (SNP) on the gene transcriptional activity, by means of the luciferase reporter gene, were evaluated. To investigate the functional consequences that SNAP-25 reduction may have in children, the behaviour and EEG of SNAP-25+/− adolescent mice (SNAP-25+/+) were studied. Significant association of SNAP-25 polymorphism with decreasing cognitive scores was observed. Analysis of transcriptional activity revealed that SNP rs363050 encompasses a regulatory element, leading to protein expression decrease. Reduction of SNAP-25 levels in adolescent mice was associated with hyperactivity, cognitive and social impairment and an abnormal EEG, characterized by the occurrence of frequent spikes. Both EEG abnormalities and behavioural deficits were rescued by repeated exposure for 21 days to sodium salt valproate (VLP). A partial recovery of SNAP-25 expression content in SNAP-25+/− hippocampi was also observed by means of western blotting. A reduced expression of SNAP-25 is responsible for the cognitive deficits in children affected by autism spectrum disorders, as presumably occurring in the presence of rs363050(G) allele, and for behavioural and EEG alterations in adolescent mice. VLP treatment could result in novel therapeutic strategies. PMID:25629685

  17. Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies.

    PubMed

    Braida, D; Guerini, F R; Ponzoni, L; Corradini, I; De Astis, S; Pattini, L; Bolognesi, E; Benfante, R; Fornasari, D; Chiappedi, M; Ghezzo, A; Clerici, M; Matteoli, M; Sala, M

    2015-01-27

    Synaptosomal-associated protein of 25 kDa (SNAP-25) is involved in different neuropsychiatric disorders, including schizophrenia and attention-deficit/hyperactivity disorder. Consistently, SNAP-25 polymorphisms in humans are associated with hyperactivity and/or with low cognitive scores. We analysed five SNAP-25 gene polymorphisms (rs363050, rs363039, rs363043, rs3746544 and rs1051312) in 46 autistic children trying to correlate them with Childhood Autism Rating Scale and electroencephalogram (EEG) abnormalities. The functional effects of rs363050 single-nucleotide polymorphism (SNP) on the gene transcriptional activity, by means of the luciferase reporter gene, were evaluated. To investigate the functional consequences that SNAP-25 reduction may have in children, the behaviour and EEG of SNAP-25(+/-) adolescent mice (SNAP-25(+/+)) were studied. Significant association of SNAP-25 polymorphism with decreasing cognitive scores was observed. Analysis of transcriptional activity revealed that SNP rs363050 encompasses a regulatory element, leading to protein expression decrease. Reduction of SNAP-25 levels in adolescent mice was associated with hyperactivity, cognitive and social impairment and an abnormal EEG, characterized by the occurrence of frequent spikes. Both EEG abnormalities and behavioural deficits were rescued by repeated exposure for 21 days to sodium salt valproate (VLP). A partial recovery of SNAP-25 expression content in SNAP-25(+/-) hippocampi was also observed by means of western blotting. A reduced expression of SNAP-25 is responsible for the cognitive deficits in children affected by autism spectrum disorders, as presumably occurring in the presence of rs363050(G) allele, and for behavioural and EEG alterations in adolescent mice. VLP treatment could result in novel therapeutic strategies.

  18. Gastric ESD may be useful as accurate staging and decision of future therapeutic strategy

    PubMed Central

    Fujimoto, Ai; Goto, Osamu; Nishizawa, Toshihiro; Ochiai, Yasutoshi; Horii, Joichiro; Maehata, Tadateru; Akimoto, Teppei; Kinoshita, Satoshi; Sagara, Seiji; Sasaki, Motoki; Uraoka, Toshio; Yahagi, Naohisa

    2017-01-01

    Background and study aims We sometimes perform gastric endoscopic submucosal dissection (ESD) for total pathologic diagnosis when preoperative diagnosis is difficult. In the present study we analyzed the treatment outcomes and adverse events of diagnostic ESD for early gastric cancer (EGC). Patients and methods We conducted a retrospective analysis of 18 consecutive cases of EGC in 18 patients with a suspected out-of-indication diagnosis who underwent diagnostic ESD, between June 2010 and November 2014. The following parameters were examined: the average length of the longer axis of the lesion; the procedure time; the rates of en bloc resection (ER), complete en bloc resection (CER), and curative resection (CR) as treatment outcomes; and the rates of perforation, delayed bleeding, aspiration pneumonia, disease-related death, and emergency surgery as adverse events. Results The treatment outcomes were as follows: average length of the longer axis of the lesion, 27.4 ± 10.0 mm; procedure time, 87.0 ± 43.1 minutes; ER rate, 18/18 (100.0 %); CER rate, 13/18 (72.2 %); CR rate, 4/18 (22.2 %). CR rate was achieved 37.5 % for the lesions which preoperative diagnosis was more than 30 mm (> 30 mm) in diameter differentiated type with mucosal layer/submucosal layer 1 invasion and ulceration positive. The adverse events (AEs) were perforation in 1 of 18 (5.5 %) patients and delayed bleeding in 1 of 18 (5.5 %). There were no other AEs. Conclusions Diagnostic ESD may be acceptable for future therapeutic strategy when we unconfirmed the pre ESD diagnosis because of lower rate of adverse events and high rate of ER. PMID:28210705

  19. [A new strategy for preventive and functional therapeutic methods for dementia--approach using natural products].

    PubMed

    Ohizumi, Yasushi

    2015-01-01

    Alzheimer's disease (AD) has become a serious social problem in Japan. However, effective preventive and fundamental therapeutic methods for AD have not yet been developed. Using a new strategy in the course of our survey of numerous natural resouces having neurotrophic activity, we isolated a variety of active constituents and proved their pharmacological properties. As a result, we successfully found nobiletin, a compound with anti-dementia activity that comes from citrus peels. Also, we have demonstrated that nobiletin ameliorates cognitive impairment in several dementia model animals such as chronically amyloid β(Aβ) infused rats, amyloid precursor protein transgenic (APPTg) mice, olfactory-bulbectomized (OBX) mice, N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801)-treated mice, senescence-accelated mice and bilaterial common carotid arteries occlusion mice. In a APPTg mouse of AD, nobiletin greatly improved memory impairment, and this was accompanied by a marked decrease in Aβ deposition. Also, in OBX mice memory impairment was markedly recoverd by nobiletin, accompanied by improvement of a decrease indensity of cholinergic neurons. Interestingly, nobiletin improves age-related congnitive impairment and decreased hyperphosphorylation of tau as well as oxidative stress in senescence-accelerated mice. In cultured cells, nobiletin reversed the Aβ-induced inhibition of glutamate-induced increases in cAMP response element binding protein (CREB) phosphorylation and modulated gen expression of thioredoxin-interacting protein and NMDA resceptor subunits. These results suggest that nobiletin prevents memory impairment and exhibits a protecting action against neurodgeneration in AD model animals. Nobiletin and citrus peels thus have potential as functional foods for prevention of dementia.

  20. Updated therapeutic strategy for adult low-grade glioma stratified by resection and tumor subtype.

    PubMed

    Nitta, Masayuki; Muragaki, Yoshihiro; Maruyama, Takashi; Iseki, Hiroshi; Ikuta, Soko; Konishi, Yoshiyuki; Saito, Taichi; Tamura, Manabu; Chernov, Michael; Watanabe, Atsushi; Okamoto, Saori; Maebayashi, Katsuya; Mitsuhashi, Norio; Okada, Yoshikazu

    2013-01-01

    The importance of surgical resection for patients with supratentorial low-grade glioma (LGG) remains controversial. This retrospective study of patients (n = 153) treated between 2000 to 2010 at a single institution assessed whether increasing the extent of resection (EOR) was associated with improved progression-free survival (PFS) and overall survival (OS). Histological subtypes of World Health Organization grade II tumors were as follows: diffuse astrocytoma in 49 patients (32.0%), oligoastrocytoma in 45 patients (29.4%), and oligodendroglioma in 59 patients (38.6%). Median pre- and postoperative tumor volumes and median EOR were 29.0 cm(3) (range 0.7-162 cm(3)) and 1.7 cm(3) (range 0-135.7 cm(3)) and 95%, respectively. Five- and 10-year OS for all LGG patients were 95.1% and 85.4%, respectively. Eight-year OS for diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma were 70.7%, 91.2%, and 98.3%, respectively. Five-year PFS for diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma were 42.6%, 71.3%, and 62.7%, respectively. Patients were divided into two groups by EOR ≥90% and <90%, and OS and PFS were analyzed. Both OS and PFS were significantly longer in patients with ≥90% EOR. Increased EOR resulted in better PFS for diffuse astrocytoma but not for oligodendroglioma. Multivariate analysis identified age and EOR as parameters significantly associated with OS. The only parameter associated with PFS was EOR. Based on these findings, we established updated therapeutic strategies for LGG. If surgery resulted in EOR <90%, patients with astrocytoma will require second-look surgery, whereas patients with oligodendroglioma or oligoastrocytoma, which are sensitive to chemotherapy, will be treated with chemotherapy.

  1. Recent Progress in Therapeutic Treatments and Screening Strategies for the Prevention and Treatment of HPV-Associated Head and Neck Cancer.

    PubMed

    Whang, Sonia N; Filippova, Maria; Duerksen-Hughes, Penelope

    2015-09-17

    The rise in human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) has elicited significant interest in the role of high-risk HPV in tumorigenesis. Because patients with HPV-positive HNSCC have better prognoses than do their HPV-negative counterparts, current therapeutic strategies for HPV⁺ HNSCC are increasingly considered to be overly aggressive, highlighting a need for customized treatment guidelines for this cohort. Additional issues include the unmet need for a reliable screening strategy for HNSCC, as well as the ongoing assessment of the efficacy of prophylactic vaccines for the prevention of HPV infections in the head and neck regions. This review also outlines a number of emerging prospects for therapeutic vaccines, as well as for targeted, molecular-based therapies for HPV-associated head and neck cancers. Overall, the future for developing novel and effective therapeutic agents for HPV-associated head and neck tumors is promising; continued progress is critical in order to meet the challenges posed by the growing epidemic.

  2. Cost-effectiveness of competing diagnostic-therapeutic strategies for visceral leishmaniasis.

    PubMed Central

    Boelaert, M.; Lynen, L.; Desjeux, P.; Van der Stuyft, P.

    1999-01-01

    Reported are the results of a formal decision analysis which facilitated the choice of the most appropriate test-treatment strategy for visceral leishmaniasis in areas where the disease is endemic. The following strategies were compared: treatment of all suspects (strategy A); testing by means of parasitological investigation followed by treatment of positives (strategy B); two-step testing by means of the direct agglutination test (DAT) followed by treatment of patients with high titres as well as those with parasitologically confirmed borderline titres (strategy C); and DAT followed by treatment of positives (strategy D). The results for each strategy were expressed as costs in US$ per death averted. The effectiveness of strategies C and D was close to that of strategy A and far better than that of strategy B. The cost-effectiveness ratio for strategies C and D (US$ 465 per death averted) was not substantially higher than that of testing by means of parasitological investigation followed by treatment of positives (strategy B), which was the most cost-effective strategy at US$448 per death averted. At current prices of antimonial drugs, the cost of test-treatment strategies depends more on the cost of treatment than on that of testing. The use of a sensitive serological test such as the DAT is recommended as the basis of test-treatment strategies for visceral leishmaniasis in areas where the disease is endemic. PMID:10516788

  3. Chemical Conjugation of Evans Blue Derivative: A Strategy to Develop Long-Acting Therapeutics through Albumin Binding

    PubMed Central

    Chen, Haojun; Wang, Guohao; Lang, Lixin; Jacobson, Orit; Kiesewetter, Dale O.; Liu, Yi; Ma, Ying; Zhang, Xianzhong; Wu, Hua; Zhu, Lei; Niu, Gang; Chen, Xiaoyuan

    2016-01-01

    The efficacy of therapeutic drugs is highly dependent on their optimal in vivo pharmacokinetics. Albumin conjugation is considered to be one of the most effective means of protracting the short lifespan of peptides and proteins. In this study, we proposed a novel platform for developing long lasting therapeutics by conjugating a small molecular albumin binding moiety, truncated Evans blue, to either peptides or proteins. Using the anti-diabetic peptide drug Exendin-4 as a model peptide, we synthesized a new long-acting Exendin-4 derivative (denoted as Abextide). Through complexation with albumin in situ, the biological half-life of Abextide was significantly extended. The hypoglycemic effect of Abextide was also improved remarkably over Exendin-4. Thus, Abextide has considerable potential to treat type 2 diabetes. This strategy as a general technology platform can be applied to other small molecules and biologics for the development of long-acting therapeutic drugs. PMID:26877782

  4. Small-Nucleic-Acid-Based Therapeutic Strategy Targeting the Transcription Factors Regulating the Vascular Inflammation, Remodeling and Fibrosis in Atherosclerosis

    PubMed Central

    Youn, Sung Won; Park, Kwan-Kyu

    2015-01-01

    Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis. PMID:26006249

  5. Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases

    PubMed Central

    Nikfarjam, Bahareh Abd; Adineh, Mohtaram; Hajiali, Farid

    2017-01-01

    its inhibiting NO and TNF-α productions, as well as MPO activity, in activated human neutrophils. Treatment with rutin may be considered as a therapeutic strategy for neutrophil-mediated inflammatory/ autoimmune diseases. PMID:28392963

  6. Human organ-on-a-chip BioMEMS devices for testing new diagnostic and therapeutic strategies

    NASA Astrophysics Data System (ADS)

    Leary, James F.; Key, Jaehong; Vidi, Pierre-Alexandre; Cooper, Christy L.; Kole, Ayeeshik; Reece, Lisa M.; Lelièvre, Sophie A.

    2013-03-01

    MEMS human "organs-on-a-chip" can be used to create model human organ systems for developing new diagnostic and therapeutic strategies. They represent a promising new strategy for rapid testing of new diagnostic and therapeutic approaches without the need for involving risks to human subjects. We are developing multicomponent, superparamagnetic and fluorescent nanoparticles as X-ray and MRI contrast agents for noninvasive multimodal imaging and for antibody- or peptide-targeted drug delivery to tumor and precancerous cells inside these artificial organ MEMS devices. Magnetic fields can be used to move the nanoparticles "upstream" to find their target cells in an organs-on-achip model of human ductal breast cancer. Theoretically, unbound nanoparticles can then be removed by reversing the magnetic field to give a greatly enhanced image of tumor cells within these artificial organ structures. Using branched PDMS microchannels and 3D tissue engineering of normal and malignant human breast cancer cells inside those MEMS channels, we can mimic the early stages of human ductal breast cancer with the goal to improve the sensitivity and resolution of mammography and MRI of very small tumors and test new strategies for treatments. Nanomedical systems can easily be imaged by multicolor confocal microscopy inside the artificial organs to test targeting and therapeutic responses including the differential viability of normal and tumor cells during treatments. Currently we are using 2-dimensional MEMS structures, but these studies can be extended to more complex 3D structures using new 3D printing technologies.

  7. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies.

    PubMed

    Manna, Prasenjit; Jain, Sushil K

    2015-12-01

    Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in

  8. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies

    PubMed Central

    Manna, Prasenjit

    2015-01-01

    Abstract Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue

  9. Current and Emerging Therapeutic Strategies for the Treatment of Meibomian Gland Dysfunction (MGD).

    PubMed

    Thode, Adam R; Latkany, Robert A

    2015-07-01

    Meibomian gland (MG) dysfunction (MGD) is a multifactorial, chronic condition of the eyelids, leading to eye irritation, inflammation and ocular surface disease. Initial conservative therapy often includes a combination of warm compresses in addition to baby shampoo or eyelid wipes. The practice of lid hygiene dates back to the 1950s, when selenium sulfide-based shampoo was first used to treat seborrhoeic dermatitis of the eyelids. Today, tear-free baby shampoo has replaced dandruff shampoo for MGD treatment and offers symptom relief in selected patients. However, many will not achieve significant improvement on this therapy alone; some may even develop an allergy to the added dyes and fragrances in these products. Other manual and mechanical techniques to treat MGD include MG expression and massage, MG probing and LipiFlow(®). While potentially effective in patients with moderate MGD, these procedures are more invasive and may be cost prohibitive. Pharmacological treatments are another course of action. Supplements rich in omega-3 fatty acids have been shown to improve both MGD and dry eye symptoms. Tea tree oil, specifically the terpenin-4-ol component, is especially effective in treating MGD associated with Demodex mites. Topical antibiotics, such as azithromycin, or systemic antibiotics, such as doxycycline or azithromycin, can improve MGD symptoms both by altering the ocular flora and through anti-inflammatory mechanisms. Addressing and treating concurrent ocular allergy is integral to symptom management. Topical N-acetylcysteine and topical cyclosporine can both be effective therapeutic adjuncts in patients with concurrent dry eye. A short course of topical steroid may be used in some severe cases, with monitoring for steroid-induced glaucoma and cataracts. While the standard method to treat MGD is simply warm compresses and baby shampoo, a more tailored approach to address the multiple aetiologies of the disease is suggested.

  10. Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenesis in the fight against immune-mediated bone and joint diseases.

    PubMed

    Sipos, W; Pietschmann, P; Rauner, M

    2008-01-01

    For many bone and joint diseases in humans, including postmenopausal osteoporosis, rheumatoid arthritis, and ankylosing spondylitis, an immune-mediated etiology has either been proven or is considered as a co-factor in pathogenesis. The identification of the receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG)-interplay and the in-depth characterization of the signaling pathways induced upon RANK activation, including molecules such as TNF receptor-associated factor 6 (TRAF6), nuclear factor-kappaB (NF-kappaB), and signal transducer and activator of T cells (STAT)-3, now promise to give the opportunity to target osteoclastogenesis specifically. Additionally, many byways influencing osteoclastogenesis have been elucidated, thus giving rise to additional therapeutic approaches. These are based mainly upon the effects of diverse cytokines on osteoclast differentiation with interleukin (IL)-17 and interferone (IFN)-gamma being most prominent at the moment. The same applies for the recently established signaling pathways in osteoblastogenesis, which have attracted much attention in the recent years. In this respect, much attention has been attributed towards bone morphogenetic proteins (BMPs) and the Wnt signaling cascade. In this review, an overview on the key molecules, which (could) serve as promising targets for novel therapeutic interventions with the aim of enhancing osteoblast formation or suppressing osteoclast development, is given. Further on, antibody-based therapeutical schemes as well as methodologically novel, albeit predominantly theoretical at the moment, strategies in the fight against immune-mediated osteopathologies are discussed.

  11. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

    PubMed Central

    Oh, Doo-Byoung

    2015-01-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444] PMID:25999178

  12. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    PubMed

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  13. Additional Professional Induction Strategy (APIS): Education Commons, a Strategy to Support Transition to the World of Work

    ERIC Educational Resources Information Center

    Henderson, Robyn; Noble, Karen; Cross, Kathleen

    2013-01-01

    This paper describes a strategy, designed by a faculty of education in a regional Australian university, to induct pre-service educators into the education profession. It then focuses on one component of the strategy, an initiative called Education Commons. This initiative uses a model of critical reflection to engage pre-service educators in…

  14. [Therapeutic strategy for recurrent gastric cancer and efforts aimed at finding a cure].

    PubMed

    Asayama, Masako; Yamada-Murano, Toko; Hara, Hiroki; Ooki, Akira; Yoshii, Takako; Yamaguchi, Kensei

    2013-08-01

    Recurrent gastric cancer, in general, is an incurable systemic disease for which the standard of care is systemic chemotherapy. Combination treatment with fluoropyrimidine plus platinum and the addition of trastuzumab for patients with human epidermal growth factor receptor 2(HER2)-positive tumors are widely accepted standard regimens. Fluoropyrimidines include 5-fluorouracil(5-FU), S-1, and capecitabine. There has been an accumulation of data showing the non-inferiority of oxaliplatin to cisplatin. Moreover, the importance of salvage chemotherapy has also been proven in prospective studies. However, retrospective analyses still indicate that the 5-year survival rates associated with metastatic gastric cancer are only a few percent with chemotherapy. To improve survival, newer triplet regimens, such as a combination of docetaxel, cisplatin, and S-1(DCS)and modified folinic acid, 5-FU, oxaliplatin, and irinotecan(modified FOLFOXIRI), are now under clinical investigation. Despite the limitations of retrospective data, surgical resection for gastric cancer liver metastases appears to be beneficial in carefully selected patients. Currently, the implication of surgical resection for metastatic gastric cancer is being evaluated in clinical trials. These efforts will result in further clinical advances with tailored treatment strategies.

  15. Novel Therapeutic Strategies in the Management of Non-Variceal Upper Gastrointestinal Bleeding

    PubMed Central

    Garber, Ari; Jang, Sunguk

    2016-01-01

    Non-variceal upper gastrointestinal bleeding, the most common etiology of which is peptic ulcer disease, remains a persistent challenge despite a reduction in both its incidence and mortality. Both pharmacologic and endoscopic techniques have been developed to achieve hemostasis, with varying degrees of success. Among the pharmacologic therapies, proton pump inhibitors remain the mainstay of treatment, as they reduce the risk of rebleeding and requirement for recurrent endoscopic evaluation. Tranexamic acid, a derivative of the amino acid lysine, is an antifibrinolytic agent whose role requires further investigation before application. Endoscopically delivered pharmacotherapy, including Hemospray (Cook Medical), EndoClot (EndoClot Plus Inc.), and Ankaferd Blood Stopper (Ankaferd Health Products), in addition to standard epinephrine, show promise in this regard, although their mechanisms of action require further investigation. Non-pharmacologic endoscopic techniques use one of the following two methods to achieve hemostasis: ablation or mechanical tamponade, which may involve using endoscopic clips, cautery, argon plasma coagulation, over-the-scope clipping devices, radiofrequency ablation, and cryotherapy. This review aimed to highlight these novel and fundamental hemostatic strategies and the research supporting their efficacy. PMID:27744662

  16. Epstein-Barr virus-encoded EBNA1 and ZEBRA: targets for therapeutic strategies against EBV-carrying cancers.

    PubMed

    Daskalogianni, Chrysoula; Pyndiah, Slovénie; Apcher, Sébastien; Mazars, Anne; Manoury, Bénédicte; Ammari, Nisrine; Nylander, Karin; Voisset, Cécile; Blondel, Marc; Fåhraeus, Robin

    2015-01-01

    The EBV-encoded EBNA1 was first discovered 40 years ago, approximately 10 years after the presence of EBV had been demonstrated in Burkitt's lymphoma cells. It took another 10 years before the functions of EBNA1 in maintaining the viral genome were revealed, and it has since been shown to be an essential viral factor expressed in all EBV-carrying cells. Apart from serving to maintain the viral episome and to control viral replication and gene expression, EBNA1 also harbours a cis-acting mechanism that allows virus-carrying host cells to evade the immune system. This relates to a particular glycine-alanine repeat (GAr) within EBNA1 that has the capacity to suppress antigen presentation to the major histocompatibility complex (MHC) class I pathway. We discuss the role of the GAr sequence at the level of mRNA translation initiation, rather than at the protein level, as at least part of the mechanism to avoid MHC presentation. Interfering with this mechanism has become the focus of the development of immune-based therapies against EBV-carrying cancers, and some lead compounds that affect translation of GAr-carrying mRNAs have been identified. In addition, we describe the EBV-encoded ZEBRA factor and the switch from the latent to the lytic cycle as an alternative virus-specific target for treating EBV-carrying cancers. Understanding the molecular mechanisms of how EBNA1 and ZEBRA interfere with cellular pathways not only opens new therapeutic approaches but continues to reveal new cell-biological insights on the interplay between host and virus. This review is a tale of discoveries relating to how EBNA1 and ZEBRA have emerged as targets for specific cancer therapies against EBV-carrying diseases, and serves as an illustration of how mRNA translation can play roles in future immune-based strategies to target viral disease.

  17. Combination therapy of angiotensin II receptor blocker and calcium channel blocker exerts pleiotropic therapeutic effects in addition to blood pressure lowering: amlodipine and candesartan trial in Yokohama (ACTY).

    PubMed

    Maeda, Akinobu; Tamura, Kouichi; Kanaoka, Tomohiko; Ohsawa, Masato; Haku, Sona; Azushima, Kengo; Dejima, Toru; Wakui, Hiromichi; Yanagi, Mai; Okano, Yasuko; Fujikawa, Tetsuya; Toya, Yoshiyuki; Mizushima, Shunsaku; Tochikubo, Osamu; Umemura, Satoshi

    2012-01-01

    Recent guidelines recommend combination antihypertensive therapy to achieve the target blood pressure (BP) and to suppress target organ damage. This study aimed to examine the beneficial effects of combination therapy with candesartan and amlodipine on BP control and markers of target organ function in Japanese essential hypertensive patients (N = 20) who did not achieve the target BP level during the monotherapy period with either candesartan or amlodipine. After the monotherapy period, for patients already being treated with amlodipine, a once-daily 8 mg dose of candesartan was added on during the combination therapy period (angiotensin II receptor blocker [ARB] add-on group, N = 10), and a once-daily 5 mg dose of amlodipine was added on for those already being treated with candesartan (calcium channel blocker [CCB] add-on group, N = 10). Combination therapy with candesartan and amlodipine for 12 weeks significantly decreased clinic and home systolic blood pressure (SBP) and diastolic blood pressure (DBP). In addition, the combination therapy was able to significantly reduce urine albumin excretion without decrease in estimated glomerular filtration ratio and resulted in significant improvements in brachial-ankle pulse wave velocity, central SBP, and insulin sensitivity. Furthermore, the CCB add-on group showed a significantly greater decrease in clinic and home DBP than the ARB add-on group. The calcium channel blocker add-on group also exhibited better improvements in vascular functional parameters than the ARB add-on group. These results suggest that combination therapy with candesartan and amlodipine is an efficient therapeutic strategy for hypertension with pleiotropic benefits.

  18. State of the art of Ready-to-Use Therapeutic Food: a tool for nutraceuticals addition to foodstuff.

    PubMed

    Santini, Antonello; Novellino, Ettore; Armini, Vincenzo; Ritieni, Alberto

    2013-10-15

    Therapeutic foodstuff are a challenge for the use of food and functional food ingredients in the therapy of different pathologies. Ready-to-Use Therapeutic Food (RUTF) are a mixture of nutrients designed and primarily addressed to the therapy of the severe acute malnutrition. The main ingredients of the formulation are powdered milk, peanuts butter, vegetal oil, sugar, and a mix of vitamins, salts, and minerals. The potential of this food are the low percentage of free water and the high energy and nutritional density. The high cost of the powdered milk, and the food safety problems connected to the onset of toxigenic moulds on the peanuts butter, slowed down considerably the widespread and homogenous diffusion of this product. This paper presents the state of the art of RUTF, reviews the different proposed recipes, suggests some possible new formulations as an alternative of novel recipes for this promising food.

  19. Adults' Strategies for Simple Addition and Multiplication: Verbal Self-Reports and the Operand Recognition Paradigm

    ERIC Educational Resources Information Center

    Metcalfe, Arron W. S.; Campbell, Jamie I. D.

    2011-01-01

    Accurate measurement of cognitive strategies is important in diverse areas of psychological research. Strategy self-reports are a common measure, but C. Thevenot, M. Fanget, and M. Fayol (2007) proposed a more objective method to distinguish different strategies in the context of mental arithmetic. In their operand recognition paradigm, speed of…

  20. Dilution standard addition calibration: A practical calibration strategy for multiresidue organic compounds determination.

    PubMed

    Martins, Manoel L; Rizzetti, Tiele M; Kemmerich, Magali; Saibt, Nathália; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2016-08-19

    Among calibration approaches for organic compounds determination in complex matrices, external calibration, based in solutions of the analytes in solvent or in blank matrix extracts, is the most applied approach. Although matrix matched calibration (MMC) can compensates the matrix effects, it does not compensate low recovery results. In this way, standard addition (SA) and procedural standard calibration (PSC) are usual alternatives, despite they generate more sample and/or matrix blanks consumption need, extra sample preparations and higher time and costs. Thus, the goal of this work was to establish a fast and efficient calibration approach, the diluted standard addition calibration (DSAC), based on successive dilutions of a spiked blank sample. In order to evaluate the proposed approach, solvent calibration (SC), MMC, PSC and DSAC were applied to evaluate recovery results of grape blank samples spiked with 66 pesticides. Samples were extracted with the acetate QuEChERS method and the compounds determined by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Results indicated that low recovery results for some pesticides were compensated by both PSC and DSAC approaches. Considering recoveries from 70 to 120% with RSD <20% as adequate, DSAC presented 83%, 98% and 100% of compounds meeting this criteria for the spiking levels 10, 50 and 100μgkg(-1), respectively. PSC presented same results (83%, 98% and 100%), better than those obtained by MMC (79%, 95% and 97%) and by SC (62%, 70% and 79%). The DSAC strategy showed to be suitable for calibration of multiresidue determination methods, producing adequate results in terms of trueness and is easier and faster to perform than other approaches.

  1. Aerosol Droplet Delivery of Mesoporous Silica Nanoparticles: A Strategy for Respiratory-Based Therapeutics

    PubMed Central

    Li, Xueting; Xue, Min; Raabe, Otto G.; Aaron, Holly L.; Eisen, Ellen A.; Evans, James E.; Hayes, Fred A.; Inaga, Sumire; Tagmout, Abderrahmane; Takeuchi, Minoru; Vulpe, Chris; Zink, Jeffrey I.; Risbud, Subhash H.; Pinkerton, Kent E.

    2015-01-01

    A highly versatile nanoplatform that couples mesoporous silica nanoparticles (MSN) with an aerosol technology to achieve direct nanoscale delivery to the respiratory tract is described. This novel method can deposit MSN nanoparticles throughout the entire respiratory tract, including nasal, tracheobronchial and pulmonary regions using a water-based aerosol. This delivery method was successfully tested in mice by inhalation. The MSN nanoparticles used have the potential for carrying and delivering therapeutic agents to highly specific target sites of the respiratory tract. The approach provides a critical foundation for developing therapeutic treatment protocols for a wide range of diseases where aerosol delivery to the respiratory system would be desirable. PMID:25819886

  2. Amatoxin poisoning treatment decision-making: pharmaco-therapeutic clinical strategy assessment using multidimensional multivariate statistic analysis.

    PubMed

    Poucheret, Patrick; Fons, Françoise; Doré, Jean Christophe; Michelot, Didier; Rapior, Sylvie

    2010-06-15

    Ninety percent of fatal higher fungus poisoning is due to amatoxin-containing mushroom species. In addition to absence of antidote, no chemotherapeutic consensus was reported. The aim of the present study is to perform a retrospective multidimensional multivariate statistic analysis of 2110 amatoxin poisoning clinical cases, in order to optimize therapeutic decision-making. Our results allowed to classify drugs as a function of their influence on one major parameter: patient survival. Active principles were classified as first intention, second intention, adjuvant or controversial pharmaco-therapeutic clinical intervention. We conclude that (1) retrospective multidimensional multivariate statistic analysis of complex clinical dataset might help future therapeutic decision-making and (2) drugs such as silybin, N-acetylcystein and putatively ceftazidime are clearly associated, in amatoxin poisoning context, with higher level of patient survival.

  3. Myocardial Bridging: Contemporary Understanding of Pathophysiology with Implications for Diagnostic and Therapeutic Strategies

    PubMed Central

    Eshtehardi, Parham; Rasoul-Arzrumly, Emad; McDaniel, Michael; Mekonnen, Girum; Timmins, Lucas H.; Lutz, Jerre; Guyton, Robert A; Samady, Habib

    2014-01-01

    Patients with myocardial bridges are often asymptomatic but this anomaly may be associated with exertional angina, acute coronary syndromes, cardiac arrhythmias, syncope or even sudden cardiac death. This review presents our understanding of the pathophysiology of myocardial bridging and describes prevailing diagnostic modalities and therapeutic options for this challenging clinical entity. PMID:24583304

  4. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation.

    PubMed

    Chung, Woo-Hyun

    2016-01-01

    Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

  5. Eye movement correlates of younger and older adults' strategies for complex addition.

    PubMed

    Green, Heather J; Lemaire, Patrick; Dufau, Stéphane

    2007-07-01

    This study examined performance measures and eye movements associated with complex arithmetic strategies in young and older adults. Participants added pairs of three-digit numbers using two different strategies, under choice and no-choice conditions. Older adults made more errors but were not significantly slower than young adults, and response times and errors showed no interaction between age and the number of carries. Older adults chose strategies less adaptively than young adults. Eye movements were consistent with use of required strategies on no-choice trials and reported strategies on choice trials. Eye movement data also suggested that young adults more successfully distinguished between strategies. Implications of these findings for understanding aging effects in complex arithmetic are discussed.

  6. Therapeutic strategies and mechanisms of tumorigenesis of HER2-overexpressing breast cancer

    PubMed Central

    Emde, Anna; Köstler, Wolfgang J.; Yarden, Yosef

    2010-01-01

    1. Abstract The receptor tyrosine kinase HER2 is overexpressed in approximately 25% of breast cancers. HER2 acts as a signal amplifier for its siblings, namely three different transmembrane receptors that collectively bind with 11 distinct growth factors of the EGF family. Thus, overexpression of HER2 confers aggressive invasive growth in preclinical models and in patients. Specific therapies targeting HER2 include monoclonal antibodies, antibody-drug conjugates, small molecule tyrosine kinase inhibitors, as well as heat shock protein and sheddase inhibitors. Two of these drugs have shown impressive – yet mostly transient – efficacy in patients with HER2 overexpressing breast cancer. We highlight the biological roles of HER2 in breast cancer progression, and overview the available therapeutic armamentarium directed against this receptor-kinase molecule. Focusing on the mechanisms that confer resistance to individual HER2 targeting agents, we envisage therapeutic approaches to delay or overcome the evolvement of resistance in patients. PMID:20951604

  7. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy.

    PubMed

    Mishra, Dinesh Kumar; Balekar, Neelam; Mishra, Pradyumna Kumar

    2017-04-01

    The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.

  8. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies.

    PubMed

    Mueller, Alan J; Peffers, Mandy J; Proctor, Carole J; Clegg, Peter D

    2017-03-20

    Systems orientated research offers the possibility of identifying novel therapeutic targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This review demonstrates that the osteoarthritis research community has been slow to incorporate systems orientated approaches into research studies, although a number of key studies reveal novel insights into the regulatory mechanisms that contribute both to joint tissue homeostasis and its dysfunction. The review introduces both top-down and bottom-up approaches employed in the study of osteoarthritis. A holistic and multiscale approach, where clinical measurements may predict dysregulation and progression of joint degeneration, should be a key objective in future research. The review concludes with suggestions for further research and emerging trends not least of which is the coupled development of diagnostic tests and therapeutics as part of a concerted effort by the osteoarthritis research community to meet clinical needs. This article is protected by copyright. All rights reserved.

  9. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism.

    PubMed

    Vogt, Dominik; Stark, Holger

    2017-01-01

    During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.

  10. [Plasma exchange in treatment refractory septic shock : Presentation of a therapeutic add-on strategy].

    PubMed

    David, S; Hoeper, M M; Kielstein, J T

    2017-02-01

    Sepsis is defined as a systemic inflammatory response of the body to an infection. Besides anti-infective drugs and removal of the site of infection, no specific therapeutics that target the overwhelming host response are available. Clinical researchers are currently evaluating the extracorporeal elimination of circulating cytokines. Modern adsorbing techniques have increasingly been used for this purpose allowing an unselective but highly effective removal of the vast majority of circulating cytokines but also fail to replace used protective factors in patients' plasma. Therapeutic plasma exchange (TPE) however might represent a novel method to remove pathologically elevated cytokines and simultaneously to replace protective plasmatic factors. Here we report the case of a septic shock patient treated with TPE and review the available literature with respect to TPE as an adjunctive therapy in sepsis.

  11. Use of Hydrogen as a Novel Therapeutic Strategy Against Photoreceptor Degeneration in Retinitis Pigmentosa Patients.

    PubMed

    Tao, Ye; Geng, Lei; Wang, Liqiang; Xu, Weiwei; Qin, Limin; Peng, Guanghua; Huang, Yi Fei; Yang, Ji xue

    2016-03-08

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterized by progressive photoreceptor apoptosis. Reactive oxygen species (ROS) have been recognized as critical initiators of the photoreceptor apoptosis in RP. Photoreceptor survival in RP mutants will not only require the inhibition of effectors of apoptotic machinery, but also the elimination of the initiating upstream signals, such as ROS. These cytotoxic ROS should be neutralized by the antioxidant defense system, otherwise they would interact with the macromolecules essential for photoreceptor survival. Hydrogen is a promising gaseous agent that has come to the forefront of therapeutic research over the last few years. It has been verified that hydrogen is capable of neutralizing the cytotoxic ROS selectively, rectifying abnormities in the apoptotic cascades, and attenuating the related inflammatory response. Hydrogen is so mild that it does not disturb the metabolic oxidation-reduction reactions or disrupt the physiologic ROS involved in cell signaling. Based on these findings, we hypothesize that hydrogen might be an effective therapeutic agent to slow or prevent photoreceptor degeneration in RP retinas. It is a logical step to test hydrogen for therapeutic use in multiple RP animal models, and ultimately in human RP patients.

  12. GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators.

    PubMed

    Filip, Małgorzata; Frankowska, Małgorzata; Sadakierska-Chudy, Anna; Suder, Agata; Szumiec, Lukasz; Mierzejewski, Paweł; Bienkowski, Przemyslaw; Przegaliński, Edmund; Cryan, John F

    2015-01-01

    γ-Aminobutyric acid B (GABAB) receptors and their ligands are postulated as potential therapeutic targets for the treatment of several brain disorders, including drug dependence. Over the past fifteen years positive allosteric modulators (PAMs) have emerged that enhance the effects of GABA at GABAB receptors and which may have therapeutic effects similar to those of agonists but with superior side-effect profiles. This review summarizes current preclinical evidence supporting a role of GABAB receptor PAMs in drug addiction in several paradigms with relevance to reward processes and drug abuse liability. Extensive behavioral research in recent years has indicated that PAMs of GABAB receptors may have a therapeutic efficacy in cocaine, nicotine, amphetamine and alcohol dependence. The magnitude of the effects observed are similar to that of the clinically approved drug baclofen, an agonist at GABAB receptors. Moreover, given that anxiolytic effects are also reported with such ligands they may also benefit in mitigating the withdrawal from drugs of abuse. In summary, a wealth of data now supports the benefits of GABAB receptor PAMs and clinical validation is now warranted.

  13. Artificial Cell Therapy: New Strategies for the Therapeutic Delivery of Live Bacteria

    PubMed Central

    2005-01-01

    There has been rapid growth in research regarding the use of live bacterial cells for therapeutic purposes. The recognition that these cells can be genetically engineered to synthesize products that have therapeutic potential has generated considerable interest and excitement among clinicians and health professionals. It is expected that a wide range of disease modifying substrates such as enzymes, hormones, antibodies, vaccines, and other genetic products will be used successfully and will impact upon health care substantially. However, a major limitation in the use of these bacterial cells is the complexity of delivering them to the correct target tissues. Oral delivery of live cells, lyophilized cells, and immobilized cells has been attempted but with limited success. Primarily, this is because bacterial cells are incapable of surviving passage through the gastrointestinal tract. In many occasions, when given orally, these cells have been found to provoke immunogenic responses that are undesirable. Recent studies show that these problems can be overcome by delivering live bacterial cells, such as genetically engineered cells, using artificial cell microcapsules. This review summarizes recent advances in the therapeutic use of live bacterial cells for therapy, discusses the principles of using artificial cells for the oral delivery of bacterial cells, outlines methods for preparing suitable artificial cells for this purpose, addresses potentials and limitations for their application in therapy, and provides insight for the future direction of this emergent and highly prospective technology. PMID:15689638

  14. Small-molecule modulation of HDAC6 activity: The propitious therapeutic strategy to vanquish neurodegenerative disorders.

    PubMed

    Ganai, Shabir Ahmad

    2017-02-08

    Histone deacetylases (HDACs) are epigenetic enzymes creating the transcriptionally inactive state of chromatin by erasing acetyl moiety from histone and non-histone substrates. HDAC6 modulates several biological pathways in dividing cells as well as in post-mitotic neurons, and has been implicated in the pathophysiology of neurodegeneration. The distinct cellular functions and survival in these cells are reliant on HDAC6-mediated processes including intracellular trafficking, chaperone-mediated stress responses, anti-oxidation and protein degradation. Consequently, the interest in HDAC6 as a promising therapeutic target to tackle neurodegenerative disorders has escalated markedly over the last decade. Taking these grim facts into consideration the current article focuses on structural organization of HDAC6. Importantly, we discuss the general role of HDACs in cognition and neuronal death. Further, we describe the unique involvement of HDAC6 in eliminating protein aggregates, oxidative stress and mitochondrial transport. Moreover, the article rigorously details how the impaired activity of HDAC6 culminates in neurodegenerative complications like Alzheimer disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Lastly, we provide crystal clear view regarding the fascinating research areas which may lead to development of novel small-molecules for enhanced therapeutic benefit against these therapeutically arduous neurodegenerative maladies.

  15. Additive neuroprotection of a 20-HETE inhibitor with delayed therapeutic hypothermia after hypoxia-ischemia in neonatal piglets

    PubMed Central

    Zhu, Junchao; Wang, Bing; Lee, Jeong-Hoo; Armstrong, Jillian S.; Kulikowicz, Ewa; Bhalala, Utpal S.; Martin, Lee J.; Koehler, Raymond C.; Yang, Zeng-Jin

    2015-01-01

    The severity of perinatal hypoxia-ischemia and the delay in initiating therapeutic hypothermia limit the efficacy of hypothermia. After hypoxia-ischemia in neonatal piglets, the arachidonic acid metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), has been found to contribute to oxidative stress at 3 hours of reoxygenation and to eventual neurodegeneration. We tested whether early administration of a 20-HETE-synthesis inhibitor after reoxygenation augments neuroprotection with 3-hour delayed hypothermia. In two hypothermic groups, whole body cooling from 38.5 to 34°C was initiated 3 hours after hypoxia-ischemia. Rewarming occurred from 20 to 24 hours; then anesthesia was discontinued. One hypothermic group received a 20-HETE inhibitor at 5 minutes after reoxygenation. A sham-operated group and another hypoxia-ischemia group remained normothermic. At 10 days of recovery, resuscitated piglets with delayed hypothermia alone had significantly greater viable neuronal density in putamen, caudate nucleus, sensorimotor cortex, CA3 hippocampus, and thalamus than did piglets with normothermic recovery, but the values remained less than those in the sham-operated group. In piglets administered the 20-HETE inhibitor before hypothermia, the density of viable neurons in putamen, cortex, and thalamus was significantly greater than in the group with hypothermia alone. Cytochrome P450 4A, which can synthesize 20-HETE, was expressed in piglet neurons in these regions. We conclude that early treatment with a 20-HETE inhibitor enhances the therapeutic benefit of delayed hypothermia in protecting neurons in brain regions known to be particularly vulnerable to hypoxia-ischemia in term newborns. PMID:25721266

  16. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    PubMed Central

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  17. The Network Model of Depression as a Basis for New Therapeutic Strategies for Treating Major Depressive Disorder in Parkinson's Disease.

    PubMed

    D'Ostilio, Kevin; Garraux, Gaëtan

    2016-01-01

    The high prevalence of major depressive disorder in people with Parkinson's disease (PD), its negative impact on health-related quality of life and the low response rate to conventional pharmacological therapies call to seek innovative treatments. Here, we review the new approaches for treating major depressive disorder in patients with PD within the framework of the network model of depression. According to this model, major depressive disorder reflects maladaptive neuronal plasticity. Non-invasive brain stimulation (NIBS) using high frequency repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex has been proposed as a feasible and effective strategy with minimal risk. The neurobiological basis of its therapeutic effect may involve neuroplastic modifications in limbic and cognitive networks. However, the way this networks reorganize might be strongly influenced by the environment. To address this issue, we propose a combined strategy that includes NIBS together with cognitive and behavioral interventions.

  18. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    PubMed

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  19. Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies.

    PubMed

    Lamoureux, François; Trichet, Valérie; Chipoy, Céline; Blanchard, Frédéric; Gouin, François; Redini, Françoise

    2007-02-01

    Osteosarcoma is the most frequent primary bone tumor and occurs mainly in young patients (average age: 18 years). No evolution of the survival rates has been recorded for two decades in response to current treatment, associating often toxic and badly tolerated cures of chemotherapy (given a significant rate of bad responders) with preserving surgery. Among the proposed innovative strategies, immune-based therapy, antiangiogenesis agents, tumor-suppressor or suicide gene therapy, or anticancer drugs not commonly used in osteosarcoma are presented. A further strategy is to target the tumor microenvironment rather than the tumor itself.

  20. Evolving Therapeutic Strategies for the Classic Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Kaplan, Jason B.; Stein, Brady L.; McMahon, Brandon; Giles, Francis J.; Platanias, Leonidas C.

    2016-01-01

    Despite the emergence of JAK inhibitors, there is a need for disease-modifying treatments for Philadelphia-negative myeloproliferative neoplasms (MPNs). JAK inhibitors ameliorate symptoms and address splenomegaly, but because of the heterogeneous contributors to the disease process, JAK inhibitor monotherapy incompletely addresses the burden of disease. The ever-growing understanding of MPN pathogenesis has provided the rationale for testing novel and targeted therapeutic agents, as monotherapies or in combination, in preclinical and clinical settings. A number of intriguing options have emerged, and it is hoped that further progress will lead to significant changes in the natural history of MPNs. PMID:26870834

  1. Effect of Botulinum Toxin on Disabling Neuropathic Pain: A Case Presentation Suggesting a New Therapeutic Strategy.

    PubMed

    Buonocore, Michelangelo; Demartini, Laura; Mandrini, Silvia; Dall'Angelo, Anna; Dalla Toffola, Elena

    2017-02-01

    This case presentation describes a 47-year-old woman who developed complex regional pain syndrome type II with severe neuropathic pain following iatrogenic transection of the tibial nerve at the ankle. The pain and disability progressively worsened over time, markedly impaired ambulation, and were not relieved despite various analgesic treatments. After injection of botulinum toxin (abobotulinumtoxinA, BoNT-A) in the leg muscles the tendons of which pass through the tarsal tunnel (together with the tibial nerve), her pain decreased and her walking capacity improved. This case suggests a new therapeutic role for botulin toxin in treating peripheral neuropathic pain caused by movement-evoked ectopic potentials.

  2. Age-related deficits in voluntary control over saccadic eye movements: consideration of electrical brain stimulation as a therapeutic strategy.

    PubMed

    Chen, Po Ling; Machado, Liana

    2016-05-01

    Sudden changes in our visual environment trigger reflexive eye movements, so automatically they often go unnoticed. Consequently, voluntary control over reflexive eye movements entails considerable effort. In relation to frontal-lobe deterioration, adult aging adversely impacts voluntary saccadic eye movement control in particular, which compromises effective performance of daily activities. Here, we review the nature of age-related changes in saccadic control, focusing primarily on the antisaccade task because of its assessment of 2 key age-sensitive control functions: reflexive saccade inhibition and voluntary saccade generation. With an ultimate view toward facilitating development of therapeutic strategies, we systematically review the neuroanatomy underpinning voluntary control over saccadic eye movements and natural mechanisms that kick in to compensate for age-related declines. We then explore the potential of noninvasive electrical brain stimulation to counteract aging deficits. Based on evidence that anodal transcranial direct current stimulation can confer a range of benefits specifically relevant to aging brains, we put forward this neuromodulation technique as a therapeutic strategy for improving voluntary saccadic eye movement control in older adults.

  3. Multi-Target-Directed Ligands and other Therapeutic Strategies in the Search of a Real Solution for Alzheimer's Disease

    PubMed Central

    Agis-Torres, Angel; Sölhuber, Monica; Fernandez, Maria; Sanchez-Montero, J.M.

    2014-01-01

    The lack of an adequate therapy for Alzheimer's Disease (AD) contributes greatly to the continuous growing amount of papers and reviews, reflecting the important efforts made by scientists in this field. It is well known that AD is the most common cause of dementia, and up-to-date there is no prevention therapy and no cure for the disease, which contrasts with the enormous efforts put on the task. On the other hand many aspects of AD are currently debated or even unknown. This review offers a view of the current state of knowledge about AD which includes more relevant findings and processes that take part in the disease; it also shows more relevant past, present and future research on therapeutic drugs taking into account the new paradigm “Multi-Target-Directed Ligands” (MTDLs). In our opinion, this paradigm will lead from now on the research toward the discovery of better therapeutic solutions, not only in the case of AD but also in other complex diseases. This review highlights the strategies followed by now, and focuses other emerging targets that should be taken into account for the future development of new MTDLs. Thus, the path followed in this review goes from the pathology and the processes involved in AD to the strategies to consider in on-going and future researches. PMID:24533013

  4. Strategy to Prime the Host and Cells to Augment Therapeutic Efficacy of Progenitor Cells for Patients with Myocardial Infarction

    PubMed Central

    Kang, Jeehoon; Kim, Tae-Won; Hur, Jin; Kim, Hyo-Soo

    2016-01-01

    Cell therapy in myocardial infarction (MI) is an innovative strategy that is regarded as a rescue therapy to repair the damaged myocardium and to promote neovascularization for the ischemic border zone. Among several stem cell sources for this purpose, autologous progenitors from bone marrow or peripheral blood would be the most feasible and safest cell-source. Despite the theoretical benefit of cell therapy, this method is not widely adopted in the actual clinical practice due to its low therapeutic efficacy. Various methods have been used to augment the efficacy of cell therapy in MI, such as using different source of progenitors, genetic manipulation of cells, or priming of the cells or hosts (patients) with agents. Among these methods, the strategy to augment the therapeutic efficacy of the autologous peripheral blood mononuclear cells (PBMCs) by priming agents may be the most feasible and the safest method that can be applied directly to the clinic. In this review, we will discuss the current status and future directions of priming PBMCs or patients, as for cell therapy of MI. PMID:27933299

  5. Molecular physiopathogenetic mechanisms and development of new potential therapeutic strategies in persistent pulmonary hypertension of the newborn.

    PubMed

    Distefano, Giuseppe; Sciacca, Pietro

    2015-02-08

    Persistent pulmonary hypertension of the newborn (PPHN) is a cyanogenic plurifactorial disorder characterized by failed postnatal drop of pulmonary vascular resistance and maintenance of right-to-left shunt across ductus arteriosus and foramen ovale typical of intrauterine life. The pathogenesis of PPHN is very complex and can result from functional (vasoconstriction) or structural (arteriolar remodeling, reduced pulmonary vessels density) anomalies of pulmonary circulation. Etiopathogenetic factors heterogeneity can strongly condition therapeutical results and prognosis of PPHN that is particularly severe in organic forms that are usually refractory to selective pulmonary vasodilator therapy with inhaled nitric oxide. This paper reports the more recent acquisitions on molecular physiopathogenetic mechanisms underlying functional and structural forms of PPHN and illustrates the bases for adoption of new potential treatment strategies for organic PPHN. These strategies aim to reverse pulmonary vascular remodeling in PPHN with arteriolar smooth muscle hypertrophy and stimulate pulmonary vascular and alveolar growth in PPHN associated with lung hypoplasia.In order to restore lung growth in this severe form of PPHN, attention is focused on the results of studies of mesenchymal stem cells and their therapeutical paracrine effects on bronchopulmonry dysplasia, a chronic neonatal lung disease characterized by arrested vascular and alveolar growth and development of pulmonary hypertension.

  6. Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis.

    PubMed

    Geraerts, Martine; Krylyshkina, Olga; Debyser, Zeger; Baekelandt, Veerle

    2007-02-01

    Parkinson disease (PD) is a progressive neurodegenerative disorder affecting millions of people worldwide. To date, treatment strategies are mainly symptomatic and aimed at increasing dopamine levels in the degenerating nigrostriatal system. Hope rests upon the development of effective neurorestorative or neuroregenerative therapies based on gene and stem cell therapy or a combination of both. The results of experimental therapies based on transplanting exogenous dopamine-rich fetal cells or glial cell line-derived neurotrophic factor overexpression into the brain of Parkinson disease patients encourage future cell- and gene-based strategies. The endogenous neural stem cells of the adult brain provide an alternative and attractive cell source for neuroregeneration. Prior to designing endogenous stem cell therapies, the possible impact of PD on adult neuronal stem cell pools and their neurogenic potential must be investigated. We review the experimental data obtained in animal models or based on analysis of patients' brains prior to describing different treatment strategies. Strategies aimed at enhancing neuronal stem cell proliferation and/or differentiation in the striatum or the substantia nigra will have to be compared in animal models and selected prior to clinical studies.

  7. Cell- and gene-based therapeutic strategies for periodontal regenerative medicine.

    PubMed

    Rios, Hector F; Lin, Zhao; Oh, Bina; Park, Chan Ho; Giannobile, William V

    2011-09-01

    Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology.

  8. [The multimodal interdisciplinary therapeutic program in chronic back pain. A new treatment strategy].

    PubMed

    Casser, H; Riedel, T; Schrembs, C; Ingenhorst, A; Kühnau, D

    1999-11-01

    The epidemic-like rise in chronic low back pain in western industrial nations is less an expression of a medical than a psychosocial phenomenon. Differentiation between acute, chronic or chronifying pain is of crucial importance for therapeutic procedures. Pain syndromes in the muscular-skeletal system tend to become chronic to a far larger extent than expected. More than 80 % of low back pain represents a functional pain syndrome and does not show any pathoanatomical correlate. Pain existing independently seems to be predestined by a somatic and psychosocial deconditioning syndrome. Those at risk of chronifying pain or those whose pain is already chronic should be given an interdisciplinary, multimodal therapeutic program. A pilot study was carried out in our clinic: multidisciplinary treatment was given to our patients (of which over 90 % belonged to stages II and III on the Gerbershagen scale) and the result was significant improvement in the measurements of pain intensity, sensoric and affective pain perception, their list of complaints, the common scale of depression and the pain disability index. Taking previously published studies into consideration, it is safe to say that a multidisciplinary, multimodal program of therapy even after stay in hospital results in considerable relief of pain and improvement in the ability to cope with the pain for patients with chronified pain syndromes in the muscular-skeletal system which are resistant to treatment on an outpatient basis.

  9. Novel therapeutic strategies in human malignancy: combining immunotherapy and oncolytic virotherapy.

    PubMed

    Sampath, Padma; Thorne, Steve H

    2015-01-01

    Results from randomized clinical trials over the last several years have finally begun to demonstrate the potential of oncolytic viral therapies to treat a variety of cancers. One reason for these successes has been the realization that this platform is most effective when considered primarily as an immunotherapy. Cancer immunotherapy has also made dramatic strides recently with antibodies capable of blocking immune checkpoint inhibitors and adoptive T-cell therapies, notably CAR T-cells, leading a panel of novel and highly clinically effective therapies. It is clear therefore that an understanding of how and when these complementary approaches can most effectively be combined offers the real hope of moving beyond simply treating the disease and toward starting to talk about curative therapies. In this review we discuss approaches to combining these therapeutic platforms, both through engineering the viral vectors to more beneficially interact with the host immune response during therapy, as well as through the direct combinations of different therapeutics. This primarily, but not exclusively focuses on strains of oncolytic vaccinia virus. Some of the results reported to date, primarily in pre-clinical models but also in early clinical trials, are dramatic and hold great promise for the future development of similar therapies and their translation into cancer therapies.

  10. Stem cells for cell replacement therapy: a therapeutic strategy for HD?

    PubMed

    Rosser, Anne; Svendsen, Clive N

    2014-09-15

    Much interest has been expressed over the last couple of decades in the potential application of stem cells to medicine, both for research and diagnostic tools and as a source of donor cells for therapeutic purposes. Potential therapeutic applications include replacement of cells in many body organs where the capacity for intrinsic repair is limited, including the pancreas, heart, and brain. A key challenge is to generate the relevant donor cell types, and this is particularly challenging in the brain where the number of different neuronal subtypes is so great. Although dopamine neuron replacement in Parkinson's disease has been the focus of most clinical studies, great interest has been shown in this approach for other disorders, including Huntington's disease. Replacing complete neural circuits in the adult brain is clearly challenging, and there are many other complexities with regard to both donor cells and host. This article presents the pros and cons of taking a cell therapy approach in Huntington's disease. It considers the implantation both of cells that are already of the same neural subtype as those lost in the disease process (ie, primary fetal cells derived from the developing striatum) and those derived from stem cells, which require "directing" toward that phenotype.

  11. [Overview on method and strategy of therapeutic material basis in traditional Chinese medicine by multidisciplinary approach].

    PubMed

    Li, Ya-mei; Du, Zhi-min

    2015-05-01

    Traditional Chinese medicine (TCM) has a good reputation for preventing or healing diseases in clinic due to its higher efficacy, minor toxicity and abundant resources. Screening bioactive components in TCMs is not only crucial for clarifying their action mechanisms, but also the basis of their safety and quality control. TCM is characterized by multiple components, multiple targets and multiple mechanisms, however the complex composition of TCM makes it difficult to study the therapeutic material basis which has become the bottleneck in the process of its modernization and internationalization. Recently, with the rapid development of modern technologies and the unceasing progress of various disciplines, multidisciplinary approach, such as analytical chemistry, chemistry of TCM, pharmacology, cell biology, systems biology and bioinformatics has been successfully applied to the study of TCM. Multidisciplinary approach realizes the communication and interaction of multi-discipline, and accelerates the research and development of TCM. This review summarizes the application of multidisciplinary approach which may have certain potential of bringing new thoughts to TCM research and provide references for screening and identification of therapeutic material basis of TCMs.

  12. [Immune response in cervical cancer. Strategies for the development of therapeutic vaccines].

    PubMed

    Mora-García, María Lourdes; Monroy-García, Alberto

    2015-01-01

    High-risk human papillomaviruses (HR-HPV), as HPV-16, evade immune recognition through the inactivation of cells of the innate immune response. HPV-16 E6 and E7 genes down-regulate type I interferon response. They do not produce viremia or cell death; therefore, they do not cause inflammation or damage signal that alerts the immune system. Virus-like particles (VLPs), consisting of structural proteins (L1 and L2) of the main HR-HPV types that infect the genitourinary tract, are the most effective prophylactic vaccines against HR-HPV infection. While for the high grade neoplastic lesions, therapeutic vaccines based on viral vectors, peptides, DNA or complete HR-HPV E6 and E7 proteins as antigens, have had limited effectiveness. Chimeric virus-like particles (cVLPs) that carry immunogenic peptides derived from E6 and E7 viral proteins, capable to induce activation of specific cytotoxic T lymphocytes, emerge as an important alternative to provide prophylactic and therapeutic activity against HR-HPV infection and cervical cancer.

  13. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress.

    PubMed

    Booz, George W

    2011-09-01

    Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB₁ and CB₂ G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.

  14. Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile

    PubMed Central

    Akula, Samatha; Gurram, Aravind Kumar; Devireddy, Srinivas Reddy

    2014-01-01

    Ease of administration and painless approach made oral route the most preferred. Poor oral bioavailability is pronounced with the majority of recent active ingredients because of dissolution rate limited absorption. Failure to attain intended therapeutic effect of the poor water soluble drugs by this route led to development of novel drug delivery systems which will fulfill therapeutic needs with minimum dose. Although many formulation approaches like solid dispersions, complexation, pH modification, and cocrystals exist, lipid based delivery systems finding increased appliance with the apparent increase in absorption of drug. Among lipid based formulations, self-microemulsifying formulations (droplet size < 100 nm) are evident to improve the oral bioavailability of hydrophobic drugs primarily due to their efficiency in facilitating solubilization and in presenting the hydrophobic drug in solubilized form whereby dissolution process can be circumvented. Various components that are used to formulate these dosage forms like surfactants and lipids contribute to the overall improvement in oral bioavailability via promoting the lymphatic transport; thereby hepatic first pass metabolism can be surmounted. The present paper gives exhaustive information on the formulation design and characterization of SMEDDS along with the probable mechanisms by which the bioavailability can be improved with SMEDDS. PMID:27382619

  15. Prolyl hydroxylase domain-2 (PHD2) inhibition may be a better therapeutic strategy in renal anemia.

    PubMed

    Soni, Hitesh

    2014-05-01

    Recombinant human erythropoietin (rHuEPO) has revolutionized the life of dialysis patients with anemia of chronic kidney disease (CKD). Newer erythropoietin analogues with improved profile have been introduced recently. However, there are many concerns such as safety, economy and patient compliance with these newer rHuEPo analogues. Small molecules aimed to inhibit prolyl hydroxylase domain-2 (PHD2) may prevent degradation of hypoxia inducible factor-2 (HIF2) which leads to endogenous erythropoietin production. This therapeutic intervention may not only overcome the patient compliance and economic burden but also possibly overcome the safety issues related to rHuEPO and its analogues. Moreover, PHD2 inhibitors may increase the endogenous circulating iron availability via suppression of hepcidin, a master regulator of iron homeostasis which further reduces the need for exogenous intravenous iron administration for effective erythropoiesis in renal anemia patients. In conclusion, small molecule PHD2 inhibitors may have better therapeutic efficacy and potential to address clinical concerns associated with rHuEPO and rHuEPO mimetic peptides.

  16. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

    PubMed

    Hancock, Robert E W; Sahl, Hans-Georg

    2006-12-01

    Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

  17. Novel therapeutic strategies in major depression: focus on RNAi and ketamine.

    PubMed

    Bortolozzi, Analia; Celada, Pau; Artigas, Francesc

    2014-01-01

    Major depression is a severe psychiatric syndrome with very high prevalence and - socioeconomic impact. Despite extensive research, its pathophysiology is poorly understood, yet several neurotransmitter systems and brain areas have been implicated. The pharmacological treatment of major depression is mainly based on drugs inhibiting serotonin (5-hydroxytryptamine, 5-HT) and/or noradrenaline (NA) reuptake. These drugs evoke a series of neuronal adaptive mechanisms that limit their full clinical action, making necessary for many patients the use of augmentation strategies. In spite of such strategies, many depressed patients show limited or no improvement, which worsens their quality of life and increases the risk of suicide. Several novel observations in recent years have shaken the antidepressant field, by showing that depressed patients with severe treatment resistance can rapidly experience clinical remission. Hence, deep brain stimulation (DBS) of ventral anterior cingulate cortex (Cg25) evokes rapid mood improvements in treatment-resistant patients. Likewise, single doses of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine evoke rapid and long-lasting (up to 10 days) antidepressant responses in treatment-resistant patients. On the other hand, new molecular strategies aimed at modulating the expression of certain genes show great potential in the antidepressant field. In particular, RNAi strategies have been used to evoke antidepressant-like effects in laboratory animals by knocking-down the expression of genes involved in antidepressant effects, such as the serotonin transporter (SERT) or the 5-HT1A autoreceptor. Here we review these novel strategies due to their potential impact in the identification of new targets and the further development of new antidepressant drugs.

  18. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    SciTech Connect

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    1995-05-01

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series of PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.

  19. Multi-target siRNA: Therapeutic Strategy for Hepatocellular Carcinoma

    PubMed Central

    Li, Tiejun; Xue, Yuwen; Wang, Guilan; Gu, Tingting; Li, Yunlong; Zhu, York Yuanyuan; Chen, Li

    2016-01-01

    Multiple targets RNAi strategy is a preferred way to treat multigenic diseases, especially cancers. In the study, multi-target siRNAs were designed to inhibit NET-1, EMS1 and VEGF genes in hepatocellular carcinoma (HCC) cells. And multi-target siRNAs showed better silencing effects on NET-1, EMS1 and VEGF, compared with single target siRNA. Moreover, multi-target siRNA showed greater suppression effects on proliferation, migration, invasion, angiogenesis and induced apoptosis in HCC cells. The results suggested that multi-target siRNA might be a preferred strategy for cancer therapy and NET-1, EMS1 and VEGF could be effective targets for HCC treatments. PMID:27390607

  20. Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology.

    PubMed

    Workman, Paul; Al-Lazikani, Bissan; Clarke, Paul A

    2013-08-01

    Extraordinary progress has been made in our detailed understanding of the genetic and epigenetic mechanisms responsible for oncogenesis and cancer progression. Empowered by next-generation sequencing, many new targets and pathways have been identified to exploit oncogene and non-oncogene addiction and synthetic lethality. Kinase inhibitors feature strongly in the druggable cancer genome and 19 have been approved in oncology. While survival gains are valuable, drug resistance has emerged as the major challenge. The clonal heterogeneity and evolution of cancers is an intrinsic problem, together with feedback loops, kinase switching and activation of alternative targets and pathways. The solution to drug resistance will require the use of rationally targeted combinational regimens. The application of adaptive treatment cycles based on ongoing multi-technology profiling will be the key to long-term therapeutic success.

  1. Is rTMS an effective therapeutic strategy that can be used to treat Parkinson's disease?

    PubMed

    Arias-Carrion, Oscar; Machado, Sergio; Paes, Flavia; Velasques, Bruna; Teixeira, Silmar; Cardenas-Morales, Lizbeth; Piedade, Roberto; Ribeiro, Pedro; Nardi, Antonio E

    2011-09-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive procedure whereby a pulsed magnetic field stimulates electrical activity in the brain. Parkinson's disease (PD) is a neurodegenerative process characterized by numerous motor and nonmotor clinical manifestations for which effective, mechanism-based treatments remain elusive. Consequently, more advanced non-invasive therapeutic methods are required. A possible method of rehabilitation that may be effective and potentially viable for use in clinical practice is rTMS. Here, we focus on the basic foundation of rTMS, the main findings of rTMS from animal models, the effects of rTMS on sensorimotor integration in patients with PD, and the experimental advances of rTMS that may become a viable clinical application to treat the disease.

  2. Regulation of autophagy by some natural products as a potential therapeutic strategy for cardiovascular disorders.

    PubMed

    Hashemzaei, Mahmoud; Entezari Heravi, Reza; Rezaee, Ramin; Roohbakhsh, Ali; Karimi, Gholamreza

    2017-02-24

    Autophagy is a lysosomal degradation process through which long-lived and misfolded proteins and organelles are sequestered, degraded by lysosomes, and recycled. Autophagy is an essential part of cardiomyocyte homeostasis and increases the survival of cells following cellular stress and starvation. Recent studies made clear that dysregulation of autophagy in the cardiovascular system leads to heart hypertrophy and failure. In this manner, autophagy seems to be an attractive target in the new treatment of cardiovascular diseases. Although limited activation of autophagy is generally considered to be cardioprotective, excessive autophagy leads to cell death and cardiac atrophy. Natural products such as resveratrol, berberine, and curcumin that are present in our diet, can trigger autophagy via canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in the cardioprotective effects of these compounds.

  3. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    PubMed Central

    Blunt, Matthew D.; Steele, Andrew J.

    2015-01-01

    PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL). However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ) in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms. PMID:26500849

  4. Modulation of protein-protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies.

    PubMed

    Ballatore, C; Brunden, K R; Trojanowski, J Q; Lee, V M-Y; Smith, A B; Huryn, D M

    2011-01-01

    The recognition that malfunction of the microtubule (MT) associated protein tau is likely to play a defining role in the onset and/or progression of a number of neurodegenerative diseases, including Alzheimer's disease, has resulted in the initiation of drug discovery programs that target this protein. Tau is an endogenous MT-stabilizing agent that is highly expressed in the axons of neurons. The MT-stabilizing function of tau is essential for the axonal transport of proteins, neurotransmitters and other cellular constituents. Under pathological conditions, tau misfolding and aggregation results in axonal transport deficits that appear to have deleterious consequences for the affected neurons, leading to synapse dysfunction and, ultimately, neuronal loss. This review focuses on both progress and unresolved issues surrounding the development of novel therapeutics for the treatment of neurodegenerative tauopathies, which are based on (A) MT-stabilizing agents to compensate for the loss of normal tau function, and (B) small molecule inhibitors of tau aggregation.

  5. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders.

    PubMed

    Kim, Janice J; Khan, Waliul I

    2014-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body's 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD.

  6. Therapeutic approaches to modulating glutathione levels as a pharmacological strategy in Alzheimer's disease.

    PubMed

    Peter, Cao; Braidy, Nady; Zarka, Martin; Welch, Jeffrey; Bridge, Wallace

    2015-01-01

    Accumulating evidence has suggested the involvement of oxidative stress in the pathogenesis of Alzheimer's disease (AD). The main endogenous antioxidant, glutathione (GSH), has been shown to decline with ageing and in several age-related degenerative diseases, including AD. Potential options for replenishing GSH levels as a therapeutic target to treat these conditions include the administration of GSH itself, and low toxicity forms of the limiting amino acid for GSH synthesis; cysteine. However, passive GSH uptake is limited due to an unfavourable concentration gradient between the plasma and cytosol. Similarly, cysteine prodrugs have demonstrated limited efficacy to elevate depleted GSH levels in several in vivo and in vitro models of disease. It has been suggested that the decline in GSH levels in AD, may be associated with down regulation of GSH homeostasis rather than substrate limitation. Cellular GSH homeostasis is regulated by non-allosteric feedback inhibition exerted by GSH on glutamate cysteine ligase (GCL), which is responsible for the synthesis of the GSH precursor γ-glutamylcysteine (GGC). In conditions involving down regulated GSH homeostasis, GGC serves as a crucialrate-limiting substrate for GSH synthetase, the main enzyme responsible for condensing glycine with GGC to form the final thiol tripeptide, GSH. In this review, we focus on the therapeutic potential of GGC to elevate cellular GSH levels. We also discuss the efficacy of GGC prodrugs which would be taken up and converted by the unregulated GS to GSH, and the administration of modified GSH compounds, such as GSH esters that could potentially overcome the concentration gradient that prohibits passive GSH uptake, in AD.

  7. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives.

    PubMed

    Pawar, Vivek K; Meher, Jaya Gopal; Singh, Yuvraj; Chaurasia, Mohini; Surendar Reddy, B; Chourasia, Manish K

    2014-12-28

    Delivery of proteins/peptides to the gastrointestinal (GI) tract via peroral/oral route involves tremendous challenges due to unfavorable environmental conditions like harsh pH, presence of proteolytic enzymes and absorption barriers. Detailed research is being conducted at the academic and industrial levels to diminish these troubles and various products are under clinical trials. Several approaches have been established to optimize oral delivery of proteins and peptides and can be broadly categorized into chemical and physical strategies. Chemical strategies include site specific mutagenesis, proteinylation, glycosylation, PEGylation and prodrug approaches, whereas physical strategies comprise formulation based approaches including application of absorption enhancers and metabolism modifiers along with delivering them via colloidal carrier systems such as nanoparticles, liposomes, microparticles, and micro- and nano-emulsions. This review stands to accomplish the diverse aspects of oral delivery of proteins/peptides and summarizes the key concepts involved in targeting the biodrugs to specific sites of the GI tract such as the intestine and colon. Furthermore some light has also been shed on the current industrial practices followed in developing oral formulations of such bioactives.

  8. Education for Homeless Adults: Strategies for Implementation. Volume II - Resources and Additional Lessons.

    ERIC Educational Resources Information Center

    Hudson River Center for Program Development, Glenmont, NY.

    This document, the second in a series of guidebooks that were developed for educators of homeless adults in New York, offers strategies and plans for sample lessons in which a holistic approach is used to help homeless adults and families improve their lives through education. The guidebook begins with lists of print and nonprint resources,…

  9. Using the Learning and Study Strategies Inventory Scores as Additional Predictors of Student Academic Performance.

    ERIC Educational Resources Information Center

    Rugsaken, Kris T.; Robertson, Jacqueline A.; Jones, James A.

    1998-01-01

    A study investigated the usefulness of the Learning and Study Strategies Inventory in predicting college students' academic performance, focusing on whether the scores enhance the accuracy of traditional predictors such as college entrance examinations and high school rank. Results indicate the scores produce a slight but not significant increase…

  10. Mental Computation Strategies for Addition: There's More than One Way to Skin a Cat

    ERIC Educational Resources Information Center

    Chesney, Marlene

    2013-01-01

    Marlene Chesney describes a piece of research where the participants were asked to complete a calculation, 16 + 8, and then asked to describe how they solved it. The diversity of invented strategies will be of interest to teachers along with the recommendations that are made. So "how do 'you' solve 16 + 8?"

  11. Ten-Structure as Strategy of Addition 1-20 by Involving Spatial Structuring Ability for First Grade Students

    ERIC Educational Resources Information Center

    Salmah, Ummy; Putri, Ratu Ilma Indra; Somakim

    2015-01-01

    The aim of this study is to design learning activities that can support students to develop strategies for the addition of number 1 to 20 in the first grade by involving students' spatial structuring ability. This study was conducted in Indonesia by involving 27 students. In this paper, one of three activities is discussed namely ten-box activity.…

  12. Chemical Strategy to Translate Genetic/epigenetic Mechanisms to Breast Cancer Therapeutics

    DTIC Science & Technology

    2012-07-01

    AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14 . ABSTRACT This project is designed to use a molecular signature strategy to develop...target specific splice junctions in spliced mRNAs (13, 14 ). Upon annealing to total RNA followed by solid-phase selection via oligo-dT or bio- tinylated...the first 24 h of treatment, with little effect on LNCaP-abl cells and no effect on PC3 and PC3-AR cells. By day 2, +1 0 -1 B E ffi ca cy Specificity

  13. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  14. Interfering with pH regulation in tumours as a therapeutic strategy.

    PubMed

    Neri, Dario; Supuran, Claudiu T

    2011-09-16

    The high metabolic rate of tumours often leads to acidosis and hypoxia in poorly perfused regions. Tumour cells have thus evolved the ability to function in a more acidic environment than normal cells. Key pH regulators in tumour cells include: isoforms 2, 9 and 12 of carbonic anhydrase, isoforms of anion exchangers, Na+/HCO3- co-transporters, Na+/H+ exchangers, monocarboxylate transporters and the vacuolar ATPase. Both small molecules and antibodies targeting these pH regulators are currently at various stages of clinical development. These antitumour mechanisms are not exploited by the classical cancer drugs and therefore represent a new anticancer drug discovery strategy.

  15. Targeting Midbodies in Ovarian Cancer Stem Cells as a Therapeutic Strategy

    DTIC Science & Technology

    2013-10-01

    markers (CD133+, CD44+, CD117+). (Dyall et al., 2010; Ponnusamy et al., 2008). In both strategies, putative CSCs were fixed, spun onto coverslips...and stained for MBs using two different and effective MB markers , MKLP1 (Fig. 1) and MgcRacGAP. There was near complete (98.8+/- 0.3%) concordance...in MB staining using these markers . In both CSC preparations MBs were found to be significantly higher in the CSC fraction (Fig. 2, SP). We are

  16. Glucose Lowering Therapeutic Strategies for Type 2 Diabetic Patients with Chronic Kidney Disease in Primary Care Setting in France: A Cross-Sectional Study

    PubMed Central

    Grandfils, N.; Detournay, B.; Attali, C.; Joly, D.; Simon, D.; Vergès, B.; Toussi, M.; Briand, Y.; Delaitre, O.

    2013-01-01

    Aim. To understand glucose lowering therapeutic strategies of French general practitioners (GPs) in the management of type 2 diabetes mellitus (T2DM) patients with chronic kidney disease (CKD). Methods. A multicenter cross-sectional study was conducted from March to June 2011 among a sample of French GPs who contribute to the IMS Lifelink Disease Analyzer database. Eligible patients were those with T2DM and moderate-to-severe CKD who visited their GPs at least once during the study period. Data were collected through electronic medical records and an additional questionnaire. Results. 116 GPs included 297 patients: 86 with stage 3a (Group 1, GFR = 45–60 mL/min/1.73 m2) and 211 with stages 3b, 4, or 5 (Group 2, GFR < 45 mL/min/1.73 m2). Patients' mean age was approximately 75 years. Insulin was used in 19% of patients, and was predominant in those with severe CKD. More than two-thirds of patients were treated with glucose lowering agents which were either contraindicated or not recommended for CKD. Conclusion Physicians most commonly considered the severity of diabetes and not CKD in their therapeutic decision making, exposing patients to potential iatrogenic risks. The recent patient oriented approach and individualization of glycemic objectives according to patient profile rather than standard HbA1c would improve this situation. PMID:23653644

  17. Current treatment strategies for brain metastasis and complications from therapeutic techniques: a review of current literature.

    PubMed

    Platta, Christopher S; Khuntia, Deepak; Mehta, Minesh P; Suh, John H

    2010-08-01

    Each year approximately 170,000 patients are diagnosed with brain metastasis in the United States, making this the most common intracranial tumor in adults. Historically, treatment strategies focused on the use of whole brain radiation therapy (WBRT) for palliation, yielding a median survival time of only 3 to 6 months. The possible effect of WBRT on cognitive function has generated much concern and debate regarding the use of this modality. Thus, the use of WBRT alone, or in conjunction with other treatment modalities should take into account both risks and benefits, to ensure the best patient outcome with regard to disease state and functional status. The advent of technologies permitting local dose-escalation have clearly increased local control rates, and in select patients, even survival, thereby, further intensifying the debate regarding the use of WBRT. Here, we review the use of WBRT, radiosurgery, and resection for the treatment of brain metastases. Further, we will review the use of radiation sensitizers and blood-brain barrier penetrating cytotoxics such as temozolomide. Finally, we will discuss current treatment strategies for possibly maintaining and improving cognitive function for these patients.

  18. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres.

    PubMed

    Hoshino, K; Kimura, T; De Grand, A M; Yoneyama, R; Kawase, Y; Houser, S; Ly, H Q; Kushibiki, T; Furukawa, Y; Ono, K; Tabata, Y; Frangioni, J V; Kita, T; Hajjar, R J; Hayase, M

    2006-09-01

    Gelatin hydrogel microspheres (GHMs) have been reported as novel non-viral vectors for gene or protein delivery (GHM therapy). However, the components of an effective catheter-based delivery strategy for GHM therapy are unknown. We evaluated the effectiveness of three catheter-based strategies for cardiac GHM therapy: (1) antegrade injection (AI) via coronary arteries; (2) retrograde injection (RI) via coronary veins; and (3) direct myocardial injection (DI) via the coronary sinus. AI distributed microspheres homogeneously throughout the target area with 73+/-11% retention. RI scattered microspheres non-homogenously with 22+/-8% retention. DI distributed microspheres in the needle-advanced area with 47+/-14% retention. However, despite high efficiency, AI did not show biological effects of inducing angiogenesis from basic fibroblast growth factor bound to GHMs. Furthermore, focal micro-infarctions, owing to micro-embolism of aggregated GHMs into small coronary arterioles, were detected in the AI group. Conversely, only RI and DI groups displayed increased coronary flow reserve. DI groups also demonstrated increased capillary density. These results suggest that RI and DI are effective for cardiac GHM therapy, while AI appears inappropriate owing to the risk of focal infarctions.

  19. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy?

    PubMed Central

    De Silva, T. Michael; Miller, Alyson A.

    2016-01-01

    Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors. PMID:27014073

  20. [Therapeutics strategies for the management of urinary tract infection in children].

    PubMed

    Launay, E; Bingen, E; Cohen, R

    2012-11-01

    Urinary tract infections is one of the most common bacterial infections in pediatrics The increasing involvement of multiresistant bacteria including E. coli producing extended spectrum ß-lactamase (ESBL) makes its management difficult. The purpose of this article is to evaluate the state of the art and to propose ways of thinking about the management of E. coli urinary tract infection in children. The current percentage (less than 10%) of E. coli strains resistant to third generation cephalosporins and the relative efficiency of the latter, should not led to an immediate change of our protocols. Nevertheless, we should verify as soon as possible susceptibility of E. coli responsible for urinary tract infections and consider other therapeutic options for initial therapy and adaptation after obtaining antibiogram. The use of an aminoglycosid as initial treatment seems very interesting. Aminoglycosides have a very good distribution in the renal parenchyma and are still working on the majority of ESBL-producing bacteria. A rapid oral relay after 48 to 72 hours may be proposed according to the results of the susceptibility with either cotrimoxazole, cefixime, ciprofloxacin or an association cefixime-amoxicilline/clavulanate. The treatment of cystitis due to ESBL E. coli is much less problematic given the good urinary beta-lactam antibiotics diffusion. If clinical improvement occurs, even if antibiogram shows that the strain is resistant to the antibiotic prescribed, it is usually unnecessary to change treatment.

  1. Drug Repositioning for Gynecologic Tumors: A New Therapeutic Strategy for Cancer

    PubMed Central

    Banno, Kouji; Yanokura, Megumi; Irie, Haruko; Masuda, Kenta; Kobayashi, Yusuke; Tominaga, Eiichiro; Aoki, Daisuke

    2015-01-01

    The goals of drug repositioning are to find a new pharmacological effect of a drug for which human safety and pharmacokinetics are established and to expand the therapeutic range of the drug to another disease. Such drug discovery can be performed at low cost and in the short term based on the results of previous clinical trials. New drugs for gynecologic tumors may be found by drug repositioning. For example, PPAR ligands may be effective against ovarian cancer, since PPAR activation eliminates COX-2 expression, arrests the cell cycle, and induces apoptosis. Metformin, an antidiabetic drug, is effective for endometrial cancer through inhibition of the PI3K-Akt-mTOR pathway by activating LKB1-AMPK and reduction of insulin and insulin-like growth factor-1 due to AMPK activation. COX-2 inhibitors for cervical cancer may also be examples of drug repositioning. PGE2 is induced in the arachidonate cascade by COX-2. PGE2 maintains high expression of COX-2 and induces angiogenic factors including VEGF and bFGF, causing carcinogenesis. COX-2 inhibitors suppress these actions and inhibit carcinogenesis. Combination therapy using drugs found by drug repositioning and current anticancer drugs may increase efficacy and reduce adverse drug reactions. Thus, drug repositioning may become a key approach for gynecologic cancer in drug discovery. PMID:25734181

  2. The third therapeutic system: faith healing strategies in the context of a generalized AIDS epidemic.

    PubMed

    Manglos, Nicolette D; Trinitapoli, Jenny

    2011-03-01

    Faith healing in sub-Saharan Africa has primarily been studied qualitatively among Pentecostal-Charismatic groups, and considered as its own phenomenon with little attention to its relationship to other modes of healing. Using data from Malawi, a religiously diverse African country with high HIV prevalence, we find that faith healing is pervasive across multiple religious traditions. For individuals, attending a faith healing congregation is associated with lower levels of generalized worry about AIDS, and this association is driven by those who switched churches before AIDS became widespread in rural areas. Use of condoms and traditional medicine are, on the other hand, positively associated with worry about AIDS. We argue that faith healing can be understood as a third therapeutic system that coexists with the well-documented biomedical and traditional systems. The success of faith healing approaches lies in their unique ability to combine individual-pragmatic and communal-ritualized aspects of healing to inform interpretations of the AIDS epidemic and its consequences.

  3. Multiple sclerosis in children: an update on clinical diagnosis, therapeutic strategies, and research

    PubMed Central

    Waldman, Amy; Ghezzi, Angelo; Bar-Or, Amit; Mikaeloff, Yann; Tardieu, Marc; Banwell, Brenda

    2015-01-01

    The clinical features, diagnostic challenges, neuroimaging appearance, therapeutic options, and pathobiological research progress in childhood—and adolescent—onset multiple sclerosis have been informed by many new insights in the past 7 years. National programmes in several countries, collaborative research efforts, and an established international paediatric multiple sclerosis study group have contributed to revised clinical diagnostic definitions, identified clinical features of multiple sclerosis that differ by age of onset, and made recommendations regarding the treatment of paediatric multiple sclerosis. The relative risks conveyed by genetic and environmental factors to paediatric multiple sclerosis have been the subject of several large cohort studies. MRI features have been characterised in terms of qualitative descriptions of lesion distribution and applicability of MRI aspects to multiple sclerosis diagnostic criteria, and quantitative studies have assessed total lesion burden and the effect of the disease on global and regional brain volume. Humoral-based and cell-based assays have identified antibodies against myelin, potassium-channel proteins, and T-cell profiles that support an adult-like T-cell repertoire and cellular reactivity against myelin in paediatric patients with multiple sclerosis. Finally, the safety and efficacy of standard first-line therapies in paediatric multiple sclerosis populations are now appreciated in more detail, and consensus views on the future conduct and feasibility of phase 3 trials for new drugs have been proposed. PMID:25142460

  4. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies

    PubMed Central

    2010-01-01

    Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects. PMID:20540720

  5. Update on pathogenesis and predictors of response of therapeutic strategies used in inflammatory bowel disease

    PubMed Central

    Quetglas, Emilio G; Mujagic, Zlatan; Wigge, Simone; Keszthelyi, Daniel; Wachten, Sebastian; Masclee, Ad; Reinisch, Walter

    2015-01-01

    The search for biomarkers that characterize specific aspects of inflammatory bowel disease (IBD), has received substantial interest in the past years and is moving forward rapidly with the help of modern technologies. Nevertheless, there is a direct demand to identify adequate biomarkers for predicting and evaluating therapeutic response to different therapies. In this subset, pharmacogenetics deserves more attention as part of the endeavor to provide personalized medicine. The ultimate goal in this area is the adjustment of medication for a patient’s specific genetic background and thereby to improve drug efficacy and safety rates. The aim of the following review is to utilize the latest knowledge on immunopathogenesis of IBD and update the findings on the field of Immunology and Genetics, to evaluate the response to the different therapies. In the present article, more than 400 publications were reviewed but finally 287 included based on design, reproducibility (or expectancy to be reproducible and translationable into humans) or already measured in humans. A few tests have shown clinical applicability. Other, i.e., genetic associations for the different therapies in IBD have not yet shown consistent or robust results. In the close future it is anticipated that this, cellular and genetic material, as well as the determination of biomarkers will be implemented in an integrated molecular diagnostic and prognostic approach to manage IBD patients. PMID:26640330

  6. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies

    PubMed Central

    Rinaldi, Mariagrazia; Caffo, Maria; Minutoli, Letteria; Marini, Herbert; Abbritti, Rosaria Viola; Squadrito, Francesco; Trichilo, Vincenzo; Valenti, Andrea; Barresi, Valeria; Altavilla, Domenica; Passalacqua, Marcello; Caruso, Gerardo

    2016-01-01

    Reactive oxygen species (ROS) represent reactive products belonging to the partial reduction of oxygen. It has been reported that ROS are involved in different signaling pathways to control cellular stability. Under normal conditions, the correct function of redox systems leads to the prevention of cell oxidative damage. When ROS exceed the antioxidant defense system, cellular stress occurs. The cellular redox impairment is strictly related to tumorigenesis. Tumor cells, through the generation of hydrogen peroxide, tend to the alteration of cell cycle phases and, finally to cancer progression. In adults, the most common form of primary malignant brain tumors is represented by gliomas. The gliomagenesis is characterized by numerous molecular processes all characterized by an altered production of growth factor receptors. The difficulty to treat brain cancer depends on several biological mechanisms such as failure of drug delivery through the blood-brain barrier, tumor response to chemotherapy, and intrinsic resistance of tumor cells. Understanding the mechanisms of ROS action could allow the formulation of new therapeutic protocols to treat brain gliomas. PMID:27338365

  7. Therapeutic Strategies for Alzheimer's and Parkinson's Diseases by Means of Drug Delivery Systems.

    PubMed

    Cunha, S; Amaral, M H; Lobo, J M Sousa; Silva, A C

    2016-01-01

    Alzheimer's and Parkinson's diseases are prevalent neurodegenerative disorders worldwide, which are essentially related to aging. Within the remarkable era of nanomedicine, nowadays several delivery systems have been suggested to improve the treatment of these disorders, namely, liposomes, micelles, nanoparticles (polymeric, lipid, metallic and inorganic), exosomes, dendrimers and fullerenes. The advantage that has been claimed to these delivery systems is that they facilitate the passage of drugs through the blood brain barrier (BBB), enabling targeting before body degradation, and increasing therapeutic efficacy, comparied to conventional pharmaceutical dosage forms. This review article provides a state of the art regarding the drug delivery systems that have been studied for the treatment of Alzheimer's and Parkinson's diseases. It begins with a brief description of the central nervous system (CNS) and the mechanisms involved in the development of these diseases. Later, some examples of drugs used in the treatment of these neurodegenerative diseases are presented, which are currently available in conventional pharmaceutical dosage forms, and in new drug delivery systems that are under development.

  8. Targeting VIP and PACAP receptor signalling: new therapeutic strategies in multiple sclerosis

    PubMed Central

    Tan, Yossan-Var; Waschek, James A

    2011-01-01

    MS (multiple sclerosis) is a chronic autoimmune and neurodegenerative pathology of the CNS (central nervous system) affecting approx. 2.5 million people worldwide. Current and emerging DMDs (disease-modifying drugs) predominantly target the immune system. These therapeutic agents slow progression and reduce severity at early stages of MS, but show little activity on the neurodegenerative component of the disease. As the latter determines permanent disability, there is a critical need to pursue alternative modalities. VIP (vasoactive intestinal peptide) and PACAP (pituitary adenylate cyclase-activating peptide) have potent anti-inflammatory and neuroprotective actions, and have shown significant activity in animal inflammatory disease models including the EAE (experimental autoimmune encephalomyelitis) MS model. Thus, their receptors have become candidate targets for inflammatory diseases. Here, we will discuss the immunomodulatory and neuroprotective actions of VIP and PACAP and their signalling pathways, and then extensively review the structure–activity relationship data and biophysical interaction studies of these peptides with their cognate receptors. PMID:21895607

  9. Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies.

    PubMed

    Villa, Nancy Y; Rahman, Masmudur M; McFadden, Grant; Cogle, Christopher R

    2016-03-22

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed.

  10. Inhibiting NF-κB Activation by Small Molecules As a Therapeutic Strategy

    PubMed Central

    Gupta, Subash C; Sundaram, Chitra; Reuter, Simone; Aggarwal, Bharat B

    2010-01-01

    Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitnation, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50- p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitnation, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Here, we review the small molecules that suppress NF-κB activation and thus may have therapeutic potential. PMID:20493977

  11. Targeting inhibitor 2 of protein phosphatase 2A as a therapeutic strategy for prostate cancer treatment

    PubMed Central

    Mukhopadhyay, Archana; Tabanor, Kayann; Chaguturu, Rathnam; Aldrich, Jane V

    2013-01-01

    Inhibitor 2 of protein phosphatase 2A (I2PP2A), a biological inhibitor of the cellular serine/threonine protein phosphatase PP2A, is associated with numerous cellular processes that often lead to the formation and progression of cancer. In this study we hypothesized that targeting the inhibition of I2PP2A’s multiple functions in prostate cancer cells might prevent cancer progression. We have investigated the effect of the small chain C6-ceramide, known to be a bioactive tumor suppressor lipid, on I2PP2A function, thereby affecting c-Myc signaling and histone acetylation in cells. Our data indicated that C6-ceramide treatment of prostate cancer cells induces cell death in PC-3, DU145, and LNCaP cells, but not normal prostate epithelial cells. C6-ceramide was able to disrupt the association between PP2A and I2PP2A. C6-ceramide inhibits I2PP2A’s upregulation of c-Myc and downregulation of histone acetylation in prostate cancer cells. Our data indicated that targeting cancer related signaling pathways through I2PP2A using ceramide as an anti-I2PP2A agent could have beneficial effects as a therapeutic approach to prevent prostate cancer. PMID:24025258

  12. Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies

    PubMed Central

    Villa, Nancy Y.; Rahman, Masmudur M.; McFadden, Grant; Cogle, Christopher R.

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed. PMID:27011200

  13. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway

    PubMed Central

    Oon, Shereen; Wilson, Nicholas J; Wicks, Ian

    2016-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by impaired immune tolerance, resulting in the generation of pathogenic autoantibodies and immune complexes. Although autoreactive B lymphocytes have been the first targets for biologic therapies in SLE, the importance of the innate immune system, and in particular, pathways involved in interferon (IFN) signaling, has emerged. There are now data supporting a central role for a plasmacytoid dendritic cell-derived type I IFN pathway in SLE, with a number of biologic therapeutics and small-molecule inhibitors undergoing clinical trials. Monoclonal antibodies targeting IFN-α have completed phase II clinical trials, and an antibody against the type I IFN receptor is entering a phase III trial. However, other IFNs, such as IFN gamma, and the more recently discovered type III IFNs, are also emerging as targets in SLE; and blockade of upstream components of the IFN signaling pathway may enable inhibition of more than one IFN subtype. In this review, we discuss the current understanding of IFNs in SLE, focusing on emerging therapies. PMID:27350879

  14. Mimics of Host Defense Proteins; Strategies for Translation to Therapeutic Applications.

    PubMed

    Scott, Richard W; Tew, Gregory N

    2017-01-01

    New infection treatments are urgently needed to combat the rising threat of multi-drug resistant bacteria. Despite early clinical set-backs attention has re-focused on host defense proteins (HDPs), as potential sources for new and effective antimicrobial treatments. HDPs appear to act at multiple targets and their repertoire includes disruptive membrane and intracellular activities against numerous types of pathogens as well as immune modulatory functions in the host. Importantly, these novel activities are associated with a low potential for emergence of resistance and little crossresistance with other antimicrobial agents. Based on these properties, HDPs appear to be ideal candidates for new antibiotics; however, their development has been plagued by the many therapeutic limitations associated with natural peptidic agents. This review focuses on HDP mimetic approaches aimed to improve metabolic stability, pharmacokinetics, safety and manufacturing processes. Early efforts with β-peptide or peptoid analogs focused on recreating stable facially amphiphilic structures but demonstrated that antimicrobial activity was modulated by more, complex structural properties. Several approaches have used lipidation to increase the hydrophobicity and membrane activity. One lead compound, LTX-109, has entered clinical study as a topical agent to treat impetigo and nasal decolonization. In a more significant departure from the amino acid like peptidomimetics, considerable effort has been directed at developing amphiphilic compounds that recapitulate the structural and biological properties of HDPs on small abiotic scaffolds. The lead compound from this approach, brilacidin, has completed two phase 2 studies as an intravenous agent for skin infections.

  15. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics.

    PubMed

    Wang, Chao; Lu, Lu; Na, Heya; Li, Xiangpeng; Wang, Qian; Jiang, Xifeng; Xu, Xiaoyu; Yu, Fei; Zhang, Tianhong; Li, Jinglai; Zhang, Zhenqing; Zheng, Baohua; Liang, Guodong; Cai, Lifeng; Jiang, Shibo; Liu, Keliang

    2014-09-11

    Triterpene saponins are a major group of active components in natural products with nonspecific antiviral activities, while T20 peptide (enfuvirtide), which contains a helix zone-binding domain (HBD), is a gp41-specific HIV-1 fusion inhibitor. In this paper, we report the design, synthesis, and structure-activity relationship (SAR) of a group of hybrid molecules in which bioactive triterpene sapogenins were covalently attached to the HBD-containing peptides via click chemistry. We found that either the triterpenes or peptide part alone showed weak activity against HIV-1 Env-mediated cell-cell fusion, while the hybrids generated a strong cooperative effect. Among them, P26-BApc exhibited anti-HIV-1 activity against both T20-sensitive and -resistant HIV-1 strains and improved pharmacokinetic properties. These results suggest that this scaffold design is a promising strategy for developing new HIV-1 fusion inhibitors and possibly novel antiviral therapeutics against other viruses with class I fusion proteins.

  16. Data Collection Strategies and Measurement Tools for Assessing Academic and Therapeutic Outcomes in Recovery Schools

    ERIC Educational Resources Information Center

    Botzet, Andria M.; McIlvaine, Patrick W.; Winters, Ken C.; Fahnhorst, Tamara; Dittel, Christine

    2014-01-01

    Accurate evaluation and documentation of the efficacy of recovery schools can be vital to the continuation and expansion of these beneficial resources. A very limited data set currently exists that examines the value of specific schools established to support adolescents and young adults in recovery; additional research is necessary. The following…

  17. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    PubMed

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  18. Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV

    PubMed Central

    Rodríguez, Sabrina M.; Florins, Arnaud; Gillet, Nicolas; de Brogniez, Alix; Sánchez-Alcaraz, María Teresa; Boxus, Mathieu; Boulanger, Fanny; Gutiérrez, Gerónimo; Trono, Karina; Alvarez, Irene; Vagnoni, Lucas; Willems, Luc

    2011-01-01

    Bovine leukemia virus (BLV) is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1). BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination. Although having been instrumental in regions such as the EU, these strategies were unsuccessful elsewhere mainly due to economic costs, management restrictions and lack of an efficient vaccine. This review, which summarizes the different attempts previously developed to decrease seroprevalence of BLV, may be informative for management of HTLV-1 infection. We also propose a new approach based on competitive infection with virus deletants aiming at reducing proviral loads. PMID:21994777

  19. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery

    PubMed Central

    Li, Jing-jing; Huang, Jian; Ouyang, Liang; Zhang, Yonghui; Liu, Bo

    2015-01-01

    As a conserved protein interaction module that recognizes and binds to acetylated lysine, bromodomain (BRD) contains a deep, largely hydrophobic acetyl lysine binding site. Proteins that share the feature of containing two BRDs and an extra-terminal domain belong to BET family, including BRD2, BRD3, BRD4 and BRDT. BET family proteins perform transcription regulatory function under normal conditions, while in cancer, they regulate transcription of several oncogenes, such as c-Myc and Bcl-2. Thus, targeting BET proteins may be a promising strategy, and intense interest of BET proteins has fueled the development of structure-based bromodomain inhibitors in cancer. In this review, we focus on summarizing several small-molecule BET inhibitors and their relevant anti-tumor mechanisms, which would provide a clue for exploiting new targeted BET inhibitors in the future cancer therapy. PMID:25849938

  20. Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era

    PubMed Central

    Kostakioti, Maria; Hadjifrangiskou, Maria

    2013-01-01

    Biofilm formation constitutes an alternative lifestyle in which microorganisms adopt a multicellular behavior that facilitates and/or prolongs survival in diverse environmental niches. Biofilms form on biotic and abiotic surfaces both in the environment and in the healthcare setting. In hospital wards, the formation of biofilms on vents and medical equipment enables pathogens to persist as reservoirs that can readily spread to patients. Inside the host, biofilms allow pathogens to subvert innate immune defenses and are thus associated with long-term persistence. Here we provide a general review of the steps leading to biofilm formation on surfaces and within eukaryotic cells, highlighting several medically important pathogens, and discuss recent advances on novel strategies aimed at biofilm prevention and/or dissolution. PMID:23545571

  1. Postprandial Dysmetabolism and Oxidative Stress in Type 2 Diabetes: Pathogenetic Mechanisms and Therapeutic Strategies.

    PubMed

    Sottero, Barbara; Gargiulo, Simona; Russo, Isabella; Barale, Cristina; Poli, Giuseppe; Cavalot, Franco

    2015-09-01

    Postprandial dysmetabolism in type 2 diabetes (T2D) is known to impact the progression and evolution of this complex disease process. However, the underlying pathogenetic mechanisms still require full elucidation to provide guidance for disease prevention and treatment. This review focuses on the marked redox changes and inflammatory stimuli provoked by the spike in blood glucose and lipids in T2D individuals after meals. All the causes of exacerbated postprandial oxidative stress in T2D were analyzed, also considering the consequence of enhanced inflammation on vascular damage. Based on this in-depth analysis, current strategies of prevention and pharmacologic management of T2D were critically reexamined with particular emphasis on their potential redox-related rationale.

  2. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery.

    PubMed

    Fu, Lei-lei; Tian, Mao; Li, Xiang; Li, Jing-jing; Huang, Jian; Ouyang, Liang; Zhang, Yonghui; Liu, Bo

    2015-03-20

    As a conserved protein interaction module that recognizes and binds to acetylated lysine, bromodomain (BRD) contains a deep, largely hydrophobic acetyl lysine binding site. Proteins that share the feature of containing two BRDs and an extra-terminal domain belong to BET family, including BRD2, BRD3, BRD4 and BRDT. BET family proteins perform transcription regulatory function under normal conditions, while in cancer, they regulate transcription of several oncogenes, such as c-Myc and Bcl-2. Thus, targeting BET proteins may be a promising strategy, and intense interest of BET proteins has fueled the development of structure-based bromodomain inhibitors in cancer. In this review, we focus on summarizing several small-molecule BET inhibitors and their relevant anti-tumor mechanisms, which would provide a clue for exploiting new targeted BET inhibitors in the future cancer therapy.

  3. HDL-C: does it matter? An update on novel HDL-directed pharmaco-therapeutic strategies.

    PubMed

    Gadi, Ramprasad; Amanullah, Aman; Figueredo, Vincent M

    2013-08-10

    It has long been recognized that elevated levels of low-density lipoprotein cholesterol (LDL-C) increase the risk of cardiovascular disease (CHD) and that pharmacologic therapy to decrease LDL-C significantly reduces cardiovascular events. Despite the effectiveness of statins for CHD risk reduction, even optimal LDL-lowering therapy alone fails to avert 60% to 70% of CHD cases. A low plasma concentration of high-density lipoprotein cholesterol (HDL-C) is also associated with increased risk of CHD. However, the convincing epidemiologic data linking HDL cholesterol (HDL-C) to CHD risk in an inverse correlation has not yet translated into clinical trial evidence supporting linearity between HDL-C increases and CHD risk reduction. It is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-C levels. Discoveries in the past decade have shed light on the complex metabolic and antiatherosclerotic pathways of HDL. These insights, in turn, have fueled the development of new HDL-targeted drugs, which can be classified according to four different therapeutic approaches: directly augmenting the concentration of apolipoprotein A-I (apo A-I), the major protein constituent of HDL; indirectly augmenting the concentration of apo A-I and HDL cholesterol; mimicking the functionality of apo A-I and enhancing reverse cholesterol transport. This review discusses the latest in novel HDL directed therapeutic strategies.

  4. In situ eNOS/NO up-regulation—a simple and effective therapeutic strategy for diabetic skin ulcer

    PubMed Central

    Yang, Ye; Yin, Dengke; Wang, Fei; Hou, Ziyan; Fang, Zhaohui

    2016-01-01

    Decreased nitric oxide (NO) synthesis and increased NO consumption in diabetes induces the inadequate blood flow to tissues that is primarily responsible for the pathogenesis and refractoriness of diabetic skin ulcers. The present study proposed a simple and effective therapeutic strategy for diabetic skin ulcers—in situ up-regulation of endothelial nitric oxide synthase (eNOS) expression and NO synthesis by statin-loaded tissue engineering scaffold (TES). In vitro experiments on human umbilical vein endothelial cells indicated that the statin-loaded TES relieved the high-glucose induced decrease in cell viability and promoted NO synthesis under high-glucose conditions. In a rat model of diabetes, the statin-loaded TES promoted eNOS expression and NO synthesis in/around the regenerated tissues. Subsequently, accelerated vascularization and elevated blood supply were observed, followed by rapid wound healing. These findings suggest that the in situ up-regulation of eNOS/NO by a statin-loaded TES may be a useful therapeutic method for intractable diabetic skin wounds. PMID:27453476

  5. sHDL Nanoparticles: A Novel Therapeutic Strategy for Adrenocortical Carcinomas

    PubMed Central

    Subramanian, Chitra; Kuai, Rui; Zhu, Qing; White, Peter; Moon, James; Schwendeman, Anna; Cohen, Mark S.

    2015-01-01

    Background Chemotherapeutic strategies for adrenocortical carcinoma (ACC) carry significant toxicities. Cholesterol is critical for ACC cell growth and steroidogenesis and ACC cells over-express scavenger receptor BI (SR-BI) that uptakes cholesterol from circulating high-density lipoprotein (HDL). We hypothesize that cholesterol-free synthetic-HDL nanoparticles (sHDL) will deplete cholesterol and synergize with chemotherapeutics to achieve enhanced anticancer effects at lower (less toxic) drug levels. Methods Anti proliferative efficacy of ACC cells for the combinations of sHDL with chemotherapeutics was tested by cell-Titer Glo. Cortisol levels were measured from the culture media. Effect on steroidogenesis was measured by RT-PCR. Induction of apoptosis was evaluated by flow cytometry. Results Combination-Index (CI) for sHDL and either etoposide(E), cisplatin(P) or mitotane(M) demonstrated synergy (CI<1) for anti-proliferation. sHDL alone or in combination with chemo drugs was able to reduce cortisol production by 70-90% compared to cisplatin alone or controls (p<0.01). RT-PCR indicated significant inhibition of steroidogenic enzymes for sHDL (p<0.01 vs. no sHDL). Combination therapy with sHDL increased apoptosis by 30-50% compared to drug or sHDL alone (p<0.03) confirmed by mitochondrial potential decrease. Conclusion sHDL can act synergistically and lower the amount of M/E/P needed for anticancer efficacy in ACC in part due to cholesterol starvation. This novel treatment strategy warrants further investigation translationally. PMID:26582501

  6. Skeletal Muscle Homeostasis in Duchenne Muscular Dystrophy: Modulating Autophagy as a Promising Therapeutic Strategy

    PubMed Central

    De Palma, Clara; Perrotta, Cristiana; Pellegrino, Paolo; Clementi, Emilio; Cervia, Davide

    2014-01-01

    Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD), the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity, and chronic local inflammation leading to substitution of myofibers by connective and adipose tissue. DMD patients suffer from continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. Autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates, and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels, it can be detrimental and contribute to muscle wasting; at low levels, it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular level, the Akt axis is one of the key dysregulated pathways, although the molecular events are not completely understood. The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signaling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting. PMID:25104934

  7. Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach.

    PubMed

    Dalamagkas, Kyriakos; Tsintou, Magdalini; Seifalian, Alexander

    2016-08-01

    Peripheral nerve injury is a very common medical condition with varying clinical severity but always great impact on the patients' productivity and the quality of life. Even the current 1st-choice surgical therapeutic approach or the "gold standard" as frequently called in clinical practice, is not addressing the problem efficiently and cost-effectively, increasing the mortality through the need of a second surgical intervention, while it does not take into account the several different types of nerves involved in peripheral nerve injuries. Neural tissue engineering approaches could potentially offer a very promising and attractive tool for the efficient peripheral nerve injury management, not only by mechanically building the gap, but also by inducing neuroregenerative mechanisms in a well-regulated microenvironment which would mimic the natural environment of the specific nerve type involved in the injury to obtain an optimum clinical outcome. There is still room for a lot of optimizations in regard to the conduits which have been developed with the help of neural engineering since many parameters affect the clinical outcome and the underlying mechanisms are still not well understood. Especially the intraluminal cues controlling the microenvironment of the conduits are in an infantile stage but there is profound potential in the application of the scaffolds. The aim of our review is to provide a quick reference to the recent advances in the field, focusing on the parameters that can significantly affect the clinical potentials of each approach, with suggestions for future improvements that could take the current work from bench to bedside. Thus, further research could shed light to those questions and it might hold the key to discover new more efficient and cost-effective therapies.

  8. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss?

    PubMed Central

    Romero-Guevara, Ricardo; Cencetti, Francesca; Donati, Chiara; Bruni, Paola

    2015-01-01

    Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future

  9. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.

    PubMed

    Wen, Wan-Shun; Yuan, Zhi-Min; Ma, Shi-Jie; Xu, Jiang; Yuan, Dong-Tang

    2016-03-15

    The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area.

  10. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation.

    PubMed

    Rahimifard, Mahban; Maqbool, Faheem; Moeini-Nodeh, Shermineh; Niaz, Kamal; Abdollahi, Mohammad; Braidy, Nady; Nabavi, Seyed Mohammad; Nabavi, Seyed Fazel

    2017-02-21

    A wide array of cell signaling mediators and their interactions play vital roles in neuroinflammation associated with ischemia, brain trauma, developmental disorders and age-related neurodegeneration. Along with neurons, microglia and astrocytes are also affected by the inflammatory cascade by releasing pro-inflammatory cytokines, chemokines and reactive oxygen species. The release of pro-inflammatory mediators in response to neural dysfunction may be helpful, neutral or even deleterious to normal cellular survival. Moreover, the important role of NF-κB factors in the central nervous system (CNS) through toll-like receptor (TLR) activation has been well established. This review demonstrates recent findings regarding therapeutic aspects of polyphenolic compounds for the treatment of neuroinflammation, with the aim of regulating TLR4. Polyphenols including flavonoids, phenolic acids, phenolic alcohols, stilbenes and lignans, can target TLR4 signaling pathways in multiple ways. Toll interacting protein expression could be modulated by epigallocatechin-3-gallate. Resveratrol may also exert neuroprotective effects via the TLR4/NF-κB/STAT signaling cascade. Its role in activation of cascade via interfering with TLR4 oligomerization upon receptor stimulation has also been reported. Curcumin, another polyphenol, can suppress overexpression of inflammatory mediators via inhibiting the TLR4-MAPK/NF-κB pathway. It can also reduce neuronal apoptosis via a mechanism concerning the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages. Despite a symphony of in vivo and in vitro studies, many molecular and pharmacological aspects of neuroinflammation remain unclear. It is proposed that natural compounds targeting TLR4 may serve as important pharmacophores for the development of potent drugs for the treatment of neurological disorders.

  11. RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes.

    PubMed

    Wilton, Steve D; Fletcher, Susan

    2011-08-01

    Antisense oligomers initially showed promise as compounds to modify gene expression, primarily through RNaseH induced degradation of the target transcript. Expansion of the field has led to new chemistries capable of invoking different mechanisms, including suppression of protein synthesis by translational blockade and gene silencing using short interfering RNAs. It is now apparent that the majority of the eukaryotic genome is transcribed and non-protein coding RNAs have been implicated in the regulation of gene expression at many levels. This review considers potential therapeutic applications of antisense oligomers to modify gene expression, primarily by interfering with the process of exon recognition and intron removal during gene transcript splicing. While suppression of gene expression will be necessary to address some conditions, it is likely that antisense oligomer splice modification will have extensive clinical application. Pre-mRNA splicing is a tightly co-ordinated, multifactorial process that can be disrupted by antisense oligomers in a highly specific manner to suppress aberrant splicing, remove exons to by-pass nonsense or frame-shifting mutations or influence exon selection to alter spliceoform ratios. Manipulation of splicing patterns has been applied to a diverse range of conditions, including b-thalassemia, Duchenne muscular dystrophy, spinal muscular atrophy and certain cancers. Alternative exon usage has been identified as a major mechanism for generating diversity from a limited repertoire of genes in higher eukaryotes. Considering that the majority of all human primary gene transcripts are reportedly alternatively spliced, intervention at the level of pre-mRNA processing is likely to become increasingly significant in the fight against genetic and acquired disorders.

  12. Strategies for recruiting additional African Americans into the NASA JSC summer faculty fellows program

    NASA Technical Reports Server (NTRS)

    Hyman, Ladelle M.

    1993-01-01

    African Americans have participated sporadically in the NASA JSC Summer Faculty Fellows Program--none in 1992 and four in 1993. There is a pool of African Americans who are both qualified to provide services and willing to participate in initiatives which support technologies required for future JSC programs. They can provide human support and handle mission operations, spacecraft systems, planet surface systems, and management tools. Most of these faculty teach at historically black colleges and universities (HBCU's). This research will document the current recruitment system, critique it, and develop a strategy which will facilitate the diversification of the NASA JSC Summer Faculty Fellows Program. While NASA currently mails notices to HBCU's, such notices have generated few applications from, and fewer selections of, targeted faculty. To increase the participation of African Americans in the NASA JSC Summer Faculty Fellows Program, this participant will prepare a strategy which includes a document which identifies HBCU-targeted faculty and enumerates more formally extensive and intensive communication procedures. A fifteen-minute panel discussion, which will include a video, will be delivered during the annual meeting of the American Society for Engineering Education (ASEE) to be held in Edmonton, Alberta, Canada, June 26-29, 1994. An announcement letter will be mailed to targeted faculty; follow-up telephone calls and personal visits will be made and a checklist flowchart will be completed by key NASA personnel or designee. Although initially limited to NASA JSC's recruitment of African Americans, this strategy may be broadened to include other NASA sites and other targeted minority groups.

  13. Alterations in Cholinergic Pathways and Therapeutic Strategies Targeting Cholinergic System after Traumatic Brain Injury

    PubMed Central

    Shin, Samuel S.

    2015-01-01

    Abstract Traumatic brain injury (TBI) results in varying degrees of disability in a significant number of persons annually. The mechanisms of cognitive dysfunction after TBI have been explored in both animal models and human clinical studies for decades. Dopaminergic, serotonergic, and noradrenergic dysfunction has been described in many previous reports. In addition, cholinergic dysfunction has also been a familiar topic among TBI researchers for many years. Although pharmacological agents that modulate cholinergic neurotransmission have been used with varying degrees of success in previous studies, improving their function and maximizing cognitive recovery is an ongoing process. In this article, we review the previous findings on the biological mechanism of cholinergic dysfunction after TBI. In addition, we describe studies that use both older agents and newly developed agents as candidates for targeting cholinergic neurotransmission in future studies. PMID:25646580

  14. A New Therapeutic Strategy for Autosomal Dominant Polycystic Kidney Disease: Activation of AMP Kinase by Metformin

    DTIC Science & Technology

    2012-07-01

    magnitude, [32]), indicating that urine succinate levels could be a potential biomarker for detecting diabetic nephropathy early on in the disease progression...a drug in wide clinical use for both non-insulin dependent diabetes mellitus and Polycystic Ovary Syndrome, stimulates AMPK (10, 11). We therefore...regimens can produce AMPK activation in wild type mice. In addition, we will determine whether activation of AMPK by metformin treatment exhibits any

  15. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies

    PubMed Central

    Modi, Meera E.; Young, Larry J.

    2012-01-01

    Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22206823

  16. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade.

    PubMed

    Trevisan, Gabriela; Materazzi, Serena; Fusi, Camilla; Altomare, Alessandra; Aldini, Giancarlo; Lodovici, Maura; Patacchini, Riccardo; Geppetti, Pierangelo; Nassini, Romina

    2013-05-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and painful adverse reaction of cancer treatment in patients that is little understood or treated. Cytotoxic drugs that cause CIPN exert their effects by increasing oxidative stress, which activates the ion channel TRPA1 expressed by nociceptors. In this study, we evaluated whether TRPA1 acted as a critical mediator of CIPN by bortezomib or oxaliplatin in a mouse model system. Bortezomib evoked a prolonged mechanical, cold, and selective chemical hypersensitivity (the latter against the TRPA1 agonist allyl isothiocyanate). This CIPN hypersensitivity phenotype that was stably established by bortezomib could be transiently reverted by systemic or local treatment with the TRPA1 antagonist HC-030031. A similar effect was produced by the oxidative stress scavenger α-lipoic acid. Notably, the CIPN phenotype was abolished completely in mice that were genetically deficient in TRPA1, highlighting its essential role. Administration of bortezomib or oxaliplatin, which also elicits TRPA1-dependent hypersensitivity, produced a rapid, transient increase in plasma of carboxy-methyl-lysine, a by-product of oxidative stress. Short-term systemic treatment with either HC-030031 or α-lipoic acid could completely prevent hypersensitivity if administered before the cytotoxic drug. Our findings highlight a key role for early activation/sensitization of TRPA1 by oxidative stress by-products in producing CIPN. Furthermore, they suggest prevention strategies for CIPN in patients through the use of early, short-term treatments with TRPA1 antagonists.

  17. Targeting Hsp90-Cdc37: a promising therapeutic strategy by inhibiting Hsp90 chaperone function.

    PubMed

    Wang, Lei; Li, Li; Gu, Kai; Xu, Xiao-Li; You, Qi-Dong; Sun, Hao-Peng

    2016-05-27

    The Hsp90 chaperone protein regulates the folding, maturation and stability of a wide variety of oncoproteins. In recent years, many Hsp90 inhibitors have entered into the clinical trials while all of them target ATPase showing similar binding capacity and kinds of side-effects so that none have reached to the market. During the regulation progress, numerous protein-protein interactions (PPI) such as Hsp90 and client proteins or cochaperones are involved. With the Hsp90-cochaperones PPI networks being more and more clear, many cancerous proteins have been reported to be tightly correlated to Hsp90-cochaperones PPI. Among them, Hsp90-Cdc37 PPI has been widely reported to associate with numerous protein kinases, making it a novel target for the treatment of cancers. In this paper, we briefly review the strategies and modulators targeting Hsp90-Cdc37 complex including direct and indirect regulation mechanism. Through these discussions we expect to present inspirations for new insights into an alternative way to inhibit Hsp90 chaperone function.

  18. Macrophage-mediated GDNF Delivery Protects Against Dopaminergic Neurodegeneration: A Therapeutic Strategy for Parkinson's Disease

    PubMed Central

    Biju, KC; Zhou, Qing; Li, Guiming; Imam, Syed Z; Roberts, James L; Morgan, William W; Clark, Robert A; Li, Senlin

    2010-01-01

    Glial cell line–derived neurotrophic factor (GDNF) has emerged as the most potent neuroprotective agent tested in experimental models for the treatment of Parkinson's disease (PD). However, its use is hindered by difficulties in delivery to the brain due to the presence of the blood–brain barrier (BBB). In order to circumvent this problem, we took advantage of the fact that bone marrow stem cell–derived macrophages are able to pass the BBB and home to sites of neuronal degeneration. Here, we report the development of a method for brain delivery of GDNF by genetically modified macrophages. Bone marrow stem cells were transduced ex vivo with lentivirus expressing a GDNF gene driven by a synthetic macrophage-specific promoter and then transplanted into recipient mice. Eight weeks after transplantation, the mice were injected with the neurotoxin, MPTP, for 7 days to induce dopaminergic neurodegeneration. Macrophage-mediated GDNF treatment dramatically ameliorated MPTP-induced degeneration of tyrosine hydroxylase (TH)-positive neurons of the substantia nigra and TH+ terminals in the striatum, stimulated axon regeneration, and reversed hypoactivity in the open field test. These results indicate that macrophage-mediated GDNF delivery is a promising strategy for developing a neuroprotective therapy for PD. PMID:20531393

  19. Potential Therapeutic Strategies for Hypertension-Exacerbated Cardiotoxicity of Anticancer Drugs

    PubMed Central

    Kuriakose, Robin K.; Kukreja, Rakesh C.

    2016-01-01

    Despite their recognized cardiotoxic effects, anthracyclines remain an essential component in many anticancer regimens due to their superior antitumor efficacy. Epidemiologic data revealed that about one-third of cancer patients have hypertension, which is the most common comorbidity in cancer registries. The purpose of this review is to assess whether anthracycline chemotherapy exacerbates cardiotoxicity in patients with hypertension. A link between hypertension comorbidity and anthracycline-induced cardiotoxicity (AIC) was first suggested in 1979. Subsequent preclinical and clinical studies have supported the notion that hypertension is a major risk factor for AIC, along with the cumulative anthracycline dosage. There are several common or overlapping pathological mechanisms in AIC and hypertension, such as oxidative stress. Current evidence supports the utility of cardioprotective modalities as adjunct treatment prior to and during anthracycline chemotherapy. Several promising cardioprotective approaches against AIC pathologies include dexrazoxane, early hypertension management, and dietary supplementation of nitrate with beetroot juice or other medicinal botanical derivatives (e.g., visnagin and Danshen), which have both antihypertensive and anti-AIC properties. Future research is warranted to further elucidate the mechanisms of hypertension and AIC comorbidity and to conduct well-controlled clinical trials for identifying effective clinical strategies to improve long-term prognoses in this subgroup of cancer patients. PMID:27829985

  20. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Throughout the globe, diabetes mellitus (DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder. DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy. The mechanistic target of rapamycin (mTOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM. mTOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis, insulin resistance, insulin secretion, stem cell proliferation and differentiation, pancreatic β-cell function, and programmed cell death with apoptosis and autophagy. mTOR is central element for the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), and growth factors. As a result, mTOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease. Future studies directed to elucidate the delicate balance mTOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM. PMID:27127460

  1. House Dust Mite Respiratory Allergy: An Overview of Current Therapeutic Strategies.

    PubMed

    Calderón, Moisés A; Kleine-Tebbe, Jörg; Linneberg, Allan; De Blay, Frédéric; Hernandez Fernandez de Rojas, Dolores; Virchow, Johann Christian; Demoly, Pascal

    2015-01-01

    Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence on the efficacy of pharmacotherapy treatment for known HDM-allergic patients is weaker. The standard diagnostic techniques--skin prick test and specific IgE testing--can be confounded by cross-reactivity. However, component-resolved diagnosis using purified and recombinant allergens can improve the accuracy of specific IgE testing, but availability is limited. Treatment options for HDM allergy are limited and include HDM avoidance, which is widely recommended as a strategy, although evidence for its efficacy is variable. Clinical efficacy of pharmacotherapy is well documented; however, symptom relief does not extend beyond the end of treatment. Finally, allergen immunotherapy has a poor but improving evidence base (notably on sublingual tablets) and its benefits last after treatment ends. This review identifies needs for deeper physician knowledge on the extent and impact of HDM allergy in respiratory disease, as well as further development and improved access to molecular allergy diagnosis. Furthermore, there is a need for the development of better-designed clinical trials to explore the utility of allergen-specific approaches, and uptake of data into guidance for physicians on more effective diagnosis and therapy of HDM respiratory allergy in practice.

  2. Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies

    NASA Astrophysics Data System (ADS)

    Collet, G.; Robert, E.; Lenoir, A.; Vandamme, M.; Darny, T.; Dozias, S.; Kieda, C.; Pouvesle, J. M.

    2014-02-01

    The lack of oxygen is a major reason for the resistance of tumor cells to treatments such as radiotherapies. A large number of recent publications on non-thermal plasma applications in medicine report cell behavior modifications and modulation of soluble factors. This in vivo study tested whether such modifications can lead to vascular changes in response to plasma application. Two in situ optical-based methods were used simultaneously, in real time, to assess the effect of non-thermal plasma on tissue vasculature. Tissue oxygen partial pressure (pO2) was measured using a time-resolved luminescence-based optical probe, and the microvascular erythrocyte flow was determined by laser Doppler flowmetry. When plasma treatment was applied on mouse skin, a rapid pO2 increase (up to 4 times) was subcutaneously measured and correlated with blood flow improvement. Such short duration, i.e. 5 min, plasma-induced effects were shown to be locally restricted to the treated area and lasted over 120 min. Further investigations should elucidate the molecular mechanisms of these processes. However, improvement of oxygenation and perfusion open new opportunities for tumor treatments in combination with radiotherapy, and for tumor blood vessel normalization based strategies.

  3. Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies.

    PubMed

    Lettre, Guillaume; Bauer, Daniel E

    2016-06-18

    Sickle-cell disease affects millions of individuals worldwide, but the global incidence is concentrated in Africa. The burden of sickle-cell disease is expected to continue to rise over the coming decades, adding to stress on the health infrastructures of many countries. Although the molecular cause of sickle-cell disease has been known for more than half a century, treatment options remain greatly limited. Allogeneic haemopoietic stem-cell transplantation is the only existing cure but is limited to specialised clinical centres and remains inaccessible for most patients. Induction of fetal haemoglobin production is a promising strategy for the treatment of sickle-cell disease. In this Series paper, we review scientific breakthroughs in epidemiology, genetics, and molecular biology that have brought reactivation of fetal haemoglobin to the forefront of sickle-cell disease research. Improved knowledge of the regulation of fetal haemoglobin production in human beings and the development of genome editing technology now support the design of innovative therapies for sickle-cell disease that are based on fetal haemoglobin.

  4. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy

    PubMed Central

    Wurtele, Hugo; Tsao, Sarah; Lépine, Guylaine; Mullick, Alaka; Tremblay, Jessy; Drogaris, Paul; Lee, Eun-Hye; Thibault, Pierre; Verreault, Alain; Raymond, Martine

    2014-01-01

    Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections. PMID:20601951

  5. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy

    PubMed Central

    Gramlich, Michael; Pane, Luna Simona; Zhou, Qifeng; Chen, Zhifen; Murgia, Marta; Schötterl, Sonja; Goedel, Alexander; Metzger, Katja; Brade, Thomas; Parrotta, Elvira; Schaller, Martin; Gerull, Brenda; Thierfelder, Ludwig; Aartsma-Rus, Annemieke; Labeit, Siegfried; Atherton, John J; McGaughran, Julie; Harvey, Richard P; Sinnecker, Daniel; Mann, Matthias; Laugwitz, Karl-Ludwig; Gawaz, Meinrad Paul; Moretti, Alessandra

    2015-01-01

    Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM. PMID:25759365

  6. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke.

    PubMed

    Yigitkanli, Kazim; Pekcec, Anton; Karatas, Hulya; Pallast, Stefanie; Mandeville, Emiri; Joshi, Netra; Smirnova, Natalya; Gazaryan, Irina; Ratan, Rajiv R; Witztum, Joseph L; Montaner, Joan; Holman, Theodore R; Lo, Eng H; van Leyen, Klaus

    2013-01-01

    Targeting newly identified damage pathways in the ischemic brain can help to circumvent the currently severe limitations of acute stroke therapy. Here we show that the activity of 12/15-lipoxygenase was increased in the ischemic mouse brain, and 12/15-lipoxygenase colocalized with a marker for oxidized lipids, MDA2. This colocalization was also detected in the brain of 2 human stroke patients, where it also coincided with increased apoptosis-inducing factor. A novel inhibitor of 12/15-lipoxygenase, LOXBlock-1, protected neuronal HT22 cells against oxidative stress. In a mouse model of transient focal ischemia, the inhibitor reduced infarct sizes both 24 hours and 14 days poststroke, with improved behavioral parameters. Even when treatment was delayed until at least 4 hours after onset of ischemia, LOXBlock-1 was protective. Furthermore, it reduced tissue plasminogen activator-associated hemorrhage in a clot model of ischemia/reperfusion. This study establishes inhibition of 12/15-lipoxygenase as a viable strategy for first-line stroke treatment.

  7. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke

    PubMed Central

    Yigitkanli, Kazim; Pekcec, Anton; Karatas, Hulya; Pallast, Stefanie; Mandeville, Emiri; Joshi, Netra; Smirnova, Natalya; Gazaryan, Irina; Ratan, Rajiv R.; Witztum, Joseph L.; Montaner, Joan; Holman, Theodore R.; Lo, Eng H.; van Leyen, Klaus

    2012-01-01

    Targeting newly identified damage pathways in the ischemic brain can help to circumvent the currently severe limitations of acute stroke therapy. Here we show that the activity of 12/15-lipoxygenase was increased in the ischemic mouse brain, and 12/15-lipoxygenase co-localized with a marker for oxidized lipids MDA2. This co-localization was also detected in the brain of two human stroke patients, where it also coincided with increased apoptosis-inducing factor, AIF. A novel inhibitor of 12/15-lipoxygenase, LOXBlock-1 protected neuronal HT22 cells against oxidative stress. In a mouse model of transient focal ischemia, the inhibitor reduced infarct sizes both 24 hours and 14 days post stroke, with improved behavioral parameters. Even when treatment was delayed until at least four hours after onset of ischemia, LOXBlock-1 was protective. Furthermore, it reduced tPA-associated hemorrhage in a clot model of ischemia/reperfusion. This study establishes inhibition of 12/15-lipoxygenase as a viable strategy for first line stroke treatment. PMID:23192915

  8. Pharmacological approaches to manage persistent symptoms of major depressive disorder: rationale and therapeutic strategies.

    PubMed

    Epstein, Irvin; Szpindel, Isaac; Katzman, Martin A

    2014-12-01

    Major depressive disorder (MDD) is a highly prevalent chronic psychiatric illness associated with significant morbidity, mortality, loss of productivity, and diminished quality of life. Typically, only a minority of patients responds to treatment and meet criteria for remission as residual symptoms may persist, the result of an inadequate course of treatment and/or the presence of persistent side effects. The foremost goal of treatment should be to restore patients to full functioning and eliminate or relieve all MDD symptoms, while being virtually free of troublesome side effects. The current available pharmacological options to manage persistent depressive symptoms include augmentation or adjunctive combination strategies, both of which target selected psychobiological systems and specific mood and somatic symptoms experienced by the patient. As well, non-pharmacological interventions including psychotherapies may be used in either first-line or adjunctive approaches. However, the evidence to date with respect to available adjunct therapies is limited by few studies and those published have utilized only a small number of subjects and lack enough data to allow for a consensus of expert opinion. This underlines the need for further longer term, large population-based studies and those that include comorbid populations, all of which are seen in real world community psychiatry.

  9. Novel Therapeutic Strategies for Malignant Salivary Gland Tumors: Lessons Learned from Breast Cancer

    PubMed Central

    Murase, Ryuichi; Sumida, Tomoki; Ishikawa, Akiko; Murase, Rumi; McAllister, Sean D.; Hamakawa, Hiroyuki; Desprez, Pierre-Yves

    2011-01-01

    Malignant salivary gland tumors (MSGTs) account for 2–6% of all head and neck cancers. Despite the rarity, MSGTs have been of great interest due to a wide variety of pathological features and high metastasis rates resulting in poor prognosis. Surgical resection followed by radiation therapy represents the main treatment of this malignancy. Adjuvant therapy is reserved for the management of local recurrence, no longer amenable to additional local therapy, and for metastasis. Based on the studies from other types of tumors, particularly breast cancer, the expression and function of sex steroid hormone receptors in cancer have been extensively studied and applied to diagnosis and treatment. Although a number of studies in MSGTs have been published, the rationale for hormone therapy is still controversial due to the disparate results and insufficient number of cases. However, some recent reports have demonstrated that certain salivary gland neoplasms are similar to breast cancer, not only in terms of the pathological features, but also at the molecular level. Here, we shed light on the biological similarity between MSGTs and certain types of breast cancer, and describe the potential use of hormone and additional therapies for MSGTs. PMID:22164169

  10. Treatment and secondary prevention of venous thromboembolism in cancer patients. Current strategies and new therapeutic options.

    PubMed

    Ay, C; Pabinger, I

    2012-01-01

    Cancer is a major and independent risk factor of venous thromboembolism (VTE). In clinical practice, a high number of VTE events occurs in patients with cancer, and treatment of cancer-associated VTE differs in several aspects from treatment of VTE in the general population. However, treatment in cancer patients remains a major challenge, as the risk of recurrence of VTE as well as the risk of major bleeding during anticoagulation is substantially higher in patients with cancer than in those without cancer. In several clinical trials, different anticoagulants and regimens have been investigated for treatment of acute VTE and secondary prophylaxis in cancer patients to prevent recurrence. Based on the results of these trials, anticoagulant therapy with low-molecular-weight heparins (LMWH) has become the treatment of choice in cancer patients with acute VTE in the initial period and for extended and long-term anticoagulation for 3-6 months. New oral anticoagulants directly inhibiting thrombin or factor Xa, have been developed in the past decade and studied in large phase III clinical trials. Results from currently completed trials are promising and indicate their potential use for treatment of VTE also in cancer patients. However, the role of the new oral thrombin and factor Xa inhibitors for VTE treatment in cancer patients still has to be clarified in further studies specifically focusing on cancer-associated VTE. This brief review will summarize the current strategies of initial and long-term VTE treatment in patients with cancer and discuss the potential use of the new oral anticoagulants.

  11. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections.

    PubMed

    Wares, Joanna R; Crivelli, Joseph J; Yun, Chae-Ok; Choi, Il-Kyu; Gevertz, Jana L; Kim, Peter S

    2015-12-01

    Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.

  12. Deciphering the therapeutic stem cell strategies of large and midsize pharmaceutical firms.

    PubMed

    Vertès, Alain A

    2014-01-01

    The slow adoption of cytotherapeutics remains a vexing hurdle given clinical progress achieved to date with a variety of stem cell lineages. Big and midsize pharmaceutical companies as an asset class still delay large-scale investments in this arena until technological and market risks will have been further reduced. Nonetheless, a handful of stem cell strategic alliance and licensing transactions have already been implemented, indicating that progress is actively monitored, although most of these involve midsize firms. The greatest difficulty is, perhaps, that the regenerative medicine industry is currently only approaching the point of inflexion of the technology development S-curve, as many more clinical trials read out. A path to accelerating technology adoption is to focus on innovation outliers among healthcare actors. These can be identified by analyzing systemic factors (e.g., national science policies and industry fragmentation) and intrinsic factors (corporate culture, e.g., nimble decision-making structures; corporate finance, e.g., opportunity costs and ownership structure; and operations, e.g., portfolio management strategies, threats on existing businesses and patent expirations). Another path is to accelerate the full clinical translation and commercialization of an allogeneic cytotherapeutic product in any indication to demonstrate the disease-modifying potential of the new products for treatment and prophylaxis, ideally for a large unmet medical need such as dry age-related macular degeneration, or for an orphan disease such as biologics-refractory acute graft-versus-host disease. In times of decreased industry average research productivities, regenerative medicine products provide important prospects for creating new franchises with a market potential that could very well mirror that achieved with the technology of monoclonal antibodies.

  13. Evaluation of cetirizine hydrochloride-based therapeutic strategy for chronic urticaria.

    PubMed

    Sugiura, Kazumitsu; Hirai, Satoko; Suzuki, Tamio; Usuda, Toshikazu; Kondo, Takao; Azumi, Teruo; Masaki, Sadao; Yokoi, Takaomi; Nitta, Yukiko; Kamiya, Shigeri; Ando, Koichi; Mori, Takako; Tomita, Yasushi

    2008-08-01

    We investigated the suitability of cetirizine HCl (cetirizine) for the initial treatment of chronic urticaria. A secondary aim was to identify the optimal alternative treatments when switching from this drug to other drugs in patients who are dissatisfied with cetirizine. We started cetirizine at a once-daily dose of 10 mg for 2 weeks and then, depending on the course of symptoms in individual patients, it was either continued, titrated to a higher dose, or switched to other drugs (antihistamines including H2 blockers) for a further 2 weeks. Degrees of patient satisfaction and ratings by physicians were analyzed, as were adverse events. At 2 weeks after the start of treatment, among 74 patients included in the final evaluation 55 (74.3%) expressed satisfaction with cetirizine therapy. Those not satisfied included five (6.7%) who felt drowsy after taking the drug and 14 (18.9%) in whom the drug had not demonstrated adequate efficacy. After optimizing the treatment on a per-patient basis, including switching from cetirizine to other drugs, the percentage satisfied with treatment at 4 weeks was 83.7% (62/74). In the group of patients who were satisfied with the therapy at 2 weeks, attending physicians confirmed that wheals and scratches were significantly alleviated at 2 and 4 weeks, respectively. Adverse effects were mild and uncommon. Cetirizine as an initial treatment for chronic urticaria appears effective and safe. For patients in whom cetirizine fails to satisfactorily alleviate symptoms as well as those who complain of drowsiness, switching to other antihistamine drugs may be an effective strategy.

  14. Intravenous lipid emulsions combine extracorporeal blood purification: a novel therapeutic strategy for severe organophosphate poisoning.

    PubMed

    Zhou, Yaguang; Zhan, Chengye; Li, Yongsheng; Zhong, Qiang; Pan, Hao; Yang, Guangtian

    2010-02-01

    Organophosphorus (OP) pesticide self-poisoning is a major clinical problem in rural Asia and it results in the death of 200,000 people every year. At present, it is lack of effective methods to treat severe organophosphate poisoning. The high mortality rate lies on the amount of toxic absorption. Intravenous lipid emulsions can be used as an antidote in fat-soluble drug poisoning. The detoxification mechanism of intravenous lipid emulsions is "lipid sink", which lipid emulsions can dissolve the fat-soluble drugs and separate poison away from the sites of toxicity. Most of organophosphorus pesticides are highly fat-soluble. So, intravenous lipid emulsions have the potentially clinical applications in treatment of OP poisoning. Extracorporeal blood purification especially charcoal hemoperfusion is an efficient way to eliminate the poison contents from the blood. We hypothesize that the combination of intravenous lipid emulsions and charcoal hemoperfusion can be used to cure severe organophosphate poisoning. This novel protocol of therapy comprises two steps: one is obtained intravenous access to infuse lipid emulsions as soon as possible; another is that charcoal hemoperfusion will be used to clear the OP substances before the distribution of OP compounds in tissue is not complete. The advantages of this strategy lie in three points. Firstly, it will alleviate the toxic effect of OP pesticide in the patients by isolation and removal the toxic contents. Secondly, the dosage of antidotes can be reduced and its side-effects will be eased. Thirdly, a large bolus of fatty acids provide energy substrate for the patients who are nil by mouth. We consider that it would become a feasible, safe and efficient detoxification intervention in the alleviation of severe organophosphate poisoning, which would also improve the outcome of the patients.

  15. New Therapeutic Strategies for Systemic Sclerosis—a Critical Analysis of the Literature

    PubMed Central

    Zandman-Goddard, Gisele; Tweezer-Zaks, Nurit; Shoenfeld, Yehuda

    2005-01-01

    Systemic sclerosis (SSc) is a multi-system disease characterized by skin fibrosis and visceral disease. Therapy is organ and pathogenesis targeted. In this review, we describe novel strategies in the treatment of SSc. Utilizing the MEDLINE and the COCHRANE REGISTRY, we identified open trials, controlled trials, for treatment of SSc from 1999 to April 2005. We used the terms scleroderma, systemic sclerosis, Raynaud's phenomenon, pulmonary hypertension, methotrexate, cyclosporin, tacrolimus, relaxin, low-dose penicillamine, IVIg, calcium channel blockers, losartan, prazocin, iloprost, N-acetylcysteine, bosentan, cyclophosphamide, lung transplantation, ACE inhibitors, anti-thymocyte globulin, and stem cell transplantation. Anecdotal reports were omitted. Methotrexate, cyclosporin, tacrolimus, relaxin, low-dose penicillamine, and IVIg may be beneficial in improving the skin tightness in SSc. Calcium channel blockers, the angiotensin II receptor type 1 antagonist losartan, prazocin, the prostacyclin analogue iloprost, N-acetylcysteine and the dual endothelin-receptor antagonist bosentan may be beneficial for Raynaud's phenomenon. Epoprostenol and bosentan are approved for therapy of pulmonary hypertension (PAH). Other options under investigation include intravenous or aerolized iloprost. Cyclophosphamide (CYC) pulse therapy is effective in suppressing active alveolitis. Stem cell and lung transplantation is a viable option for carefully selected patients. Renal crisis can be effectively managed when hypertension is aggressively controlled with angiotensin converting enzyme (ACE) inhibitors. Patients should continue taking ACE inhibitors even after beginning dialysis in hope of discontinuing dialysis. Anti-thymocyte globulin and mycophenolate mofetil appear safe in SSc. The improvement in skin score and the apparent stability of systemic disease during the treatment period suggest that controlled studies of these agents are justified. Stem cell transplantation is under

  16. Pharmacokinetic Modeling and Optimal Sampling Strategies for Therapeutic Drug Monitoring of Rifampin in Patients with Tuberculosis

    PubMed Central

    Sturkenboom, Marieke G. G.; Mulder, Leonie W.; de Jager, Arthur; van Altena, Richard; Aarnoutse, Rob E.; de Lange, Wiel C. M.; Proost, Johannes H.; Kosterink, Jos G. W.; van der Werf, Tjip S.

    2015-01-01

    Rifampin, together with isoniazid, has been the backbone of the current first-line treatment of tuberculosis (TB). The ratio of the area under the concentration-time curve from 0 to 24 h (AUC0–24) to the MIC is the best predictive pharmacokinetic-pharmacodynamic parameter for determinations of efficacy. The objective of this study was to develop an optimal sampling procedure based on population pharmacokinetics to predict AUC0–24 values. Patients received rifampin orally once daily as part of their anti-TB treatment. A one-compartmental pharmacokinetic population model with first-order absorption and lag time was developed using observed rifampin plasma concentrations from 55 patients. The population pharmacokinetic model was developed using an iterative two-stage Bayesian procedure and was cross-validated. Optimal sampling strategies were calculated using Monte Carlo simulation (n = 1,000). The geometric mean AUC0–24 value was 41.5 (range, 13.5 to 117) mg · h/liter. The median time to maximum concentration of drug in serum (Tmax) was 2.2 h, ranging from 0.4 to 5.7 h. This wide range indicates that obtaining a concentration level at 2 h (C2) would not capture the peak concentration in a large proportion of the population. Optimal sampling using concentrations at 1, 3, and 8 h postdosing was considered clinically suitable with an r2 value of 0.96, a root mean squared error value of 13.2%, and a prediction bias value of −0.4%. This study showed that the rifampin AUC0–24 in TB patients can be predicted with acceptable accuracy and precision using the developed population pharmacokinetic model with optimal sampling at time points 1, 3, and 8 h. PMID:26055359

  17. Phosphorylation of Single Stranded RNA Virus Proteins and Potential for Novel Therapeutic Strategies.

    PubMed

    Keck, Forrest; Ataey, Pouya; Amaya, Moushimi; Bailey, Charles; Narayanan, Aarthi

    2015-10-12

    Post translational modification of proteins is a critical requirement that regulates function. Among the diverse kinds of protein post translational modifications, phosphorylation plays essential roles in protein folding, protein:protein interactions, signal transduction, intracellular localization, transcription regulation, cell cycle progression, survival and apoptosis. Protein phosphorylation is also essential for many intracellular pathogens to establish a productive infection cycle. Preservation of protein phosphorylation moieties in pathogens in a manner that mirrors the host components underscores the co-evolutionary trajectory of pathogens and hosts, and sheds light on how successful pathogens have usurped, either in part or as a whole, the host enzymatic machinery. Phosphorylation of viral proteins for many acute RNA viruses including Flaviviruses and Alphaviruses has been demonstrated to be critical for protein functionality. This review focuses on phosphorylation modifications that have been documented to occur on viral proteins with emphasis on acutely infectious, single stranded RNA viruses. The review additionally explores the possibility of repurposing Food and Drug Administration (FDA) approved inhibitors as antivirals for the treatment of acute RNA viral infections.

  18. Targeting MKK3 as a novel anticancer strategy: molecular mechanisms and therapeutical implications

    PubMed Central

    Baldari, S; Ubertini, V; Garufi, A; D'Orazi, G; Bossi, G

    2015-01-01

    Mitogen-activated protein kinase kinase 3 (MAP2K3, MKK3) is a member of the dual specificity protein kinase group that belongs to the MAP kinase kinase family. This kinase is activated by mitogenic or stress-inducing stimuli and participates in the MAP kinase-mediated signaling cascade, leading to cell proliferation and survival. Several studies highlighted a critical role for MKK3 in tumor progression and invasion, and we previously identified MKK3 as transcriptional target of mutant (mut) p53 to sustain cell proliferation and survival, thus rendering MKK3 a promising target for anticancer therapies. Here, we found that targeting MKK3 with RNA interference, in both wild-type (wt) and mutp53-carrying cells, induced endoplasmic reticulum stress and autophagy that, respectively, contributed to stabilize wtp53 and degrade mutp53. MKK3 depletion reduced cancer cell proliferation and viability, whereas no significant effects were observed in normal cellular context. Noteworthy, MKK3 depletion in combination with chemotherapeutic agents increased tumor cell response to the drugs, in both wtp53 and mutp53 cancer cells, as demonstrated by enhanced poly (ADP-ribose) polymerase cleavage and reduced clonogenic ability in vitro. In addition, MKK3 depletion reduced tumor growth and improved biological response to chemotherapeutic in vivo. The overall results indicate MKK3 as a novel promising molecular target for the development of more efficient anticancer treatments in both wtp53- and mutp53-carrying tumors. PMID:25633290

  19. Thrombocytopenia in MDS: epidemiology, mechanisms, clinical consequences and novel therapeutic strategies.

    PubMed

    Li, W; Morrone, K; Kambhampati, S; Will, B; Steidl, U; Verma, A

    2016-03-01

    Thrombocytopenia is commonly seen in myelodysplastic syndrome (MDS) patients, and bleeding complications are a major cause of morbidity and mortality. Thrombocytopenia is an independent factor for decreased survival and has been incorporated in newer prognostic scoring systems. The mechanisms of thrombocytopenia are multifactorial and involve a differentiation block of megakaryocytic progenitor cells, leading to dysplastic, hypolobated and microscopic appearing megakaryocytes or increased apoptosis of megakaryocytes and their precursors. Dysregulated thrombopoietin (TPO) signaling and increased platelet destruction through immune or nonimmune mechanisms are frequently observed in MDS. The clinical management of patients with low platelet counts remains challenging and approved chemotherapeutic agents such as lenalidomide and azacytidine can also lead to a transient worsening of thrombocytopenia. Platelet transfusion is the only supportive treatment option currently available for clinically significant thrombocytopenia. The TPO receptor agonists romiplostim and eltrombopag have shown clinical activity in clinical trials in MDS. In addition to thrombopoietic effects, eltrombopag can inhibit leukemic cell proliferation via TPO receptor-independent effects. Other approaches such as treatment with cytokines, immunomodulating drugs and signal transduction inhibitors have shown limited activity in selected groups of MDS patients. Combination trials of approved agents with TPO agonists are ongoing and hold promise for this important clinical problem.

  20. Phosphorylation of Single Stranded RNA Virus Proteins and Potential for Novel Therapeutic Strategies

    PubMed Central

    Keck, Forrest; Ataey, Pouya; Amaya, Moushimi; Bailey, Charles; Narayanan, Aarthi

    2015-01-01

    Post translational modification of proteins is a critical requirement that regulates function. Among the diverse kinds of protein post translational modifications, phosphorylation plays essential roles in protein folding, protein:protein interactions, signal transduction, intracellular localization, transcription regulation, cell cycle progression, survival and apoptosis. Protein phosphorylation is also essential for many intracellular pathogens to establish a productive infection cycle. Preservation of protein phosphorylation moieties in pathogens in a manner that mirrors the host components underscores the co-evolutionary trajectory of pathogens and hosts, and sheds light on how successful pathogens have usurped, either in part or as a whole, the host enzymatic machinery. Phosphorylation of viral proteins for many acute RNA viruses including Flaviviruses and Alphaviruses has been demonstrated to be critical for protein functionality. This review focuses on phosphorylation modifications that have been documented to occur on viral proteins with emphasis on acutely infectious, single stranded RNA viruses. The review additionally explores the possibility of repurposing Food and Drug Administration (FDA) approved inhibitors as antivirals for the treatment of acute RNA viral infections. PMID:26473910

  1. Convergent transcriptomics and proteomics of environmental enrichment and cocaine identifies novel therapeutic strategies for addiction.

    PubMed

    Zhang, Yafang; Crofton, Elizabeth J; Fan, Xiuzhen; Li, Dingge; Kong, Fanping; Sinha, Mala; Luxon, Bruce A; Spratt, Heidi M; Lichti, Cheryl F; Green, Thomas A

    2016-12-17

    Transcriptomic and proteomic approaches have separately proven effective at identifying novel mechanisms affecting addiction-related behavior; however, it is difficult to prioritize the many promising leads from each approach. A convergent secondary analysis of proteomic and transcriptomic results can glean additional information to help prioritize promising leads. The current study is a secondary analysis of the convergence of recently published separate transcriptomic and proteomic analyses of nucleus accumbens (NAc) tissue from rats subjected to environmental enrichment vs. isolation and cocaine self-administration vs. saline. Multiple bioinformatics approaches (e.g. Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), and Gene Set Enrichment Analysis (GSEA)) were used to interrogate these rich data sets. Although there was little correspondence between mRNA vs. protein at the individual target level, good correspondence was found at the level of gene/protein sets, particularly for the environmental enrichment manipulation. These data identify gene sets where there is a positive relationship between changes in mRNA and protein (e.g. glycolysis, ATP synthesis, translation elongation factor activity, etc.) and gene sets where there is an inverse relationship (e.g. ribosomes, Rho GTPase signaling, protein ubiquitination, etc.). Overall environmental enrichment produced better correspondence than cocaine self-administration. The individual targets contributing to mRNA and protein effects were largely not overlapping. As a whole, these results confirm that robust transcriptomic and proteomic data sets can provide similar results at the gene/protein set level even when there is little correspondence at the individual target level and little overlap in the targets contributing to the effects.

  2. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  3. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  4. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes.

    PubMed

    Singh, Arvinder; Chandra, Amreesh

    2016-05-17

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs.

  5. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Chandra, Amreesh

    2016-05-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs.

  6. Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit.

    PubMed

    Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken

    2013-10-22

    Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information--mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: 'backtracking'. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of 'memory of the current trip' allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours.

  7. LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson’s Disease, Where Do We Stand?

    PubMed Central

    Taymans, Jean-Marc; Greggio, Elisa

    2016-01-01

    One of the most promising therapeutic targets for potential diseasemodifying treatment of Parkinson’s disease (PD) is leucine-rich repeat kinase 2 (LRRK2). Specifically, targeting LRRK2’s kinase function has generated a lot of interest from both industry and academia. This work has yielded several published studies showing the feasibility of developing potent, selective and brain permeable LRRK2 kinase inhibitors. The availability of these experimental drugs is contributing to filling in the gaps in our knowledge on the safety and efficacy of LRRK2 kinase inhibition. Recent studies of LRRK2 kinase inhibition in preclinical models point to potential undesired effects in peripheral tissues such as lung and kidney. Also, while strategies are now emerging to measure target engagement of LRRK2 inhibitors, there remains an important need to expand efficacy studies in preclinical models of progressive PD. Future work in the LRRK2 inhibition field must therefore be directed towards developing molecules and treatment regimens which demonstrate efficacy in mammalian models of disease in conditions where safety liabilities are reduced to a minimum. PMID:26517051

  8. The Paradoxical Signals of Two TrkC Receptor Isoforms Supports a Rationale for Novel Therapeutic Strategies in ALS

    PubMed Central

    Barcelona, Pablo F.; Galan, Alba; Aboulkassim, Tahar; Teske, Katrina; Rogers, Mary-Louise; Bertram, Lisa; Wang, Jing; Yousefi, Masoud; Rush, Robert; Fabian, Marc; Cashman, Neil

    2016-01-01

    Full length TrkC (TrkC-FL) is a receptor tyrosine kinase whose mRNA can be spliced to a truncated TrkC.T1 isoform lacking the kinase domain. Neurotrophin-3 (NT-3) activates TrkC-FL to maintain motor neuron health and function and TrkC.T1 to produce neurotoxic TNF-α; hence resulting in opposing pathways. In mouse and human ALS spinal cord, the reduction of miR-128 that destabilizes TrkC.T1 mRNA results in up-regulated TrkC.T1 and TNF-α in astrocytes. We exploited conformational differences to develop an agonistic mAb 2B7 that selectively activates TrkC-FL, to circumvent TrkC.T1 activation. In mouse ALS, 2B7 activates spinal cord TrkC-FL signals, improves spinal cord motor neuron phenotype and function, and significantly prolongs life-span. Our results elucidate biological paradoxes of receptor isoforms and their role in disease progression, validate the concept of selectively targeting conformational epitopes in naturally occurring isoforms, and may guide the development of pro-neuroprotective (TrkC-FL) and anti-neurotoxic (TrkC.T1) therapeutic strategies. PMID:27695040

  9. Limited sampling strategies for therapeutic drug monitoring of amikacin and kanamycin in patients with multidrug-resistant tuberculosis.

    PubMed

    Dijkstra, J A; van Altena, R; Akkerman, O W; de Lange, W C M; Proost, J H; van der Werf, T S; Kosterink, J G W; Alffenaar, J W C

    2015-09-01

    Amikacin and kanamycin are considered important and effective drugs in the treatment of multidrug-resistant tuberculosis (MDR-TB). Unfortunately, the incidence of toxicity is high and is related to elevated drug exposure. In order to achieve a balance between efficacy and toxicity, a population pharmacokinetic (PPK) model may help to optimise drug exposure. Patients with MDR-TB who had received amikacin or kanamycin as part of their treatment and who had routinely received therapeutic drug monitoring were evaluated. A PPK model was developed and subsequently validated. Using this model, a limited sampling model was developed. Eleven patients receiving amikacin and nine patients receiving kanamycin were included in this study. The median observed 24-h area under the concentration-time curve (AUC0-24h) was 77.2 mg h/L [interquartile range (IQR) 64.7-96.2 mg h/L] for amikacin and 64.1 mg h/L (IQR 55.6-92.1 mg h/L) for kanamycin. The PPK model was developed and validated using n-1 cross-validation. A robust population model was developed that is suitable for predicting the AUC0-24h of amikacin and kanamycin. This model, in combination with the limited sampling strategy developed, can be used in daily routine to guide dosing but also to assess AUC0-24h in phase 3 studies.

  10. Primary refractory and early-relapsed Hodgkin's lymphoma: strategies for therapeutic targeting based on the tumour microenvironment.

    PubMed

    Carbone, Antonino; Gloghini, Annunziata; Castagna, Luca; Santoro, Armando; Carlo-Stella, Carmelo

    2015-09-01

    Classical Hodgkin's lymphoma (cHL), a distinct disease entity with characteristic clinical and pathological features, accounts for approximately 10% of all malignant lymphomas. cHL can be considered a prototype model for how the tumour microenvironment influences cancer pathogenesis. Cellular components of the cHL microenvironment express molecules involved in cancer cell growth and survival, such as CD30L or CD40L. Moreover, several signal transduction pathways that are critical for the proliferation and survival of neoplastic Hodgkin Reed-Sternberg (HRS) cells, including NF-κB, JAK-STAT, PI3K-AkT and ERK, are deregulated in cHL. Although most patients can be cured with modern treatment strategies, approximately a quarter experience either primary or secondary chemorefractoriness or disease relapse, thus requiring novel treatments. Preclinical and clinical evidence has elucidated a complex crosstalk between malignant HRS cells and the reactive cells of the microenvironment, which suggests that novel therapeutic approaches capable of targeting HRS cells along with reactive cells might overcome chemorefractoriness. In the near future, these novel therapies will also be tested in chemosensitive patients, to reduce the long-term toxicity of chemo-radiotherapy.

  11. Fully stereocontrolled syntheses of 3-oxacarbacyclin and carbacyclin by the conjugate addition-azoalkene-asymmetric olefination strategy.

    PubMed

    Kim, Mikhail; Gais, Hans-Joachim

    2006-06-09

    A fully stereocontrolled synthesis of 3-oxacarbacyclin (3) and a formal synthesis of carbacyclin (2) are described. The syntheses are based on the conjugate addition-azoalkene-asymmetric olefination strategy. Its key features are (1) the stereoselective establishment of the complete omega-side chain of 2 and 3 through conjugate addition of the enantiopure C13-C20 alkenylcopper derivative 10 to the enantiopure C6-C12 bicyclic azoalkene 9 and (2) the 5E-stereoselective construction of the alpha-side chain through a Horner-Wadsworth-Emmons olefination of the bicyclic ketone 7 with the chiral lithium phosphonoacetate 26 with formation of ester E-27. The allylic alcohol 6 serves at late stage as the joint intermediate in the synthesis of 2 and 3.

  12. Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer.

    PubMed

    Kwon, Yeon-Jin; Petrie, Kevin; Leibovitch, Boris A; Zeng, Lei; Mezei, Mihaly; Howell, Louise; Gil, Veronica; Christova, Rossitza; Bansal, Nidhi; Yang, Shuai; Sharma, Rajal; Ariztia, Edgardo V; Frankum, Jessica; Brough, Rachel; Sbirkov, Yordan; Ashworth, Alan; Lord, Christopher J; Zelent, Arthur; Farias, Eduardo; Zhou, Ming-Ming; Waxman, Samuel

    2015-08-01

    Triple-negative breast cancers (TNBC) lacking estrogen, progesterone, and HER2 receptors account for 10% to 20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide, we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1, and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.

  13. Anti-S1P antibody as a novel therapeutic strategy for VEGFR TKI resistant renal cancer

    PubMed Central

    Bullock, Andrea J.; Callea, Marcella; Shah, Harleen; Song, Jiaxi; Moreno, Kelli; Visentin, Barbara; Deutschman, Douglas; Alsop, David C.; Atkins, Michael B.; Mier, James W.; Signoretti, Sabina; Bhasin, Manoj; Sabbadini, Roger A.; Bhatt, Rupal S.

    2015-01-01

    Purpose VEGFR2 tyrosine kinase inhibition (TKI) is a valuable treatment approach for patients with metastatic RCC. However, resistance to treatment is inevitable. Identification of novel targets could lead to better treatment for both patients with TKI naïve or resistant RCC. Experimental design In this study, we performed transcriptome analysis of VEGFR TKI resistant tumors in a murine model and discovered that the SPHK/S1P pathway is upregulated at the time of resistance. We tested S1P pathway inhibition using an anti-S1P mAb (sphingomab), in two mouse xenograft models of RCC, and assessed tumor SPHK expression and S1P plasma levels in patients with metastatic RCC. Results Resistant tumors expressed several hypoxia regulated genes. The SPHK1 pathway was among the most highly upregulated pathways that accompanied resistance to VEGFR TKI therapy. SPHK1 was expressed in human RCC, and the product of SPHK1 activity, S1P, was elevated in patients with metastatic RCC suggesting that human RCC behavior could, in part, be due to over-production of S1P. Sphingomab neutralization of extracellular S1P slowed tumor growth in both mouse models. Mice bearing tumors that had developed resistance to sunitinib treatment also exhibited tumor growth suppression with sphingomab. Sphingomab treatment led to a reduction in tumor blood flow as measured by MRI. Conclusions Our findings suggest that S1P inhibition may be a novel therapeutic strategy in patients with treatment naïve RCC and also in the setting of resistance to VEGFR TKI therapy. PMID:25589614

  14. Oxidative stress in sickle cell disease: an overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies.

    PubMed

    Silva, Danilo Grunig Humberto; Belini Junior, Edis; de Almeida, Eduardo Alves; Bonini-Domingos, Claudia Regina

    2013-12-01

    Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2(-)) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications.

  15. The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kudo, Daisuke; Suto, Akiko; Hakamada, Kenichi

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases to affect humans, regardless of whether patients receive multimodal therapy (including surgery, radiotherapy, and chemotherapy). This resistance to intervention is currently considered to be caused by the desmoplastic change of the extracellular matrix (ECM) in PDAC tissues, which is characterized by the accumulation of cancer-associated fibroblasts, collagen, proteoglycan, and hyaluronan. Among these ECM components, hyaluronan has attracted interest because various studies have indicated that hyaluronan-rich PDAC is correlated with the progressive properties of cancer cells, both in experimental and clinical settings. Hence, the reduction of hyaluronan in cancer tissue may represent a novel therapeutic approach for PDAC. 4-methylumbelliferone (4-MU) is a derivative of coumarin that was reported to suppress the synthesis of hyaluronan in cultured human skin fibroblasts in 1995. As an additional study, our group firstly reported that 4-MU reduced the hyaluronan synthesis of mouse melanoma cells and exerted anti-cancer activity. Subsequently, we have showed that 4-MU inhibited liver metastasis in mice inoculated with human pancreatic cancer cells. Thereafter, 4-MU has been accepted as an effective agent for hyaluronan research and is expected to have clinical applications. This review provides an overview of the interaction between PDAC and hyaluronan, the properties of 4-MU as a suppressor of the synthesis of hyaluronan, and the perspectives of PDAC treatment targeting hyaluronan. PMID:28282922

  16. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies.

    PubMed

    Evers, Melvin M; Toonen, Lodewijk J A; van Roon-Mom, Willeke M C

    2014-06-01

    Ataxin-3 is a ubiquitously expressed deubiqutinating enzyme with important functions in the proteasomal protein degradation pathway and regulation of transcription. The C-terminus of the ataxin-3 protein contains a polyglutamine (PolyQ) region that, when mutationally expanded to over 52 glutamines, causes the neurodegenerative disease spinocerebellar ataxia 3 (SCA3). In spite of extensive research, the molecular mechanisms underlying the cellular toxicity resulting from mutant ataxin-3 remain elusive and no preventive treatment is currently available. It has become clear over the last decade that the hallmark intracellular ataxin-3 aggregates are likely not the main toxic entity in SCA3. Instead, the soluble PolyQ containing fragments arising from proteolytic cleavage of ataxin-3 by caspases and calpains are now regarded to be of greater influence in pathogenesis. In addition, recent evidence suggests potential involvement of a RNA toxicity component in SCA3 and other PolyQ expansion disorders, increasing the pathogenic complexity. Herein, we review the functioning of ataxin-3 and the involvement of known protein and RNA toxicity mechanisms of mutant ataxin-3 that have been discovered, as well as future opportunities for therapeutic intervention.

  17. Synthetic biology and therapeutic strategies for the degenerating brain: Synthetic biology approaches can transform classical cell and gene therapies, to provide new cures for neurodegenerative diseases.

    PubMed

    Agustín-Pavón, Carmen; Isalan, Mark

    2014-10-01

    Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining 'protect and repair' strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients.

  18. Current Opinion on the Role of Neurogenesis in the Therapeutic Strategies for Alzheimer Disease, Parkinson Disease, and Ischemic Stroke; Considering Neuronal Voiding Function.

    PubMed

    Han, Myung-Hoon; Lee, Eun-Hye; Koh, Seong-Ho

    2016-12-01

    Neurological diseases such as Alzheimer, Parkinson, and ischemic stroke have increased in occurrence and become important health issues throughout the world. There is currently no effective therapeutic strategy for addressing neurological deficits after the development of these major neurological disorders. In recent years, it has become accepted that adult neural stem cells located in the subventricular and subgranular zones have the ability to proliferate and differentiate in order to replace lost or damaged neural cells. There have been many limitations in the clinical application of both endogenous and exogenous neurogenesis for neurological disorders. However, many studies have investigated novel mechanisms in neurogenesis and have shown that these limitations can potentially be overcome with appropriate stimulation and various approaches. We will review concepts related to possible therapeutic strategies focused on the perspective of neurogenesis for the treatment of patients diagnosed with Alzheimer disease, Parkinson disease, and ischemic stroke based on current reports.

  19. Current Opinion on the Role of Neurogenesis in the Therapeutic Strategies for Alzheimer Disease, Parkinson Disease, and Ischemic Stroke; Considering Neuronal Voiding Function

    PubMed Central

    Lee, Eun-Hye

    2016-01-01

    Neurological diseases such as Alzheimer, Parkinson, and ischemic stroke have increased in occurrence and become important health issues throughout the world. There is currently no effective therapeutic strategy for addressing neurological deficits after the development of these major neurological disorders. In recent years, it has become accepted that adult neural stem cells located in the subventricular and subgranular zones have the ability to proliferate and differentiate in order to replace lost or damaged neural cells. There have been many limitations in the clinical application of both endogenous and exogenous neurogenesis for neurological disorders. However, many studies have investigated novel mechanisms in neurogenesis and have shown that these limitations can potentially be overcome with appropriate stimulation and various approaches. We will review concepts related to possible therapeutic strategies focused on the perspective of neurogenesis for the treatment of patients diagnosed with Alzheimer disease, Parkinson disease, and ischemic stroke based on current reports. PMID:28043116

  20. The Modulation of Potassium Channels in the Smooth Muscle as a Therapeutic Strategy for Disorders of the Gastrointestinal Tract.

    PubMed

    Currò, Diego

    2016-01-01

    Alterations of smooth muscle contractility contribute to the pathophysiology of important functional gastrointestinal disorders (FGIDs) such as functional dyspepsia and irritable bowel syndrome. Consequently, drugs that decrease smooth muscle contractility are effective treatments for these diseases. Smooth muscle contraction is mainly triggered by Ca(2+) influx through voltage-dependent channels located in the plasma membrane. Thus, the modulation of the membrane potential results in the regulation of Ca(2+) influx and cytosolic levels. K(+) channels play fundamental roles in these processes. The open probability of K(+) channels increases in response to various stimuli, including membrane depolarization (voltage-gated K(+) [K(V)] channels) and the increase in cytosolic Ca(2+) levels (Ca(2+)-dependent K(+) [K(Ca)] channels). K(+) channel activation is mostly associated with outward K(+) currents that hyperpolarize the membrane and reduce cell excitability and contractility. In addition, some K(+) channels are open at the resting membrane potential values of the smooth muscle cells in some gut segments and contribute to set the resting membrane potential itself. The closure of these channels induces membrane depolarization and smooth muscle contraction. K(V)1.2, 1.5, 2.2, 4.3, 7.4 and 11.1, K(Ca)1.1 and 2.3, and inwardly rectifying type 6K(+) (K(ir)6) channels play the most important functional roles in the gastrointestinal smooth muscle. Activators of all these channels may theoretically relax the gastrointestinal smooth muscle and could therefore be promising new therapeutic options for FGID. The challenge of future drug research and development in this area will be to synthesize molecules selective for the channel assemblies expressed in the gastrointestinal smooth muscle.

  1. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy

    PubMed Central

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    Backgrond Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion – like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation. PMID:23966782

  2. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.

  3. Identification of endoplasmic reticulum stress-inducing agents by antagonizing autophagy: a new potential strategy for identification of anti-cancer therapeutics in B-cell malignancies

    PubMed Central

    Mahoney, Emilia; Maddocks, Kami; Flynn, Joseph; Jones, Jeffrey; Cole, Sara L.; Zhang, Xiaoli; Byrd, John C.; Johnson, Amy J.

    2013-01-01

    The endoplasmic reticulum (ER) plays a vital function in multiple cellular processes. There is a growing interest in developing therapeutic agents that can target the ER in cancer cells, inducing a stress response that leads to cell death. However, ER stress-inducing agents can also induce autophagy, a survival strategy of cancer cells. Therefore, by inhibiting autophagy we can increase the efficacy of the ER stress-inducing agents. Nelfinavir, a human immunodeficiency virus (HIV) protease inhibitor with anti-cancer properties, can induce ER stress. Nelfinavir’s effects on chronic lymphocytic leukemia (CLL) are yet to be elucidated. Herein we demonstrate that nelfinavir induces ER morphological changes and stress response, along with an autophagic protective strategy. Our data reveal that chloroquine, an autophagy inhibitor, significantly increases nelfinavir cytotoxicity. These results identify a novel strategy potentially effective in CLL treatment, by repositioning two well-known drugs as a combinatorial therapy with anti-cancer properties. PMID:23469959

  4. Effectiveness of nitrate addition and increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets.

    PubMed

    Troy, S M; Duthie, C-A; Hyslop, J J; Roehe, R; Ross, D W; Wallace, R J; Waterhouse, A; Rooke, J A

    2015-04-01

    The objectives of this study were to investigate the effects of (1) the addition of nitrate and (2) an increase in dietary oil on methane (CH4) and hydrogen (H2) emissions from 2 breeds (cross-bred Charolais and purebred Luing) of finishing beef cattle receiving 2 contrasting basal diets consisting (grams per kilogram DM) of 500:500 (Mixed) and 80:920 (Concentrate) forage to concentrate ratios. Within each basal diet there were 3 treatments: (i) control treatments (mixed-CTL and concentrate-CTL) contained rapeseed meal as the protein source, which was replaced with either (ii) calcium nitrate (mixed-NIT and concentrate-NIT) supplying 21.5 g nitrate/kg DM, or (iii) rapeseed cake (mixed-RSC and concentrate-RSC) to increase dietary oil from 27 (CTL) to 53 g/kg DM (RSC). Following adaption to diets, CH4 and H2 emissions were measured on 1 occasion from each of the 76 steers over a 13-wk period. Dry matter intakes tended (P = 0.051) to be greater for the concentrate diet than the mixed diet; however, when expressed as grams DMI per kilogram BW, there was no difference between diets (P = 0.41). Dry matter intakes for NIT or RSC did not differ from CTL. Steers fed a concentrate diet produced less CH4 and H2 than those fed a mixed diet (P < 0.001). Molar proportions of acetate (P < 0.001) and butyrate (P < 0.01) were lower and propionate (P < 0.001) and valerate (P < 0.05) higher in the rumen fluid from steers fed the concentrate diet. For the mixed diet, CH4 yield (grams per kilogram DMI) was decreased by 17% when nitrate was added (P < 0.01), while H2 yield increased by 160% (P < 0.001). The addition of RSC to the mixed diet decreased CH4 yield by 7.5% (P = 0.18). However, for the concentrate diet neither addition of nitrate (P = 0.65) nor increasing dietary oil content (P = 0.46) decreased CH4 yield compared to concentrate-CTL. Molar proportions of acetate were higher (P < 0.001) and those of propionate lower (P < 0.01) in rumen fluid from NIT treatments compared to

  5. Targeting of a common receptor shared by CXCL8 and N-Ac-PGP as a therapeutic strategy to alleviate chronic neutrophilic lung diseases.

    PubMed

    Snelgrove, Robert J

    2011-09-30

    Persistent neutrophilia is implicated in the pathology of several chronic lung diseases and consequently targeting the signals that drive the recruitment of these cells offers a plausible therapeutic strategy. The tripeptide Pro-Gly-Pro (PGP) is a neutrophil chemoattractant derived from extracellular matrix collagen and implicated in diseases such as COPD and cystic fibrosis. It was anticipated that PGP exerts its chemoatactic activity by mimicking key sequences found within classical neutrophil chemokines, such as CXCL8, and binding their receptors, CXCR1/2. Recently, however, the role of CXCR1/2 as the receptors for PGP has been questioned. In this issue of European Journal of Pharmacology, three studies address this controversy and demonstrate CXCR1/2 to be a common receptor for CXCL8 and PGP. Accordingly, these studies demonstrate the therapeutic potential of targeting this shared receptor to simultaneously alleviate neutrophilic inflammation driven by multiple neutrophil chemoattractants.

  6. Specific inhibition of p110α subunit of PI3K: putative therapeutic strategy for KRAS mutant colorectal cancers

    PubMed Central

    Fernandes, Maria Sofia; Melo, Soraia; Velho, Sérgia; Carneiro, Patrícia; Carneiro, Fátima; Seruca, Raquel

    2016-01-01

    Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide. It is often associated with activating mutations in KRAS leading to deregulation of major signaling pathways as the RAS-RAF-MAPK and PI3K-Akt. However, the therapeutic options for CRC patients harboring somatic KRAS mutations are still very limited. It is therefore urgent to unravel novel therapeutic approaches for those patients. In this study, we have awarded PI3K p110α a key role in CRC cells harboring KRAS/PIK3CA mutations or KRAS mutations alone. Specific silencing of PI3K p110α by small interfering RNA (siRNA) reduced viability and induced apoptosis or cell cycle arrest. In agreement with these cellular effects, PI3K p110α silencing led to alterations in the expression levels of proteins implicated in apoptosis and cell cycle, namely XIAP and pBad in KRAS/PIK3CA mutant cells and cyclin D1 in KRAS mutant cells. To further validate our data, a specific PI3K p110α inhibitor, BYL719, was evaluated. BYL719 mimicked the in vitro siRNA effects on cellular viability and on the alterations of apoptotic- and cell cycle-related proteins in CRC mutant cells. Overall, this study demonstrates that specific inhibition of PI3K p110α could provide an alternative therapeutic approach for CRC patients, particularly those harboring KRAS mutations. PMID:27602501

  7. The OncoPPi network of cancer-focused protein–protein interactions to inform biological insights and therapeutic strategies

    PubMed Central

    Li, Zenggang; Ivanov, Andrei A.; Su, Rina; Gonzalez-Pecchi, Valentina; Qi, Qi; Liu, Songlin; Webber, Philip; McMillan, Elizabeth; Rusnak, Lauren; Pham, Cau; Chen, Xiaoqian; Mo, Xiulei; Revennaugh, Brian; Zhou, Wei; Marcus, Adam; Harati, Sahar; Chen, Xiang; Johns, Margaret A.; White, Michael A.; Moreno, Carlos; Cooper, Lee A. D.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2017-01-01

    As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein–protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes. PPI hubs reveal new regulatory mechanisms for cancer genes like MYC, STK11, RASSF1 and CDK4. As example, the NSD3 (WHSC1L1)–MYC interaction suggests a new mechanism for NSD3/BRD4 chromatin complex regulation of MYC-driven tumours. Association of undruggable tumour suppressors with drug targets informs therapeutic options. Based on OncoPPi-derived STK11-CDK4 connectivity, we observe enhanced sensitivity of STK11-silenced lung cancer cells to the FDA-approved CDK4 inhibitor palbociclib. OncoPPi is a focused PPI resource that links cancer genes into a signalling network for discovery of PPI targets and network-implicated tumour vulnerabilities for therapeutic interrogation. PMID:28205554

  8. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies.

    PubMed

    Li, Zenggang; Ivanov, Andrei A; Su, Rina; Gonzalez-Pecchi, Valentina; Qi, Qi; Liu, Songlin; Webber, Philip; McMillan, Elizabeth; Rusnak, Lauren; Pham, Cau; Chen, Xiaoqian; Mo, Xiulei; Revennaugh, Brian; Zhou, Wei; Marcus, Adam; Harati, Sahar; Chen, Xiang; Johns, Margaret A; White, Michael A; Moreno, Carlos; Cooper, Lee A D; Du, Yuhong; Khuri, Fadlo R; Fu, Haian

    2017-02-16

    As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein-protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes. PPI hubs reveal new regulatory mechanisms for cancer genes like MYC, STK11, RASSF1 and CDK4. As example, the NSD3 (WHSC1L1)-MYC interaction suggests a new mechanism for NSD3/BRD4 chromatin complex regulation of MYC-driven tumours. Association of undruggable tumour suppressors with drug targets informs therapeutic options. Based on OncoPPi-derived STK11-CDK4 connectivity, we observe enhanced sensitivity of STK11-silenced lung cancer cells to the FDA-approved CDK4 inhibitor palbociclib. OncoPPi is a focused PPI resource that links cancer genes into a signalling network for discovery of PPI targets and network-implicated tumour vulnerabilities for therapeutic interrogation.

  9. Therapeutic drug monitoring of enteric-coated mycophenolate sodium by limited sampling strategies is associated with a high rate of failure

    PubMed Central

    Hougardy, Jean-Michel; Maufort, Laurette; Cotton, Frédéric; Coussement, Julien; Mikhalski, Dimitri; Wissing, Karl M.; Le Moine, Alain; Broeders, Nilufer; Abramowicz, Daniel

    2016-01-01

    Background Therapeutic drug monitoring of mycophenolic acid (MPA) is usually performed with a limited sampling strategy (LSS), which relies on a limited number of blood samples and subsequent extrapolation of the global exposure to MPA. LSS is usually performed successfully with mycophenolate mofetil (MMF), but data on enteric-coated mycophenolate sodium (EC-MPS) are scarce. Here, we evaluated the feasibility of 6-h LSS therapeutic drug monitoring with EC-MPS compared with MMF monitoring among kidney transplant recipients. Methods Sixty-two patients who received EC-MPS during the first 6 months of transplantation were compared with a matched group of 64 MMF-treated kidney transplant recipients. The area under the curve (AUC) was computed by LSS using multiple concentration time points (0, 1, 2, 3 and 6 h post-dose) and a trapezoidal rule. Patients had MPA therapeutic drug monitoring performed on two occasions, one within 2 weeks and the second after 3–4 months of transplantation. Results EC-MPS monitoring and MMF therapeutic drug monitoring were not interpretable in 34.5% (n = 40/116) and 1.8% (n = 2/112) of patients, respectively {relative risk [RR] 19.3 [95% confidence interval (CI) 4.8–78.0]; P < 0.0001}. The main cause of abnormal EC-MPS therapeutic drug monitoring was delayed absorption of both the previous evening and the morning dose, resulting in MPA plasma levels before the next morning dose being higher than MPA plasma levels measured at 1, 2 and 3 h after taking EC-MPS. Cyclosporin in association with MMF significantly increased the risk of low AUC values (<30 mg h/L) in comparison with tacrolimus [55% (n = 11/20) and 10% (n = 9/88), respectively; RR 5.4 (95% CI 2.6–11.2); P < 0.0001]. Conclusions The risk of therapeutic drug monitoring failure with EC-MPS is >30% during the first 6 months of renal transplantation. Delayed pharmacokinetics was the main reason. In contrast, the risk of therapeutic drug monitoring failure was substantially lower with

  10. Additional evidence for a dual-strategy model of reasoning: Probabilistic reasoning is more invariant than reasoning about logical validity.

    PubMed

    Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc

    2015-11-01

    One of the major debates concerning the nature of inferential reasoning is between counterexample-based strategies such as mental model theory and the statistical strategies underlying probabilistic models. The dual-strategy model proposed by Verschueren, Schaeken, and d'Ydewalle (2005a, 2005b) suggests that people might have access to both kinds of strategies. One of the postulates of this approach is that statistical strategies correspond to low-cost, intuitive modes of evaluation, whereas counterexample strategies are higher-cost and more variable in use. We examined this hypothesis by using a deductive-updating paradigm. The results of Study 1 showed that individual differences in strategy use predict different levels of deductive updating on inferences about logical validity. Study 2 demonstrated no such variation when explicitly probabilistic inferences were examined. Study 3 showed that presenting updating problems with probabilistic inferences modified performance on subsequent problems using logical validity, whereas the opposite was not true. These results provide clear evidence that the processes used to make probabilistic inferences are less subject to variation than those used to make inferences of logical validity.

  11. HSP70 and modified HPV 16 E7 fusion gene without the addition of a signal peptide gene sequence as a candidate therapeutic tumor vaccine.

    PubMed

    Zong, Jinbao; Wang, Changyuan; Wang, Qingyong; Peng, Qinglin; Xu, Yufei; Xie, Xixiu; Xu, Xuemei

    2013-12-01

    Millions of women are currently infected with high-risk human papillomavirus (HPV), which is considered to be a major risk factor for cervical cancer. Thus, it is urgent to develop therapeutic vaccines to eliminate the established infections or HPV-related diseases. In the present study, using the mycobacterium tuberculosis heat shock protein 70 (MtHSP70) gene linked to the modified HPV 16 E7 (mE7) gene, we generated two potential therapeutic HPV DNA vaccines, mE7/MtHSP70 and SigmE7/MtHSP70, the latter was linked to the signal peptide gene sequence of human CD33 at the upstream of the fusion gene. We found that vaccination with the mE7/MtHSP70 DNA vaccine induced a stronger E7-specific CD8+ T cell response and resulted in a more significant therapeutic effect against E7-expressing tumor cells in mice. Our results demonstrated that HSP70 can play a more important role in mE7 and MtHSP70 fusion DNA vaccine without the help of a signal peptide. This may facilitate the use of HSP70 and serve as a significant reference for future study.

  12. The Network Model of Depression as a Basis for New Therapeutic Strategies for Treating Major Depressive Disorder in Parkinson’s Disease

    PubMed Central

    D’Ostilio, Kevin; Garraux, Gaëtan

    2016-01-01

    The high prevalence of major depressive disorder in people with Parkinson’s disease (PD), its negative impact on health-related quality of life and the low response rate to conventional pharmacological therapies call to seek innovative treatments. Here, we review the new approaches for treating major depressive disorder in patients with PD within the framework of the network model of depression. According to this model, major depressive disorder reflects maladaptive neuronal plasticity. Non-invasive brain stimulation (NIBS) using high frequency repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex has been proposed as a feasible and effective strategy with minimal risk. The neurobiological basis of its therapeutic effect may involve neuroplastic modifications in limbic and cognitive networks. However, the way this networks reorganize might be strongly influenced by the environment. To address this issue, we propose a combined strategy that includes NIBS together with cognitive and behavioral interventions. PMID:27148016

  13. HDL cholesterol: all hope is not lost after the torcetrapib setback--emerging therapeutic strategies on the horizon.

    PubMed

    Verma, Nitin; Figueredo, Vincent M

    2014-01-01

    Lowering low-density lipoprotein cholesterol (LDL) has been definitely shown to reduce cardiovascular events and improve clinical outcomes in the literature. As a result, LDL lowering has become the cornerstone of therapeutic approaches to cardiovascular disease prevention. Recently, there has been a focus on targeting other lipid fractions to improve the clinical risk profile of patients. Raising high-density lipoprotein (HDL) has received considerable attention. Low HDL levels are often seen in combination with elevated triglyceride levels. New therapeutic modalities are being developed to increase HDL levels. Recent failure of agents such as cholesteryl ester transferase protein inhibitor torcetrapib has highlighted the importance of measuring functionality of HDL particles and not just focus quantitatively on HDL-C levels. The heterogeneity of HDL within the systemic circulation results from constant remodeling of particles in response to several factors. Established dyslipidemia therapies such as stains, fibrates, and niacin have already been well known in the literature to have a substantial benefit. Lifestyle changes such as smoking cessation and moderate alcohol consumption have also shown to have some benefit. Several novel HDL therapies are currently being developed, but only the cholesteryl ester transferase protein inhibitors have received considerable attention. Although torcetrapib has received some negative attention due to adverse effects, this overall class of therapeutic agents still holds a lot of promise. Newer agents without the concerned toxicities are currently being developed. ApoA-1-related peptides, peroxisome proliferator-activated receptor agonists, endothelial lipase inhibitors, and liver X receptor agonists are some of the other novel agents currently in various stages of development.

  14. CRISPRi and CRISPRa: New Functional Genomics Tools Provide Complementary Insights into Cancer Biology and Therapeutic Strategies | Office of Cancer Genomics

    Cancer.gov

    A central goal of research for targeted cancer therapy, or precision oncology, is to reveal the intrinsic vulnerabilities of cancer cells and exploit them as therapeutic targets. Examples of cancer cell vulnerabilities include driver oncogenes that are essential for the initiation and progression of cancer, or non-oncogene addictions resulting from the cancerous state of the cell. To identify vulnerabilities, scientists perform genetic “loss-of-function” and “gain-of-function” studies to better understand the roles of specific genes in cancer cells.

  15. [A new therapeutic strategy to control HIV? The PD1 molecule and its role in inhibiting cellular immune responses].

    PubMed

    Iglesias-Chiesa, María Candela; Crabtree-Ramírez, Brenda; Reyes-Terán, Gustavo

    2008-01-01

    CD8+ T cells are crucial in protecting against viral infections by secreting antiviral factors and lysing infected cells. The loss of these functions is a hallmark of various chronic viral infections. In HIV chronic infection, CD8+ T cells develop this exhausted phenotype and their protection capacities diminish. Recently, it has been shown that a co-inhibitory molecule called PD-1 plays an important role on this exhausted phenotype. These findings open up the possibility of research targeted to develop therapeutic interventions that may restore CD8+ T cell function in chronic HIV infection.

  16. The Rag2–Il2rb–Dmd– Mouse: a Novel Dystrophic and Immunodeficient Model to Assess Innovating Therapeutic Strategies for Muscular Dystrophies

    PubMed Central

    Vallese, Denis; Negroni, Elisa; Duguez, Stéphanie; Ferry, Arnaud; Trollet, Capucine; Aamiri, Ahmed; Vosshenrich, Christian AJ; Füchtbauer, Ernst-Martin; Di Santo, James P; Vitiello, Libero; Butler-Browne, Gillian; Mouly, Vincent

    2013-01-01

    The development of innovative therapeutic strategies for muscular dystrophies, particularly cell-based approaches, is still a developing field. Although positive results have been obtained in animal models, they have rarely been confirmed in patients and resulted in very limited clinical improvements, suggesting some specificity in humans. These findings emphasized the need for an appropriate animal model (i.e., immunodeficient and dystrophic) to investigate in vivo the behavior of transplanted human myogenic stem cells. We report a new model, the Rag2–Il2rb–Dmd– mouse, which lacks T, B, and NK cells, and also carries a mutant Dmd allele that prevents the production of any dystrophin isoform. The dystrophic features of this new model are comparable with those of the classically used mdx mouse, but with the total absence of any revertant dystrophin positive fiber. We show that Rag2–Il2rb–Dmd– mice allow long-term xenografts of human myogenic cells. Altogether, our findings indicate that the Rag2–Il2rb–Dmd– mouse represents an ideal model to gain further insights into the behavior of human myogenic stem cells in a dystrophic context, and can be used to assess innovative therapeutic strategies for muscular dystrophies. PMID:23975040

  17. The Rag2⁻Il2rb⁻Dmd⁻ mouse: a novel dystrophic and immunodeficient model to assess innovating therapeutic strategies for muscular dystrophies.

    PubMed

    Vallese, Denis; Negroni, Elisa; Duguez, Stéphanie; Ferry, Arnaud; Trollet, Capucine; Aamiri, Ahmed; Vosshenrich, Christian A J; Füchtbauer, Ernst-Martin; Di Santo, James P; Vitiello, Libero; Butler-Browne, Gillian; Mouly, Vincent

    2013-10-01

    The development of innovative therapeutic strategies for muscular dystrophies, particularly cell-based approaches, is still a developing field. Although positive results have been obtained in animal models, they have rarely been confirmed in patients and resulted in very limited clinical improvements, suggesting some specificity in humans. These findings emphasized the need for an appropriate animal model (i.e., immunodeficient and dystrophic) to investigate in vivo the behavior of transplanted human myogenic stem cells. We report a new model, the Rag2(-)Il2rb(-)Dmd(-) mouse, which lacks T, B, and NK cells, and also carries a mutant Dmd allele that prevents the production of any dystrophin isoform. The dystrophic features of this new model are comparable with those of the classically used mdx mouse, but with the total absence of any revertant dystrophin positive fiber. We show that Rag2(-)Il2rb(-)Dmd(-) mice allow long-term xenografts of human myogenic cells. Altogether, our findings indicate that the Rag2(-)Il2rb(-)Dmd(-) mouse represents an ideal model to gain further insights into the behavior of human myogenic stem cells in a dystrophic context, and can be used to assess innovative therapeutic strategies for muscular dystrophies.

  18. The Rag2(-)Il2rb(-)Dmd(-) Mouse: a Novel Dystrophic and Immunodeficient Model to Assess Innovating Therapeutic Strategies for Muscular Dystrophies.

    PubMed

    Vallese, Denis; Negroni, Elisa; Duguez, Stéphanie; Ferry, Arnaud; Trollet, Capucine; Aamiri, Ahmed; Vosshenrich, Christian Aj; Füchtbauer, Ernst-Martin; Di Santo, James P; Vitiello, Libero; Butler-Browne, Gillian; Mouly, Vincent

    2013-10-01

    The development of innovative therapeutic strategies for muscular dystrophies, particularly cell-based approaches, is still a developing field. Although positive results have been obtained in animal models, they have rarely been confirmed in patients and resulted in very limited clinical improvements, suggesting some specificity in humans. These findings emphasized the need for an appropriate animal model (i.e., immunodeficient and dystrophic) to investigate in vivo the behavior of transplanted human myogenic stem cells. We report a new model, the Rag2(-)Il2rb(-)Dmd(-) mouse, which lacks T, B, and NK cells, and also carries a mutant Dmd allele that prevents the production of any dystrophin isoform. The dystrophic features of this new model are comparable with those of the classically used mdx mouse, but with the total absence of any revertant dystrophin positive fiber. We show that Rag2(-)Il2rb(-)Dmd(-) mice allow long-term xenografts of human myogenic cells. Altogether, our findings indicate that the Rag2(-)Il2rb(-)Dmd(-) mouse represents an ideal model to gain further insights into the behavior of human myogenic stem cells in a dystrophic context, and can be used to assess innovative therapeutic strategies for muscular dystrophies.

  19. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies.

    PubMed

    Zhu, Chun-Hong; Mouly, Vincent; Cooper, Racquel N; Mamchaoui, Kamel; Bigot, Anne; Shay, Jerry W; Di Santo, James P; Butler-Browne, Gillian S; Wright, Woodring E

    2007-08-01

    Cultured human myoblasts fail to immortalize following the introduction of telomerase. The availability of an immortalization protocol for normal human myoblasts would allow one to isolate cellular models from various neuromuscular diseases, thus opening the possibility to develop and test novel therapeutic strategies. The parameters limiting the efficacy of myoblast transfer therapy (MTT) could be assessed in such models. Finally, the presence of an unlimited number of cell divisions, and thus the ability to clone cells after experimental manipulations, reduces the risks of insertional mutagenesis by many orders of magnitude. This opportunity for genetic modification provides an approach for creating a universal donor that has been altered to be more therapeutically useful than its normal counterpart. It can be engineered to function under conditions of chronic damage (which are very different than the massive regeneration conditions that recapitulate normal development), and to overcome the biological problems such as cell death and failure to proliferate and migrate that limit current MTT strategies. We describe here the production and characterization of a human myogenic cell line, LHCN-M2, that has overcome replicative aging due to the expression of telomerase and cyclin-dependent kinase 4. We demonstrate that it functions as well as young myoblasts in xenotransplant experiments in immunocompromized mice under conditions of regeneration following muscle damage.

  20. A Novel Strategy to Improve the Therapeutic Efficacy of Gemcitabine for Non-Small Cell Lung Cancer by the Tumor-Penetrating Peptide iRGD

    PubMed Central

    Li, Ke; Wang, Haiyu; Li, Huizhong; Zheng, Junnian

    2015-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, comprising approximately 75–80% of all lung cancers. Gemcitabine is an approved chemotherapy drug for NSCLC. The objective of this study was to develop a novel strategy to improve the therapeutic efficacy of Gemcitabine for NSCLC by the co-administered iRGD peptide. We showed that the rates of positive expression of αvβ3, αvβ5 and NRP-1 in the A549 cell line were 68.5%, 35.3% and 94.5%, respectively. The amount of Evans Blue accumulated in the tumor of Evans Blue+iRGD group was 2.5 times that of Evans Blue group. The rates of growth inhibition of the tumors of the iRGD group, the Gemcitabine group and the Gemcitabine+iRGD group were 8%, 59.8% and 86.9%, respectively. The results of mechanism studies showed that PCNA expression in the Gemcitabine+iRGD group decreased 71.5% compared with that in Gemcitabine group. The rate of apoptosis in the Gemcitabine+iRGD group was 2.2 time that of the Gemcitabine group. Therefore, the tumor-penetrating Peptide iRGD can enhance the tumor-penetrating ability and therapeutic efficacy of Gemcitabine in the A549 xenograft. The combined application of Gemcitabine with iRGD may be a novel strategy to enhance the clinical therapeutic efficacy of Gemcitabine in patients with NSCLC. PMID:26066322

  1. Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance.

    PubMed

    Ganai, Shabir Ahmad

    2016-09-01

    Context Histone deacetylase inhibitors (HDACi) have shown promising results in neurodegeneration and cancer. Hydroxamate HDACi, including vorinostat, have shown encouraging results in haematological malignancies, but the poor pharmacokinetic of these inhibitors leads to insufficient tumour concentration limiting their application against solid malignancies. Objective This article deals with novel HDAC inhibitor pracinostat (SB939) and delineates its therapeutic role in solid and haematological malignancies. The article provides rigorous details about the underlying molecular mechanisms modulated by pracinostat to exert cytotoxic effect. The article further highlights the doublet therapy that may be used to tackle monotonous cancer chemoresistance. Methods Both old and the latest literature on pracinostat was retrieved from diverse sources, such as PubMed, Science Direct, Springer Link, general Google search using both pracinostat and SB939 keywords in various ways: after thorough evaluation the topic which can fulfil the current gap was chosen. Results Pracinostat shows potent anticancer activity against both solid and haematological malignancies compared to the FDA-approved drug vorinostat. This marvellous inhibitor has better physicochemical, pharmaceutical and pharmacokinetic properties than the defined inhibitor vorinostat. Pracinostat has  >100-fold more affinity towards HDACs compared to other zinc-dependent metalloenzymes and shows maximum efficacy when used in doublet therapy. Conclusion Pracinostat shows potent anticancer activity even against therapeutically challenging cancers when used in doublet therapy. However, the triplet combination studies of the defined inhibitor that may prove even more beneficial are still undone, emphasizing the desperate need of further research in the defined gap.

  2. A novel strategy for therapeutic intervention for the genetic disease: preventing proteolytic cleavage using small chemical compound.

    PubMed

    Yamada, Masami; Hirotsune, Shinji; Wynshaw-Boris, Anthony

    2010-09-01

    Haploinsufficiency is a state of genetic disease, which is caused by hemizygous mutations of functional alleles. Lissencephaly is a typical example of haploinsufficiency disorders characterized by a smooth cerebral surface, thick cortex and dilated lateral ventricules associated with mental retardation and seizures due to defective neuronal migration. LIS1 was the first gene cloned in an organism, which was deleted or mutated in patients with lissencephaly in a heterozygous fashion. Series of studies uncovered that LIS1 is an essential regulator of cytoplasmic dynein. In particular, we reported that LIS1 is essential for dynein transport to the plus-end of microtubules by kinesin, which is essential for maintaining proper distribution of cytoplasmic dynein within the cell. Fortuitously, we found that a substantial fraction of LIS1 is degraded by the cystein protease, calpain after reaching the plus-end of microtubules. We further demonstrated that inhibition of calpain-mediated LIS1 degradation increased LIS1 level at the cortex of the cell, resulting in therapeutic benefit using genetic mouse models with reduced levels of LIS1. Our work might provide a potential therapeutic approach for the treatment of a fraction of haploinsufficiency disorders through augmenting reduced proteins by the targeting inhibition of degradation machinery.

  3. RNA Polymerase I Inhibition with CX-5461 as a Novel Therapeutic Strategy to Target MYC in Multiple Myeloma.

    PubMed

    Lee, Hans C; Wang, Hua; Baladandayuthapani, Veerabhadran; Lin, Heather; He, Jin; Jones, Richard J; Kuiatse, Isere; Gu, Dongmin; Wang, Zhiqiang; Ma, Wencai; Lim, John; O'Brien, Sean; Keats, Jonathan; Yang, Jing; Davis, Richard E; Orlowski, Robert Z

    2017-04-01

    Dysregulation of MYC is frequently implicated in both early and late myeloma progression events, yet its therapeutic targeting has remained a challenge. Among key MYC downstream targets is ribosomal biogenesis, enabling increases in protein translational capacity necessary to support the growth and self-renewal programmes of malignant cells. We therefore explored the selective targeting of ribosomal biogenesis with the small molecule RNA polymerase (pol) I inhibitor CX-5461 in myeloma. CX-5461 induced significant growth inhibition in wild-type (WT) and mutant TP53 myeloma cell lines and primary samples, in association with increases in downstream markers of apoptosis. Moreover, Pol I inhibition overcame adhesion-mediated drug resistance and resistance to conventional and novel agents. To probe the TP53-independent mechanisms of CX-5461, gene expression profiling was performed on isogenic TP53 WT and knockout cell lines and revealed reduction of MYC downstream targets. Mechanistic studies confirmed that CX-5461 rapidly suppressed both MYC protein and MYC mRNA levels. The latter was associated with an increased binding of the RNA-induced silencing complex (RISC) subunits TARBP2 and AGO2, the ribosomal protein RPL5, and MYC mRNA, resulting in increased MYC transcript degradation. Collectively, these studies provide a rationale for the clinical translation of CX-5461 as a novel therapeutic approach to target MYC in myeloma.

  4. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies

    PubMed Central

    Senter, Rebecca K.; Ghoshal, Ayan; Walker, Adam G.; Xiang, Zixiu; Niswender, Colleen M.; Conn, P. Jeffrey

    2016-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SC-CA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders. PMID:27296640

  5. An Integrated Health-Economic Analysis of Diagnostic and Therapeutic Strategies in the Treatment of Moderate-to-Severe Obstructive Sleep Apnea

    PubMed Central

    Pietzsch, Jan B.; Garner, Abigail; Cipriano, Lauren E.; Linehan, John H.

    2011-01-01

    Study Objectives: Obstructive sleep apnea (OSA) is a common disorder associated with substantially increased cardiovascular risks, reduced quality of life, and increased risk of motor vehicle collisions due to daytime sleepiness. This study evaluates the cost-effectiveness of three commonly used diagnostic strategies (full-night polysomnography, split-night polysomnography, unattended portable home-monitoring) in conjunction with continuous positive airway pressure (CPAP) therapy in patients with moderate-to-severe OSA. Design: A Markov model was created to compare costs and effectiveness of different diagnostic and therapeutic strategies over a 10-year interval and the expected lifetime of the patient. The primary measure of cost-effectiveness was incremental cost per quality-adjusted life year (QALY) gained. Patients or Participants: Baseline computations were performed for a hypothetical average cohort of 50-year-old males with a 50% pretest probability of having moderate-to-severe OSA (apnea–hypopnea index [AHI] ≥ 15 events per hour). Measurements and Results: For a patient with moderate-to-severe OSA, CPAP therapy has an incremental cost-effectiveness ratio (ICER) of $15,915 per QALY gained for the lifetime horizon. Over the lifetime horizon in a population with 50% prevalence of OSA, full-night polysomnography in conjunction with CPAP therapy is the most economically efficient strategy at any willingness-to-pay greater than $17,131 per-QALY gained because it dominates all other strategies in comparative analysis. Conclusions: Full-night polysomnography (PSG) is cost-effective and is the preferred diagnostic strategy for adults suspected to have moderate-to-severe OSA when all diagnostic options are available. Split-night PSG and unattended home monitoring can be considered cost-effective alternatives when full-night PSG is not available. Citation: Pietzsch JB; Garner A; Cipriano LE; Linehan JH. An integrated health-economic analysis of diagnostic and

  6. Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma.

    PubMed

    Soares, Ana S; Costa, Vera M; Diniz, Carmen; Fresco, Paula

    2013-10-01

    Metastatic melanoma monotherapies with drugs such as dacarbazine, cisplatin or paclitaxel (PXT) are associated with significant toxicity and low efficacy rates. These facts reinforce the need for development of novel agents or combinatory strategies. Cl-IB-MECA is a small molecule, orally bioavailable, well tolerated and currently under clinical trials as an anticancer agent. Our aim was to investigate a possible combinatory therapeutic strategy using PXT and Cl-IB-MECA on human C32 melanoma cells and its underlying mechanisms. Cytotoxicity was evaluated using MTT reduction, lactate dehydrogenase leakage and neutral red uptake assays, for different concentrations and combinations of both agents, at 24 and 48 h. Apoptosis was also assessed using fluorescence microscopy and through the evaluation of caspases 8, 9, and 3 activities. We demonstrated, for the first time, that combination of PXT and Cl-IB-MECA significantly increases cytotoxicity for clinically relevant concentrations. This combination seems to act synergistically in disrupting membrane integrity, but also causing lysosomal and mitochondrial dysfunction. When using the lowest PTX concentration (10 ng/mL), co-incubation with CI-IB-MECA (micromolar concentrations) potentiated overall cytotoxic effects and morphological signs of apoptosis. All combinations studied enhanced caspase 8, 9, and 3 activities, suggesting the involvement of both intrinsic and extrinsic apoptotic pathways. The possibility that cytotoxicity elicited by Cl-IB-MECA, alone or in combination with PXT, involves adenosine receptor activation was discarded and results confirmed that oxidative stress is only involved in cytotoxicity after treatment with PXT, alone. Being melanoma a very apoptosis-resistance cancer, this combination seems to hold promise as a new therapeutic strategy for melanoma.

  7. Microtubule-directed therapeutic strategy for neurodegenerative disorders: starting from the basis and looking on the emergences.

    PubMed

    Cappelletti, Graziella; Cartelli, Daniele; Christodoulou, Michael S; Passarella, Daniele

    2016-12-14

    Around ten years ago, the first evidence that targeting microtubule system could be a potential strategy in slowing down neurodegeneration was reported. Several teams have been working to better shape this idea and the scientific community has now the opportunity of fishing into a large amount of data coming from in vitro and in in vivo studies. Notably, these results have driven clinical trials addressing tauopathies. Unfortunately, moving such a neuroprotective strategy from mice to men has revealed unexpected concerns and results that do not fit with the promising background. Here we aim to focus the rationale for the design of a microtubule-based therapy in neurodegeneration, look at the results achieved and discuss the future perspectives.

  8. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy

    PubMed Central

    Maruani, Antoine; Smith, Mark E.B.; Miranda, Enrique; Chester, Kerry A.; Chudasama, Vijay; Caddick, Stephen

    2015-01-01

    Although recent methods for the engineering of antibody–drug conjugates (ADCs) have gone some way to addressing the challenging issues of ADC construction, significant hurdles still remain. There is clear demand for the construction of novel ADC platforms that offer greater stability, homogeneity and flexibility. Here we describe a significant step towards a platform for next-generation antibody-based therapeutics by providing constructs that combine site-specific modification, exceptional versatility and high stability, with retention of antibody binding and structure post-modification. The relevance of the work in a biological context is also demonstrated in a cytotoxicity assay and a cell internalization study with HER2-positive and -negative breast cancer cell lines. PMID:25824906

  9. Novel Therapeutic Strategies for Alcohol and Drug Addiction: Focus on GABA, Ion Channels and Transcranial Magnetic Stimulation

    PubMed Central

    Addolorato, Giovanni; Leggio, Lorenzo; Hopf, F Woodward; Diana, Marco; Bonci, Antonello

    2012-01-01

    Drug addiction represents a major social problem where addicts and alcoholics continue to seek and take drugs despite adverse social, personal, emotional, and legal consequences. A number of pharmacological compounds have been tested in human addicts with the goal of reducing the level or frequency of intake, but these pharmacotherapies have often been of only moderate efficacy or act in a sub-population of humans. Thus, there is a tremendous need for new therapeutic interventions to treat addiction. Here, we review recent interesting studies focusing on gamma-aminobutyric acid receptors, voltage-gated ion channels, and transcranial magnetic stimulation. Some of these treatments show considerable promise to reduce addictive behaviors, or the early clinical studies or pre-clinical rationale suggest that a promising avenue could be developed. Thus, it is likely that within a decade or so, we could have important new and effective treatments to achieve the goal of reducing the burden of human addiction and alcoholism. PMID:22030714

  10. Treatment of venous thromboembolism - effects of different therapeutic strategies on bleeding and recurrence rates and considerations for future anticoagulant management.

    PubMed

    Hass, Bastian; Pooley, Jayne; Harrington, Adrian E; Clemens, Andreas; Feuring, Martin

    2012-12-31

    Effective treatment of venous thromboembolism (VTE) strikes a balance between prevention of recurrence and bleeding complications. The current standard of care is heparin followed by a vitamin K antagonist such as warfarin. However, this option is not without its limitations, as the anticoagulant effect of warfarin is associated with high inter- and intra-patient variability and patients must be regularly monitored to ensure that anticoagulation is within the narrow target therapeutic range. Several novel oral anticoagulant agents are in the advanced stages of development for VTE treatment, some of which are given after an initial period of heparin treatment, in line with current practice, while others switch from high to low doses after the initial phase of treatment. In this review we assess the critical considerations for treating VTE in light of emerging clinical data for new oral agents and discuss the merits of novel treatment regimens for patients who have experienced an episode of deep vein thrombosis or pulmonary embolism.

  11. A therapeutic-only versus prophylactic platelet transfusion strategy for preventing bleeding in patients with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation

    PubMed Central

    Crighton, Gemma L; Estcourt, Lise J; Wood, Erica M; Trivella, Marialena; Doree, Carolyn; Stanworth, Simon

    2015-01-01

    expected by The Cochrane Collaboration. Main results We identified seven RCTs that compared therapeutic platelet transfusions to prophylactic platelet transfusions in haematology patients undergoing myelosuppressive chemotherapy or HSCT. One trial is still ongoing, leaving six trials eligible with a total of 1195 participants. These trials were conducted between 1978 and 2013 and enrolled participants from fairly comparable patient populations. We were able to critically appraise five of these studies, which contained separate data for each arm, and were unable to perform quantitative analysis on one study that did not report the numbers of participants in each treatment arm. Overall the quality of evidence per outcome was low to moderate according to the GRADE approach. None of the included studies were at low risk of bias in every domain, and all the studies identified had some threats to validity. We deemed only one study to be at low risk of bias in all domains other than blinding. Two RCTs (801 participants) reported at least one bleeding episode within 30 days of the start of the study. We were unable to perform a meta-analysis due to considerable statistical heterogeneity between studies. The statistical heterogeneity seen may relate to the different methods used in studies for the assessment and grading of bleeding. The underlying patient diagnostic and treatment categories also appeared to have some effect on bleeding risk. Individually these studies showed a similar effect, that a therapeutic-only platelet transfusion strategy was associated with an increased risk of clinically significant bleeding compared with a prophylactic platelet transfusion policy. Number of days with a clinically significant bleeding event per participant was higher in the therapeutic-only group than in the prophylactic group (one RCT; 600 participants; mean difference 0.50, 95% confidence interval (CI) 0.10 to 0.90; moderate-quality evidence). There was insufficient evidence to determine

  12. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).

    PubMed

    Agostinelli, Enzo; Vianello, Fabio; Magliulo, Giuseppe; Thomas, Thresia; Thomas, T J

    2015-01-01

    Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other

  13. Inhibition of the Rho GTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer.

    PubMed

    Rosenblatt, Adena E; Garcia, Maria Ines; Lyons, Leah; Xie, Yingqiu; Maiorino, Carol; Désiré, Laurent; Slingerland, Joyce; Burnstein, Kerry L

    2011-04-01

    Rac1, a Rho GTPase, modulates diverse cellular processes and is hyperactive in some cancers. Estrogen receptor-alpha (ERα) in concert with intracellular signaling pathways regulates genes associated with cell proliferation, tumor development, and breast cancer cell survival. Therefore, we examined the possibility of Rac1 and ERα crosstalk in breast cancer cells. We found that Rac1 enhanced ERα transcriptional activity in breast cancer cells. Vav3, a Rho guanine nucleotide exchange factor that activates Rac1, was an upstream mediator, and P21/Cdc42/Rac1 activating kinase-1 (Pak-1) was a downstream effector of Rac1 enhancement of ERα activity. These results suggest that Rac1 may prove to be a therapeutic target. To test this hypothesis, we used a small molecule Rac inhibitor, EHT 1864, and found that EHT 1864 inhibited ERα transcriptional activity. Furthermore, EHT 1864 inhibited estrogen-induced cell proliferation in breast cancer cells and decreased tamoxifen-resistant breast cancer cell growth. EHT 1864 decreased activity of the promoter of the ERα gene resulting in down-regulation of ERα mRNA and protein levels. Therefore, ERα down-regulation by EHT 1864 is the likely mechanism of EHT 1864-mediated inhibition of ERα activity and estrogen-stimulated breast cancer cell proliferation. Since ERα plays a critical role in the pathogenesis of breast cancer and the Rac inhibitor EHT 1864 down-regulates ERα expression and breast cancer cell proliferation, further investigation of the therapeutic potential of Rac1 targeting in the treatment of breast cancer is warranted.

  14. Can the Isolated-Elements Strategy Be Improved by Targeting Points of High Cognitive Load for Additional Practice?

    ERIC Educational Resources Information Center

    Ayres, Paul

    2013-01-01

    Reducing problem complexity by isolating elements has been shown to be an effective instructional strategy. Novices, in particular, benefit from learning from worked examples that contain partially interacting elements rather than worked examples that provide full interacting elements. This study investigated whether the isolating-elements…

  15. Funding for Higher Education in Asia and the Pacific. Strategies To Increase Cost Efficiency and Attract Additional Financial Support.

    ERIC Educational Resources Information Center

    Harman, Grant, Ed.; Selim, M., Ed.

    This book presents articles that document the serious funding problems faced by higher education institutions and systems in the Asian and Pacific region, and explores possible strategies to address these problems. It presents an overview of the financial situation faced by higher education in the region, and then discusses two main strategies…

  16. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells

    PubMed Central

    PETERS, ANN; BURRIDGE, PAUL W.; PRYZHKOVA, MARINA V.; LEVINE, MICHAL A.; PARK, TEA-SOON; ROXBURY, CHRISTOPHER; YUAN, XUAN; PÉAULT, BRUNO; ZAMBIDIS, ELIAS T.

    2012-01-01

    Recent characterization of hemangioblasts differentiated from human embryonic stem cells (hESC) has further confirmed evidence from murine, zebrafish and avian experimental systems that hematopoietic and endothelial lineages arise from a common progenitor. Such progenitors may provide a valuable resource for delineating the initial developmental steps of human hemato-endotheliogenesis, which is a process normally difficult to study due to the very limited accessibility of early human embryonic/fetal tissues. Moreover, efficient hemangioblast and hematopoietic stem cell (HSC) generation from patient-specific pluripotent stem cells has enormous potential for regenerative medicine, since it could lead to strategies for treating a multitude of hematologic and vascular disorders. However, significant scientific challenges remain in achieving these goals, and the generation of transplantable hemangioblasts and HSC derived from hESC currently remains elusive. Our previous work has suggested that the failure to derive engraftable HSC from hESC is due to the fact that current methodologies for differentiating hESC produce hematopoietic progenitors developmentally similar to those found in the human yolk sac, and are therefore too immature to provide adult-type hematopoietic reconstitution. Herein, we outline the nature of this challenge and propose targeted strategies for generating engraftable human pluripotent stem cell-derived HSC from primitive hemangioblasts using a developmental approach. We also focus on methods by which reprogrammed somatic cells could be used to derive autologous pluripotent stem cells, which in turn could provide unlimited sources of patient-specific hemangioblasts and HSC. PMID:20563986

  17. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment.

    PubMed

    Hendry, Shona A; Farnsworth, Rae H; Solomon, Benjamin; Achen, Marc G; Stacker, Steven A; Fox, Stephen B

    2016-01-01

    Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host's immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion.

  18. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment

    PubMed Central

    Hendry, Shona A.; Farnsworth, Rae H.; Solomon, Benjamin; Achen, Marc G.; Stacker, Steven A.; Fox, Stephen B.

    2016-01-01

    Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host’s immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion. PMID:28066431

  19. Haemophilia at various stages of life: design of new therapeutic strategies through an interactive course - the Kogeniale project

    PubMed Central

    Santagostino, Elena; Messina, Maria; Tagliaferri, Annarita; Iorio, Alfonso; Morfini, Massimo

    2013-01-01

    Background High-quality evidence is lacking in several areas of haemophilia treatment, in part because little time is allocated to the treatment and care of haemophilia in university education in Italy. Physicians caring for patients with haemophilia must, therefore, rely on their information on background pathophysiology and more experienced colleagues. This makes diagnostic and therapeutic choices difficult, especially when the patient has concomitant disorders or psychological issues. Material and methods This article describes a course to educate young physicians who were already engaged in the management of haemophilia on the emerging and unmet issues of haemophilia care and to implement existing guidelines. Physicians (n=53) already caring for patients with haemophilia in their haematology, internal medicine, or paediatric practices in Italy attended the course. Problem-solving group activity and open discussion were the methods chosen to formulate consensus statements. During the specifically designed interactive course, three clinical cases were simulated: a young child with congenital dislocation of the hip, an adolescent refusing prophylactic treatment, and an elderly man with cardiovascular disorders. The physicians were asked questions during the course and, through a Wi-Fi console, were able to answer and discuss each case interactively. Results Following discussion of each case, agreement was reached regarding general statements on the management of patients with severe haemophilia A in the three different age ranges considered. Discussion This project helped to outline useful decision-making tools for handling diagnostic and treatment issues in the field of haemophilia. PMID:23399360

  20. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK

    PubMed Central

    Di Paolo, Daniela; Yang, D.; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destefanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James

    2015-01-01

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors. PMID:26299615

  1. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK.

    PubMed

    Di Paolo, Daniela; Yang, D; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destafanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James; Ponzoni, Mirco; Perri, Patrizia

    2015-10-06

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors.

  2. Analytical curve or standard addition method: how to elect and design--a strategy applied to copper determination in sugarcane spirits using AAS.

    PubMed

    Honorato, Fernanda Araujo; Honorato, Ricardo Saldanha; Pimentel, Maria Fernanda; Araujo, Mario Cesar Ugulino

    2002-11-01

    In most instrumental analysis, the analyte concentration is usually obtained the by Analytical Curve Method (ACM) or Standard Addition Method (SAM). Thus, it is important for the analyst to select the most appropriate method, to seek the best conditions of analysis, and to provide parameters of analytical performance. A strategy to do so is proposed in this paper in conjunction with MATLAB software to implement it. The proposed strategy was applied to copper determination by atomic absorption spectrometry in Brazilian sugarcane spirits termed 'Cachaça' and SAM was chosen as the most appropriate method. To select the best experimental design for SAM, the influence of some factors, such as the number of standard additions and concentration levels, the location of the levels and the average concentration of the standard additions were demonstrated. The design with six standard additions, four concentration levels located near the inferior and superior levels and the average concentration of the standard additions closer to zero yielded SAM with an adequate compromise between precision, cost and time of analysis. The uniform distribution of concentration levels, usually used in routine analysis, is not a good design regarding precision. On the other hand, it is adequate when the linear range is unknown. Generally, the proposed strategy can be applied to different instrumental techniques and samples, which aim to improve their analytical performance.

  3. New Insights into Therapeutic Strategies for the Treatment of Peritoneal Fibrosis: Learning from Histochemical Analyses of Animal Models

    PubMed Central

    Kitamura, Mineaki; Nishino, Tomoya; Obata, Yoko; Ozono, Yoshiyuki; Koji, Takehiko; Kohno, Shigeru

    2014-01-01

    Encapsulating peritoneal sclerosis (EPS) is a fatal complication that can occur in patients undergoing long-term peritoneal dialysis. It is characterized by bowel obstruction and marked sclerotic thickening of the peritoneal membrane. Although the mechanisms underlying the development of EPS are complex, angiogenesis, inflammation, and peritoneal fibrosis are known to be essential factors. Now, several animal models that exhibit EPS have pathophysiology similar to that of human EPS and have been proposed for use in research to provide insights into it. Recent histochemical methods also help us to understand the pathophysiology of EPS. Advances in basic research based on the findings in those animal models have enabled the development of several strategies for the prevention and treatment of EPS. We describe here interventional studies in some animal models for peritoneal fibrosis, one of the histological disorders findings characteristic to EPS, and we highlight the need for a sophisticated animal model that closely resembles human conditions. PMID:25392567

  4. A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host

    PubMed Central

    Rai, Pradeep K; Chodisetti, Sathi Babu; Nadeem, Sajid; Maurya, Sudeep K; Gowthaman, Uthaman; Zeng, Weiguang; Janmeja, Ashok K; Jackson, David C; Agrewala, Javed N

    2016-01-01

    Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-γ+TNF-α+ polyfunctional Th1 cells and IL-17A+IFN-γ+ Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime. PMID:27052185

  5. Beyond evidence-based data: scientific rationale and tumor behavior to drive sequential and personalized therapeutic strategies for the treatment of metastatic renal cell carcinoma.

    PubMed

    Incorvaia, Lorena; Bronte, Giuseppe; Bazan, Viviana; Badalamenti, Giuseppe; Rizzo, Sergio; Pantuso, Gianni; Natoli, Clara; Russo, Antonio

    2016-04-19

    The recent advances in identification of the molecular mechanisms related to tumorigenesis and angiogenesis, along with the understanding of molecular alterations involved in renal cell carcinoma (RCC) pathogenesis, has allowed the development of several new drugs which have revolutionized the treatment of metastatic renal cell carcinoma (mRCC).This process has resulted in clinically significant improvements in median overall survival and an increasing number of patients undergoes two or even three lines of therapy. Therefore, it is necessary a long-term perspective of the treatment: planning a sequential and personalized therapeutic strategy to improve clinical outcome, the potential to achieve long-term response, and to preserve quality of life (QOL), minimizing treatment-related toxicity and transforming mRCC into a chronically treatable condition.Because of the challenges still encountered to draw an optimal therapeutic sequence, the main focus of this article will be to propose the optimal sequencing of existing, approved, oral targeted agents for the treatment of mRCC using evidence-based data along with the knowledge available on the tumor behavior and mechanisms of resistance to anti-angiogenic treatment to provide complementary information and to help the clinicians to maximize the effectiveness of targeted agents in the treatment of mRCC.

  6. Beyond evidence-based data: scientific rationale and tumor behavior to drive sequential and personalized therapeutic strategies for the treatment of metastatic renal cell carcinoma

    PubMed Central

    Badalamenti, Giuseppe; Rizzo, Sergio; Pantuso, Gianni; Natoli, Clara; Russo, Antonio

    2016-01-01

    The recent advances in identification of the molecular mechanisms related to tumorigenesis and angiogenesis, along with the understanding of molecular alterations involved in renal cell carcinoma (RCC) pathogenesis, has allowed the development of several new drugs which have revolutionized the treatment of metastatic renal cell carcinoma (mRCC). This process has resulted in clinically significant improvements in median overall survival and an increasing number of patients undergoes two or even three lines of therapy. Therefore, it is necessary a long-term perspective of the treatment: planning a sequential and personalized therapeutic strategy to improve clinical outcome, the potential to achieve long-term response, and to preserve quality of life (QOL), minimizing treatment-related toxicity and transforming mRCC into a chronically treatable condition. Because of the challenges still encountered to draw an optimal therapeutic sequence, the main focus of this article will be to propose the optimal sequencing of existing, approved, oral targeted agents for the treatment of mRCC using evidence-based data along with the knowledge available on the tumor behavior and mechanisms of resistance to anti-angiogenic treatment to provide complementary information and to help the clinicians to maximize the effectiveness of targeted agents in the treatment of mRCC. PMID:26872372

  7. A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host.

    PubMed

    Rai, Pradeep K; Chodisetti, Sathi Babu; Nadeem, Sajid; Maurya, Sudeep K; Gowthaman, Uthaman; Zeng, Weiguang; Janmeja, Ashok K; Jackson, David C; Agrewala, Javed N

    2016-04-07

    Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-γ(+)TNF-α(+) polyfunctional Th1 cells and IL-17A(+)IFN-γ(+) Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime.

  8. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds

    PubMed Central

    Léguillier, Teddy; Lecsö-Bornet, Marylin; Lémus, Christelle; Rousseau-Ralliard, Delphine; Lebouvier, Nicolas; Hnawia, Edouard; Nour, Mohammed; Aalbersberg, William; Ghazi, Kamelia; Raharivelomanana, Phila; Rat, Patrice

    2015-01-01

    Background Calophyllum inophyllum L. (Calophyllaceae) is an evergreen tree ethno-medically used along the seashores and islands of the Indian and Pacific Oceans, especially in Polynesia. Oil extracted from the seeds is traditionally used topically to treat a wide range of skin injuries from burn, scar and infected wounds to skin diseases such as dermatosis, urticaria and eczema. However, very few scientific studies reported and quantified the therapeutic properties of Calophyllum inophyllum oil (CIO). In this work, five CIO from Indonesia (CIO1), Tahiti (CIO2, 3), Fiji islands (CIO4) and New Caledonia (CIO5) were studied and their cytotoxic, wound healing, and antibacterial properties were presented in order to provide a scientific support to their traditional use and verify their safety. Methods The safety of the five CIO was ascertained using the Alamar blue assay on human keratinocyte cells. CIO wound healing properties were determined using the scratch test assay on human keratinocyte cells. CIO-stimulated antibacterial innate immune response was evaluated using ELISA by measuring β defensin-2 release in human derivative macrophage cells. CIO antibacterial activity was tested using oilogramme against twenty aerobic Gram- bacteria species, twenty aerobic Gram+ bacteria species, including a multi-drug resistant Staphylococcus aureus strain and two anaerobic Gram+ bacteria species e.g. Propionibacterium acnes and Propionibacterium granulosum. To detect polarity profile of the components responsible of the antibacterial activity, we performed bioautography against a Staphylococcus aureus strain. Results Based on Alamar Blue assay, we showed that CIO can be safely used on keratinocyte cells between 2.7% and 11.2% depending on CIO origin. Concerning the healing activity, all the CIO tested accelerated in vitro wound closure, the healing factor being 1.3 to 2.1 higher compared to control when keratinocytes were incubated after scratch with CIO at 0.1%. Furthermore

  9. Therapeutic Strategy for Cavernous Sinus-Invading Non-Functioning Pituitary Adenomas Based on the Modified Knosp Grading System

    PubMed Central

    Hwang, Juyoung; Seol, Ho Jun; Nam, Do-Hyun; Lee, Jung-Il

    2016-01-01

    Background Non-functioning pituitary adenomas (NFPA) invading into the cavernous sinus are surgically challenging. To decrease recurrence rate, surgeon makes a strong endeavor to resect tumor gross totally. However, gross total resection (GTR) is difficult to achieve with cavernous sinus invasion. Recently, a new classification system for cavernous invasion of pituitary adenomas was suggested. The aim of this study is to validate this new classification system and to identify limitations and considerations in designing treatment strategies for patients with NFPA involving the cavernous sinus. Methods Between January 2000 and January 2012, 275 patients who underwent operation for NFPA were enrolled in the study. Median age was 50 years (15–79 years). There were 145 males and 130 females. The median follow-up duration was 4 years (range 1–12.5 years). Results Related to extent of tumor removal, GTR was obtained in 184 patients (66.9%), near total resection (NTR) was obtained in 45 patients (16.3%), and sub-total resection (STR) was obtained in 46 patients (16.7%) of a total 275 patients. There were statistically significant differences between the extent of resection and the new Knosp classification (p<0.001). In the high-grade group of the new Knosp classification, there was no difference in recurrence between patients who underwent GTR or NTR only and those who underwent STR with adjuvant radiation therapy (p=0.515). Conclusion In case of high risk of surgical complications, STR with adjuvant radiation therapy can be considered as an alternative strategy for safe treatment of cavernous-invading adenomas. PMID:27867914

  10. Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety.

    PubMed

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Romagnoli, Romeo; Baraldi, Pier Giovanni; Borea, Pier Andrea; Varani, Katia

    2016-12-01

    Activation of A1 adenosine receptors (ARs) has been associated with anxiolytic-like effects in different behavioral tests, but development of A1AR agonists for therapeutic use has been hampered, most likely due to the presence of side effects. With the aim to identify a safer approach for the treatment of anxiety, we investigated, in mice, the anxiolytic-like properties of a novel A1AR positive allosteric modulator, TRR469. Acute administration of TRR469 (0.3-3 mg/kg) resulted in robust anxiolytic-like effects in the elevated plus maze, the dark/light box, the open field and the marble burying tests. The magnitude of the anxiolytic action of TRR469 was comparable to that obtained with benzodiazepine diazepam (1 mg/kg). The use of the A1AR antagonist DPCPX (3 mg/kg) suggested that the effects of TRR469 were mediated by this receptor subtype. In contrast to diazepam, the novel positive allosteric modulator did not potentiate the sedative effect of ethanol (3.5 g/kg) evaluated by the loss of righting reflex. While diazepam produced motor coordination impairment in the rotarod test, this effect being enhanced by the presence of ethanol (1.5 g/kg), TRR469 did not elicit locomotor disturbances either when administered alone or in the presence of ethanol. In vitro, TRR469 was able to increase the number of A1AR recognizable by the agonist radioligand [(3)H]-CCPA in mouse brain regions involved in emotional processes. TRR469 markedly increased the affinity of the agonist CCPA, suggesting the capability, in vivo, to increase the affinity of endogenous adenosine. Taken together, these findings indicate that the positive allosteric modulation of A1AR may represent a promising approach for the treatment of anxiety-related disorders.

  11. Verrucous Oesophageal Carcinoma: Single Case Report and Case Series Including 15 Patients – Issues for Consideration of Therapeutic Strategies

    PubMed Central

    Behrens, Angelika; Stolte, Manfred; Pech, Oliver; May, Andrea; Ell, Christian

    2014-01-01

    Background Verrucous carcinomas (VC) of the oesophagus are a rarity. Due to their histological resemblance to squamous cell carcinoma, the diagnostic and treatment standards applicable to the latter have so far also been applied to VC as a disease entity. Quite limited data are available including two case series of 5 or 11 patients. The present study reports on a single case treated by local endoscopic therapy and a series of 15 patients, 9 of whom received local endoscopic therapy. Methods The data for patients diagnosed with VC of the oesophagus who had been treated from January 1999 to May 2011 were analysed retrospectively. Results 15 patients with the diagnosis of oesophageal VC were included. The male-female ratio was 3:1. 9 of 11 pT1-VC patients presented with the cardinal symptom dysphagia or odynophagia. For the majority of the patients, the growth pattern is one of extensive superficial expansion showing a median length of 9 cm (range: 2-22 cm). Surprisingly, none of the VC patients showed lymph node or distant metastasis. 9 of 15 VC patients received local endoscopic therapy; 4 were treated with curative intent and 5 were treated palliatively. 3 patients underwent oesophageal resection, and definitive chemoradiotherapy was administered in a further 3 patients. One severe complication, consisting of a postoperative anastomotic insufficiency with a fatal outcome, occurred in this group of patients. Conclusion This is the largest published study describing patients diagnosed with VC of the oesophagus so far. The option of local endoscopic therapy and its results in 9 patients are reported for the first time. The superficial growth pattern of the tumour and the frequent absence of lymph node or distant metastasis suggest that endoscopic resection can be carried out as a diagnostic and/or therapeutic approach. Due to the rarity of this entity, the case numbers are unfortunately so limited that evidence-based recommendations are unlikely to become available

  12. A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease.

    PubMed

    Fujiwara, Tohru; Ikeda, Takashi; Nagasaka, Yuki; Okitsu, Yoko; Katsuoka, Yuna; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Tomosugi, Naohisa; Harigae, Hideo

    2013-01-01

    Hepcidin is the principal iron regulatory hormone, controlling the systemic absorption and remobilization of iron from intracellular stores. The expression of the hepcidin gene, HAMP, is increased in patients with anemia of chronic disease. Previously, the synthetic compound K7174 was identified through chemical screening as a novel inhibitor of the adhesion of monocytes to cytokine-stimulated endothelial cells. K7174 also ameliorated anemia induced by inflammatory cytokines in mice, which suggests a possible involvement of hepcidin regulation. The present study was performed to assess the impact of K7174 on hepcidin expression in a human hematoma cell line and in mice in vivo. We first demonstrated that K7174 treatment in HepG2 cells significantly decreased HAMP expression. Then, we conducted microarray analysis to determine the molecular mechanism by which K7174 inhibits HAMP expression. Transcriptional profiling confirmed the downregulation of HAMP. Surprisingly, we found that K7174 strongly induced GDF15, known as a negative regulator of HAMP expression. Western blotting analysis as well as ELISA confirmed the induction of GDF15 by K7174 treatment. Furthermore, K7174-mediated HAMP suppression was rescued by the silencing of GDF15 expression. Interestingly, we found that K7174 also upregulates CEBPB. Promoter analysis and chromatin immunoprecipitation analysis revealed that CEBPB could contribute to K7174-mediated transcriptional activation of GDF15. Subsequently, we also examined whether K7174 inhibits hepcidin expression in mice. Quantitative RT-PCR analysis with liver samples from K7174-treated mice demonstrated significant upregulation of Gdf15 and downregulation of Hamp expression, as compared to control mice. Furthermore, serum hepcidin concentration was also significantly decreased in K7174-treated mice. In conclusion, K7174 inhibits hepcidin expression partly by inducing GDF15. K-7174 may be a potential therapeutic option to treat anemia of chronic

  13. A review of the rationale for additional therapeutic interventions to attain lower LDL-C when statin therapy is not enough.

    PubMed

    Shanes, Jeffrey G

    2012-02-01

    Statins alone are not always adequate therapy to achieve low-density lipoprotein (LDL) goals in many patients. Many options are available either alone or in combination with statins that makes it possible to reach recommended goals in a safe and tolerable fashion for most patients. Ezetimibe and bile acid sequestrants reduce cholesterol transport to the liver and can be used in combination. Niacin is very effective at lowering LDL, beyond its ability to raise high-density lipoprotein and shift LDL particle size to a less atherogenic type. When statins cannot be tolerated at all, red yeast rice can be used if proper formulations of the product are obtained. Nutrients can also be added to the diet, including plant stanols and sterols, soy protein, almonds, and fiber, either individually or all together as a portfolio diet. A clear understanding of how each of these strategies works is essential for effective results.

  14. Design of a miRNA sponge for the miR-17 miRNA family as a therapeutic strategy against vulvar carcinoma.

    PubMed

    de Melo Maia, Beatriz; Ling, Hui; Monroig, Paloma; Ciccone, Maria; Soares, Fernando A; Calin, George A; Rocha, Rafael M

    2015-12-01

    Dysregulation of microRNAs has been studied thoroughly, and has been observed in a variety of tumors including vulvar carcinomas, a rare type of gynecological tumor with increasing incidence. However, very few therapeutic alternatives have reached the clinical setting, and there is an urgent unmet need to develop novel strategies for patients with this tumor type. Thus, a microRNA (miRNA) sponge for the miR-17 miRNA family was designed, synthesized and validated in vitro in order to explore a new therapeutic strategy based on inhibiting this oncogenic miRNA family in vulvar cancer. Members of the miR-17 family were evaluated for expression in a vulvar tumor cell line (SW954) and 20 HPV negative formalin-fixed paraffin-embedded (FFPE) samples by quantitative real-time PCR (qRT-PCR). Six in tandem, bulged sequences that were complementary to these miRNAs were designed, synthesized, cloned, and transfected into SW954 cells. A luciferase reporter assay with a psiCheck2 vector was used to test the specificity of the sponge sequences for miR-17 family miRNA binding. Taqman qRT-PCR was used to test how the sponges affected miRNA expression. In FFPE samples, higher expression of miR-20a and miR-106a correlated with deeper tumor invasion (P = 0.0187 and P = 0.0404, respectively). The luciferase reporter assay validated the specificity of the sponge for miR-17 family members. Using qRT-PCR, we confirmed this specificity with decreased expression in 5 (out of six) miRNAs of the miR-17 family in SW954 cells. Although our results are preliminary, these results demonstrate that these miRNA sponges are potent inhibitors of the miR-17 family of miRNAs in SW954. Therefore, this miRNA-specific sponge may be developed into a novel therapeutic treatment for patients with vulvar cancer.

  15. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice.

    PubMed

    Patel, Kartikkumar Navinchandra; Joharapurkar, Amit Arvind; Patel, Vishal; Kshirsagar, Samadhan Govind; Bahekar, Rajesh; Srivastava, Brijesh Kumar; Jain, Mukul R

    2014-12-01

    Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.

  16. Novel drug delivery system based on docetaxel-loaded nanocapsules as a therapeutic strategy against breast cancer cells.

    PubMed

    Sánchez-Moreno, Paola; Boulaiz, Houria; Ortega-Vinuesa, Juan Luis; Peula-García, José Manuel; Aránega, Antonia

    2012-01-01

    In the field of cancer therapy, lipid nanocapsules based on a core-shell structure are promising vehicles for the delivery of hydrophobic drugs such as docetaxel. The main aim of this work was to evaluate whether docetaxel-loaded lipid nanocapsules improved the anti-tumor effect of free docetaxel in breast cancer cells. Three docetaxel-loaded lipid nanocapsules were synthesized by solvent displacement method. Cytotoxic assays were evaluated in breast carcinoma (MCF-7) cells treated by the sulforhodamine B colorimetric method. Cell cycle was studied by flow cytometry and Annexin V-FITC, and apoptosis was evaluated by using propidium iodide assays. The anti-proliferative effect of docetaxel appeared much earlier when the drug was encapsulated in lipid nanoparticles than when it was free. Docetaxel-loaded lipid nanocapsules significantly enhanced the decrease in IC(50) rate, and the treated cells evidenced apoptosis and a premature progression of the cell cycle from G(1) to G(2)-M phase. The chemotherapeutic effect of free docetaxel on breast cancer cells is improved by its encapsulation in lipid nanocapsules. This approach has the potential to overcome some major limitations of conventional chemotherapy and may be a promising strategy for future applications in breast cancer therapy.

  17. Blocking Aβ seeding-mediated aggregation and toxicity in an animal model of Alzheimer's Disease: A novel therapeutic strategy for neurodegeneration

    PubMed Central

    Eleuteri, Simona; Di Giovanni, Saviana; Rockenstein, Edward; Mante, Mike; Adame, Antony; Trejo, Margarita; Wrasidlo, Wolf; Wu, Fang; Fraering, Patrick C.; Masliah, Eliezer; Lashuel, Hilal A.

    2014-01-01

    Aβ accumulation plays a central role in the pathogenesis of Alzheimer's disease (AD). Recent studies suggest that process of Aβ nucleated polymerization is essential for Aβ fibril formation, pathology spreading and toxicity. Therefore, targeting this process represent an effective therapeutic strategy to slow or block disease progression. To discover compounds that might interfere with the Aβ seeding capacity, toxicity and pathology spreading, we screened a focused library of FDA-approved drugs in vitro using a seeding polymerization assay and identified small molecule inhibitors that specifically interfered with Aβ seeding-mediated fibril growth and toxicity. Mitoxantrone, bithionol and hexachlorophene were found to be the strongest inhibitors of fibril growth and protected primary cortical neuronal cultures against Aβ-induced toxicity. Next, we assessed the effects of these three inhibitors in vivo in the mThy1-APPtg mouse model of AD (8-month-old mice). We found that mitoxantrone and bithionol, but not hexachlorophene, stabilized diffuse amyloid plaques, reduced the levels of Aβ42 oligomers and ameliorated synapse loss, neuronal damage and astrogliosis. Together, our findings suggest that targeting fibril growth and Aβ seeding capacity constitutes a viable and effective strategy for protecting against neurodegeneration and disease progression in AD. PMID:25173807

  18. [Identification, during development, of a methodology targeted at determining the positioning of new drugs for therapeutic strategies: examples of rheumatoid arthritis and cardiac insufficiency].

    PubMed

    Le Jeunne, C; Plétan, Y; Boissel, J P

    2002-01-01

    The Marketing Authorization (MA) granted to a new molecular entity does not allow for proper anticipation of its future positioning within the therapeutic strategy. A specific methodology should be devised as early as during the pre-MA development phase that could result in an initial positioning that should be subjected to further reappraisal with regard to scientific advances, the arrival of new treatments and further developments with this molecule. A methodology is thus proposed, based on early optimisation of the development plan, the granting of subsequent MAs, and reappraisal of the positioning within the strategy, based on analysis of all available data. It should be possible to take into account the economic context, within an agreed s